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Motivation for the Baum-Connes
Conjecture for torsionfree groups

The aim is to compute the topological K-theory

K∗(C∗
r(G))

of the reduced group C∗-algebra C∗
r(G) in the

sense that we want to identify it with more

familiar terms. The key idea comes from the

observation that K∗(C∗
r(G)) has some homo-

logical properties. More precisely, if G is the

amalgamated product G = G1 ∗G0
G2 for sub-

groups Gi ⊆ G, then there is a long exact se-

quence due to Pimsner-Voiculescu

· · ·
∂n+1−−−→ Kn(C

∗
r(G0)) → Kn(C

∗
r(G1))⊕Kn(C

∗
r(G2))

→ Kn(C
∗
r(G))

∂n−→ Kn−1(C
∗
r(G0))

→ Kn−1(C
∗
r(G1))⊕Kn−1(C

∗
r(G2)) → · · · .



If φ : G → G is a group automorphism and

Goφ Z the associated semidirect product, then

there is a long exact sequence due to Pimsner-

Voiculescu

· · ·
∂n+1−−−→ Kn(C

∗
r(G))

φ∗−id−−−−→ Kn(C
∗
r(G))

→ Kn(C
∗
r(G oφ Z))

∂n−→ Kn−1(C
∗
r(G))

φ∗−id−−−−→ Kn−1(C
∗
r(G)) → · · · .

Notice that the are analogous sequences in

group homology

· · ·
∂n+1−−−→ Hn(BG0) → Hn(BG1)⊕Hn(BG2)

→ Hn(BG)
∂n−→ Hn−1(BG0)

→ Hn−1(BG1)⊕Hn−1(BG2)

→ Hn−1(BG)
∂n−1−−−→ · · ·



and

· · ·
∂n+1−−−→ Hn(BG)

φ∗−id−−−−→ Hn(BG)

→ Hn(B(G oφ Z))
∂n−→ Hn−1(BG)

φ∗−id−−−−→ Hn−1(BG) → · · · .

The first naive guess Hn(BG) = Kn(C∗
r(G))

fails already for the trivial group. On the other

hand the guess Kn(BG) = Kn(C∗
r(G)) works

out for the trivial group. This motivates:

Conjecture 1 (Baum-Connes Conjecture for

torsionfree groups).There is an assembly map

Kn(BG)
∼=−→ Kn(C

∗
r(G))

which is bijective for all n ∈ Z.



Remark 2. If G is not torsionfree, the version

of the Baum-Connes Conjecture above cannot

hold anymore in general, Namely, for a finite

group G one has

Kn(BG)⊗ZQ ∼= Kn({•})⊗ZQ ∼= Kn(C
∗
r({1}))⊗ZQ

and

Kn(C
∗
r(G)) ∼=

{
RC(G) n even,
{0} n odd.

To formulate the Baum-Connes Conjecture in

general, some more input is needed.



The Farrell-Jones Conjecture
for torsionfree groups

For algebraic K- and L-theory the situation
is more complicated since there the Mayer-
Vietoris sequence exist only modulo certain Nil-
terms or Unil-terms as worked out by Cappell
and Waldhausen. For instance the Bass-Heller-
Swan decomposition implies

Kn(R[Z]) ∼= Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R),

whereas

Hn(BZ;K(R)) ∼= Kn(R)⊕Kn−1(R).

If R is a regular ring, one can still hope for
a torsionfree group G that there are isomor-
phisms

Hn(BG;K(R))
∼=−→ Kn(RG).

In L-theory one can hope for an isomorphism
for a torsionfree group G

Hn(BG;L〈−∞〉(R))
∼=−→ L

〈−∞〉
n (RG).



Here the decoration 〈−∞〉 is forced upon us
because the Shaneson splitting. It says

L
〈−j〉
n (RZ) ∼= L

〈−j〉
n (R)⊕ L

〈−j−1〉
n−1 (R),

whereas

Hn(BZ;L〈−j〉(R)) ∼= L
〈−j〉
n (R)⊕ L

〈−j〉
n−1(R).

