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0 Introduction

Atiyah’s celebrated L2-index theorem [2] implies that the index of the sig-
nature operator of a closed oriented smooth manifold M with Riemannian
metric coincides with the L2-index of the signature operator on any nor-
mal covering space of M . In particular, the signature and the L2-signature
for closed oriented smooth manifolds coincide. The (various) definitions of
L2-signatures are explained in Section 3.

The signature is of course also defined for closed oriented topological
manifolds and, as long as there is a Lipschitz structure, there is even a
signature operator whose index is the signature. In the first part of this
paper, we address the question how to generalize the L2-signature theorem
to closed oriented topological manifolds.

Such an L2-signature theorem for closed oriented topological manifolds
does not seem to be in the literature. We give a proof along the lines of
Atiyah’s proof [2] of the smooth L2-index theorem.

0.1 Theorem. Let M be a closed connected oriented 4n-dimensional Lip-
schitz manifold with normal covering M → M . Let DV be the Lipschitz
signature operator twisted with a Lipschitz bundle V and DV its lift to M .
Then

ind(DV ) = indNΓ(DV ).

An immediate consequence is (using Sullivan’s theorem that a Lipschitz
structure exists on every topological manifold of dimension 6= 4)

0.2 Theorem. Let M be a closed connected oriented topological manifold
of dimension 4n with normal covering M →M . Then

sign(2)(M) = sign(M).

Theorem 0.2 also follows from the L2-signature theorem for closed ori-
ented smooth manifolds and the fact that the forgetful map Ω∗(BΓ) →
Ωtop
∗ (BΓ) from the smooth bordism group over BΓ to the topological one

is rationally an isomorphism (compare Remark 1.7 and the discussion after
[41, Theorem 1.6]), as was pointed out to us by Shmuel Weinberger. Note
that the L2-signature theorem implies in particular that the signature is
multiplicative under finite coverings. This multiplicativity was proved for
closed oriented topological manifolds in [35, Theorem 8].

For more general Poincaré duality spaces, which are not manifolds, such
a multiplicativity result does not hold [29, Example 22.28], [45, Corol-
lary 5.4.1]). It fails also if M is a compact oriented smooth manifold
with nonempty boundary (compare [4, Proposition 2.12] together with the
Atiyah-Patodi-Singer index theorem [3, Theorem 4.14]).

This implies in particular that the L2-index theorem can not hold in
the stated form in the greatest imaginable generality. In Section 2, we
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discuss to which extent the L2-signature theorem does extend to Poincaré
spaces X = (X, ∅), and show that it is implied by the L-theory isomorphism
conjecture or by the C∗max-version of the Baum-Connes conjecture, provided
the covering group Γ is torsion-free. More precisely, we prove the following
theorem in 2.3:

0.3 Theorem. Let X be a 4n-dimensional Poincaré space over Q (see
Definition 2.2). Let X → X be a normal covering with torsion-free covering
group Γ. Assume that the (Baum-Connes) index map for the maximal group
C∗-algebra

ind: K0(BΓ)→ K0(C∗maxΓ)

or the L-theory assembly map

A : H4n(BΓ;L〈−∞〉• )→ L
〈−∞〉
0 (ZΓ)

is rationally surjective.Then

sign(2)(X) = sign(X).

In a companion paper [20] we show that, without any further assump-
tion, multiplicativity of L2-signatures under coverings holds “approximately”
in the following sense:

0.4 Theorem. [20, Theorem 0.1] Let (X,Y ) be a 4n-dimensional Poincaré
pair over Q. Suppose that there is a nested sequence of normal subgroups
of finite index Γ ⊇ Γ1 ⊇ Γ2 ⊇ . . . such that the intersection of the Γk-s
is trivial. Let (Xk, Yk) → (X,Y ) be the finite covering of X associated to
ΓK ⊆ Γ. Then the sequence (sign(Xk, Yk)/[Γ : Γk])k≥1 converges and

lim
k→∞

sign(Xk, Yk)
[Γ : Γk]

= sign(2)(X,Y ).

(In [20], we also prove a similar approximation result for amenable ex-
haustions).

In the last part of the present paper, we check that the various versions
of L2-signatures, e.g. given in terms of intersection pairings, the index of
the signature operator, or as trace of an index element in the K-theory of
certain C∗-algebras, all coincide whenever the definitions make sense. In
the rest of the paper, and also in [20], we already freely jump between the
different interpretations.

This comparison is even interesting for smooth manifolds, in particular
for smooth manifolds with boundary. In this case, the L2-signature is de-
fined in terms of the intersection pairing on L2-homology. In Theorem 3.10
we give a proof that this coincides with the answer predicted by the L2-
index theorem [25, Theorem 1.1]. Note that we deliberately write “answer
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predicted by the L2-index theorem” and not “index of the signature opera-
tor”, because before adding a certain well defined correction term (compare
[5]) one can not expect to obtain the signature. The paper [25] only deals
with the L2-index of certain operators. The homological interpretation does
not seem to have been checked in the literature.

Organization of the paper: In Section 1 we prove the L2-signature
theorem for closed topological manifolds.

In Section 2 we address the question, for which Poincaré spaces an L2-
signature theorem holds.

In Section 3, we compare the different definitions of L2-signatures, and
show that they all coincide.

1 L2-signature theorem for topological mani-
folds

We prove the L2-signature theorem for closed oriented Lipschitz manifolds.
This does prove the theorem for arbitrary oriented topological manifolds
because Sullivan constructs in dimensions ≥ 5 a (unique) Lipschitz struc-
ture on every topological manifold [39], and taking the product with CP 8

if necessary (which does change neither the signature nor the L2-signature
(compare Proposition 3.36)), we may assume that the dimension of our
manifold is sufficiently high. Note that we need only the existence, but not
the uniqueness of this Lipschitz structure.

Now suppose thatM is a closed connected oriented Lipschitz manifold of
dimension 4n with a Lipschitz metric g and with fundamental group Γ. Let
V be a finite dimensional Lipschitz Hermitian vector bundle over M with a
(not necessarily flat) Lipschitz connection. Teleman [40] constructs then a
twisted signature operator DV (whose index is the topological signature of
M if V is a trivial flat line bundle). For basics about Lipschitz manifolds,
Lipschitz bundles and Lipschitz operators compare [40, Section 1–6], [14,
Section 2], [15, Section 1]. The Lipschitz structure, the metric, the bundle,
and the signature operator all can be lifted to M and then in particular
indNΓ(D) = sign(2)(M) (if again V is a trivial line bundle). The task is
now to compare ind(DV ) and indNΓ(DV ), which in the smooth case is done
in Atiyah’s L2-index theorem [2, (1.1)].

The subscript NΓ refers to the group von Neumann algebra. Basics
about NΓ, Hilbert N (Γ)-modules, the standard trace trNΓ and the von
Neumann dimension dimNΓ as used in this paper can be found e.g. in [17,
Section 1 and 2], [18, Section 1.1].

On Lipschitz manifolds, no pseudo-differential calculus in the usual
sense exists. However, one has the following properties of the twisted sig-
nature operator which are essential for Atiyah’s proof:
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1.1 Theorem. (1) (The closure of) DV is an unbounded selfadjoint op-
erator. The same is true for DV .

(2) DV and DV have unit propagation speed, i.e.

supp(eitDV ) ⊆ {(x, y); (x, y) ∈M ×M and d(x, y) ≤ t}

and correspondingly for DV .

(3) (i+D)−1 is (dim(M) + 1)-summable.

Proof. These results are established by Hilsum for the untwisted Lipschitz-
signature operator on a complete oriented Lipschitz manifold. Hilsum uses
specific properties of the untwisted operator so that his proofs can not
directly be applied. We reduce the twisted case to the untwisted case
in the following way: we embed V as Hermitian vector bundle in an N -
dimensional trivial bundle N with complement W . Choose a connection on
W . We then have on N the trivial connection and the direct sum of these
two connections. Correspondingly, we get two twisted signature operators
DN (which of course is the N -fold direct sum of the untwisted signature
operator) and DV ⊕DW . A calculation in local coordinates shows that

DV ⊕DW = DN +A

where A is a bundle homomorphism with bounded measurable and selfad-
joint coefficients, therefore is a bounded selfadjoint operator on L2(Ω∗(M,N))
(for all this compare [40, Section 6 and 7]. In fact, in [40] this is used as
the definition of the twisted signature operator). Lifting this gives the
corresponding splitting

DV ⊕DW = DN +A.

By [15, Corollaire 1.8] the untwisted operators DN and DN and then
also DN +A and DN +A are selfadjoint, therefore the same is true for the
direct summands DV and DV .

For summability we have to find a relation between (DN + i)−1 (which
is (dim(M) + 1)-summable by [14, Proposition 5.6]) and (DN + A + i)−1

(these are bounded operators because of self-adjointness). We compute

(DN +A+ i)−1 = (DN + i)−1(1 +A(DN + i)−1)−1.

Since the space of (dim(M) + 1)-summable operators is an ideal in the
space of bounded operators, we have to show that (1 + A(DN + i)−1)−1

is bounded. We know in particular that (DN + i)−1 and therefore also
A(DN + i)−1 is compact. Therefore 1 +A(DN + i)−1 is Fredholm of index
0. Consequently, it is invertible if and only if its kernel is trivial. Now

(1 +A(DN + i)−1)f = 0 ⇐⇒ A(DN + i)−1f = −(DN + i)(DN + i)−1f

g:=(DN+i)−1f⇐⇒ (A+DN )g = −ig.
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Since DN +A is selfadjoint, its spectrum does not contain −i so that g = 0
and therefore ker(1 +A(DN + i)−1) = {0}. Hence (i+DN +A)−1 and its
summand (i+DV )−1 are (2m+ 1)-summable, too.

For finite propagation speed we use the proof of [15, Corollaire 1.11].
There, certain properties of the commutator [D,h] with a Lipschitz function
h on M are used. Observe that the bundle homomorphism A commutes
with the multiplication operator h, therefore [DN , h] = [DN +A, h] so that
the proof for DN also applies to DN + A. Since DV is a direct summand
in DN +A, finite propagation speed follows also for DV . Exactly the same
argument applies to DV .

1.2 Lemma. Let R be a bounded trace class operator on L2(M,E) for
some Lipschitz bundle E. Suppose

suppR(s) ⊆ Uε(supp s) := {x ∈M | d(x, supp(s)) < ε}

for every section s ∈ L2(M,E), and suppose the covering M → M and
the bundle E are trivial over balls of radius 3ε. Then R can be canonically
lifted to a bounded operator R on L2(M,E) and R is of Γ-trace class with

trNΓ(R) = tr(R).

