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Abstract. We prove a version of the L2-index Theorem of Atiyah, which
uses the universal center-valued trace instead of the standard trace. We
construct for G-equivariant K-homology an equivariant Chern character,
which is an isomorphism and lives over the ring Z ⊂ ΛG ⊂ Q obtained
from the integers by inverting the orders of all finite subgroups of G. We
use these two results to show that the Baum-Connes Conjecture implies
the modified Trace Conjecture, which says that the image of the standard
trace K0(C∗r (G)) → R takes values in ΛG . The original Trace Conjecture
predicted that its image lies in the additive subgroup of R generated by
the inverses of all the orders of the finite subgroups of G, and has been
disproved by Roy [15].

0. Introduction and statements of results

Throughout this paper let G be a discrete group. The Baum-Connes Con-
jecture for G says that the assembly map

asmbG : K G
0 (EG) → K0(C

∗
r (G))

from the equivariant K -homology of the classifying space for proper G-
actions EG to the topological K -theory of the reduced C∗-algebra C∗r (G) is
bijective [3, page 8], [5, Conjecture 3.1]. In connection with this conjecture
Baum and Connes [3, page 21] also made the sometimes so called Trace
Conjecture. It says that the image of the composition

K0(C
∗
r (G))

i−→K0(N (G))
trN (G)−−−→ R
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is the additive subgroup of Q generated by all numbers 1
|H| , where H ⊂ G

runs though all finite subgroups of G. Here N (G) is the group von Neumann
algebra, i the change of rings homomorphism associated to the canonical
inclusion C∗r (G) → N (G) and trN (G) is the map induced by the standard
von Neumann trace trN (G) : N (G) → C. Roy has construced a counterex-
ample to the Trace Conjecture in this form in [15] based on her article [16].
She constructs a group Γ, whose finite subgroups are all of order 1 or 3,
together with an element in K G

0 (EG), whose image under trN (Γ) ◦i ◦ asmb
is − 1105

9 . The point is that 3 · 1105
9 is not an integer. Notice that Roy’s

example does not imply that the Baum-Connes Conjecture does not hold
for Γ. Since the group Γ contains a torsionfree subgroup of index 9 and
the Trace Conjecture for torsionfree groups does follow from the Baum-
Connes Conjecture, the Baum-Connes Conjecture predicts that the image
of trN (Γ) ◦i : K0(C∗r (Γ)) → R is contained in {r ∈ R | 9 · r ∈ Z}. So one
could hope that the following version of the Trace Conjecture is still true.
Denote by

ΛG := Z
[

1

|Fin(G)|
]

(0.1)

the ring Z ⊂ ΛG ⊂ Q obtained from Z by inverting all the orders |H| of
finite subgroups of G. For Roy’s group Γ this is {m ·3−n | m, n ∈ Z, n ≥ 0}
and obviously contains − 1105

9 .

Conjecture 0.2 (Modified Trace Conjecture for a group G). The image
of the composition

K0(C
∗
r (G))

i−→K0(N (G))
trN (G)−−−→ R

is contained in ΛG.

The motivation for this paper is to prove

Theorem 0.3. The image of the composition

ΛG ⊗Z K G
0 (EG)

id⊗ asmbG−−−−−→ ΛG ⊗Z K0(C
∗
r (G))

i−→ΛG ⊗Z K0(N (G))
trN (G)−−−→ R

is ΛG.
In particular the modified Trace Conjecture 0.2 holds for G, if the

assembly map asmbG : K G
0 (EG) → K0(C∗r (G)) appearing in the Baum-

Connes Conjecture is surjective.

In order to prove Theorem 0.3 (actually a generalization of it in Theorem
0.8), we will prove a slight generalization of Atiyah’s L2-Index Theorem
and construct an equivariant Chern character for equivariant K -homology
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of proper G-CW-complexes, which is bijective and defined after applying
ΛG ⊗Z −.

Let M be a closed Riemannian manifold and D∗ = (D∗, d∗) be an elliptic
complex of differential operators of order 1 on M. Denote by index(D∗) ∈ Z
its index. Let M → M be a G-covering. Then one can lift D∗ to an elliptic
G-equivariant complex D

∗
. Using the trace trN (G) : N (G) → CAtiyah [1]

defines its L2-index indexN (G)(D
∗
) ∈ R and shows

index(D∗) = indexN (G)(D
∗
).

Let EG → BG be the universal G-covering. The L2-index theorem of
Atiyah implies that the composition

K G
0 (EG)

asmbG−−−→ K0(C
∗
r (G))

i−→K0(N (G))
trN (G)−−−→ R

agrees with the composition

K G
0 (EG)

indG→{1}−−−−→ K0(BG)
K0(pr)−−−→ K0(∗) asmb{1}−−−→ K0(C

∗
r ({1}))

dimC−−→ Z ↪→ R.

Since for a torsionfree group G the spaces EG and EG agree, the Baum-
Connes Conjecture for a torsionfree group G does imply that the image

of K0(C∗r (G))
i−→ K0(N (G))

trN (G)−−−→ R is Z [3, Corollary 1 on page 21].
Instead of using the the standard von Neumann trace trN (G) : N (G) → C,
one can use the universal center-valued trace tru

N (G) : N (G) → Z(N (G))
to define an index

indexu
N (G)(D

∗
) ∈ Z(N (G)),

which takes values in the center Z(N (G)) of the group von Neumann
algebra N (G). Thus we get additional information, namely, for any element
g ∈ G, whose conjugacy class (g) is finite, we get a complex number.
However, it turns out that the value at classes (g) with g �= 1 is zero and
that the value at (1) is the index of D∗. Namely, we will show in Sect. 1

Theorem 0.4. Under the conditions above we get in Z(N (G))

indexu
N (G)(D

∗
) = index(D∗) · 1N (G).

As an illustration we discuss the special case, where G is finite, M is an
oriented closed 4k-dimensional manifold with free orientation preserving
G-action and D∗ is the signature operator. Then Theorem 0.4 reduces to the
well-known statement that the equivariant signature

signG(M) := [H2k(M)+] − [H2k(M)−] ∈ RepC(G)
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is equal to sign(G\M) · [CG] for sign(G\M) ∈ Z the (ordinary) signature
of G\M. We mention that this implies sign(M) = |G| · sign(G\M). Theo-
rem 0.4 is a special case of Theorem 5.4 but we will need it in the proof of
Theorem 5.4 and therefore will have to prove it first.

The second ingredient is a variation of the equivariant Chern character
of [13] for equivariant K -homology of proper G-CW-complexes. Recall
that proper means that all isotropy groups are finite. The construction in
[13] works for equivariant homology theories with a Mackey structure on
the coefficient system in general, but requires to invert all primes. The con-
struction we will give here works after applying ΛG⊗Z? and has a different
source.

Denote for a proper G-CW-complex X by F (X) the set of all subgroups
H ⊂ G, for which X H �= ∅, and by

ΛG(X) := Z
[

1

F (X)

]
(0.5)

the ring Z ⊂ ΛG(X) ⊂ ΛG obtained from Z by inverting the orders of all
subgroups H ∈ F (X). Denote by

JG resp. JG(X) (0.6)

the set of conjugacy classes (C) of finite cyclic subgroups C ⊂ G resp. the
subset JG(X) ⊂ JG of conjugacy classes (C) of finite cyclic subgroups
C ⊂ G, for which XC is non-empty. Obviously ΛG = ΛG(EG) and
JG = JG(EG) since EG is characterized up to G-homotopy by the property
that EG H is contractible (and hence non-empty) for finite H ⊂ G and empty
for infinite H ⊂ G. Let C ⊂ G be a finite cyclic subgroup. Let CGC be the
centralizer and NGC be the normalizer of C ⊂ G. Let WGC be the quotient
NGC/CGC. We will construct an idempotent θC ∈ ΛC ⊗Z RepQ(C) which
acts on ΛC ⊗Z RepC(C). We will see in Lemma 3.4 (b) that the cokernel of

⊕D⊂C,D �=C indC
D : ⊕D⊂C,D �=C Z

[
1

|C|
]
⊗ZRepC(D)→Z

[
1

|C|
]
⊗ZRepC(C)

is isomorphic to the image of the idempotent endomorphism

θC : Z
[

1

|C|
]
⊗Z RepC(C)→ Z

[
1

|C|
]
⊗Z RepC(C).

After introducing and proving some preliminary results about modules over
a category and representation theory of finite groups in Sects. 2 and 3, we
will prove in Sect. 4

Theorem 0.7. Let X be a proper G-CW-complex. Put Λ = ΛG(X) and
J = JG(X). Then there is for p = 0, 1 a natural isomorphism called
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equivariant Chern character

chG
p (X) : ⊕(C)∈J Λ⊗Z K p

(
CGC\XC

)
⊗Λ[WGC] im

(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
∼=−→Λ⊗Z K G

p (X).

