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0 Introduction

During the last decades mathematics has developed at an incredible
speed and a large amount of new information and results have been ac-
cumulated. Therefore mathematics faces the problem that it breaks up
into different areas which may not communicate among one another. For-
tunately recent developements go in the opposite direction. In particular
interactions of different fields have turned out to be very fruitful and lead
to new ideas and innovations. The key observation is that some of the
techniques developed in one specific field can be exported to other areas
and be successfully used to solve problems there. This is only possible
if the techniques are so well examined and documented that they are
quickly accessible to advanced mathematicians, who are not experts at
the particular field, and can be understood by graduate students within
a reasonable period of time.

In this article we will present an example of such a new and successful
development, namely L2-invariants. They are modelled on classical no-
tions like homology, Betti numbers or Reidemeister torsion for compact
spaces and extend these to non-compact spaces with appropriate group
actions. In order to convince the reader about the high potential of L2-
methods, we will present some applications of L2-invariants to problems
about groups, manifolds and K-theory. These problems will have a priori
nothing to do with L2-invariants but their solution will heavily rely on
L2-methods. The study of L2-invariants requires input from and is lin-
ked to topology, geometry, global analysis, operator theory and K-theory
and is of interest for representatives of these fields. A lot of work about
L2-invariants has successfully been done but also a lot of very intere-
sting problems are still open. They will create stimulating and highly
advanced activities in 2001 and beyond. The challenges are unlimited.

1 Some Theorems

We state some theorems which seem to have nothing to do with L2-
invariants but – as we will see – whose proofs use L2-methods. The



selection below consists of some easy to formulate examples and is not
meant to represent the most important results about L2-invariants, there
are plenty of other very interesting and important theorems about them.
For simplicity we will often not state the most general formulations. The
results below are taken from Cheeger-Gromov [4], Dodziuk [5], Gromov
[11], Lück [19],[20] and Cochran-Orr-Teichner [3].

Theorem 1. Let G be a group which contains a normal infinite amena-
ble subgroup. Suppose that there is a finite CW -model for its classifying
space BG. Then its Euler characteristic vanishes, i.e.

χ(G) := χ(BG) = 0.

Theorem 2. Let M be a closed hyperbolic manifold of dimension 2n.
Then

(−1)n · χ(M) > 0.

Theorem 3. Let M be a closed Kähler manifold of (real) dimension 2n.
Suppose that M is homotopy equivalent to a closed Riemannian manifold
with negative sectional curvature. Then

(−1)n · χ(M) > 0.

Theorem 4. Let 1 → H → G → K → 1 be an extension of infinite
groups such that H is finitely generated, G is finitely presented and K
contains an element of infinite order. Then

1. The deficiency of G satisfies def(G) ≤ 1;
2. If M is a closed connected oriented 4-manifold with π1(M) ∼= G, then

we get for its signature sign(M) and its Euler characteristic χ(M)

| sign(M)| ≤ χ(M).

Theorem 5. Let G be a group and CG be its complex group ring. Let
G0(CG) be the Grothendieck group of finitely generated CG-modules.
Then

1. If G is amenable, the class [CG] ∈ G0(CG) of CG itself is an element
of infinite order;

2. If G contains the free group Z ∗ Z of rank two, then [CG] = 0 in
G0(CG).

Theorem 6. There are non-slice knots in 3-space whose Casson-Gordon
invariants are all trivial.

Here are some explanations. A group G is called amenable if there
is a G-invariant linear operator µ : l∞(G,R) → R with µ(1) = 1 which
satisfies inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G} for all f ∈
l∞(G,R). If a group G contains Z ∗ Z as subgroup, it is not amenable.
The converse does not hold but (at the time of writing) there is no finitely
presented counterexample. Any abelian or finite group is amenable.



