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Abstract. This manuscript is based on the lecture courses Algebraic Topology

I from the winter term 24/25 and Algebraic Topology II from the summer term
25.

1. Introduction

This manuscript is based on the lecture courses Algebraic Topology I from the
winter term 24/25 and Algebraic Topology II from the summer term 25.

1.1. Prerequisites.

• Topological spaces;
• CW-complexes;
• Coverings;
• Chain complexes and modules over a ring;
• Singular and cellular (co-)homology;
• Basics about smooth manifolds;
• Basics about bundles and vector bundles;
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2. Basic definitions and properties of homotopy groups

2.1. Review of the fundamental group. We briefly recall the notion and the
basic properties of the fundamental group π1(X,x) of a pointed space (X,x)

Let X = (X,x) be a pointed space, i.e., a topological space X with an explicit
choice of a so called base point x ∈ X. Denote by I the unit interval [0, 1]. A
loop at x in X is a map of pairs w : (I, ∂I) → (X, {x}). Elements in π1(X,x)
are homotopy classes of loops at x in X. Note that this means that two loops
w,w′ : (I, ∂I)→ (X, {x}) are homotopic if there is a homotopy h : I × I → X such
that h(s, 0) = w(s), h(s, 1) = w′(s), and h(0, t) = h(1, t) = x hold for all s, t ∈ I.
Given two loops v, w at x in X, we get a new loop v ∗ w by putting

v ∗ w(s) =

{
v(2s) if s ∈ [0, 1/2];

w(2s− 1) if s ∈ [1/2, 1].

The group structure on π1(X,x) is given by the formula [v] · [w] = [v ∗ w]. The
unit element is given by the constant loop cx : (I, ∂I)→ (X, {x}) sending s ∈ I to
x and the inverse of [w] is given by [w−] for w− : (I, ∂I)→ (X, {x}), s 7→ w(1− s).

Here are some basic properties of the fundamental group:

• A pointed map f : (X,x)→ (Y, y) induces a group homomorphism

π1(f, x) : π1(X,x)→ π1(Y, y), [w] 7→ [f ◦ w]

which depends only on the pointed homotopy class of f ;
• We get a functor from the category of pointed spaces to the category of

groups;
• Given pointed spaces (Xi, xi) for i = 0, 1, we get from the two projections

pri : (X0 ×X1, (x0, x1))→ (Xi, xi) for i = 0, 1 an isomorphism

π1(pr0, (x0, x1))× π1(pr1, (x0, x1)) : π1(X0 ×X1, (x0, x1))
∼=−→ π1(X0, x0)× π1(X1, x1);

• Let p : X → Y be a covering. Choose x ∈ X and put y = p(x). Then the
induced map π1(p, x) : π1(X,x)→ π1(Y, y) is injective.

If p is actually a G-covering for the group G and X is path connected,
then we obtain an exact sequence of groups

1→ π1(X,x)
π1(p,x)−−−−−→ π1(Y, y)

∂−→ G→ 1;

• The mapping degree induces an isomorphism π1(S1)
∼=−→ Z;
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• There is a Seifert-van Kampen Theorem. It allows to read off a presen-
tation of the fundamental group from the 2-skeleton X2 and implies that
the inclusion X2 → X induces an isomorphism π1(X2, x) → π1(X,x) for
any choice of base point x ∈ X. In particular π1(X,x) vanishes if X is
a CW -complex which has no 1-cells. Moreover, π1(

∨r
i=1 S

1, x) is the free
group of rank r. So in general π1(X) is not abelian. Actually any group
occurs as π1(X,x) for a 2-dimensional path connected CW -complex X;

• We get a functor T1 from the fundamental groupoid Π(X) to the category
of groups by sending an object in Π(X) which is a point x ∈ X to π1(X,x).
A morphism [u] : x→ y in Π(X) is a homotopy class [u] relative endpoints
of paths u : I → X from x to y. It is send to the group homomorphism
T1([u]) : π1(X,x)→ π1(X, y) mapping [w] to [u− ∗ w ∗ u]. Recall that the
composite of the morphism [u] : x→ y and [v] : y → z in Π(X) is given by
[v] ◦ [u] = [u ∗ v]. One easily checks T1([v] ◦ [u]) = T1([v]) ◦ T1([u]). Recall
that there is a canonical isomorphism of π1(X,x) to the opposite of the
group autΠ(X)(x);

• Consider two maps f0, f1 : X → Y . Let h : X × I → Y be a homotopy
between f0 and f1. Choose a base point x and put yi = fi(x) for i =
0, 1. Let u : I → Y be the path from y0 to y1 given by u(t) = h(x, t).

We obtain a group isomorphism T1([u]) : π1(Y, y0)
∼=−→ π1(Y, y1) and the

following diagram of groups commutes

(2.1) π1(Y, y0)

T1([u])∼=

��

π1(X,x)

π1(f0,x0)
44

π1(f1,x1)
**

π1(Y, y1).

Now consider a pointed pair (X,A, x), i.e., a topological pair (X,A) together with
a choice of a base point x ∈ A. Define the set π1(X,A, x) as the set of homotopy
classes relative {0} of maps of pairs w : (I, ∂I) → (X,A) satisfying w(0) = x, or,
equivalently, of homotopy classes of maps of triads (I; {0}, {1})→ (X, {x}, A). Note
that w(1) is not necessarily equal to x and is only required to lie in A. If A = {x},
then π1(X,A, x) agrees with π1(X,x). In general there is no group structure on
π1(X,A, x).

Define π0(X) as the set of path components of X. Note that this is the same as
the homotopy classes of maps {•} → X. If (X,x) is pointed map, we sometimes
write π0(X,x) instead of π0(X) to indicate that the set π0(X) has a preferred base
point, namely the path component containing x.

Next we construct the (in some sense exact) sequence

(2.2) π1(A, x)
π1(i,x)−−−−→ π1(X,x)

π1(j,x)−−−−→ π1(X,A, x)
∂1−→ π0(A)

π0(i)−−−→ π0(X)
π0(j)−−−→ π0(X,A)→ {∗}.

The map π1(i, x) is the group homomorphism given by the inclusion i : (A, x) →
(X,x). The map of sets π1(j, x) : π1(X,x)→ π1(X,A, x) is the obvious map given
by forgetting that w(1) = x holds in connection with π1(X,x). The map ∂1 sends
[w] represented by w : (I, ∂I)→ (X,A) to the path component of A containing w(1).
The map of sets π0(i) sends the path component C of A to the path component D
of X containing i(C). The pointed set π0(X,A) is the quotient of the set π0(X)
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by collapsing the image of π0(i) : π0(A) → π0(X) to one element and π0(j) is the
obvious projection.

This sequence is exact in the following sense. The image of π1(i, x) is the
preimage under π1(j, x) of the element in π1(X,A, x) given by the constant map
cx : I → X. The image of π1(j, x) is the preimage under ∂1 of the path component
of A containing x. The image of ∂1 is the preimage under π0(i) of the path com-
ponent of X containing x. The image of π0(i) is the preimage under π0(j) of the
preferred base point in π0(X,A). The map π0(j) is surjective.

2.2. Basic definitions and the group structure on homotopy groups. Next
we want to generalize the notion of the fundamental group to the notion of the
homotopy group in degree n for all integers n ≥ 1. The basic idea is to replace
I = [0, 1] and ∂I = {0, 1} by the n-dimensional cube

In =

n∏
i=1

[0, 1] = {(s1, s2, . . . , sn) | si ∈ [0, 1]}

where we define

∂In = {(s1, s2, . . . , sn) | si ∈ I, ∃i ∈ {1, 2, . . . , n} with si ∈ {0, 1}}.

Given a pointed space X, we define the set πn(X,x) to be the set of homotopy
classes [f ] of maps of pairs f : (In, ∂In) → (X, {x}). Given two elements [f ] and
[g], we define their product [f ] · [g] by the homotopy class of the map of pairs
f ∗ g : (In, ∂In)→ (X, {x}) defined by

(2.3) f ∗ g(s1, s2, . . . , sn) =

{
f(2s1, s2, . . . , sn) if s1 ∈ [0, 1/2];

g(2s1 − 1, s2, . . . , sn) if s1 ∈ [1/2, 1].

The unit is given by the homotopy class [cx] of the constant map cx : (In, ∂In) →
(X, {x}). The inverse of [f ] is the class [f−] for the map f− : (In, ∂In)→ (X, {x})
sending (s1, s2, . . . , sn) to (1 − s1, s2, . . . , sn). The proof that this defines a group
πn(X,x) called n-homotopy group of the pointed space (X,x) is the essentially the
same as the one for π1(X). The construction above for n = 1 agrees with the
definition of π1(X,x) presented in Subsection 2.1. If we define I0 to be {•} and
∂I0 = ∅, the definition of the set π0(X,x) above agrees with the definition of π0(X)
as the set of path components of X. Recall that π0(X) has no group structure in
general and the π1(X,x) is not necessarily commutative. However, the following
lemma is true.

Lemma 2.4. The group πn(X,x) is abelian for n ≥ 2.

Proof. The basic observation is that in the cube In for n ≥ 2 there is enough room
to show [f ] · [g] = [g] · [f ]. The desired homotopy is indicated for n = 2 by the
following sequence of pictures:
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F
f g + g g f g f

g

The homotopy begins by shrinking the domains of f and g to smaller subcubes
of In, where the region outside these subcubes is mapped to the basepoint. After
this has been done, there is room to slide the two subcubes around anywhere in In

as long as they stay disjoint. Hence for n ≥ 2 they can be slided past each other,
interchanging their positions. Then to finish the homotopy, the domains of f and
g can be enlarged back to their original size. The whole process can actually be
done using just the coordinates s1 and s2, keeping the other coordinates fixed. �

Any map of pairs f : (In, ∂In)→ (X, {x}) factorizes in a unique way over the pro-
jection pr : In → In/∂In to a pointed map f : (In/∂In, ∂In/∂In)→ (X,x). Obvi-
ously this is compatible with the notion of a homotopy of maps of pairs (In, ∂In)→
(X, {x}) and of a pointed homotopy of pointed maps (In/∂In, ∂In/∂In)→ (X,x).
There is an obvious homeomorphism of pairs (In/∂In, ∂In/∂In) → (Sn, {s}) for
the fixed base point s = (1, 0, . . . , 0) ∈ Sn. Hence we can interprete an element in
πn(X,x) as a pointed homotopy of pointed maps (Sn, s)→ (X,x). The multiplica-
tion in this picture is given as follows. Consider pointed maps fi : (Sn, s)→ (X,x)
for i = 0, 1. Let [f0] and [f1] be their classes in πn(X,x). They define a pointed
map f0 ∨ f1 : (Sn ∨ Sn, s)→ (X,x). Let

(2.5) ∇n : Sn → Sn ∨ Sn

be the so-called pinching map which is obtained by collapsing the equator Sn−1 ⊆
Sn given by {(x0, x1, . . . , xn) ∈ Sn | xn = 0} to a point. Then [f0]·[f1] is represented
by the composite f0 ∨ f0 ◦ ∇n, as illustrated in the following picture



ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 7

&

f

Un
X

g

The interpretation in terms of pointed maps (Sn, s)→ (X,x) is useful for some
theoretical considerations and in connection with CW -complexes, whereas the pic-
ture in terms of maps of pairs (In, ∂In) → (X, {x}) is better suited for some
constructions and proofs, e.g., the proof of Lemma 2.4.

2.3. Functorial properties of homotopy groups. Obviously a map of pointed
spaces f : (X,x) → (Y, y) induces a group homomorphism πn(f, x) : πn(X,x) →
πn(Y, y) for n ≥ 1 by composition. We get a functor from the category of pointed
spaces to the category of abelian groups by sending (X,x) to πn(X,x) for n ≥ 2,
whereas for n = 1 we get a functor from the category of pointed spaces to the
category of groups by sending (X,x) to π1(X,x) for n = 1. We get a functor from
the category of topological spaces to sets by sending X to π0(X).

Obviously πn(f, x) depends only on the pointed homotopy class of f and π0(f)
depends only on the homotopy class of f .

Next we construct for every n ≥ 2 a functor Tn from Π(X) to the category
of abelian groups. It sends an object in Π(X), which is a point x in X, to the
abelian group πn(X,x). Consider a morphism [u] : x → y in Π(X) represented by
a path u in X from x to y. It is sent to the homomorphism of abelian groups
Tn([u]) : πn(X,x) → πn(X, y) defined as follows. Consider [f ] ∈ πn(X,x) repre-
sented by the map f : (In, ∂In)→ (X, {x}). Consider a new map uf : (In, ∂In)→
(X, {x}) by shrinking the domain of f to a smaller concentric cube in In, then
inserting the path u on each radial segment in the shell between this smaller cube
and ∂In, as indicated in the picture below
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f

We leave it to the reader to figure out the elementary proof that this definition
is independent of all the choices and indeed yields a functor Tn from Π(X) to the
category of abelian groups.

Recall that there is a canonical isomorphism of π1(X,x) to the opposite of the
group autΠ(X)(x). Hence we obtain from the functor Tn above the structure of a
Z[π1(X,x)]-module on πn(X,x) for n ≥ 2. Recall that for n = 1 the functor T1 is
actually given by conjugation.

Consider two maps f0, f1 : X → Y . Let h : X×I → Y be a homotopy between f0

and f1. Choose a base point x and put yi = fi(x) for i = 0, 1. Let u : I → Y be the
path from y0 to y1 given by u(t) = h(x, t). For n ≥ 2 we obtain an isomorphism of

abelian groups Tn([u]) : πn(Y, y0)
∼=−→ πn(Y, y1) and the following diagram of abelian

groups commutes

(2.6) πn(Y, y0)

Tn([u])∼=

��

πn(X,x)

πn(f0,x0)
44

πn(f1,x1)
**

πn(Y, y1).

A consequence of (2.1) and (2.6) is that a homotopy equivalence f : X → Y

induces for every x ∈ X and n ≥ 1 a bijection πn(f, x) : π1(X,x)
∼=−→ πn(Y, f(x)).

Moreover, for a path connected space X the isomorphism class of πn(X,x) is in-
dependent of the choice of x ∈ X. Therefore we sometimes write πn(X) instead of
πn(X,x)

Given pointed spaces (Xi, xi) for i = 0, 1, we get from the two projections
pri : (X0 ×X1, (x0, x1))→ (Xi, xi) for i = 0, 1 a group isomorphism

πn(pr0, (x0, x1))× πn(pr1, (x0, x1)) : πn(X0 ×X1, (x0, x1))
∼=−→ πn(X0, x0)× πn(X1, x1)

for every n ≥ 1.

2.4. Homotopy groups and coverings.
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Theorem 2.7 (Homotopy groups and covering). Let p : X → Y be a covering.
Choose a base point x ∈ X and put y = p(x). Then for n ≥ 2 the map induced by p

πn(p, x) : πn(X,x)→ πn(Y, y)

is bijective.

Proof. Consider a map f : Sn → Y sending the base point s to y. Since n ≥ 2 holds
by assumption, Sn is simply connected. Hence the image of π1(f, x) is contained in
the image π1(p, x). A standard theorem about coverings and liftings implies that

we can find a lift f̃ : (Sn, s)→ (X,x) of f , i.e., a pointed map f̃ satisfying p◦ f̃ = f .
This shows that πn(p, x) is surjective for n ≥ 2.

Injectivity follows from the standard theorem about lifting homotopies along
coverings, the argument is the same as for the injectivity of π1(p, x). This standard
theorem says that for a map u : Z → X and a homotopy h : Z × I → Y with

h0 = p ◦ u we can find precisely one homotopy h̃ : Z × I → X with p ◦ h̃ = h and

h̃0 = u. �

Theorem 2.7 implies for a connected CW -complex X that for the universal cov-

ering p : X̃ → X and any choice of base points x̃ ∈ X̃ and x ∈ X with p(x̃) = x

the map πn(p, x̃) : πn(X̃, x̃) → πn(X,x) is bijective for n ≥ 2. If we additionally

assume that X̃ is contractible, we get πn(X,x) = 0 for n ≥ 2. In particular we get
for any base point s ∈ S1 and n ≥ 1

(2.8) πn(S1, s) ∼=

{
Z if n = 1;

{1} if n ≥ 2,

since the universal covering of S1 is given by the map R → S1 sending t ∈ R to
exp(2πit).

2.5. The long exact sequence of a pair and a triple. Consider a pointed pair
(X,A, x), i.e., a pair of topological spaces (X,A) together with a base point x ∈ A.
We can consider In−1 as the subspace of In given by those points (s1, s2, . . . , sn)
satisfying sn = 0. Let Jn−1 be the subspace of ∂In which is the closure of ∂In\In−1

in ∂In. Explicitly we get

Jn−1 = (∂In \ In−1) ∪ ∂In−1 = {(s1, s2, . . . , sn) ∈ In

| (∃i ∈ {1, 2, . . . , (n− 1)} with si ∈ {0, 1}) or (sn = 1)}.

Obviously In−1∪Jn−1 = ∂In and In−1∩Jn−1 = ∂In−1. For n ≥ 1 we define the set
πn(X,A, x) as the set homotopy classes [f ] of maps of triples f : (In, ∂In, Jn−1)→
(X,A, {x}). For n ≥ 2, this becomes a group by defining [f0]·[f1] by the class [f0∗f1]
for the maps of triples f0∗f1 : (In, ∂In, Jn−1)→ (X,A, {x}) defined in (2.3). There
is no reasonable group structure on π1(X,A, x). It is not hard to check that this
group structure on πn(X,A, x) for n ≥ 2 is well-defined and that the following
result is true.

Lemma 2.9. The group πn(X,A, x) is abelian for n ≥ 3.

Note that there is an obvious identification of πn(X, {x}, x) defined above and
of πn(X,x) defined in Subsection 2.2.

Obviously we obtain a functor from the category of pointed pairs to the category
of groups by π2(X,A, x) and a functor from the category of pointed pairs to the
category of abelian groups by πn(X,A, x) for n ≥ 3. If two maps f0, f1 : (X,A, x)→
(Y,B, y) of pointed pairs are homotopic as maps of pointed pairs, then πn(f0, x) =
πn(f1, x) holds for n ≥ 1. Given a pair (X,A), one can define a functor Tn from
the fundamental groupoid Π(A) of A to the category of groups or abelian groups
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by assigning to a point x ∈ A the homotopy group π2(X,A, x) or πn(X,A, x) for
n ≥ 3, the construction appearing in Subsection 2.3 for a space X carries directly
over. In particular πn(X,A, x) inherits the structure of a Z[π1(A, x)]-module for
n ≥ 3.

A map of triples f : (In, ∂In, Jn−1) → (X,A, {x}) factorizes uniquely through
the projection pr : (In, ∂In, Jn−1)→ (In/Jn−1, ∂I

n/Jn−1, Jn−1/Jn−1) to a map of
pointed pairs (In/Jn−1, ∂I

n/Jn−1, Jn−1/Jn−1)→ (X,A, x). There is a homeomor-

phism (In/Jn−1, ∂I
n/Jn−1, {Jn−1/Jn−1})

∼=−→ (Dn, Sn−1, {s}) of triples. Hence one
can define πn(X,A, x) also the set of homotopy classes of pointed maps of pointed
pairs (Dn, Sn−1, s) → (X,A, x). The multiplication in this picture is given as fol-
lows. Consider pointed maps of pointed pairs fi : (Dn, Sn−1, s) → (X,A, x) for
i = 0, 1. Let [f0] and [f1] be their classes in πn(X,A, x). They define a pointed
map of pointed pairs f0 ∨ f1 : (Dn ∨Dn, Sn−1 ∨ Sn−1, s)→ (X,A, x). Let

(2.10) ∇′n : Dn → Dn ∨Dn

be the so-called pinching map which is obtained by collapsing Dn−1 ⊆ Dn given
by {(x1, . . . , xn) ∈ Dn | xn = 0} to a point. Note that ∇′n is a map of pointed
pairs (Dn, Sn−1, s)→ (Dn ∨Dn, Sn−1 ∨ Sn−1, s) and its restriction to (Sn−1, s) is
the pinching map defined in (2.5). Then [f0] · [f1] is represented by the composite
f0 ∨ f0 ◦ ∇′n.

Define for n ≥ 2 a group homomorphism ∂n : πn(X,A, x)→ π1(A, x) by sending
the class [f ] of the map of pointed pairs f : (Dn, Sn−1, s)→ (X,A, s) to the pointed
homotopy class of maps of pointed spaces obtained by restriction to (Sn−1, s). Let
i : A→ X and j : X → (X,A) be the canonical inclusions.

Theorem 2.11. We obtain a long exact sequence of groups infinite to the left

· · · ∂n+2−−−→ πn+1(A, x)
πn+1(i,x)−−−−−−→ πn+1(X,x)

πn+1(j,x)−−−−−−→ πn+1(X,A, x)

∂n+1−−−→ πn(A, x)
πn(i,x)−−−−→ πn(X,x)

πn(j,x)−−−−−→ · · ·

· · · π2(j,x)−−−−→ π2(X,A, x)
∂2−→ π1(A, x)

π1(i,x)−−−−→ π1(X,x).

Proof. We only show exactness at πn(X,A, x), the proofs at the other places are
analogous. Consider a pointed map f : (Sn, s)→ (X,x). The image of the class [f ]

under the composite πn(X,x)
πn(j,x)−−−−−→ πn(X,A, x)

∂n−→ πn−1(A, x) is by construc-
tion represented by the constant map cx : Sn−1 → A and hence zero. This shows
im(πn(j, x)) ⊆ ker(∂n). It remains to prove ker(∂n) ⊆ im(πn(j, x)).

Consider a map of pointed pairs f : (Dn, Sn−1, s) → (X,A, x) such that [f ] lies
in the kernel of ∂n : πn(X,A, x) → πn−1(A, x). Then the map of pointed spaces
f |Sn−1 : (Sn−1, s) → (A, x) is nullhomotopic as pointed map of pointed spaces.
Choose such a nullhomotopy h : Sn−1 × I → A with h0 = f |Sn−1 and h1 = cx for
the constant function. Note that h(s, t) = x holds for t ∈ I. Define a homotopy
k : Dn × I → X as follows:

k(z, t) =

{
f((t+ 1)z) if ||z|| ≤ 1

1+t ;

h
(
z
||z|| , 2||z|| −

2
1+t

)
if ||z|| ≥ 1

1+t .

Roughly speaking, kt is given on the disk 1
1+t · D

n of radius 1
1+t by f with an

appropriate scaling of z and on the anulus between 1
1+t · S

n−1 and Sn−1 by the

restriction of the homotopy h to S1 × [2− 2/(1 + t), 1]
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-

O

+
5

h
f

We have k(z, 0) = f(z) for z ∈ Dn, k(s, t) = x for t ∈ I, k(z, t) ∈ A for
z ∈ Sn−1 and t ∈ I, and k(z, 1) = x for z ∈ Sn−1. Hence k is a homotopy of
pointed maps of pointed pairs (Dn, Sn−1, s) → (X,A, x) between k0 = f and k1.
Therefore [f ] = [k1] holds in πn(X,A, x). Since k1(z) = x holds for z ∈ Sn−1,
the class [k1] lies in the image of πn(j, x) : πn(X,x) → πn(X,A, x). Hence we get
im(πn(j, x)) = ker(∂n). �

Remark 2.12. Let G be any group. Then we can find a path connected pointed
2-dimensional CW -complex (A, x) with π1(A, x) ∼= G. Let X be the cone over
A. Then we obtain a path connected pointed 3-dimensional CW -complex (X,A, x)
such that π2(X,A, x) ∼= π1(A, x) ∼= G holds by Theorem 2.11.

Remark 2.13. One can combine the exact sequences appearing in Theorem 2.2
and Theorem 2.11 to an exact sequence

(2.14) · · · ∂n+2−−−→ πn+1(A, x)
πn+1(i,x)−−−−−−→ πn+1(X,x)

πn+1(j,x)−−−−−−→ πn+1(X,A, x)

∂n+1−−−→ πn(A, x)
πn(i,x)−−−−→ πn(X,x)

πn(j,x)−−−−−→ · · · π2(j,x)−−−−→ π2(X,A, x)
∂2−→ π1(A, x)

π1(i,x)−−−−→ π1(X,x)
∂1−→ π0(A)

π0(i)−−−→ π0(X)
π0(j)−−−→ π0(X,A)→ {∗}

which is compatible with the group structures as long as these exist.
It is not hard to check that one obtains for a triple (X,B,A) and a base point

x ∈ A an exact sequence of the shape

(2.15) · · · ∂n+2−−−→ πn+1(B,A, x)
πn+1(i,x)−−−−−−→ πn+1(X,A, x)

πn+1(j,x)−−−−−−→ πn+1(X,B, x)

∂n+1−−−→ πn(B,A, x)
πn(i,x)−−−−→ πn(X,A, x)

πn(j,x)−−−−−→

· · · π2(j,x)−−−−→ π2(X,B, x)
∂2−→ π1(B,A, x)

π1(i,x)−−−−→ π1(X,A, x)
π1(j,x)−−−−→ π1(X,B, x)

∂1−→ π0(B,A)
π0(i)−−−→ π0(X,A)

π0(j)−−−→ π0(X,B)→ {∗}
which is compatible with the group structures as long as these exist.

Remark 2.16 (Long exact homotopy sequence of a pointed map). Let f : (X,x)→
(Y, y) be a map of pointed spaces. Denote by cyl(f) its mapping cylinder. Note that
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we obtain a pointed pair (cyl(f), X, x). The canoncial projection cyl(f) → Y is a
homotopy equivalence and satisfies pr(x) = y. Hence it induces an isomorphism of

groups πn(pr, x) : πn(cyl(f), x)
∼=−→ πn(Y, y) for n ≥ 1 and a bijection π0(cyl(f))

∼=−→
π0(Y ). Define πn(f, x) = πn(cyl(f), X, x) for n ≥ 1. Let π0(f) be the quotient
of π0(Y ) obtained by collapsing the image of π0(f) : π0(X) → π0(Y ). Then the
long exact sequence of the pointed pair (cyl(f), X, x) of (2.14) yields the long exact
homotopy sequence of the map f

(2.17) · · · ∂n+2−−−→ πn+1(X,x)
πn+1(f,x)−−−−−−→ πn+1(Y, y)→ πn+1(f, x)

∂n+1−−−→ πn(X,x)
πn(f,x)−−−−−→ πn(Y, y)→ · · · → π2(f, x)

∂2−→ π1(X,x)

π1(f,x)−−−−−→ π1(Y, y)
∂1−→ π0(X)

π0(f)−−−→ π0(Y )→ π0(f)→ {1}.
Note that πn(f, x) can have two different meanings in the notation above.

2.6. Connectivity.

Definition 2.18 (Connectivity). A space X is called 0-connected if π0(X) consists
of one point, or, equivalently, X is path connected. It is called n-connected for
n ≥ 1 if X is path connected and πk(X,x) is trivial for every base point x and
1 ≤ k ≤ n. It is called ∞-connected or weakly contractible if it is path connected
and πk(X,x) is trivial for every base point x and k ≥ 1.

A map f : X → X is called 0-connected if the induced map π0(f) : π0(X) →
π0(Y ) is surjective. It is called n-connected for n ≥ 1, if the map π0(f) : π0(X)→
π0(Y ) is bijective and for every base point x the map πk(f, x) : πk(X,x)→ πk(Y, f(x))
is bijective for 1 ≤ k < n and surjective for k = n. It is called ∞-connected or a
weak homotopy equivalence if the map π0(f) : π0(X) → π0(Y ) is bijective and for
every base point x and k ≥ 1 the map πk(f, x) : πk(X,x)→ πk(Y, f(x)) is bijective.
Note that f is n-connected if and only if π0(f) : π0(X) → π0(Y ) is surjective and
the group πk(f, x) defined in Remark 2.16 is trivial for 1 ≤ k ≤ n.

A pair (X,A) is called n-connected for n ≥ 0 or n =∞, if the inclusion i : A→ X
is n-connected. This is equivalent to the condition that π0(X,A) and πk(X,A, x)
for 1 ≤ k ≤ n are trivial.

Remark 2.19. One easily checks that the following assertions are equivalent for a
pointed space (X,x) and n ≥ 1:

• πn(X,x) is trivial for any base point x ∈ X;
• Every map Sn → X is nullhomotopic;
• Every map Sn → X extends to a map Dn+1 → X.

This implies that the following assertions are equivalent for a space X and n ≥ 0
or n =∞:

• X is n-connected;
• Given any k with 0 ≤ k ≤ n, every map Sk → X is nullhomotopic;
• Given any k with 0 ≤ k ≤ n, every map Sk → X extends to a map
Dk+1 → X.

Moreover, the following assertions are equivalent for a pair (X,A) and n ≥ 0 or
n =∞:

• (X,A) is n-connected;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

relative Sk−1 to a map Dk → A;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

through such maps to a map Dk → A;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

through such maps to a constant map Dk → A.
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2.7. Homotopy groups and colimits.

Theorem 2.20 (Homotopy groups and colimits). Let X be a topological Hausdorff
space with a sequence of closed subspaces X0 ⊂ X1 ⊆ · · · ⊆ X such that X is the
union of the Xi-s and carries the colimit topology.

Then for every x0 ∈ X and n ≥ 1 the canonical group homomorphism induced
by the inclusions jk : Xk → X

colimk→∞ πn(jk, x0) : colimk→∞ πn(Xk, x0)→ πn(X,x0)

is bijective. Also the map of sets

colimk→∞ π0(jk) : colimk→∞ π0(Xk)→ π0(X,x0)

is bijective.

