
A Survey on classifying

spaces for families

Wolfgang Lück∗

Fachbereich Mathematik und Informatik

Westfälische Wilhelms-Universität

Münster

Einsteinstr. 62

48149 Münster

Germany

lueck@math.uni-muenster.de

http://www.math.uni-

muenster.de/u/lueck

June 2004



1. The G-CW -version

Group means always locally compact Haus-

dorff topological group with a countable

base for its topology.

Definition 1. (G-CW -complex) A G-CW -

complex X is a G-space together with a

G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology

with respect to this filtration (i.e. a set C ⊆
X is closed if and only if C ∩Xn is closed

in Xn for all n ≥ 0) and Xn is obtained

from Xn−1 for each n ≥ 0 by attaching

equivariant n-dimensional cells, i.e. there

exists a G-pushout

∐
i∈InG/Hi × S

n−1

∐
i∈In q

n
i−−−−−−→ Xn−1y y∐

i∈InG/Hi ×D
n −−−−−−→∐

i∈InQ
n
i

Xn



Remark 2. (Proper G-CW -complexes)

A G-space X is called proper if for each

pair of points x and y in X there are open

neighborhoods Vx of x and Wy of y in X

such that the closure of the subset {g ∈
G | gVx ∩Wy 6= ∅} of G is compact. A G-

CW -complex X is proper if and only if all

its isotropy groups are compact.

Definition 3. (Family of subgroups) A

family F of subgroups of G is a set of

(closed) subgroups of G which is closed

under conjugation and finite intersections.

Examples for F are
TR = {trivial subgroup};
FIN = {finite subgroups};
VCYC = {virtually cyclic subgroups};
COM = {compact subgroups};
COMOP = {compact open subgroups};
ALL = {all subgroups}.



Definition 4. (Classifying G-CW -complex

for a family of subgroups) Let F be a

family of subgroups of G. A model EF(G)

for the classifying G-CW -complex for the

family F of subgroups is a G-CW -complex

EF(G) which has the following properties:

1. All isotropy groups of EF(G) belong to

F;

2. For any G-CW -complex Y , whose isotropy

groups belong to F, there is up to G-

homotopy precisely one G-map Y → X.

We abbreviate EG := ECOM(G) and call it

the universal G-CW -complex for proper

G-actions. We also write EG = ETR(G).

The notion of a classifying space for a fam-

ily is due to tom Dieck.



Theorem 5. (Homotopy characteriza-

tion of EF(G)) Let F be a family of

subgroups.

1. There exists a model for EF(G) for any

family F;

2. Two model for EF(G) are G-homotopy

equivalent;

3. A G-CW -complex X is a model for EF(G)

if and only if all its isotropy groups be-

long to F and for each H ∈ F the

H-fixed point set XH is weakly con-

tractible.



2. The numerable version
Definition 6. (F-numerable G-space) A

F-numerable G-space is a G-space, for

which there exists an open covering {Ui |
i ∈ I} by G-subspaces such that there is for

each i ∈ I a G-map Ui → G/Gi for some

Gi ∈ F and there is a locally finite partition

of unity {ei | i ∈ I} subordinate to {Ui | i ∈
I} by G-invariant functions ei : X → [0,1].

Notice that we do not demand that the

isotropy groups of a F-numerable G-space

belong to F. If f : X → Y is a G-map

and Y is F-numerable, then X is also F-

numerable.

Lemma 7. Let F be a family. Then a G-

CW -complex is F-numerable if each isotropy

group is a subgroup of some element in F.

Proof. This follows from the Slice The-

orem and the fact that G\X is a CW -

complex and hence paracompact.



Definition 8. (Classifying numerable G-

space for a family of subgroups) Let F
be a family of subgroups of G. A model

JF(G) for the classifying numerable G-

space for the family F of subgroups is

a G-space which has the following proper-

ties:

1. JF(G) is F-numerable;

2. For any F-numerable G-space X there

is up to G-homotopy precisely one G-

map X → JF(G).