The deficiency of a finitely presented groupG is the maximum over all
differences g − r for all presentations 〈s1, s2, . . . sg | R1, R2, . . . Rr〉 of G.
It plays an important role in group theory and low dimensional topology.
For its computation it is important to have upper bounds. The problem is
that the deficiency of a finitely presented group is not always given by the
“obvious” presentation. The deficiency of ∗gi=1Z, Z/n and Z/n×Z/n is g,
0 and−1 and in these cases they are given by the “obvious” presentations
〈s1, s2 . . . sg | ∅〉, 〈s | sn = 1〉 and 〈s, t | sn = tn = [s, t] = 1〉. However,
the “obvious” presentation of (Z/2× Z/2) ∗ (Z/3× Z/3) is

〈s1, t1, s2, t2 | s2
1 = t21 = [s1, t1] = s3

2 = t32 = [s2, t2]〉

but its deficiency is −1 and not −2.
The group G0(CG) is the abelian group defined by generators and

relations as follows. Generators are isomorphism classes of finitely gene-
rated CG-modules. For any exact sequence 0 → M0 → M1 → M2 → 0
of finitely generated CG-modules one has the relation [M0] − [M1] +
[M2] = 0. It should not be confused with the projective class group
K0(CG) which is defined analogously for finitely generated projective
CG-modules. Hardly anything is known aboutG0(CG) for infinite groups
G at the time of writing.

A knot in the 3-sphere is slice if there exists a locally flat topological
embedding of the 2-disk into D4 whose restriction to the boundary is the
given knot. For a long time Casson-Gordon invariants have been the only
known obstructions for a knot to be slice. Cochran, Orr and Teichner
give in [3] new obstructions for a knot to be slice using L2-signatures.
Thus they can construct an explicit knot, which is not slice but whose
Casson-Gordon invariants are all trivial, as stated in Theorem 6.

2 L2-Betti Numbers

In this section we give the basic definitions and properties of L2-Betti
numbers. Let G be a group. Let l2(G) be the Hilbert space of formal sums∑
g∈G λg · g with complex coefficients λg such that

∑
g∈G |λg|2 < ∞.

The group von Neumann algebra N (G) is the C∗-algebra B(l2(G))G

of bounded G-operators l2(G) → l2(G). The von Neumann trace tr :
N (G) → C sends f to 〈f(e), e〉l2(G), where e ∈ G is the unit element.
It extends to (n, n)-matrices over N (G) by taking the sum of the traces
of the diagonal entries. A finitely generated Hilbert N (G)-module V is a
Hilbert space V with isometric linear G-action such that there exists a
G-projection p : l2(G)n → l2(G)n for some natural number n with the
property that im(p) is isometrically linearly G-isomorphic to V . Notice
that the projection is not part of the structure, only its existence is
required. Define the von Neumann dimension dim(V ) ∈ [0,∞) of V to
be the trace of such a projection p. This is independent of the choice of
p. Every possible element in [0,∞) can occur as dim(V ).



Let X be a free finite G-CW -complex, or equivalently, a G-space
occurring as the total space of a G-covering X → X/G with a com-
pact CW -complex as base space. Let C∗(X) be its cellular ZG-chain
complex. Define the L2-chain complex C

(2)
∗ (X) by l2(G)⊗ZGC∗(X). Its

chain modules are finite sums of copies of l2(G) and its differentials c(2)
p

are bounded G-operators. Define the L2-homology H
(2)
p (X) to be the

finitely generated Hilbert N (G)-module ker(c(2)
p )/im(c(2)

p+1). Notice that
we divide by the closure of the image of the (p+1)-th differential and not
by the image itself in order to get a complete space and thus a Hilbert
N (G)-module.

Definition 7. Define the p-th L2-Betti number of the finite free G-CW -
complex X by

b(2)
p (X;N (G)) := dim(H(2)

p (X)).

If Y is a compact connected CW -complex with universal covering Ỹ , we
abbreviate

b(2)
p (Ỹ ) := b(2)

p (Ỹ ;N (π1(Y ))).

Whenever one introduces a new notion, one should try to justify it.
We will do this by explaining that the L2-Betti numbers have nice and
useful properties and that we can give direct applications of this notion.