Proof. We first prove that for any compact subset C ⊆ X there exists a natu-
ral number k with C ⊆ Xk. Suppose that for every k ≥ 0 we have C * Xk.
Then we can choose a sequence of x0, x1, x2, . . . in C and a strictly monotone in-
creasing function j : Z≥0 → Z≥0 with xi ∈ Xj(i) \ Xj(i−1) for i = 1, 2, . . .. Put
S = {x0, x1, x2, . . .}. Obviously S is infinite. Let T ⊆ S be any subset. Note that
the intersection T ∩Xk is finite and hence a closed subset of Xk for k = 0, 1, 2, . . ..
Since X carries the colimit topology, T is closed in X. Hence S is a discrete subset
of X. As C is compact and S is a closed subset of C, the set S is compact. As S
is a discrete and compact set, it must be finite, a contradiction.

We only treat the case n ≥ 1, the case n = 0 is analogous. Consider an element
[f ] ∈ πn(X,x0) represented by a pointed map f : (Sn, s) → (X,x0). Then image
of f lies already in Xi for some i ≥ 0. Hence [f ] lies in the image of the map
πn(Xi, x0) → πn(X,x0) induced by the inclusion Xi → X. This implies that
[f ] lies in the image of colimk→∞ πn(jk, x0) : colimk→∞ πn(Xk, x0) → πn(X,x0).
Hence this map is surjective. To prove injectivity, we consider an element [g] in
its kernel. There exists i ≥ 0 and an element [g′] ∈ πn(Xi, x0) such that the
structure map πn(Xi, x0) → colimj→∞ πn(Xj , x0) sends [g′] to [g]. The element
[g′] lies in the kernel of the map πn(Xi, x0) → πn(X,x0) induced by the inclusion
Xi → X. If g′ : (Sn, s)→ (Xi, x0) is a representative of [g′], there is a nullhomotopy
h : Sn × I → X for it. The image of h lies already in Xj for some j with i ≤ j.
Hence the image of [g′] under the map πn(Xi, x0) → πn(Xj , x0) induced by the
inclusion Xi → Xj is trivial. This implies that [g] is trivial. �

3. Hopf’s Degree Theorem

In this section we give the proof of the following theorem.

Theorem 3.1 (Hopf’s Degree Theorem). Let M be a connected oriented closed
smooth manifold of dimension n ≥ 1. Then the degree defines a bijection

deg : [M,Sn]→ Z.

3.1. Some basics about differential topology and the mapping degree.
Its proof needs some preparation. We recall some basic facts about differential
topology and the mapping degree.

• Let M and N be smooth manifolds. Then a (continuous) map f : M →
N is homotopic to a smooth map. If two smooth maps M → N are
homotopic, then one can find a smooth homotopy between them.

• Let M and N be smooth manifolds and L ⊆ N \ ∂N be a smooth sub-
manifold without boundary. Then any smooth map f : M → N with
f(∂M) ∩ L = ∅ is smoothly homotopic relativ ∂M to a map g : M → N
which is transversal to L at every x ∈M , i.e., we have either f(x) /∈ L or we



14 LÜCK, WOLFGANG

have f(x) ∈ L and Txf(TxM) + Tf(x)L = Tf(x)N . If dim(M) + dim(L) <
dim(N) holds, then f is transversal to L if and only if f(M) ∩ L = ∅.

• If L = {y} for y ∈ N \ ∂N , then we say that y is a regular value of f if f
is transversal to {y}.

• Every smooth map f : M → N has a regular value y ∈ N \ ∂N . Actually
the points in N \ ∂N for which y is not a regular value has measure zero
in N by the Theorem of Sard.

If y ∈ N \ ∂N is a regular value of f , M is compact, and dim(M) =
dim(N), then f−1(y) is finite and for every x ∈ f−1(y) the differential
induces an isomorphism Txf : TxM → TyN .

• Let f : M → N be a map of connected oriented compact smooth oriented
manifolds of dimension n such that f(∂M) ⊆ ∂N holds. Let y ∈ N \ ∂N
be any regular value. For x ∈ f−1(y) ⊆ M \ ∂M the orientations on M
and N yield orientations on the finite dimensional vector spaces TxM and

TyN . Define ε(x) ∈ {±1} to be 1 if Txf : TxM
∼=−→ TyN respects these

orientations and to be −1 otherwise.
Recall degree of f is the natural number for whichHn(f) : Hn(M,∂M)→

Hn(N, ∂N) sends [M,∂M ] to deg(f) · [N, ∂N ]. We get

(3.2) deg(f) =
∑

x∈f−1(y)

ε(x).

This formula is well-known for ∂M = ∂N = ∅. The proof in this case
extends directly to the more general case above. Or one considers the
map of closed oriented manifolds f ∪∂f f : M ∪∂M M → N ∪∂N N for
∂f : ∂M → ∂N given by f |∂M .

• Let M be a smooth Riemannian manifold and x ∈ M \ ∂M . Then there
is an ε > 0, an open subset U of M containing x, and a diffeomorphism
called exponential map

(3.3) expx : D◦εTxM := {v ∈ TxM | ||x|| < ε} → U

such that the differential T0 expx : T0(TxM) → TxM of expx at 0 ∈ TxM
becomes the identity under the canoncial identification T0(TxM) = TxM .

3.2. The proof of Hopf’s Degree Theorem. We prove Hopf’s Degree The-
orem 3.1 by induction over the dimension n = dim(M). If n = 1, then M is
diffeomorphic to S1 and elementary covering theory shows that the degree induces

a bijection deg : [S1, S1]
∼=−→ Z. The induction step from (n− 1) to n ≥ 2 is done as

follows.
Fix x ∈ M and an embedding i : Dn ↪→ M such that i(0) = x holds and

T0i : T0D
n
∼=−→ TxM is compatible with the orientations coming from the standard

orientation on Dn and the given orientation on M . Define the collaps map c : M →
Dn/Sn−1 ∼= Sn by sending i(x) for x ∈ Dn to the element given by x in Dn/Sn−1

and every point y ∈M \ i(Dn) to the point Sn−1/Sn−1 in Dn/Sn−1. We conclude
from (3.2) applied to the regular value z ∈ Dn/Sn−1 = Sn given by 0 ∈ Dn of
c that deg(c) = 1. Given any d ∈ Z, there exists a selfmap ud : Sn → Sn with
deg(ud) = d. It can be constructed as the (n − 1)-fold suspension of the map
S1 → S1 sending z to zd. Then deg(ud ◦ c) = d. This shows that deg : [M,Sn]→ Z
is surjective.

In order to show that deg : [M,Sn] → Z is injective, we have to show that two
smooth maps f, g : M → Sn with deg(f) = deg(g) are homotopic. Since there is
diffeomorphism u : Sn → Sn with degree −1 and deg(u ◦ f) = −deg(f), we can
assume in the sequel that d = deg(f) = deg(g) satisfies d ≥ 0.
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We can change f and g up to homotopy and find y ∈ Sn such that both f and
g are smooth and have y as regular value. Then we can write

f−1(y) = {x1, x2, . . . , xd} q {x+
1 , x

−
1 , . . . , x

+
m, x

−
m}

for some m ≥ 0 such that ε(xi) = 1 for i = 1, 2, . . . , d and ε(x±j ) = ±1 holds for
j = 1, 2, . . . ,m.

M S
2

X2
Xn

T
T X3= Y

L
T
-

Xit
->->a

Yet
T

ViX

We next describe a procedure how to change f up to homotopy so that m = 0,
or, equivalently f−1(y) = {x1, x2, . . . , xd} holds. This will be done by an inductive
procedure where we change f up to homotopy such that m ≥ 1 becomes (m − 1),
in other words, we get rid of the points x+

m and x−m.
Choose an embedded arc in M joining x+

m and x−m that does not meet any of the
other points in f−1(y). Let U be an open neighbourhood of x−m that is diffeomorphic
to Rn. Now perform a local homotopy of f along this arc to move x−m so close to
x+
m such that x−m lies in U .
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M

X2
Xn

T
T X3=W -LY Xt

X Vi

Hence it suffices to prove the following: Given a map f : Rn → Rn such that f is
transversal to 0 ∈ Rn, the preimage f−1(0) consists of precisely two points x0 and x1

belonging to the interior of the disk Dn ⊆ Rn, the differential Tx0
f : Tx0

Rn → T0Rn
is bijective and reverses the standard orientations, and the differential Tx1f : Tx1Rn →
T0Rn is bijective and preserves the standard orientations, then we can change f up
to homotopy relative Rn \Dn so that f−1(0) is empty.

Choose ε > 0 so small that the image of Sn−1 ⊆ Rn under f does not meet the
interior of ε ·Dn.
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i----i
------

&

Y
↑

I
↑ &

! X
Xi f I E .D2 i&

& o

D ↑ S
↑

↑

!_s] ---- 1
↑

:_+15 -- -
IR
?

IR2

Let prε : Rn → ε ·Dn be the retraction that sends x ∈ Rn to ε
||x|| · x if ||x|| ≥ ε,

and to x if ||x|| ≤ ε. Then prε ◦f induces a map of compact oriented manifolds
(Dn, Sn−1)→ (ε·Dn, ε·Sn−1). By inspecting the preimage of 0 ∈ ε·Dn we conclude
from (3.2) that its degree is zero.

&

X Xn M30f(yz E .D2& &O oD
↑

Since the following diagram commutes and the vertical maps given by boundary
homomorphisms of pairs are isomorphism of infinite cyclic groups respecting the
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fundamental classes

Hn(Dn, Sn−1)

∼=
��

Hn(f)
// Hn(ε ·Dn, ε · Sn−1)

∼=
��

Hn(Sn−1)
Hn(f |Sn−1 )

// Hn(ε · Sn−1)

the induced map (prε ◦f)|Sn−1 : Sn−1 → ε · Sn−1 has degree zero and hence is
nullhomotopic by the induction hypothesis. This implies that the map f0 : Sn−1 →
Rn \ {0} induced by f is nullhomotopic and hence extends to a map f1 : Dn →
Rn \ {0}. Let f ′ : Rn → Rn \ {0} be the map whose restriction to Dn is f1 and
whose restriction to Rn \Dn agrees with the restriction of f to Rn \Dn. We obtain
a homotopy h : f ' f ′ of maps Rn → Rn by h(x, t) = t · f ′(x) + (1 − t) · f that is
stationary outside the interior of Dn. Since the image of f ′ does not contain zero,
the claim follows.

This argument applies also to g. If d = 0, then im(f) and im(g) are con-
tained in the contractible subspace Sn \ {y} of Sn and hence f and g are homo-
topic. It remains to consider the case d ≥ 1. Then we can find finite subsets
{x1, x2, . . . , xd} and {x′1, x′2, . . . , x′d} of M such that f−1(y) = {x1, x2, . . . , xd} and
g−1(y) = {x′1, x′2, . . . , x′d} holds and the differentials Txif : TxiM → TyS

n and
Tx′ig : Tx′iM → TyS

n are orientation preserving isomorphisms for i = 1, 2, . . . , n.
Now we can construct a diffeomorphism a : M →M which is homotopic to the iden-
tity and satisfies w(xi) = x′i for i = 1, 2, . . . , d. Then g and g′ = g◦a are homotopic,
f−1(y) = g′−1(y) = {x1, x2, . . . , xd} and the differentials Txif : TxiM → TyS

n and
Txig

′ : TxiM → TyS
n are orientation preserving isomorphisms for i = 1, 2, . . . , d. It

remains to show that f and g′ are homotopic.

For this purpose we need the following construction. Let u0, u1 : Rn
∼=−→ Rn

be linear R-isomorphisms which are orientation preserving. Then we can find a
homotopy h : Rn × I → Rn such that h0 = u0 and h1 = u1 holds and ht : Rn → Rn
is a orientation preserving automorphism for t ∈ I. This follows from the fact that
{A ∈ GLn(R) | det(A) > 0} is path connected for n ≥ 1. Define the homotopy

H : Rn × I → Rn, (v, t) 7→


ht(v) if ||v|| ≤ 1;

h(2−||v||)·t(v) if 1 ≤ ||v|| ≤ 2;

u0(v) if ||v|| ≥ 2.

Then we have

H−1
t (0) = 0 for t ∈ I;

H0 = u0;

Ht(v) = u0(v) for t ∈ I and ||v|| ≥ 2;

H1(v) =


u1(v) if ||v|| ≤ 1;

h(2−||v||)(v) if 1 ≤ ||v|| ≤ 2;

u0(v) if ||v|| ≥ 2.

So H is a homotopy between H0 = u0 and H1 which is stationary on {v ∈ V |
||v|| ≥ 2} and satisfies H−1

t (0) = 0 for t ∈ I and H1(v) = u1(v) for ||v|| ≤ 1.
Using this construction and the exponential map (3.3), we can change g′ by a

homotopy to a map g′′ : M → Sn, such that for i = 1, 2, . . . , d there are disjoint
embedded disks Dn

i ⊆M such that 0 ∈ Dn
i corresponds to xi, f |Dni = g′′|Dni holds

and we have f−1(y) = (g′′)−1(y) = {x1, x2, . . . , xd}. Let X be the complement

in M of the disjoint union
∐d
i=1D

n
i \ ∂S

n−1
i . This is a manifold with boundary
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∂X =
∐d
i=1 S

n−1
i such that f(X) and g′′(X) are contained in Sn \ {y} and f |∂X =

g′′|∂X holds. As Sn \ {y} is contractible, the maps f |X and g′′|X from X to Sn are

homotopic relative ∂X. Recall that f and g′′ agree on
∐d
i=1D

n
i . Hence f and g′′

are homotopic as maps M → Sn. This implies that the maps f and g from M to
Sn are homotopic. This finishes the proof of Hopf’s Degree Theorem 3.1.

3.3. The homotopy groups of the n-sphere in the degree ≤ n.

Theorem 3.4. We get for every n ≥ 1

πk(Sn) ∼=

{
{0} k < n;

Z k = n.

There is an explicit isomorphism Z
∼=−→ πn(Sn) which sends 1 ∈ Z to [idSn ]. Its

inverse πn(Sn)
∼=−→ Z sends [f ] to the degree of f .

Proof. Suppose k < n. Let f : Sk → Sn be any map. Since we can change any
map f : Sk → Sn up to homotopy into a smooth map transversal to y ∈ Sn, we
can change f by a homotopy to map Sn → Sn \ {y}. As Sn \ {y} is contractible,
f is nullhomotopic. This implies πk(Sn, s) = {0} for every s ∈ S.

The degree defines a bijection deg : [Sn, Sn]
∼=−→ Z because of Hopf’s Degree

Theorem 3.1 for n ≥ 1. By inspecting the proof of surjectivity of this map we see
that the forgetful map πn(Sn, s) → [Sn, Sn] is surjective. We conclude from (2.1)
and (2.6) that the forgetful map πn(Sn, s)→ [Sn, Sn] is injective. �

Example 3.5 (The Hopf map and π3(S2)). One may think that πk(Sn, s) vanishes
for k > n as Hk(Sn) vanishes for k > n. But this is not true as the following
example due to Hopf shows. We can think of S3 as the subset of C2 given by
{(z1, z2) | z1z1 + z2z2 = 1}. We get an S1-action on S3 by z · (z1, z2) = (zz1zz2).
This action is free and the quotient space S3/S1 is homeomorphic to S2. Thus we
get a projection p : S3 → S2. We will later show that π3(S2) ∼= Z holds with the
class [p] of p as generator, see Theorem 10.5.

One indication that [p] is not zero in π3(S2) is the observation that the preimages
of the north and the south pole of S2 are two embedded S1-s in S3 which are linked.

&
Example 3.6 (πn(S1 ∨ Sn) is not finitely generated.).

Consider X = S1 ∨ Sn for n ≥ 2. Its universal covering X̃ is obtained from R
by glueing to each element in Z a copy of Sn along the base point.
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The map X̃ →
∨
i∈Z S

n given by collapsing R to point turns out to be a point
homotopy equivalence. This can be seen by a direct inspection or follows from

Lemm 8.25 and Theorem 8.28. Hence we conclude πn(X) ∼= πn(X̃) ∼= πn(
∨
i∈Z S

n)
from Theorem 2.7. For each k ∈ Z we have the pointed inclusion jk : Sn →

∨
i∈Z S

n

of the k-th summand and the pointed projection prk :
∨
i∈Z S

n → Sn onto the k-th
summand. Obviously prk ◦jk is the identity and prk ◦jl is the constant map for
k 6= l. Hence the map

⊕
i∈Z πn(ji) :

⊕
i∈Z πn(Sn) → πn(

∨
i∈Z S

n) is injective. As

πn(Sn) ∼= Z, the abelian group πn(S1 ∨ Sn) is not finitely generated.
Actually, we know that πn(S1 ∪ Sn) is a Z[π1(S1)]-module and it will turn out

that it is Z[π1(S1)]-isomorphic to Z[π1(S1)].

Remark 3.7 (Outlook about πk(Sn) for k > n). It is an open (and extremely
hard) problem to compute πk(Sn, s) for 2 ≤ n < k in general. There is not even
a formula known which might give the answer. There is no obvious pattern in the
computations, one has carried out so far. At least one knows that πk(Sn) is finite
for k > n except for π4i−1(S2i) for i ≥ 1 which is a direct sum of a copy of Z and
some finite abelian group.

4. The Cellular Approximation Theorem

In this section we want to sketch the proof of the following theorem.

Theorem 4.1 (Cellular Approximation Theorem). Let (X,A) be a CW -pair and
Y be a CW -complex. Let f : X → Y be a map whose restriction f |A : A→ Y to A
is cellular. Then f is homotopic relative A to a cellular map X → Y .

By a colimit argument one can reduce the proof of the Cellular Approximation
Theorem 4.1 to the proof of following lemma.

Lemma 4.2. Consider any k ∈ {0, 1, 2, . . .}. Let f : X → Y be a map of CW -
complexes. Suppose that f(Xk−1) ⊆ Yk−1 holds.

Then we can change f up to homotopy relative Xk−1 such that f(Xk) ⊆ Yk
holds.

In order to arrange that f(Xk) ⊆ Yk holds, we must achieve for every closed
k-dimensional cell e of X by a homotopy of f |e relative ∂e that e does not meet
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any cell of Y of dimension > k. Note that each compact subset of Y meets only
finitely many cells. Hence for a closed cell of e of X of dimension k there are
only finitely many closed cells e1, e2, . . . , em of Y satisfying f(e) ∩ ei 6= ∅. Choose
{i ∈ 1, 2, . . . ,m} such the the dimension of ei is greater than dim(e). If such an
i does not exists, we are already done for e. If such i exists, we can arrange that
dim(ei) ≥ dim(ej) holds for all j ∈ {1, 2, . . . ,m} and we have to change f |e up to
homotopy relative ∂e such that f(e) meets only the cells e1, e2, . . . , ei−1, ei+1, em
of Y . Therefore it suffices to show the following lemma.

Lemma 4.3. Consider 0 ≤ k < l. Let (W,V ) be pair for which there exists a
pushout

Sl−1 q
//

��

V

��

Dl Q
// W.

Consider any map f : (Dk, Sk−1)→ (W,V ).
Then f is homotopic relative Sk−1 to a map Dk → V .

Consider any point z ∈ W \ V . Then (W \ {z}, V ) is a strong deformation
retraction, i..e, there exists a homotopy h : W \ {z} × I → W \ {z} such that
h(y, 0) = y and h(y, 1) ∈ V hold for y ∈ W \ {z} and h(y, t) = y holds for y ∈ V
and t ∈ I. Hence Lemma 4.3 follows from the next lemma.

Lemma 4.4. Consider the situation of Lemma 4.3. Then there exists z ∈ W \ V
such that f is homotopic relative Sk−1 to a map Dk →W \ {z}.

Sketch of proof. Fix r ∈ (0, 1). Let Dl
r ⊆ Dl be the open ball of radius r, i.e,

{x ∈ Dl | ||x|| < r}. If Dk \ f−1(Q(Dl
r)) = ∅, we are obviously done. Hence we

can assume withtout loss of generality that Dk \ f−1(Q(Dl
r)) is non-empty. Then

one can arrange by an improved version of the Whitney Approximation Theorem
that f is homotopy relative to Dk \ f−1(Q(Dl

r)) to a map g : (Dl, Sl−1)→ (W,V )
such that the map induced by g from the open subset f−1(Q(Dl

r)) of Dk to the
open subset Q(DL

r ) of W , which we can be equipped with the structure of a smooth
manifold diffeomorphic to DL

r , is smooth.
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B2

⑪w
Since by Sard’s Theorem this smooth map g has a regular value z and k < l, we

get g(Dk) ⊆W \ {z}. �

This finishes the sketch of the proof of the Cellular Approximation Theorem 4.1.

Corollary 4.5. Consider n ≥ 0. Let (X,A) be a CW -pair such that all cells in
X \ A have dimension > n. Then (X,A) is n-connected. In particular (X,Xn) is
n-connected for a CW -complex X.

Proof. We only deal with the case, where A is non-empty. The proof for A = ∅
follows from the one, where A = {x} for any zero-cell {x} ∈ X, since X is the
disjoint union of its path components and every path component contains a zero-
cell.

First we show that π0(f) : π0(A) → π0(X) is surjective for n = 0 and bijective
for n ≥ 1. Surjectivity follows from Cellular Approximation Theorem 4.1 applied
to any map {•} → X using the fact that X0 = A holds. Note for the sequel
that any path component of a CW -complex must contain a zero-cell. By the
Cellular Approximation Theorem 4.1 any path in X connecting two zero-cells in
A is homotopic relative endpoints to a path in A as X1 = A holds if n ≥ 1. This
shows the bijectivity of π0(f) if n ≥ 1.

It remains to show that πi(X,A, a) = {1} holds for any base point a ∈ A
and i ∈ {1, 2, . . . , n} Since any path component of A contains a zero-cell, dia-
grams (2.1) and (2.6) imply that we can assume without loss of generality that a
is a zero-cell of A. Consider an element [f ] ∈ πi(X,A, a) given by a map of triples
f : (Di, Si−1, {s})→ (X,A, {a}). Equip Si−1 with the CW -structure consisting of
precisely two cells, namely one 0-cell {s} given by the base point s and one (i− 1)-
cell. By the Cellular Approximation Theorem 4.1 the map f |Si−1 : Si−1 → A is
relative {s} homotopic to cellular map. One easily checks that this implies that
f : (Di, Si−1, {s})→ (X,A, {a}) is homotopic as a map of triples to a map f ′ such
that f ′|Si−1 : Si−1 → A is cellular. (This is a standard cofibration argument as we
will see later, or done by direct inspection.) By the Cellular Approximation The-
orem 4.1 the map f ′ is homotopic relative Si−1 to map f ′′ : (Di, Si−1) → (Xi, A).
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As Xi = A holds and hence π1(Xi, Xi, a) is trivial by the long exact sequence of
the pointed pair (Xi, Xi, a), see Theorem 2.11, we conclude [f ] = [f ′] = [f ′′] = 1 in
πi(X,A, a). �

5. The Whitehead Theorem

In this section we want to prove the following theorem.

Theorem 5.1 (Whitehead Theorem). Let f : Y → Z be a map.

(i) Consider any n ∈ {0, 1, 2, . . .}. Then the following assertions are equiva-
lent:
(a) The map induced by composition with f

f∗ : [X,Y ]→ [X,Z], [g] 7→ [f ◦ g]

is bijective for every CW -complex X of dimension dim(X) < n and
is surjective for every CW -complex X of dimension dim(X) = n;

(b) The map f : Y → Z is n-connected;
(ii) The following assertions are equivalent:

(a) The map induced by composition with f

f∗ : [X,Y ]→ [X,Z], [g] 7→ [f ◦ g];

is bijective for every CW -complex X;
(b) The map f : Y → Z is a weak homotopy equivalence.

Its proof needs some preparations.

Lemma 5.2. Let Y be a space which is n-connected for some n ∈ {0, 1, 2, . . .} q
{∞}. Let (X,A) be a relative CW -complex whose relative dimension dim(X,A) is
less or equal to n.

Then any map f : A→ Y can be extended to a map F : X → Y .

Proof. We construct for k = −1, 0, 1, 2, . . . with k ≤ n maps fk : Xk → Y such that
f−1 : X−1 = A → Y is the given map f and we have fk|Xk−1

= fk−1 for k ≥ 0.
Then Lemma 5.2 is a consequence of the following argument. If n < ∞, then we
can take F = fn. If n = ∞, we define F = colimk→∞ fk having in mind that by
the definition of a CW -pair we have X = colimk→∞Xk.

The induction beginning k = −1 is trivial. The induction step from (k− 1) to k
is done as follows. Choose a cellular pushout∐

i∈I S
k−1

∐
i∈I qi

//

��

Xk−1

��∐
i∈I D

k

∐
i∈I Qi

// Xk.

We conclude from the pushout property that we can construct fk from fk−1 if for
any i ∈ I we can extend the composite fk−1 ◦ qi : Sk−1 → Y to a map Dk → Y .
This can be done as Y is by assumption k-connected. �

Lemma 5.3. Let (Y,B) be a pair which is n-connected for some n ∈ {0, 1, 2, . . .}q
{∞}. Let (X,A) be a relative CW -complex whose relative dimension dim(X,A) is
less or equal to n.

Then any map f : (X,A)→ (Y,B) is homotopic relative A to a map f : (X,A)→
(Y,B) with g(X) ⊆ B.

Proof. We construct for k = −1, 0, 1, 2, . . . with k ≤ n a map

hk : Xk × I ∪Xk×{0} X × {0} → Y

such that the following conditions are satisfied:
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• h−1 : A × I ∪A×{0} ∪X × {0} → X sends (a, t) to f(a) for (a, t) ∈ A × I
and (x, 0) to f(x) for x ∈ X.

• We have hk(x, 0) = f(x) for x ∈ X;
• We have hk(x, 1) ∈ B for every x ∈ Xk

• For 0 ≤ k ≤ n we have hk|Xk−1×I = hk−1|Xk−1×I .

Then Lemma 5.3 is a consequence of the following argument. If n < ∞, then
h = hn is the desired homotopy relative A from f to a map with image in B.
Suppose n =∞. Since X = colimk→∞Xk, we get X × I = colimk→∞(Xk × I) and
we obtain the desired homotopy h by colimk→∞ hk.

The induction beginning k = −1 is trivial. The induction step from (k− 1) to k
is done as follows. Choose a cellular pushout

∐
i∈I S

k−1

∐
i∈I qi

//

��

Xk−1

��∐
i∈I D

k

∐
i∈I Qi

// Xk.

Then we obtain a pushout

∐
i∈I S

k−1 × I ∪Sk−1×{0} D
k × {0}

∐
i∈I q

′
i
//

��

Xk−1 × I ∪Xk−1×{0} X × {0}

��∐
i∈I D

k × I
∐
i∈I Q

′
i

// Xk × I ∪Xk×{0} X × {0}

where q′i is given by qi × idI ∪qi×id{0}Qi × id{0}. We conclude from the pushout
property that it suffices to construct for every i ∈ I an extension of the map

u = hk−1 ◦ q′i : Sk−1 × I ∪Sk−1×{0} D
k × {0} → Y

to a map U : Dk×I → Y such that g(Dk×{1}) ⊆ B holds. Up to homeomorphism
the pair (Sk−1×I∪Sk−1×{0}D

k×{0}, Sk−1×{1}) can be identified with (Dk, Sk−1).

So we can think of u as a map of triples (Dk, Sk−1, {s})→ (Y,B, {x}) for x = u(s).
Hence it defines a element in πk(Y,B, x). As πk(Y,B, x) is by assumption trivial,
there is a homotopy of maps of triples (Sk−1 × I ∪Sk−1×{0} D

k × {0}, Sk−1 ×
{1}, {(s, 1)}) → (Y,B, {x}) from u to the constant map cx. Obviously the latter
map extends to the constant map cx : Dk × I,Dk × {1}, {(s, 1}) → (Y,B, {x}).
Hence we can extend u to a map U : (Dk × I,Dk × {1}, {s})→ (Y,B, {x}).
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This finishes the proof of Lemma 5.3. �

Proof of the Whitehead Theorem 5.1. Let cyl(f) be the mapping cylinder of f . Let
i : X → cyl(f) and j : Y → cyl(f) be the canonical inclusions and p : cyl(f) → Y
be the canonical projection. Then p ◦ i = f , p ◦ j = idY , and j ◦ p ' idcyl(f). Hence
we can assume without loss of generality that f : Y → Z is an inclusion of pairs,
otherwise replace the given f : Y → Z by i : Y → cyl(f).

N

↑ Yo
*
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=⇒ (i)a and (ii)b =⇒ (ii)b
The surjectivity of f∗ : [X,Y ] → [X,Z] follows for dim(X) ≤ n directly from

Lemma 5.3 applied to a map g : (X, ∅)→ (Z, Y ). Finally we prove the injectivity of
f∗ under the assumption that either n = ∞ or dim(X) < n < ∞ holds. Consider
g0, g1 : X → Y and a homotopy h : f ◦ g0 ' f ◦ g1 of maps from X to Z. We obtain
a map of pairs (h, g0 q g1) : (X × I,X × {0, 1}) → (Z, Y ). This map is homotopic
relative X × {0, 1} to a map k : X × I → Y by Lemma 5.3 since dim(X × I) ≤ n
holds. Obviously k is a homotopy of maps X → Y between g0 and g1.