Proof. Decompose M := qni=1Vi with measurable subset Vi each of which
has diameter less than ε. Choose a lift Vi for each Vi. ThenM =

⋃n
i=1

⋃
γ∈Γ γ(Vi)

and the union is disjoint up to sets of measure zero. Let φγi be the charac-
teristic function of γ(Vi). Every s ∈ L2(M,E) is a sum

∑
φγi s. By linearity

we only have to define R(φγi s) ∀i, γ. We can identify the 2ε-neighborhood
of γ(Vi) with a corresponding neighborhood of Vi in M , and since R has
only propagation ε, in this way R(φγi s) := R(φγi s) is well defined. Since
|s|L2(M,E) =

∑
|φγi s|L2(M,E) and R is bounded, this makes sense also for

the infinite sum
∑
φγi s. In addition this show ‖R‖ ≤ ‖R‖.

Let φi be the characteristic function of Vi. Multiplication with φi is a
bounded operator on L2(M,E), therefore Rφi is of trace class for each i.
For fixed i, choose a fundamental domain of the covering which contains
the 2ε-neighborhood of Vi. This induces an obvious identification

L2(M,E) ∼= L2(M,E)⊗ l2(Γ).

Moreover, under this identification the operator Ri =
∑
γ∈ΓRφ

γ
i becomes

Rφ ⊗ idl2(Γ). By standard properties of the Γ-trace (compare e.g. [38,
Theorem 2.3(6)]) Ri is of Γ-trace class and trNΓ(Ri) = tr(Rφi) (note that
id: l2(Γ)→ l2(Γ) is of Γ-trace class with trNΓ(id) = 1). But R =

∑n
i=1Ri

and R =
∑n
i=1Rφi. By linearity, R is of Γ-trace class with

trNΓ(R) = tr(R).
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Using the properties established in Theorem 1.1 we can essentially use
Atiyah’s proof to show:

1.3 Theorem. In the situation described above

indNΓ(DV ) = ind(DV ).

In particular, sign(M) = sign(2)(M).

We proceed with an outline of the proof. For details, we refer to Atiyah’s
article [2]. Assume throughout that dimM = 4n is divisible by four.

DV is an unbounded operator on L2Ω∗(M,V ), DV is its lift to L2Ω∗(M,V ).
The Hodge-∗ operator induces a Z/2-grading on L2Ω∗, and DV is an odd
operator with respect to this grading. What we are really interested in is
the graded index of DV , i.e. the index of D+

V which maps the +1-eigenspace
of the grading operator

τ := ip(p−1)+2n ∗ (on p-forms) (1.4)

to the−1-eigenspace. Note that (using a fundamental domain) L2Ω∗(M,V ) ∼=
L2(Ω∗(M,V ))⊗ l2(Γ). The problem is that kernel and cokernel of DV and
DV can not be related to each other using this product decomposition,
because the corresponding projection operators are highly nonlocal.

First step: construct a specific almost local parametrix for DV (the
same one is already used in [24, Lemma 5]). To do this fix ε such that the
locally trivial covering M → M is trivial over balls of radius 3ε (this is
possible since M is compact). Choose a function u ∈ C∞(R) such that

(1) u is odd: u(−x) = −u(x) ∀x ∈ R,

(2) the function v(x) = 1− xu(x) is rapidly decreasing,

(3) the Fourier transforms of u and v are compactly supported with sup-
ports contained inside the interval (−ε, ε).

By Theorem 1.1 (1) DV is selfadjoint. Using functional calculus, we can
construct Q = u(DV ) and R = v(DV ) and conclude

DVQ = 1−R = QDV .

Moreover, unit propagation speed (see Theorem 1.1 (2)) implies that Q
and R are supported in an ε-neighborhood of the diagonal, i.e. supp(Qf) ⊆
Uε(supp(f)) for any f ∈ L2Ω∗(M). By Lemma 1.2 we can lift Q and R to
operators Q and R. Hence we lift the whole equation to

DVQ = 1−R = QDV

(to check the that the domains coincide use that DV is a closed operator).
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Second step: the parametrix property. We required that v is rapidly
decreasing. This implies that (i+x)Nv(x) is bounded for every N ∈ N and
therefore that v(DV ) = (i + DV )−2m−1

(
(i+DV )2m+1v(DV )

)
is of trace

class, since by Theorem 1.1 (3) (i + DV )−1 is (dim(M) + 1)-summable,
therefore its (dim(M) + 1)st power is 1-summable, i.e. of trace class.

Now remember that DV was anti-commuting with the grading operator
τ (i.e. τDV = −DV τ). Since u(x) is odd the same is true for Q = u(DV )
by Lemma 1.6 below. Since v(x) = 1−xu(x) is even, R = v(DV ) commutes
with τ . We therefore get a splitting

D−VQ
+ = 1−R+ = Q−D+

V ; D+
VQ
− = 1−R− = Q+D−V (1.5)

where R± is the restriction of R to the ±1-eigenspace of τ . Since τ is a local
operator, the operators R± are ε-local and their lifts are R

±
. By Lemma

1.2 R
±

are of Γ-trace class and

trNΓ(R
±

) = tr(R±).

Step 3: Computing the index. The main point now is that all the
conditions are fulfilled to apply Atiyah’s principle of computing the index
in terms of an arbitrary parametrix. This is formalized in [38, Proposition
2.6]: Let H0 be the projection onto the kernel of D+

V and H1 the projection
onto the cokernel of D+

V (which is the kernel of D−V since D−V is the adjoint
of D+

V ). Define T0 = (1 −H0)R+(1 −H0) and T1 = (1 −H1)R−(1 −H1).
Multiplication of (1.5) with H0 or H1, respectively, yields H0 = R+H0 and
H1 = H1R

−. This implies

tr(T0) = tr(R+)− tr(H0);

tr(T1) = tr(R−)− tr(H1).

We want to show that ind(D+
V ) = tr(H0)− tr(H1) coincides with tr(R+)−

tr(R−). To do this, it therefore suffices to show that tr(T0) = tr(T1). If H
is the projection onto ker(DV ) then D(1−H)R(1−H) = (1−H)R(1−H)D
since all of these are functions of D. Restriction to the positive sub-
space yields T1D

+
V = D+

V T0. Since ker(D+
V ) ⊂ ker(T0) and ker(D−V ) =

ker((D+
V )∗) ⊆ ker(T1), tr(T0) = tr(T1) is the conclusion of [38, Proposition

2.6] for the ordinary trace (where the group Γ is trivial).
Exactly the same reasoning applies on the universal covering M when

computing the Γ-trace, to the effect that

indNΓ(DV
+

) = trNΓ(R
+

)− trNΓ(R
−

) = tr(R+)− tr(R−) = ind(D+
V ).

In the above proof we used:

1.6 Lemma. Let H be a Z/2-graded Hilbert space with grading operator
τ . Let D be a selfadjoint (not necessarily bounded) odd operator on H
(i.e. τD = −Dτ). Let f : R → R be a measurable function. If f is odd or
even then f(D) is an odd or even operator, respectively.
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Proof. The grading operator is a unitary idempotent, i.e. τ = τ∗ = τ−1.
Therefore τ−1Dτ = −D. Uniqueness of the spectral calculus implies
τ−1f(D)τ = f(τ−1Dτ) for every function f . But f even implies f(−D) =
f(D), and f odd implies f(−D) = −f(D) which concludes the proof.

1.7 Remark. Shmuel Weinberger pointed out to us that one can also
use a bordism argument to reduce the L2-signature theorem for closed
oriented topological manifolds to Atiyah’s L2-index theorem for closed ori-
ented smooth manifolds.

Indeed, every topological vector bundle V over a topological manifold
M has a multiple which is topologically bordant to a smooth vector bun-
dle over a smooth manifold (compare [41, Theorem 1.6 and the following
discussion]).

It then remains to prove that the topological twisted signature is a
bordism invariant. This is not clear from the classical proof of bordism
invariance of the signature, which relies on the homological interpretation
of the signature, and this is not available for twisted signature. However,
Teleman [41, Theorem 1.2] proves the bordism invariance for the ordinary
twisted signature, and we expect that a proof for the bordism invariance of
twisted L2-signature is possible along similar lines.

When looking at manifolds with boundary, equality of signature and
L2-signature fails as badly as possible. This follows from the fact that
essentially arbitrary intersection forms can be constructed, if the boundary
is non-empty. This is an easy consequence of Wall’s non-simply connected
generalization of Milnor’s plumbing construction (compare [46, Proof of
Theorem 5.8]). Since we are not aware of a reference of this fact in the
literature, and since this is quite interesting a result, we prove it here in
reasonable detail.

1.8 Proposition. Fix a dimension 2k ≥ 6 and a finitely presented group
π. Let X be a closed (2k−1)-dimensional manifold with fundamental group
π and with Morse decomposition without a k-handle. Let V ∼= (Zπ)l be a
free finitely generated Zπ-module with (possible singular) (−1)k-self dual
map σ : V → V ∗ := HomZπ(V,Zπ) of the form σ = ψ+(−1)kψ∗ (i.e. σ has
a quadratic refinement).

Then there is a compact manifold with boundary (W ;X,Y ) of dimension
2k with boundary ∂W = XqY and with fundamental group π, such that the
Morse chain complex C∗(W̃ ) of the universal covering W̃ is isomorphic to
C∗(X̃)⊕ V , where V is considered as trivial chain complex concentrated in
the middle dimension k, and with inverse Poincaré duality homomorphism

C2k−∗(W̃ )→ C2k−∗(W̃ , ∂W̃ ) PD−1

−−−−→ C∗(W̃ )

which in the middle dimension is exactly σ. Here PD−1 is a chain homo-
topy inverse to the cup product with [W,∂W ].
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Proof. We use Wall’s extension of Milnor’s plumbing construction, as de-
scribed in [46, Proof of Theorem 5.8].

More precisely, start with X × [0, 1]. Choose l disjoint embedded discs
D2k−1
i ⊂ X. Let i : Sk−1 × Dk → D2k−1 be the standard embedding.

By composition we obtain r disjoint embeddings fi : Sk−1 × Dk
i ↪→ X.

Choose lifts to the universal covering X̃. We now simultaneously deform
the fi to new embeddings f1

i using regular homotopies ηi. The ηi can be
regarded as framed immersions of Sk−1× [0, 1] to X× [0, 1] (with boundary
embedded). One can now count intersections and self-intersections as in
[46, (5.2)] (taking the fundamental group into account using the chosen
lifts). By [44, p. 247] the intersections and self-intersections can be chosen
arbitrarily and independently.

Now attach k-handles to X × [0, 1] with attaching maps f1
i × 1. Let W

be the resulting manifold. Evidently, ∂W = X q Y , where Y is obtained
from X by certain surgeries. Since the attaching maps are by construction
homotopic to trivial embeddings, the statement about the cellular chain
complex follows.