Notice that the equivariant Chern character of Theorem 0.7 reduces to

the obvious isomorphism K0(G\X) ⊗Z RepC({1})
∼=−→ K G

0 (X), if G acts
freely on X. In the special case, where G is finite, X is the one-point-space
{∗} and p = 0, the equivariant Chern character reduces to an isomorphism

⊕(C)∈J G Z

[
1

|G|
]
⊗
Z

[
1
|G|

]
[WGC] im

(
θC : Z

[
1

|G|
]
⊗Z RepC(C)

→ Z
[

1

|G|
]
⊗Z RepC(C)

)
∼=−→Z

[
1

|G|
]
⊗Z RepC(G).

This is a strong version of the well-known theorem of Artin that the map
induced by induction

⊕(C)∈J G Q⊗Z RepC(C)→ Q⊗Z RepC(G)

is surjective for any finite group G. Artin’s theorem is the reason why it
does suffice rationally to consider all finite cyclic subgroups of G instead
of all finite subgroups in Theorem 0.7. One might expect (and has to do
integrally) in view of the Baum-Connes Conjecture and the fact that EG
involves all finite subgroups that one has to take all finite subgroups into
account.

Theorem 0.7 gives a computation of ΛG ⊗ K G
0 (EG), namely

⊕(C)∈J G ΛG ⊗Z K p(B(CGC))

⊗ΛG [WGC] im
(
θC : ΛG ⊗Z RepC(C)→ ΛG ⊗Z RepC(C)

)
∼=−→ΛG ⊗Z K G

p (EG).

Another construction of an equivariant Chern character using completely
different methods can be found in [4]. However, it works only after applying
C⊗Z − and therefore cannot be used for our purposes here.

In Theorem 5.4 we will identify the composition of the Chern character
of Theorem 0.7 with the map

ΛG ⊗Z K G
0 (EG)

id⊗ asmbG−−−−−→ ΛG ⊗Z K0(C
∗
r (G))

id⊗i−−→ ΛG ⊗Z K0(N (G))

with an easier to understand and to calculate homomorphism, whose image
is obvious from its definition. This will immediately imply
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Theorem 0.8. Let ΛG resp. JG be the ring resp. set introduced in (0.1)
resp. (0.6). Then the image of the composition

ΛG ⊗Z K G
0 (EG)

id⊗Z asmbG−−−−−−→ ΛG ⊗Z K0(C
∗
r (G))

id⊗Zi−−−→ ΛG ⊗Z K0(N (G))

is the image of the map given by induction

⊕(C)∈J G id⊗ indG
C : ⊕(C)∈J G ΛG ⊗Z RepC(C)→ ΛG ⊗Z K0(N (G)).

Now Theorem 0.3 follows from Theorem 0.8.
The change of rings and K-theory map l : K0(CG)→ K0(C∗r (G)) from

the algebraic K0-group of the complex group ring CG to the topological
K0-group of C∗r (G) is in general far from being surjective. There is some
evidence that it is injective after applying Λ⊗Z? (see [13, Theorem 0.1]).
Theorem 0.8 gives some evidence for the conjecture that the image of

ΛG ⊗Z K0(C∗r (G))
id⊗Zi−−−→ ΛG ⊗Z K0(N (G)) agrees with the image of

the composition ΛG ⊗Z K0(CG)
l−→ΛG ⊗Z K0(C∗r (G))

id⊗Zi−−−→ ΛG ⊗Z
K0(N (G)).

Alain Valette pointed out to the author that the Modified Trace Conjec-
ture 0.2 implies the following conjecture of Farkas [8, p. 593]

Conjecture 0.9 (Farkas). If the rational number m/n is in the image of the
composition

K0(CG) → K0(C
∗
r (G)) → K0(N (G))

trN (G)−−−→ R
and the prime p divides n but not m, then G has an element of order p.

Notice that the Modified Trace Conjecture 0.2 implies that the image of
the composition

K0(C
∗
r (G)) → K0(N (G))

trN (G)−−−→ R
is contained in Q which is not known to be true in general. Some evidence
for this claim comes from the theorem of Zalesskii that the image of the
composition

K0(CG) → K0(C
∗
r (G)) → K0(N (G))

trN (G)−−−→ R
is contained in Q. For its proof see [6, Sect. 3], [19].

The paper is organized as follows

1. The L2-index theorem
2. Modules over a category
3. Some representation theory for finite groups
4. The construction of the Chern character
5. The Baum-Connes Conjecture and the Trace Conjecture
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1. The L2-index theorem

In this section we prove a slight generalization of the L2-index theorem of
Atiyah [1]. Let M be a Riemannian manifold (without boundary) together
with a cocompact free proper action of G by isometries. In other words,
M = G\M is a closed Riemannian manifold, the projection p : M → M
is a G-covering and M is equipped with the Riemannian metric induced
by the one of M. Let D∗ = (D∗, d∗) be an elliptic complex of differential
operators d p : Dp → Dp+1 of order 1 acting on the space of sections
Dp = C∞(E p) of vector bundles E p → M. Define E

p
by p∗E p and D

p

by L2C∞(E p). Then G acts on E
p

and D
p
. Since differential operators are

local operators, there is a unique lift of each operator d p to a G-equivariant

differential operator d̂ p : C∞(E
p
) → C∞(E

p+1
). We obtain an elliptic

G-complex (C∞(E
∗
), d̂∗). Let d

p : D
p → D

p+1
be the minimal closure of

d̂ p which is the same as its maximal closure [1, Proposition 3.1].
Since D∗ is elliptic, each cohomology module H p(D∗) := ker(d p)/

im(d p−1) is a finitely generated C-module. Hence we can define the index
of the elliptic complex D∗ by

index(D∗) :=
∑
p≥0

(−1)p · dimC(H p(D∗)) ∈ Z. (1.1)

Next we want to define an analogous invariant for the lifted complex D
∗
.

The group von Neumann algebra N (G) of G is the ∗-algebra B(l2(G))G

of all bounded G-equivariant operators l2(G) → l2(G), where we equip
l2(G) with the obvious left G-action. Let

trN (G) : N (G) → C (1.2)

be the standard von Neumann trace, which sends f ∈ N (G) = B(l2(G))G

to 〈 f(e), e〉l2(G), where e denotes the element in l2(G) given by the unit
element in G ⊂ l2(G). Denote by Z(N (G)) the center of N (G). There is
the universal center-valued trace [9, Theorem 7.1.12 on p. 462, Proposition
7.4.5 on p. 483, Theorem 8.2.8 on p. 517, Proposition 8.3.10 on p. 525,
Theorem 8.4.3 on p. 532]

tru
N (G) : N (G) → Z(N (G)) (1.3)

which is uniquely determined by the following two properties:
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(a) tru is a trace with values in the center, i.e. tru is C-linear, for a ∈ N (G)
with a ≥ 0 we have tru(a) ≥ 0 and tru(ab) = tru(ba) for all a, b ∈
N (G);

(b) tru(a) = a for all a ∈ Z(N (G)).

The map tru has the following further properties:

(c) tru is faithful;
(d) tru is normal. Equivalently, tru is continuous with respect to the ultra-

weak topology on N (G);
(e) || tru(a)|| ≤ ||a|| for a ∈ N (G);
(f) tru(ab) = a tru(b) for all a ∈ Z(N (G)) and b ∈ N (G);
(g) Let p and q be projections in N (G). Then p and q are equivalent, i.e.

p = vv∗ and q = v∗v, if and only if tru(p) = tru(q);
(h) Any linear functional f : N (G)→ C, which is continuous with respect

to the norm topology on N (G) and which is central, i.e. f(ab) = f(ba)
for all a, b ∈ N (G), factorizes as

N (G)
tru−→ Z(N (G))

f |Z(N (G))−−−−−→ C.

In particular trN (G) ◦ tru
N (G) = trN (G).

A Hilbert N (G)-module V is a Hilbert space V together with a G-action
by isometries such that there exists a Hilbert space H and a G-equivariant
projection p : H⊗ l2(G) → H⊗ l2(G) with the property that V and im(p)
are isometrically G-linearly isomorphic. Here H ⊗ l2(G) is the tensor
product of Hilbert spaces and G acts trivially on H and on l2(G) by the
obvious left multiplication. Notice that p is not part of the structure, only
its existence is required. We call V finitely generated if H can be chosen to
be finite-dimensional.