We abbreviate JG := JCOM(G) and call

it the universal numerable G-space for

proper G-actions, or briefly the univer-

sal space for proper G-actions. We also

write JG = JTR(G)



Remark 9. (Proper G-spaces) A COM-

numerable G-space X is proper. Not every

proper G-space is COM-numerable. But a

G-CW -complex X is proper if and only if

it is COM-numerable.

Theorem 10. (Homotopy characteriza-

tion of JF(G)) Let F be a family of sub-

groups.

1. For any family F there exists a model

for JF(G) whose isotropy groups be-

long to F;

2. Two models for JF(G) are G-homotopy

equivalent;

3. For H ∈ F the H-fixed point set JF(G)H

is contractible.



3. Comparision of the two
versions

There is always a G-map

φF : EF(G)→ JF(G)

which is unique up to G-homotopy.
Example 11. Let G be totally disconnected.
Then

φTR : EG→ JG

is a G-homotopy equivalence if and only if
G is discrete.
Theorem 12. (EG = JG)) The G-map φF
is a G-homotopy equivalence if F = COM,
i.e. we get a G-homotopy equivalence

φCOM : EG
'−→ JG.

Lemma 13. Let G be a totally discon-
nected group Then the following square
commutes up to G-homotopy and consists
of G-homotopy equivalences

ECOMOP(G) −→ JCOMOP(G)y y
EG −→ JG



4. Special models

There are interesting special models

• Operator theoretic models;

• G/K for an almost connected group

G with K ⊆ G maximal compact sub-

group;

• Actions on CAT(0)-spaces;

• Actions on affine buildings;

• The Rips complex for word-hyperbolic

groups;

• The Borel-Serre compactification and

arithmetic groups;



• Mapping class groups and Teichmüller

space;

• Out(Fn) and outer space.



4.1. Operator Theoretic Model

Let C0(G) be the Banach space of complex

valued functions of G vanishing at infinity

with the supremum-norm. The group G

acts isometrically on C0(G) by (g ·f)(x) :=

f(g−1x) for f ∈ C0(G) and g, x ∈ G. Let

PC0(G) be the subspace of C0(G) con-

sisting of functions f such that f is not

identically zero and has non-negative real

numbers as values.

Theorem 14. (Operator theoretic model)

The G-space PC0(G) is a model for JG.

Example 15. Let G be discrete. Another

model for JG is the space

XG = {f : G→ [0,1] | f has finite support,∑
g∈G

f(g) = 1}

with the topology coming from the supre-

mum norm.



Remark 16. (Simplicial Model) Let G

be discrete. Let P∞(G) be the geometric

realization of the simplicial set whose k-

simplices consist of (k+1)-tupels (g0, g1, . . . , gk)

of elements gi in G. This also a model for

EG.

The spaces XG and P∞(G) have the same

underlying sets but in general they have

different topologies. The identity map in-

duces a (continuous) G-map P∞(G)→ XG
which is a G-homotopy equivalence, but in

general not a G-homeomorphism



4.2. Almost Connected Groups

The following result is due to Abels.

Theorem 17. Almost connected groups)

Let G be a (locally compact Hausdorff)

topological group. Suppose that G is al-

most connected, i.e. the group G/G0 is

compact for G0 the component of the iden-

tity element. Then G contains a maximal

compact subgroup K which is unique up to

conjugation. The G-space G/K is a model

for JG.

Theorem 18. (Discrete subgroups of al-

most connected Lie groups) Let L be a

Lie group with finitely many path compo-

nents. Then L contains a maximal com-

pact subgroup K which is unique up to

conjugation. The L-space L/K is a model

for EL.

If G ⊆ L is a discrete subgroup of L, then

L/K with the obvious left G-action is a

finite dimensional G-CW -model for EG.



4.3. Actions on CAT(0)-spaces
Theorem 19. (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff)

topological group. Let X be a proper G-

CW -complex. Suppose that X has the

structure of a complete CAT(0)-space for

which G acts by isometries. Then X is a

model for EG.

Remark 20. This result contains as spe-

cial case isometric G actions on simply-

connected complete Riemannian manifolds

with non-positive sectional curvature and

G-actions on trees.



