The Farrell-Jones Conjecture for algebraic K-theory holds for word-hyperbolic groups and arbitrary coefficients.

Wolfgang Lück

ICM06 Satellite on K-theory and Noncommutative Geometry in Valladolid September 2006

Arthur Bartels, Wolfgang Lück and Holger Reich The Farrell-Jones Conjecture for word-hyperbolic groups

Outline

- We explain our main Theorem that the *Farrell-Jones Conjecture for algebraic K-theory* is true for every word-hyperbolic group *G* and every coefficient ring *R*.
- It predicts the structure of the algebraic K-groups $K_n(RG)$.
- We discuss new applications focussing on
 - Vanishing of the reduced projective class group and the Whitehead group of torsionfree groups;
 - Conjectures generalizing Moody's Induction Theorem;
 - Bass Conjecture;
 - Kaplanky Conjecture
 - Algebraic versus homotopy K-theory, Nil-groups;
 - L²-invariants;
- We make a few comments about the proof.

Conjecture

The Farrell-Jones Conjecture for algebraic K-theory with coefficients in R for the group G predicts that the assembly map

$$H_n^G(E_{\mathcal{VCyc}}(G),\mathbf{K}_R) \to H_n^G(\rho t,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- *R* is any (associative) ring (with unit) and *G* is discrete;
- *K_n(RG)* is the algebraic *K*-theory of the group ring *RG*;
- VCyc is the family of virtually cyclic subgroups;
- Given a family of subgroups *F*, let *E_F(G)* be the classifying space associated to it;
- *H*^G_{*}(-; K_R) is the *G*-homology theory with the property that for every subgroup *H* ⊆ *G*

$$H_n^G(G/H;\mathbf{K}_R)=K_n(RH)$$

The Farrell-Jones Conjecture gives a way to compute $K_n(RG)$ in terms of $K_m(RV)$ for all virtually cyclic subgroups $V \subseteq G$ and all $m \leq n$.

It is analogous to the Baum-Connes Conjecture.

Conjecture

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{F}in}(G), \mathbf{K}^{\mathrm{top}}) \to \mathcal{H}_n^G(pt, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

Here $H^G_*(-; \mathbf{K}^{\text{top}})$ is the *G*-homology theory with the property that for every subgroup $H \subseteq G$

$$H_n^G(G/H;\mathbf{K}^{\mathrm{top}})=K_n(C_r^*(H)).$$

Theorem (Bartels-L.-Reich (2006))

The (Fibered) Farrell-Jones Conjecture for algebraic K-theory with (G-twisted) coefficients in any ring R is true for word-hyperbolic groups G.

We emphasize that this result holds for all rings R and not only for $R = \mathbb{Z}$.

Corollary

If G is a torsionfree word-hyperbolic group and R any ring, then we get an isomorphism

$$H_n(BG; \mathbf{K}(R)) \oplus \left(\bigoplus_{\substack{(C), C \subseteq G, C \neq 1 \\ C \text{ maximal cyclic}}} NK_n(R) \right) \xrightarrow{\cong} K_n(RG).$$

We are not (yet?) able to prove the *L*-theory version. The *L*-theory version implies the Novikov Conjecture. If one knows the *K*- and *L*-theory version for a group *G* in the case $R = \mathbb{Z}$, one gets the Borel Conjecture in dimension ≥ 5

Conjecture

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

Let $\mathcal{FJ}(R)$ be the class of groups which satisfy the Fibered Farrell-Jones Conjecture for algebraic *K*-theory with coefficients in *R*.

Theorem (Bartels-L.-Reich (2006))

- Every word-hyperbolic group and every virtually nilpotent group belongs to *FJ*(*R*);
- 2 If G_1 and G_2 belong to $\mathcal{FJ}(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}(R)$;
- Let {G_i | i ∈ I} be a directed system of groups (with not necessarily injective structure maps) such that G_i ∈ FJ(R) for i ∈ I. Then colim_{i∈I} G_i belongs to FJ(R);
- If H is a subgroup of G and $G \in \mathcal{FJ}(R)$, then $H \in \mathcal{FJ}(R)$.

In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.

Corollary

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

- 2 The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\widetilde{K}_0(RG)$ is trivial if and only if $\widetilde{K}_0(R)$ is trivial;
- The Whitehead group Wh^R(G) is trivial.

The idea of the proof is to study

$$H_n(BG;\mathbf{K}(R)) = H_n^G(E_{\mathcal{TR}}(G);\mathbf{K}_R) o H_n^G(E_{\mathcal{VCyc}}(G);\mathbf{K}_R) o \mathcal{K}_n(RG).$$

In particular we get for a torsionfree group $G \in \mathcal{FJ}(\mathbb{Z})$

- $K_n(\mathbb{Z}G) = 0$ for $n \le -1$;
- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every finitely dominated CW-complex X with G = π₁(X) is homotopy equivalent to a finite CW-complex;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≃ G is trivial, i.e., diffeomorphic to M₀ × [0, 1] relative M₀. (For G = {1} this implies the Poincaré Conjecture in dimensions ≥ 5.)

