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Preface

There is the general principle to consider a classical invariant of a closed
Riemannian manifold M and to define its analog for the universal covering
M̃ taking the action of the fundamental group π = π1(M) on M̃ into ac-
count. Prominent examples are the Euler characteristic and the signature of
M , which lead to Wall’s finiteness obstruction and to all kinds of surgery
obstructions such as the symmetric signature or higher signatures. The p-

th L2-Betti number b
(2)
p (M̃) arises from this principle applied to the p-th

Betti number bp(M). Some effort is necessary to define L2-Betti numbers in

the case where π is infinite. Typical problems for infinite π are that M̃ is
not compact and that the complex group ring Cπ is a complicated ring, in
general not Noetherian. Therefore some new technical input is needed from
operator theory, namely, the group von Neumann algebra and its trace. An-
alytically Atiyah defined L2-Betti numbers in terms of the heat kernel on
M̃ . There also is an equivalent combinatorial approach based on the cellular
Cπ-chain complex of M̃ . It is one of the main important and useful features
of L2-invariants that they can be defined both analytically and combinato-
rially. There are two further types of L2-invariants. L2-torsion generalizes
the classical notion of Reidemeister torsion from finite to infinite π, whereas
Novikov-Shubin invariants do not have a classical counterpart.

A very intriguing and important property of L2-invariants is that they
have relations to many other fields. From their construction it is clear that
they have connections to operator theory, in particular to von Neumann
algebras, and to the spectral theory of the Laplacian on M̃ . For instance
Atiyah’s motivation to consider L2-Betti numbers was to establish his L2-
index theorem.

More suprising is the appearance of algebraic K-theory. In all examples
where L2-Betti numbers have been computed explicitly, the values turn out
to be rational numbers whose denominators are linked to the orders of finite
subgroups of π. This is very suprising in view of the actual definition of
L2-Betti numbers. This phenomenon is linked to questions in algebraic K-
theory such as whether any finitely generated projective Cπ-module M is
obtained by induction from a finitely generated projective CH-module for
a finite subgroup H ⊂ π. This leads to the version of the so called Atiyah
Conjecture that the L2-Betti numbers are always integers if π is torsionfree.
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It turns out that this conjecture implies the Kaplansky Conjecture that Cπ
contains no non-trivial zero-divisors if π is torsionfree. For many groups π
the Kaplansky Conjecture was not known until the Atiyah Conjecture was
proved. We will investigate interactions between L2-invariants and K-theory
and applications of them in both directions throughout this book.

Next we explain a connection to geometry. Provided that M is aspherical,

all computations lead to the result that b
(2)
p (M̃) = 0 holds for 2p ̸= dim(M)

and that b
(2)
n (M̃) = (−1)n · χ(M) is true for the Euler characteristic χ(M)

if dim(M) = 2n is even. In particular (−1)n · χ(M) ≥ 0 in the case
dim(M) = 2n, since each L2-Betti number is larger or equal to zero by
definition. This phenomenon seems to be typical and will be investigated
in this book. Recall that M is aspherical if it carries a Riemannian met-
ric with non-positive sectional curvature, but that the converse is not true.
If dim(M) = 2n and M carries a Riemannian metric with negative sec-

tional curvature, then all computations yield b
(2)
n (M̃) = (−1)n · χ(M) > 0.

Hence L2-Betti numbers are linked to the Hopf Conjecture which predicts
(−1)n ·χ(M) ≥ 0 if the 2n-dimensional closed manifold M carries a Rieman-
nian metric with non-positive sectional curvature, and (−1)n · χ(M) > 0 if
M carries a Riemannian metric with negative sectional curvature. Further
connections between L2-invariants and geometry and group theory will be
presented in this book.

Why Study L2-Invariants?

From the author’s point of view there are certain criteria which decide
whether a topic or an area in modern mathematics is worth studying or worth
further development. Among them are the following:

• The topic has relations to other fields. There is a fruitful exchange of results
and techniques with other areas which leads to solutions of problems and
to innovations in both the topic of focus and other topics;

• There are some hard open problems which are challenging and promising.
They create interesting activity and partial solutions and techniques for
their proof already have applications to other problems;

• The topic is accessible with a reasonable amount of effort. In particular
talented students are able to learn the basics of the topic within an ap-
propriate period of time and while doing so get a broad basic education in
mathematics.