4.4. Affine Buildings
Theorem 21. (Affine buildings) Let G

be a totally disconnected group. Suppose

that G acts on the affine building by simpli-

cial automorphisms such that each isotropy

group is compact. Then Σ is a model for

both JCOMOP(G) and JG and the barycen-

tric subdivision Σ′ is a model for both ECOMOP(G)

and EG.

Example 22 (Bruhat-Tits building). An

important example is the case of a reduc-

tive p-adic algebraic group G and its as-

sociated affine Bruhat-Tits building β(G).

Then β(G) is a model for JG and β(G)′ is

a model for EG by Theorem 21.



4.5. The Rips Complex of a
Word-Hyperbolic Group

The Rips complex Pd(G,S) of a group G

with a symmetric finite set S of genera-

tors for a natural number d is the geomet-

ric realization of the simplicial set whose

set of k-simplices consists of (k+1)-tuples

(g0, g1, . . . gk) of pairwise distinct elements

gi ∈ G satisfying dS(gi, gj) ≤ d for all i, j ∈
{0,1, . . . , k}. The obvious G-action by sim-

plicial automorphisms on Pd(G,S) induces

a G-action by simplicial automorphisms on

the barycentric subdivision Pd(G,S)′

Theorem 23. (Rips complex) Let G be

a (discrete) group with a finite symmetric

set of generators. Suppose that (G,S) is

δ-hyperbolic for the real number δ ≥ 0.

Let d be a natural number with d ≥ 16δ +

8. Then the barycentric subdivision of the

Rips complex Pd(G,S)′ is a finite G-CW -

model for EG.



4.6. Arithmetic Groups

Arithmetic groups in a semisimple connected

linear Q-algebraic group possess finite mod-

els for EG. Namely, let G(R) be the R-

points of a semisimple Q-group G(Q) and

let K ⊆ G(R) a maximal compact sub-

group. If A ⊆ G(Q) is an arithmetic group,

then G(R)/K with the left A-action is a

model for EFIN (A) as already explained in

Theorem 18. The A-space G(R)/K is not

necessarily cocompact.

Theorem 24. Borel-Serre compactifica-

tion) The Borel-Serre completion of G(R)/K

is a finite A-CW -model for EFIN (A).



4.7. Mapping Class groups

Let Γsg,r be the mapping class group of

an orientable compact surface F of genus

g with s punctures and r boundary com-

ponents. We will always assume that 2g+

s + r > 2, or, equivalently, that the Euler

characteristic of the punctured surface F

is negative. It is well-known that the as-

sociated Teichmüller space T sg,r is a con-

tractible space on which Γsg,r acts properly.

Actually

Theorem 25. (Teichmüller space) The

Γsg,r-space T sg,r is a model for EFIN (Γsg,r).



4.8. Outer Automorphism
Groups of Free groups

Let Fn be the free group of rank n. Denote
by Out(Fn) the group of outer automor-
phisms of Fn, i.e. the quotient of the group
of all automorphisms of Fn by the normal
subgroup of inner automorphisms. Culler
and Vogtmann have constructed a space
Xn called outer space on which Out(Fn)
acts with finite isotropy groups. It is anal-
ogous to the Teichmüller space of a sur-
face with the action of the mapping class
group of the surface.

The space Xn contains a spine Kn which
is an Out(Fn)-equivariant deformation re-
traction. This space Kn is a simplicial
complex of dimension (2n − 3) on which
the Out(Fn)-action is by simplicial auto-
morphisms and cocompact. Actually the
group of simplicial automorphisms of Kn
is Out(Fn) by results due to Bridson and
Vogtman.
Theorem 26. The barycentric subdivision
K′n is a finite (2n − 3)-dimensional model
of EOut(Fn).



5. Relevance and Applications
of Classifying Spaces for

Families

5.1. Baum-Connes Conjecture

The goal of the Baum-Connes Conjecture

is the computation of the topological K-

theory Kn(C∗r(G)) of the reduced group

C∗-algebra of G.

Conjecture 27 (Baum-Connes Conjec-

ture). The assembly map defined by tak-

ing the equivariant index

asmb: KG
n (JG)

∼=−→ Kn(C∗r(G))

is bijective for all n ∈ Z.