Our main examples of Hilbert N (G)-modules are the Hilbert spaces D
p

which are isometrically G-isomorphic to L2(C∞(E p))⊗ l2(G). This can be
seen using a fundamental domain F for the G-action on M which is from
a measure theory point of view the same as M. A morphism f : V → W of
Hilbert N (G)-modules is a densely defined closed G-equivariant operator.
The differentials d

p
are morphisms of Hilbert N (G)-modules.

Let f : V → V be a morphism of Hilbert N (G)-modules which is
positive. Choose a G-projection p : H ⊗ l2(G) → H ⊗ l2(G) and an
isometric invertible G-equivariant operator u : im(p) → V . Let {bi | i ∈ I}
be a Hilbert basis for H . Let f be the composition

H ⊗ l2(G)
p−→im(p)

u−→V
f−→V

u−1−→ im(p) ↪→ H ⊗ l2(G).

Define the von Neumann trace of f : V → V by

trN (G)( f ) :=
∑
i∈I

〈 f (bi ⊗ e), bi ⊗ e〉H⊗l2(G) ∈ [0,∞]. (1.4)
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This is indeed independent of the choice of p, u and the Hilbert basis
{bi | i ∈ I}. If V is finitely generated and f is bounded, then trN (G)( f ) <∞
is always true. Define the von Neumann dimension of a Hilbert N (G)-
module V by

dimN (G)(V ) := trN (G)(id : V → V ) ∈ [0,∞]. (1.5)

If V is a finitely generated Hilbert N (G)-module, we define the universal
center-valued von Neumann dimension

dimu
N (G)(V ) := tru

N (G)(id : V → V ) ∈ Z(N (G)) (1.6)

analogously to dimN (G)(V ) replacing trN (G) by tru
N (G). Given a finitely

generated Hilbert N (G)-module V , we have trN (G)(dimu
N (G)(V )) =

dimN (G)(V ).

Define the L2-cohomology H p
(2)(D

∗
) to be ker(d

p
)/ clos(im(d

p−1
)),

where clos(im(d
p−1

)) is the closure of the image of d
p−1

. Define the p-th

Laplacian by ∆p = (d
p
)∗d p + d

p−1
(d

p−1
)∗. By the L2-Hodge-deRham

Theorem we get a G-equivariant isometric isomorphism ker(∆p)
∼=−→

H p
(2)(D

∗
). Thus H p

(2)(D
∗
) inherits the structure of a Hilbert N (G)-module.

Moreover, it turns out to be a finitely generated Hilbert N (G)-module. This
can be deduced from the results of [14], where an index already over C∗r (G)
is defined and the problem of getting finitely generated modules over C∗r (G)
is treated. Namely, one can deduce from [14] after passing to the group von
Neumann algebra, that there are finitely generated Hilbert N (G)-modules
U1, U2, V1 and V2 and Hilbert N (G)-modules W1 and W2 together with
a morphism v : V1 → V2 and isomorphisms of Hilbert N (G)-modules

w : W1
∼=−→W2, u1 : D

p ⊕ U1
∼=−→ V1 ⊕ W1 and u2 : D

p ⊕ U2
∼=−→ V2 ⊕ W2

such that u2 ◦ (∆p⊕0) = (v⊕w)◦u1. Obviously the kernel of v and hence
the kernel of ∆p are finitely generated Hilbert N (G)-modules.

Define the center-valued L2-index and the L2-index

indexu
N (G)(D

∗
) :=

∑
p≥0

(−1)p · dimu
N (G)

(
H p

(2)(D
∗
)
) ∈ Z(N (G));(1.7)

indexN (G)(D
∗
) :=

∑
p≥0

(−1)p · dimN (G)

(
H p

(2)(D
∗
)
) ∈ R. (1.8)

The rest of this section is devoted to the proof of Theorem 0.4

Notation 1.9. Denote by con(G)c f the set of conjugacy classes (g) of elem-
ents g ∈ G such that the set (g) is finite, or, equivalently, the centralizer
CG(g) = {g′ ∈ G | g′g = gg′} has finite index in G. For c ∈ con(G)c f
let Nc be the element

∑
g∈c g ∈ CG. In the sequel Lc resp. Lg denotes left

multiplication with Nc resp. g for c ∈ con(G)c f resp. g ∈ G.
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Notice for the sequel that Nc ∈ Z(N (G)) and Lc is G-equivariant and
commutes with all G-operators.

Lemma 1.10. Consider a ∈ Z(N (G)). Then we have a = 0 if and only if
trN (G)(Nca) = 0 holds for any c ∈ conc f (G).

Proof. Consider a ∈ N (G) = B(l2(G))G which belongs to Z(N (G)).
Write a(e) = ∑

g∈G λg · g ∈ l2(G). Since aRg = Rga holds for g ∈ G
and Rg : l2(G) → l2(G) given by right multiplication with g ∈ G, we get
λg = λhgh−1 for g, h ∈ G. This implies that λg = 0 if the conjugacy class
(g) is infinite. On easily checks for an element g with finite (g)� Do you mean

On or One?

|(g)| · λg = trN (G)(N(g−1)a). ��
Lemma 1.11. We get under the conditions above.

trN (G)

(
indexu

N (G)(D
∗
)
)
= index(D∗).

Proof. The L2-index theorem of Atiyah [1, (1.1)] says

indexN (G)(D
∗
) = index(D∗).

We have

trN (G)

(
indexu

N (G)(D
∗
)
)
= trN (G)


∑

p≥0

(−1)p dimu
N (G)

(
H p

(2)(D
∗
)
)

=
∑
p≥0

(−1)p trN (G)

(
dimu

N (G)

(
H p

(2)(D
∗
)
))

=
∑
p≥0

(−1)p dimN (G)

(
H p

(2)(D
∗
)
)

= indexN (G)(D
∗
). ��

Next we want to prove

Lemma 1.12. Consider an element c ∈ con(G)c f with c �= (1). Then

trN (G)

(
Nc · indexu

N (G)(D
∗
)
)
= 0.

Proof. In the sequel we denote by prp : D
p → D

p
the projection onto

the kernel of the p-th Laplacian ∆p = (d
p
)∗d p + d

p−1
(d

p−1
)∗. By the L2-

Hodge-deRham Theorem we get a G-equivariant isometric isomorphism

im(prp)
∼=−→ H p

(2)(D
∗
). This implies
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trN (G)

(
Nc · indexu

N (G)(D
∗
)
)

=
∑
p≥0

(−1)p · trN (G)

(
Nc · tru

N (G)

(
id : H p

(2)(D
∗
)→ H p

(2)(D
∗
)
))

=
∑
p≥0

(−1)p · trN (G)

(
Lc : H p

(2)(D
∗
)→ H p

(2)(D
∗
)
)

=
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ prp : D

p → D
p
)

. (1.13)

The operator e−t∆p : D
p → D

p
is a bounded G-equivariant operator and

has a smooth kernel e−t∆p(x, y) : E
p
x → E

p
y for x, y ∈ M. Thus e−t∆p(ω)

applied to a section ω is given at y ∈ M by
∫

M e−t∆p(x, y)(ω(x))dvolx .

The operator Lc ◦ e−t∆p is also a bounded G-equivariant operator and has
a smooth kernel (Lc ◦ e−t∆p)(x, y) satisfying(

Lc ◦ e−t∆p

)
(x, y) =

∑
g∈c

Lg ◦ e−t∆p(x, g−1 y).

If F is a fundamentl domain for the G-action, then [1, Proposition 4.6].

trN (G)(Lc ◦ e−t∆p) =
∫

F

trC
((

Lc ◦ e−t∆p
)
(x, x)

)
dvolx;

=
∑
g∈c

∫
F

trC
(

Lg ◦ e−t∆p(x, g−1x)
)

dvolx .