(i)a =⇒ (i)b and (ii)a =⇒ (ii)b The map π0(f) : π0(Y )→ π0(Z) can be identified
with the map f∗ : [{•}, Y ] → [{•}, Z]. Hence the claim is true for n = 0. So it
suffices to treat the case n ∈ Z≥1 q {∞}. Then π0(f) is bijective. It remains to
show for any y ∈ Y that πk(f, y) : πk(Y, y)→ πk(Z, f(y)) is bijective for 1 ≤ k < n
and surjective for 1 ≤ k ≤ n.

We begin with surjectivity for 1 ≤ k ≤ n. Choose an index set I and a map
v : (S, s)→ (Z, f(y)) for S =

∨
i∈I S

k equipped with the obvious base point s such
that πk(v, s) : πk(S, s)→ πk(Z, f(y)) is surjective. Then we can find by assumption
a map u : S → Y such that f ◦ u is homotopic to v. For an appropriate path
w : [0, 1]→ Z from u(s) to z, we obtain a commutative diagram

πk(Y, u(s))
πk(f,u(s))

// πk(Z, f ◦ u(s))

t[f◦w]∼=
��

πk(S, s)

πk(u,s)

OO

πk(v,s)
// πk(Z, z).

Next we show injectivity for 1 ≤ k < n. Choose an index set I and a map
u : (S, s) → (Z, f(y)) for S =

∨
i∈I S

k equipped with the obvious base point s

such that the sequence πk(S, s)
πk(u,s)−−−−−→ πk(Y, y)

πk(f,y)−−−−−→ πk(Z, f(y)) is exact. The
the composite f ◦ u : S → Z is nullhomotopic. Since S has dimension ≤ (n − 1),
the map f∗ : [S, Y ] → [S,Z] is bijective by assumption. Hence u is nullhomo-
topic. This implies that there is a path w : [0, 1] → Y from y to some point
y′ such that the composite πk(u, s) : πk(S, s) → πk(Y, y) with the isomorphism

t[w] : πk(Y, y)
∼=−→ πk(Y, y′) is trivial. Hence πk(u, s) : πk(S, s) → πk(Y, y) is trivial.

This implies that the kernel of πk(f, y) is trivial and hence that πk(f, y) is injective.
This finishes the proof of the Whitehead Theorem 5.1. �

Corollary 5.4. Let f : X → Y be a map of CW -complexes. Then f is a homotopy
equivalence if and only f is a weak homotopy equivalence.

Proof. We conclude from the diagrams (2.1) and (2.6) that f is a weak homotopy
equivalence if it is a homotopy equivalence. Suppose that f is a weak homotopy
equivalence. Theorem 5.1 (ii) implies that f∗ : [Y,X] → [Y, Y ] is bijective. Let
a : Y → X be map with f∗([a]) = [f ◦ a] = idY . Then a is a weak homotopy
equivalence. Theorem 5.1 (ii) again implies that a∗ : [X,Y ] → [X,X] is bijective.
So we can choose a map b : X → Y with [a ◦ b] = [idX ]. This implies b ' f ◦
a ◦ b ' f . Hence a is a homotopy inverse of f and in particular f is a homotopy
equivalence. �

Example 5.5 (S∞). Define the real vector space R∞ :=
⊕∞

i=1 R. It inherits a
norm by

||(x1, x2, x3, . . .)|| =

√√√√ ∞∑
i=1

x2
i .
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In particular R∞ inherits a metric and the structure of a topological space. We can
identify the topological space Rn with the subspace consisting of points (x1, x2, . . .)
for which xi = 0 for i > n holds. Let S∞ ⊆ R∞ be the subspace consisting of
points z satisfying ||z|| = 1. Then Sn can be identified with S∞ ∩ Rn+1 for n ≥ 0.
Moreover, we get:

(i) We have the nested sequence S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ S∞ such that S∞ is
the unions of the Sn-s. The colimit topology with respect to this filtration
is not the subspace topology S∞ ⊆ R∞;

(ii) S∞ equipped with the colimit topology carries a CW -structure with Sn

as n-skeleton;
(iii) S∞ equipped with the subspace topology does not carry the structure of

a CW -complex;
(iv) S∞ equipped with the subspace topology is contractible;
(v) S∞ equipped with the colimit topology is contractible;

(vi) Consider the identity S∞ → S∞, where we equip the domain with the
colimit topology and the codomain with the subspace topology. Then this
map is bijective and continuous and is a homotopy equivalence but is not
a homeomorphism.

For n ≥ 1 consider the element an in S∞ whose i-th entry is
√

1− n−1 for i = 1,
n−1 for i = 2, . . . , n + 1, and is 0 for i ≥ (n + 2). Let A = {an | n ≥ 1}. Since
the intersection of A with Sn is finite for n ≥ 1, it is a closed subspace of S∞

with respect to the colimit topology. Since (1, 0, 0, . . .) does not belong to A and
limn→∞ an = (1, 0, 0 . . .) holds with respect to the metric above, A is not closed
with respect to the subspace topology. This finishes the proof of assertion (i).

We leave the obvious proof of the assertion (ii) is left to the reader.
Assertion (iii) is proved as follows. Suppose that S∞ with the subspace topology

has a CW -structure. Since then S∞ is a metrizable CW -complex, it must be
locally compact by [6, Theorem B on page 81]. This implies there is an ε > 0 such
that that the intersection of S∞ with the closed ball of radius ε around (1, 0, 0, . . .)
is compact. Hence we can find δ > 0 such that the sequence (xn)n≥1 given by

xn =
√

1− δ · e1 +
√
δ · en with ei the i-th element of the standard base belongs to

the intersection of S∞ with the closed ball of radius ε around (1, 0, 0, . . .). Hence
it has a subsequence which is a Cauchy sequence. Since this is not the case, we get
a contradiction.

Next we prove assertion (iv). Let s : S∞ → S∞ be the shift map sending
(x1, x2, x3, . . .) to (0, x1, x2, x3, . . .) Define

h : S∞ × I → S∞, x 7→ t · s(x) + (1− t) · x
||t · s(x)x+ (1− t) · x||

.

This is a homotopy between idS∞ and s. Now consider the homotopy

k : S∞ × I → S∞, x 7→ (1− t) · s(x) + t · e1

||(1− t) · s(x) + t · e1||
for e1 = (1, 0, 0, . . .). Then k is a homotopy between s and the constant map
S∞ → S∞ with value e1. Hence S∞ with the subspace topology is contractible.

Assertion (v) follows from Theorem 2.20, Theorem 3.4, and Corollary 5.4 using
assertion (ii). Alternatively, the proof for assertion (iv) does carry over to asser-
tion (v).

Assertion (vi) is a direct consequence of the other assertions.

Example 5.6 (Warsaw circle). Let W be the Warsaw circle, i.e., the compact
subsets of R2 given by the union of {(x, sin(2π/x)) | x ∈ (0, 1]}, {(1, y) | y ∈ [−2, 0]},
{(x,−2) | x ∈ [0, 1]} and {(0, y) | y ∈ [−2, 1]}.
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#
Then the projection p : W → {•} is a weak homotopy equivalence but not a

homotopy equivalence. In particular W is a compact space which is not homotopy
equivalent to a CW -complex.

Remark 5.7 (Whitehead Theorem for pairs). There is the following version of the
Whitehead Theorem 5.1 (ii) for pairs. Let (F, f) : (Y,B) → (Z,C) be a map of
pairs. Then the following assertions are equivalent:

(i) The maps F : Y → Z and f : B → C are weak homotopy equivalences;
(ii) For every CW -pair (X,A) the maps of the homotopy classes of pairs in-

duced by composition with (F, f)

(F, f)∗ : [(X,A), (Y,B)]→ [(X,A), (Z,C)], [(G, g)] 7→ [(F ◦G, g ◦ f)]

is bijective.

6. CW-Approximation

Definition 6.1 (n-coconnected maps). A map f : X → Y is called n-coconnected
for n ∈ Z≥0 q {∞}, if for any base point x ∈ X the map πi(f, x) : πi(X,x) →
πi(Y, f(x)) is injective if i = n, and is bijective if i > n.

Consider a natural number n and a map f : X → Y . Then f is a weak homotopy
equivalence if and only if it is both n-connected and n-coconnected.

Definition 6.2 (n-CW -model for a pair). Consider a topological pair (Y,A) such
that A is a CW -complex and n ∈ Z≥0. (The subcomplex A may be empty.) An
n-CW -model for (Y,A) consists of an n-connected pair of CW -complexes (Z,A)
together with an n-coconnected map f : Z → Y satisfying f |A = idA.

Theorem 6.3 (n-CW -models). Consider a topological pair (Y,A) such that A is
a CW -complex and n ∈ Z≥0 q {∞}. Then there exists an n-CW -model

(f, idA) : (Z,A)→ (Y,A)

such that Z \A contains no cells of dimension ≤ n.

Proof. We construct a sequence of nested spaces Zn ⊆ Zn+1 ⊆ Zn+2 ⊆ · · · and
maps fi : Zi → Y for i ≥ n such that the following holds:
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• Zn = A and fn = idA;
• fi|Zi−1

= fi−1 for i = (n+ 1), (n+ 2), . . .;
• There exists for i ≥ n a pushout of the shape

∐
j∈Ji S

i

∐
ji∈Ji

qji
//

��

Zi

��∐
j∈Ji D

i+1

∐
j∈Ji

Qji
// Zi+1

such that the image of each map qj does not meet any closed cell in A of
dimension > i;

• For any base point z ∈ Zi the map πj(fi, z) is injective for j = n, bijective
for n < j ≤ i, and surjective for j = i.

Before we explain the construction of these data, we explain how we get the
desired n-CW -model from it. Namely, we define Z = colimi→∞ Zi and f =
colimi→∞ fi : Z → X. Then (Z,A) is a CW -pair and the i-skeleton Zi of Z is
the complement of the union of the open cells of dimension > i of A in Zi. In
particular Z \Zi contains no cells of dimension ≤ i. Since Z \A contains no k-cells
for 0 ≤ k ≤ n, the pair (Z,A) is n-connected by Corollary 4.5. We conclude from
Corollary 4.5 again that the map πm(Zi, zi) → πm(Z, zi) induced by the inclusion
Zi → Z is bijective for m < i and surjective for m = i for any i ≥ n and zi ∈ Zi.
Hence the map f is n-coconnected by Theorem 2.20.

Finally we carry out the construction of the sequence Zn ⊆ Zn+1 ⊆ Zn+2 ⊆ · · ·
and the sequence of maps fi : Zi → Y . The induction beginning is obvious, take
Zn = A and fn = idA. The induction step how to construct Zi+1 and fi+1, when Zi
and fi have already been established, is done as follows. For each path component
C of A choose a zero-cell xC in A which is contained in C. Then for every element
u in the kernel of the map πi(fi, xC) : πi(Zi, xC)→ πi(Y, xC) choose a pointed map
qC,u : (Si, s)→ (Zi, xC) with u = [qC,u]. The define Z ′i+1 as the pushout

∐
C∈π0(A)

u∈ker(πi(fi,xC))

Si

∐
C∈π0(A)

u∈ker(πi(fi,xC))

qC,u

//

��

Zi

��∐
C∈π0(A)

u∈ker(πi(fi,xC))

Di+1 // Z ′i+1.

Since each [qC,u] lies in the kernel of πi(fi, xC), each map fi ◦ qC,u : Si → Y can be
extended to a map qC,u : Di+1 → Y . By the Cellular Approximation Theorem 4.1
we can additionally arrange that the image of each map qC,u has trivial intersection
with any open cell of A of dimension i > i+ 1.

The collection of these extensions yield a map f ′i+1 : Z ′i+1 → Y by the pushout
property. We have for j ≤ (i+ 1) and C ∈ π0(A) the commutative diagram

πj(Zi, xC)
πj(fi,xC)

//

��

πj(Y, xC)

πj(Z
′
i+1, xC)

πj(f
′
i+1,xC)

44

where the vertical arrow is induced by the inclusion Zi → Zi+1. The vertical
arrow is bijective for j ≤ (i − 1) and surjective for j = i by Corollary 4.5. Hence
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πj(f
′
i+1, xC) is injective for i = n and bijective for n < j ≤ (i−1), as πj(fi, xC) has

these properties by the induction hypothesis. Consider an element v in the kernel
of πi(f

′
i+1, xC). Choose u ∈ πi(Zi, xC) whose image under the vertical arrow is v.

Then u lies in the kernel of πi(fi, xC). By construction u lies in the kernel of the
vertical arrow. Hence v is trivial. Therefore πi(f

′
i+1, xC) is injective. As πi(fi, xC)

is surjective by the induction hypothesis, πi(f
′
i+1, xC) is surjective. This implies

that πj(f
′
i+1, xC) is injective for i = n and bijective for n < j ≤ i for all C ∈ π0(A).

Now consider any C ∈ π0(A) and any element [wC ] ∈ πi+1(Y, xC). Choose a
map wC : (Si+1, s)→ (Y, xC) representing [wC ]. Define the desired space Zi+1 and
the desired map fi+1 : Zi+1 → Y by

Zi+1 = Z ′i+1 ∨
∨

C∈π0(A)
[wC ]∈πi+1(Y,xC)

Si+1,

fi+1 = f ′i+1 ∨
∨

C∈π0(A)
[wC ]∈πi+1(Y,xC)

wC .

We have for j ≤ (i+ 1) and C ∈ π0(A) the commutative diagram

πj(Z
′
i+1, xC)

πj(f
′
i+1,xC)

//

��

πj(Y, xC)

πj(Zi+1, xC)

πj(fi+1,xC)

44

where the vertical arrow is induced by the inclusion Z ′i+1 → Zi+1. The left vertical
arrow is bijective for j < i and surjective for j = i by Corollary 4.5. It is also
injective for j = i, since the inclusion Z ′i+1 → Zi+1 has an obvious retraction
Zi+1 → Z ′i+1. Hence the left vertical arrow is bijective for j ≤ i. This implies that
πj(fi+1, xC) is injective for i = n and bijective for n < j ≤ i for all C ∈ π0(A).
Moreover, by construction any element [wC ] is in the image of πj(fi+1, xC). Hence
πj(fi+1, xC) is surjective for all C ∈ π0(A). Since π0(A) → π0(Zi+1) is surjective,
we conclude from the diagrams (2.1) and (2.6) that for any base point z ∈ Zi+1

the map πj(fi+1, z) is injective for i = n, bijective for n < j ≤ i, and surjective for
j = (i+ 1).

This finishes the proof of Theorem 6.3. �

Remark 6.4. One can think of the n-CW -model f : (Z,A) → (Y,A) as a sort of
homotopy theoretic hybrid of A and Y . If n = 0 and Y is path connected, then
the hybrid looks like Y in the sense that f is a weak homotopy equivalence. As n
increases, the hybrid looks more and more like A, and less and less like Y . If we
take n = ∞, then the inclusion A → Z is a weak homotopy equivalence and can
actually be realized by Z = A and idA.

More precisely, if k : A→ Z and l : A→ Y are the inclusions and a ∈ A is a base
point, we get a factorization

πi(l, a) : πi(A, a)
πi(k,a)−−−−→ πi(Z, a)

πi(f,a)−−−−→ πi(Y, a)

such that the following holds:

• If i < n, then the first map πi(k, a) is bijective;
• If i = n, then the first map πi(k, a) is surjective and the second map
πi(f, a) is injective;

• If i > n, then the second map πi(f, a) is bijective.

Corollary 6.5. Consider a CW -pair (X,A) and n ∈ N. Then the following asser-
tions are equivalent:
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(i) There is a CW -pair (Z,A) such that (X,A) and (Z,A) are homotopy
equivalent relative A and Z \A contains no cells of dimension ≤ n;

(ii) The pair (X,A) is n-connected.
Proof. (i) =⇒ (ii) This follows from Corollary 4.5.

(ii) =⇒ (i) We obtain from Theorem 6.3 an n-model (f, idA) : (Z,A) → (X,A)
such that Z \ A contains no cells of dimension ≤ n. Since (Z,A) and (X,A) are
n-connected and f is n-coconnected, f : Z → X is a weak homotopy equivalence
inducing the identity on A. A version of the Whitehead Theorem 5.1 (ii) relative
A implies that (X,A) and (Z,A) are homotopy equivalent relative A. �

In particular any path connected CW -complex is homotopy equivalent to a CW -
complex Z having precisely one 0-cell.

Example 6.6. Let X be path connected CW -complex. We conclude from The-
orem 2.7 that a 1-connected CW -model for X = (X, ∅) is given by the universal

covering X̃ → X.

For this section the case n = 0 is important which we treat next.

Definition 6.7. Consider a space Y . A CW -approximation (X, f) of Y is a CW -
complex X together with a weak homotopy equivalence f : X → Y .

Theorem 6.8 (Existence and uniqueness of CW -approximations). Let Y be a
topological space. Then:

(i) There exists a CW -approximation (X, f) of Y ;
(ii) Let (X, f) and (X ′, f ′) be two CW -approximations of Y . Then there ex-

ists a homotopy equivalence g : X → X ′ for which the following diagram
commutes up to homotopy

X
g

//

f
  

X ′

f ′
~~

Y.

The homotopy equivalence g is up to homotopy uniquely determined by the
property f ′ ◦ g ' f .

Proof. (i) Consider a path component C of Y . From Theorem 6.3 applied to the
pair (C, ∅) and n = 0 we obtain a CW -complex XC and weak homotopy equivalence
fC : XC → C. Then we get from X =

∐
C∈π0(C)XC and f =

∐
C∈π0(C) fC a CW -

approximation of Y .

(ii) We conclude from the Whitehead Theorem 5.1 (ii) that there exists a map
g : X → X ′ which is uniquely determined up to homotopy by the property f ′◦g ' f .
The map g is a weak homotopy equivalence and hence a homotopy equivalence by
Corollary 5.4. �

Remark 6.9. One may think of Theorem 6.8 as the topological analogue of the fact
that any positive R-chain complex C∗ possesses a projective R-resolution f∗ : P∗ →
C∗, i.e., a projective positive R-chain complex P∗ together with an R-chain map
f∗ : P∗ → C∗ inducing an isomorphism on all homology modules, and that for
two projective resolutions (P∗, f∗) and (P ′∗, f

′
∗) of C∗ there is a R-chain homotopy

equivalence g∗ : P∗ → P ′∗ which is a up to R-chain homotopy uniquely determined
by the property f ′∗ ◦ g∗ ' f∗.

Theorem 6.10. Let f : X → Y be a weak homotopy equivalence of spaces. Then
the induced map on singular homology Hn(f) : Hn(X)→ Hn(Y ) is bijective for all
n ≥ 0.
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Proof. See [24, Theorem 9.5.3 on page 237]. �

Remark 6.11 (CW -approximations for pairs). Consider a pair (Y,B). Choose a
CW -approximation u : A → B for B. Let cyl(u) be the mapping cylinder of u.
It contains the CW -complex A as subspace. Let g : (X,A) → (cyl(f), A) be a 0-
CW -model which exists by Theorem 6.3. Thus we obtain a pair of CW -complexes
(X,A) together with a weak homotopy equivalence g : X → Y satisfying g|A = idA.
Let p : cyl(f)→ Y be the projection which is a homotopy equivalence and satisfies
p|A = u. Let f : X → Y be the composite p ◦ v. Then f : X → Y and f |A =
u : A → B are weak homotopy equivalences. So we obtain a CW -approximation
(f, u) : (X,A)→ (Y,B) for pairs.

A relative version of the Whitehead Theorem 5.1 (ii), see Remark 5.7, shows
that for two such CW -approximations f : (X,A) → (Y,B) and f ′ : (X ′, A′) →
(Y,B) there is a homotopy equivalence of pairs g : (X,A) → (X ′, A′) which is up
to homotopy uniquely determined by the property that f and f ′ ◦ g are homotopic
as maps of pairs (X,A)→ (Y,B).

7. The category of compactly generated spaces

We briefly recall some basics about compactly generated spaces. More informa-
tion and proofs can be found in [18]. A topological space X is compactly generated
if it is a Hausdorff space and a set A ⊆ X is closed if and only if for any compact
subset C ⊂ X the intersection C ∩A is a closed subspace of C.

Every locally compact space, and every space satisfying the first axiom of count-
ability, e.g., a metrizable space, is compactly generated. If p : X → Y is an identifi-
cation of topological spaces and X is compactly generated and Y is Hausdorff, then
Y is compactly generated. A closed subset of a compactly generated space is again
compactly generated. For open subsets one has to be careful as it is explained in
Subsection 7.1.

7.1. Open subsets. Recall that a topological space B is called regular if for any
point x ∈ X and closed set A ⊆ X there exists open subsets U and V with x ∈ U ,
A ⊆ V and U ∩ V = ∅. A Hausdorff space is called locally compact if every
x ∈ X possesses a compact neighborhood. Equivalently, for every x ∈ X and open
neighborhood U there exists an open neighborhood V of x such that the closure
of V in X is compact and contained in U , see [16, Lemma 8.2 in Section 3-8 on
page 185].

Definition 7.1 (Quasi-regular open set and regular space). An open subset U ⊆ B
is called quasi-regular if for any x ∈ X there exists an open neighborhood Vx whose
closure in B is contained in U .

Lemma 7.2. (i) Let B be a compactly generated Hausdorff space. A quasi-
regular open subset U ⊆ B equipped with the subspace topology is compactly
generated;

(ii) Let f : X → Y be a (continuous) map between (not necessarily compactly
generated) spaces. If V ⊆ Y is a quasi-regular open subset, then f−1(V ) ⊆
X is a quasi-regular open subset;

(iii) The intersection of finitely many quasi-regular open subsets is again a
quasi-regular open subset;

(iv) A space is regular if and only if every open subset is quasi-regular;
(v) Any locally compact Hausdorff space, any metrizable space, and every CW -

complex are regular;
(vi) Every open subset of a CW -complex is quasi-regular and, equipped with

the subspace topology, compactly generated.
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Proof. (i) See [18, page 135].

(ii) Consider a point x ∈ f−1(V ). Choose an open set W of Y such that f(x) ∈W
and the closure of W in B is contained in V . Then f−1(W ) is an open subset of
X which contains x and whose closure in X is contained in f−1(V ).

(iii) Let U1, U2, . . . , Ur be quasi-regular open subsets. Consider x ∈ U :=
⋂r
i=1 Ui.

Choose for every i = 1, 2 . . . , r an open subset Vi with x ∈ Vi such that the closure Vi
of Vi in B is contained in Ui. Put V :=

⋂r
i=1 Vi. Then x ∈ V and V ⊆ ∩ri=1Vi ⊆ U .

Hence U is a quasi-regular open subset.

(iv) See [16, Lemma 2.1 in Section 4-2 on page 196].

(v) This is obvious for locally compact spaces. Metrizable spaces are treated in [16,
Theorem 2.3 in Section 4-2 on page 198]. Every CW -complex is paracompact,
see [15], and hence in particular regular, see [16, Theorem 4.1 in Section 6-4 on
page 255].

(vi) This follows from assertions (i), (iv), and (v). �

7.2. The retraction functor k. There is a construction which assigns to a topo-
logical Hausdorff space X a new topological space k(X) such that X and k(X) have
the same underlying sets, k(X) is compactly generated, X and k(X) have the same
compact subsets, the identity k(X)→ X is continuous and is a homeomorphism if
and only if X is compactly generated. Namely, define the new topology on k(X)
by declaring a subset A ⊆ X to be closed if and only if for every compact subset
of X the intersection A ∩ C is a closed subset of C.

7.3. Mapping spaces, product spaces, and subspaces. Given two compactly
generated spaces X and Y , denote by map(X,Y )k.o. the set of maps X → Y with
the compact-open-topology, i.e., a subbasis for the compact-open-topology is given
by the setsW (C,U) = {f : X → Y | f(C) ⊆ U}, where C runs through the compact
subsets of X and U runs though the open subsets of Y . Note that map(X,Y )k.o.
is not compactly generated in general. We denote by map(X,Y ) the topological
space given by k(map(X,Y )k.o.). Sometimes we abbreviate map(X,Y ) by Y X

and denote for a map f : Y → Z the induced map map(idX , f) : map(X,Y ) →
map(X,Z), g 7→ f ◦ g by fX : Y X → ZX . If X and Y are compactly generated
spaces, then X × Y stands for k(X ×p X), where X ×p Y is the topological space
with respect to the “classical” product topology.

If A ⊆ X is a subset of a compactly generated space, the subspace topology
means that we take k(Ast) for Ast the topology space given by the “classical”
subspace topology on A.

Roughly speaking, all the usual constructions of topologies are made compactly
generated by passing from Y to k(Y ) in order to stay within the category of com-
pactly generated spaces.

7.4. Basic features of the category of compactly generated spaces. The
category of compactly generated spaces has the following convenient features:

• A map f : X → Y of compactly generated spaces is continuous if and only
if its restriction f |C : C → Y to any compact subset C ⊆ X is continuous;

• If X, Y , and Z are compactly generated spaces, then the obvious maps

map(X,map(Y,Z))
∼=−→ map(X × Y,Z);

map(X,Y × Z)
∼=−→ map(X,Y )×map(X,Z),

are homeomorphisms and the map given by composition

map(X,Y )×map(Y ;Z)→ map(X,Z)
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is continuous;
• The product of two identifications is again an identification;
• If X is locally compact and Y compactly generated, then X×Y and X×pY

are the same topological spaces;
• Let X0 ⊆ X1 ⊆ X2 ⊆ · · · be a sequence of inclusions of compactly gener-

ated spaces such that Xi is a closed subspace of Xi+1 for i = 0, 1, 2, . . ..
Then the colimit colimi→∞Xi exists in the category of compactly gener-

ated Hausdorf spaces. Moreover, if Y is a compactly generated space, then
colimi→∞(Xi × Y ) exists in the category of compactly generated spaces
and the canonical map

colimi→∞(Xi × Y )
∼=−→
(
colimi→∞Xi

)
× Y

is a homeomorphism;
• In the category of compactly generated spaces the pushout of a diagram

X1
f1←− X0

f2−→ X2 exists if f1 or f2 is the inclusion of a closed subspace;
• Given a Hausdorf space Y , the canonical map k(Y )→ Y is a weak homo-

topy equivalence and induces an isomorphism on singular homology.
• Given a pushout in the category of compactly generated spaces, its product

with a compactly generated space is again a pushout in the category of
compactly generated spaces.

• The product of two CW -complexes is again a CW -complex;

Remark 7.3 (Compactly generated weak Hausdorff spaces). There is also the cat-
egory of compactly generated weak Hausdorff spaces, see [19]. The main advantage
in contrast to the category of compactly generated Hausdorff spaces, see [18], is
that in the category of compactly generated weak Hausdorff spaces colimits for
small diagrams, for instance pushouts or filtered colimits, always exist, see [19,
Corollary 2.23]. In the category of compactly generated spaces one can define the

pushout of a diagram X1
f1←− X0

f2−→ X2 only if for the pushout in the classical
setting

X0
f1
//

f2

��

X1

f2
��

X2
f1
// X

the space X is Hausdorff, since the retraction functor k digests only Hausdorff
spaces. Note that X is Hausdorff if f1 or f2 is an inclusion of a closed subspace.
Therefore in the case treated in the manuscript this condition is always satisfies
and the pushout exists in the category of compactly generated Hausdorff spaces.

The same discussion applies to the colimit colimi→∞Xi of a sequence of inclu-
sions of compactly generated spaces of X0 ⊆ X1 ⊆ X2 ⊆ · · · .

For simplicity we will discuss these issues not anymore and will work in the
category of compactly generated Hausdorff spaces throughout this manuscript.

8. Cofibrations

8.1. Basics about cofibrations.

Definition 8.1 (Homotopy extension property). A map i : A→ X has the homo-
topy extension property (HEP) for the space Y , if for any map f : X → Y and any
homotopy h : A× I → Y with h0 = f ◦ i, there exists a homotopy H : X × I → Y
with H0 = f and H ◦ (i× idI) = h.
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In other words, HEP for the space Y means that the extension problem indicated
by the following diagram has a solution H for every map f : X → Y and homotopy
h : A× I → Y satisfying h(a, 0) = f(a) for every a ∈ A

(8.2) X

iX0 $$

f

++A

i

<<

iA0

""

X × I H
// Y

A× I

i×idI

::

h

33

where iA0 (a) = (a, 0) for a ∈ A and iX0 (x) = (x, 0) for x ∈ X.
Equivalently, one may describe the homotopy extension property by the following

diagram

(8.3) A
h
//

i

��

map(I, Y )

e0Y
��

X
f

//

H
::

Y.

where e0
Y is given by evaluation at 0 and h corresponds to h under the adjunction

homeomorphism map(A× I, Y )
∼=−→ map(A,map(I, Y )), and analogously for H and

H.

Definition 8.4 (Cofibration). A map i : A→ X is called a cofibration if it has the
homotopy extension property for every space Y .

Recall that the mapping cylinder of a map i : A→ X is defined by the pushout

(8.5) A

iA0
��

i
// X

k

��

A× I
l
// cyl(i)

and there is a canonical map s : cyl(i) → X × I defined as the pushout of the
inclusion iX0 : X → X × I and the map i× idI : A× I → X × I.
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Cpli : A-X XXI

- Ax90]

I
Proposition 8.6. The following assertions are equivalent for a map i : A→ X:

(i) The map i : A→ X is a cofibration;
(ii) The map i : A→ X has the homotopy extension property for the mapping

cylinder cyl(i);
(iii) The canonical map s : cyl(i)→ X × I has a retraction r : X × I → cyl(i).