The purpose of this book is to convince the reader that L2-invariants do
satisfy these criteria and to give a comprehensible and detailed approach to
them which includes the most recent developments.
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A User’s Guide

We have tried to write this book in a way which enables the reader to pick
out his favourite topic and to find the result she or he is interested in quickly
and without being forced to go through other material. The various chapters
are kept as independent of one another as possible. In the introduction of each
chapter we state what input is needed from the previous chapters, which is
in most cases not much, and how to browse through the chapter itself. It
may also be worthwhile to go through the last section “Miscellaneous” in
each chapter which contains some additional information. In general a first
impression can be gained by just reading through the definitions and theorems
themselves. Of course one can also read the book linearly.

Each chapter includes exercises. Some of them are easy, but some of them
are rather difficult. Hints to their solutions can be found in Chapter 16. The
exercises contain interesting additional material which could not be presented
in detail in the text. The text contains some (mini) surveys about input from
related material such as amenable groups, the Bass Conjecture, deficiency of
groups, Isomorphism Conjectures in K-theory, 3-manifolds, Ore localization,
residually finite groups, simplicial volume and bounded cohomology, sym-
metric spaces, unbounded operators, and von Neumann regular rings, which
may be useful by themselves. (They are listed in the index under “survey”.
One can also find a list of all conjectures, questions and main theorems in
the index.)

If one wants to run a seminar on the book, one should begin with Sec-
tions 1.1 and 1.2. Then one can continue depending on the own interest. For
instance if one is algebraically oriented and not interested in the analysis,
one may directly pass to Chapter 6, whereas an analyst may be interested
in the rest of Chapter 1 and then pass to Chapter 2. Chapters 9, 10, 11, 12,
13 and 14 are independent of one another. One may directly approach these
chapters and come back to the previous material when it is cited there.

We require that the reader is familiar with basic notions in topology
(CW -complexes, chain complexes, homology, manifolds, differential forms,
coverings), functional analysis (Hilbert spaces, bounded operators), differen-
tial geometry (Riemannian metric, sectional curvature) and algebra (groups,
modules, elementary homological algebra).
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0. Introduction

0.1 What are L2-Invariants?

There is the classical notion of the p-th Betti number bp(X) of a finite CW -
complex X, for instance a closed manifold, which is the dimension of the
complex vector space Hp(X;C). Consider a G-covering p : X → X. If G
is infinite, the p-th Betti number of X may be infinite and hence useless.
Using some input from functional analysis involving Hilbert spaces, group
von Neumann algebras and traces one can define the p-th L2-Betti number

b
(2)
p (X;N (G)) of the total space X as the non-negative real number given by
the von Neumann dimension of the (reduced) L2-homology of X. (Often we

briefly write b
(2)
p (X) if G is clear from the context.) If G is finite, b

(2)
p (X) =

|G|−1 · bp(X) and we get nothing new. But L2-Betti numbers carry new
information and have interesting applications in the case where G is infinite.

In general b
(2)
p (X) of the total space X and bp(X) of the base space X have

no relations except for the Euler-Poincaré formula, namely,

χ(X) =
∑

p≥0(−1)p · bp(X) =
∑

p≥0(−1)p · b(2)p (X), (0.1)

where χ(X) is the Euler characteristic of X (see Section 0.6).
The notion of the classical Reidemeister torsion of X for finite groups G

will be generalized to the notion of L2-torsion ρ(2)(X) ∈ R in the case that
G is infinite.

There is a third class of L2-invariants, the Novikov-Shubin invariants
αp(X), which carry no information if G is finite.

All these types of L2-invariants on the one hand have analytic definitions
in terms of the heat kernel on X, but on the other hand can be defined
combinatorially in terms of the cellular CG-chain complex of X. These two
approaches are equivalent. In the analytic context X must be a compact
Riemannian manifold. For the combinatorial definition of L2-Betti numbers
and Novikov-Shubin invariants it suffices to require that the base spaceX is of
finite type, i.e. each skeleton ofX is finite, butX may be infinite-dimensional.
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0.2 Some Applications of L2-Invariants

In order to convince the reader about the potential of L2-invariants we state
some results which seem to have nothing to do with L2-invariants but whose
proofs — as we will see — use L2-methods. The selection below consists of
some easy to formulate examples and is not meant to represent the most
important results about L2-invariants. There are plenty of other very inter-
esting and important theorems about L2-invariants, a lot of which will be
presented in this book. For simplicity we often will not state the most gen-
eral formulations in this introduction. All notions appearing in the list of
theorems below will be explained in the relevant chapters. The results be-
low are due to Chang-Weinberger, Cheeger-Gromov, Cochran-Orr-Teichner,
Dodziuk, Gaboriau, Gromov and Lück.

Theorem 0.2 (see Theorem 1.35 (2) and Corollary 6.75). Let G be a
group which contains a normal infinite amenable subgroup. Suppose that there
is a finite CW -model for its classifying space BG. Then its Euler character-
istic vanishes, i.e.