It remains to adjust the intersection form. Choose the ηi in such a way
that the intersection of ηi with ηj is σ(ei)(ej) where {ei} is the preferred
bases of (Zπ)r and where we use the canonical isomorphism V ∼= V ∗∗.
Moreover, choose ηi such that the self-intersection of ηi is ψ(ei). Then
the intersection of ηi with itself is ψ(ei) + (−1)kψ(ei)∗, since our normal
bundles are trivial.

A canonical basis {Si} for the middle degree chain complex is given by
the cores of the attached handles, completed to spheres using the images of
the ηi in X×[0, 1] and the discs in D2k−1

i spanning the images of the fi (and
with corners rounded). Then Si∩Sj = ηi∩ηj , and the statement about the
intersection form follows from the usual calculation of the Poincaré duality
homomophism using intersection numbers.

1.9 Remark. Note that we could also prove a version of Proposition 1.8
for manifolds with middle dimensional handles in a Morse decomposition,
with an additional summand in the middle degree chain complex.

Observe that we use the usual translation of Poincaré duality to homol-
ogy, which, because of the use of intersection numbers is more convenient to
deal with in the case of smooth manifolds than the cohomological version.
Proposition 1.8 implies, together with Lemma 3.25 the following corollary.

1.10 Corollary. If, in Proposition 1.8, X has a Morse decomposition with-
out any k-cells and V ∼= (Zπ)l, then the manifold W has for an arbitrary
Zπ-module K “intersection form” for homology twisted with K

Hk(W ;K) = Kl idK ⊗Zπσ−−−−−−→ Kl ∼= Hk(W ;K).
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In particular, for π the augmentation module ε : Zπ → R we get the ordinary
intersection form

Hk(W ;R) = R
l ε(σ)−−→ R

l ∼= Hk(W ;R) = Hk(W ;R)

where we use the canonical identification Hk(W ;R) = Hk(W ;R) coming
from cellular Hodge decomposition. Note that the (ordinary) signature is
the signature of this self adjoint map (i.e. the difference of the dimensions
of positive and negative eigenspaces).

Similarly, if K = l2(π) we get the “L2-intersection form”

H
(2)
k (W ) = (l2(π))l σ−→ (l2(π))l ∼= Hk

(2)(W ) = H
(2)
k (W )

where we use the canonical identification H
(2)
k (W ) = Hk

(2)(W ) coming
from cellular Hodge decomposition. Note that the L2-signature is the L2-
signature of this self adjoint map (i.e. the difference of L2-dimensions of
positive and negative spectral parts). Compare also (2.5) and (2.6) and
Section 3.4.

Note that, if 2k − 1 ≥ 7, for any finitely presented group π one can
construct a closed manifold X with fundamental group π and with a CW-
structure without cells in dimension k.

1.11 Theorem. Given any non-trivial finitely presented group π and any
dimension 4k ≥ 8, there is a manifold W with boundary and with funda-
mental group π, such that

sign(2)(W̃ ) 6= sign(W ).

Proof. This follows immediately from Corollary 1.10, if we can produce
appropriate (singular) intersection forms over Zπ. We use the fact that the
signature and the L2-signature can be computed in therms of the homology
intersection form as well as the cohomological one, compare 3.25.

Any non-trivial group π contains a non-trivial cyclic group Γ. Any
finitely generated free ZΓ module with a given (possibly degenerate) in-
tersection form can be induced up to a finitely generated free Zπ module
with induced intersection form, and the ordinary signature as well as the
L2-signature of the induced intersection form coincides with the original
ones (compare also the proof of Remark 2.7). Therefore, it suffices to treat
the case π cyclic.

Using the canonical basis, we identify (Zπ)l with its dual. It suffices to
consider the case l = 1. In the case π = Z take A to be the (1, 1)-matrix
(1−z) for z ∈ Z a generator and let σ : Zπ → Zπ be given by multiplication
with A∗ + A. Then the augmentation ε : Zπ → R gives ε(A+ A∗) = 0 and
yields zero as ordinary signature. The map A + A∗ : l2(Z) → l2(Z) is a
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positive weak isomorphism and yields therefore the L2-signature 1 (the
spectrum is contained in [0,∞), but there is no kernel). Notice that A+A∗

is not invertible over Z[Z] so that we get no contradiction to the conjecture
that for torsion-free Γ the maps sign(2) and sign defined in (2.5) and (2.6)
agree.

If π is a finite cyclic group of order p > 1, we let A = (1 − z) and
σ : Zπ → Zπ again be given by multiplication with (1 − z) + (1 − z−1)
where z is a generator of π. The augmentation yields the operator zero
with ordinary signature 0. On the other hand, on l2(π) = Cπ the operator
A + A∗ is non-negative with one-dimensional kernel (it diagonalizes with
eigenvalues the values of (1 − z) + (1 − z−1) at all p-th roots of unity).
Therefore its signature (over C) is dimC Cπ − 1 = p− 1. The L2-signature
is obtained by division by dimC Cπ = p and therefore is 1− 1/p 6= 0.

2 L2-index theorem for Poincaré spaces

In this section we want to discuss special cases where the L2-signature
theorem for closed Poincaré duality spaces is true. For finite fundamental
groups, there are the counterexamples mentioned in the introduction. For
torsion-free fundamental groups, however, the L2-signature theorem follows
from the C∗max-version of the Baum-Connes conjecture or from the L-theory
isomorphism conjecture.

Recall that there are symmetric L-groups Lnε (R) and quadratic L-groups
Lεn(R) for certain decorations ε = p, h, s and 〈−∞〉 and that there are
symmetrization maps Lεn(R)→ Lnε (R), where in our context the ring with
involution and unit R is ZΓ, QΓ or CΓ or the maximal group C∗-algebra
C∗maxΓ. If one inverts 2, then the decoration ε does not matter and the
symmetrization map is bijective. If we omit the decoration, we usually think
of ε = p, i.e. the L-theory based on finitely generated projective modules. A
reference for these definitions and facts is for instance [28, page 19, Section
1.10]. Note that for C∗-algebras A there is a natural isomorphism between
L-theory and topological K-theory [33, Theorem 1.6]

Ln(A)
∼=−→ Kn(A) (2.1)

which will be used in the sequel without mentioning it. In dimension n = 0
it sends the class of a non-degenerate sesquilinear form on a finitely gen-
erated projective module P to the difference of the classes given by the
positive part P+ and by the negative part P−.

The next definition is due to Wall [45]:

2.2 Definition. A d-dimensional Poincaré pair (X,Y ) over Q is a pair of
finite CW -complexes (X,Y ) such that X is connected, together with a so
called fundamental class [X,Y ] ∈ Hd(X,Y ;Q) such that for the universal
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covering and hence for any Γ-covering p : X → X the Poincaré QΓ-chain
map induced by the cap product with (a representative of) the fundamental
class

− ∩ [X,Y ] : Cd−∗(X,Y ;Q)→ C∗(X;Q)

is a QΓ-chain homotopy equivalence. If Y = ∅, we abbreviate X = (X, ∅)
and call it a d-dimensional Poincaré space.

Here C∗(X;Q) is the cellular QΓ-chain complex and Cd−∗(X,Y ;Q)
is the dual QΓ-chain complex homQΓ(Cd−∗(X,Y ;Q),QΓ). Examples of
Poincaré pairs are given by a compact connected topological oriented man-
ifold X with boundary Y or merely by a connected closed oriented rational
homology manifold.

2.3 Theorem. Let X be a 4n-dimensional Poincaré space over Q. Let
X → X be a normal covering with torsion-free covering group Γ. Assume
that the (Baum-Connes) index map for the maximal group C∗-algebra

ind: K0(BΓ)→ K0(C∗maxΓ)

or the L-theory assembly map

A : H4n(BΓ;L〈−∞〉• )→ L
〈−∞〉
0 (ZΓ)

is rationally surjective. Then

sign(2)(X) = sign(X).

Proof. Since X has no boundary, its symmetric signature

σ(X) ∈ L0(QΓ) (2.4)

as an element in the symmetric projective L-group L0(QΓ) is defined (for
the definitions compare e.g. [22], [27, Proposition 2.1], [28, page 26]).

The L2-signature sign(2)(X) is the image of σ(X) under the canonical
map

sign(2) : L0(QΓ) → R (2.5)

which is the composition of change of rings homomorphism L0(QΓ) →
L0(NΓ), the isomorphism L0(NΓ) = K0(NΓ) and the map induced by the
standard trace trNΓ : K0(NΓ)→ R. The signature sign(X) is the image of
σ(X) under the canonical map

sign: L0(QΓ) → Z (2.6)

which is the composition

L0(QΓ)→ L0(Q)→ L0(C) = K0(C) = Z.
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Hence it suffices to show that the maps sign(2) and sign defined in (2.5) and
(2.6) agree.

We begin with the case where the Baum-Connes index map is as-
sumed to be rationally surjective. By the Baum-Douglas description of
K-homology, every element of K0(BΓ) is given by a map of a closed ori-
ented smooth manifold M → BΓ and an elliptic operator D on M . Its
index in K0(C∗maxΓ) is obtained by twisting D with the pull back of the
canonical C∗maxΓ-bundle on BΓ. The image of this index element under the
composition

t(2) : K0(C∗maxΓ)→ K0(NΓ) trNΓ−−−→ R

can be read off directly as the L2-index in the sense of Atiyah of the oper-
ator D lifted to the Γ-covering of M which is the pull back of EΓ via the
map M → BΓ. On the other hand, the image of this element under the
composition

t : K0(C∗maxΓ)→ K0(C∗max{1}) = K0(C)
∼=−→ Z

is just the index of D. (Here we need to deal with the maximal group C∗-
algebra, because the reduced group C∗-algebra is not functorial under group
homomorphisms such as Γ → {1}.) Atiyah’s L2-index theorem [2, (1.1)]
now states that these two numbers coincide. Hence the two maps t(2) and t
above coincide since we assume that the index map K0(BΓ)→ K0(C∗maxΓ)
is rationally surjective. This implies that the maps sign(2) and sign defined
in (2.5) and (2.6) above coincide since sign(2) and sign, respectively, are
given by the composition of t(2) and t, respectively, with the map

L0(QΓ)→ L0(C∗maxΓ)
∼=−→ K0(C∗maxΓ).

Now suppose that the L-theoretic assembly map is rationally surjec-
tive. The symmetric signature defines for any CW -complex Y a natural
homomorphism

σ : Ω∗(Y )→ L∗(Zπ1(Y )).