Proof. (i) =⇒ (ii) This is obvious.

(ii) =⇒ (iii) If we apply the homotopy lifting property to the map k : X → cyl(i)
and the homotopy l : A× I → cyl(f), we obtain a map r : X × I → cyl(i) such that
r ◦ iX0 = k and r ◦ (i × idI) = l hold. Since we have r ◦ s ◦ k = r ◦ iX0 = k and
r◦s◦ l = r◦(i× idI) = l, we conclude from the pushout property that r◦s = idcyl(i)

holds.

(iii) =⇒ (i) Consider any map f : X → Y and any homotopy h : A × I → Y
satisfying h0 = f |A. We obtain from the pushout property a map a : cyl(i) → Y
such that a ◦ k = f and a ◦ l = h hold. Now define H : X × I → Y to be
a ◦ r. Then H ◦ (i × idI) = a ◦ r ◦ (i × idI) = a ◦ r ◦ s ◦ l = a ◦ l = h and
H ◦ iX0 = a ◦ r ◦ iX0 = a ◦ r ◦ s ◦ k = a ◦ k = f hold. Therefore i has the homotopy
lifting property for every space Y and hence is a cofibration. �

Remark 8.7 (Cofibrations are closed embeddings). Note that Proposition 8.6 im-
plies that a cofibration i : A → X is a closed embedding, i.e., its image i(A) is a

closed subspace of X and that i induces a homeomorphism A
∼=−→ i(A). Namely, the

the composite j : A
iA1−→ A× I l−→ cyl(i) is a closed embedding and j can be written

as the composite A
i−→ X

iX1−−→ X×I r−→ cyl(i) because of r◦iX1 ◦i = r◦(i× idI)◦iA1 =
r ◦ s ◦ l ◦ iA1 = l ◦ iA1 = j. Now use the fact that a map u is a closed embedding if
the composite v ◦ u of it with some other map v is a closed embedding.

Lemma 8.8.

(i) If i : A → X is a cofibration, then there exists a retraction r : X × I →
X × {0} ∪A×{0} A× I;
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(ii) If there exists a retraction r : X × I → X × {0} ∪A×{0} A × I and the
inclusion A→ X is a closed embedding, then the inclusion i : A→ X is a
cofibration.

Proof. (i) Put Y = X ×{0} ∪A×{0} A× I. Define f : X → Y by f(x) = (x, 0) and
h : A×I → Y by h(a, t) = (a, t). From the homotopy extension property applied to
Y , f , and h we obtain the desired retraction r = H : X×I → X×{0}∪A×{0}A×I.

(ii) Note that X × {0} ∪A×{0} A × I ⊆ X × I is to be understood to be equipped
with the subspace topology. Since the inclusion A→ X is a closed embedding, we
get with this topology a pushout

A× {0} //

��

X × {0}

��

A× I // X × {0} ∪A×{0} A× I

where all maps are inclusions.
Consider f : X → Y and h : A × I → Y with f ◦ iA0 = h0. Consider the map

g := f ∪ h : X × {0} ∪A×{0} A× I → Y . The desired homotopy H : X × I → Y is
then given by g ◦ r. �

-
&&
[0]

Axso)
Ax

Lemma 8.9. Consider a pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration.
Then i : B → Y is a cofibration.

Proof. Suppose that h : B× I → Z and ϕ : Y → Z with h0 = ϕ ◦ i are given. Then
we get a homotopy h′ = h ◦ (f × idI) and a map ϕ′ = ϕ ◦ f : X → Z satisfying
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h′0 = ϕ′ ◦ i. Since i is a cofibration, we get a homotopy H ′ : X × I → Z satisfying
H ′0 = ϕ′ and H ′ ◦ (i× idI) = h′. We have the pushout

A× I
f×idI

//

i×idI
��

B × I

i×idI
��

X × I
f×idI

// Y × I.

Hence H ′ and h define a map H : Y × idI → Z which is uniquely determined by
H ◦ (f × idI) = H ′ and H ◦ (i× idI) = h. We get H0 = ϕ, since H0 and ϕ have the
same composite with f and i. �

Lemma 8.10. Let X0 ⊆ X1 ⊆ X2 ⊆ · · · be a sequence of cofibrations. Let X be
its colimiti→∞Xi.

Then the canonical map X0 → X is a cofibration.

Proof. Because of Remark 8.7 we can assume without loss of generality that Xi is
a closed subspace of both Xi+1 and X for i = 0, 1, 2, . . . and X =

⋃∞
i=0Xi. Because

of Lemma 8.8 (ii) it suffices to construct a retraction R : X × I → X ×{0}∪X0×{0}
X0 × I. Since X × I = colimi→∞X × {0} ∪Xi×{0} (Xi × I) holds, it suffices to
construct a sequence of maps

ri : X × {0} ∪Xi×{0} Xi × I → X × {0} ∪X0×{0} X0 × I

for i = 0, 1, 2, . . . such that ri|X×{0}∪Xi−1×{0}Xi−1×I = ri−1 holds for i = 1, 2, 3, . . .

and r0 = idX×{0}∪X0×{0}X0×I holds.

We construct the desired retractions ri by induction over i = 0, 1, 2, . . .. The
induction beginning is obvious. The induction step from (i− 1) to i ≥ 1 is done as
follows. Since Xi−1 → Xi is a cofibration, there exists a retraction r′i : Xi × I →
Xi × {0} ∪Xi×{0} Xi−1 × I by Lemma 8.8 (ii). It extends to a retraction

r′i : X × {0} ∪Xi×{0} Xi × I → X × {0} ∪Xi−1×{0} Xi−1 × I

by idX×{0} ∪r′i. Now define ri to be the composite ri−1 ◦ r′′i . �

8.2. Cofibrations and NDR-pairs.

Definition 8.11 (NDR-pair). We call a pair (X,A) an NDR-pair or neighborhood
deformation retract, if there are maps h : X × I → X and v : X → I satisfying:

• h(a, t) = a for a ∈ A and t ∈ I;
• h(x, 0) = x for x ∈ X;
• v−1(0) = A;
• h(x, t) ∈ A for x ∈ X and t ∈ I with v(x) < t.

Lemma 8.12. Let (X,A) be a pair. Let i : A → X be an inclusion. Then the
following assertions are equivalent:

(i) The map i : A→ X is a cofibration;
(ii) The pair (X,A) is an NDR-pair.

Proof. (i) =⇒ (ii) We get from Remark 8.7 that A ⊆ X is closed and from
Lemma 8.8 (i) a retraction r : X × I → X × {0} ∪A×{0} A× I. Define

h : X × I → X, x 7→ prX ◦ r(x),

and

v : X → I, x 7→ sup{|t− prI ◦ r(x, t)| | t ∈ I},
where prX : X × I → X and prI : X × I → I are the canonical projections. One
easily checks that h and v satisfy the conditions appearing in Definition 8.11.
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(ii) =⇒ (i) Given the maps h and v, we can define a retraction r : X × I →
X × {0} ∪A×{0} A× I by

r(x, t) =

{
(h(x, t), 0) if t ≤ v(x);

(h(x, t), t− v(x)) if t ≥ v(x).

Since A = v−1(0) holds, A ⊆ X is closed. Moreover, A is a Gδ-subset of X, i.e.,
A is the intersection of countably many open subsets of X. Lemma 8.8 (ii) implies
that i : A→ X is a cofibration. �

Definition 8.13 (Strong neighborhood deformation retraction). Consider a pair
(X,A). We call A a strong neighborhood deformation retraction of X, if A ⊆ X is
closed, there is an open neighborhood U of A in X such that the inclusion i : A→ U
has retraction r : U → A, and there exists a homotopy relative A between idU and
i ◦ r, or, equivalently, A ⊆ X is closed, there is an open neighborhood U of A in
X and a homotopy h : U × I → U such that h(u, 0) = u and h(u, 1) ∈ A holds for
u ∈ U and we have h(a, t) = a for a ∈ A and t ∈ I.

Definition 8.14 (Neighborhood deformation retraction). Consider a pair (X,A)
We call A a neighborhood deformation retraction of X, if A ⊆ X is closed, there
is an open neighborhood U of A in X and a homotopy h : U × I → X such that
h(u, 0) = u and h(u, 1) ∈ A hold for u ∈ U and we have h(a, t) = a for a ∈ A and
t ∈ I.

Remark 8.15 (Strong neighborhood deformation retraction versus neighborhood
deformation retraction). The difference between Definition 8.13 and Definition 8.14
is that in Definition 8.13 the target of h is U , whereas in Definition 8.14 the target
of h is X. Hence a strong neighborhood deformation retraction is a neighborhood
deformation retraction. The converse is not true in general.

NEIGH .
DEF

. RETRACTION STRANG NEIGH .
DEF RETRACTION

Y Y

⑨i h(X ,+

2
h(X,

Remark 8.16 (NDR-pairs versus neighborhood deformation retractions). Let (X,A)
be an NDR-pair in the sense of Definition 8.11 which is equivalent to i : A → X
being a cofibration by Lemma 8.12. Then it is a neighborhood deformation retrac-
tion in the sense of Definition 8.14. Namely, given h : X × I → X and v : X → I
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as in Definition 8.11, we get by U = v−1([0, 1)) and h|U×I : U × I → X the data
required in Definition 8.14. The converse is nor true in general.

Now suppose that (X,A) is neighborhood deformation retraction in the sense of
Definition 8.14 and assume additionally that there is a map w : X → I satisfying
w−1(0) = A and U = w−1([0, 1)). The latter additional condition is known to be
automatically satisfied if X is a perfectly normal space, i.e., a metric space or a
CW -complex, and A ⊆ X is closed, or if X is a normal space and A ⊆ X is a closed
Gδ-subset of X. Then we obtain a retraction r : X × I → X ×{0} ∪A×{0} A× I by

r(x, t) =



(x, t) if x ∈ w−1(0);

(h(x, t/2w(x)), 0) if x ∈ w−1((0, 1/2]), t ≤ 2w(x);

(h(x, 1), t− 2w(x)) if x ∈ w−1((0, 1/2]), 2w(x) ≤ t ≤ 1;

(h(x, 2t(1− w(x))), 0) if x ∈ w−1([1/2, 1));

(x, 0) x ∈ w−1(1).

Hence i : A → X is a cofibration by Lemma 8.8 (ii) which is equivalent to (X,A)
being an NDR-pair by Lemma 8.12.

8.3. Relative CW -complexes are cofibrations.

Theorem 8.17 (Relative CW -complexes are cofibrations). Let (X,A) be a relative
CW -complex. Then the inclusion i : A→ X is a cofibration.

Proof. Because of Lemma 8.10 it suffices to prove that the inclusion Xi → Xi+1 is
a cofibration for i = 0, 1, 2, . . .. Choose a pushout∐

j∈Ji S
i //

��

Xi

��∐
j∈Ji D

i+1 // Xi+1.

By Lemma 8.9 it suffices to show that the left vertical arrow in the diagram above
is a cofibration. This follows from the fact that the inclusion Si → Di+1 is a
cofibration which is a consequence of Lemma 8.8 (ii). �

One can actually show the following stronger result which we state without
giving the proof which follows essentially from the fact that (Di+1, Si) is a strong
neighborhood deformation retraction and is similar to the one of Theorem 8.17.

Theorem 8.18 (CW -complexes and strong neighborhood deformation retraction).
Let (B,A) be a strong neighborhood deformation retraction. Let (X,B) be a relative
CW -complex. Then the pair (X,A) is a strong neighborhood deformation retraction.

We omit the proof of the following result whose prove is similar to the one of
Theorem 8.18.

Theorem 8.19 (CW -complexes are locally contractible). Every CW -complex X
is locally contractible, i.e., for every point x ∈ X and every open neighborhood V
of x in X there exists an open neighborhood U of x in X such that U ⊆ V holds
and U and U are contractible.

8.4. Well-pointed spaces.

Definition 8.20 (Well-pointed space). A well-pointed space (X,x) is a pointed
space such that the inclusion of the base point {x} → X is a cofibration.

Lemma 8.21. Let {(Xi, xi) | i ∈ I} be a collection of well-pointed spaces. Then∨
i∈I(Xi, xi) with the canonical base point is well-pointed.
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Proof. We have the pushout∐
i∈I{xi} //

��

{•}

��∐
i∈I Xi

//
∨
i∈I(Xi, xi)

where the left vertical arrow is the obvious inclusion and a cofibration. Now apply
Lemma 8.9. �

8.5. Comparing pointed homotopy and homotopy. Consider a well-pointed
space (X,x) and space Y . Next we define a covariant functor

(8.22) γ = γ(X,x),Y : Π(Y )→ Sets

from the fundamental groupoid Π(Y ) to the category Sets of sets. It sends the
element y ∈ Y to the set [(X,x), (Y, y)]0 of pointed homotopy classes of pointed
maps (X,x) → (Y, y). Consider a morphism [w] : y0 → y1 in Π(Y ) represented by
path w : I → Y with w(0) = y0 and w(1) = y1 and an element [f ] ∈ [(X,x), (Y, y0)]0

represented by a pointed map f : (X,x) → (Y, y0). Since the inclusion {x} → X
is a cofibration, we can find a homotopy h : X × I → Y such that h0 = f0 and
h(x, t) = w(t) holds. Now we define γ([w])([f ]) = [h1]. We omit the proof, which
is essentially based on the fact that the inclusion {x}× I → X × I is a cofibration,
that this definitions makes sense and yields the functor γ announced in (8.22).

If we fix a point y ∈ Y , we get using the identification of π1(Y, y) with autΠ(Y )(y)
an operation

(8.23) π1(Y, y)× [(X,x), (Y, y)]0 → [(X,x), (Y, y)]0.

One easily checks that the forgetful map [(X,x), (Y, y)]0 → [X,Y ] induces a bijec-
tion

(8.24) π1(Y, y)\[(X,x), (Y, y)]0
∼=−→ [X,Y ].

Note that for a simply connected pointed space (Y, y), the bijection (8.24) reduces

to a bijection [(X,x), (Y, y)]0
∼=−→ [X,Y ].

If we take (X,x) = (Sn, s), the operation (8.23) yields an operation of π1(Y, y) on
πn(Y, y). If n = 1, this is the conjugation action, where [w] acts on [u] ∈ π1(Y, y) by
[u] 7→ [w] · [u] · [w]−1. If n ≥ 2, then πn(Y, y) is abelian and the π1(Y, y)-action is by
automorphism of abelian groups. Hence we get a left Z[π1(Y, y)]-module structure
on πn(Y, y) for n ≥ 2.

Suppose that Y is path connected and has a universal covering p : Ỹ → Y .

Choose ỹ ∈ Ỹ with p(ỹ) = y. Recall that Ỹ comes with a π1(Y, y)-action. Fix

a natural number n ≥ 2. We get for [u] ∈ π1(Y, y) a homeomorphism l[u] : Ỹ
∼=−→

Ỹ by left multiplication with [u]. Choose a path v : I → Ỹ from [u] · ỹ to ỹ.

Then we get an isomorphism Tn([v]) : πn(Ỹ , [u] · ỹ)
∼=−→ πn(Ỹ , ỹ) from (2.6), which

is independent of the choice of v as Ỹ is simply connected. Now we define a

left π1(Y, y)-action on πn(Ỹ , ỹ) by letting [u] ∈ π1(Y, y) act on πn(Ỹ , ỹ) by the

composite πn(Ỹ , ỹ)
πn(l[u],ỹ)
−−−−−−→ πn(Ỹ , [u] · ỹ)

Tn([v])−−−−→ πn(Ỹ , ỹ). One easily checks

that this defines a left Z[π1(Y, y)]-module structure on the abelian group πn(Ỹ , ỹ).

Recall the isomorphism πn(p, ỹ) : πn(Ỹ , ỹ)
∼=−→ πn(Y, y) from Theorem 2.7. One

easily checks that it is compatible with the left Z[π1(Y, y)]-module structures on

πn(Ỹ , ỹ) and πn(Y, y) constructed above.

Lemma 8.25. Let f : (X,x) → (Y, y) be a pointed map of well-pointed spaces.
Suppose that f is a homotopy equivalence (after forgetting the base points).
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Then f is a pointed homotopy equivalence.

Proof. Choose a homotopy inverse g′ : Y → X of f . Because of (8.24) we can change
g′ up to homotopy such that g′(y) = x holds. The map f∗ : [(Y, y), (X,x)]0 →
[(Y, y), (Y, y)]0 sends [g′] to the element [f ◦g′] which is mapped under the projection
[(Y, y), (Y, y)]0 → [Y, Y ] to [idY ]. Because of (8.24) there is a element v ∈ π1(Y, y)
satisfying [idY ] = v · [f ◦g′] in [(Y, y), (Y, y)]0. Since π1(f, x) : π1(X,x)→ π1(Y, y) is
bijective, we can find u ∈ π1(X,x) with π1(f, x)(u) = v. Let g : (Y, y)→ (X,x) be a
pointed map satisfying [g] = u·[g′] in [(Y, y), (X,x)]0. Then we get in [(Y, y), (Y, y)]0

[f ◦ g] = f∗([g]) = f∗(u · [g′]) = v · f∗([g′]) = v · [f ◦ g′] = [idY ].

Hence g is a pointed homotopy right inverse of f . The same argument applied to
g shows that [g] has a pointed homotopy right inverse. This implies that f is a
pointed homotopy equivalence. �

8.6. The Homotopy Theorem for pushouts and cofibrations. Given a space
B, let TopB be the category of topological spaces under B. Objects are maps
u : B → X. A morphism from u : B → X to v : B → Y is a map f : X → Y
satisfying f ◦u = v. We call two such morphism f0, f1 : u→ v homotopic if they are
homotopic through morphisms in TopB , i.e., there exists a homotopy h : X×I → Y
such that h0 = f0 and h1 = f1 holds and we have ht ◦ u = v for every t ∈ I. Let
h -TopB be the associated homotopy category, i.e., the set of objects of h -TopB

and TopB agree and a morphism from u to v in h -TopB is a homotopy class of
morphisms from u to v in TopB .

Let CofB and h -CofB respectively be the full subcategory of TopB and h -TopB

respectively consisting of those objects i : B → X for which i is a cofibration.
Given two spaces A and B, define Π(A,B) to be the following category. Objects

are maps f : A → B. A morphism from f0 to f1 is a homotopy class [h] relative
A × {0, 1} of maps h : A × I → B with h0 = f0 and h1 = f1. Note that h itself is
a homotopy between f0 and f1 and [h] is the homotopy class of such homotopies
represented by h. If A = {•}, then Π({•}, B) is the fundamental groupoid Π(B) of
B. Note that Π(A,B) is a groupoid. Given a cofibration i : A→ X, we next sketch
the construction of a contravariant functor

(8.26) βi : Π(A,B)→ h -CofB .

An object f : A→ B is sent to the cofibration γi(f) : B → Yf given by the following
pushout and Lemma 8.9

A
f

//

i

��

B

γi(f)

��

X
βi(f)

// Yf .

Now consider two maps f0, f1 : A→ B together with a homotopy h : A×I → B with
h0 = f0 and h1 = f1. As i is a cofibration, there exists a homotopy H : X×I → Yf0
with H0 = βi(f0) and H ◦ (i× idI) = γi(f0) ◦ h. Since we have the pushout

A
f1

//

i

��

B

γi(f1)

��

X
βi(f1)

// Yf1

there is precisely one map u : Yf1 → Yf0 uniquely determined by the property that
u ◦ βi(f1) = H1 and u ◦ γi(f1) = γi(f0) hold. Obviously u is a morphism from
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γi(f1) : B → Yf1 to γi(f0) : B → Yf0 in CofB . Thanks to H, we have

(8.27) u ◦ βi(f1) ' βi(f0).

We omit the proof that [u] depends only on [h] which can be found in [24, Propo-
sition 5.2.1 on page 107]. So we can define βi([h]) = [u]. We also omit the proof
that βi is a contravariant functor. Note that βi([u]) is represented by a homotopy
equivalence as π(A,B) is a groupoid.

Theorem 8.28 (Homotopy Theorem for pushouts and cofibrations). Consider a
pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration and f is a homotopy equivalence.
Then i : B → Y is a cofibration and f is a homotopy equivalence.

Proof. The map i is a cofibration by Lemma 8.9. Let g : B → A be a homotopy
inverse of f . Consider the pushout

B
g
//

i
��

A

i
��

Y
g
// Z.

The map i is a cofibration by Lemma 8.9. Since g ◦ f ' idA, we get from the
contravariant functor βi : Π(A,A)→ h -CofA of (8.26) and from (8.27) a homotopy
equivalence u : Z → X such that u◦g ◦f ' idX holds. Hence f has a left homotopy
inverse. Interchanging the role of f and g shows that f has a right homotopy
inverse. Hence f is a homotopy equivalence. �

Theorem 8.28 can easily be extended to the following theorem.

Theorem 8.29 (Homotopy Theorem for maps between pushouts). Let the follow-
ing two diagrams be pushouts

X0
i1
//

i2

��

X1

j1

��

X2
j2
// X

Y0
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y

where the left vertical arrows i2 and k2 are cofibrations. Let fi : Xi → Yi be homo-
topy equivalences for i = 0, 1, 2 satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0.
Denote by f : X → Y the map induced by f0, f1, and f2 and the pushout property.

Then f is a homotopy equivalence.

Remark 8.30. The condition that the maps i2 and k2 are cofibrations appearing
in Theorem 8.29 is necessary as the following examples shows.

We take as pushouts

Sn
i1
//

i2

��

Dn+1

j1

��

Dn+1

j2
// Sn+1

Sn
k1
//

k2

��

{•}

l1

��

{•}
l2

// {•}
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and define f0 = idSn and f1, f2, and f to be the the projections.

Example 8.31. Let B be the compact subset of R2 given by

B = {(1/n, 0) ∈ R2 | n ∈ Z≥1} q {(0, 0)}.
Let C be the cone over B with cone point (0, 1) in R2, i.e.,

C = {x ∈ R2 | ∃t ∈ I and b ∈ B satisfying x = t · b+ (1− t) · (0, 1)}.
Define

A = {x ∈ R2 | x ∈ C or − x ∈ C}.

#
Then we have:

(i) The inclusion {(0, 1)} → C is a cofibration;
(ii) C is contractible;
(iii) A is not contractible;
(iv) The inclusion {(0, 0)} → A is not a cofibration;
(v) The inclusion {(0, 0)} → C is not a cofibration;

(vi) C is a not CW -complex;
(vii) A is not a CW -complex.

Since we have the pushout whose left vertical arrow is the obvious inclusion and
a cofibration

B × {1} //

��

{•}

��

B × I // C

assertions (i) and (ii) follow from Theorem 8.28.
Next we show assertion (iii). Suppose that A is contractible. Since A is in

particular path connected, we can find a map h : A × I → A with h(a, 0) = (0, 0)
and h(a, 1) = a for all a ∈ A. Since any path from (−1/n, 0) to (0, 0) in A
must go through (0,−1), we can find elements t−n ∈ I with h(−1/n, t−n ) = (0,−1)
for n ≥ 1. Since I is compact, we can find a strictly monotone increasing function
N : N→ N and an element t− ∈ I with limn→∞ t−N(n) = t−. As limn→∞ 1/N(n) = 0

holds, we conclude h((0, 0), t−) = limn→∞ h(−1/N(n), t−N(n)) = (0,−1). Since h
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is continuous, we can choose t− such that h((0, 0), t) = (0,−1) for t ∈ I implies
t− ≤ t. Analogously we construct t+ ∈ I such that h((0, 0), t+) = (0, 1) holds
and h((0, 0), t) = (0, 1) for t ∈ I implies t+ ≤ t. Next we consider only the case
t+ ≤ t−, the other case is completely analogous. Obviously t+ 6= t− holds and
hence t+ < t−, By continuity limn→0 h(−1/n, t+) = h(0, t+) = (0, 1). Hence there
is a natural number n0 such that h(−1/n, t+) = (0, un) with un ≥ 0 holds for
n ≥ n0. Since any path from (−1/n, 0) to (0, u) for u ≥ 0 in A must go through
(0,−1) we can for every n ≥ n0 elements s−n ∈ I with h(−1/n, s−n ) = (0,−1) and
s−n ≤ t+. Since I is compact, we can find a strictly monotone increasing function
N ′ : N→ N and an element s− ∈ I with limn→∞ s−N ′(n) = s−. Obviously s− ≤ t+.

As limn→∞ 1/N ′(n) = 0 holds, we conclude (0,−1) = limn→∞ h((1/n, 0), s−n ) =
h((0, 0), s−). This implies t− ≤ s−. Hence we get t− ≤ t+, a contradiction.

Suppose that assertions (iv) is not true. As C and hence also {−x ∈ Rn | x ∈ C}
are contractible by assertion (ii), Theorem 8.29 implies that A is contractible. Since
we have already proved that A is not contractible, assertion (iv) follows.

Suppose that the inclusion {(0, 0)} → C is a cofibration. Then also the inclusion
{(0, 0)} → {−x ∈ Rn | x ∈ C} is a cofibration. This implies by Lemma 8.21 that the
inclusion {(0, 0)} → A is a cofibration. Hence assertion (iv) implies assertion (v).

Since the point (0, 0) in C has the property that any neighborhood of it in
C which does not contain (1, 0) is not contractible, assertion (vi) follows from
Theorem 8.19. The proof of assertion (vii) is analogous.

8.7. (Pointed) cylinders, cones and suspensions. Consider a space X. Recall
that its cylinder is defined by X × I, its cone cone(X) by the pushout

X × {1} //

��

{•}

��

X × I // cone(X),

and its suspension by the pushout

X //

��

cone(X)

��

cone(X) // ΣX.

Equivalently, one can define ΣX to be the quotient of X× [−1, 1] under the equiva-
lence relation generated by (x0, 1) ∼ (x1, 1) for x0, x1 ∈ X and (x0,−1) ∼ (x1,−1)
for x0, x1 ∈ X. There is an obvious pushout

X //

��

cone(X)

��

{•} // ΣX.

Consider a pointed space (X,x). Its reduced mapping cylinder cyl(X,x), its re-
duced mapping cone cone(X,x), and its reduced suspension Σ(X,x) are the defined
by the pushouts

(8.32) {x} × I //

��

{•}

��

X × I // cyl(X,x),
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(8.33) {x} × I ∪X × {1} //

��

{•}

��

X × I // cone(X,x),

and

(8.34) {x} × I ∪X × {0, 1} //

��

{•}

��

X × I // Σ(X,x).

and come with a preferred base point. Note that Σ(X,x) can be identified with the
smash product (S1, s) ∧ (X,x) = (S1 ×X)/(S1 × x ∪ {s} ×X).

Given a well-pointed pointed space (X,x), the canoncial projections cyl(X) →
cyl(X,x), cone(X)→ cone(X,x), and ΣX → Σ(X,x) are pointed homotopy equiv-
alences by Lemma 8.25, Theorem 8.28, and Theorem 8.29.

Cone(X) Cone(X
,
X

- Ecoupsis
X X

[X [(X
, x)

COLLAP)

· X-

- 2
There are obvious pushouts

{x} × I //

��

{•}

��

cyl(X,x) // cone(X,x),

and

X //

��

cone(X,x)

��

cone(X,x) // Σ(X,x).
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Let f : (X,x)→ (Y, y) be a pointed map. Its reduced mapping cone cone(f, x) is
defined by the pushout

(8.35) X
f

//

��

Y

��

cone(X,x) // cone(f, x)

or, equivalently by the pushout

(8.36) ({x} × I) ∪ (X × {0}) ∪ (X × {1}) u
//

��

Y

��

X × I // cone(f, x)

where u sends (x, t) for t ∈ I to y, (z, 1) to f(z) for z ∈ X and (z, 0) to y for z ∈ X.
Note that cone(f, x) comes with a preferred base point for which the pushout (8.35)

is a diagram of pointed maps of pointed spaces.

8.8. Turning a map into a cofibration. Consider a map f : X → Y . Then it can
be replaced up to homotopy equivalence by a cofibration. Namely let i : X → cyl(f)
be the canonical inclusion and p : cyl(i) → Y be the projection. Then we get the
factorization

f : X
i−→ cyl(f)

p−→ Y

where i is a cofibration and p is a homotopy equivalence. Actually we get a diagram

(8.37) X

i

��

f

||

f

""

Y
k

'
// cyl(f)

p

'
// Y

where the left triangle commutes up to homotopy, the right triangle commutes,
the two horizontal maps k and p are homotopy equivalences which are homotopy
inverse to one another, and the vertical arrow i is a cofibration.
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X

-

i f

-Gr G
-

Cylli) Y
P

Y

0.8 : 0

8.9. The Cofiber Sequence. A pointed map f : (X,x)→ (Y, y) induces by com-
position for every pointed space (B, b) a map

f∗ : [(Y, y), (B, b)]0 → [(X,x), (B, b)]0, [u] 7→ [u ◦ f ]

which depends only on the pointed homotopy class of f . A sequence (X,x)
f−→

(Y, y)
g−→ (Z, z) of maps of pointed spaces is called homotopy coexact if for each

pointed space (B, b) the induced sequence of pointed sets

[(Z, z), (B, b)]0
g∗−→ [(Y, y), (B, b)]0

f∗−→ [(X, y), (B, b)]0

is exact at [(Y, y), (B, b)]0 in the sense that the image of g∗ is the preimage of
f∗ of the base point in [(X, y), (B, b)]0 given by [cb] for the constant pointed map
cb : (X,x)→ (B, b). Note that this implies that g◦f is pointed homotopy equivalent
to the constant map cz : (X,x)→ (Z, z).