χ(G) := χ(BG) = 0.

Theorem 0.3 (see Theorem 1.62 and Theorem 11.6). Let M be a closed
manifold of even dimension 2m. Suppose that M is hyperbolic, or more gen-
erally, that its sectional curvature satisfies −1 ≤ sec(M) < −(1− 1

m )2 .Then

(−1)m · χ(M) > 0.

Theorem 0.4 (see Theorem 11.14 and Theorem 11.15). Let M be a
closed Kähler manifold of (real) dimension 2m. Suppose that M is homotopy
equivalent to a closed Riemannian manifold with negative sectional curvature.
Then

(−1)m · χ(M) > 0.

Moreover, M is a projective algebraic variety and is Moishezon and Hodge.

Theorem 0.5 (see Theorem 7.25). Let 1 → H → G → K → 1 be an
extension of infinite groups such that H is finitely generated and G is finitely
presented. Then

(1) The deficiency of G satisfies def(G) ≤ 1;
(2) If M is a closed connected oriented 4-manifold with π1(M) ∼= G, then we

get for its signature sign(M) and its Euler characteristic χ(M)

| sign(M)| ≤ χ(M).
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Theorem 0.6 (see Theorem 9.38). Let i : H → G be the inclusion of a
normal finite subgroup H into an arbitrary group G. Then the maps coming
from i and the conjugation action of G on H

Z⊗ZG Wh(H) → Wh(G);

Wh(H)G → Wh(G)

have finite kernel, where Wh denotes the Whitehead group.

Theorem 0.7 (see Theorem 9.66). Let G be a group and CG be its com-
plex group ring. Let G0(CG) be the Grothendieck group of finitely generated
(not necessarily projective) CG-modules. Then

(1) If G is amenable, the class [CG] ∈ G0(CG) is an element of infinite
order;

(2) If G contains the free group Z∗Z of rank two, then [CG] = 0 in G0(CG).

Theorem 0.8 (see Section 15.4). There are non-slice knots in 3-space
whose Casson-Gordon invariants are all trivial.

Theorem 0.9 (see Section 7.5). There are finitely generated groups which
are quasi-isometric but not measurably equivalent.

Theorem 0.10 (see Section 15.1). Let M4k+3 be a closed oriented smooth
manifold for k ≥ 1 whose fundamental group has torsion. Then there are in-
finitely many smooth manifolds which are homotopy equivalent to M (and
even simply and tangentially homotopy equivalent to M) but not homeomor-
phic to M.

0.3 Some Open Problems Concerning L2-Invariants

The following conjectures will be treated in detail in Section 2.5 and Chapters
10, 11, 12, 13 and 14. They have created a lot of activity. This book contains
proofs of these conjectures in special cases which rely on general methods
and give some structural insight or consist of explicit computations. Recall
that a free G-CW -complex X is the same as the total space of a G-covering
X → G\X with a CW -complex G\X as base space, and that X is called
finite or of finite type if the CW -complex G\X is finite or of finite type.

Conjecture 0.11 (Strong Atiyah Conjecture). Let X be a free G-CW -
complex of finite type. Denote by 1

|FIN (G)|Z the additive subgroup of R gen-

erated by the set of rational numbers |H|−1, where H runs through the finite
subgroups of G. Then we get for the L2-Betti numbers of X

b(2)p (X) ∈ 1

|FIN (G)|
Z.
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In Subsection 10.1.4 we will explain that there are counterexamples to the
strong Atiyah Conjecture 0.11 due to Grigorchuk and Żuk, but no counterex-
ample is known to the author at the time of writing if one replaces 1

|FIN (G)|Z
by Q or if one assumes that there is an upper bound for the orders of finite
subgroups of G. The author is not aware of a counterexample to the following
conjectures at the time of writing.

Conjecture 0.12. (Positivity and rationality of Novikov-Shubin in-
variants). Let X be a free G-CW -complex of finite type. Then its Novikov-
Shubin invariants αp(X) are positive rational numbers unless they are ∞ or
∞+.

Conjecture 0.13 (Singer Conjecture). Let M be an aspherical closed

manifold. Then the L2-Betti numbers of the universal covering M̃ satisfy

b(2)p (M̃) = 0 if 2p ̸= dim(M)

and (−1)m · χ(M) ≥ 0 if dim(M) = 2m is even.
Let M be a closed connected Riemannian manifold with negative sectional

curvature. Then

b(2)p (M̃)

{
= 0 if 2p ̸= dim(M);
> 0 if 2p = dim(M),

and (−1)m · χ(M) > 0 if dim(M) = 2m is even.