The change of ring and decoration map L
〈−∞〉
∗ (Zπ1(Y )) → L∗(Qπ1(Y ))

and the symmetrization map L∗(Qπ1(Y ))→ L∗(Qπ1(Y )) are bijective after
inverting 2 [28, pages 19, 104 and 376] and [26, Proposition 8.2 or 3.3]. By
the universal properties of assembly maps, σ ⊗Z Q can be factorized as

σ⊗ZQ : Ω∗(Y )⊗ZQ→ H∗(Y ;L〈−∞〉• )⊗ZQ
A⊗ZQ−−−−→ L

〈−∞〉
∗ (Zπ1(Y ))⊗ZQ

∼=−→ L∗(Qπ1(Y ))⊗Z Q.

where the first map is a transformation of homology theories with values
in Q-vector spaces. The first map is surjective for Y = {Pt.}. Recall that
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every homology theory with values in rational vector spaces which vanishes
in negative degrees is a direct sum of copies of shifted ordinary homology
with rational coefficients (i.e. the corresponding spectrum is a wedge of
rational Eilenberg-Mac Lane spectra) (compare [7]). It follows that the first
map is surjective for all Y . This could also be concluded using homological
Chern characters. The second map is surjective for Y = BΓ by assumption
and the third map is always bijective. Hence

σ : Ω∗(BΓ)→ L∗(QΓ)

is rationally surjective. This implies that rationally every element in L0(QΓ)
is a combination of elements of the form σ(M) for Γ-coverings M →M with
closed oriented smooth manifolds M of dimension divisible by four as basis.
This follows also from the geometric interpretation of the assembly map in
terms of the surgery sequence (see for instance [29, Proposition 18.3] for
the topological category). For coverings M →M as above we know already
sign(2)(M) = sign(M). Hence the maps sign(2) and sign defined in (2.5) and
(2.6) above coincide. In [47], a similar argument is used to prove homotopy
invariance of ρ-invariants under the same assumptions we are making.

The “max”-Baum-Connes conjecture used in Theorem 2.3 is true for
K-amenable torsion-free groups for which the Baum-Connes conjecture is
true, e.g. torsion free amenable groups or torsion-free discrete subgroups
of SU(n, 1) or SO(n, 1). For more information about the Baum-Connes
Conjecture see for instance [13], [23], [43].

Examples of groups for which the L-theory isomorphism conjecture is
known are torsion-free poly-finite-or-cyclic groups [9], fundamental groups
of closed non-positively curved manifolds [10], or knot groups [1].

2.7 Remark. We have seen in the proof of Theorem 2.3 that for a given
finitely presented group Γ the L2-index formula sign(2)(X) = sign(X) holds
for each Γ-covering X → X with a 4n-dimensional Poincaré space X as base
if the maps sign(2) and sign defined in (2.5) and (2.6) agree. It turns out
that this is an if and only if statement. Namely, rationally any element in
L0(QΓ) can be realized as σ(X) by the following argument. Fix a closed
manifold N of dimension 4n − 1 ≥ 7 with π1(N) = Γ and η ∈ Ls0(ZΓ).
By Wall’s realization theorem [46, Theorem 5.8] there is a normal map of
degree one with underlying map (f, ∂f) : (M,∂M)→ (N×[0, 1], N×{0, 1})
such that ∂f is a homotopy equivalence and the associated surgery obstruc-
tion is η. The symmetrization map Ls0(ZΓ) → L0

s(ZΓ) sends the surgery
obstruction to the symmetric signature σ(X) of the obvious Γ-covering of
the 4n-dimensional Poincaré space X which is obtained by glueing M and
N × [0, 1] together along their boundary with the homotopy equivalence ∂f
[30, Proposition 6.4]. Since the composition

Ls0(ZΓ)→ L0
s(ZΓ)→ L0(ZΓ)→ L0(QΓ)
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is bijective after inverting two, the claim follows.
It is not hard to check that the maps sign(2) and sign defined in (2.5)

and (2.6) are different for Γ a finite cyclic group of prime order (see for
instance [29, Example 22.28]). Since for an inclusion i : Γ→ Γ′ of groups the
composition of the map sign(2) for Γ′ with the induction homomorphisms
i∗ : L0(QΓ) → L0(QΓ′) is the map sign(2) for Γ and similar for sign, the
maps sign(2) and sign for Γ can only agree if and only if Γ is torsion-free. In
particular the conclusion in Theorem 2.3 that sign(2)(X) = sign(X) holds
for Γ-coverings X → X over 4n-dimensional Poincaré spaces X can only
be true if Γ is torsion-free.

2.8 Question. To which extend does Theorem 2.3 hold for arbitrary
torsion-free groups?

Note that a negative answer would give rise to interesting elements in the
(quite mysterious and not well understood) K0(C∗maxΓ) arising as (higher)
signatures for closed Poincaré duality spaces which, if the Baum-Connes
conjecture for Γ is true, lie in the kernel of the mapK0(C∗maxΓ)→ K0(C∗rΓ).

3 Different definitions of L2-signatures

Throughout this section we consider a compact connected oriented d = 4n-
dimensional Riemannian manifold M , possibly with boundary ∂M , to-
gether with a Γ-covering M →M . We denote by ∂M the preimage of ∂M .
More generally, we consider a d = 4n-dimensional Poincaré pair (X,Y ) over
Q with a Γ-covering (X,X)→ (X,Y ). We will denote by u : M → BΓ and
u : X → BΓ the classifying maps of the Γ-coverings.

We present several different ways to define the L2-signature and show
that they in fact coincide. One can use the L2-index of the signature
operator to define sign(2)

an (M) provided ∂M = ∅. Using K-theory and L-
theory respectively one can define sign(2)

K (M) and sign(2)
L (M) respectively if

∂M = ∅. We will define signature pairings on L2-de Rham cohomology, and
also on combinatorial L2-cohomology and take the von Neumann signature
of these. This will yield sign(2)

forms(M,∂M) and sign(2)
chain(X,Y ).

3.1 Analytic L2-signatures

3.1 Definition. Assume ∂M = ∅. The analytic L2-signature is the L2-
index (in the graded sense) of its signature operator, i.e. if D = d + δ is
the signature operator on M and if D

±
is its positive/negative part with

respect to the signature splitting on L2Ω∗(M) (i.e. the restriction to the
±1-eigenspace of τ = ±∗ (compare (1.4)) where ∗ is the Hodge-∗-operator)
then

sign(2)
an (M) := indNΓ(D

+
) := dimNΓ(kerD

+
)− dimNΓ(ker(D

+
)∗). (3.2)



L2-signatures & a topological L2-signature theorem 17

Note that (D
+

)∗ = D
−

. This works not only for smooth Riemannian
manifolds, but also for Lipschitz manifolds with Lipschitz Riemannian met-
rics and the corresponding Lipschitz signature operator.

If ∂M 6= ∅ one still can use the signature operator. However, one has
to supply it with the non-local Atiyah-Patodi-Singer boundary conditions.
Moreover, to get the signature, one has to subtract a certain correction term
(corresponding to “extended L2-solutions on the cylinder) from the index
(compare [3, (4.7)–(4.14)]). To avoid this we directly define the analytic
index as the “corrected cohomological” expression of the index formula,
namely, we put in the case ∂M 6= ∅

sign(2)
an (M,∂M) :=

∫
M

L(M)− η(2)(∂M) +
∫
∂M

ΠL(∂M). (3.3)

This coincides with the above definition if ∂M = ∅, and by [25, Theorem
1.1] it also is the L2-index of the signature operator (minus the standard
correction term) if ∂M 6= ∅.

3.2 The K-theoretic L2-signature

Suppose ∂M = ∅. Form the flat twisted von Neumann algebra bundle
N := NΓ×ΓM with fiber the group von Neumann algebra NΓ. Given any
elliptic differential operator D : C∞(E) → C∞(F ) of order d on M , one
can twist this operator with the bundle N to obtain an elliptic C∗-operator
on C∗-vector bundles E , F . An overview over this construction (for general
C∗-bundles) can be found in [34, Section 1].

One can define Sobolev spaces Hs(E) of sections of E , and similarly for
F . These are Hilbert NΓ-modules, in particular, they have an inner prod-
uct with values in NΓ. The twisted operator then is a bounded operator

DN : Hs(E)→ Hs−d(F),

with a parametrix Q : Hs−d(F)→ Hs(E).
Then we define

indK0(NΓ)(DN ) := [ker(DN +K)]− [coker(DN +K)] ∈ K0(NΓ),

where we have to perturb by a C∗-compact operator K to assure that kernel
and cokernel are indeed finitely generated projective modules over NΓ.

The standard trace trNΓ defines (being a positive trace) a homomor-
phism

trNΓ : K0(NΓ)→ R.

3.4 Definition. If ∂M = ∅, we define the K-theoretic L2-index

ind(2)
K (DN ) := trNΓ(indK0(NΓ)(DN )) ∈ R,
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and the K-theoretic L2-signature as the corresponding index of the signa-
ture operator D+:

sign(2)
K (M) := ind(2)

K (D+
N ).

3.5 Theorem. Suppose ∂M = ∅. For any elliptic differential operator D
on M we have

indNΓ(D) = ind(2)
K (DN ),

where D is the lift of D to the Γ-covering, considered as unbounded operator
on L2-sections, and

indNΓ(D) := dimNΓ(ker(D))− dimNΓ(ker(D
∗
))

is defined as in (3.2) for the special case of the signature operator.
In particular we get

sign(2)
an (M) = sign(2)

K (M).

A proof for this well known result can be found in [36].
For the signature and the signature operator, the only operators we are

interested in here, we can actually rely on a different set of results (already
discussed at length in the literature) which relate the higher signatures to
surgery obstructions in L-theory groups. This is discussed in Subsection
3.5.

3.3 The de Rham L2-signature

Now we allow from the start that ∂M 6= ∅.
Let V be a Hilbert space and let s : V ×V → C be a sesquilinear pairing

which is bounded. For us, sesquilinear also means s(v, w) = s(w, v). We
can associate to it a selfadjoint bounded operator

A : V → V (3.6)

which is uniquely determined by the property that s(v1, v2) = 〈v1, A(v2)〉
holds for all v1, v2 ∈ V . From A we obtain an orthogonal splitting V =
V− ⊕ V− ⊕ V0 of Hilbert spaces, where V+ is the image of χ(0,∞)(A), V0

is the kernel of A and V− is the image of χ(−∞,0)(A). The pairing s is
non-degenerate if and only if V0 is trivial. (One might want to require
that 0 is not contained in the spectrum of A as an ever stronger version of
non-degeneracy). If V is a Hilbert module over the von Neumann algebra
NΓ and s is Γ-invariant, then A is Γ-equivariant and the splitting above
is a splitting of Hilbert NΓ-modules. The L2-signature of s is in this case
defined as

sign(2)(s) = dimNΓ(V+)− dimNΓ(V−). (3.7)
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The cup-product of two L2-forms is an L1-form. If this product form
is of the dimension of the manifold, we can integrate. In this way we get a
pairing

〈·, ·〉 : L2Ωp(M,∂M)× L2Ω4n−p(M,∂M)→ C

which passes to L2-cohomology as in the compact case. One should remark
that this pairing factorizes through im(Hp

(2)(M,∂M) → Hp
(2)(M)). The

restriction of the pairing to the middle dimension

sforms : H2n
(2)(M,∂M)×H2n

(2)(M,∂M)→ C (3.8)

is a sesquilinear, bounded and Γ-invariant pairing.