Remark 3 (Consequence for K̃0(ZG) and
Wh(G)). Let G be a torsionfree group. Then
the Farrell-Jones Conjecture predicts

Hn(BG,K(Z)) ∼= Kn(ZG).

Since Kn(Z) = πn(K(Z)) = 0 for n ≤ −1 and
K̃n(Z) = 0 for n = 0,1, an easy application
of the Atiyah-Hirzebruch spectral sequence im-
plies

K̃0(ZG) = {0};
Wh(G) = {0}.

As in the Baum-Connes Conjecture the ver-
sion of the Farrell-Jones Conjecture formulated
above cannot extend in general to groups with
torsion.



Equivariant homology theories

Definition 4 (G-homology theory).

A G-homology theory HG
∗ is a covariant functor

HG
∗ from the category of G-CW -pairs to the

category of Z-graded R-modules together with

natural transformations

∂G
n (X, A) : HG

n (X, A) → HG
n−1(A)

for n ∈ Z satisfying the following axioms:

• G-homotopy invariance;

• Long exact sequence of a pair;

• Excision;

• Disjoint union axiom.



Definition 5 (Equivariant homology the-
ory). An equivariant homology theory H?

∗ con-
sists of a G-homology theory HG

∗ for every group
G together with the following so called induc-
tion structure: given a group homomorphism
α : H → G and a H-CW -pair (X, A) there are
for all n ∈ Z natural homomorphisms

indα : HH
n (X, A) → HG

n (indα(X, A))

satisfying

• Bijectivity
If ker(α) acts freely on X, then indα is a
bijection;

• Compatibility with the boundary homomor-
phisms

• Functoriality in α

• Compatibility with conjugation



Example 6.Here are some examples for equiv-
ariant homology theories H?

∗:

• Quotients
Let K∗ be a non-equivariant homology the-
ory. Define H?

∗ by

HG
∗ (X) := K∗(G\X).

• Borel homology
Let K∗ be a non-equivariant homology the-
ory. Define H?

∗ by

HG
∗ (X) := K∗(EG×G X).

• Equivariant bordism
Let X be a proper G-CW -complex. De-
fine the n-th G-bordism group ΩG

n (X) by
the G-bordism classes of proper cocompact
smooth G-manifolds M with G-reference
maps to X.



A spectrum E defines a homology theory by

sending a space X to πs
∗(X+ ∧E). This gener-

alizes to the equivariant setting as follows.

Theorem 7 (Equivariant homology theo-

ries and spectra). Consider a covariant func-

tor

E : GROUPOIDS → SPECTRA

sending equivalences of groupoids to weak equiv-

alences of spectra.

Then there exists an equivariant homology the-

ory H?
∗(−;E) with the property that for every

group G, subgroup H ⊆ G and n ∈ Z

HG
n (G/H) = HH

n ({•}) = πs
n(E(H)).



Proof. Given a group G and a G-set S we ob-

tain a groupoid GG(S) whose objects are ele-

ments in S and whose morphisms from s1 to

s2 are the elements g ∈ G with gs1 = s2. Com-

position comes from the group structure on G.

Thus we obtain a covariant functor

EG : Or(G) → SPECTRA, G/H 7→ E(GG(G/H)).

A G-CW -complex X defines a contravariant

functor

X? : Or(G) → SPACES, G/H 7→ XH .

We obtain a spectrum X?
+ ∧Or(G) EG by the

balanced smash product. Its n-th stable ho-

motopy group is HG
n (X;E).



The next result is due to Davis-Lück.

Theorem 8 (K- and L-Theory Spectra over

Groupoids). Let R be a ring (with involution).