Conjecture 0.14 (L2-torsion for aspherical manifolds). If M is an as-
pherical closed manifold of odd dimension 2m+ 1, then the L2-torsion of its
universal covering satisfies

(−1)m · ρ(2)(M̃) ≥ 0.

If M is a closed connected Riemannian manifold of odd dimension 2m + 1
with negative sectional curvature, then

(−1)m · ρ(2)(M̃) > 0.

If M is an aspherical closed manifold whose fundamental group contains an
amenable infinite normal subgroup, then

ρ(2)(M̃) = 0.

Conjecture 0.15 (Zero-in-the-spectrum Conjecture). Let M̃ be the uni-
versal covering of an aspherical closed Riemannian manifold M . Then for
some p ≥ 0 zero is in the spectrum of the minimal closure

(∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃)

of the Laplacian acting on smooth p-forms on M̃ .
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Conjecture 0.16 (Approximation Conjecture). Let G be a group. Let
{Gi | i ∈ I} be an inverse system of normal subgroups of G directed by
inclusion over the directed set I. Suppose that ∩i∈IGi = {1}. Let X be a
free G-CW -complex of finite type. Then Gi\X is a free G/Gi-CW -complex
of finite type and

b(2)p (X;N (G)) = lim
i∈I

b(2)p (Gi\X;N (G/Gi)).

Conjecture 0.17 (Simplicial volume and L2-invariants). Let M be an
aspherical closed orientable manifold of dimension ≥ 1. Suppose that its sim-
plicial volume ||M || vanishes. Then all the L2-Betti numbers and the L2-

torsion of the universal covering M̃ vanish, i.e.

b(2)p (M̃) = 0 for p ≥ 0;

ρ(2)(M̃) = 0.

0.4 L2-Invariants and Heat Kernels

The p-th L2-Betti number b
(2)
p (M) of a G-covering p : M → M of a closed

Riemannian manifold M was first defined by Atiyah [9, page 71] in connec-
tion with his L2-index theorem. By means of a Laplace transform, Atiyah’s
original definition agrees with the one given by the non-negative real number

b(2)p (M) = lim
t→∞

∫
F
trC(e

−t∆p(x, x)) dvol . (0.18)

Here F is a fundamental domain for the G-action on M and e−t∆p(x, y) is the

heat kernel on p-forms on M . The p-th L2-Betti number b
(2)
p (M) measures

the size of the kernel of the Laplacian acting on smooth p-forms on M . If G is

trivial, then b
(2)
p (M) is the same as the ordinary Betti number bp(M) which

is the real dimension of the p-th singular cohomology with real coefficients of
M . One important consequence of the L2-index theorem is the Euler-Poincaré
formula (0.1) (see Theorem 1.35 (2)).

The p-th Novikov-Shubin invariant α∆
p (M) measures how fast the ex-

pression
∫
F trC(e

−t∆p(x, x)) dvol approaches its limit b
(2)
p (M) for t → ∞ (see

(0.18)). The larger α∆
p (M) is, the “thinner” is the spectrum of the p-th Lapla-

cian on M at zero.
Notice that the L2-Betti numbers and the Novikov-Shubin invariants are

invariants of the large time asymptotics of the heat kernel and hence in-
variants of the global geometry, in contrast to invariants of the small time
asymptotics, such as indices of operators, which are of local nature. For in-
stance the Novikov-Shubin invariant associated to the Laplacian acting on
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0-forms of the universal covering of a closed Riemannian manifold M is de-
termined by group theoretic properties of the fundamental group π1(M) such
as its growth rate or the question whether it is amenable (see Theorem 2.55
(5)).

In view of the definitions of the L2-Betti numbers and Novikov-Shubin
invariants, the strong Atiyah Conjecture 0.11 and the Conjecture 0.12 about
the positivity and rationality of Novikov-Shubin invariants are very surpris-
ing. Some explanation for the strong Atiyah Conjecture 0.11 comes from
connections with algebraic K-theory, whereas the only evidence for the Con-
jecture 0.12 about the positivity and rationality of Novikov-Shubin invariants
is based on computations, and no conceptual reasons are known.

The third important L2-invariant is the L2-torsion ρ(2)(M) which was
introduced by Carey-Mathai, Lott, Lück-Rothenberg, Mathai and Novikov-
Shubin. It is only defined under a certain technical assumption, namely, that
M is of determinant class. This condition is conjecturally always satisfied and
we will suppress it in this discussion. If all L2-Betti numbers of M vanish,
the L2-torsion ρ(2)(M) is independent of the Riemannian metric and depends
only on the simple homotopy type. Actually, there is the conjecture that
it depends only on the homotopy type (see Conjecture 3.94). Its analytic
definition is complicated.