3.9 Definition. Define the de Rham L2-signature

sign(2)
forms(M,∂M) := sign(2)(s)

to be the L2-signature sign(2)(sforms) defined in (3.7) for the pairing sforms

introduced in (3.8).

Note that this does work for Lipschitz Riemannian manifolds as well as
for smooth Riemannian manifolds.

IfM is closed, the pairing is non-degenerate because to any ω ∈ L2Ω2n(M)
we can assign ∗ω ∈ L2Ω2n(M) and

∫
M
ω ∧ ∗ω > 0 if ω 6= 0. Moreover,

we see that the splitting in this case is given by the ±1-eigenspaces of ∗:
H+ = ker(∗ − 1) and H− = ker(∗+ 1) (this makes sense if we identify the
homology with the L2-harmonic forms as can be done by Hodge theory).
Moreover, the classical arguments apply to show that

indNΓ(D
+

) = dimNΓ(H+)− dimNΓ(H−),

i.e. all signatures signan(M), signK(M) and signforms(M), defined so far,
coincide. This also works for Lipschitz manifolds (compare [40, Theorem
5.3] for the compact case).

The proof that sign(2)
an (M,∂M) = sign(2)

forms(M,∂M) for manifolds with
boundary (which (up to the usual error term) amounts to the fact that
the index of the signature operator with APS-boundary conditions in fact
gives the signature) is non-trivial even in the compact case, compare [3,
(2.3)] and the discussion after [3, (4.5)]. Moreover, this argument can not
directly be used in the L2-case, since it makes use e.g. of a gap near zero in
the spectrum of the signature operator on ∂M . To circumvent this requires
considerable effort.

3.10 Theorem. If M is a compact connected oriented 4n-dimensional
manifold with boundary ∂M and M → M is Γ-covering as before, then

sign(2)
an (M,∂M) = sign(2)

forms(M,∂M). (3.11)
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First assume that the metric on M has a product structure near the
boundary. The proof in the classical case in [3] consists of two steps. In
the first step they prove that the analytical index is the signature of the
Poincaré duality pairing on the L2-harmonic forms on M∞. Here M∞ is
M with an infinite cylinder ∂M × [0,∞) attached to the boundary (with
the product metric, which gives a smooth metric on all of M∞ because we
started with a product metric near ∂M).

We can similarly form M∞ by attaching a cylinder to M (this is a
Γ-covering of M∞). Let Hp(2)(M∞) be the L2-harmonic p-forms on this

manifold. Vaillant [42, 5.16] proves that the L2-signature sign(2)(sforms) of
the intersection pairing

s∞ : H2n
(2)(M∞)×H2n

(2)(M∞)→ C.

is sign(2)
an (M). This is a non-trivial fact which we don’t know a short and

easy proof of. The L2-version of the first step in the treatment in [3] follows.
Hence it remains to prove

sign(2)
forms(M) = sign(2)(s∞).

We do this in the following sequence of lemmas.
Remember first that we can define the L2-homology of M as the reduced

homology of the chain complex of L2-differential forms on M (with no
boundary conditions: compare [19, Section 5] or [18, Sections 1.4.2, 1.5]
where a short account of different competing definitions is given).

Hence, restriction gives a map

rp : Hp(M∞)→ Hp
(2)(M).

We also have the natural map

ip : Hp
(2)(M,∂M)→ Hp

(2)(M).

We will show that the closures of the image of rp and the image of ip

coincide and that the pairings on H2n
(2)(M∞) and on i2n(H2n

(2)(M,∂M))
have the same L2-signature. Observe that the pairing on H2n

(2)(M,∂M) is
well defined by a standard integration by parts argument, and the same
argument shows that it descends to im(i2n : H2n

(2)(M,∂M)→ H2n
(2)(M)).

We first prove:

3.12 Lemma. The image of rp lies in the closure of the image of ip.

Proof. Let
qp : Hp

(2)(M)→ Hp
(2)(∂M)

be the map given by restriction. To prove the statement, because of the
long weakly exact sequence for the L2-cohomology of the pair (M,∂M) we
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only have to check that qp ◦ rp vanishes. If ω ∈ H(M∞) then by definition
ω is L2-integrable. Because of elliptic regularity, it lies in H∞ :=

⋂
s≥0H

s,
i.e. all derivatives are in L2. In particular, using the continuous restriction
homomorphism to codimension 1 submanifolds Hs(M∞)→ L2(∂M × {t})
(s > 1/2), for t ∈ [0,∞) the pull back map indeed gives L2-forms on
∂M × {t} = ∂M , i.e.

q[t]p : Hp(M∞)→ L2Ωp(∂M).

Notice that q[0]p = qp ◦ rp. The maps q[t]p are continuous, and all the
manifolds ∂M × [r,∞) are isometric. Given a form ω ∈ Hp(M∞), the
sequence of its restrictions ωt to ∂M × [t,∞) tends to zero in all Sobolev
norms (where we use the isometry just described to compare the different
ωt). Therefore the sequence q[t]p(ω) in L2Ωp(∂M) tends to zero as t→∞.

Now all forms q[t]p(ω) represent the same element in the reduced L2-
homology of ∂M . This is true since, on the cylinder, we can write ω =
ω1(u) +ω2(u)∧ du (if u is the cylinder variable), with ω1,2 L

2-functions on
[0,∞] with values in L2Ω∗(∂M). Observe that ω is closed. Therefore

0 = dω = dω1(u)± ∂ω1(u)
∂u

∧ du+ dω2(u) ∧ du

Since the summands with and without du are linearly independent, from
this we get

±∂ω1(u)
∂u

= (dω2(u)).

Integrating this equation with respect to u we get

ω1(t)− ω1(0) = ±d(
∫ t

0

ω2(u) du).

But ω1(t) is the pullback of ω to the submanifold ∂M×{t}, and we conclude

q[t]p(ω)− q[0]p(ω) = ±d(
∫ t

0

ω2(u) du). (3.13)

We consider ω1,2 to be L2-functions on [0,∞) with values in the Hilbert
space L2Ω∗(∂M). To those, we can apply the Cauchy-Schwarz inequality:
the inner product of ω2(u) and the constant function with value 1 satisfies:

∣∣∣〈ω2(u), 1〉
L2([0,t];L2Ω∗(M̃))

∣∣∣2 =
∣∣∣∣∫ t

0

ω2(u) du
∣∣∣∣2

≤
∫ t

0

12 du ·
∫ t

0

|ω2(u)|2 du ≤ t
∫ t

0

|ω(u)|2 du, (3.14)

Therefore the difference on the left hand side of Equation (3.13) is the
differential of an L2-form. Because q[t]p(ω) t→∞−−−→ 0 in L2, this proves the
lemma.
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From here one, we cannot continue exactly as in the classical case, be-
cause forms representing zero are not exactly boundaries, and homology
sequences are only weakly exact. Instead, we use von Neumann dimensions
and suitable subspaces with codimensions tending to zero.

First we address surjectivity of the restriction map

rp : Hp(2)(M∞)→ im(ip) = ker qp ⊆ Hp
(2)(M).

Consider the differential d : Ωp−1
(2) (∂M) → Ωp(2)(∂M). This map is un-

bounded and left Fredholm by elliptic regularity (compare e.g. [19, Lemma
3.3]) and hence the image of the spectral projection χ(0,γ)(δd) has von Neu-
mann dimension which tends to zero for γ → 0. For given ε > 0 choose
γ > 0 such that the image of χ(0,γ)(δd) has dimension not bigger than ε.
Put

Epε := im(d ◦ χ(γ,∞)(δd)) ⊆ Ωp(2)(∂M).

Since d ◦ χ(−∞,0](δd) is zero, Epε has codimension ≤ ε in im(d). Moreover,
Epε is closed since the restriction of δd to the relevant subspace fulfills δd ≥ γ
and hence is invertible.

If, using the well established Hodge decomposition (compare e.g. [37,
Theorem 5.10])

L2Ω2n−1(M) =

(im(d
2n−2

))⊕ (im(δ
2n|{ω;ω|∂M=0}))⊕ ker(∆2n−1|{ω;(∗ω)|∂M=0=(δω)|∂M}),

(3.15)

we identify Hp
(2)(M) with the space of harmonic forms which fulfill absolute

boundary conditions, pulling back to the boundary gives a well defined
bounded map Hp

(2)(M)→ Ωp(2)(∂M). Let

Kp
ε ⊆ H

p
(2)(M)

be the inverse image of Epε under this map. It is a closed subspace of
Hp

(2)(M) which actually is contained in ker(qp), the inverse image of im(d(∂M)),
and has codimension ≤ ε in ker(qp).

3.16 Lemma. Kp
ε is contained in the image of rp : Hp(2)(M∞)→ im(ip).

Proof. Let ω be a harmonic form representing an element in Kp
ε . Then

we have to find a harmonic form h ∈ Hp(2)(M∞) whose restriction to M

represents the cohomology class of ω. By assumption, qpω = dα for suitable
α ∈ Ωp−1

(2) (∂M) in the domain of d. Note that dα itself is smooth by elliptic
regularity since ω is harmonic. Choose a smooth function ψ : [0,∞) → R

with ψ(t) = 1 in a neighborhood of 0 and with ψ(t) = 0 for t > 1/2. Define
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α̃ = α ·ψ(t) ∈ Ωp−1
(2) (∂M× [0,∞)). Note that α̃ is an L2-form in the domain

of d, which is smooth in a neighborhood of the boundary. For such forms,
all usual integraion by parts formulas hold, a fact we are using frequently in
the sequel and which follows e.g. from the methods of [11], or is explained
in more detail in [37].