The L2-Betti numbers have a lot of the properties we are used to for
(classical) Betti numbers. They are G-homotopy invariants in the sense
that b(2)

p (X) = b
(2)
p (Y ) holds, provided that there is a G-homotopy equi-

valence X → Y . The Euler characteristic of χ(G\X) can be computed
by
∑
p≥0(−1)p ·b(2)

p (X). They satisfy Poincaré duality, Künneth formula
and Morse inequalities, just replace in the corresponding formulas for
classical Betti numbers the Betti numbers by L2-Betti numbers and the
spaces by their universal coverings. If X is connected, b(2)

0 (X) = |G|−1.
If G is finite, then b

(2)
p (X;N (G)) is the same as |G|−1 · bp(X). There is

one important difference between L2-Betti numbers and Betti numbers.
Namely, the L2-Betti numbers are in contrast to the classical ones multi-
plicative under finite coverings, i.e. for any d-sheeted covering X → Y we
have b(2)

p (X̃) = d·b(2)
p (Ỹ ). The corresponding statement bp(X) = d·bp(Y )

for the classical Betti numbers is in general not true as the d-sheeted co-
vering S1 → S1, z 7→ zd shows. From multiplicativity we conclude that
b
(2)
p (S̃1) = 0 for all p ≥ 0.

Example 8. The following example is quite illuminating although it co-
vers only a comparatively trivial case. Namely, if G is the free abelian
group Zn of rank n, all these notions can be made much more explicit.
One can identify l2(Zn) with the Hilbert space L2(Tn) of measurable
L2-integrable functions from the torus Tn to C by Fourier transform.
The von Neumann algebra N (Zn) becomes the space L∞(Tn) of mea-
surable essentially bounded functions Tn → C. The von Neumann trace



tr sends an element f ∈ L∞(Tn) to its integral
∫
Tn
fdvol. An idempo-

tent in N (Zn) is given by a characteristic function χM of a measurable
subset M ⊂ Tn. The von Neumann dimension of the associated Hilbert
N (Z)-submodule {f ∈ L2(Tn) | χM · f = f} of L2(Tn) is the volume of
M . Let X → X be a Zn-covering of a finite CW -complex X. Denote by
F the quotient field of C[Zn]. Then the L2-Betti number bp(X,N (Zn))
coincides with the dimension of the F -vector space F ⊗C[Zn] Hp(X,C),
where Hp(X,C) is the singular homology of X with coefficients in C
and the linear Zn-action coming from the Zn-action on X. We will pro-
ve an analogous statement for amenable groups G in Corollary 12. If G
is not amenable one cannot read off bp(X,N (G)) from the CG-module
Hp(X,C) in general.

There is a L2-analogue of the Hodge-deRham Theorem. Let M →M
be a G-covering of a closed Riemannian manifold M . Denote by Hp(2)(M)
the space of L2-integrable harmonic forms on M , i.e. smooth p-forms ω
on M such that ω lies in the kernel of the Laplacian ∆p and

∫
M
ω∧∗ω <

∞. Then there is an isometric linear G-isomorphism

Hp(2)(M)
∼=−→ H(2)

p (M ;N (G)).

A consequence of this result is that the definition presented here agrees
with the original analytic definition of L2-Betti numbers in terms of
the large time behaviour of the trace of the heat kernel e−t∆p(x, y) on
M , which was given by Atiyah in connection with his L2-index theorem
[1]. Namely, for a fundamental domain F of the G-action on M and
tr(e−t∆p(x, x)) the trace of the endomorphism e−t∆p(x, x) of a finite-
dimensional real vector space, Atiyah puts

b(2)
p (M ;N (G)) := lim

t→∞

∫
F

tr(e−t∆p(x, x))dx.

Now we can outline a proof of Theorem 2. The universal covering M̃ is
the hyperbolic space H2n and a direct calculation shows that Hp(2)(H

2n)
is zero for p 6= n and different from zero for p = n. Since the von
Neumann dimension is faithful, we conclude b(2)

p (M̃) = 0 for p 6= n and
b
(2)
n (M̃) > 0. This implies (−1)n · χ(M) = b

(2)
n (M̃) > 0.