This analytic approach via the heat kernel is important in the following
situations. One can compute the L2-Betti numbers of the universal covering
M̃ of a closed Riemannian manifold M if M is hyperbolic (see Theorem
1.62), or, more generally, satisfies certain pinching conditions (see Theorem
11.4, Theorem 11.5 and Theorem 11.6). There are explicit computations of
the L2-Betti numbers, the Novikov-Shubin invariants and the L2-torsion of
the universal covering of a closed manifold M if M is a locally symmetric
space (see Theorem 5.12 and Section 5.4). The proof of the Proportionality
Principle 3.183 relies on the analytic description. The proofs of these facts
do not have combinatorial counterparts.

0.5 L2-Invariants and Cellular Chain Complexes

One important feature of all these L2-invariants is that they can also be
defined for a G-covering p : X → X of a finite CW -complex X in terms of
the cellular ZG-chain complex C∗(X). For L2-Betti numbers and Novikov-
Shubin invariants it suffices to require that X is of finite type. The associated

L2-chain complex C
(2)
∗ (X) is defined by l2(G)⊗ZGC∗(X). Each chain module

C
(2)
∗ (X) is a Hilbert space with isometric G-action of the special form l2(G)n,

where l2(G)n is the n-fold sum of the Hilbert space l2(G). Each differential

c
(2)
p is a bounded G-equivariant operator. The p-th L2-homology H

(2)
p (X) is

defined to be the quotient of the kernel of c
(2)
p by the closure of the image of

c
(2)
p+1. Dividing out the closure of the image has the effect thatH

(2)
p (X) is again



0.6 L2-Betti Numbers and Betti Numbers 7

a Hilbert space with isometric G-action. It actually comes with the structure
of a finitely generated Hilbert N (G)-module, where N (G) denotes the von
Neumann algebra of the group G. This additional structure allows to define

the von Neumann dimension of H
(2)
p (X). Dodziuk has shown that this non-

negative real number agrees with b
(2)
p (X) as defined in (0.18) (see Theorem

1.59 and (1.60)). One can also read off the Novikov-Shubin invariants and

the L2-torsion from C
(2)
∗ (X) by results of Efremov (see Theorem 2.68) and

Burghelea-Friedlander-Kappeler-McDonald (see Theorem 3.149). The p-th
Novikov-Shubin invariant αp(X) measures the difference between the image

of c
(2)
p and the closure of the image of c

(2)
p .

The point of this cellular description is that it is much easier to han-
dle and calculate than the analytic counterpart. For instance one can show
homotopy invariance of L2-Betti numbers, Novikov-Shubin invariants and
L2-torsion and prove some very useful formulas like sum formulas, product
formulas, fibration formulas and so on using the combinatorial approach (see
Theorem 1.35, Theorem 2.55, Theorem 3.93, Theorem 3.96 and Theorem
3.100). The combinatorial approach allows to show for an aspherical closed
manifold M that all L2-Betti numbers and the L2-torsion of its universal cov-
ering vanish provided M carries a non-trivial S1-action (see Theorem 3.105).
There exists a combinatorial proof that all L2-Betti numbers of the universal
covering of a mapping torus of a self map of a CW -complex of finite type
vanish (see Theorem 1.39). No analytic proofs or no simpler analytic proofs
of these results are known to the author. The combination of the analytic
and combinatorial methods yields a computation of the L2-invariants of the
universal covering of a compact 3-manifold provided Thurston’s Geometriza-
tion Conjecture holds for the pieces appearing in the prime decomposition of
M (see Theorem 4.1, Theorem 4.2 and Theorem 4.3).

For a kind of algorithmic computation of L2-invariants based on the com-
binatorial approach we refer to Theorem 3.172.

The possibility to take both an analytic and a combinatorial point of view
is one of the main reasons why L2-invariants are so powerful.

0.6 L2-Betti Numbers and Betti Numbers

Let X̃ → X be the universal covering of a connected CW -complex X of fi-

nite type. Then the L2-Betti numbers b
(2)
p (X̃) of X̃ and the (classical) Betti

numbers bp(X) share some basic properties such as homotopy invariance, the
Euler-Poincaré formula, Poincaré duality, Morse inequalities, Künneth for-
mulas and so on, just replace in the corresponding statement for the classical

Betti numbers bp(X) by b
(2)
p (X̃) everywhere (see Theorem 1.35). There is

also an L2-Hodge de Rham Theorem 1.59 which is one important input in
the proof of Theorem 0.3.
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But there are also differences. One important extra feature of the L2-Betti
numbers is that they are multiplicative under finite coverings in the following

sense. If p : Y → X is a finite d-sheeted covering, then b
(2)
p (Ỹ ) = d · b(2)p (X̃)