Let Q : ∂M × {0} ↪→ ∂M × [0,∞) be the inclusion. Then Qp−1α̃ = α
and Qpdα̃ = dα. Define the L2-form ω̃ on M∞ to coincide with ω on M ,
and with dα̃ on ∂M × [0,∞). We claim that ω̃ ∈ ker(d), i.e. that ω̃ is
orthogonal to δφ for all smooth φ with compact support. This is checked
by integration by parts (on M and ∂M × [0,∞) separately): since ω is
closed

〈ω̃|M , δφ|M 〉L2(M) = −
∫
∂M

dα ∧ q[0]4n−1−p(∗φ),

on the other hand

〈ω̃|∂M×[0,∞), δφ|∂M×[0,∞)〉L2(∂M×[0,∞)) = −
∫
∂M
−
dα ∧ q[0]4n−1−p(∗φ).

Because of opposite inward directions the orientation of ∂M in the first
and second integral are different. Changing the orientation changes the
sign of the integral of a differential form. This implies the vanishing of
〈ω̃, δφ〉L2(M∞), which is just the sum of the two terms above.

By Hodge decomposition, we therefore can write ω̃ = h + x where
h ∈ Hp(2)(M∞) and x lies in the closure of the image of d. If we apply
rp to this equation, we see that the forms ω and rp(h) represent the same
L2-cohomology class in Hp

(2)(M), which finishes the proof.

3.17 Corollary. The map rp : Hp(2)(M∞)→ im(ip) has dense image.

Proof. The map surjects onto subspaces of arbitrary small codimension.

Now we have to compare the intersection forms. Again we can not do
this directly, but have to restrict our attention to subspaces with small codi-
mension. Observe that q[0]p defines a map from Hp(2)(M∞) to im d(∂M).
Let

Hpε ⊆ H
p
(2)(M∞)

be the inverse image of Eε under this map. On the space of harmonic forms,
the pull back map is bounded in the L2-norm, therefore Hpε is closed. The
codimension of Hpε in Hp(2)(M∞) is not bigger than ε.

3.18 Lemma. Let ω, η ∈ H2n
ε , with q[0]2nω = dα and q[0]2nη = dβ. Define

α̃ and β̃ as in the proof of Lemma 3.16. Assume, without loss of generality,
that M has a collar of length 1 which is isometric to a product. Define α̃′

and β̃′ as above, but with support on this collar of M (i.e. replacing the
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“outward” ∂M × [0,∞) by the “inward” collar). Then v := r2n(ω) − dα̃′
and w := r2n(η) − dβ̃′ pull back to zero on ∂M and represent the same
homology classes as r2n(ω) and r2n(η), respectively. Moreover,∫

M

v ∧ w =
∫
M∞

ω ∧ η. (3.19)

Proof. We only have to prove Equation 3.19. Integration by parts shows
that ∫

M

v ∧ w =
∫
M

ω ∧ η +
∫
∂M

α ∧ dβ, (3.20)

since the additional terms
∫
∂M

dα∧α and
∫
∂M

dβ ∧ β vanish as 2dα∧α =
dα ∧ α+ α ∧ dα = d(α ∧ α) = 0 as α is of odd degree.

We therefore have to show that∫
∂M×[0,∞)

ω ∧ η =
∫
∂M

α ∧ dβ.

Write ω− dα̃ = h1 + x and η− dβ̃ = h2 + y, where we restrict to ∂M ×
[0,∞) and use the Hodge decomposition for closed forms with vanishing
pullback to the boundary. This implies that the harmonic forms h1 and h2

also fullfill q2n(h1) = 0 = q2n(h2), and x, y ∈ d(im(db)), where db stands for
the differential d, but with domain only the smooth compactly supported
forms whose pull back to the boundary is zero. Integration by parts shows
that ∫

∂M×[0,∞)

(h1 + x) ∧ (h2 + y) =
∫
∂M×[0,∞)

h1 ∧ h2.

We can write h1 = a(t) + b(t) ∧ dt and h2 = c(t) + b(t) ∧ dt, and because
of the product structure the fact that h1 is harmonic implies that the form
a is harmonic and the form b (or equivalently b ∧ dt) is harmonic. But
0 = q2nh1 = a(0), and a harmonic form which vanishes identically at the
boundary is zero, therefore a = 0. In the same way, c = 0. This implies
h1 ∧ h2 = 0 since dt ∧ dt = 0. Consequently

0 =
∫
∂M×[0,∞)

(ω − dα̃) ∧ (η − dβ̃) =
∫
∂M×[0,∞)

ω ∧ η −
∫
∂M

α ∧ dβ,

where the last equation follows from integration by parts (see [11] as in
(3.20). This finishes the proof of Lemma 3.18.

Let
L2n
ε ⊆ im(ip)

be the closure of the image of H2n
ε under rp : Hp(2)(M∞) → im(ip). The

codimension of L2n
ε ⊆ im(ip) is ≤ ε because of Corollary 3.17, since the

codimension of Hpε in Hp(2)(M∞) is ≤ ε. The intersection form

schain : H2n
(2)(M,∂M)×H2n

(2)M,∂M)→ C
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descends to a pairing on im(ip) which can be restricted to a paring

s : L2n
ε × L2n

ε → C.

Since the codimension of L2n
ε ⊆ im(ip) is ≤ ε, we get

| sign(2)(schain)− sign(2)(s)| ≤ ε.

Lemma 3.18 implies that the intersection form

s∞ : H(2)(M∞)×H(2)(M∞)→ C

restricts to a pairing onH2n
ε which descents to the pairing s : L2n

ε ×L2n
ε → C

above. Since the codimension of Hpε in Hp(2)(M∞) is ≤ ε we get

| sign(2)(s∞)− sign(2)(s)| ≤ ε.

We conclude
| sign(2)(s∞)− sign(2)(schain)| ≤ 2ε.

Since ε > 0 was arbitrary, we get

sign(2)(s∞) = sign(2)(schain).

This finishes the proof of Theorem 3.10 in the case, where the Riemannian
metric is a product metric near ∂M .

The argument also shows that rp : Hp(2)(M∞) → Hp
(2)(M) is injec-

tive. This is the case because the intersection pairing is non-degenerate
on Hp(2)(M∞) (if 0 6= h ∈ Hp(2)(M∞) then h is not perpendicular to ∗h
where ∗ is the Hodge operator), and because on subspaces of arbitrarily
small codimension this passes to the image of rp.

The general version of Theorem 3.10 (without product metric near the
boundary) now follows by observing that H∗(2)(M,∂M) is unchanged if we
deform the metric on M to a product metric, and that the intersection form
also does only depend on the homology. We can deform the metric in such
a way that the restriction to the boundary is unchanged (but of course
the second fundamental form changes). If one does this, in sign(2)

an (M)
only the local terms

∫
M
L(M) and

∫
∂M

ΠL(∂M) are changed. Exactly
the same changes appear in the Atiyah-Patodi-Singer index formula for the
ordinary signature on the compact manifold M . We know that the classical
index formula also for manifolds without product metric near the boundary
computes the signature, which does not depend on the metric. Therefore
the overall changes are zero, and the same is true for sign(2)

an (M). Since
we just argued that sign(2)

forms(M) does not depend on the metric on M ,
Theorem 3.10 follows.
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3.4 The combinatorial L2-signature

Now we want to give a combinatorial construction of the pairing in (3.8).
Assume therefore that instead of a compact connected oriented Rieman-
nian manifold M we have a 4n-dimensional Poincaré pair (X,Y ) over
Q. Recall that the Poincaré structure is given by a fundamental class
[X,Y ] ∈ H4n(X,Y ;Q) with the following property. Let the fundamen-
tal chain [X,Y ] ∈ C4n(X,Y ;Q), denoted in the same way as the funda-
mental class, be a closed chain representing the fundamental class. Let
(X,Y )→ (X,Y ) be a regular covering. Lift this closed chain [X,Y ] to the
covering X. The lift will be a closed bounded chain (without compact sup-
port) [X,Y ] ∈ L∞C4n(X,Y ) = l∞(Γ)⊗CΓC4n(X,Y ;C). There is a duality
pairing L1Cm(X,Y ;C)×L∞Cm(X,Y ;C)→ C. We call the pairing against
[X,Y ] “integration over X”. Now the cup product of one L2-cochains with
the complex conjugate of a second one on X gives an L1-cochain which, if
the dimensions are right, can be integrated over X. This passes to reduced
L2-(co)homology

3.21 Definition. Denote the induced sesquilinear Γ-invariant bounded pair-
ing of Hilbert NΓ-modules (in the middle dimension 2n) by

schain : H2n
(2)(X,Y )×H2n

(2)(X,Y )→ C. (3.22)

Define the combinatorial L2-signature sign(2)
chain(X,Y ) to be the associated

L2-signature signNΓ(schain) of schain as in (3.7).

To show that this definition makes sense, recall that the definition of the
cup-product involves a cellular approximation to the diagonal embedding
X → X×X, which we can lift to an equivariant cellular map X → X×X.
This way, there is a global bound K such that the image of each cell in X
under the diagonal approximation meets only K cells of X×X. Remember
that the cochain representing the cup-product of a and b maps a cell σ to a
certain linear combination of a(σ1) · b(σ2) n (given locally by the diagonal
approximation), where σ1×σ2 runs through all cells in the image of σ under
the cellular approximation to the diagonal. This implies in a standard way
that this cup-product map is continuous from the product of the L2-cochain
spaces to the L1-cochains.

The result of the pairing between a cochain
∑
σ p-cell λσσ and a chain of

the form
∑
σ p-cell µσσ is the number

∑
σ p-cell λσµσ. This is a continuous

pairing between L1-cochains and L∞-chains.
Taken together, we get a pairing on L2-cochains with values in the

complex numbers. If we restrict in one factor to cochains with compact
support, this is the classical pairing. In particular,

∫
X
a∪ b = 0 if a = δ(a′)

and a′ has compact support and δ(b) = 0, since this is true (in the classical
situation) if a has compact support and b is completely arbitrary. We want
to check the corresponding statement if a is in the closure of the image of
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δ in the space of L2-cochains, and b is an L2-cochain with δ(b) = 0. Now
a = limn→∞ δ(an), where we can assume that all an have compact support,
because δ is continuous and the cochains with compact support are dense
in the space of L2-cochain. But then continuity implies the claim that our
pairing vanishes on (the closure of the space of) coboundaries and therefore
passes to reduced L2-cohomology. The usual proofs apply to show that the
cup product (and the pairing) does not depend on the particular way we
constructed it (e.g. the particular cellular approximation to the diagonal
embedding).

Note that the construction is homological in nature and therefore de-
pends only on the oriented homotopy type of the pair (X,Y ). In particular
it is independent of the CW-structure and the choice of the closed cycle
representing the fundamental class.