Lemma 8.38. Let f : (X,x)→ (Y, y) be a pointed map. Let j : (Y, y)→ cone(f, x)
be the canonical inclusion which is a map of pointed spaces.

Then the sequence

(X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗)

is homotopy coexact.

Proof. This is a direct consequence of the pushout (8.36) which says that a pointed
map (cone(f, x), ∗) → (B, b) is the same as a pointed map v : (Y, y) → (B, b)
together with a pointed homotopy h : X× I → B between the constant map cb and
v ◦ f . �

One can iterate this construction and obtains a homotopy coexact sequence of
pointed sets, infinite to the right,

X
f−→ Y

j−→ cone(f)
f2−→ cone(j)

f3−→ cone(f2)
f3−→ · · ·

where we omit the base points from the notation and homotopy coexact means that
it is exact as a sequence of pointed sets at Y , cone(f), cone(j), . . ..
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The further investigation replace the iterated mapping cones with homotopy
equivalent spaces which are more appealing, namely iterated suspensions.

Suppose additionally, that the pointed map f : (X,x) → (Y, y) is a cofibration
(after forgetting the base points). Note that then we can think of X as a closed
subspace of Y and f as the inclusion of X into Y , see Remark 8.7. Then we
obtain a pointed map p : (cone(f, x), ∗)→ (Y/X, ∗) which is homotopy equivalence
by Theorem 8.29. We conclude from Lemma 8.25 that p is a pointed homotopy
equivalence. Hence the following diagram of pointed sets commutes

(8.39) (X,x)
f
//

idX

��

(Y, y)
j
//

idY

��

(cone(f, x), ∗)

p

��

(X,x)
f
// (Y, y)

q
// (Y/X, ∗)

where q : X → X/Y is the canonical projection and all vertical arrows are pointed

homotopy equivalences. Hence the sequence (X,x)
f−→ (Y, y)

q−→ (Y/X, ∗) is homo-
topy coexact.

Note that j : (Y, y) → cone(f, x) is a cofibration and cone(f, x)/Y is homeo-
morphic to Σ(X,x) regardless whether f is a cofibration or not. Hence we obtain
from (8.39) a commutative diagram of pointed sets

(Y, y)
j
//

idY

��

(cone(f, x), ∗) k
//

idcone(f,x)

��

(cone(j, ∗), ∗)

p′

��

(Y, y)
j
// (cone(f, x), ∗)

g
// (Σ(X,x), ∗)

where all vertical arrows are pointed homotopy equivalences and g = p′ ◦ k. Hence
the sequence

(X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗) g−→ (Σ(X,x), ∗)

is homotopy coexact. Iterating this process leads to the following result. Denote
by Σn the n-fold suspension.

Theorem 8.40 (Cofiber sequence). Consider a pointed map f : (X,x) → (Y, y).
Then we obtain a homotopy coexact sequence, infinite to the right

(8.41) (X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗) g−→ (Σ(X,x), ∗) Σf−−→ (Σ(Y, y), ∗)
Σj−−→ Σ(cone(f, x), ∗) Σg−−→ (Σ2(X,x), ∗) Σ2f−−→ (Σ2(Y, y), ∗)

Σ2j−−→ Σ2(cone(f, x), ∗) Σ2g−−→ (Σ3(X,x), ∗) Σ3f−−→ · · · .

Note that this sequence (8.41) is natural in f . Moreover, it yields for every
pointed space (B, b) the following exact sequence of pointed sets, which is infinite
to the left, natural in both f and (B, b), and sometimes called the Puppe sequence:

(8.42)

· · · Σ2g∗−−−→ [Σ2 cone(f), B]0
Σ2j∗−−−→ [Σ2Y,B]0

Σ2f∗−−−→ [Σ2X,B]0
Σg∗−−→ [Σ cone(f), B]0

Σj∗−−→ [ΣY,B]0
Σf∗−−→ [ΣX,B]0

g∗−→ [cone(f), B]0
j∗−→ [Y,B]0

f∗−→ [X,B]0.

Here and also sometimes in the sequel we omit the base points from the nota-
tion. Note the obvious fact that the map f∗ : [Y,B]0 → [X,B]0 is not necessarily
surjective.
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8.10. Group structures on the Puppe Sequence. Let (X,x) be a well-pointed
space and (Y, y) be a pointed space. We have the pinching map ∇1 : S1 → S1 ∨ S1

of (2.5). It induces a pinching map

∇X : Σ(X,x) = S1 ∧X
∇1∧idX−−−−−→ (S1 ∨ S1) ∧X = (S1 ∧X) ∨ (S1 ∧X) = Σ(X,x) ∨ Σ(X,x).

Now we can define a group structure on [ΣX,Y ]0 by

(8.43) [ΣX,Y ]0 × [ΣX,Y ]0 → [ΣX,Y ]0, [f ] · [g] 7→ [(f ∨ g) ◦ ∇X ].

Analogously to the proof of Lemma 2.4, one can show that this group structure
is abelian on [ΣnX,Y ]0 for n ≥ 2. If we take (X,x) to be (S0, s), then the groups
[ΣnS0, (Y, y)]0 = [Sn, Y ]0 and πn(Y, y) agree.

The exact Puppe sequence (8.42) appearing in Theorem 8.40 is an exact sequence
of groups or abelian groups in the ranges where the group structures are defined
on the sets of pointed homotopy classes.

9. Fibrations

9.1. Basics about fibrations.

Definition 9.1 (Homotopy lifting property). A map p : E → B has the homotopy
lifting property (HLP) for the space X, if for each homotopy h : X × I → B and
each map f : X → E satisfying p ◦ f = h0, there is a homotopy H : X × I → E
with p ◦H = h and H0 = f .

In other words, the HLP for a space X means that the extension problem in-
dicated by the following diagram has a solution H for every map f : X → E and
homotopy h : X × I → Y satisfying p ◦ f = h0

(9.2) E

p

vv
B map(I, E)

map(idI ,p)

vv

e0E

hh

X
H

oo

f

ll

h
rr

map(I,B)

e0B

hh

where e0
B and e0

E are given by evaluation at 0 and h is the adjoint of h under the

canonical adjunction homeomorphism map(X × I,B)
∼=−→ map(X,map(I,X)), and

analogously for H and H.
Equivalently, one may describe the HLP with by the following diagram

(9.3) X
f
//

iX0
��

E

p

��

X × I
H

;;

h
// B.

Definition 9.4 (Fibration). A map p : E → B is called a fibration or Hurewicz
fibration if it has the homotopy lifting property for every space X.

A map p : E → B is called a Serre fibration if it has the homotopy lifting property
for the cube In for all n ≥ 1.
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Define for a map p : E → B the space W (p) by the pullback

(9.5) W (p)
ep

//

p

��

E

p

��

map(I,B)
e0B

// B.

Explicitly W (p) = {(e, w) ∈ E×map(I,B) | p(e) = w(0)} ⊆ E×map(I,B) and ep
sends (e, w) to e and p sends (e, w) to w. Note that we obtain from (9.5) a map

r : map(I, E)→W (p)

uniquely determined by the property that ep ◦r = e0
E and p◦r = map(idI , p) holds.

If we have base points e ∈ E and b ∈ B with f(e) = b, then W (p) inherits the
base point ∗ = (e, cb) for the constant map cb : I → B with image {b} and the
diagram (9.5) is a diagram of pointed spaces.

Proposition 9.6. The following assertions are equivalent for a map p : E → B:

(i) p is a fibration;
(ii) p has the HLP for W (p);

(iii) The map r : map(I, E)→W (p) has a section s.
Proof. (i) =⇒ (ii) This is obvious.

(ii) =⇒ (iii) If we apply the HLP to the map ep : W (p) → E and the homo-
topy h : W (p) × I → B which corresponds under the adjunction homeomorphism

map(W (p)× I,B)
∼=−→ map(W (p),map(I,B)) to p, we get a map s : W (p)× I → E.

Let s : W (p) → map(I, E) be the map corresponding to s under the adjunction

homeomorphism map(W (p)× I, E)
∼=−→ map(W (p),map(I, E)). Since the compos-

ite of r ◦ s and of idW (p) with both ep and p agree, we get r ◦ s = idW (p).

(iii) =⇒ (i) Consider a homotopy h : X × I → B and a map f : X → E satisfying
p ◦ f = h0. Because of the pullback (9.5) we get from (f, p) a map u : X → W (p).
Let H : X → map(I, E) be the composite s ◦ u. Let H : X × I → E be the homo-

topy corresponding to H under the adjunction homeomorphism map(X × I, E)
∼=−→

map(X,map(I, E)). Then H is a solution to the HLP given by (h, f). This shows
that p is a fibration. �

Proposition 9.7. Consider the pullback

X
f
//

q

��

Y

q

��

B
f
// C

If q is a fibration, then its pullback q along f is a fibration.

Proof. Consider a map u : A → X and a homotopy h : A × I → B such that
h0 = q ◦ u holds. As q is a fibration, we get from the HLP applied to the map
f ◦ u : A→ Y and the homotopy f ◦ h : A× [0, 1]→ Y a homotopy H : A× I → Y
satisfying q ◦H = f ◦ h and H0 = f ◦ u. Since the diagram above is a pullback, we
get a map H : A × [0, 1] → X uniquely determined by f ◦H = H and q ◦H = h.
Since H0 and u have the the same composite with both f and q, we get H0 = f .
Hence q has the HLP and therefore is a fibration. �

The elementary proof of the next result can be found in [24, Proposition 5.5.4
on page 116 and Proposition 5.5.5 and 5.5.6 on page 117].



52 LÜCK, WOLFGANG

Proposition 9.8. Let Z be a (compactly generated) space. Let i : A → B be a
cofibration and p : E → B be a fibration. Then:

(i) The induced map

map(i, idZ) : map(B,Z)→ map(A,Z)

is a fibration;
(ii) The induced map

map(idZ , p) : map(Z,E)→ map(Z,B)

is a fibration;
(iii) The canonical map map(I, E)→W (p) sending v to (v(0), p ◦ v) is a fibra-

tion;
(iv) Consider the pullback

Ei
i
//

p

��

E

p

��

A
i
// B.

Then the upper horizontal arrow i : Ei → E is a cofibration.

The elementary proof the next result can be found in [24, Corollary 5.5.3 on
page 116].

Proposition 9.9 (Improved HLP). Let p : E → B be a fibration and i : A→ B be a
cofibration which is the inclusion of a closed subspace A of B. Consider a homotopy
h : X×I → B and a map f : A×I ∪X×{0} → E. Let j : A×I ∪X×{0} → X×I
be the obvious inclusion. Suppose p ◦ f = h ◦ j.

Then there exists a homotopy H : X×I → E satisfying p◦H = h and H ◦j = f ,
in other words, we can solve the following extension problem

A× I ∪X × {0}
f
//

j

��

E

p

��

X × I
H

88

h
// B.

9.2. Turning a map into a fibration. Let f : X → Y be a map. Consider the

space W (f) defined in 9.5. Then the composite qf : W (f)
f−→ map(I, Y )

e1Y−−→ Y is a
fibration by the following argument.

Consider a homotopy h : A× I → Y and a map u : A→ X satisfying f ◦ u = h0.
Since (9.5) is a pullback, there is a homotopy H : A× I →W (f) which is uniquely

determined by the properties that ef ◦H is the composite A × I prA−−→ A
u−→ X for

prA the canonical projection and that f ◦H : A× I → map(I,B) agrees under the

adjunction map(A × I,map(I, Y ))
∼=−→ map(A × I × I → Y ) with the composite

A × I × I idA×v−−−−→ A × I h−→ Y for the map v : I × I → I sending (s, t) → s · t.
Explicitly H sends (a, t) to the pair (u(a), w) where w : I → Y sends s to h(a, st).
One easily checks that H0 = u and qf ◦H = h holds.

We have the inclusion i : X → W (f) sending x to (x, cf(x)). Its composite with
the map ef : W (f)→ X appearing in (9.5) is the identity on X. Define a homotopy
k : W (f) × [0, 1] → W (f) by sending ((x,w), t) to (x,wt) for the path wt : I → Y
sending s to w(st). Then k0 = i ◦ ef and k1 = idW (p). Hence ef is a homotopy
equivalence with homotopy inverse i. Obviously qf ◦ i = f holds. So we get a
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factorization f : X
i−→ W (f)

qf−→ Y into a homotopy equivalence i followed by a
fibration qf . Actually we obtain a diagram

(9.10) X
i

'
//

f
""

W (f)
ef

'
//

qf

��

X

f
||

Y

such that the left triangle commutes, the right triangle commutes up to homotopy,
the two horizontal arrows are homotopy equivalences and homotopy inverse to one
another, and the middle vertical arrow qf is a fibration. Recall that we have

W (f) = {(x,w) ∈ X ×map(I, Y ) | p(x) = w(0)};
i(x) = (x, cf(x));

ef (x,w) = x;

qf (x,w) = w(1).

9.3. Homotopy Theorem for pullbacks and fibrations.

Theorem 9.11 (Homotopy Theorem for pullbacks and fibrations). Consider the
pullback

X
f
//

p

��

E

p

��

A
f
// B.

Suppose that p is a fibration and f is a homotopy equivalence. Then p is a fibration
and f is a homotopy equivalence.

Proof. We have already shown in Proposition 9.7 that p is a fibration. The proof
that f is a homotopy equivalence is omitted and can be found in [24, Proposi-
tion 5.5.10 on page 118]. �

Theorem 9.11 can easily be extended to the following theorem.

Theorem 9.12 (Homotopy Theorem for maps between pullbacks). Let the follow-
ing two diagrams be pullbacks

X
i1
//

i2

��

X1

j1

��

X2
j2
// X0

Y
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y0

where the right vertical arrows j1 and l1 are fibrations. Let fi : Xi → Yi be homotopy
equivalences for i = 0, 1, 2 satisfying l1 ◦ f1 = f0 ◦ j1 and l2 ◦ f2 = f0 ◦ j2. Denote
by f : X → Y the map induced by f0, f1, and f2 and the pullback property.

Then f is a homotopy equivalence.

Remark 9.13. The condition that j1 and l1 are fibrations appearing in Theo-
rem 9.12 is necessary as the following examples shows.

Given a pointed space (X,x), let P (X,x) be the subspace of map(I,X) consisting
of path w with w(0) = x and Ω(X,x) be the subspace of map(I,X) consisting of
path w with w(0) = w(1) = x. Often Ω(X,x) is called the loop space of X. One
easily checks that P (X,x) is contractible. We take as pullbacks
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Ω(X,x)
i1
//

i2

��

P (X,x)

j1

��

{•}
j2

// X

{•} k1
//

k2

��

{•}

l1

��

{•}
l2

// X

where j1 is by evaluation at 1 and j2, l1, and l2 have as image the base point x.
Take f1 : P (X,x)→ {•} to be the projection, f2 = id{•}, and f0 = idX . Note that
Ω(X,x) is in general not contractible.

9.4. The fiber transport. Let p : E → B be a fibration. Next we construct a
functor

(9.14) τ : Π(B)→ h -Top.

It sends an object x in the fundamental groupoid to the fiber Fx := p−1(x) of p
over x. Consider a morphism [w] : x→ y. Choose a path w : I → B with w(0) = x
and w(1) = y representing w. Apply HLP to the inclusion ix : Fx → E and the

homotopy h : Fx × I
prI−−→ I

w−→ B for the projection prI . This yields a homotopy
H : Fx × I → E with H0 = ix and p ◦H = h. Then H1 is a map Fx → Fy and we
define τ([w]) = [H1]. We leave it to the reader to check that [H1] depends only on
[w] and is independent of the choices of w and H and yields a covariant functor.

Proposition 9.15. Let p : E → B be a fibration over a path connected space B.
Then for any two points x and y the fibers Fx and Fy are homotopy equivalent.

Proof. This follows from the functor τ of (9.14) and the fact that Π(B) is a
groupoid. �

9.5. Homotopy equivalences and fibrations.

Definition 9.16 (Fiber homotopy equivalence). Let p0 : E0 → B and p1 : E1 → B
be fibrations over B.

A fiber preserving map f : p0 → p1 is a map f : E0 → E1 satisfying p1 ◦ f = p0.
Two such fiber preserving maps f0, f1 : p0 → p1 are called fiber homotopy equiv-

alent if there is a homotopy h : E0 × I → E1 such that h0 = f0 and h1 = f1 hold
and ht : E0 → E1 is a fiber preserving map ht : p0 → p1 for each t ∈ I.

A fiber preserving map f : E0 → E1 is a fiber homotopy equivalence if there is
a fiber preserving map g : E1 → E0 such that g ◦ f is fiber homotopy equivalent to
idE0

and f ◦ g is fiber homotopy equivalent to idE1
.

Theorem 9.17 (Characterization of fiber homotopy equivalences). Let p0 : E0 →
B and p1 : E1 → B be fibrations over B.

Then a fiber preserving map f : p0 → p1 is a fiber homotopy equivalence if and
only if the underlying map f : E0 → E1 is a homotopy equivalence.

Proof. The proof is indicated for instance in [13, Proposition in Section 5 of Chap-
ter 7 on page 52]. �

Theorem 9.18 (Homotopy Covering Theorem). Let p : E → B be a fibration.
Consider two maps f0, f1 : X → B which are homotopic. Let pi : Ei → X be the
fibration obtained by the pulling back of p to fi for i = 0, 1.

Then p0 and p1 are fiber homotopy equivalent.

Proof. See [20, Proposition 15.16 on page 344]. �

Corollary 9.19. Let p : E → B be a fibration over a contractible space B. Then p
is fiber homotopy equivalent to a trivial fibration B × F → B.
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9.6. The Fiber Sequence. A pointed map f : (X,x)→ (Y, y) induces by compo-
sition for every pointed space (A, a) a map

f∗ : [(A, a), (X,x)]0 → [(A, a), (Y, y)]0, [u] 7→ [f ◦ u]

which depends only on the pointed homotopy class of f . A sequence (X,x)
f−→

(Y, y)
g−→ (Z, z) of maps of pointed space is called homotopy exact if for each pointed

space (A, a) the induced sequence of pointed sets

[(A, a), (X,x)]0
f∗−→ [(A, a), (Y, y)]0

g∗−→ [(A, a), (Z, z)]0

is exact at [(A, a), (Y, y)]0 in the sense that the image of f∗ is the preimage of
g∗ of the base point in [(A, a), (Z, z)] given by [cz] for the constant pointed map
cz : (B, b)→ (Z, z). Note that this implies that g◦f is pointed homotopy equivalent
to the constant map cz : (X,x)→ (Z, z).

Recall that P (Y, y) is the subspace of map(I, Y ) consisting of path w with w(0) =
y. It has the constant path cy as base point. Equivalently, one define P (Y, y) by
the pullback

(9.20) P (Y, y)
cy
//

��

map(I, Y )

e0Y
��

{•}
cy

// Y.

Define the space P (f, x) by the pullback

(9.21) P (f, x)
f
//

pf

��

P (Y, y)

e1Y
��

X
f

// Y.

The space P (f, x) inherits from the base points x ∈ X and cy ∈ P (Y, y) a base point
∗ for which the diagram (9.21) becomes a diagram of pointed spaces. Explicitly
P (f, x) is the subspace of X ×map(I, Y ) consisting of those pairs (z, w) for which
w(0) = y and w(1) = f(z) holds. The map f sends (z, w) to w and pf sends (z, w)
to z.

Lemma 9.22. Let f : (X,x) → (Y, y) be a pointed map of pointed spaces. Let
pf : P (f, x)→ X be the map defined in (9.21). Then

(P (f, x), ∗) pf−→ (X,x)
f−→ (Y, y)

is homotopy exact.

Proof. This is a direct consequence of the pullback (9.21) and the adjunction

map(A,map(I,X))
∼=−→ map(A × I,X). Namely, they imply that a pointed map

(A, a)→ (P (f, x), ∗) is the same as a pointed map u : (A, a)→ (X,x) together with
a pointed homotopy h : (A, a) × I → (Y, y) between the constant map cy : B → Y
and f ◦ u : (A, a)→ (Y, y). �

One can iterate this process and obtains a homotopy exact sequence, infinite to
the left

· · · f5−→ P (f3)
f4−→ P (f2)

f3−→ P (f1)
f2−→ P (pf )

f1−→ P (f)
pf−→ X

f−→ Y.

Here and also sometimes in the sequel we omit the base points from the notation.
The further investigations replace the spaces P (f1), P (f2), . . . by more appealing

spaces, namely by iterated loop spaces Ωn(X,x). Recall that the loop space Ω(X,x)
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is the subspace of map(I,X) consisting of maps w : I → X with w(0) = w(1) = x.
It can also be described by the pullback

(9.23) Ω(X,x)
i
//

��

P (X,x)

e1X
��

{•}
cx

// X

or, equivalently,

(9.24) Ω(X,x)
i
//

��

map(I,X)

map(i,idX)

��

{•} // map(∂I,X)

where i : ∂I → I is the inclusion and the lower horizontal arrow has the constant
map cx with value x as image.

Suppose additionally that the pointed map f : (X,x)→ (Y, y) is a fibration (after
forgetting the base points) and that (X,x) and (Y, y) are well-pointed. We have
the commutative diagram

{•}
cy

//

j'
��

Y

idY

��

X
f
oo

idX

��

P (Y, y)
e1Y

// Y X
f
oo

where j is the map onto the base point ∗ on P (Y, y). The pullback of the upper
row is f−1(y), whereas the pullback of the lower row is P (f, x) because of (9.21).
All vertical maps are homotopy equivalences. Hence the diagram induces by the
Homotopy Theorem 9.11 a homotopy equivalence

g : f−1(y)
'−→ P (f, x).

It is a pointed homotopy equivalence by Lemma 8.25, since its domain and codomain
are well-pointed. The following diagram of well-pointed spaces commutes

(9.25) (f−1(y), x)

g '
��

iy
// (X,x)

f
//

idX

��

(Y, y)

idY

��

(P (f, y), ∗)
pf
// (X,x)

f
// (Y, y)

for ix the inclusion and all vertical arrows are pointed homotopy equivalences. Since
the lower row is homotopy exact, the upper row is homotopy exact.

The map pf : P (f, x)→ X is a fibration by Proposition 9.7 applied to the pull-
back (9.7) since the inclusion {y} → Y is a cofibration and hence e1

Y : P (Y, y)→ Y
is a fibration by Proposition 9.8 (i). Then we obtain a pullback

(Ω(Y, y), ∗)
if
//

��

P (f, x)

pf

��

{•}
cx

// X
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from the pullbacks (9.21) and (9.23). Explicitly if : Ω(Y, y) → P (f, x) sends w to

(x,w) and induces a homeomorphism if : Ω(Y, y)→ p−1
f (x). Hence the sequence of

pointed spaces

Ω(Y, y)
if−→ (P (f, x), ∗) pf−→ (X,x)

f−→ (Y, y)

is homotopy exact. Iterating this process yields the following result.

Theorem 9.26 (Fiber sequence). Let f : (X,x)→ (Y, y) be a map of well-pointed
spaces. Then we obtain a homotopy exact sequence, infinite to the left,

(9.27) · · · Ω2pf−−−→ (Ω2(X,x), ∗) Ω2f−−→ (Ω2(Y, y), ∗) Ωif−−→ (Ω(P (f, x), ∗), , ∗)
Ωpf−−→ (Ω(X,x), ∗) Ωf−−→ (Ω(Y, y), ∗) if−→ (P (f, x), ∗) pf−→ (X,x)

f−→ (Y, y).

Note this sequence (9.27) is natural in f and yields for any pointed space (B, b)
the long exact sequence of pointed sets, infinite to the left,

(9.28) · · · (Ω2pf )∗−−−−−→ [B,Ω2(X,x)]0
(Ω2f)∗−−−−→ [B,Ω2(Y, y)]0

(Ωif )∗−−−−→ [B,ΩP (f, x)]0

(Ωpf )∗−−−−→ [B,Ω(X,x)]0
(Ωf)∗−−−−→ [B,Ω(Y, y)]0

(if )∗−−−→ [B,P (f, x)]0
(pf )∗−−−→ [B,X]0

f∗−→ [B, Y ]0

where we have omitted the base points of the pointed spaces involved. Note the
obvious fact that the map f∗ : [B,X]0 → [B, Y ]0 is not surjective in general.

9.7. Group structures on pointed sets associated to the Fiber Sequence.

Definition 9.29 (Group object in h -Top0). A group object in h -Top0 is a pointed
space (X,x) together with pointed maps

m : (X ×X, (x, x)) → (X,x);

i : (X,x) → (X,x),

satisfying the following conditions:

(i) The two pointed maps (X,x) → (X,x) sending y to m(x, y) and m(y, x)
respectively are pointed homotopic to the identity;

(ii) The two pointed maps m ◦ (idX ×m) and m ◦ (m × idX) from (X ×X ×
X, (x, x, x)) to (X,x) are pointed homotopic;

(iii) The two pointed maps m ◦ (idX ×i) and m ◦ (idX ×i) from (X ×X, (x, x))
to (X,x) are pointed homotopic to the constant map cx.

Sometimes group objects in h -Top0 are called associative H-spaces with inverse.

Example 9.30 (Examples for group object in h -Top0). A topological group is
obviously an example of a group object in h -Top0. Our main example is the loop
space Ω(X,x) of a well-pointed space (X,x) where m : Ω(X,x)×Ω(X,x)→ Ω(X,x)
sends (v, w) to the concatenation v ∗ w and i : Ω(X,x) → Ω(X,x) sends w to the
inverse path w−.

Remark 9.31. Let (B, b) be a pointed space and (X,x) be a group object in
h -Top0. Then [(B, b), (X,x)] inherits a group structure by the multiplication given
by

[(B, b), (X,x)]0 × [(B, b), (X,x)]0 → [(B, b), (X,x)]0, ([f ], [g]) 7→ [m ◦ (f × g)].

The unit is given by the class [cx] of the constant map. The inverse of [f ] ∈
[(B, b), (X,x)]0 is given by [i ◦ f ].

In particular we obtain for a well-pointed space (X,x) a group structure on
[(B, b), (Ω(X,x), ∗)]0. This group structure on [(B, b), (Ωn(X,x), ∗)]0 is abelian for



58 LÜCK, WOLFGANG

n ≥ 2. The sequence (9.28) is compatible with the group structures as long as they
exist.

9.8. The adjunction between suspension and loop spaces. Let (X,x) and
(Y, y) be well-pointed spaces. Then there is a natural adjunction homeomorphism

(9.32) ad: map((Σ(X,x), ∗), (Y, y))0 ∼=−→ map((X,x), (Ω(Y, y), ∗))0

between mapping spaces of pointed spaces. It is uniquely determined by the prop-
erty that it makes the following diagram commutative,

map((Σ(X,x), ∗), (Y, y))0 ad
//

��

map((X,x), (Ω(Y, y), ∗))0

��

map(X × I, Y ) ∼=
// map(X,map(I, Y ))

where the lower horizontal arrow is the natural adjunction homeomorphism, the
left vertical is the closed embedding coming from the projection X × I → Σ(X,x)
and the right vertical arrow is the closed embedding coming from the canonical
inclusion Ω(Y, y) → map(I, Y ). By passing to π0, we obtain from (9.32) natural
adjunction bijection

(9.33) [(Σ(X,x), ∗), (Y, y)]0
∼=−→ [(X,x), (Ω(Y, y), ∗)]0.

It is compatible with the group structure on the domain introduced in (8.43) and
on the codomain introduced in Remark 9.31.

If we take (X,x) = (Sn, s), we obtain for n = 0, 1, 2, . . . a natural bijection of
groups

(9.34) πn+1(Y, y)
∼=−→ πn(Ω(Y, y), ∗)

for n ≥ 0. Iterating this, we get a bijection of groups

(9.35) [(S0, s), (Ωn(X,x), ∗)]0 = π0(Ωn(X,x))
∼=−→ πn(X,x).

9.9. Locally trivial bundles are fibrations. The proof of the following result
can be found in [24, Theorem 13.4.1 on page 32].

Theorem 9.36 (Being a fibration is a local property). Let p : E → B be a
continuous map and let U = {Ui | i ∈ I} be an open covering of B. Sup-
pose that U is numerable, i.e., admits a subordinate partition of unity, and that
p|p−1(Ui) : p−1(Ui)→ Ui is a fibration for every i ∈ I.

Then p is a fibration.

Recall that a partition of unity subordinate to U is a family {ti : Ui → [0, 1] | i ∈
I} of functions ti satisfying:

• The support supp(ti) := {b ∈ B | ti(b) 6= 0} ⊆ B of ti is contained in Ui
for i ∈ I;

• The family {ti : Ui → [0, 1] | i ∈ I} is locally finite, i.e., for every b ∈ B
there is an open neighborhood V together with a finite subset I0 ⊆ I such
that ti(v) = 0 holds for all v ∈ V and i ∈ I \ I0;

• The (finite) sum
∑
i∈I tj(b) is 1 for every b ∈ B.