There exist covariant functors

KR : GROUPOIDS → SPECTRA;

L
〈j〉
R : GROUPOIDS → SPECTRA;

Ktop : GROUPOIDSinj → SPECTRA

with the following properties:

• They send equivalences of groupoids to weak

equivalences of spectra;

• For every group G and all n ∈ Z we have

πn(KR(G)) ∼= Kn(RG);

πn(L
〈j〉
R (G)) ∼= L

〈j〉
n (RG);

πn(K
top(G)) ∼= Kn(C

∗
r(G)).



Classifying spaces of families
of subgroups

Definition 9 (Family of subgroups). A fam-

ily F of subgroups of the group G is a set of

subgroups of G which is closed under conjuga-

tion and taking subgroups.

Examples for families are

{1} trivial subgroup
FIN finite subgroups
VCY virtually cyclic subgroups
ALL all subgroups



Definition 10 (Classifying space of a fam-

ily). Let F be a family of subgroups of G. A

model for the classifying space of the family F
is a G-CW -complex EF(G) such that EF(G)H

is contractible if H ∈ F and is empty if H 6∈ F.

If F is FIN or VCY, we also write EG and EG.

Sometimes EG is called the classifying space

for proper G-actions.

Theorem 11. The G-CW -complex EF(G) is

characterized uniquely up to G-homotopy by

the property that for every G-CW -complex X

whose isotropy groups belong to F there is

up to G-homotopy precisely one G-map X →
EF(G).

Obviously E{1}(G) = EG and EALL(G) = G/G.



Remark 12 (Models for EG). The spaces
EG are interesting in their own right and have
often very nice geometric models which are
rather small. For instance

• Rips complex for word hyperbolic groups;

• Teichmüller space for mapping class groups;

• Outer space for the group of outer auto-
morphisms of free groups;

• L/K for a connected Lie group L, a max-
imal compact subgroup K ⊆ L and G ⊆ L

a discrete subgroup;

• CAT(0)-spaces with proper isometric G-
actions, e.g., Riemannian manifolds with
non-positive sectional curvature or trees.



Formulations of the conjec-
tures in general

Definition 13 (Assembly map). Let HG
∗ be

a G-homology theory. Let F be a family of
subgroups. Let pr : EF(G) → G/G be the pro-
jection. The associated assembly map is

HG
n (pr): HG

n (EF(G)) → HG
n (G/G).

Definition 14 (Meta-Isomorphism-Conjecture).
The Meta-Isomorphism Conjecture for a G-
homology theory HG

∗ and a family F says that
the assembly map

HG
n (pr): HG

n (EF(G)) → HG
n (G/G)

is bijective for all n ∈ Z.
Definition 15 (Baum-Connes-Conjecture).
The Baum-Connes Conjecture is the Meta-
Isomorphism Conjecture for HG

∗ (−,Ktop) = KG
∗ (−)

and the family FIN , i.e., it predicts the bijec-
tivity of

KG
n (EG) → Kn(C

∗
r(G)).



Definition 16 (Farrell-Jones-Conjecture).The

Farrel-Jones Conjecture is the Meta-Isomorphism

Conjecture for HG
∗ (−,KR) or HG

∗ (−,L
〈−∞〉
R ) and

the family VCY, i.e., it predicts the bijectivity

of the assembly maps

HG
n (EVCY(G);KR) → Kn(RG);

HG
n (EVCY(G);L

〈−∞〉
R ) → L

〈−∞〉
n (RG).

Remark 17 (Assembling from subgroups).

The idea behind all of these conjectures is that

for a certain functor from groups to spectra

its value on a group G can be assembled by its

values on all subgroups occuring in F. These

conjectures predict a kind of induction theo-

rem. However, degrees are mixed in the sense

that Kn(RG) is computable in terms of and

affected by Km(RH) for all H ∈ VCY and all

m ∈ Z, m ≤ n.