5.2. Farrell-Jones Conjecture

Let G be a discrete group. Let R be a

associative ring with unit. The goal of

the Farrell-Jones Conjecture is to compute

the algebraic K-groups Kn(RH) and the

algebraic L-groups L−∞n (RG).

Conjecture 28 (Farrell-Jones Conjec-

ture). The assembly maps induced by the

projection EVCYC(G)→ G/G

asmb: HGn (EVCYC(G),K) → Kn(RG);

asmb: HGn (EVCYC(G),L−∞) → L−∞n (RG),

are bijective for all n ∈ Z.



5.3. Completion Theorem

Let G be a discrete group. For a proper fi-

nite G-CW -complex let K∗G(X) be its equiv-

ariant K-theory defined in terms of equiv-

ariant finite dimensional complex vector bun-

dles over X. Let I ⊆ K0
G(EG) be the

augmentation ideal, i.e. the kernel of the

map K0(EG) → Z sending the class of

an equivariant complex vector bundle to

its complex dimension. Let K∗G(EG)Î be

the I-adic completion of K∗G(EG) and let

K∗(BG) be the topological K-theory of

BG.

Theorem 29 (Completion Theorem for

discrete groups). Let G be a discrete group

such that there exists a finite model for

EG. Then there is a canonical isomor-

phism

K∗(BG)
∼=−→ K∗G(EG)Î .



5.4. Classifying Spaces for
Equivariant Bundles

The equivariant K-theory for finite proper

G-CW -complexes appearing above can be

extended to arbitrary proper G-CW -complexes

(including the multiplicative structure) us-

ing Γ-spaces in the sense of Segal and in-

volving classifying spaces for equivariant

vector bundles. These classifying spaces

for equivariant vector bundles are again

classifying spaces of certain Lie groups and

certain families

5.5. Equivariant Homology and
Cohomology

Classifying spaces for families play a role in

computations of equivariant homology and

cohomology for compact Lie groups such

as equivariant bordism. Rational compu-

tations of equivariant (co-)-homology groups

are possible in general using Chern charac-

ters for discrete groups and proper G-CW -

complexes



6. Finiteness Conditions

The questions whether there exists finite

models, models of finite type or models or

finite-dimensional models for EG or wthat

is the minimal value of dim(EG) is quite

interesting and an obvious extention of the

same question for BG.

Remark 30 (Algebraic criterion). Let G

be discrete. In the classical case one can

read off the possible dimension of BG from

the homological algebra of ZG, in partic-

ular in terms of the cohomological dimen-

sion of the trivial ZG-modul Z. There are

analogous results for EF(G) if one consid-

ers modules over the orbit category Or(G),

in particular the constant contravariant ZOr(G)-

module ZF whose value is Z on G/H for

H ∈ F and {0} on G/H for H 6∈ F. This

gives in principle a complete answer in al-

gebraic terms but is often hard to apply in

concrete situations.



6.1. Some conditions for
finite-dimensional models

As an illustration we give a small selec-

tion of results on this topic to due to Con-

nolly, Dunwoody, Kropholler, Kozniewsky,

L., Leary, Meintrup, Mislin and Nucinkis

and others.

Theorem 31 (Discrete subgroups of Lie

groups). Let L be a Lie group with finitely

many path components. Let K ⊆ L be a

maximal compact subgroup K. Let G ⊆ L
be a discrete subgroup of L.

Then L/K with the left G-action is a model

for EG.

Suppose additionally that G contains a tor-

sionfree subgroup ∆ ⊆ G of finite index.

Then we have

vcd(G) ≤ dim(L/K)

and equality holds if and only if G\L is

compact.



Theorem 32 (A criterion for 1-dimensional

models). Let G be a discrete group. Then

there exists a 1-dimensional model for EG

if and only the cohomological dimension of

G over the rationals Q is less or equal to

one.

Theorem 33. Virtual cohomological di-

mension and dim(EG) Let G be a discrete

group which contains a torsionfree sub-

group of finite index and has virtual coho-

mological dimensionvcd(G) ≤ d. Let l ≥
0 be an integer such that the length l(H)

of any finite subgroup H ⊂ G is bounded

by l.