Next we indicate the proof of Theorem 4. The hard part which we will
not explain is to show that b(2)

1 (G) := b
(2)
1 (EG;N (G)) vanishes under

the assumptions of Theorem 4. Notice that BG has finite 2-skeleton so
that the definition of b(2)

1 (G) makes sense (see also Definition 10). We
have to show for any presentation 〈s1, s2, . . . sg | R1, R2 . . . Rr〉 of G that
g − r ≤ 1. Let X be the finite 2-dimensional CW -complex associated
to this presentation. It has 1 cell of dimension zero, g cells of dimension
one and r cells of dimension two. Since the classifying map f : X → BG

is 2-connected, we conclude b(2)
p (X̃) = b

(2)
p (G) = 0 for p = 0, 1. This

implies

g − r = 1− χ(X) = 1− b(2)
0 (X̃) + b

(2)
1 (X̃)− b(2)

2 (X̃) ≤ 1.



If M is an oriented closed 4-manifold with π1(M) ∼= G, we get b(2)
p (M̃) =

b
(2)
p (G) = 0 for p ≤ 1. Poincaré duality implies χ(M) = b

(2)
2 (M̃).

By the L2-index theorem of Atiyah [1], sign(M) = dim(H(2)
p (M̃)+) −

dim(H(2)
p (M̃)−) for some subspaces H(2)

p (M̃)± of H(2)
p (M̃). This implies

| sign(M)| ≤ dim(H(2)
p (M̃)) = χ(M).

One may ask whether the L2-Betti numbers b(2)
p (X̃) are linked to the

ordinary Betti numbers bp(X) for a finite CW -complex X. Except for
the equality

∑
p≥0(−1)p · b(2)

p (X̃) =
∑
p≥0(−1)p · bp(X) = χ(X) the-

re seems to be no relations. There are examples of l-dimensional finite
CW -complexes X for l ≥ 2 such that b(2)

p (X̃) is any given non-negative
rational number for 1 ≤ p ≤ l − 1 and bp(X) = 0 for 1 ≤ p ≤ l − 1, or
on the other hand such that bp(X) is any given non-negative integer for
1 ≤ p ≤ l − 1 and b

(2)
p (X̃) = 0 for p ≤ l − 1. There is however an asym-

ptotic relation. Namely, let X be a finite CW -complex such that there is
a nested sequence π1(X) = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . of normal subgroups Γn
of π1(X) of finite index [π1(X) : Γn] with ∩n≥0Γn = {1}. Let Xn → X
be the covering associated to Γn ⊂ π1(M). Then [18]

b(2)
p (X̃) = lim

n→∞

bp(Xn)
[π1(X) : Γn]

.

3 An Algebraic Approach

In this section we develop a more algebraic approach to L2-Betti numbers
following [20] (see also [8]), where we forget the topology on N (G) and
consider its ring structure only. This algebraic approach will give us more
flexibility. Thus we will be able to extend this notion to more general
G-spaces. This will be the basic ingredient for further applications.

Let R be an associative ring with unit. Let K be a R-submodule of
an R-module M . Define the closure of K in M to be the R-submodule
of M

K := {x ∈M | f(x) = 0 for all f ∈ homR(M,R) with K ⊂ ker(f)}.

For a finitely generated R-module M define the R-submodule TM and
the R-quotient module PM by:

TM := {0} = {x ∈M | f(x) = 0 for all f ∈ homR(M,R)};
PM := M/TM.

If P is a finitely generated projective N (G)-module, there is an idem-
potent A ∈Mn(N (G)) such that im(A) is N (G)-isomorphic to P . Define
the von Neumann dimension of P by the von Neumann trace of A. This
number dim(P ) ∈ [0,∞) depends only on the isomorphism class of P
and not on the choice of A.