A space B is called paracompact if every open covering U = {Ui | i ∈ I} has
a refinement V = {vj | j ∈ J} which is locally finite, i.e., for every b ∈ B there
exists an open neighborhood W of b in B and a finite subset I0 ⊆ I satisfying
W ∩ Ui =⇒ i ∈ I0. Note that such V is automatically numerable. Every metric
space is paracompact, see [16, Theorem 4.3 on page 256]. Every CW -complex is
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paracompact, see [15] or [7, Theorem 1.3.5]. Theorem 9.36 and the discussion above
imply the following result.

Theorem 9.37 (Locally trivial bundles are fibrations). Let p : E → B be a locally
trivial bundle over a paracompact space, e.g., a principal G-bundle for a topological
group G, a vector bundle, or a covering over a space B which is a CW -complex or
a metric space.

Then p is a fibration.

9.10. Duality between cofibrations and fibrations. There is a kind of duality
between cofibrations and fibrations which we want to discuss next. One has to
interchange X × I and map(I,X), interchange pushouts with pullbacks, Σ with Ω
and invert all arrows. Here is a list of some examples.

• (HEP) and (HLP)

Consider the diagrams (8.3) and (9.3)

Y X
f

oo

H
zz

map(I, Y )

e0Y

OO

A

i

OO

h

oo

and

X
f
//

iX0
��

E

p

��

X × I
H

;;

h
// B;

• mapping cylinder and W(p)

Consider the diagrams (8.5) and (9.5)

cyl(i) X
k

oo

A× I

l

OO

A

i

OO

iA0

oo

and

W (p)
ep

//

p

��

E

p

��

map(I,B)
e0B

// B;

• Turning a maps into cofibration or fibration

Consider the diagrams (8.37) and (9.10)

Y cyl(f)
p

'
oo Y

k

'
oo

X

f

bb

f

<<

i

OO

and

X
i

'
//

f
""

W (f)
ep

'
//

qf

��

X

f
||

Y ;

• The Homotopy Theorems 8.28 and 9.11 where the relevant diagrams are

the pushout

Y X
f

oo

B

i

OO

A
f

oo

i

OO

and the pullback

X
f
//

p

��

E

p

��

A
f
// B.

• The Cofiber Sequence appearing in Theorem 8.40 and the Fiber Sequence
appearing in Theorem 9.26 as well as the long exact sequences of pointed
homotopy classes associated to them, see (8.42) and (9.28).

10. The long exact homotopy sequence associated to a fibration

10.1. The homotopy sequence.

Theorem 10.1 (The long exact homotopy sequence associated to a fibration). Let
(E, e) and (B, b) be well-pointed spaces. Let p : E → B be a fibration with p(e) = b.
Put Fb = p−1(b). Denote by i : Fb → E the inclusion.
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Then we obtain a long exact sequence, infinite to the left

(10.2) · · · ∂n+1−−−→ πn(Fb, e)
πn(i,e)−−−−→ πn(E, e)

πn(p,e)−−−−−→ πn(B, b)
∂n−→

· · · ∂2−→ π1(Fb, e)
π1(i,e)−−−−→ π1(E, e)

π1(p,e)−−−−→ π1(B, b)

∂1−→ π0(Fb)
π0(i)−−−→ π0(E)

π0(p)−−−→ π0(B)

with the following properties:

• It is an exact sequence of groups in the range until π1(B, b);
• It is exact at π1(B, b) in the sense that the image of π1(p, e) is the preimage

of the component in Fb containing e under ∂1;
• It is exact at π0(Fb) in the sense that the image of ∂1 is the preimage of

the component in E containing e under π0(i);
• It is exact at π0(E) in the sense that the image of π0(i) is the preimage of

the component in B containing b under π0(p);
• The boundary operator ∂n+1 : πn+1(B, b)→ πn(Fb, e) is defined as follows.

Consider u ∈ πn+1(B, b). Choose a map h : Sn × [0, 1] → B which sends
Sn×{0, 1}∪{s}×I to b such that for the pointed standard homeomorphism

q : (Sn × [0, 1]/(Sn × {0, 1} ∪ {s})× I, ∗)
∼=−→ (Sn+1, b)

the composite h = h◦q : (Sn+1, s)→ (B, b) represents u. Choose a solution
H to the lifting problem

Sn × {0} ∪ {s} × I ce
//

i

��

E

p

��

Sn × [0, 1]

H

88

h
// B

which exists by Proposition 9.9. Then ∂n+1(x) is represented by the pointed
map H1 : (Sn, s)→ (Fb, e).

Proof. This follows from the exact sequence (9.28) applied in the case (B, b) =
(S0, s),

· · · (Ω2pp)∗−−−−−→ [S0,Ω2E]0
(Ω2p)∗−−−−→ [S0,Ω2B]0

(Ωip)∗−−−−→ [S0,ΩP (p, e)]0

(Ωpp)∗−−−−→ [S0,ΩE]0
(Ωp)∗−−−→ [S0,ΩB]0

(ip)∗−−−→ [S0, P (p, e)]0
(pp)∗−−−→ [S0, E]0

p∗−→ [S0, B]0,

the isomorphism (9.35)

[(S0, s), (Ωn(X,x), ∗)]0 = π0(Ωn(X,x))
∼=−→ πn(X,x)

and the diagram (9.25) which becomes in the situation considered here

(Fb, e)

g '
��

ib
// (X,x)

f
//

idX

��

(Y, y)

idY

��

(P (p, e), ∗)
pp
// (X,x)

f
// (Y, y).

�

Remark 10.3 (Serre fibrations and the homotopy sequence). In order to have the
long exact homotopy sequence of Theorem 10.1 available, one needs only to know
that p : E → B is a Serre fibration, see [24, Theorem 6.3.2 on page 130].The obvious
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version of Theorem 9.36 holds also for Serre fibrations, see [24, Theorem 6.3.3 on
page 130].

10.2. The Hopf fibration. Fix d ∈ Z≥1. We can consider S1 as a subgroup
of C \ {0} with respect to multiplication of complex numbers. In particular S1

acts diagonally on Cd+1. Then S2d+1 ⊆ Cd+1 inherits an S1-action, which is free.
Recall that CPd is the set of 1-dimensional complex vector spaces of Cd+1 and is
equipped with the quotient topology with respect to the map f : Cd+1 \{0} → CPd
sending z ∈ Cd+1 \ {0} to the 1-dimensional complex vector space generated by
z. Consider the map p : S2d+1 → CPd obtained by restricting f to S2d+1. Then
p : S2d+1 → CPd is an identification. Obviously it factorizes over the projection

pr : S2d+1 → S2d+1/S1 into a bijective map u : S2d+1/S1
∼=−→ CPd. Since p and pr

are identifications, u is a bijective identification and hence a homeomorphism. Now
one easily checks that p : S2d+1 → CPd is a principal S1-bundle. Theorem 9.36
implies that p is a fibration. From Theorem 10.1 we obtain a long exact sequence
of groups

· · · ∂n+1−−−→ πn(S1)→ πn(S2d+1)
πn(p)−−−→ πn(CPd) ∂n−→

· · · ∂2−→ π1(S1)→ π1(S2d+1)
π1(p)−−−→ π1(CPd)→ {1}.

Since π1(S1) ∼= Z and πn(S1) = {0} for n ≥ 2 by (2.8), we obtain an isomorphism

(10.4) πn(p) : πn(S2d+1)→ πn(CPd) for n ≥ 3

and an exact sequence of abelian groups

{0} → π2(S2d+1)→ π2(CPd)→ π1(S1)→ π1(S2d+1)→ π1(CPd)→ {0}.
Recall that πm(Sn) ∼= {0} for m < n and πn(Sn) ∼= Z by Theorem 3.4. Hence CPd
is simply connected and we get an isomorphism

π2(CPd) ∼= Z.
Since CP1 is homeomorphic to S2, we get from (10.4) the following theorem, which
we have already briefly discussed in Example 3.5.

Theorem 10.5 (π3(S2) is infinite cyclic). The abelian group π3(S2) is an infinite
group with [p] for the so called Hopf map p : S3 → CP1 = S2 as generator.

10.3. Homotopy groups of loop spaces.

Proposition 10.6. Let (E, e) and (B, b) be well-pointed spaces. Let p : E → B be
a fibration with p(e) = b. Put Fb = p−1(b). Suppose that E is weakly contractible.
Then we get isomorphisms

πn+1(B, b)
∼=−→ πn(Fb, e)

for n ≥ 1.

Proof. This follows directly from Theorem 10.1. �

Suppose that (X,x) is a path connected well-pointed space. Then we have
the fibration p : P (X,x) → X whose fiber over x ∈ X is the loop space Ω(X,x).
As P (X,x) is contractible, we get from Proposition 10.6 for n ≥ 0 a preferred
isomorphism of groups

(10.7) ∂n+1(X,x) : πn+1(X,x)
∼=−→ πn(Ω(X,x)).

Note that π0(Ω(X,x)) = [(S0, s), (Ω(X,x), ∗)]0 has a group structure by Exam-
ple 9.30 and Remark 9.31. Iterating this, we get for every n ≥ 1 a group isomor-
phism πn(X,x) ∼= π0(Ωn(X,x)), as already mentioned in (9.35).
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10.4. Homotopy groups of classifying spaces BG. Let G be a topological
group and p : EG → BG be the universal principal G-bundle. Recall that it has
the property that the pullback construction defines for every CW -complex X a
bijection

(10.8) [X,BG]
∼=−→ {isomorphism classes of principal G-bundles over X}

and is up to isomorphism of G-bundles uniquely characterized by the property that
EG is weakly contractible. Proposition 10.6 implies that BG is path connected and
satisfies for n ≥ 1

(10.9) πn(BG) ∼= πn−1(G)

for e ∈ G the unit element.

10.5. On the homotopy groups of some classical Lie groups. Denote by F
one of the (skew)fields R, C, or H given by the reals numbers, the complex numbers,
or the quaternions. We have the associated orthogonal, unitary, or symplectic
groups which are Lie groups:

O(n) = O(n,R) = {A ∈ M(n, n,R) | AtA = In};
SO(n) = SO(n,R) = {A ∈ O(n) | det(A) = 1};
U(n) = O(n,C) = {A ∈ M(n, n,C) | A∗A = In};
SU(n) = SO(n,C) = {A ∈ U(n) | det(A) = 1};
Sp(n) = O(n,H).

The action of these groups on the unit spheres yield locally trivial fiber bundles
and hence by Theorem 9.36 fibrations for d = dimR(F)

O(n,F)
i−→ O(n+ 1,F) → Sd(n+1)−1;

SO(n,F)
j−→ SO(n+ 1,F) → Sd(n+1)−1.

The inclusions i and j come from A 7→
(
A 0
0 1

)
.

By passing to colimits we get the topological groups

O(∞;F) = colimn→∞O(n,F);

SO(∞;F) = colimn→∞ SO(n,F).

Since Sd(n+1)−1 is (d(n + 1) − 2)-connected by Theorem 3.4, we conclude from
Theorem 2.20 and Theorem 10.1

Proposition 10.10.

(i) For 1 ≤ n < m the inclusions O(n,F) → O(m,F) and SO(n,F) →
SO(m,F) are (d(n+ 1)− 2)-connected;

(ii) For 1 ≤ n the inclusions O(n,F) → O(∞,F) and SO(n,F) → SO(∞,F)
are (d(n+ 1)− 2)-connected.

The associated Stiefel manifold of orthogonal k-frames in Fn are defined by

Vk(Rn) = O(n,R)/O(n− k,R) ∼= SO(n,R)/SO(n− k,R);
Vk(Cn) = U(n,R)/U(n− k,C) ∼= SU(n,R)/ SU(n− k,C);
Vk(Hn) = Sp(n)/ Sp(n− k).

We have the fibration O(n−k,R)→ O(n,R)→ Vk(Rn) and analogous fibrations for
Vk(Cn) and Vk(Hn). The next proposition is a direct consequence of Theorem 10.1
and Proposition 10.10.

Proposition 10.11. The space Vk(Fn) is (d(n− k + 1)− 2)-connected.
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There is a fibration Vk(Fn) → Vk+1(Fn+1)
p−→ V1(Fn+1), where p sends a frame

{v1, v2, . . . , vk+1} to the frame {vk+1}. The next proposition follows from Theo-
rem 10.1 and Proposition 10.11.

Proposition 10.12. The inclusion Vk(Fn)→ Vk+1(Fn+1) is (d(n+1)−2)-connected.

Proposition 10.13. We have

π2(n−k)+1(Vk(Cn)) ∼= Z;

π4(n−k)+3(Vk(Hn)) ∼= Z;

πn−k(Vk(Rn)) ∼=

{
Z if k = 1 or (n− k) even;

Z/2 if k ≥ 2 and (n− k) odd.

Proof. The cases F = C and H follows by induction using V1(Fn) ∼= Sdn−1 and
πn(Sn) ∼= Z and Proposition 10.12. The case F = R needs more than we have
accumulated so far and can be found in [24, Proposition 6.8.5 on page 148]. �

Example 10.14. There are homeomorphisms SO(2)
∼=−→ S1 and SO(3)

∼=−→ RP3.
Since the universal covering of S1 is the principal Z-bundle R → S1 and the uni-
versal covering of RP3 is the principal Z/2-bundle S3 → RP3, we conclude from
Proposition 10.10

π1(SO(n)) ∼=

{
Z n = 2;

Z/2 n ≥ 3,

and π1(SO) ∼= Z/2.
We conclude π2(SO(3)) ∼= π2(RP3) ∼= π2(S3) ∼= {0} from Theorem 2.7 and

Theorem 3.4. Proposition 10.10 (ii) implies π2(SO) = {0}. Actually for every
compact Lie group G we have π2(G, g) = {0} for any base point g ∈ G, see [4,
Proposition 7.5 on page 225].

11. The Excision Theorem of Blakers-Massey

11.1. The statement of the Excision Theorem of Blakers-Massey. One
basic feature of a homology theory is excision. Consider any (generalized) homology
theory H∗ with values in R-modules for a commutative ring R. Consider a CW -
complex Y with CW -subcomplexes Y0, Y1, and Y0 satisfying Y = Y1 ∪ Y2 and
Y0 = Y1∩Y2, or a topological space Y with open subspaces Y0, Y1, and Y0 satisfying
Y = Y1 ∪ Y2 and Y0 = Y1 ∩ Y2. Then the map induced by the inclusion (Y2, Y0)→
(Y, Y1) induces for all n ∈ Z an R-isomorphism

Hn(Y2, Y0)
∼=−→ Hn(Y, Y1).

This yields a a long exact Mayer-Vietoris sequence of R-modules, infinite to both
sides,

· · · Hn+1(j1)−Hn+1(j2)−−−−−−−−−−−−−→ Hn+1(X)
∂n+1−−−→ Hn(X0)

Hn(i1)⊕Hn(i2)−−−−−−−−−−→ Hn(X1)⊕Hn(X2)

Hn(j1)−Hn(j2)−−−−−−−−−−→ Hn(X)
∂n−→ Hn−1(X0)

Hn−1(i1)⊕Hn−1(i2)−−−−−−−−−−−−−→ · · ·
where ik : X0 → Xk and jk : Xk → X for k = 1, 2 are the inclusions. The cor-
responding statement is not true for homotopy groups as the following example
shows.

Example 11.1. Consider the CW -complex Y = S1∨Sn with the CW -subcomplexes

Y1 = S1, Y2 = Sn, and Y0 = {•} for n ∈ Z≥2. Suppose that πn(Y2, X0)
∼=−→

πn(Y, Y1) is an isomorphism. Since πn(Sn, {•}) is isomorphic to πn(Sn) by the
long exact homotopy sequence of the pair (Sn, {•}), we conclude from Theorem 3.4
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that πn(S1 ∨ Sn, S1) is infinite cyclic. Theorem 3.4 and the exact sequence of
abelian groups πn(S1) → πn(S1 ∨ Sn) → πn(S1 ∨ Sn, S1) coming from the long
exact homotopy sequence of the pair (S1 ∨ Sn, S1), see Theorem 2.11 imply that
πn(S1 ∨Sn) is a subgroup of an infinite cyclic group and hence a finitely generated
abelian group. This contradicts Example 3.6. Hence πn(Sn, {•})→ πn(S1∨Sn, S1)
is not bijective.

One of the main results of this course is the next theorem due to Blakers and
Massey which shows excision in a very special case for homotopy groups.

Theorem 11.2 (The Excision Theorem of Blakers-Massey). Consider p, q ∈ Z≥1.
Let Y be a topological space with open subspaces Y0, Y1, and Y0 satisfying Y = Y1∪Y2

and Y0 = Y1 ∩ Y2. Suppose that for any base point y0 ∈ Y0 we have

πi(Y1, Y0, y0) = {0} for 0 < i < p;

πi(Y2, Y0, y0) = {0} for 0 < i < q.

Then, for every base point y0 ∈ Y0, the map induced by the inclusion i : (Y2, Y0)→
(Y1, Y0)

πn(i, y0) : πn(Y2, Y0, y0)→ πn(Y, Y1, y0)

is surjective for 1 ≤ n = p+ q − 2 and bijective for 1 ≤ n ≤ p+ q − 3.

If p = 1, then there is no condition on (Y1, Y0) in Theorem 11.2. Note that in
Theorem 11.2 only the case n ≥ 1 is treated, we will say something for n = 0 in
Subsection 11.3.

11.2. The proof of the Excision Theorem of Blakers-Massey. The following
rather elementary proof of the Excision Theorem 11.2 of Blakers-Massey is due to
Dieter Puppe. The proof needs some preparation.

We begin with introducing some notation.

Notation 11.3 (Cubes and faces in Rn). A cube in Rn for n ≥ 1 is a subset of the
form

W = W (a, δ, L) := {x = (x1, x2, . . . , xn) ∈ Rn |
ai ≤ xi ≤ ai + δ for i ∈ L, ai = xi for i /∈ L}

for a = (a1, a2, . . . , an) ∈ Rn, δ > 0, and a (possibly empty) subset L ⊆ {1, 2, . . . , n}.
The dimension dim(W ) of W is defined to be |L|.

A face of W ′ of W is a subset of W of the form

W ′ = {x ∈W | xi = ai for i ∈ L0, xj = aj + δ for j ∈ L1}

for some (possibly empty) subsets L0 ⊆ L and L1 ⊆ L. (The subset W ′ may be
empty or equal to W .)

Let ∂W be the union of all faces W ′ of W which are not equal to W .
For 1 ≤ p ≤ n we define the following subsets of W :

Kp(W ) = {w ∈W | xi < ai + δ/2 for at least p values i ∈ L};
Gp(W ) = {w ∈W | xi > ai + δ/2 for at least p values i ∈ L}.

For p > dim(W ) we define Kp(W ) and Gp(W ) to be the empty sets. Note that
Kp(W ) and Gp(W ) become smaller and smaller as p becomes bigger and Gp(W )∩
Kq(W ) = ∅ if p+ q > dim(W ) hold.
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Next we prove a technical lemma which will enter in the important Proposi-
tion 11.5. It essentially says that a map W → Y , which satisfies a certain condition
on the boundary ∂W , can be changed up to homotopy relative ∂W such that the
resulting map satisfies the analog of this condition on W and not only on ∂W .

Lemma 11.4. Consider a pair (Y,A), a cube W ⊆ Rn, and a map f : W → Y .
Suppose that for p ≤ dim(W ) we have f−1(A) ∩W ′ ⊆ Kp(W

′) for all faces W ′ ⊆
∂W .

Then there exists a map g : W → Y with the following properties:

(i) g is homotopic relative ∂W to f ;
(ii) We have g−1(A) ⊆ Kp(W ).

The same conclusion holds if we replace Kp(W ) by Gp(W ) in assertion (ii).

Proof. Obviously we can assume without loss of generality that W is the stan-
dard cube In =

∏n
i=1[0, 1] = W ((0, 0, . . . , 0), 1, {1, 2, . . . , n}). Let In2 be the sub-

cube of In given by
∏n
i=1[0, 1/2] = W ((0, 0, . . . , 0), 1/2, {1, 2, . . . , n}). Put x4 =

(1/4, 1/4, . . . , 1/4).
Define a map

h : In → In

by expanding In2 to In by radial projection with center x4. Here is the precise
definition of h. Let x ∈ In be any point. If x = x4, we define h(x) = x4. Suppose
that x 6= x4. Consider the ray

r : R≥0 → Rn, t 7→ x4 + t · (x− x4)

starting at x4 through x. Let P (x) be its intersection point with ∂In2 and Q(x)
be its intersection point with ∂In. If x lies in the segment [P (x), Q(x)] of the ray
r, it is sent to Q(x). Suppose that x lies on the segment [x4, P (x)]. If we write
x = x4+t·(P (x)−x4) for some t ∈ [0, 1] then h(x) is defined to be x4+t·(Q(x)−x4).
In other words, h sends the segment [x4, P (x)] affinely to the segment [x4, Q(x)]
and the segment [P (x), Q(x)] to the point Q(x). Obviously h is homotopic relative
∂W to idW .
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Now we set g = f ◦h. Then g is homotopic relative ∂W to f . It remains to show
g−1(A) ⊆ Kp(W ).

Consider z ∈ In with g(z) ∈ A. If zi < 1/2 holds for i = 1, 2, . . . , n, then
z ∈ Kn(In) ⊆ Kp(I

n). So it suffices to treat the case, where zi ≥ 1/2 holds for
at least one i ∈ {1, 2, . . . , n}. Then h(z) ∈ ∂In holds by definition. Choose a face
W ′ ⊆ ∂In with h(z) ∈W ′. Since h(z) ∈ f−1(A) holds, we get h(z) ∈W ′ ∩ f−1(A)
and hence h(z) ∈ Kp(W

′). Hence we have h(z)i < 1/2 for at least p many elements
i ∈ {1, 2, . . . , n}. For i ∈ {1, 2, . . .} with h(z)i < 1/2 we get h(z)i = 1/4+t·(zi−1/4)
with t ≥ 1 and hence zi < 1/2. This shows z ∈ Kp(W ). This finishes the proof of
Lemma 11.4 for Kp(W ), the version for Gp(W ) is proven analogously. �

The next proposition contains the main technical result needed for the proof of
Theorem 11.2.

For the remainder of this subsection let Y be a topological space Y with open
subspaces Y0, Y1, and Y0 satisfying Y = Y1 ∪ Y2 and Y0 = Y1 ∩ Y2 and we consider
p, q ∈ Z≥0.
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F
Proposition 11.5. Suppose that (Y1, Y0) is p-connected and (Y2, Y0) is q-connected.
Let f : In → Y be a map. Let W = {W} be a subdivision of In into cubes W such
that either f(W ) ⊆ Y1 or f(W ) ⊆ Y2 holds. (It exists as In is compact.)

Then there exists a homotopy h : In × I → Y with h0 = f satisfying for every
W ∈ W:

(i) If f(W ) ⊆ Yj holds, then we have ht(W ) ⊆ Yj for every t ∈ I, where
j ∈ {0, 1, 2};

(ii) If f(W ) ⊆ Y0 holds, then we have ht|W = f |W for every t ∈ I;
(iii) If f(W ) ⊆ Y1 holds, then we have h−1

1 (Y1 \ Y0) ∩W ⊆ Kp+1(W );

(iv) If f(W ) ⊆ Y2 holds, then we have h−1
1 (Y2 \ Y0) ∩W ⊆ Gq+1(W ).

Proof. We enlarge the collection of cubes W such that for every W ∈ W all of its
faces belong toW. Let Ck ⊆ In be the union of all cubes W ∈ W with dim(W ) ≤ k.
We construct for k = 0, 1, 2 . . . , n a homotopy h[k] : Ck × I → Y satisfying for each
cube W ∈ W of dimension ≤ k the conditions (i), (ii), (iii), and (iv) such that
h[k]|Ck−1×I = h[k − 1] holds for k = 1, 2, . . . , n. Then the desired homotopy is
h = h[n].

Note in the sequel that for a cube W ∈ W, for which we have f(W ) ⊆ Y0 and
condition (ii) holds, conditions (iii) and (iv) are automatically satisfied, since then
h−1

1 (Y1 \Y0) and h−1
1 (Y2 \Y0) are empty. Moreover, if a cube W ∈ W satisfies both

f(W ) ⊆ Y1 and f(W ) ⊆ Y2, then we have f(W ) ⊆ Y0, and for each cube W ∈ W
we have f(W ) ⊆ Y1 or f(W ) ⊆ Y2. So every cube W ∈ W satisfies precisely one of
the following conditions:

• f(W ) ⊆ Y0;
• f(W ) ⊆ Y2 and f(W ) * Y1;
• f(W ) ⊆ Y1 and f(W ) * Y2.

We begin with k = 0. Consider a cube W in W of dimension 0. If W0 ⊆ Y0,
define h[0]t(W0) = W0 for t ∈ I. This is forced upon us by condition (ii). Suppose
f(W ) ⊆ Y1 and f(W ) ( Y2 hold. As (Y1, Y0) is 0-connected, we can choose a
path w : I → Y1 from f(W ) to a point y ∈ Y0. We define h[0](W, t) = w(t) for
t ∈ I. Then conditions (i) and (iii) are satisfied for trivial reasons. Analogously one
defines h[0] in the case, where f(W ) ⊆ Y2 and f(W ) ( Y0 hold. This finishes the
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construction of h[0]. One easily checks that all the conditions (i), (ii), (iii), and (iv)
are satisfied for every 0-dimensional cube W by h[0].

Next we deal with the induction step from (k − 1) to k. Consider a cube of
dimension k. Then ∂W = W ∩ Ck−1. Since ∂W → W is a cofibration, we can
extend h[k− 1]∂W×I to W × I such that conditions (i) and (ii) are satisfied. So we
get a homotopy h[k]′ : Ck × I → Y such that conditions (i) and (ii) hold for h[k]′

and any W ∈ W with dim(W ) ≤ k and the restriction of h[k]′ to Ck−1× I satisfies
conditions (i), (ii), (iii), and (iv) for any W ∈ W with dim(W ) = (k − 1).

The homotopy h[k]′ is not yet the desired homotopy h[k]. It remains to explain
why we can change h[k]′ further such that all the conditions (i), (ii), (iii), and (iv)
are satisfied for each cube W with dim(k) ≤ k. For this purpose we consider the
map h[k]′1 : Ck → Y and construct an appropriate homotopy h[k]′′ : Ck×I → Y with
h[k]′′0 = h[k]′1 and will get the desired homotopy h[k] : Ck × I → Y by h[k]′ ∗ h[k]′′.

Consider a cube W . We explain how to define h[k]′′|W×[0,1] with dim(W ) =
k. If h[k]′1(W ) ⊆ Y0, then we define h[k]′′t |W = h[k]′1|W for t ∈ [0, 1]. Suppose
that h[k]′1(W ) ⊆ Y1 and h[k]′1(W ) ( Y2 holds. If dim(W ) ≤ p, there exists a
homotopy l relative ∂W with l0 = h′[k]1 and l1(W ) ⊆ Y0, since the pair (Y1, Y0)
is p-connected. Define h[k]′′|W×I by l. If dim(W ) > p, we use Lemma 11.4 with
f = h[k]′|W to define h[k]′′|W×I . We treat the case h[k]′1(W ) ⊆ Y2 and h[k]′1(W ) (
Y1 analogously. This finishes the construction of h[k]′′ and hence of the desired
homotopy h[k]. Note that h[k]′′ is stationary on Ck−1. One easily checks that h(k)
satisfies conditions (i), (ii), (iii), and (iv) for any W ∈ W with dim(W ) ≤ k. Hence
the proof of Proposition 11.5 is finished. �

Denote by F (Y1, Y, Y2) the subspace of map(I, Y ) given by

F (Y1, Y, Y2) := {w : I → Y | w(0) ∈ Y1, w(1) ∈ Y2}.
So we are looking at paths in Y starting somewhere in Y1 and ending somewhere
in Y2. Define F (Y1, Y1, Y0) to be the subspace of map(I, Y1) given by

F (Y1, Y1, Y0) := {w : I → Y1 | w(1) ∈ Y0}.
So here we are looking at paths in Y1 ending somewhere in Y0. Since we can think
of map(I, Y1) as a subspace of map(I, Y ), we can also think of F (Y1, Y1, Y0) as a
subspace of F (Y1, Y, Y2).

Proposition 11.6. Suppose that (Y1, Y0) is p-connected and (Y2, Y0) is q-connected.
Then the inclusion

F (Y1, Y1, Y0)→ F (Y1, Y, Y2)

is (p+ q − 1)-connected.

Proof. Consider a map of pairs

ϕ : (In, ∂In)→ (F (Y1, Y, Y2), F (Y1, Y1, Y0))

for any n ≤ (p+ q − 1). We have to find a homotopy h with h0 = ϕ such that the
image of h1 is contained in F (Y1, Y1, Y0).

By the adjunction map(In×I, Z)
∼=−→ map(In,map(I;Z)) the map ϕ is the same

as a map Φ: In × I → Y satisfying:

(i) Φ(x, 0) ∈ Y1 for x ∈ In;
(ii) Φ(x, 1) ∈ Y2 for x ∈ In;
(iii) Φ(x, 1) ∈ Y0 for x ∈ ∂In, t ∈ I.

In the sequel we call a map Φ: In× I → Y satisfying the three conditions above
admissible. We have to show that any such admissible map Φ can be homotoped
through admissible maps to an admissible map Φ′ : In × I → Y with the property
Φ′(In × I) ⊆ Y1.
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Starting with an admissible map Φ: In+1 = In × I → Y , we apply Proposi-
tion 11.5 and obtain a new admissible map Ψ. One easily checks that the homotopy
coming from Proposition 11.5 is a homotopy through admissible maps.