(see Theorem 1.35 (9)). This implies for instance b
(2)
p (S̃1) = 0 for all p ≥ 0

since there is a d-sheeted covering S1 → S1 for d ≥ 2. The corresponding
statement is not true for the Betti numbers. This is one reason why L2-Betti
numbers more often tend to be zero than the classical Betti numbers. Often
this is the key phenomenon for applications. Another reason for it is the fact

that b
(2)
0 (X̃) is 0 if π1(X) is infinite and is |π1(X)|−1 if π1(X) is finite (see

Theorem 1.35 (8)), whereas b0(X) is always 1.

If π1(X) is finite, then b
(2)
p (X̃) = |π1(X)|−1 · bp(X̃). If π1(X) is infinite,

the only general relation between the L2-Betti numbers of X̃ and the Betti
numbers of X is the Euler-Poincaré formula (0.1). Given an integer l ≥ 1 and
a sequence r1, r2, . . ., rl of non-negative rational numbers, we construct in
Example 1.38 a group G such that BG is of finite type and

b
(2)
p (G) := b

(2)
p (EG) =

{
rp for 1 ≤ p ≤ l;
0 for l + 1 ≤ p;

bp(G) := bp(BG) = 0 for p ≥ 1.

On the other hand we can construct for any sequence n1, n2, . . . of non-
negative integers a CW -complex X of finite type such that bp(X) = np and

b
(2)
p (X̃) = 0 hold for p ≥ 1.

However, there is an asymptotic relation between the L2-Betti numbers
of X̃ and the Betti numbers of X. Recall that the Betti numbers are not
multiplicative. One may try to force multiplicativity of the Betti numbers by
stabilizing under finite coverings as follows. Suppose that π1(X) possesses a
nested sequence of normal subgroups of finite index

π1(X) = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . .

with ∩∞
i=0Gi = {1}. Then Gi\X̃ is a CW -complex of finite type and there is

a [G : Gi]-sheeted covering Gi\X̃ → X. One may consider limi→∞
bp(Gi\X̃)
[G:Gi]

.

This expression is automatically multiplicative if the limit exists and is inde-
pendent of the nested sequence. Actually it turns out that this is true and

lim
i→∞

bp(Gi\X̃)

[G : Gi]
= b(2)p (X̃).

This result is a special case of the Approximation Conjecture 0.16 which will
be investigated in Chapter 13.

0.7 L2-Invariants and Ring-Theory

A more algebraic approach will be presented in Chapter 6. It will enable us to
define L2-Betti numbers for arbitrary G-spaces and in particular for groups
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without any restrictions on BG. This allows to apply standard techniques
of algebraic topology and homological algebra directly to L2-Betti numbers.
The idea is to view the group von Neumann algebra N (G) just as a ring
forgetting the functional analysis and the topology. The von Neumann al-
gebra N (G) has zero-divisors and is not Noetherian unless G is finite. This
makes N (G) complicated as a ring. But it has one very nice property, it is
semihereditary, i.e. any finitely generated submodule of a projective module
is itself projective (see Theorem 6.5 and Theorem 6.7 (1)). This justifies the
slogan that N (G) behaves like the ring Z if one ignores the facts that Z has
no zero-divisors and is Noetherian. The main input for the ring-theoretic ap-
proach is the construction of a dimension function for arbitrary modules over
the group von Neumann algebra N (G) (Theorem 6.7). It is uniquely charac-
terized by the condition that it satisfies Additivity, Continuity and Cofinality
and extends the classical dimension function for finitely generated projective
modules which is defined in terms of the von Neumann trace of idempotents
in Mn(N (G)). One applies it to the N (G)-modules Hp(N (G)⊗ZGCsing

∗ (X))
for a G-space X and gets an extension of the notion of L2-Betti numbers to
arbitrary G-spaces if one allows the value ∞. The second key result is that
for amenable G the von Neumann algebra N (G) looks like a flat CG-module
from the point of view of dimension theory (see Theorem 6.37).

In Chapter 8 we introduce the algebra U(G) of operators affiliated to the
group von Neumann algebra. From an algebraic point of view U(G) can be
described as the Ore localization of N (G) with respect to the multiplicative
set of non-zero divisors. The main ring theoretic property of U(G) is that it
is von Neumann regular (see Theorem 8.22 (3)) which is a stronger property
than to be semihereditary. The dimension theory of N (G) extends to U(G)
(see Theorem 8.29). The relation of U(G) toN (G) is analogous to the relation
of Q to Z.