(1.14)

where trC is the trace of an endomorphism of a finite-dimensional complex
vector space. We have

lim
t→0

sup
{
||e−t∆p(x, g−1x)|| | x ∈ F

}
= 0, (1.15)

where ||e−t∆p(x, g−1x)|| is the operator norm of the linear map
e−t∆p(x, g−1x) of finite-dimensional Hilbert spaces. This follows from the
finite propagation speed method of [7]. There only the standard Laplacian
on 0-forms is treated, but the proof presented there carries over to the Lapla-
cian ∆p associated to the lift D

∗
to the G-covering M of an elliptic complex

D∗ of differential operators of order 1 on a closed Riemannian manifold
M in any dimension p. The point is that M has bounded geometry, ∆p is

essentially selfadjoint and positive so that
√

∆p makes sense, and ∂2

∂t2 +∆p

is strictly hyperbolic. Now one applies the results of [7, Sect. 1] and uses
the estimate in [11, p. 475], where the special case of D∗ being the deRham
complex is treated.
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Since∣∣∣trC (
Lg ◦ e−t∆p(x, g−1x)

)∣∣∣ ≤ dimC(E p) · ||e−t∆p(x, g−1x)||
and F is relative compact, we conclude from (1.14) and (1.15)

lim
t→0

trN (G)(Lc ◦ e−t∆p) = 0. (1.16)

Since the trace trN (G) is ultraweakly continuous and limt→∞ e−t∆p = prp
in the weak topology, we get

lim
t→∞ trN (G)(Lc ◦ e−t∆p) = trN (G)(Lc ◦ prp). (1.17)

We conclude from (1.13) and (1.17)

trN (G)

(
Nc · indexu

N (G)(D
∗
)
)

= lim
t→∞

∑
p≥0

(−1)p · trN (G)

(
Lc ◦ e−t∆p

)
. (1.18)

We have

d

dt

∑
p≥0

(−1)p · trN (G)

(
Lc ◦ e−t∆p : D

p → D
p
)

=
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ d

dt
e−t∆p

)

=
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (−∆p) ◦ e−t∆p

)

= −
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ d

p−1 ◦ (d
p−1

)∗ ◦ e−t∆p

)

−
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p
)∗ ◦ d

p ◦ e−t∆p

)

= −
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ d

p−1 ◦ (d
p−1

)∗ ◦ e−
t
2 ∆p ◦ e−

t
2 ∆p

)

−
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p
)∗ ◦ e−t∆p+1 ◦ d

p
)

= −
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ e−

t
2 ∆p ◦ d

p−1 ◦ (d
p−1

)∗ ◦ e−
t
2 ∆p

)

+
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p−1
)∗ ◦ e−t∆p ◦ d

p−1
)
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= −
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p−1
)∗ ◦ e−

t
2 ∆p ◦ e−

t
2 ∆p ◦ d

p−1
)

+
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p−1
)∗ ◦ e−t∆p ◦ d

p−1
)

= −
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p−1
)∗ ◦ e−t∆p ◦ d

p−1
)

+
∑
p≥0

(−1)p · trN (G)

(
Lc ◦ (d

p−1
)∗ ◦ e−t∆p ◦ d

p−1
)

= 0. (1.19)

Here are some justifications for the calculation above. Recall that Lc
is a bounded G-operator and commutes with any G-equivariant operator.
We can commute trN (G) and d

dt since trN (G) is ultraweakly continuous. We

conclude e−t∆p+1 ◦ d
p = d

p ◦ e−t∆p from the fact that ∆p+1 ◦ d
p = d

p ◦∆p

holds on C∞(E
p−1

). We have used at several places the typical trace relation
trN (G)(AB) = trN (G)(BA) which is in each case justified by [1, section 4].
In order to be able to apply this trace relation we have splitted e−t∆p into
e− t

2 ∆p ◦ e− t
2 ∆p in the calculation above.

Hence
∑

p≥0(−1)p · trN (G)

(
Lc ◦ e−t∆p : D

p → D
p
)

is independent of

t and we conclude from (1.18)

trN (G)

(
Nc · indexu

N (G)(D
∗
)
)

= lim
t→0

∑
p≥0

(−1)p · trN (G)

(
Lc ◦ e−t∆p : D

p → D
p
)

. (1.20)

Now Lemma 1.12 follows from (1.16) (1.20). ��
Finally Theorem 0.4 follows from Lemma 1.10, Lemma 1.11 and

Lemma 1.12.

2. Modules over a category

In this section we recall some facts about modules over the category Sub =
Sub(G;F (X)) for a proper G-CW-complex X as far as needed here. For
more information about modules over a category we refer to [12].

Let Sub := Sub(G;F (X)) be the following category. Objects are
the elements of the set F (X) of subgroups H ⊂ G, for which X H �= ∅.
For two finite subgroups H and K in F (X) denote by conhomG(H, K )
the set of group homomorphisms f : H → K , for which there exists
an element g ∈ G with gHg−1 ⊂ K such that f is given by conju-
gation with g, i.e. f = c(g) : H → K, h �→ ghg−1. Notice that
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c(g) = c(g′) holds for two elements g, g′ ∈ G with gHg−1 ⊂ K and
g′H(g′)−1 ⊂ K if and only if g−1g′ lies in the centralizer CG H = {g ∈ G|
gh = hg for all h ∈ H} of H in G. The group of inner automorphisms
of K acts on conhomG(H, K ) from the left by composition. Define the set
of morphisms morSub(H, K ) by Inn(K )\ conhomG(H, K ). Let NG H be
the normalizer {g ∈ G | gHg−1 = H} of H . Define H · CG H = {h · g |
h ∈ H, g ∈ CG H}. This is a normal subgroup of NG H and we define
WG H := NG H/(H · CG H). One easily checks that WG H is a finite
group and that there is an isomorphism from WG H to autSub(H) which
sends g(H · CG H) ∈ WG H to the automorphism of H represented by
c(g) : H → H . Notice that there is a morphism from H to K if and only if
H is subconjugated to K . There is an isomorphism from H to K if and only
if H and K are conjugated. The category Sub is a so called EI-category,
i.e. any endomorphism in Sub is an isomorphism.

Many constructions in equivariant topology of proper G-spaces are car-
ried out over the orbit category Or(G;Fin). It has as objects homoge-
neous spaces G/H for finite subgroups H ⊂ G. Morphisms are G-maps.
Notice that Sub(G;Fin) is a quotient category of Or(G;Fin). The de-
cisive difference between Or(G;Fin) and Sub(G;Fin) is that the auto-
morphism group of G/H in Or(G;Fin) is NG H/H which is not finite
in general, whereas the automorphism group of H in Sub(G;Fin) is
WG H := NG H/(H ·CG H) which always is finite. We can work with Sub
instead of the orbit category since we have induction homomorphisms for
equivariant K -homology.

Let R be a commutative associative ring with unit. A covariant resp. con-
travariant RSub-module M is a covariant resp. contravariant functor from
Sub to the category of R-modules. Morphisms are natural transformations.
The structure of an abelian category on the category of R-modules carries
over to the category of RSub-modules. In particular the notion of a pro-
jective RSub-module is defined. Given a contravariant RSub-module M
and a covariant RSub-module N, one can define a R-module, their tensor
product over Sub

M ⊗RSub N = ⊕H∈F (X )M(H)⊗R N(H)/ ∼,

where ∼ is the typical tensor relation m f ⊗ n = m ⊗ fn, i.e. for each
morphism f : H → K in Sub, m ∈ M(K ) and n ∈ N(H) we introduce
the relation M( f )(m)⊗ n − m ⊗ N( f )(n) = 0.

Given a left R[WG H]-module N for H ∈ F (X), define a covariant
RSub-module EH M by

(EH M)(K ) := R morSub(H, K )⊗R[WG H] N for K ⊂ G, |K | <∞,
(2.1)

where R morSub(H, K ) is the free R-module generated by the set
morSub(H, K ). Given a covariant RSub-module M and H ∈ F (X), de-
fine M(H)s to be the left R-submodule of M(H), which is spanned by the
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images of all R-maps M( f ) : M(K ) → M(H), where f runs through all
morphisms f : K → H in Sub, which have H as target and are not iso-
morphisms. Obviously M(H)s is an R[WG H]-submodule of M(H). Define
a left R[WG H]-module SH M by

SH M := M(H)/M(H)s. (2.2)

Both functors EH and SH respect direct sums and the property finitely
generated and the property projective. Given a left R[WG H]-module M,
SK ◦ EH M is M, if H = K and is 0, if H and K are not conjugated in G.

Let M be a covariant RSub-module. We want to check whether it is pro-
jective or not. A necessary (but not sufficient) condition is that SH M is a pro-
jective R[WG H]-module. Assume that SH M is R[WG H]-projective for all
objects H in Sub. We can choose a R[WG H]-splitting σH : SH M → M(H)
of the canonical projection M(H) → SH M = M(H)/M(H)s. For a finite
subgroup H ⊂ G define the morphism of covariant RSub-modules

iH M : EH(M(H))→ M

by (iH M)(K )(( f : H → K ) ⊗R[WG H] m) = M( f )(m). We obtain after
a choice of representatives H ∈ (H) for any conjugacy class (H) of sub-
groups H ∈ F (X) a morphism of covariant RSub-modules

T : ⊕(H ),H∈F (X ) EH SH M
⊕(H ),H∈F (X )EH (σH )−−−−−−−−−−−→

⊕(H ),H∈F (X ) EH(M(H))
⊕(H ),H∈F (X )iH M−−−−−−−−−→ M. (2.3)

We get as a special case of [13, Theorem 2.11]

Theorem 2.4. The morphism T is always surjective. It is bijective if and
only if M is a projective RSub-module.