Theorem

Solution Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}(R)$. Then the map given by induction from finite subgroups of G

$$\operatornamewithlimits{colim}_{\operatorname{Or}_{\operatorname{{\mathcal F}}\mathit{in}}(G)} {\mathit{K}}_0({\mathit{RH}}) \to {\mathit{K}}_0({\mathit{RG}})$$

is bijective;

2 Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}(F)$. Then the map

 $\underset{\operatorname{Or}_{\mathcal{F}\mathit{in}}(G)}{\operatorname{colim}} K_0(\mathit{FH})[1/\rho] \to K_0(\mathit{FG})[1/\rho]$

is bijective.

Conjecture

Let *R* be a commutative integral domain and let *G* be a group. Let $g \in G$ be an element in *G*. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in *R*. Then the **Bass Conjecture** predicts that for every finitely generated projective *RG*-module *P* the value of its Hattori-Stallings rank HS_{RG}(*P*) at (*g*) is trivial.

Theorem

Let G be a group. Suppose that

 $\underset{\mathrm{Or}_{\mathcal{F}in}(G)}{\mathsf{colim}} K_0(FH) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$

is surjective for all fields F of prime characteristic. (This is true if $G \in \mathcal{FJ}(F)$ for every field F of prime characteristic). Then the Bass Conjecture is satisfied for every integral domain R.

Conjecture

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

The Kaplansky Conjecture is related to the vanishing of $\widetilde{K}_0(RG)$.

Lemma

Let F be a field and let G be a group with $G \in \mathcal{FJ}(F)$. Suppose that F has characteristic zero and G is torsionfree or that F has characteristic p, all finite subgroups of G are p-groups and G is residually amenable. Then 0 and 1 are the only idempotents in FG.

Conjecture

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0$

and that the canonical map from algebraic to homotopy *K*-theory

$$K_n(RG) \rightarrow KH_n(RG)$$

is bijective.

Theorem

Let R be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}(R)$, then the conjecture above is true.

Arthur Bartels, Wolfgang Lück and Holger Reich The Farrell-Jones Conjecture for word-hyperbolic groups

Conjecture

If X and Y are det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent, then their L^2 -torsion agree:

 $\rho^{(2)}(X;\mathcal{N}(G)) = \rho^{(2)}(Y;\mathcal{N}(G)).$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to dimension constant its volume.
- The conjecture above allows to extend the notion of a volume to word-hyperbolic groups whose L²-Betti numbers all vanish.

Theorem

Suppose that $G \in \mathcal{FJ}(\mathbb{Z})$. Then G satisfies the Conjecture above.

- Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝑘_𝑘(*G*) ⊗_ℤ ℚ is trivial.
- The surjectivity of the map

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role in a program to prove the Atiyah Conjecture which predicts for a closed Riemannian manifold with torsionfree fundamental group that the L^2 -Betti numbers of its universal covering are all integers.

- There is no group known for which the Farrell-Jones Conjecture, the Fibered Farrell-Jones Conjecture or the Baum-Connes Conjecture is false.
- However, Higson, Lafforgue and Skandalis have constructed counterexamples to the Baum-Connes-Conjecture with coefficients. They describe precisely what properties a group Γ must have so that it does *not* satisfy the Baum-Connes Conjecture with coefficients. Gromov outlines the construction of such a group Γ as a colimit over a directed system of groups {*G_i* | *i* ∈ *I*} such that each *G_i* is word-hyperbolic.
- Our main result implies that the Fibered Farrell-Jones Conjecture for algebraic *K*-theory with twisted coefficients in any ring does hold for Γ.

Here are the basic steps of the proof of the main Theorem. Step 1: Interprete the assembly map as a forget control map.

Step 2: Show for a finitely generated group *G* that $G \in \mathcal{FJ}(R)$ holds for all rings *R* if one can construct the following geometric data:

- A *G*-space *X*, such that the underlying space *X* is the realization of an abstract simplicial complex;
- A *G*-space \overline{X} , which contains *X* as an open *G*-subspace. The underlying space of \overline{X} should be compact, metrizable and contractible,

such that the following assumptions are satisfied:

Z-set-condition

There exists a homotopy $H: \overline{X} \times [0, 1] \rightarrow \overline{X}$, such that $H_0 = id_{\overline{X}}$ and $H_t(\overline{X}) \subset X$ for every t > 0;

Long thin covers

There exists an $N \in \mathbb{N}$ that only depends on the *G*-space \overline{X} , such that for every $\beta \ge 1$ there exists an \mathcal{VC} yc-covering $\mathcal{U}(\beta)$ of $G \times \overline{X}$ with the following two properties:

- For every g ∈ G and x ∈ X there exists a U ∈ U(β) such that {g}^β × {x} ⊂ U. Here g^β denotes the β-ball around g in G with respect to the word metric;
- The dimension of the covering U(β) is smaller than or equal to N.

Step 3: Prove the existence of the geometric data above.