An alternative description of Definition 3.21 can be given using the
sequence

C4n−∗
(2) (X,Y )

−∩[X,Y ]−−−−−−→ C
(2)
∗ (X)→ C

(2)
∗ (X,Y ). (3.23)

Note that this is obtained by tensoring the corresponding CΓ-chain map
over CΓ with l2(Γ). It induces a selfadjoint bounded Γ-equivariant operator

A : H2n
(2)(X,Y )→ H

(2)
2n (X,Y )

g−→∼= H2n
(2)(X,Y ) (3.24)

using the canonical identification H
(2)
2n (X,Y ) = H2n

(2)(X,Y ) which comes
from the cellular Hodge decomposition. Actually, putting any positive inner
product on H(2)

2n (X,Y ) will give rise to an identification with its dual space
H2n

(2)(X,Y ), and the fact that the Poincaré duality homomorphism is self
dual implies that after the identification the homomorphism is self adjoint
(with respect to the used inner product), as can be seen by going through
the definitions.

3.25 Lemma. The homological Poincaré duality homomorphism

B : H(2)
2n X) PD−1

−−−−→∼= H2n
(2)(X,Y ) i∗−→ H2n

(2)(X)
g−1

−−→∼= H
(2)
2n (X)

has the same L2-signature as A of (3.24), where PD−1 is the defined to be
the inverse of the isomorphism induced by cup product with the fundamental
class (which we abbreviate with PD in this lemma). The corresponding
remark holds for the ordinary signature of (X,Y ).

For the calculation of L2-signatures and ordinary signatures, the Poincaré
duality chain map can be replaced by any chain homotopic map, and more-
over, it can be “conjugated” with a chain homotopy equivalence and its
adjoint.

Proof. Given any self-adjoint Hilbert NΓ-module morphism a : V → W
and a (not necessarily unitary) Hilbert NΓ-isomorphism f : V → W , we
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have
sign(2)(a) = sign(2)(faf∗).

This follows from the fact that the isomorphism f∗ intertwines a and faf∗,
i.e.

〈(faf∗)x, x〉 = 〈a(f∗x), (f∗x)〉 ∀x ∈W,

i.e. f∗ maps the positive or negative spectral part, respectively, of faf∗ to
the corresponding part of a, and being an NΓ-isomorophism, it preserves
the NΓ-dimension.

In our case,

sign(2)(B) = sign(2)(PD∗ ◦B ◦ PD) = sign(2)(PD∗g−1i∗)

= sign(2)((g−1 ◦ i∗ ◦ PD)∗) = sign(2)(A),

since first i∗ : H2n
(2)(X,Y )→ H2n

(2)(X) is dual to i∗ : H(2)
2n (X)→ H

(2)
2n (X,Y ),

and therefore i∗ ◦ g−1 is adjoint to g−1 ◦ i∗ by the usual relations between
dual and adjoint on Hilbert spaces, and secondly A∗ = A.

The statement about the chain homotopy invariance follow trivially
from the fact that L2-signature and signature depend on the homologi-
cal Poincaré duality map only, which is not affected by passing to a chain
homotopic map, and “conjugation” with a chain homotopy equivalence and
its adjoint corresponds to “conjugation” by an isomorphism and its adjoint.
We have just checked that this does not change the L2-signature.

The identical argument applies to the ordinary signature (which can be
considered as the L2-signature for the trivial one-sheeted covering).

The standard relations between cup- and cap-product and “integration”
of homology against cohomology classes imply

3.26 Proposition. The operator in (3.24) is the operator associated in
(3.6) to the pairing appearing in Definition (3.21). In particular we get

sign(2)
chain(X,Y ) = dimNΓ(χ(0,∞)(A))− dimNΓ(χ(−∞,0)(A)). (3.27)

Suppose (X,Y ) happens to be an oriented cocompact smooth manifold
with boundary, and the CW-structure is given by a smooth triangulation.
Then by the L2-de Rham isomorphism of Dodziuk [6, Theorem 1] and
its version for manifolds with boundary ([37, Corollary 1.7] or [12]), L2-
simplicial and L2-de Rham cohomology are isomorphic.

For reasons of completeness, we will prove that the pairings which give
rise to sign(2)

forms and sign(2)
chain are compatible with respect to this isomor-

phism. It would perhaps be more satisfactory to prove that the isomorphism
is compatible with the products. However, we don’t want to discuss the L1-
version of the Hodge-de Rham theorem (and note that the product of two
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L2-forms is an L1-form), so we use this shortcut. The advantage is that we
can give a “local” proof of the weaker result, which holds on the chain level.
Note that, in contrast, there is no good way to describe a good cup product
on the level of cochains of a simplicial complex which is at the same time
graded commutative and associative, as is the case for the wedge product
of differential forms. Similar and related work has e.g. been done in [21,
Section 7], and his methods could be used as well. Another version would
use an intermediate simplicial L2-de Rham complex as in the treatment in
[8] of multiplicativity of the ordinary de Rham isomorphism. Actually, this
method is used in [12] to prove the de Rham theorem for L2-cohomology
(as well as Lp-cohomology), but without taking care of the multiplicative
structure. We believe that the combination of [8] and [12] proves that the
L2-de Rham isomorphism preserves the multiplicative structure.

We choose to give a direct argument, using some calculations of [31].
To start with, we recall a possible definition of the cup product on

the cochain level of a simplicial complex (using the Alexander-Whitney
approximation).

So, assume X is a simplicial complex. Choose an orientation of X,
i.e. an orientation of each simplex of X. Next, we choose a local ordering
of the chain complex, i.e. a total ordering of the vertices of every simplex
with the compatibility condition that, if a simplex σ is the face of a simplex
τ , then the restriction of the ordering on the simplices of τ should give the
ordering on σ. Customarily, such a local ordering is obtained by globally
ordering all the vertices of the simplicial complex, but that is by no means
necessary for the following cup product construction, and for us it will later
be much more convenient to use local orderings.

Observe that we do not require that the ordering is compatible with
the orientation (later on, we will use different local orderings, but the same
orientation).

If e0, . . . , en are the ordered vertices of a simplex σ, then 〈e0, . . . , en〉 :=
ε(e0, . . . , en)σ is a chain, where ε(e0, . . . , en) = 1 if (e0, . . . , en) represents
the orientation of σ, and ε(e0, . . . , en) = −1, otherwise.

Following the conventions in [32], the cup product of a p-cochain a and
a q-cochain b is defined by

a ∪ b(〈e0, . . . , en〉) = a(〈e0, . . . , ep〉)) · b(〈ep, · · · , en〉). (3.28)

Note in particular that, if a is the elementary cochain corresponding to
〈e0, . . . , ep〉 (i.e. maps this simplex to one, and all other simplices to zero),
and b is the elementary cochain of 〈ep, . . . , en〉, then a∪ b is the elementary
cochain of 〈e0, . . . , en〉.

The de Rham map
∫

maps a (sufficiently smooth) p-form ω to a p-
cochain of the simplicial cochain complex of a smooth triangulation of the
manifold. The value of

∫
(ω) on a p-simplex σ simply is the integral of ω

over σ. This is a chain map.
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An inverse map W from the cochain complex to differential forms (going
back to Whitney) is given by mapping an elementary p-cochain σ with
vertices (e0, . . . , ep) to the “barycentre form”

W (σ) := p!
p∑
i=0

(−1)ixi dx0 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxp,

where the hat means, as usual, that the corresponding entry is omitted, and
the xi are defined to be the barycentric coordinates with non-zero values
in the stars of the vertices ei. The form W (σ) is non-zero only on the open
star of σ.

Dodziuk [6], compare also [12], proves that W indeed induces an isomor-
phism on reduced L2-cohomology. The inverse is essentially induced by

∫
.

In particular, it is easily established that
∫
◦W = id. However, since

∫
is

(below the top degree) not defined for all L2-forms, one has to be somewhat
careful here. This is the main reason why we don’t prove that the de Rham
isomorphism is multiplicative for Lp-cohomology (where the product of an
Lp and an Lq-form is an Lr-form with 1/r = 1/p+ 1/q).

3.29 Lemma. If c1 and c2 are elements of the simplicial L2-cochain com-
plex such that the degrees add up to 4n, then on the 4n-dimensional manifold
X

schain(c1, c2) =
∑

σoriented 4n simplex of X

(c1 ∪ c2)(σ) =
∫
X

W (c1 ∪ c2),

where the sum is over all 4n-simplices with orientation induced from X.

Proof. The first equality is the definition of the pairing. For the second one
observe that∫

X

W (c1 ∪ c2) =
∑

σ 4n-simplex of X

∫
σ

W (c1 ∪ c2)

=
∑

σ 4n-simplex of X

(
∫
◦W )(c1∪c2)(σ) =

∑
σoriented 4n-simplex of X

(c1∪c2)(σ).

We used the fact that
∫
◦W is identically the identity map.

Since we already know that W induces an isomorphism, from this it
suffices to check for the compatibility of the two pairings that

〈W (c1),W (c2)〉 :=
∫
X

W (c1) ∧W (c2) =
∫
X

W (c1 ∪ c2) (3.30)

for c1 and c2 cochains as in Lemma 3.29, since the right hand side equals
schain(c1, c2).
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We are only interested in the result on cohomology. Therefore, we can
define the cup product on the cochain level appropriately. Recall, as already
observed above, that many choices are possible. Our description depends
e.g. on the chosen local ordering.

First, we assume that our triangulation is the barycentric subdivision
of some other triangulation (if it is not yet, pass to the barycentric sub-
division). There, a canonical local ordering is defined: a simplex σ of the
barycentric subdivision is by definition a chain s0 ⊂ s1 ⊂ · · · ⊆ sk of sim-
plices of the original triangulation with vertices s0,. . . , sk; and the ordering
on the latter is given by inclusion, or, equivalently, by ordering according
to the dimension.

In the latter description, on our 4n-dimensional simplicial complex X we
define a collection of local orderings parameterized by the symmetric group
Σ4n+1 of permutations of {0, . . . , 4n} with vertices si, sj of the simplex
σ above satisfying si <τ sj under the ordering induced by τ ∈ Σ4n+1 if
and only if τ(si) < τ(sj).We denote the cup product induced by this local
ordering by ∪τ .

The cup product to be used for Equation (3.30) is then the average of
all the ∪τ :

c1 ∪ c2 :=
1

(4n+ 1)!

∑
τ∈Σ4n+1

c1 ∪τ c2.

We now prove Equation (3.30) with this definition of the cup product.

Proof. Let v1(c1, c2) :=
∫
X
W (c1) ∧W (c2) and v2(c1, c2) :=

∫
X
W (c1 ∪ c2)

for simplicial L2-cochain c1, c2.
Then v1 and v2 are sesquilinear and jointly continuous. For the latter

we use the fact that W is a continuous map from L2-cochain to L2-forms as
well as from L1-cochain to L1-forms (this follows from its “local” character).
Moreover, the wedge as well as our cup product are continuous from L2 to
L1 by an appropriate application of the Hölder inequality (again, the “local”
definition of the cup product is used here).