3. Some representation theory for finite groups

Denote for a finite group H by RepQ(H) resp. RepC(H) the ring of finite
dimensional H-representations over the fieldQ resp.C. Recall for the sequel
that these are finitely generated free abelian groups. Given an inclusion of
finite groups H ⊂ G, we denote by indG

H : RepQ(H) → RepQ(G) and
resH

G : RepQ(G) → RepQ(H) the induction and restriction homomorphism
and similar for R ⊗Z RepQ, RepC and R ⊗Z RepC for a commutative ring
R with Z ⊂ R. Let conQ(H) be the set of Q-conjugacy classes of elements
in H , where h and h ′ are called Q-conjugated if the cyclic subgroups 〈h〉
and 〈h ′〉 are conjugated in G. Let con(G) be the set of conjugacy classes
of elements in G. Denote by classQ(H) resp. classC(H) the rational resp.
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complex vector space of functions conQ(H) → Q resp. con(G) → C.
Character theory yields isomorphisms [17, p. 68 and Theorem 29 on p. 102]

χQ : Q⊗Z RepQ(H)
∼=−→ classQ(H);

χC : C⊗Z RepC(H)
∼=−→ classC(H).

For a finite cyclic group C denote by θC ∈ Q⊗ZRepQ(C) the element whose
character χQ(θC) sends c ∈ C to 1, if c generates C, and to 0 otherwise.

Let C ⊂ H be a cyclic subgroup of the finite group H . Then we get for
h ∈ H

1

[H : C] · χQ
(
indH

C θC
)
(h) = 1

[H : C] ·
1

|C| ·
∑

l∈H,l−1hl∈C

χQ (θC) (l−1hl)

= 1

|H| ·
∑

l∈H,〈l−1hl〉=C

1.

Denote by [Q] ∈ RepQ(H) the class of the trivial H-representation Q.
Notice that χQ([Q]) is the constant function with values 1. We get in
Q⊗Z RepQ(H)

1⊗Z [Q] =
∑

C⊂H,C cyclic

1

[H : C] · indH
C θC, (3.1)

since for any l ∈ H and h ∈ H there is precisely one cyclic subgroup
C ⊂ H with C = 〈l−1hl〉 and χQ is bijective. In particular we get for
a finite cyclic group C in Q⊗Z RepQ(C)

θC = 1⊗Z [Q] −
∑

D⊂C,D �=C

1

[C : D] · indC
D θD. (3.2)

Now one easily checks by induction over the order of the finite cyclic
subgroup C that the element θC satisfies

θC ∈ Z
[

1

|C|
]
⊗Z RepQ(C). (3.3)

Obviously θC is an idempotent in Z
[

1
|C|

] ⊗Z RepQ(C). By the ob-

vious change of rings homomorphism, Z
[

1
|C|

] ⊗Z RepC(C) becomes a

Z
[

1
|C|

]⊗ZRepQ(C)-module. Hence multiplication with θC defines an idem-
potent endomorphism

θC : Z
[

1

|C|
]
⊗Z RepC(C)→ Z

[
1

|C|
]
⊗Z RepC(C).

It is natural with respect to group automorphisms of C, since θC is invariant
under group automorphisms of C.
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Lemma 3.4. (a) For a finite group H the map

⊕C⊂H,C cyclic indH
C : ⊕C⊂H,C cyclic Z

[
1

|H|
]

⊗Z RepC(C)→ Z
[

1

|H|
]
⊗Z RepC(H)

is surjective;
(b) Let C be a finite cyclic group. Then the image resp. cokernel of

⊕D⊂C,D �=C indC
D : ⊕D⊂C,D �=C Z

[
1

|C|
]

⊗Z RepC(D)→ Z
[

1

|C|
]
⊗Z RepC(C)

is equal resp. isomorphic to the kernel resp. image of the idempotent
endomorphism

θC : Z
[

1

|C|
]
⊗Z RepC(C)→ Z

[
1

|C|
]
⊗Z RepC(C);

(c) Let C be a finite cyclic group. The image of the idempotent endomor-
phism

θC : Z
[

1

|C|
]
⊗Z RepC(C)→ Z

[
1

|C|
]
⊗Z RepC(C);

is a projectiveZ
[

1
|C|

][aut(C)]-module, where the aut(C)-operation comes
from the obvious aut(C)-operation on C.

Proof. (a) follows from the following calculation for x ∈ Z[
1
|H|

] ⊗Z
RepC(H) based on (3.1)

x = (1⊗Z [Q]) · x

=

 ∑

C⊂H,C cyclic

1

[H : C] · indH
C θC


 · x

=
∑

C⊂H,C cyclic

1

[H : C] · indH
C

(
θC · resC

H x
)
.
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(b) follows from the following two calculations based on (3.2) for x ∈
Z

[
1
|C|

]⊗Z RepC(H)

x − θC · x = (1⊗ [Q] − θC ) · x

=

 ∑

D⊂C,D �=C

1

[C : D] · indC
D θD


 · x

=
∑

D⊂C,D �=C

1

[C : D] · indC
D

(
θD · resD

C x
)

and for D ⊂ C, D �= C and y ∈ Z[
1
|C|

]⊗Z RepC(D)

θC · indC
D y = indC

D

(
resD

C θC · y
) = indC

D(0 · y) = 0.

(c) Put Λ = Z[
1
|C|

]
. Let Cp be the p-Sylow subgroup of C for a prime p.

There are canonical isomorphisms

C ∼=
∏

p

Cp;

aut(C) ∼=
∏

p

aut(Cp);

P : ⊗p RepC(Cp) ∼= RepC(C),

where p runs through the prime numbers diving |C|. The isomorphism P as-
signs to⊗p[Vp] for Cp-representations Vp the class of the C-representation
⊗pVp with the factorwise action of aut(C) = ∏

p aut(Cp). The following
diagram commutes

⊗pΛ⊗Z RepC(Cp)
P−−−→ RepC(C)

⊗pθCp

� �θC

⊗pΛ⊗Z RepC(Cp) −−−→
P

RepC(C)

Thus we obtain an isomorphism of Λ[aut(C)]-modules

⊗p im(θC p)
∼=−→ im(θC),

where aut(C) =∏
p aut(Cp) acts factorwise on the source. Hence the claim

for C follows if we know it for Cp for all primes p. Therefore it remains to
treat the case C = Z/pn for some prime number p and positive integer n.
Notice that then Λ = Z[

1
p

]
.

In the sequel we abbreviate A(n) = aut(Z/pn). This is isomorphic to the
multiplicative group of units Z/pn× in Z/pn and hence an abelian group of
order pn−1 · (p− 1). Denote by A(n)p the p-Sylow subgroup and by A(n)′p
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the subgroup {a ∈ A(n) | ap−1 = 1} which is cyclic of order (p − 1). We
get a canonical isomorphism

A(n) ∼= A(n)p × A(n)′p

Notice that Z/pn has precisely one subgroup of order pm for 0 ≤ m ≤ n
which will be denoted by Z/pm . These subgroups are characteristic and
hence restriction to these subgroups yields homomorphisms A(n) →
A(n − 1) → . . . → A(1). They induce epimorphisms A(m)p → A(m−1)p

and isomorphisms A(m)′p
∼=−→ A(m − 1)′p. Using these isomorphisms we

will identify

A(n)′p = A(n − 1)′p = . . . = A(1)′p = Z/p×.

Thus we get canonical decompositions

A(n) = A(n)p × Z/p×.

Let M be a Λ[A(n)]-module. Let res M be the Λ[Z/p×]-module ob-
tained by restriction. The following maps are Λ[A(n)]-homomorphisms

q : Λ[A(n)p] ⊗Λ res M → M, a⊗ m �→ am;
s : M → Λ[A(n)p] ⊗Λ res M, m �→ 1

|A(n)p| ·
∑

a∈A(n)p

a⊗ a−1m,

where A(n) = A(n)p×Z/p× acts factorwise on Λ[A(n)p]⊗Λ res M. They
satisfy q ◦ s = id. Obviously Λ[A(n)p] ⊗Λ res M is Λ[A(n)]-projective if
res M is Λ[Z/p×]-projective. This shows that M is Λ[A(n)]-projective if its
restriction res M to a Λ[Z/p×]-module is projective. Therefore it suffices
to show that im(θC) is Λ[Z/p×]-projective.