Remark 18 (Status). These conjectures are

known for many groups but are open in gen-

eral. The methods of proofs are different de-

pending on the groups or the conjecture con-

sidered. They mainly use techniques from con-

trolled topology, homotopy theory, K-theory,

operator theory and geometry. For a survey of

the status, method of proofs, the history and

the applications of the Baum-Connes Conjec-

ture and the Farrell-Jones Conjecture we refer

to the article by Lück and Reich in the hand-

book of K-theory (2005).

We mention the recent result of Bartels, Lück

and Reich.

Theorem 19.The Farrell-Jones Conjecture for

algebraic K-theory Kn(RG) holds for all n ∈ Z,

all coefficient rings R and all word-hyperbolic

groups G.



Remark 20 (Applications).These conjectures

are very deep. They give a lot of structural in-

sight and imply a variety of classical prominent

conjectures such as

• Bass Conjecture

Values of Hattori-Stalling ranks.

• Borel Conjecture

Topological rigidity of aspherical manifolds.

• Stable Gromov-Lawson-Rosenberg Conjec-

ture

Obstruction for positive scalar curvature

metrics.

• Kadison Conjecture

Idempotents in C∗
r(G)



• Novikov Conjecture

Homotopy invariance of higher signatures.

• generalized Trace Conjecture

Values of the trace maps.



Remark 21 (Interpretations of the assem-

bly maps).This implications and also the proofs

of the Baum-Connes Conjecture and the Farrell-

Jones Conjecture are often consequences of a

good geometric interpretation of the assem-

bly maps, e.g., in terms of index theory (Kas-

parov), controlled topology (Quinn) or in terms

of surgery theory (Quinn, Ranicki).

These two conjectures are also the main tool

in computations, where the target of the as-

sembly map is the object of interest and the

source of the assembly map is tractable for

computations. The latter is due to the ho-

motopic theoretic description of the assembly

map due to Davis-Lück since well-known tools

like spectral sequences and Chern characters

can be generalized to the equivariant setting

and then successfully applied.

We will discuss both aspects.



Remark 22 (The Meta Conjecture and other

theories). The Meta Conjecture applies also

to other theories. Farrell-Jones study the pseudo-

isotopy functor. In a project by Lück-Reich-

Rognes-Varisco the version of the Meta-Con-

jecture is treated for topological Hochschild

homology and for topological cyclic homology,

where the relevant family consists of cyclic sub-

groups. An important feature of the homotopy

theoretic assembly map is that it is natural in

the theories which are plugged in. Thus for

instance construction such as the cyclotomic

trace or change of rings homomorphism or the

passage from algebraic to topological K-theory

yield transformations between the relevant as-

sembly maps



Index-theoretic interpretation
of the Baum-Connes assem-
bly map

The Baum-Connes assembly map

KG
0 (EG) → K0(C

∗
r(G))

has the following interpretation. Elements in

KG
0 (EG) are represented by pairs (M, P ∗) con-

sisting of a cocompact proper smooth G-mani-

fold M with G-invariant Riemannian metric and

a G-equivariant elliptic complex P ∗ of differen-

tial operators of order 1. The Baum-Connes

assembly map assigns to this pair its G-index

in the sense of Mishchenko-Fomenko. So the

surjectivity of the Baum-Connes map says that

every element in K0(C
∗
r(G)) can be realized as

an index of a pair (M, P ∗). The injectivity says

that the index decides when two such cycles

(M, P ∗) and (N, Q∗) are homologous.



Example 23 (Kadison Conjecture). Let G

be a torsionfree group. Then the following di-

agram commutes by Atiyah’s L2-index theorem

K0(BG) = KG
0 (EG)

K0(pr) ��

// K0(C
∗
r(G)) tr // R

K0({•}) ∼=
// Z

OO

Hence a conclusion of the Baum-Connes Con-

jecture is the Trace Conjecture which predicts

that the image of the trace map tr is the in-

tegers. This implies the Kadison Conjecture

which says that every idempotent in C∗
r(G) is

0 or 1.