From the point of view of representation theory of finite groups the pas-
sage from CG to N (G) is the natural one for infinite groups. Namely, two
finitely generated projective N (G)-modules P and Q are N (G)-isomorphic
if and only if their center valued von Neumann dimensions dimu

N (G)(P ) and
dimu

N (G)(Q) agree (see Theorem 9.13). If G is finite, this reduces to the well-
known theorem that two complex finite-dimensional G-representations are
isomorphic if and only if they have the same character.

This algebraic approach may be preferred by algebraists who do not have
much background in (functional) analysis.

Linnell’s Theorem 10.19 says that the strong Atiyah Conjecture 0.11 is
true for a class of groups C which contains all extensions of free groups with
elementary amenable groups as quotients, provided that there is an upper
bound on the orders of finite subgroups. Its proof is based on techniques from
ring theory, in particular localization techniques, and from K-theory. The
following square of inclusions of rings plays an important role as explained
below
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CG −−−−→ N (G)y y
D(G) −−−−→ U(G)

(0.19)

where D(G) denotes the division closure of CG in U(G).

0.8 L2-Invariants and K-Theory

The strong Atiyah Conjecture 0.11 is related to K-theory in the following
way. It is equivalent to the statement that for any finitely presented CG-
module M the generalized dimension dimN (G)(N (G)⊗CG M) (see Theorem
6.5 and Theorem 6.7 (1)) of the N (G)-module N (G) ⊗CG M takes values
in 1

|FIN (G)|Z (see Lemma 10.7). Notice that any non-negative real number

occurs as dimN (G)(P ) for a finitely generated projective N (G)-module P , if
G contains Z as subgroup (see Example 1.11, Theorem 6.24 (4) and Theorem
6.29 (2)). So the point is to understand the passage from CG to N (G), not
only to investigate modules over N (G).

One may first consider the weaker statement that for any finitely gener-
ated projective CG-module M the generalized dimension dimN (G)(N (G)⊗CG
M) takes values in 1

|FIN (G)|Z. This is equivalent to the statement that

the composition K0(CG)
i−→ K0(N (G))

dimN(G)−−−−−→ R must have its image in
1

|FIN (G)|Z, where i is the change of rings map. This is certainly true for the
composition ⊕

H⊂G
|H|<∞

K0(CH)
a−→ K0(CG)

i−→ K0(N (G))
dimN(G)−−−−−→ R

where a is the sum of the various change of rings maps. The Isomorphism
Conjecture 9.40 for K0(CG) implies that a is surjective and hence that the

image of K0(CG)
i−→ K0(N (G))

dimN(G)−−−−−→ R is contained in 1
|FIN (G)|Z.

The proof of Linnell’s Theorem 10.19 can be split into two parts, a ring-
theoretic one and a K-theoretic one. Namely, one proves that any finitely
presented CG-module becomes finitely generated projective over the ring
D(G) (see (0.19)) and that the composition⊕

H⊂G
|H|<∞

K0(CH)
a−→ K0(CG)

j−→ K0(D(G))

for j the change of rings map is surjective (see Section 10.2). Then the claim
follows from (0.19) and the facts that the change of rings homomorphism
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K0(N (G)) → K0(U(G)) is bijective (see Theorem 9.20 (1)) and that the di-
mension function dimN (G) for N (G) extends to a dimension function dimU(G)

for U(G) satisfying dimU(G)(U(G) ⊗N (G) M) = dimN (G)(M) for any N (G)-
module M (see Theorem 8.29).

The extension of the dimension function to arbitrary modules has some
applications to G-theory of CG as already mentioned in Theorem 0.7 (see
Subsection 9.5.3). Computations of the middle K-theory and of the L-theory
of von Neumann algebras and the associated algebras of affiliated opera-
tors are presented in Chapter 9. L2-methods also lead to results about the
Whitehead group Wh(G) (see Theorem 0.6) and some information about the
Bass Conjecture (see Subsection 9.5.2). The question whether the L2-torsion
in the L2-acyclic case is a homotopy invariant is equivalent to the question
whether the map induced by the Fuglede-Kadison determinant Wh(G) → R
is trivial (see Conjecture 3.94). This question is related to the Approximation
Conjecture 0.16 by the Determinant Conjecture 13.2 (see Lemma 13.6 and
Theorem 13.3 (1)). The Approximation Conjecture 0.16 also plays a role in
proving that the class of groups for which the strong Atiyah Conjecture 0.11
is true is closed under direct and inverse limits (see Theorem 10.20).