The composition of the induction homomorphism RepC(Z/pn−1) →
RepC(Z/pn) with the restriction homomorphism RepC(Z/pn) →
RepC(Z/pn−1) is p · id : RepC(Z/pn−1) → RepC(Z/pn−1). We conclude
from Lemma 3.4 (b) applied with C = Z/pn that the Λ[Z/p×]-module
im(θC) is isomorphic to the kernel of the surjective restriction homomorph-
ism res : Λ ⊗Z RepC(Z/pn) → Λ ⊗Z RepC(Z/pn−1). Hence there is an
exact sequence of Λ[Z/p×]-modules

0 → im(θC)→ Λ⊗Z RepC(Z/pn)→ Λ⊗Z RepC(Z/pn−1)→ 0.

It induces an exact sequence of Λ[Z/p×]-modules

0 → im(θC) → ker
(
Λ⊗Z RepC(Z/pn)→ Λ⊗Z RepC({1})

)
→ ker

(
Λ⊗Z RepC(Z/pn−1)→ Λ⊗Z RepC({1})

)→ 0

whose central and final terms are augmentation ideals. Hence it suf-
fices to show that the Λ[Z/p×]-module ker

(
Λ ⊗Z RepC(Z/pm) →

Λ⊗Z RepC({1})
)

is projective for m = 1, 2 . . . n.
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Recall that Z/p× is a subgroup of A(m) = aut(Z/pm) and thus acts
on Z/pm − {0} in the obvious way. Denote for k ∈ Z by Ck the one-
dimensional Z/pm-representation for which b ∈ Z/pm acts by multiplica-
tion with exp( 2πikb

pm ). We obtain a Λ[Z/p×]-homomorphism

Q : Λ[Z/pm − {0}] → ker
(
Λ⊗Z RepC(Z/pm)→ Λ⊗Z RepC({1})

)
by sending k to [Ck] − 1

pm · [C[Z/pm]]. This is the composition of the

inclusion Λ[Z/pm − {0}] → Λ[Z/pm], the isomorphism Λ[Z/pm ] →
Λ ⊗Z Rep(Z/pm) sending k to [Ck] and the split epimorphism Λ ⊗Z
Rep(Z/pm)→ ker

(
Λ⊗Z RepC(Z/pm)→ Λ⊗Z RepC({1})

)
sending [V ]

to [V ] − dim(V )

pm · [C[Z/pm]]. One easily checks that Q is an isomorphism
of Λ[Z/p×]-modules. Hence it remains to show that Z/p×-acts freely on
Z/pm − {0} because then Λ[Z/pm − {0}] is a free Λ[Z/p×]-module.

Consider x ∈ Z/pm with x �= 0. We have to show for a ∈ Z/p× =
A(m)′p ⊂ A(m) that a(x) = x implies a = id. Since x is non-zero, x gen-
erates a cyclic subgroup Z/pl for some l ∈ {1, 2, . . . m}. Then a ∈ A(m)
restricted to A(l) is an automorphism Z/pl → Z/pl which sends a genera-
tor to itself. Hence this automorphism of Z/pl is the identity. This implies
that a is the identity in A(l)′p = Z/p×. This finishes the proof of Lemma 3.4.

��
The next result is analogous to [13, Lemma 7.4] but we have to go

through its proof again because here we want to invert only the orders
of finite subgroups of G, whereas in [13] we have considered everything
over Q.

Theorem 3.5. Let G be a group and Λ = ΛG(X) as defined in (0.5).
Consider the covariant ΛSub-module Λ⊗Z RepC(?) which sends a finite
subgroup group H ⊂ G to Λ⊗Z RepC(H). Then

(a) SHΛ⊗Z RepC(?) is trivial if the finite subgroup H ⊂ G is not cyclic.
For a finite cyclic subgroup C ⊂ G, the Λ[WGC]-module SCΛ ⊗Z
RepC(?) is isomorphic to the image of the idempotent Λ[WGC]-homo-
morphism

θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C).

The isomorphism is given by the composition of the obvious inclusion
im(θC)→ RepC(C) with the obvious projection RepC(C)→ SCΛ⊗Z
RepC(?);

(b) Λ⊗Z RepC(?) is a projective ΛSub-module;
(c) Let M be a contravariant ΛSub-module. There is a natural isomorph-

ism of Λ-modules

⊕(C),C cyclic,C∈F (X ) M(C)

⊗Λ[WGC] im
(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
∼= M ⊗ΛSub Λ⊗Z RepC(?);
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(d) Λ ⊗Z RepC(H) is a flat ΛSub-module, i.e. for an exact sequence
0 → M0 → M1 → M2 → 0 of contravariant ΛSub-modules the
induced sequence of R-modules 0 → M0 ⊗ΛSub Λ ⊗Z RepC(?) →
M1 ⊗ΛSub Λ⊗Z RepC(?) → M2 ⊗ΛSub Λ⊗Z RepC(?)→ 0 is exact.

Proof. (a) We conclude from Lemma 3.4 (a) that SHΛ⊗ZRepC(?) is trivial
if H is not cyclic. If H = C for a finite cyclic subgroup C ⊂ G, the assertion
follows from Lemma 3.4 (b).

(b) Notice that NG H/CG H is a subgroup of aut(H) and all WG H-operations
are induced by the obvious aut(H)-operations. We conclude from
Lemma 3.4 (c) and assertion (a) that SHΛ ⊗Z RepC(?) is a projective
Λ[WG H]-module for all H ∈ F (X). Because of Theorem 2.4 it suffices to
show for the morphism T for Λ ⊗Z RepC(?) defined in (2.3) that T(K ) is
injective for any given element K ∈ F (X).

Consider an element u in the kernel of T(K ). Put J(H) = morSub(H, K )/
(WG H) for H ∈ F (X) and put I = {(H) | H ∈ F (X)}. Choose for any
(H) ∈ I a representative H ∈ (H). Then fix for any element f ∈ J(H)
a representative f : H → K in morSub(H, K ). For the remainder of the
proof of assertion (b) we abbreviate L(?) := Λ ⊗Z RepC(?). We can find
elements xH, f ∈ SH L for (H) ∈ I and f ∈ J(H) such that only finitely
many of the xH, f -s are different from zero and u can be written as

u =
∑

(H )∈I

∑
f∈J(H )

( f : H → K )⊗Λ[WG H] xH, f .

We want to show that all elements xH, f are zero. Suppose that this is not the
case. Let (H0) be maximal among those elements (H) ∈ I for which there
is f ∈ J(H) with xH, f �= 0, i.e. if for (H) ∈ I the element xH, f is different
from zero for some morphism f : H → K in Sub and there is a morphism
H0 → H in Sub, then (H0) = (H). In the sequel we choose for any of
the morphisms f : H → K in Sub a group homomorphism denoted in the
same way f : H → K representing it. Recall that f : H → K is given
by conjugation with an appropriate element g ∈ G. Fix f0 : H0 → K with
xH0. f0 �= 0. We claim that the composition

A : ⊕(H )∈I EH ◦ SH(L(K ))
T(K )−−→ L(K )

res
im( f0)

K−−−−→ L(im( f0))

ind
f−1
0 :im( f0)→H0−−−−−−−−−→ L(H0)

prH0−−→ SH0 L

maps u to m · xH0, f0 for some integer m > 0 which is invertible in Λ. This
would lead to a contradiction because of T(K )(u) = 0 and xH0, f0 �= 0.
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Consider (H) ∈ I and f ∈ J(H). It suffices to show that A
(
( f : H→K )

⊗Λ[WG H]xH, f

)
is [K∩NG im( f0) : im( f0)]·xH, f if (H) = (H0) and f = f0,

and is zero otherwise. One easily checks that A(( f : H → K )⊗Λ[WG H]xH, f )
is the image of xH, f under the composition

a(H, f ) : SH L
σH−→ L(H)

ind f :H→im( f )−−−−−−→ L(im( f ))
indK

im( f )−−−−→ L(K )

res
im( f0)

K−−−−→ L(im( f0))

ind
f−1
0 :im( f0)→H0−−−−−−−−−→ L(H0)

prH0−−→ SH0 L,

where σH is a Λ[WG H]-splitting of the canonical projection L(H)→ SH L .
It exists because SH L is a projective Λ[WG H]-module by assertion (a).

The Double Coset formula implies

resim( f0)

K ◦ indK
im( f )

=
∑

k∈im( f0)\K/ im( f )

indc(k):im( f )∩k−1 im( f0)k→im( f0) ◦ resim( f )∩k−1 im( f0)k
im( f ) .