The span of the elementary cochains given by the (oriented) simplices of
the triangulation (defined after Equation (3.28)) is dense in the space of all
L2-cochains. Consequently, it suffices to prove that v1(c1, c2) = v2(c1, c2)
if c1 and c2 are two cochains corresponding to oriented simplices σ1 =
(e0, . . . , ep) = 〈e0, . . . , ep〉 or σ2 = (f0, . . . , fq) = 〈f0, . . . , fq〉, respectively.

Let us first consider the case that σ1 and σ2 have no vertex in common.
Then the cup product of c1 and c2 is zero. At the same time, the supports
of W (c1) and W (c2) (being the open stars of the simplices σ1 and σ2) have
empty intersection. In this case therefore v1(c1, c1) = 0 = v2(c1, c2).

Secondly, assume σ1 and σ2 have 2 or more vertices in common. Then
W (c1) ∪W (c2) = 0 since each summand contains the square of a one-form
dxj for some barycentre function xj . Similarly, c1∪ c2(σ) = 0 for each non-
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degenerate simplex and in particular for each (non-degenerate) 4n-simplex,
so again v1(c1, c2) = 0 = v2(c1, c2).

Finally, for the interesting case, assume f0 = ep is the only vertex
which both simplices have in common (f0 = ep is no real loss of generality,
we could replace an oriented simplex by the negative of a simplex with
the wrong orientation and the whole argument would go through). Evi-
dently, only the case p + q = 4n is of interest, in which case (e0, . . . , ep =
f0, f1, . . . fq) spans a 4n-simplex. Let σ be the oriented simplex with these
vertices and with orientation induced from X. Observe that σ is spanned
by σ1 and σ2, but the orientation it gets that way differs from its orientation
by ε(e0, . . . , fq) =: ∗(σ1, σ2). The latter notation is used in [31, p. 23].

The support of W (σ1)∪W (σ2) is the interior of this 4n-simplex. There-
fore, its integral over any other 4n-simplex is zero.

Moreover, c1 ∪ c2 vanishes on all 4n-simplices apart from σ (as follows
immediately from the formula for the cup product), and hence W (c1∪c2) =
(c1 ∪ c2)(σ). It remains to compute this number. Our definition of the cup
product involves one summand for each of the (4n+1)! permutations of the
simplices of σ. The contribution of such a permutation can only be non-
trivial, when the first p+ 1 simplices (e0, . . . , ep) are mapped to themselves
and the last q + 1-simplices (f0, . . . , fq) are also mapped to themselves, in
particular, ep = f0 has to be fixed by such a permutation. Observe that we
obtain exactly p! · q! permutations with non-trivial contribution.

c1 ∪ c2(〈e0, . . . , ep = f0, . . . , fq〉) =
1

(p+ q + 1)!

∑
π∈Σp,ψ∈Σq

c1(〈eπ(0), . . . , eπ(p−1), eq〉)c2(〈f0, fψ(1), . . . fψ(q)〉).

(3.31)

The definition of the chain

〈eπ(0), . . . , eπ(p−1), ep〉

differs from the simplex (eπ(0), . . . , eπ(p−1), ep) by a sign which makes up
for the (possible) change of orientation compared to the oriented simplex
spanned by e0, . . . , ep. This implies that the value of the expression in (3.31)
does not depend on the particular permutation. For our cup product, we
therefore get

c1 ∪ c2(〈e0, . . . , ep = f0, . . . , fq〉) =
p! · q!

(p+ q + 1)!
c1(〈e0, . . . , ep〉)c2(〈f0, . . . , fq〉) =

p! · q!
(p+ q + 1)!

by the definition of c1 and c2. Finally, observe that

c1 ∪ c2(σ) = ∗(σ1, σ2)c1 ∪ c2(〈e0, . . . , fq〉) = ∗(σ1, σ2)
p! · q!

(1 + p+ q)!
.
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It remains to calculate
∫
σ
W (c1) ∧W (c2). This is carried out in [31,

Appendix] and we obtain indeed∫
σ

W (c1) ∧W (c2) = ∗(σ1, σ2)
p! · q!

(p+ q + 1)!
.

This finishes the proof of the claim.

In particular, it follows that:

3.32 Proposition. Assume M is a compact oriented smooth manifold with
boundary ∂M . Then

sign(2)
chain(M,∂M) = sign(2)

forms(M,∂M).

3.5 The L-theoretic L2-signature

3.33 Definition. Consider a Poincaré space X of dimension d = 4n over
Q. Let X → X be a regular Γ-covering. We have already mentioned its
symmetric signature σ(X) ∈ L0(ZΓ) in (2.4). Define its L-theoretic L2-
signature

sign(2)
L (X) ∈ R

as the image of σ(X) under the map sign(2) : L0(QΓ) → R introduced in
(2.5).

3.34 Lemma. In the situation of Definition 3.33, we have

sign(2)
L (X) = sign(2)

chain(X).

Proof. Let U(Γ) be the algebra of operators affiliated to NΓ. Algebraically
U(Γ) is the Ore localization of NΓ and has the property that it is a von
Neumann regular ring, i.e. any finitely generated submodule of a finitely
generated projective UΓ module is a direct summand [18, Theorem 8.22].
There is a commutative square

L0(NΓ) −−−−→ K0(NΓ)y∼= y∼=
L0(UΓ) −−−−→ K0(UΓ)

where the vertical maps are change of rings maps and isomorphisms [18,
Theorem 9.31]. Since UΓ is von Neumann regular, the UΓ-chain complex

· · · 0−→ H∗(C∗(X;Q)⊗QΓ UΓ) 0−→ · · ·



34 Wolfgang Lüeck and Thomas Schick

given by the homology and the trivial differentials consists of finitely gener-
ated projective UΓ-chain modules and there is a UΓ-chain homotopy equiv-
alence

i∗ : H∗(C∗(X;Q)⊗QΓ UΓ)→ C∗(X;Q)⊗QΓ UΓ

which is up to homotopy characterized by the property that it induces the
identity on homology. The symmetric Poincaré structure on C∗(X;Q)⊗QΓ

UΓ induces one on H∗(C∗(X;Q)⊗QΓ UΓ) and i∗ is an UΓ-chain homotopy
equivalence of symmetric UΓ-Poincaré complexes. This implies for their
classes in L0(U) [28, Proposition 1.2.1].

[C∗(X;Q)⊗QΓ UΓ] = [H∗(C∗(X;Q)⊗QΓ UΓ)].

Elementary algebraic surgery in the sense of [28, Section 1.5] shows that
the class [H∗(C∗(X;Q)⊗QΓ UΓ)] in L0(U) is given by the sesquilinear non-
degenerate pairing on the middle homology group H2n(C∗(X;Q)⊗QΓ UΓ).
Let

PH2n(C∗(X;Q)⊗QΓ NΓ)

be the projective part of the finitely generatedNΓ-moduleH2n(C∗(X;Q)⊗QΓ

NΓ) in the sense of [18, Definition 6.1]. It is a finitely generated projective
N (Γ)-module [18, Theorem 6.7] and inherits a sesquilinear non-degenerate
pairing from the Poincaré structure. There is a canonical isomorphism(

PH2n(C∗(X;Q)⊗QΓ NΓ)
)
⊗NΓ UΓ)

∼=−→ H2n(C∗(X;Q)⊗QΓ UΓ)

which is compatible with the pairings (see [18, Theorem 6.7 and Lemma
8.33]). We have shown that the image of σ(X) under the change of rings
maps L0(QΓ)→ L0(NΓ) agrees with the class represented by the Poincaré
pairing on

PH2n(C∗(X;Q)⊗QΓ NΓ).

We conclude from the definitions, Proposition 3.26 and [18, Theorem 6.24]
that the map

L0(NΓ)
∼=−→ K0(NΓ)→ R

sends the class represented by the Poincaré pairing on PH2n(C∗(X;Q)⊗QΓ

NΓ) to sign(2)
chain(X). We conclude from the definition of sign(2)

L (X) that
sign(2)

chain(X) = sign(2)
L (X) holds.

If X is a closed oriented smooth Riemannian manifold then, as we have
seen above, the signature operator twisted with the canonical non-trivial
flat NΓ-bundle on X has an index in K0(NΓ).

It is now a fundamental result, due to Mishchenko and Kasparov, that
this index is equal to the element given by the symmetric signature (they
are actually using the group C∗-algebra C∗Γ, but the argument for the
von Neumann algebra is the same). For an extensive treatment of these
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facts (and a generalization to more general C∗-algebra-module bundles),
compare [21]. In particular, we get the following result (see also [16, pages
728-729]).

3.35 Theorem. Let M be a closed oriented smooth Riemannian manifold
of dimension 4n. Let M →M be a regular Γ-covering. Then

sign(2)
L (M) = sign(2)

K (M).

3.6 Künneth formula

3.36 Proposition. The L2-signature is multiplicative: if X and Y are
two Poincaré spaces with a regular ΓX-covering X → X and a regular ΓY -
covering Y → Y , then we get a regular ΓX ×ΓY -covering X × Y → X × Y
and we have

sign(2)(X × Y ) = sign(2)(X) · sign(2)(Y ).

Proof. This follows, as in the classical compact case, in a straightforward
way from the Künneth formula for L2-cohomology.
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38 Wolfgang Lüeck and Thomas Schick

[34] J. Rosenberg. C∗-algebras, positive scalar curvature, and the Novikov
conjecture. Inst. Hautes Études Sci. Publ. Math., 58:197–212 (1984),
1983.

[35] J. A. Schafer. Topological Pontrjagin classes. Comment. Math. Helv.,
45:315–332, 1970.

[36] T. Schick. A KK-proof of Atiyah’s L2-index theorem. 2002, in prepa-
ration.

[37] T. Schick. Analysis on ∂-manifolds of bounded geometry,
Hodge-de Rham isomorphism and L2-index theorem. Shaker,
Aachen, 1996. (Dissertation, Mainz), http://wwwmath.uni-
muenster.de/math/u/lueck/publ/schick/dissschick.html.

[38] T. Schick. L2-index theorem for elliptic differential boundary problems.
Pacific J. Math., 197(2):423–439, 2001.

[39] D. Sullivan. Hyperbolic geometry and homeomorphisms. In Geometric
topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), pages
543–555. Academic Press, New York, 1979.

[40] N. Teleman. The index of signature operators on Lipschitz manifolds.
Publ. Math. IHES, 58:39–78, 1983.

[41] N. Teleman. The index theorem for topological manifolds. Acta Math.,
153(1-2):117–152, 1984.

[42] B. Vaillant. Indextheorie für Überlagerungen. Diplomarbeit, Univer-
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