Consider the projection pr : In × I → In. Next we show that the images of
Ψ−1(Y \Y1) and Ψ−1(Y \Y2) under pr are disjoint. Suppose the contrary. So there
are y ∈ In, z1 ∈ Ψ−1(Y \ Y1) and z2 ∈ Ψ−1(Y \ Y1) with pr(z1) = y = pr(z2).
Choose a cube W ⊆ In+1 with z1 ∈W . Since z1 ∈ Ψ−1(Y \Y1) holds, we conclude
z1 ∈ Kp+1(W ) from condition (iii) appearing in Proposition 11.5. This implies that
y ∈ Kp(I

n) holds. Analogously one shows y ∈ Gq(In), now using condition (iv)
appearing in Proposition 11.5. This is a contradiction since Kp(I

n) ∩ Gq(In) is
empty if n < p+ q holds.

The intersection of pr(Ψ−1(Y \ Y1)) and ∂In is empty since Ψ is admissible
and hence Ψ(∂In) × I ⊆ Y1 holds. Hence the closed subsets pr(Ψ−1(Y \ Y1)) and
∂In ∪ pr(Ψ−1(Y \ Y2)) of In are disjoint. Choose a continuous function τ : In → I
which assumes the value 0 on Ψ−1(Y \Y1) and the value 1 on ∂In∪pr(Ψ−1(Y \Y2)).
Then we obtain a homotopy through admissible maps

h : (In × I)× I → Y, ((x, t), s) 7→ Ψ(x, (1− s)t+ stτ(x))

such that h0 = Ψ and h1(In × I) ⊆ Y1 holds. This finishes the proof of Proposi-
tion 11.6. �

Now we are ready to give the proof of the Excision Theorem 11.2.

Proof of Theorem 11.2. We have the path fibration map(I, Y ) → Y sending w to
w(0), see Proposition 9.8 (i). The induced map p : F (Y1, Y, Y2)→ Y1 sending w to
w(0) is a fibration by Proposition 9.7.The fiber over a point y1 ∈ Y1 is F ({y0}, Y, Y2).
We obtain a commutative diagram of fibrations

F ({y0}, Y1, Y0)
i
//

��

F ({y0}, Y, Y2)

��

F (Y1, Y1, Y0)
j
//

��

F (Y1, Y, Y2)

��

Y1
id

// Y1

where i and j are the inclusions. We have already shown that j is (p + q − 1)-
connected by Proposition 11.6. Using the long exact homotopy sequences of the
two fibrations above and a kind of Five-Lemma argument shows that i is also
(p+ q − 1)-connected. There is a commutative diagram for n ≥ 1

πn−1(F ({•}, Y1, Y0), ∗) i
//

∼=
��

πn−1(F ({•}, Y, Y2), ∗)

∼=
��

πn(Y1, Y0, y0) // πn(Y, Y2, y0)

whose lower horizontal arrow is induced by the inclusion and vertical arrows are
bijections by a version of (9.34) for pairs. Hence the lower vertical arrow is surjective
for 1 ≤ n = p+ q− 2 and bijective for 1 ≤ n ≤ p+ q− 3. This finishes the proof of
Theorem 11.2. �

11.3. The Excision Theorem for n = 0. Note that in Theorem 11.2 only n ≥ 1
is considered. We also want to treat the case n = 0.
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Proposition 11.7. Let Y be a topological space Y with open subspaces Y0, Y1, and
Y0 satisfying Y = Y1 ∪ Y2, Y0 = Y1 ∩ Y2 and Y0 6= ∅.

Then the canonical map ι : π0(Y2, Y0)→ π0(Y, Y1) is bijective.

Proof. Since very element in Y belongs to Y1 or Y2, the map ι is obviously surjective.
Injectivity is proved as follows.

Consider elements C1, C2 ∈ π0(Y2). Let C1 and C2 be the classes represented
by them in π0(Y2, Y0). Suppose that they have the same image under ι. Then we
have to show C1 = C2.

We first treat the case, where ι(C1) = ι(C2) is different from the base point in
π0(Y, Y1). Then the images of C1 and C2 under the map π0(Y2) → π0(Y ) agree.
Hence we can find a path w : I → Y with w(0) ∈ C1 and w(1) ∈ C2. Since
ι(C1) = ι(C2) is different from the base point in π0(Y, Y1), this path cannot meet
w−1(Y1). Hence it is a path w : I → Y2. This implies C1 = C2 ∈ π0(Y2) and hence
C1 = C2.

Next we treat the case, where ι(C1) = ι(C2) is the base point in π0(Y, Y1). It
suffices to show that then C1 is the base point ∗ in π0(Y2, Y0). As ι(C1) is the base
point in π0(Y, Y1), there is a path component D in π0(Y1) such that the image of
C1 under π0(Y2)→ π0(Y ) and the image of D under π0(Y1)→ π0(Y ) agree. Hence
we can find a path w : I → Y with w(0) ∈ C1 and w(1) ∈ Y1. If w(0) ∈ Y0 holds,
C1 is obviously the base point in π0(Y2, Y0). Hence we can assume without loss of
generality that y1 /∈ Y0 holds. Since y1 /∈ Y0 and y1 ∈ Y1 hold, we have y1 /∈ Y2. If
w−1(Y2) is empty, w is a path in Y0 and hence C1 is the base point in π0(Y2, Y0).
Hence we can assume without loss of generality that w−1(Y2) is not empty and
y1 /∈ Y2 holds.

Let t0 be the infimum of w−1(Y2) ⊆ I. As w−1(Y2) is open, we have 0 ≤ t0 < 1.
Since 0 /∈ w−1(Y2) holds, we get t0 /∈ w−1(Y2). Hence [0, t0] ⊆ W1 holds. There
exists t1 ∈ I with t0 < t1 such that [0, t1] ∈ w−1(Y1) holds. Now choose t2 ∈ [0, 1]
satisfying t0 < t2 < t1 and t2 ∈ w−1(Y2). Note that then t2 ∈ w−1(Y1)∩w−1(Y2) =
w−1(Y0) holds. Consider the path v : I → Y sending s to w(st2). Then v is a
path in Y2 from v(0) = x2 to v(1) ∈ Y0. This implies that C1 is the base point in
π0(Y2, Y0). This finishes the proof of Proposition 11.7. �

Another shorter proof of Proposition 11.7 comes from the following observation.

The map on singular homology µ : H0(Y2, Y0;Z)
∼=−→ H0(Y, Y1;Z) induced by the

inclusion is an isomorphism by excision. The abelian group H0(Y2, Y0;Z) is a free
Z-modules with basis B1 which is the complement of the image of π0(Y0)→ π0(Y2)
in π0(Y2). The abelian group H0(Y, Y1;Z) is a free Z-modules with basis B2 which
is the complement of the image of π0(Y1)→ π0(Y ) in π0(Y ). The map µ sends an
element in π0(Y2) \ π0(Y0) to an element in π0(Y ) \ π0(Y1) or to 0.

11.4. Some applications of the Excision Theorem of Blakers-Massey.

Proposition 11.8. Let Y be a topological space Y with subspaces Y0, Y1, and Y2

satisfying Y = Y1 ∪ Y2, Y0 = Y1 ∩ Y2, and Y0 6= ∅. Consider m,n ∈ Z≥0.

(i) Suppose that (Y2, Y0) is n-connected. Then (Y, Y1) is n-connected;
(ii) Suppose that (Y1, Y0) is m-connected and (Y2, Y0) is n-connected. Then:

(a) The map π0(Y2, Y0)→ π0(Y, Y1) is bijective;
(b) For every base point y0 the following holds: The map πi(Y2, Y0, y0)→

πi(Y, Y1, y0) induced by the inclusion is bijective for 1 ≤ i ≤ m+n−1
and surjective for i = m+ n.

Proof. We only give the proof for assertion (i), the one for assertion (ii) is analogous,
if one takes Theorem 11.2 into account.
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Recall that (Y, Y1) is n-connected if and only if π0(Y, Y1) is trivial, i.e., consist
of one element, and for every element i ∈ {1, 2, . . . , n} and every base point y1 ∈ Y1

the set πi(Y, Y1, y1) is trivial. The analogous statement holds for (Y2, Y0).
Proposition 11.7 implies that π0(Y, Y1) is trivial.
Consider i with 1 ≤ i. We conclude from Theorem 11.2 that πi(Y, Y1, y0) is

trivial for every base point y0 ∈ Y0. We need to check that πi(Y, Y1, y1) is trivial
for every element i ∈ {1, 2, . . . , n} and every base point y1 ∈ Y1. Since the map
π0(Y0) → π0(Y1) is surjective by assumption, we can connected y1 by a path in
Y1 to a point y0 in Y0. The obvious version of (2.6) for pointed pairs implies
πi(Y, Y1, y1) ∼= πi(Y, Y1, y0) and hence πi(Y, Y1, y1) is trivial. �

Proposition 11.9. Consider m,n ∈ Z≥0 q {∞} and a pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration.

(i) If f is n-connected, then f is n-connected;
(ii) If f is n-connected and i is m-connected, then

• The map π0(f, f) : π0(X,A)→ π0(Y,B) is bijective;
• For every a ∈ A the map πk(f, f, a) : πk(X,A, a)→ πk(Y,B, f(a)) is

bijective for 1 ≤ k ≤ m+ n− 1 and surjective for 1 ≤ k = m+ n,
where we use the convention that m+n− 1 and m+n mean ∞ if m =∞
or n =∞ holds.

Proof. Because of Subsection 8.8 and Theorem 8.29 we can replace f and i by the
inclusions into their mapping cylinders. Hence it suffices to consider in Proposi-
tion 11.9 the diagram of closed subspaces

A //

��

cyl(f)

��

cyl(i) // cyl(i) ∪A cyl(f).

Now one easily constructs open subsets W0, W1, and W2 of cyl(i) ∪A cyl(f) such
that A ⊆W0, cyl(i) ⊆W1, and cyl(f) ⊆W2 hold, the corresponding inclusions are
homotopy equivalences, and we have cyl(i)∪Acyl(f) = W1∪W2 and W0 = W1∩W2.
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D
~

Hence it suffices to show if we put W = cyl(i) ∪A cyl(f) and (W1,W0) is m-
connected and (W2,W0) is n-connected for m,n ∈ Z≥0:

• The pair (W,W2) is n-connected;
• The map induced by the inclusion π0(W1,W0)→ π0(W,W2) is bijective;
• The map induced by the inclusion πk(W1,W0, a)→ πk(W,W2, a) is bijec-

tive for 1 ≤ k ≤ m+ n− 1 and surjective for 1 ≤ ik = m+ n.

This has already been done in Proposition 11.8. �

We leave it to the reader to proof the following generalization of Proposition 11.9 (i).

Proposition 11.10. Let the following two diagrams be pushouts

X0
i1
//

i2

��

X1

j1

��

X2
j2
// X

Y0
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y

where the left vertical arrows i2 and k2 are cofibrations. Let fi : Xi → Yi be maps
for i = 0, 1, 2 satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0. Denote by f : X → Y
the map induced by f0, f1, and f2 and the pushout property.

Consider n ∈ Z≥0 q {∞}. Suppose that f1 and f2 are n-connected and f0 is
(n− 1)-connected with the convention ∞− 1 =∞.

Then f is n-connected.

Proposition 11.11. Consider m,n ∈ Z≥0 q {∞} and a cofibration i : A → X.
Suppose that i is m-connected and A is n-connected. Let pr: X → X/A be the
canonical projection. Consider any a ∈ A

Then the map

πk(pr, a) : πk(X,A, a)→ πk(X/A, {∗}, ∗) = πk(X/A, ∗)

is bijective for 0 ≤ k ≤ m+ n and surjective for k = m+ n+ 1, where we use the
convention that m+ n and m+ n+ 1 mean ∞ if m =∞ or n =∞ holds.
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Proof. Consider the pushout

A
j
//

f

��

cone(A)

��

X // X ∪A cone(A)

for j the inclusion. The map j is (n+ 1)-connected as A is n-connected. Proposi-
tion 11.9 implies that πk(X,A, a) → πk(X ∪A cone(A), cone(A), ∗) induced by the
inclusion is bijective, if 0 ≤ k ≤ m+m hold, and is surjective for k = m+n+1. The
projection pr : X ∪A cone(A) → X/A is a homotopy equivalence by Theorem 8.28

and hence induces an isomorphism πk(pr) : πl(X ∪A cone(A), ∗)
∼=−→ πk(X/A, ∗) for

every k ≥ 0 by Lemma 8.25. �

The next two results are consequence of Proposition 11.9. Their rather elemen-
tary proof is left to the reader and can be found in [24, Theorem 6.10.5 on page 154
and Proposition 6.10.9 on page 156].

Proposition 11.12. Let X and Y be well pointed spaces. Consider m,n ∈ Z≥1.
Suppose that X is m-connected and Y is n-connected.

(i) The inclusion X ∨ Y → X × Y induces an isomorphism πk(X ∨ Y )
∼=−→

πk(X × Y ) for 0 ≤ k ≤ m+ n;
(ii) πk(X × Y,X ∨ Y ) and πk(X ∧ Y ) are trivial for 0 ≤ k ≤ m+ n+ 1;

(iii) The canonical map πk(X ∨ Y ) → πk(X) × πk(Y ) → is bijective for 0 ≤
k ≤ m+ n.

Note that in Proposition 11.12 we assume that m,n ≥ 1 holds which implies
that X and Y are simply connected. This assumption is need as the Example 3.6
shows.

The join X ∗ Y of X and Y is defined by the pushout

(11.13) X × Y //

��

X × cone(Y )

��

cone(X)× Y // X ∗ Y.

One can describe X ∗ Y also as the quotient space of X × I × Y under the
equivalence relation generated by (x, 0, y0) ∼ (x, 0, y1) and (x0, 1, y) ∼ (x1, 1, y)
for x, x0, x1 ∈ X and y, y0, y1 ∈ Y . Intuitively it says that each point in X is
connected to each point in Y by a unit interval. One easily checks that Sm ∗ Sn is
homeomorphic to Sm+n+1 and S0 ∗X is homeomorphic to ΣX.

The proof of the next proposition is left to the reader and can be found in [24,
Proposition 6.10.9 on page 156].

Proposition 11.14. Consider m,n ∈ Z≥−1. Let X and Y be spaces such that X
is m-connected and Y is n-connected, where (−1)-connected means that there is no
condition.

Then their join is (m+ n+ 2)-connected.

11.5. The Freudenthal Suspension Theorem. Let (X,x) be a pointed space.
The pointed suspension is a functor and hence yields a map

[(Sn, s), (X,x)]0 → [(Σ(Sn, s), ∗), (Σ(X,x), ∗)]0.
Using the standard identification (Σ(Sn, s), ∗) = (Sn+1, s) we obtain a group ho-
momorphism called suspension homomorphism for k ∈ Z≥1

(11.15) σk(X,x) : πk(X,x)→ πk+1(Σ(X,x), ∗)
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Note that σk is also defined for k = 0 but not a group homomorphism in this case.

Theorem 11.16 (Freudenthal Suspension Theorem). Let (X,x) be a well pointed
space. Consider n ∈ Z≥0. Suppose that X is n-connected. Then the suspension
homomorphism

σk(X,x) : πk(X,x)→ πk+1(Σ(X,x), ∗)

is bijective for 0 ≤ k ≤ 2n and surjective for k = 2n+ 1.

Proof. If X is path connected, then Σ(X,x) is simply connected and hence the map
σ0(X,x) : π0(X,x) → π1(Σ(X,x), ∗) is obviously bijective. Hence we can assume
k ≥ 1 in the sequel.

There is a homeomorphism u : cone(X,x)/X
∼=−→ Σ(X,x). The following diagram

commutes

πk(X,x)
σk(X,x)

// πk+1(Σ(X,x), ∗)

πk+1(cone(X,x), X, x)
πk+1(pr,x)

//

∂k+1

OO

πk+1(cone(X,x)/X, {∗}, ∗) = πk+1(cone(X,x)/X, ∗)

πk+1(u,∗)

OO

where pr : cone(X,x) → cone(X)/X is the projection and where the left verti-
cal arrow ∂n+1 is the boundary operator of the long exact homotopy sequence
of the pair (cone(X,x), X), see Remark 2.13, and is bijective, since cone(X,x) is
contractible. The right vertical arrow is bijective, as u is a pointed homeomor-
phism. Hence it remains to show that the map πl(pr, x) : πl(cone(X,x), X, x) →
πl(cone(X), x/X, {∗}, ∗) is bijective for 2 ≤ l ≤ 2n+1 and surjective for l = 2n+2.
This follows from Proposition 11.11. This finishes the proof of the Freudenthal
Suspension Theorem 11.16. �

Remark 11.17. We have the degree homomorphism degn : πn(Sn, s)→ Z, which
is known to be bijective for n = 1 by elementary covering theory and compatible
with the suspension homomorphisms. We conclude that Sn is simply connected
for n ≥ 2 from the Seifert-van Kampen Theorem. Note that the Freudenthal
Suspension Theorem 11.16 implies for n ≥ 1 that the suspension homomorphism
σk(Sn, s) : πk(Sn, s)→ πk+1(Sn+1, s) is bijective for 0 ≤ k ≤ 2n− 2 and surjective
for k = 2n − 1. This gives another proof of Theorem 3.4, which does not use
differential topology.

Remark 11.18. Let H∗ be a (generalized) homology theory. Then we have for
every n ∈ Z the suspension isomorphism

σn(X,x) : Hn(X, {x})
∼=−→ Hn+1(Σ(X,x), {∗})

whereas in Freudenthal Suspension Theorem 11.16 the suspension homomorphism
is only bijective in a range depending on the connectivity of X. The connectivity
assumptions appearing in Theorem 11.16 are necessary and actually sharp. For
instance, we know π3(S2) ∼= Z from Theorem 10.5, and one can show that π4(S3)
is cyclic of order two and that the suspension homomorphism σ3(S2, s) : π3(S2)→
π4(S3) is surjective and obviously not injective. Moreover, the suspension homo-
morphism σ2(S1) : π2(S1)→ π3(S2) is not surjective as its domain is trivial and its
codomain is not trivial.
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11.6. Stable homotopy groups. Let (X,x) be a pointed space and n ∈ Z≥0.
Consider the sequence given by the suspension homomorphisms of (11.15)

(11.19) πn(X)
σn(X)−−−−→ πn+1(ΣX)

σn+1(ΣX)−−−−−−−→ πn+2(Σ2X)

σn+2(Σ2X)−−−−−−−→ πn+3(Σ3X)
σn+3(Σ3X)−−−−−−−→ · · ·

where we omit the base points. Recall that ΣmX is (m−1)-connected for m ∈ Z≥1

by Proposition 11.11 and hence by the Freudenthal Suspension Theorem 11.16 the
map σn+m(ΣmX) : πn+m(ΣmX)→ πm+n+1(Σm+1X) is surjective for m = (n+ 1)
and bijective for m ≥ (n + 2). So after finitely many steps all these suspension
homomorphism are isomorphism of abelian groups.

Definition 11.20 (Stable homotopy groups). Define the abelian group πsn(X,x),
called nth stable homotopy group of (X,x) to be the direct limit of the sequence (11.19).

Given a (unpointed) space Y , define

πsn(Y ) := πsn(Y+)

where Y+ is the pointed space (Y q {∗}, ∗) obtained from Y by adjoining an extra
base point.

Obviously πsn(X,x) is a functor from the category of pointed spaces to the cat-
egory of abelian groups. Moreover, if the two pointed maps f0.f1 : (X,x)→ (Y, y)
are pointed homotopic, then the induced homomorphisms πsn(f0) and πsn(f1) from
πsn(X,x) to πsn(Y, y) agree. The stable homotopy groups come with a natural map

(11.21) ιn(X,x) : πn(X,x)→ πsn(X,x)

and with a natural suspension homomorphism

(11.22) σsn(X,x) : πsn(X,x)→ πsn+1(Σ(X,x), ∗).

The map ιn(X,x) is in general neither injective nor surjective. If X is m-connected
for m ∈ Z≥0, then ιn(X,x) is surjective if n = 2m + 1 and is bijective if n ≤ 2m
by the Freudenthal Suspension Theorem 11.16. The construction of the stable ho-
motopy groups is designed so that σsn(X,x) of (11.22) is bijective for every pointed
space (X,x) and n ≥ 0.

Given a (unpointed) topological pair (X,A), we define

(11.23) πsn(X,A) = πsn(X+ ∪A+
cone(A+, ∗), ∗).

Thus we obtain a functor from the category of pairs to the category of abelian groups
which is homotopy invariant, i.e., for two maps of pairs f0.f1 : (X,A)→ (Y,B) the
induced homomorphisms πsn(f0) and πsn(f1) from πsn(X,A) to πsn(Y,B) agree if f0

and f1 are homotopic as maps of pairs.
We record the following theorem whose proof we will give later when we are

dealing more generally with spectra.

Theorem 11.24 (Stable homotopy groups form a (generalized) homology theory).
There exist natural transformation ∂n+1(X,A) : πsn+1(X,A) → πsn(A) for n ∈ Z≥0

such that stable homotopy πs∗ defines a homology theory on the category of pairs
satisfying the disjoint union axiom.

Obviously πs∗ also satisfies the weak homotopy equivalence axiom saying that a
weak homotopy equivalence induces isomorphisms on the stable homotopy groups.
It does not satisfy the dimension axiom.

Definition 11.25 (Stable stems). Define the n-th stable stem πsn to be πsn({•}) =
πsn(S0, ∗) for n ≥ 0.
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Note that πsn is the direct limit of the directed system

(11.26) πn(S0, ∗) σn(S0,∗)−−−−−−→ πn+1(S1, ∗) σn+1(S1,∗)−−−−−−−→ πn+2(S2, ∗)
σn+2(S2,∗)−−−−−−−→ πn+3(S3, ∗) σn+3(S3,∗)−−−−−−−→ · · · .

where have used the standard identification (Sn+1, ∗) = (Σ(Sn, ∗), ∗). Recall that
the map σn+m(Sm, ∗) : πn+m(Sm, ∗) → πn+m+1(Sm+1, ∗) is surjective for m =
(n+ 1) and bijective for m ≥ (n+ 2).

Remark 11.27 (Outlook about πsk(Sn)). Obviously it is easier to compute πsn
instead of πn(Sm) for m > n. Nevertheless it is an open (and extremely hard)
problem to compute πsn general. At the time of writing it is fair to say that we do
not know πsn in the range n ≥ 100. Only some asymptotic results are known in that
range. There is not even a formula known which might give the answer. There is
no obvious pattern in the computations, one has carried out so far. At least one
knows that πsn is finite for n ≥ 1, see [17] and one knows its values for n ≤ 61 and
also for some other values for n ≤ 99. For instance we have

(11.28)

n 0 1 2 3 4 5 6 7 8 9 10 11
πsn Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/22 Z/23 Z/6 Z/504

n 12 13 14 15 16 17 18 19
πsn 0 Z/3 Z/22 Z/480× Z/2 Z/22 Z/24 Z/8× Z/2 Z/264× Z/2

where Am means
⊕m

i=1A. The table above is taken from Toda [23]. More infor-
mation about the stable stems can be found for instance in [10, 11].

12. The Hurewicz Theorem

12.1. The Hurewicz homomorphism. Let (X,x) be a pointed space. Next we
define for n ∈ Z≥1 a homomorphism of groups, which is natural in X and called
n-th Hurewicz map or n-th Hurewicz homomorphism.

(12.1) hurn(X,x) : πn(X,x)→ Hn(X),

where Hn(X) denotes singular homology (with coefficients in Z).
Given an element [f ] in πn(X,x) represented by a pointed map f : (Sn, s) →

(X,x), define hurn(X,x)([f ]) to be the image of the standard fundamental class
[Sn] ∈ Hn(Sn) under the map Hn(f) : Hn(Sn)→ Hn(X) induced by f . Obviously
this definition is independent of the choice of representative f of [f ]. Let ∇n : Sn →
Sn ∨ Sn be the pinching map, see (2.5). Let prk : S1 ∨ S1 → S1 be the projection
onto the k-th functor for k = 1, 2. Then the following diagram commutes

Hn(Sn)
Hn(∇n)

//

∆n
((

Hn(Sn ∨ Sn)

Hn(pr1)×Hn(pr2)∼=
��

Hn(Sn)×Hn(Sn)

where ∆n is the diagonal map sending z to (z, z) and the right vertical arrow is
an isomorphism. Note that in πn(X,x) the inverse of [f ] is given by [f ◦ u] for
any map u : (Sn, s) → (Sn, s) of degree −1 and Hn(u) : Hn(Sn) → Hn(Sn) sends
[Sn] to −[Sn]. Now one easily checks that hurn(X,x) is a group homomorphism.
Obviously it is natural in (X,x).

The elementary proof of the following lemma is left to the reader.



ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 77

Lemma 12.2. Let w : I → X be a path from x to y. Then the following diagram
commutes

πn(X,x)

hurn(X,x)

((

∼=Tn([w])

��

Hn(X)

πn(X,x)

hurn(X,y)

66

where Tn([w]) is the isomorphism introduced in Subsection 2.3.

12.2. The Hurewicz Theorem. Before we investigate the Hurewicz homomor-
phism further, we consider the following two special cases. The first one is the case
n = 1 and has already been dealt with in a previous lecture course.

Proposition 12.3. If X is a path connected space, then for any base point x the
map induced by the Hurewicz homomorphism

π1(X,x)ab → H1(X)

for π1(X,x)ab = π1(X)/[π1(X,x), π1(X,x)] the abelianization of π1(X,x) is an
isomorphism.

Lemma 12.4. For n ∈ Z≥1 the Hurewicz homomorphism hurn(Sn, s) : πn(Sn, s)→
Hn(Sn) of (12.1) is bijective.

Proof. The map f : Z → πn(Sn) sending 1 to the class of [idSn ] is bijective by
Theorem 3.4. The composite of hurn(Sn, s) and f is the homomorphism Z →
Hn(Sn) sending 1 to [Sn] and hence bijective. This implies that hurn(Sn, s) is
bijective. �

Next we prove one of the main results of the course.

Theorem 12.5 (Hurewicz Theorem). Consider n ∈ Z≥2. Let X be an (n − 1)-
connected space. Then the Hurewicz homomorphism

hurn(X,x) : πn(X,x)→ Hn(X)

of (12.1) is bijective for any base point x ∈ X.

Proof. Since X is n-connected, it is weakly homotopy equivalent to a CW -complex
Y which has precisely one 0-cell and no cells of dimension d for 1 ≤ d ≤ (n − 1)
by Corollary 6.5. The inclusion i : Yn+1 → Y induces for the base point y0 ∈ Y0

bijections

πn(i, y0) : πn(Yn+1, y0)
∼=−→ πn(Y, y0);

Hn(i) : Hn(Yn+1)
∼=−→ Hn(Y ),

by Corollary 4.5 and the long exact homotopy sequence of the pair (Y, Yn+1). Hence
we can assume without loss of generality that X has precisely one 0-cell {x0} and
the dimension dim(e) of every cell e satisfies dim(e) ∈ {0, n, (n+ 1)}.

This implies that Xn =
∨
i∈I S

n and there exists a pushout

∐
j∈J S

n

∐
j∈J qj

//

��

Xn =
∨
i∈I S

n

��∐
j∈J D

n+1 // X.
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The Cellular Approximation Theorem 4.1 implies that each map qj : Sn → Xn is ho-
motopic to a map q′j : Sn → Xn sending s to y0. Choose a homotopy hj :

∐
i∈I S

n×
[0, 1] → Xn with (hj)0 =

∐
j∈J qj and (hj)1 =

∐
j∈J q

′
j . Consider the following

commutative diagram∐
j∈J D

n+1

l0'
��

∐
j∈J S

noo

∐
j∈J qj

//

k0'
��

Xn

idXn'

��∐
j∈J D

n+1 × I //
∐
j∈J S

n × Ioo

∐
j∈J hj

// Xn

∐
j∈J D

n+1

l1'

OO

∐
j∈J S

noo

∐
j∈J q

′
j

//

k1'

OO

Xn.

idXn'

OO

where k0 and l0 are the obvious inclusions coming from 0 ∈ I and k1 and l1 are the
obvious inclusions coming from 1 ∈ I. All vertical arrows are homotopy equivalences
and all left horizontal arrows are cofibrations. Hence the induced maps from the
pushout of the upper row to the pushout of the middle row as well as the arrow
from the pushout of the lower row to the pushout of middle row are homotopy
equivalences by Theorem 8.28. Therefore we can assume without loss of generality
that qj sends the base point s ∈ Sn to x0 and we can write X as a pushout∨

j∈J S
n f

//

��

∨
i∈I S

n

k

��∨
j∈J D

n+1 // X

where f respects the base points and k is the inclusion Xn =
∨
i∈I S

n → Xn+1 = X.
We obtain a commutative diagram of abelian groups with exact rows

πn

(∨
j∈J S

n, ∗
)

πn(f)
//

hurn(
∨
j∈J S

n,∗)
��

πn
(∨

i∈J S
n, ∗
) πn(k)

//

hurn(
∨
j∈J S

n,∗)

��

πn(X,x0)

hurn(X,x0)

��

// {0}

Hn

(∨
j∈J S

n
)

Hn(f)
// Hn

(∨
i∈J S

n
) Hn(k)

// Hn(X) // {0}

The rower low is exact by excision, the long exact homology sequence for pairs,

and the fact that Hn−1

(∨
j∈J S

n
)

= {0} holds. The upper row is exact by The-

orem 11.9, the long exact homotopy sequence for pairs, and the conclusion from

Theorem 3.4 and Proposition 11.12 (iii) that πn−1

(∨
j∈J S

n
)

= {0} holds. Hence

by the Five Lemma it suffices to prove that the left vertical arrow and the middle
vertical arrow are bijective. The following diagram commutes⊕

i∈I πn(Sn, s)

⊕
i∈I πn(ki,s)

∼=
//

⊕
i∈I hurn(Sn,s)

��

πn
(∨

i∈I S
n
)

hurn(
∨
i∈I S

n,∗)
��⊕

i∈I Hn(Sn, s) ⊕
i∈I Hn(ki)

∼=
// Hn

(∨
i∈I S

n
)
.

and has bijections as horizontal arrows by Proposition 11.12 (iii), where ki is the
inclusion of the summand belonging to i ∈ I. Since the left vertical arrow is bijective
by Lemma 12.4, the right vertical arrow is bijective. Lemma 12.2 implies that the
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Hurewicz homomorphism hurn(X,x) : πn(X,x) → Hn(X) is bijective for all base
points x ∈ X. This finishes the proof of the Hurewicz Theorem 12.5. �

Remark 12.6. The condition that X simply connected in Theorem 12.5 is neces-
sary. Consider a non-trivial group G for which Gab is trivial, e.g., the simple finite
group An for n ≥ 5. Choose a path connected CW-complex X with π1(X) ∼= G.
Then X is 0-connected and Lemma 12.3 implies that the Hurewicz homomorphism
hur1(X,x) : π1(X,x)→ H1(X) is not injective.