The composition prH0
◦ ind f−1

0 :im( f0)→H0
◦ indc(k):im( f )∩k−1 im( f0)k→im( f0) is

trivial, if c(k) : im( f )∩k−1 im( f0)k → im( f0) is not an isomorphism. This
follows from the definition of SH0 L (see (2.2)). Suppose that c(k) : im( f )∩
k−1 im( f0)k → im( f0) is an isomorphism. Then k−1 im( f0)k ⊂ im( f ).
Since H0 has been chosen maximal among the H for which xH, f �= 0 for
some morphism f : H → K , this implies either that xH, f = 0 or that
k−1 im( f0)k = im( f ). Suppose k−1 im( f0)k = im( f ). Then (H) = (H0)
which implies H = H0. Moreover, the homomorphisms in Sub rep-
resented by f0 and f agree. Hence the group homomorphisms f0 and
f agree themselves and we get k ∈ NG im( f0) ∩ K . This implies that
a(H, f ) = [K ∩ NG im( f0) : im( f0)] · id if (H) = (H0) and f = f0, and
that otherwise a(H, f ) = 0 or xH, f = 0 holds. Hence the map T is injective.

(c) follows from assertion (a) and the bijectivity of the isomorphism T for
Λ⊗Z RepC(?) defined in (2.3) because there is a natural isomorphism

M⊗ΛSub EH SHΛ⊗Z RepC(?)
∼=−→M(H)⊗Λ[WG H] SHΛ⊗Z RepC(?). (3.6)

Now (d) follows from (c) and the fact that the Λ[WG H]-module SHΛ ⊗Z
RepC(?) ∼= im(θC) is projective. This finishes the proof of Theorem 3.5. ��

4. The construction of the Chern character

In this section we want to prove Theorem 0.7. There are similarities with
the construction in [13]. The main difference is that here we want to give
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a construction, where we only have to invert the orders of elements in F (X),
whereas in [13] we have worked over the rationals. In [13] we have used
the Hurewicz homomorphism from stable homotopy to singular homology,
which is only an isomorphism after inverting all primes. We will use the
multiplicative structure of K G∗ instead and work with a different source for
the equivariant Chern character, which allows us to invert only the orders
of finite subgroups of G.

In the sequel we denote by K G
p (X) the equivariant K -homology of

a proper G-CW-complex X. It is defined by colimY⊂X KK p
G(C0(Y ),C),

where Y runs over all cocompact G-subcomplexes of X and KK p
G (C0(Y ),C)

denotes equivariant KK -theory of the G-C∗-algebra C0(X) of continuous
functions X → C, which vanish at infinity, and the C∗-algebra C with the
trivial G-action. Given a homomorphism φ : H → G of groups and a proper
H-CW-complex, then indφ X := G ×φ X is a proper G-CW-complex and
there is an induction homomorphism

indφ : K H
0 (X)→ K G

0 (indφ X).

If the kernel of φ acts freely on X, then indφ is bijective. In particular we
get for a proper G-CW-complex X a homomorphism

K G
p (X)

indG→{1}−−−−→ K p(G\X),

which is bijective if G acts freely on X. There is an external product

µ : K G
p (X)× K G ′

q (X ′)→ K G×G ′
p+q (X × X ′)

for groups G and G ′, a proper G-CW-complex X and a proper G ′-CW-
complex X ′. External products and induction are compatible. For more
information about equivariant K -homology and KK -theory we refer to
[10] and in particular for the induction homomorphisms to [18].

Let X be a proper G-CW-complex. We have introduced the ring Λ =
ΛG(X) in (0.5). We want to construct for H ∈ F (X) and p = 0, 1 a Λ-
homomorphism

chG
p (X)(H) : Λ⊗Z K p

(
CG H\X H

)⊗Z RepC(H)

→ Λ⊗Z K G
p (X), (4.1)

where K p(CG H\X H ) is the (non-equivariant) K-homology of the CW-
complex CG H\X H . The map will be defined by the following composition
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Λ⊗Z K p
(
CG H\X H

)⊗Z RepC(H)

id⊗ZK p(pr1)⊗Zid

�∼=
Λ⊗Z K p

(
EG ×CG H X H

)⊗Z RepC(H)

id⊗Z indCG H→{1} ⊗ j

�∼=
Λ⊗Z KCG H

p (EG × X H )⊗Z K H
0 (∗)

µ

�
Λ⊗Z KCG H×H

p (EG × X H )

indm H

�∼=
Λ⊗Z K G

p

(
indm H EG × X H

)
id⊗ZK G

p (indm H pr2)

�
Λ⊗Z K G

p

(
indm H X H

)
id⊗ZK G

p (vH )

�
K G

p (X)

Some explanations are in order. We have a left CG H-action on EG×X H

by g(e, x) = (ge, gx) for g ∈ CG H , e ∈ EG and x ∈ X H . It extends to
a CG H × H-action by letting the factor H act trivially. The map pr1 :
EG ×CG H X H → CG H\X H is the canonical projection. It induces an
isomorphism

Λ⊗Z K p(pr1) : Λ⊗Z K p
(
EG ×CG H X H

) ∼=−→Λ⊗Z K p
(
CG H\X H

)
since each isotropy group of the CG H-space X H is finite and for any fi-

nite group L the projection induces an isomorphism Λ ⊗Z Hp(BL)
∼=−→

Λ⊗Z Hp(∗) and hence by the Atiyah-Hirzebruch spectral sequence an iso-

morphism Λ⊗Z K p(BL)
∼=−→Λ⊗Z K p(∗) for all p. The isomorphism j :

K H
0 (∗) ∼=−→RepC(H) is the canonical isomorphism. The group homomorph-

ism m H : CG H×H → G sends (g, h) to gh. Since its kernel acts freely on
EG× X H , the map indm H is bijective. We denote by pr2 : EG× X H → X H

the canonical projection. The G-map vH : indm H X H = G ×m H X H → X
sends (g, x) to gx.

Notice that we obtain a contravariant ΛSub-module Λ⊗ZK p(CG?\X?)

by assigning to a finite subgroup H ⊂ G the Λ-module Λ⊗ZK p(CG H\X H ).
We have already introduced the covariant Λ-module Λ⊗ZRepC(?). Analo-
gously to [13] one checks that the various maps chG

p (X)(H) defined above
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induce a map of Λ-modules

chG
p (X) : Λ⊗Z K p(CG?\X?)⊗ΛSub Λ⊗Z RepC(?) → Λ⊗Z K G

p (X).

(4.2)

Notice that for L ∈ F (X) and X = G/L the ΛSub-module Λ ⊗Z
K0(CG?\(G/L)?) is isomorphic to the ΛSub-module Λ morSub(?, L),
which sends a finite subgroup H ⊂ G to the free Λ-module with base
morSub(H, L). By the Yoneda Lemma one obtaines a canonical isomorph-
ism

Λ⊗Z K p(CG?\(G/L)?)⊗ΛSub Λ⊗Z RepC(?)
∼=−→Λ⊗Z RepC(L).

One easily checks that under this identification chG
0 (G/L) becomes the

canonical identification of Λ ⊗Z RepC(L) with Λ ⊗Z K G
0 (G/L). Notice

that K1(CG?\(G/L)?) and K G
1 (G/L) are both trivial. Hence chG

p (G/L) is
bijective for all L ∈ F (X) and p = 0, 1. Because of Theorem 3.5 (d)
the source of chG

∗ is an equivariant homology theory on proper G-CW-
complexes Y with F (Y ) ⊂ F (X). One easily checks that chG

∗ is compatible
with the Mayer-Vietoris sequences. By induction over the number of equi-
variant cells and the Five-Lemma chG

p (Y ) is bijective for any finite proper
G-CW-complex Y with F (Y ) ⊂ F (X). Notice that K G

p (Y ) is the colimit
colimZ⊂Y K G

p (Z), where Z runs through all finite G-CW-subcomplexes Z
of Y . The analogous statement holds for the source of chG

∗ . Hence chG
p (Y )

is bijective for all proper G-CW-complexes Y with F (Y ) ⊂ F (X) and
p = 0, 1. Now Theorem 0.7 follows from Theorem 3.5 (c). ��

5. The Baum-Connes Conjecture and the Trace Conjecture

In the sequel we denote for a proper G-CW-complex X by

asmbG : K G
0 (X)→ K0(C

∗
r (G)) (5.1)

the assembly map which essentially assigns to an element in K G
0 (X) repre-

sented by an equivariant Kasparov cycle its index. Given a homomorphism
φ : H → G of groups with finite kernel, there is an induction homomorph-
ism indφ : K p(C∗r (H)) → K p(C∗r (G)) such that the following diagram
commutes [18, Theorem 1]

K H
0 (X)

asmbH−−−→ K0(C∗r (H))

indφ

� indφ

�
K G

0 (indφ X)
asmbG−−−→ K0(C∗r (G))
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These induction homomorphisms, the assembly maps and the change of
rings homomorphisms associated to the passage from C∗r (G) to N (G) are
compatible with the external products

µ : K G
p (X)× K G ′

q (X ′)→ K G×G ′
p+q (X × X ′);

µ : K p(C
∗
r (G))× Kq(C

∗
r (G

′))→ K p+q(C
∗
r (G × G′));

µ : K p(N (G))× Kq(N (G′))→ K p+q(N (G × G′))

for groups G and G ′, a proper G-CW-complex X and a proper G ′-CW-
complex X ′. We will use in the sequel the elementary fact that for any G-map

f : X → Y of proper G-CW-complexes the composition K G
0 (X)

K G
0 ( f )−−−→

K G
0 (Y )

asmbG−−−→ K0(C∗r (G)) is asmbG : K G
0 (X)→ K0(C∗r (G)). In the sequel

the letter i denotes change of rings homomorphism for the canonical map
C∗r (G) → N (G).