The group von Neumann algebra N (G) has one very important and
useful property as a ring, it is a semi-hereditary ring, i.e. any finitely
generated submodule of a projective module is projective. This has the
consequence that for a submodule K ⊂M of a finitely generated N (G)-
module M the quotient M/K is finitely generated and projective and
K is a direct summand in M . In particular we conclude for a finitely
generated N (G)-module M that PM is finitely generated projective and

M ∼= PM ⊕TM. (1)

Theorem 9. There is precisely one function which associates to an ar-
bitrary N (G)-module M an element dim(M) ∈ [0,∞] and has the follo-
wing properties.

1. Continuity
If K ⊂M is a submodule of the finitely generated N (G)-module M ,
then

dim(K) = dim(K);

2. Cofinality
Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e.
M = ∪i∈IMi and for two indices i and j there is an index k in
I satisfying Mi,Mj ⊂Mk. Then

dim(M) = sup{dim(Mi) | i ∈ I};

3. Additivity
If 0 −→M0

i−→M1
p−→M2 −→ 0 is an exact sequence of N (G)-

modules, then

dim(M1) = dim(M0) + dim(M2),

where r+ s for r, s ∈ [0,∞] is the ordinary sum of two real numbers,
if both r and s are not ∞, and is ∞ otherwise;

4. Extension Property
If M is finitely generated projective, then dim(M) agrees with the
previous notion.

Notice that there are some similarities between the ring Z of the
integers and the ring N (G). If R = Z and M is a finitely generated
abelian group, then TM is just its torsion submodule in the ordinary
sense. The splitting (1) in the special case R = Z is the splitting of a
finitely generated abelian group as the direct sum of its torsion subgroup
and a finitely generated free abelian group. The von Neumann dimen-
sion of a finitely generated N (G)-module M with TM = M is zero in
analogy to the fact that the rank of a finite abelian group is zero. If one
replaces in the statements of Theorem 9 N (G) by Z and requires in the
Extension Property that dim(M) for a finitely generated abelian group
is the usual rank, then all statements remain true and dim(M) beco-
mes the dimension of the rational vector space M ⊗Z Q. However, there



are two important differences. A finite von Neumann algebra is in gene-
ral not Noetherian and hence harder to study than the Noetherian ring
Z. On the other hand the dimension of a finitely generated projective
N (G)-module can be an arbitrary small positive real number, and hence
the dimension of a countable direct sum of non-trivial finitely generated
projective N (G)-modules can be a finite number. This can never happen
over Z.

Now consider a topological space X with a G-action. Denote by
H∗(X;N (G)) the singular homology of X with coefficients in N (G),
i.e. the homology of the N (G)-chain complex N (G)⊗ZG Csing

∗ (X).

Definition 10. Define the p-th L2-Betti number of the G-space X by

b(2)
p (X;N (G)) := dim(H∗(X;N (G))) ∈ [0,∞].

Define the p-th L2-Betti number of a group G by

b(2)
p (G) := b(2)

p (EG;N (G)) ∈ [0,∞].

If X is a finite free G-CW -complex, Definition 7 and Definition 10
agree. If furthermore X is the total space of a G-covering M → M of
a closed Riemannian manifold M , then these two definitions agree with
Atiyah’s heat kernel definition limt→∞

∫
F

tr(e−t∆p(x, x))dx.
The following theorem is the main ingredient in some of the applica-

tions.

Theorem 11. Let G be an amenable group. Then N (G) is dimension-
flat over CG in the sense that for any CG-module M we have

dim(TorCGp (N (G),M)) = 0 for p ≥ 1.

The von Neummann algebra N (G) is flat over CG if G is virtually
cyclic. Conjecturally virtually cyclic groups are the only groups with
this property. If N (G) is flat over CG, then Hp(X;N (G)) = N (G)⊗CG
Hp(X) because the corresponding universal coefficient spectral sequence
collapses. If G is amenable, the associated universal spectral sequence
does not collapse on the nose but from the dimension point of view by
Theorem 9 and Theorem 11. Therefore we get

Corollary 12. Let G be amenable and X a G-space. Then

b(2)
p (X;N (G)) = dim(N (G)⊗ZG Hp(X;Z)).