Then we have vcd(G) ≤ dim(EG) for any

model for EG and there exists a model for

EG of dimension max{3, d}+ l.



Example 34 (Virtually poly-cyclic groups).

Let the group ∆ be virtually poly-cyclic,
i.e. ∆ contains a subgroup ∆′ of finite in-
dex for which there is a finite sequence
{1} = ∆′0 ⊆ ∆′1 ⊆ . . . ⊆ ∆′n = ∆′ of sub-
groups such that ∆′i−1 is normal in ∆′i with
cyclic quotient ∆′i/∆′i−1 for i = 1,2, . . . , n.
Denote by r the number of elements i ∈
{1,2, . . . , n} with ∆′i/∆′i−1

∼= Z. The num-
ber r is called the Hirsch rank. The group
∆ contains a torsionfree subgroup of finite
index. We call ∆′ poly-Z if r = n, i.e.
all quotients ∆′i/∆′i−1 are infinite cyclic.
Then

1. r = vcd(∆);

2. r = max{i | Hi(∆′;Z/2) 6= 0} for one
(and hence all) poly-Z subgroup ∆′ ⊂
∆ of finite index;

3. There exists a finite r-dimensional model
for E∆ and for any model E∆ we have
dim(E∆) ≥ r.



6.2. Reduction to discrete
groups

The discretization Gd of a topological group

G is the same group but now with the dis-

crete topology.

Theorem 35 (Passage from topological

groups to totally disconnected groups).

Let G be a locally compact second count-

able Hausdorff group. Put G := G/G0.

Then there is a G-CW -model for EG that

is d-dimensional or finite or of finite type

respectively if and only if EG has a G-CW -

model that is d-dimensional or finite or of

finite type respectively.

Theorem 36 (Passage from totally dis-

connected groups to discrete groups).

Let G be a locally compact totally dis-

connected Hausdorff group and let F be

a family of subgroups of G. Then there is a

G-CW -model for EF(G) that is d-dimensional

or finite or of finite type respectively if and

only if there is a Gd-CW -model for EF(Gd)

that is d-dimensional or finite or of finite

type respectively.



7. Counterexamples

The following problem is stated by Brown

It created a lot of activities and many of

the results stated above were motivated by

it.

Problem 37. For which discrete groups G,

which contain a torsionfree subgroup of

finite index and has virtual cohomologi-

cal dimension ≤ d, does there exist a d-

dimensional G-CW -model for EG?

Leary and Nucinkis have constructed many

very interesting examples of discrete groups

some of which are listed below. Their

main technical input is an equivariant ver-

sion of the constructions due to Bestvina

and Brady. These examples show that the

answer to the Problems 37 and to other

problems appearing in the literature is not

positive in general. A group G is of type

VF if it contains a subgroup H ⊆ G of fi-

nite index for which there is a finite model

for BH.



1. For any positive integer d there exist a

group G of type VF which has virtually

cohomological dimension ≤ 3d, but for

which any model for EG has dimension

≥ 4d;

2. There exists a group G with a finite

cyclic subgroup H ⊆ G such that G is

of type VF but the centralizer CGH of

H in G is not of type FP∞;

3. There exists a group G of type VF

which contains infinitely many conju-

gacy classes of finite subgroups;

4. There exists an extension 1 → ∆ →
G→ π → 1 such that E∆ and EG have

finite G-CW -models but there is no G-

CW -model for Eπ of finite type.



8. The Orbit Space of EG

We will see that in many computations of

the group (co-)homology, of the algebraic

K- and L-theory of the group ring or the

topological K-theory of the reduced C∗-
algebra of a discrete group G a key prob-

lem is to determine the homotopy type of

the quotient space G\EG of EG. The fol-

lowing result shows that this is a difficult

problem in general and can only be solved

in special cases where som extra geomet-

ric input is available. It was proved by

Leary and Nucinkis based on ideas due to

Baumslag-Dyer-Heller and Kan and Thurston.

Theorem 38 (The homotopy type of

G\EG). Let X be a connected CW -complex.

Then there exists a group G such that

G\EG is homotopy equivalent to X.