0.9 L2-Invariants and Aspherical Manifolds

Let M be an aspherical closed manifold, for instance a closed Riemannian
manifold with non-positive sectional curvature. Then the Singer Conjecture
0.13, Conjecture 0.14 about L2-torsion for aspherical manifolds and the zero-
in-the-spectrum Conjecture 0.15 put some restrictions on the L2-invariants of
its universal covering. There are special cases where these conjectures have
been proved by computations. For instance if M is a compact 3-manifold
(see Chapter 4), a locally symmetric space (see Corollary 5.16) or carries a
Riemannian metric whose sectional curvature satisfies certain pinching con-
ditions (see Theorem 11.4, Theorem 11.5 and Theorem 11.6). They also have
been proved under additional assumptions like the existence of a non-trivial
S1-action (see Theorem 3.105), the existence of the structure of a Kähler
hyperbolic manifold (see Theorem 11.14) or the existence of a normal in-
finite (elementary) amenable subgroup of π1(X) (see Theorem 3.113 and
Theorem 7.2). But it is still very mysterious why Poincaré duality together
with asphericity may have such implications, or what kind of mechanism is
responsible for these phenomenons. The status of Conjecture 0.17 about sim-
plicial volume and L2-invariants is similar. Conjectures 0.13, 0.14, 0.15 and
0.17 become false if one drops the condition that M is aspherical. Without
this assumption it is easy to construct counterexamples to all but the zero-in-
the-spectrum Conjecture 0.15. Counterexamples in the non-aspherical case to
the zero-in-the-spectrum Conjecture 0.15 are presented by Farber-Weinberger
[187] (see also [258]). We will deal with them in Section 12.3.
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0.10 L2-Invariants and Groups

L2-Betti numbers b
(2)
p (G) (and also Novikov-Shubin invariants αp(G)) can be

defined for arbitrary (discrete) groups if one allows the value ∞. In Chapter
7 the L2-Betti numbers of groups are investigated and in particular the ques-
tion when they vanish is studied. The vanishing of all L2-Betti numbers of G
implies the vanishing of the L2-Euler characteristic χ(2)(G) of G. The notion
of L2-Euler characteristic agrees with the classical notion of Euler character-
istic χ(BG) (or more generally the virtual Euler characteristic) if the latter
is defined. Actually Theorem 0.2 is proved by showing that all L2-Betti num-
bers of a group G vanish if G contains a normal infinite amenable subgroup.
This example shows that it is important to extend the definition of L2-Betti
numbers from those groups for which BG is finite to arbitrary groups even
if one may only be interested in groups with finite BG. Namely, if G has a
finite model for BG, this does not mean that a normal subgroup H ⊂ G has
a model of finite type for BH. The vanishing of the first L2-Betti number

b
(2)
1 (G) has consequences for the deficiency of the group. The hard part of

the proof of Theorem 0.5 is to show the vanishing of b
(2)
1 (G), then the claim

follows by elementary considerations.
We show in Theorem 7.10 that all L2-Betti numbers of Thompson’s group

F vanish. This is a necessary condition for F to be amenable. The group F
cannot be elementary amenable and does not contain Z ∗ Z as subgroup but
(at the time of writing) it is not known whether F is amenable or not.

In Section 7.4 a number ρ(2)(f) ∈ R is associated to an automorphism
f : G → G of a group G provided that BG has a finite model. One also needs
the technical assumption of det ≥ 1-class which is conjecturally always true
and proved for a large class of groups and will be suppressed in the follow-
ing discussion. This invariant has nice properties such as the trace property
ρ(2)(g◦f) = ρ(2)(f ◦g) and multiplicativity ρ(2)(fn) = n ·ρ(2)(f) and satisfies
a sum formula ρ(2)(f1 ∗f0 f2) = ρ(2)(f1) + ρ(2)(f2) − ρ(2)(f0) (see Theorem
7.27). If f = π1(g) for an automorphism g : F → F of a compact orientable
2-dimensional manifold F different from S2, D2 and T 2, then ρ(2)(f) is, up
to a constant, the sum of the volumes of the hyperbolic pieces appearing in
the Jaco-Shalen-Johannson-Thurston decomposition of the mapping torus of
g along tori into Seifert pieces and hyperbolic pieces (see Theorem 7.28). If
F is closed and g is irreducible, then ρ(2)(g) = 0 if and only if g is periodic,
and ρ(2)(g) ̸= 0 if and only if g is pseudo-Anosov.

In Section 7.5 the question is discussed whether or not the L2-Betti num-
bers, Novikov-Shubin invariants and the L2-torsion are quasi-isometry invari-
ants or invariants of the measure equivalence class of a countable group G.
Theorem 0.9 is one of the main applications of L2-Betti numbers to measur-
able equivalence.