Now we can give the proof of Theorem 1. If G itself is infinite amena-
ble, then b

(2)
0 (G) = 0 since G is infinite, and b

(2)
p (G) = 0 for p ≥ 1 by

Corollary 12 since Hp(EG) = 0 for p ≥ 1. If G contains a normal infinite
subgroup H, then all L2-Betti numbers of H vanish. There is a Serre
spectral sequence associated to the fibration BH → BG → B(G/H)
converging to Hp+q(EG;N (G)). The dimension of E2

p,q vanishes since
all L2-Betti numbers of H vanish, and the claim follows. Notice that



with our purely algebraic approach classical machinery like homological
algebra and spectral sequences applies directly.

Next we give the proof of Theorem 5. Suppose that G is amenable.
By Theorem 11 the following map is well-defined because it is compatible
with the relations in G0(CG)

dim : G0(CG)→ R [M ] 7→ dim(N (G)⊗CGM).

It sends [CG] to 1 and hence [CG] ∈ G0(CG) has infinite order. Now
suppose that Z ∗ Z ⊂ G. The inclusion i induces by induction a homo-
morphism i∗ : G0(C[Z ∗ Z]) → G0(CG) which sends [C[Z ∗ Z]] to [CG].
The cellular chain complex of the universal covering of S1 ∨ S1 yields a
short exact C[Z∗Z]-sequence 0→ C[Z∗Z]⊕C[Z∗Z]→ C[Z∗Z]→ C→ 0.
This shows [C[Z ∗ Z]] = −[C] ∈ G0(C[Z ∗ Z]). Choose an epimorphism
f : Z∗Z→ Z. It induces by restriction a homomorphism f∗ : G0(CZ)→
G0(C[Z ∗ Z]) which sends [C] ∈ G0(CZ) to [C] ∈ G0(C[Z ∗ Z]). The cel-
lular chain complex of the universal covering of S1 yields a short exact
CZ-sequence 0 → CZ → CZ → C → 0. This shows [C] = 0 ∈ G0(CZ).
We conclude [CG] = 0 ∈ G0(CG).

4 Novikov-Shubin Invariants and L2-Torsion

There are further L2-invariants which are analytically defined in terms
of the heat kernel on the universal covering M̃ of a closed Riemannian
manifold M , namely the Novikov-Shubin invariants αp(M̃) and the L2-
torsion ρ(2)(M̃) (see [15], [22], and [23]). Novikov-Shubin invariants mea-
sure how fast

∫
F

tr(e−t∆p(x, x))dx approaches its limit b(2)
p (M,N (G)))

for t → ∞, or equivalently, the difference between the L2-homology

H
(2)
p (M,N (G)) := ker(c(2)

p )/im(c(2)
p+1) and its unreduced version ker(c(2)

p )/ im(c(2)
p+1).

The definition of L2-torsion is modelled upon the classical notion of Rei-
demeister torsion. Novikov-Shubin invariants and L2-torsion have topo-
logical counterparts in terms of the combinatorial Laplace operator on
the cellular chain complex, which are known to coincide with their ana-
lytical versions [2], [7]. The proof in [2] consists of a deep analysis of the
Witten deformation of the L2-deRham complex of the universal covering.
Novikov-Shubin invariants are homotopy invariants. The L2-torsion is a
simple homotopy invariant, provided that all L2-Betti numbers vanish.
There is the conjecture that the L2-torsion is even a homotopy invari-
ant if all L2-Betti numbers vanish. This conjecture is equivalent to the
K-theoretic statement that the homomorphism induced by the Fuglede-
Kadison determinant Wh(π1(M)) → R is trivial. Thus one gets nice
connections between heat kernels and geometry. The L2-torsion ρ(M̃) of
a closed hyperbolic odd dimensional manifold is known to be proportio-
nal to the volume. This reproves at least in the odd dimensional case the
well-known statement that the volume of a closed hyperbolic manifold
depends only on its fundamental group. The L2-torsion ρ(2)(M̃) of an



irreducible compact orientable 3-manifold M with incompressible torus
boundary and infinite fundamental group is up to a constant the sum
of the volumes of its hyperbolic pieces in the Jaco-Shalen-Johannson
splitting along incompressible tori, provided that all non-Seifert pieces
are hyperbolic as predicted by Thurston’s Geometrization Conjecture.
It can be read off from a presentation of the fundamental group π1(M)
without knowing M itself. If a closed aspherical manifold M carries
a non-trivial S1-action, then all L2-Betti numbers bp(M̃) and the L2-
torsion ρ(2)(M̃) vanish. Thus we can conclude using L2-invariants the
well-known statement that a closed hyperbolic manifold cannot carry a
non-trivial S1-action. The question is still open whether it may admit
an S1-foliation.