Wall’s finiteness obstruction

Given a finitely dominated CW -complex X Wall

defines its finiteness obstruction

0̃(X) ∈ K̃0(Zπ)

for π = π1(X) by

0̃(X) :=
∑
n≥0

(−1)n · [Pn]

where P∗ is any finite projective Zπ-chain com-

plex P∗ which is Zπ-homotopy equivalent to

C∗(X̃). It is zero if and only X is homotopy

equivalent to a finite CW -complex. For a finitely

presented group G any element in K̃0(ZG) can

be realized as õ(X) of a finitely dominated CW -

complex for G ∼= π1(X). This implies:

Theorem 24 (Wall). Let G be a finitely pre-

sented group. Then K̃0(ZG) vanishes if and

only if every finitely dominated CW -complex

X with G ∼= π1(X) is homotopy equivalent to

a finite CW -complex.



s-Cobordism Theorem

We conclude from the s-Cobordism Theorem

due to Barden, Kirby, Mazur, Siebemann, Smale,

Stallings for every finitely presented group G

and n ≥ 6 that the following statements are

equivalent

• Wh(G) vanishes.

• Every n-dimensional compact s-cobordism

W with π1(W ) ∼= G is trivial;

Since Wh({1}) vanishes, this implies the Poin-

caré Conjecture in dimension ≥ 5.



The Borel Conjecture

Conjecture 25 (Borel Conjecture).Let G be

a finitely presented group. The Borel Conjec-

ture for G says:

1. Let X be an aspherical finitely dominated

Poincaré complex with G ∼= π1(X). Then

X is homotopy equivalent to a closed man-

ifold.

2. Let M and N be two aspherical closed man-

ifolds with G ∼= π1(M) ∼= π1(N). Then any

homotopy equivalence M → N is homo-

topic to a homeomorphism. In particular

M and N are homeomorphic.

The Borel Conjecture may be viewed as a topo-

logical version of Mostow rigidity.



Remark 26 (The Farrell-Jones Conjecture
implies the Borel Conjecture).The Borel Con-
jecture can be reformulated in the language of
surgery theory to the statement that the topo-
logical structure set Stop(M) of an aspherical
closed topological manifold M consists of a sin-
gle point. This set is the set of equivalence
classes of homotopy equivalences f : M ′ → M

with a topological closed manifold as source
and M as target under the equivalence rela-
tion, for which f0 : M0 → M and f1 : M1 → M

are equivalent if there is a homeomorphism
g : M0 → M1 such that f1 ◦ g and f0 are ho-
motopic.

The surgery sequence of a closed orientable
topological manifold M of dimension n ≥ 5 is
the exact sequence

. . . → Nn+1(M × [0,1], M × {0,1})
σ−→ Ls

n+1(Zπ1(M))
∂−→ Stop(M)

η−→ Nn(M)
σ−→ Ls

n(Zπ1(M)),



which extends infinitely to the left. It is the

basic tool for the classification of topological

manifolds. (There is also a smooth version of

it.) It is attributed to Browder, Kirby, Novikov,

Siebenmann, Sullivan and Wall. An algebraic

version has been developed by Ranicki. The

map σ appearing in the sequence sends a nor-

mal map of degree one to its surgery obstruc-

tion. This map can be identified with the ver-

sion of the L-theory assembly map where one

works with the 1-connected cover Ls(Z)〈1〉 of

Ls(Z). The map

Hk(M ;Ls(Z)〈1〉) → Hk(M ;Ls(Z))

is injective for k = n and an isomorphism for

k > n. Because of the K-theoretic assumptions

we can replace the s-decoration with the 〈−∞〉-
decoration. Since BG = M , the Farrell-Jones

Conjecture implies that the maps σ : Nn(M) →
Ls

n(Zπ1(M)) and Nn+1(M×[0,1], M×{0,1}) σ−→
Ls

n+1(Zπ1(M)) are injective respectively bijec-

tive and thus by the surgery sequence that



Stop(M) is a point and hence the Borel Con-

jecture holds for M .