Let X be a proper G-CW-complex. We have introduced J = JG(X) in
(0.6). Define the homomorphism

ξ1 : ⊕(C)∈J Λ⊗Z K0(CGC\XC)

⊗Λ[WGC] im
(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
→ K0(N (G)) (5.2)

by the composition of the equivariant Chern character of Theorem 0.7

chG
0 (X) : ⊕(C)∈J Λ⊗Z K0(CGC\XC)

⊗Λ[WGC] im
(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
∼=−→Λ⊗Z K G

0 (X),

the assembly map

id⊗ asmbG : Λ⊗Z K G
0 (X)→ Λ⊗Z K0(C

∗
r (G))

and the change of rings homomorphism

id⊗i : Λ⊗Z K0(C
∗
r (G)) → Λ⊗Z K0(N (G)).

This is the homomorphism which we want to understand. In particular
we are interested in its image. We will identify it with a second easier to
compute homomorphism

ξ2 : ⊕(C)∈J Λ⊗Z K0
(
CGC\XC

)
⊗Λ[WGC] im

(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
→ Λ⊗Z K0(N (G)), (5.3)
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which is defined as follows. Let l : im(θC) → RepC(C) be the inclusion.
Let K0(pr) : K0(CGC\XC) → K0(∗) be induced by the projection from
CGC\XC to the one-point space ∗. We obtain a map

(i ◦ asmb{1} ◦K0(pr))⊗ l : K0
(
CGC\XC

)⊗ im(θC)

→ K0(N ({1}))⊗ RepC(C).

Define

α : K0(N ({1}))⊗ RepC(C)→ RepC(C)

[U] ⊗ [W] �→ dimC(U) · [W].
Notice that α is essentially given by the external product and K0(N (H)) =
RepC(H) holds by definition for any finite group H . Induction yields a map

indG
C : K0(N (C))→ K0(N (G)).

The composition of these three maps above induces for any finite cyclic
subgroup C ⊂ G a homomorphism

ξ2(C) : Λ⊗Z K0
(
CGC\XC

)
⊗Λ[WGC] im

(
θC : Λ⊗Z RepC(C)→ Λ⊗Z RepC(C)

)
→ K0(N (G)).

Define ξ2 to be the direct sum ⊕(C)∈J ξ2(C) after the choice of a represen-
tative C ∈ (C) for each (C) ∈ J .

Theorem 5.4. Let X be a proper G-CW-complex. Then the maps ξ1 of
(5.2) and ξ2 of (5.3) agree.

Proof. In the sequel maps denoted by the letter µ will be given by external
products and pr denotes the projection from a space to the one-point space ∗.
Fix a cyclic subgroup C ∈ F (X). Notice that the homomorphism mC :
CGC × C → G (g, c) �→ gc has a finite kernel so that induction is
defined also on the level of the reduced group C∗-algebra and the group
von Neumann algebra. Denote by ν : Λ⊗Z KCGC×C

0 (EG × XC) → Λ⊗Z
K G

0 (X) the composition of the maps id⊗K G
0 (vC), id⊗K G

0 (indmC pr2) and
indmC appearing in the definition of ch0(X)(C). Then the following diagram
commutes

Λ⊗Z KCG C
0 (EG × XC )⊗Z KC(∗) id⊗i◦asmbCG C ⊗ j−−−−−−−−−−−→ Λ⊗Z K0(N (CGC))⊗Z RepC(C)

µ

� µ

�
Λ⊗Z KCG C×C

0 (EG × XC )
id⊗i◦asmbCG C×C−−−−−−−−−−→ Λ⊗Z K0(N (CGC × C))

ν

� indmC

�
Λ⊗Z K G

0 (X)
id⊗i◦asmbG−−−−−−−→ Λ⊗Z K0(N (G))
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For any group G the map induced by the center-valued von Neumann
dimension

dimu
N (G) : K0(N (G)) → Z(N (G))

is injective. Given a CW-complex Z and an element η ∈ K0(Z), there is
a closed manifold M with a map f : M → Z and an elliptic complex D∗ of
differential operators of order 1 over M such that K0( f ) : K0(M)→ K0(Z)
maps the class [D∗] ∈ K0(M) to η [2]. In the case Z = BG the composition

K0(M)
K0( f )−−−→ K0(BG)

(indG→{1})−1

−−−−−−→ K G
0 (EG)

asmbG−−−→ K0(C
∗
r (G))

i−→K0(N (G))
dimu

N (G)−−−−→ Z(N (G))

resp. the composition

K0(M)
K0(pr)−−−→ K0(∗) asmb{1}−−−→ K0(C

∗({1}) i−→K0(N ({1}))
indG{1}−−→ K0(N (G))

dimu
N (G)−−−−→ Z(N (G))

maps [D∗] to the element indexu
N (G)(D

∗
) resp. index(D∗) · 1N (G), where

indexu
N (G)(D

∗
) resp. index(D∗) has been defined in (1.7) resp. (1.1). We

conclude from Theorem 0.4 and the injectivity of the map dimu
N (G) of (1.6)

that the following diagram commutes

K G
0 (EG)

i◦asmbG−−−−→ K0(N (G))

K0(pr)◦ind−1
G→{1}

� indG{1}

�
K0(∗) i◦asmb{1}−−−−→ K0(N ({1}))

Since there is a CGC-map EG × XC → ECGC, we conclude from the
diagram above applied to the case G = CGC that the following diagram
commutes

Λ⊗Z KCG C
0 (EG × XC )⊗Z KC(∗) id⊗i◦asmbCG C ⊗ j−−−−−−−−−−−→ Λ⊗Z K0(N (CGC))⊗Z RepC(C)�id⊗(K0(pr)◦indCG C→{1} )⊗ j

�id⊗ ind
CG C
{1} ⊗ id

Λ⊗Z K0(∗)⊗Z RepC(C)
id⊗i◦asmb{1} ⊗ id−−−−−−−−−−→ Λ⊗Z K0(N ({1})⊗Z RepC(C)

The composition

K0(N ({1})⊗Z RepC(C)
ind

CG C
{1} ⊗ id−−−−−−→ K0(N (CGC))⊗Z RepC(C)

µ−→K0(N (CGC × C))
indmC−−−→ K0(N (G))
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agrees with the composition

K0(N ({1}))⊗ RepC(C)
α−→RepC(C) = K0(N (C))

indG
C−−→ K0(N (G)).

We conclude that the following diagram commutes for any cyclic subgroup
C ∈ F (X)

Λ⊗Z KCGC
0 (EG × XC )⊗Z KC(∗) (id⊗i◦asmbG)◦ν◦µ−−−−−−−−−−→ Λ⊗Z K0(N (G))�id⊗(i◦asmb{1} ◦K0(pr)◦indCG C→{1})⊗ j

�id⊗ indG
C

Λ⊗Z K0(N ({1}))⊗Z RepC(C)
id⊗α−−−→ Λ⊗Z RepC(C)

Hence the following diagram commutes for any cyclic subgroup C ∈ F (X)

Λ⊗Z K0(CGC\XC )⊗Z RepC(C)
id⊗(α◦(i◦asmb{1} ◦K0(pr))⊗id)−−−−−−−−−−−−−−−−−→ Λ⊗Z RepC(C)

id⊗chG
0 (X )(C)

� id⊗ indG
C

�
Λ⊗Z K G

0 (X)
id⊗(i◦asmbG )−−−−−−−→ Λ⊗Z K0(N (G))

Now Theorem 5.4 (and hence also Theorem 0.8) follow. ��
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