5 Some Open Conjectures

The following conjectures are at the time of writing still open. The first
one was raised as a question by Atiyah [1].

Conjecture 13 (Atiyah Conjecture). A finitely generated group G
satisfies the Atiyah Conjecture if the following equivalent statements are
true, where Z[FIN−1] is the subring of Q obtained from Z by inverting
all the orders of finite subgroups of G.

1. For any G-covering M → M of a closed Riemannian manifold M
and p ≥ 0 we have

lim
t→∞

∫
F

tr(e−t∆p(x, x))dx ∈ Z[FIN−1];

2. For any G-covering X → X of a compact CW -complex X we have

b(2)
p (X;N (G)) ∈ Z[FIN−1];

3. Let A ∈ M(m,n,ZG) be an (m,n)-matrix with coefficients in ZG.
Denote by RA : l2(G)m → l2(G)n the induced bounded G-operator.
Then

dim(ker(RA)) ∈ Z[FIN−1];

4. Let M be a finitely presented ZG-module. Then

dim(N (G)⊗ZGM) ∈ Z[FIN−1].

Notice that the statements (3) and (4) make sense for any group G.
They are true for a group G if and only if they are true for any finitely
generated subgroup of G. The Atiyah Conjecture implies the following
classical conjecture

Conjecture 14 (Kaplansky Conjecture). A group G is torsionfree
if and only if QG has no non-trivial zero-divisors.



If G contains an element g of finite order n > 1, then N := 1
n ·
∑n
i=1 g

i

is a non-trivial zero-divisor because of N · (1−N) = 0. Suppose that G
is torsionfree and x ∈ QG is a non-trivial zero-divisor. By multiplying
x with an appropriate integer we can achieve x ∈ ZG. The G-operator
rx : l2(G)→ l2(G) given by right multiplication with x has a non-trivial
kernel. Since by the Atiyah Conjecture the dimension of the kernel is an
integer and the kernel is a closed subspace of l2(G), the kernel must have
dimension 1 and hence be equal to l2(G). Hence x = 0, a contradiction.
For most of the groups, for which the Kaplansky Conjecture is known,
the method of proof was to attack and solve the Atiyah-Conjecture.
There are exceptions. For instance the Kaplansky Conjecture has been
proven by for congruence subgroups Γp for which the Atiyah-Conjecture
is not known to be true.

We recall that the class of elementary amenable groups is defined
as the smallest class of groups which contains all finite and all abeli-
an groups, and is closed under taking subgroups, forming factor groups,
group extensions and upwards directed unions. Any elementary amena-
ble group is amenable, but the converse is in general not true.

Theorem 15 (Linnell [14]). The Atiyah Conjecture is true for G if G
occurs in an extension 1 → F → G → A → 1 for a free group F and
an elementary amenable group A, provided that there is a bound on the
order of the finite subgroups of G.

The proof uses ingredients from ring theory, K-theory and opera-
tor theory. It is an example, where one has to use unexpected methods
from different areas to prove a purely algebraic statement such as the
Kaplansky Conjecture. Linnell’s work shows that the Atiyah Conjecture
is linked to the Isomorphism Conjecture of Farrell and Jones in algebraic
K-theory. It says for K0(CG) that the natural map

colimH⊂G,|H|<∞K0(CH)→ K0(CG)

is bijective, where the colimit is taken with respect to inclusion and con-
jugation. An analytic approach to the Atiyah Conjecture is not known.
Actually Linnell has proven the Atiyah Conjecture for a bigger class
of groups than stated in Theorem 15. Recently the class of groups, for
which the Atiyah Conjecture is known, has been considerably enlarged
by Schick [24].