For the question whether a Poincaré complex

is homotopy equivalent to a closed manifold,

is answered by the total surgery obstruction of

Ranicki.



Computational aspects

Next we want to indicate how one can try to

compute the source of the assembly map what

is in general much easier then to compute the

target.

There are basically the following general tools

available:

• Analysis of nice models for EG (Leary, Lück,

Nucinkis, Soulé, . . . )

• Splitting of Nil-terms (Bartels)

• Analysis of Nil-terms (Bass, Connolly, Gru-

newald, Kozniewsky, Prassidis, Weibel)



• Analysis of UNil-terms (Banagl, Brookman,

Cappell, Connolly, Davis, Qayum Khan, Ran-

icki)

• Equivariant Atiyah-Hirzebruch spectral se-

quence (Davis-Lück)

• p-chain spectral sequence (Davis-Lück)

• Equivariant Chern characters (Lück)



Example 27 (Infinite dihedral group). Let
D∞ = Z/2 ∗ Z/2 = Z o Z/2 be the infinite di-
hedral group. It acts on the tree R by letting
Z acting by translation and Z/2 by reflecting
in 0. This is a model for ED∞. It consists of
two equivariant 0-cells D∞/Z/2 × D0 and one
equivariant 1-cell D∞ ×D1. If H?

∗ is an equiv-
ariant homology theory, we obtain a long exact
sequence

· · · → H{1}
n ({•}) → HZ/2

n ({•})⊕HZ/2
n ({•})

→ HD∞
n (ED∞) → H{1}

n−1({•})

→ HZ/2
n−1({•})⊕HZ/2

n−1({•}) · · ·
In the case of the Baum-Connes Conjecture
which is known to be true for D∞ we obtain
the short split exact sequence

0 → RC({1}) → RC(Z/2)⊕RC(Z/2)

→ K0(C
∗
r(D∞)) → 0

and K1(C
∗
r(D∞)) ∼= {0}.

Notice that the Farrell-Jones Conjecture makes
no predictions since D∞ is virtually cyclic.



Remark 28 (Integral versus rational com-
putations). Integral computations seem only
to be possible in special cases. One cannot
hope for a general formula for Kn(C∗

r(G)). The
computation of Kn(ZG) and Ln(ZG) is even
harder since one has to deal with virtually cyclic
subgroups instead of finite subgroups, which
comes from the appearance of Nil-terms and
UNil-terms.

If one is interested only in rational information,
the situation improves a lot thanks to equiv-
ariant Chern characters. They predict that
in all cases of interest the equivariant Atiyah-
Hirzebruch spectral sequence collapses in the
strongest sense.

Instead of going through its construction and
the proofs we mention one consequence which
follows from the Baum-Connes Conjecture, the
Farrell-Jones Conjecture, the naturality of the
assembly maps in the theory considered and
the equivariant Chern character.



Theorem 29 (Lück). Let G be a (discrete)

group. Suppose that the Baum-Connes Con-

jecture for G and the Farrell-Jones Conjecture

for Kn(CG) are true. Let T be the set of con-

jugacy classes (g) of elements g ∈ G of finite

order. There is a commutative diagram

⊕
p+q=n
(g)∈T

Hp(CG〈g〉;C)⊗Z Kq(C) −−→ C⊗Z Kn(CG)y y⊕
p+q=n
(g)∈T

Hp(CG〈g〉;C)⊗Z Ktop
q (C) −−→ C⊗Z Ktop

n (C∗
r(G))

where CG〈g〉 is the centralizer of the cyclic

group generated by g in G and the vertical ar-

rows come from the obvious change of ring

and of K-theory maps Kq(C) → Ktop
q (C) and

Kn(CG) → Ktop
n (C∗

r(G)).