Conjecture 16 (Singer Conjecture). Let M be a closed aspherical
manifold of dimension n. Then

b(2)
p (M̃) = 0 ,if 2p 6= n;

(−1)m · χ(M) ≥ 0 ,if n = 2m,m ∈ Z.

If M carries a metric of negative sectional curvature, then

b(2)
p (M̃) = 0 ,if 2p 6= n;

b(2)
p (M̃) > 0 ,if 2p = n;

(−1)m · χ(M) > 0 ,if n = 2m,m ∈ Z.



Notice that any closed manifold with non-positive sectional curvature
is aspherical, i.e. its universal covering is contractible, by Hadamard’s
Theorem. If M satisfies the Singer Conjecture, then all L2-Betti num-
bers b(2)

p (M̃) are integers as predicted by the Aiyah Conjecture 13 (1)
because the only possible non-trivial L2-Betti number must be up to
sign the Euler characteristic and hence an integer. Gromov (see [11] or
Theorem 3) proves the Singer Conjecture in the case of negative sectio-
nal curvature, provided that M is a Kähler manifold. In dimension 3
the Singer Conjecture for aspherical manifolds is proven by Lott-Lück
[17] assuming Thurston’s Geometrization Conjecture. The Singer Con-
jecture is proven for manifolds with pinched negative sectional curvature
by Donnelly-Xavier [6] and Jost-Xin [13].

Conjecture 17 (Zero-in-the Spectrum Conjecture). Let M be a
closed aspherical Riemannian manifold. Then the following equivalent
statements are true

1. The Laplacian ∆p : l2Ωp(M̃) → l2Ωp(M̃) has zero in its spectrum
for some p ≥ 0;

2. Hp(M̃ ;N (π1(M)) := Hp(N (π1(M)) ⊗Zπ1(M) C
sing
∗ (M̃)) 6= 0 for so-

me p ≥ 0;

This conjecture is not true if one drops the condition aspherical as shown
by Farber and Weinberger [9]. For more information about this conjec-
ture and for which cases it has been proven we refer to the survey article
of Lott [16].

Conjecture 18. Let M be a closed orientable aspherical manifold whose
simplical volume in the sense of Gromov vanishes. Then all its L2-Betti
numbers and its L2-torsion vanishes.

The conjecture above for L2-Betti numbers is due to Gromov [12].
The notion of simplical volume is treated in [10] and defined as follows.
Let Csing

∗ (M,R) be the singular chain complex of M with coefficients
in the real numbers R. An element c in Csing

p (M,R) is given by a finite
R-linear combination c =

∑s
i=1 ri · σi of singular p-simplices σi in M .

Define the l1-norm of c by ‖c‖1 =
∑s
i=1 |ri|. For α ∈ Hm(M ;R) define

‖α‖1 = inf
{
‖c‖1 | c ∈ Csing

m (M ;R) is a cycle representing α
}
.

The simplicial volume of M is defined by ‖M‖ := ‖ [M ] ‖1, where [M ]
is the image of the fundamental class of M under the change of ring
homomorphism on singular homology Hn(M ;Z) −→ Hn(M ;R). The
simplicial volume does not seem to be related to L2-invariants from its
definition. There is no conceptual idea why Conjecture 18 should be
true, there is only some evidence based on calculations. For instance it is
true for closed orientable hyperbolic manifolds, for aspherical orientable
3-manifold, provided Thurston’s Geometrization Conjecture holds, and



for closed orientable aspherical manifolds whose fundamental group is
solvable or which carry a non-trivial S1-action.

For more information about L2-invariant we refer for instance to [12]
and [21]. We hope that we could convince the reader that L2-invariants
represent an accessible modern field, where a lot of further activities will
take place in the future. In our view it is a good model how mathematics
should evolve in the future, where more and more sophisticated methods
and ideas will be required and therefore interaction and exchange of
knowledge and techniques will become more and more important.
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