The condition that X is simply connected is also necessary in the following
Proposition 12.7.

Proposition 12.7. Let X be a simply connected space and n ∈ Z≥1. Then

(i) The following assertions are equivalent:
• X is n-connected;
• Hi(X) = 0 holds for 1 ≤ i ≤ n;
• Hi(X) = 0 holds for 2 ≤ i ≤ n;

(ii) The following assertions are equivalent:
• X is weakly contractible;
• Hi(X) = 0 holds for 1 ≤ i;
• Hi(X) = 0 holds for 2 ≤ i.

Proof. (i) This follows by induction over n = 1, 2, . . .. The induction beginning
n = 1 follows from the conclusion of Proposition 12.3 that H1(X) = 0 vanishes for
a simply connected space X. The induction step from (n−1) ≥ 1 to n follows from
Theorem 12.5.

(ii) This follows from assertion (i). �

We record the following stronger version of the Hurewicz Theorem whose proof
can be found in [20, Theorem 10.25 on page 185].

Theorem 12.8 (Improved Hurewicz Theorem). Consider n ∈ Z≥2. Let X be an
(n − 1)-connected space. Then for any base point x ∈ X the Hurewicz homomor-
phism

hurm(X,x) : πm(X,x)→ Hn(X)

of (12.1) is bijective for m = n and surjective for m = n+ 1.

12.3. The relative Hurewicz Theorem. There is also a relative version of the
Hurewicz map for a pointed pair (X,A, a) for n ≥ 1

(12.9) hurn(X,A, a) : πn(X,A, a)→ Hn(X,A),

which sends [f ] ∈ πn(X,A, x) represented by a map of triples f : (Dn, Sn−1, {s})→
(X,A, {a}) to the image of the standard fundamental class [Dn, Sn−1] under the
homomorphism Hn(f) : Hn(Dn, Sn−1) → Hn(X,A). It is a group homomorphism
for n ≥ 2 and the following diagram commutes for n ≥ 2

(12.10) πn(X, a) //

hurn(X,a)

��

πn(X,A, a) //

hurn(X,A,a)

��

πn−1(A, a)

hurn−1(X,a)

��

Hn(X) // Hn(X,A) // Hn−1(A, a),

where the exact upper row and the exact lower row are parts of the long exact
sequences associated to the pair (X,A).

Theorem 12.11 (The relative Hurewicz Theorem). Consider n ∈ Z≥2. Let (X,A)
be a pair. Suppose that A and X are simply connected and (X,A) is (n − 1)-
connected. Then:
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(i) The Hurewicz homomorphism

hurn(X,A, a) : πn(X,A, a)→ Hn(X,A)

of (12.10) is bijective for any base point a ∈ A;
(ii) The homology group Hi(X,A) vanishes for 2 ≤ i ≤ (n− 1).

Proof. We can arrange that the inclusion A→ X is a cofibration by Subsection 8.8.
Let pr : (X,A, {a}) → (X/A, {∗}) be the projection. We obtain a commutative
diagram

πn(X,A, a)
πn(pr,a)

∼=
//

hurn(X,A,a)

��

πn(X/A, {∗}, ∗) = πn(X/A, ∗)

hurn(X/A,∗)
��

Hn(X,A)
Hn(pr)

∼=
// Hn(X/A, {∗}) = Hn(X/A).

The upper row is bijective by Proposition 11.11 The lower row is bijective by ex-
cision. If X/A is (n − 1)-connected, then Theorem 12.5 implies that right vertical
arrow is also bijective. Hence it suffices to show for n ∈ Z≥2:

• The space X/A is (n− 1)-connected;
• The homology group Hi(X/A) vanishes for 2 ≤ i ≤ (n− 1).

This is done by induction over n = 2, 3, 4, . . ..
Since A and X are simply connected, X/A is simply connected by the Seifert-

von-Kampen Theorem. Now the induction beginning n = 2 follows. The induction
step from (n− 1) ≥ 2 to n is done as follows.

By induction hypothesis applied to the (n− 2)-connected pair (X,A), we know
that hurn−1(X,A, a) : πn−1(X,A, a) → Hn−1(X,A) is bijective and the homology
group Hi(X,A) vanishes for 2 ≤ i ≤ (n − 2). As πn−1(X,A, a) vanishes, the
homology group Hi(X,A) vanish for 2 ≤ i ≤ (n− 1). As the projection pr induces

an isomorphism Hi(X,A)
∼=−→ Hi(X/A) for i ≥ 1, the homology group Hi(X/A)

vanishes for 2 ≤ i ≤ (n− 1). This finishes the proof of Theorem 12.11. �

12.4. Applications of the Hurewicz Theorem. Next we generalize Proposi-
tion 12.7 to maps.

Proposition 12.12. Let f : X → Y be a map of simply connected spaces.

(i) The following assertions are equivalent for n ∈ Z≥1:
• f is n-connected;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for 2 ≤ i ≤ (n− 1) and surjective

for i = n;
(ii) The following assertions are equivalent:

• f is a weak homotopy equivalence;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for i ≥ 2.

Proof. Since we can replace f by the inclusion into its mapping cylinder, this follows
from the relative Hurewicz Theorem 12.11. �

The next theorem is called also sometimes the Whitehead Theorem, see also
Theorem 5.1.

Theorem 12.13 (Whitehead Theorem). Let f : X → Y be a map of simply con-
nected CW -complexes. Then the following assertions are equivalent:

• f is a homotopy equivalence;
• f is a weak homotopy equivalence;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for i ≥ 2.
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Proof. This is a direct consequence of Theorem 5.1 and Proposition 12.12. �

The condition that X and Y are simply-connected is necessary in Theorem 12.13.
Here is a more general version of Theorem 12.13 which does not need the assumption
that X and Y are simply connected.

Theorem 12.14. Let f : X → Y be a map of path connected CW -complexes. Sup-
pose that for one (and hence all) base point x ∈ X the map π1(X,x)→ π1(Y, f(x))

is bijective. We can lift f to a map between the universal coverings f̃ : X̃ → Ỹ ,
i.e., we have the commutative diagram:

X̃
f̃
//

pX

��

Ỹ

pY

��

X
f
// Y.

Then the following assertions are equivalent:

• f is a homotopy equivalence;

• Hi(f̃) : Hi(X̃)→ Hi(Ỹ ) is bijective for i ≥ 2.

Proof. We conclude from Theorem 2.7 that f is a weak homotopy equivalence if

and only if f̃ is a weak homotopy equivalence. By Theorem 12.13 f̃ is a weak

homotopy equivalence if and only if Hi(f̃) : Hi(X̃) → Hi(Ỹ ) is bijective for i ≥ 2.
Now Theorem 12.14 follows from Theorem 5.1. �

Example 12.15. Consider the spaces X = Sn ∨ Sn ∨ S2n and Y = Sn × Sn for
n ∈ Z≥2. Then X and Y are simply connected and Hi(X) ∼= Hi(Y ) holds for i ≥ 0.
But the cohomology rings of X and Y are not isomorphic and hence there is no
homotopy equivalence from X to Y .

Note that this does not contradict Theorem 12.13, since there the existence of a

map f : X → Y is required which implements the isomorphism Hi(X)
∼=−→ Hi(Y ).

Theorem 12.16 (Recognizing the sphere up to homotopy). Let X be a path con-
nected CW -complex. Then the following assertions are equivalent for n ≥ 2:

• The space X is homotopy equivalent to Sn;
• The space X is simply connected, Hi(X) vanishes for all i ≥ 2 with i 6= n

and Hn(X) is isomorphic to Z.

Proof. Suppose that the space X is simply connected, Hi(X) vanishes for all i ≥ 2
with i 6= n and Hn(X) is isomorphic to Z. Proposition 12.7 (i) implies that X is
(n−1)-connected. We conclude form the Hurewicz Theorem 12.5 that the Hurewicz
homomorphism hurn(X,x) : πn(X,x) → Hn(X,x) is bijective. Therefore we can
find a map f : Sn → X such that Hn(f) : Hn(Sn) → Hn(X) is an isomorphism.
Hence Hi(f) : Hi(S

n)→ Hi(X) is an isomorphism for 2 ≤ i. Proposition 12.12 (i)
implies that f is a homotopy equivalence.

The other implication is obviously true. �

13. Moore spaces

Definition 13.1 (Moore space). Consider n ≥ 1 and an abelian group G. A
Moore space (X,ϕ) of type (G,n) consists of a path connected CW -complex X and

an isomorphisms ϕ : Hn(X)
∼=−→ G such that Hi(X) = {0} for i /∈ {0, n} holds and

that X is simply connected if n ≥ 2.
Sometimes (X,x, ϕ) is denoted by M(G,n)
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Lemma 13.2. Consider n ≥ 1 and a group G which is assumed to be abelian if
n ≥ 2 holds. Then:

(i) There exists an (n + 1)-dimensional CW -complex X with the following
properties:
• The space X is the reduced mapping cone of some map f :

∨
i∈I S

n →∨
j∈J S

n;
• There is an exact sequence of groups

0→ πn
(∨
j∈J

Sn
) πn(f,x)−−−−−→ πn

(∨
i∈I

Sn
) πn(k)−−−→ πn(X,x)→ 0

for k : Xn =
∨
j∈J S

n → X the inclusion and n ≥ 2;

• We have {•} = X0 = Xn−1;
• The space X is (n− 1)-connected;
• We have πn(X,x) ∼= G for any base point x ∈ X;
• The homology group Hi(X) vanishes for i ≥ (n+ 1) if G abelian;
• The homology group Hi(X) vanishes for 1 ≤ i ≤ (n− 1);
• If G is finitely presented or if G is finitely generated abelian, then X

can be choose to be a finite CW -complex.
(ii) Suppose that n ≥ 2 holds. Let X be the space constructed in the proof

of assertion (i). Let x ∈ X be any base point. Let (Y, y) be any pointed

CW -complex. Let ψ : πn(X,x)
∼=−→ πn(Y, y) be any group homomorphism.

Then there is a pointed map u : (X,x)→ (Y, y) satisfying πn(u, x) = ψ.
Proof. (i) For n = 1 one can choose a presentation of the group and consider
the associated presentation CW -complex, which is path connected and satisfies
π1(X,x) ∼= G for any base point x. In general H2(X) is not trivial. This can
be arranged if G is abelian. Choose an exact sequence of abelian groups 0 →⊕

i∈I Z
α−→
⊕

j∈J Z → G → 0. If G is finitely generated abelian, one can choose I

and J to be finite. Then one can find a map f :
∨
i∈I S

1 →
∨
i∈I S

1 such that the
following diagram commutes⊕

i∈I Z
α

//

∼=
��

⊕
j∈J Z

∼=
��

H1

(∨
i∈I S

n
)
H1(f)

// H1

(∨
j∈J S

n
)

where the vertical maps are the obvious isomorphisms. We have the short exact
sequence

H2

(∨
j∈j

Sn
)
→ H2(X)→ H1

(∨
i∈I

Sn
) H1(f)−−−−→ H1

(∨
j∈j

Sn
)
→ H1(X)

→ H0

(∨
i∈I

Sn
) H0(f)−−−−→ H0

(∨
j∈j

Sn
)

This implies H2(X) = {0} and H1(X) ∼= G. Since X is 2-dimensional, we get
Hi(X) = {0} for i ≥ 2.

Suppose n ≥ 2. Then G is an abelian group and we can choose an exact sequence

of abelian groups 0→
⊕

i∈I Z
α−→
⊕

j∈J Z→ G→ 0. If G is finitely generated, one

can choose I and J to be finite. Let {ei | i ∈ I} and {e′j | j ∈ J} be the standard
basis of

⊕
i∈I Z and

⊕
j∈J Z. Then there is a set of integers {di,j | i ∈ I, j ∈ J}

such that the set {j ∈ J | di,j 6= 0} is finite for every i ∈ I and α(ei) =
∑
j∈J di,j ·e′j
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holds. The canonical maps⊕
i∈I

πn(Sn, s)
∼=−→ πn

(∨
i∈I

Sn, s
)
;(13.3)

⊕
j∈J

πn(Sn, s)
∼=−→ πn

(∨
j∈J

Sn, s
)
,(13.4)

are bijective by Proposition 11.12 (iii). Because of Theorem 3.4 there is a pointed
map fi : (Sn, s) →

(∨
j∈J S

n, s
)

such that for every j ∈ J its composite with the

projection prk :
∨
j∈J S

n → Sn to the factor k belonging to k ∈ J has degree di,k.
Define the pointed map

f :=
∨
i∈I

fi :
∨
i∈I

Sn →
∨
j∈J

Sn.

Under the obvious identifications coming from the isomorphisms (13.3) and (13.4)
the homomorphism α can be identified with

πn(f, s) : πn
(∨
i∈I

Sn, s
)
→ πn

(∨
j∈J

Sn, s
)
.

Hence the cokernel of the latter map is isomorphic to G and its kernel is trivial.
Let X be the reduced mapping cone of f with the preferred base point x ∈ X0.
The sequence

0→ πn
(∨
i∈I

Sn, s
) πn(f,s)−−−−−→ πn

(∨
j∈J

Sn, s
)
→ πn(X,x)→ 0

is exact by Theorem 2.11, Theorem 3.4, and Theorem 11.11. Hence X is a path
connected CW -complex which is has precisely one zero cell, no cells e of dimension
1 ≤ dim(e) ≤ n − 1, is (n − 1)-connected by Corollary 4.5, satisfies πn(X,x) ∼= G
for the base point x ∈ X0 and hence for all base points in X by the diagram (2.6),
and the homology groups Hi(X) vanish for 1 ≤ i ≤ (n − 1). It remains to show
that Hi(X) vanishes for i ≥ (n+ 1). As X is (n+ 1)-dimensional, it suffices to do
this for i = (n+ 1). The following diagram commutes

Hn+1

(∨
j∈J S

n
)

= {0}

Hn+1(k)

��

{0}

��

Hn+1(X)

∂n+1

��

πn
(∨

i∈I S
n, s
)

πn(f,s)

��

hurn

(∨
i∈I S

n,s
)

∼=
// Hn

(∨
i∈I S

n
)

Hn(f)

��

πn
(∨

j∈J S
n, s
)

πn(k,x)

��

hurn

(∨
j∈J S

n,s
)

∼=
// Hn

(∨
j∈J S

n
)

Hn(k)

��

πn(X,x)

��

hurn(X,x)

∼=
// Hn(X)

��

{0} {0}

where the column are exact and the horizontal arrows are bijective by Hurewicz
Theorem 12.5 since X,

∨
i∈I S

n, and
∨
i∈I S

n are (n−1)-connected by Corollary 4.5.
Hence Hn+1(X) vanishes.
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(ii). We start with the case n ≥ 2. Recall that X is the reduced mapping cone of
a specific map

f :=
∨
i∈I

fi :
∨
i∈I

Sn →
∨
j∈J

Sn

such that we have an exact sequence of abelian groups

0→ πn
(∨
i∈I

Sn
) πn(f,x)−−−−−→ πn

(∨
j∈J

Sn
) πn(k)−−−→ πn(X,x)→ 0

for k : Xn =
∨
j∈J S

n → X the inclusion and that we have isomorphisms (13.3)

and (13.4). Because of (2.6) we can assume without loss of generality that the base
point of X is the standard base point s in Xn =

∨
j∈J S

n ⊆ X. For every j ∈ J let

aj : (Sn, s)→ (Y, y) be the pointed map whose class in πn(Y, y) is the image of the
standard generator of πn(Sn, s) under the composite

πn(Sn, s)
lj−→
⊕
j∈J

πn(Sn, s)
∼=−→ πn

(∨
j∈J

Sn, s
) πn(k)−−−→ πn(X,x)

ψ−→ πn(Y, y),

where lj is the inclusion of the j-th summand. Define the pointed map

un :=
∨
j∈J

aj : (Xn, x) =
(∨
j∈J

Sn, s
)
→ (Y, y).

Then the composite of the homomorphism πn(un, s) : π
(∨

j∈J S
n, s
)
→ πn(Y, y)

with the homomorphism πn(f, s) : πn(
∨
i∈I S

n, s)→ πn
(∨

j∈J S
n, s
)

is trivial. This
implies that the composite un ◦ f is pointed nullhomotopic. Hence un extends to a
pointed map u : (X,x)→ (Y, y). We get by construction πn(u, x) = ψ. �

Theorem 13.5 (Existence and uniqueness of Moore spaces). Consider n ∈ Z≥1

and two abelian groups G and G′ Then:

(i) There exists a Moore space (X,φ) of type (G,n) such that the Xn−1 =
X0 = {x} holds;

(ii) If n ≥ 2 and (X,φ) and (X ′, φ′) are Moore spaces of type (G,n), then
there is a homotopy equivalence f : X → X ′ satisfying φ′ ◦Hn(f) = φ.

Proof. (i) This follows from Lemma 13.2 (i).

(ii) We can suppose without loss of generality that X is a CW -complex as it occurs
in Lemma 13.2 (i). Then we obtain from Lemma 13.2 (ii) and Hurewicz Theo-
rem 12.5 a map f : X → X ′ such that the following diagram with isomorphisms as
vertical maps commutes

πn(X)
πn(f)

//

hurn ∼=
��

πn(X ′)

∼= hurn

��

Hn(X)
Hn(f)

//

φ ∼=
��

Hn(X ′)

∼= φ′

��

G
α

// G′.

This implies that Hi(f) : Hi(X)→ Hi(X
′) is bijective for i ≥ 1. Since X and X ′ are

simply connected, f is a homotopy equivalence by Whitehead Theorem 12.13. �
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14. Eilenberg-MacLane spaces

Definition 14.1 (Eilenberg-MacLane space). Consider n ≥ 1 and a group G which
is assumed to be abelian if n ≥ 2 holds. An Eilenberg MacLane space (X,x, ψ) of
type (G,n) consists of a path connected pointed CW -complex (X,x) and a group

isomorphism ψ : πn(X,x)
∼=−→ G such that πi(X,x) = {0} holds for 1 ≤ i with i 6= n.

Sometimes (X,x, ϕ) is denoted by K(G,n).

Lemma 14.2. Let (A, a) be a path connected pointed CW -complex and n ∈ Z≥0.
Then there is a CW -pair (X,A) such that X is path connected and obtained from
A by attaching cells of dimension ≥ (n + 2), the inclusion j : A → X induces an
isomorphism πi(A, a) → πi(X, a) for 1 ≤ i ≤ n, and πi(X, a) = {1} holds for
i ≥ (n+ 1).

Proof. Consider the pair (cone(A), A). Apply Theorem 6.3 to it for the natural
number (n+ 1). Then we obtain a CW -pair (X,A) and a map of pairs (f, idA)→
(cone(A), A) such that the pair (X,A) is (n+1)-connected and the homomorphism
πi(f, a) : πi(X, a) → πi(cone(f), a) is injective for i = (n + 1) and bijective for
i ≥ (n + 2). Since cone(A) is contractible, this implies πi(X, a) = {1} for i ≥
(n + 1). As (X,A) is (n + 1)-connected, the map πi(A, a) → πi(X, a) is bijective
for 1 ≤ i ≤ n. �

Theorem 14.3 (Existence and uniqueness of Eilenberg-MacLane spaces). Con-
sider n ∈ Z≥1 and two groups G and G′ which are assumed to be abelian if n ≥ 2
holds. Then:

(i) There exists an Eilenberg-MacLane space (X,x, ϕ) of type (G,n) such that
the Xn−1 = X0 = {x} holds;

(ii) Let (X,x) be a pointed n-connected CW -complex and (X ′, x′, ϕ′) be an
Eilenberg-Maclane space of type (G′, n).

We obtain a bijection

[(X,x), (X ′, x′)]0
∼=−→ hom(πn(X,x), G′), [f ] 7→ ϕ′ ◦ πn(f, x).

Moreover, the forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for
n ≥ 2;

(iii) Let (X,x, ϕ) be an Eilenberg-Maclane space of type (G,n) and (X ′, x′, ϕ′)
be an Eilenberg-Maclane space of type (G′, n).

We obtain a bijection

[(X,x), (X ′, x′)]0
∼=−→ hom(G,G′), [f ] 7→ ϕ′ ◦ πn(f, x) ◦ ϕ−1.

Moreover, the forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for
n ≥ 2;

(iv) Let (X,x, ϕ) and (X ′, x′, ϕ′) be two Eilenberg-MacLane spaces of type
(G,n). Then there exists a pointed homotopy equivalence f : (X,x) →
(X ′, x′) which is up to pointed homotopy equivalence uniquely determined
by the property that ϕ′ ◦ π1(f, x) = ϕ holds.

Proof. (i) This follows from Lemma 13.2 (i) and Lemma 14.2.

(ii) The forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for n ≥ 2 because
of (8.24), since X ′ is simply connected.

We can find by Corollary 6.5 a CW -pair (Y, y) together with a pointed homotopy
equivalence (Y, y)→ (X,x) such that Yn−1 = Y0 = {y} holds. Hence we can assume
without generality that Xn−1 = X0 = {x} holds. Then Xn looks like

∨
i∈I S

n and
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we have canonical isomorphisms⊕
i∈I

πn(Sn, s)
∼=−→ πn(

∨
i∈I

Sn, x);

Z
∼=−→ πn(Sn, s).

Consider a homomorphism v : πn(X,x) → G′. For every i ∈ I choose a pointed
map ui : (Sn, s)→ (X ′, x′) such that the composite

πn(Sn, s)
ji−→
⊕
i∈I

πn(Sn, s)
∼=−→ πn(Xn, x)

πn(k)−−−→ πn(X,x)
v−→ G′

φ′−1

−−−→ πn(X ′, x′)

sends [idSn ] to [ui], where ji is the inclusion of the i-th summand and k : Xn → X
is the inclusion. Define the map

fn =
∨
i∈I

ui : Xn =
∨
i∈I

Sn → X ′.

It sends the basepoint x ofXn to the base points x′ ofX ′. The map πn(fn, x) : πn(Xn, x)→
πn(X ′, x′) agrees with the composite

πn(Xn, x)
πn(k)−−−→ πn(X,x)

v−→ G′
(ϕ′)−1

−−−−→ πn(X ′, x′).

We can define inductively maps fj : (Xj , x)→ (X ′, x′) for j = n, (n+1), (n+2), . . .
satisfying fj+1|Xj = fj for j = n, (n + 1), (n + 2), . . ., since the attaching map
q : Sn → Xn of any (n+1)-cell of X lies in the kernel of πn(k) : πn(Xn, x)→ πn(X)
and πj(X

′, x′) = 0 holds for j = (n+ 1), (n+ 2), . . .. Define the map

f := colimj→∞ fj : X = colimj→∞Xj → X ′

Then f(x) = x′ holds and v agrees with the composite πn(X,x)
πn(f,x)−−−−−→ πn(X ′, x′)

ϕ′−→
G′. This proves surjectivity.

Injectivity is proved as follows. Consider two pointed maps f0, f1 : (X,x) →
(X ′, x′) such that πn(f0, x) = πn(f1, x) holds. We have to construct a pointed
homotopy equivalence h : (X,x) × I → (X ′, x′) between f0 and f1. We construct
inductive maps hj : Xj × I ∪X × {0, 1} → X ′ for j = 0, 1, 2, . . . such that

h0 : X0 × I ∪X × {0, 1} = {x} × I ∪X × {0, 1} → X ′

sends every element in {x}× I to x and is given on X ×{k} by fk for k = 0, 1 and
we have for j = 0, 1, 2, . . .

hj+1|Xj×I∪X×{0,1} = hj .

Since X × I is colimj→∞Xj × I ∪ X × {0, 1}, we can define the desired pointed
homotopy h by colimj→∞ hj .

It remains to construct the map hj for j = 0, 1, 2, . . .. We have constructed h0

already. Since Xn−1 = X0 holds, we have Xn−1×I∪X×{0, 1} = X0×I∪X×{0, 1}
and can define hj = h0 for 1 ≤ j ≤ (n − 1) Next we construct hn. We have

Xn =
∨
i∈I S

n. We have to specify for each i ∈ I a map hn,i : S
n−1
i × I → X ′

such that hn,i sends an element in {s} × I to x′ and its restriction to Sn−1
i × {k}

is fk|Sn−1
i

for k = 0, 1, where Sni is the i-th summand in
∨
i∈I S

n, since then the

collection of the maps hn,i-s yields the desired map hn by hn|X0×I∪X×{0,1} = h0

and hn|Sni ×I = hn,i. The existence of hn,i follows from πn(f0, x) = πn(f1, x) since

this implies that the pointed maps f0|Sn−1
i

and f1|Sn−1
i

from (Sn−1
j , s) → (X ′, x′)

are pointed homotopic. This finishes the construction of hn.
Since Xi+1 × I ∪X × {0, 1} is obtained from Xi × I ∪X × {0, 1} by attaching

cells of dimension (i + 2) and πi+1(X ′, x′) vanishes, we can extend hi to hi+1 for
i = n, (n+ 1), (n+ 1), . . .. This finishes the proof of assertion (ii).
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(iii) This follows from assertion (ii).

(iv) This follows from assertion (iii). �

Remark 14.4 (Eilenberg MacLane space of type (G, 1) and unpointed homotopy
classes). In Theorem 14.3 we have treated unpointed homotopy classes only for
n ≥ 2. We briefly discuss what happens in the case n = 1.

Consider the situation of assertion (ii) of Theorem 14.3. Then one obtains a
bijection from [X,X ′] to the set [Π(X),Π(X ′)] of natural equivalence classes of
functors from Π(X) to Π(X ′) by sending [f ] to [Π(f)]. In terms of fundamental
groups one obtains a bijection for Inn(G′) the group of inner automorphisms of G′

[X,X ′]
∼=−→ Inn(G′)\ hom(π1(X,x), G′)

defined as follows. For [f ] we can choose a representative f with f(x) = x′ and
associate to [f ] the class of ϕ′ ◦π1(f, x). These claims follow from Theorem 14.3 (ii)
using the bijection (8.24).

In the situation of assertion (iii) of Theorem 14.3 we obtain a bijection

[X,X ′]
∼=−→ Inn(G′)\ hom(G,G′).

Note that Inn(G′) is trivial if and only if G′ is abelian. So for abelian G′ we get
also for n = 1 that the forgetful map [(X,x), (X ′, x′)] → [X,X ′] is bijective in
assertions (ii) and (iii) of Theorem 14.3.

Consider an abelian groupG and n ∈ Z≥1. Let (X,x, ϕ) be an Eilenberg-Maclane

space of type (G,n). Then the Hurewicz homomorphism hurn(X,x, ϕ) : πn(X,x)
∼=−→

Hn(X) is bijective by Theorem 12.5. Moreover Hi(X) is trivial for 1 ≤ i < n by
Proposition 12.7 (i) and H0(X) ∼= Z. By the Universal Coefficient Theorem we

obtain an isomorphism αn : Hn(X;G)
∼=−→ homZ(Hn(X), G). Hence the following

composite is an isomorphism

β : homZ(G,G)
homZ(ϕ,idG)−−−−−−−−→ homZ(πn(X,x), G)

homZ(hurn(X,x)−1,idG)−−−−−−−−−−−−−−−→ homZ(Hn(X), G)
α−1
n−−→ Hn(X;G).

Let

(14.5) ιn(X,x, ϕ) ∈ Hn(X;G)

be the element which us uniquely determined by βn(idG) = ιn(X,x, ϕ). Let Y be
a CW -complex. Consider the map

(14.6) γn(Y ) : [Y,X]→ Hn(Y ;G), [f ] 7→ Hn(f ;G)(ιn(X,x, ϕ)).

We will later give the proof of the following theorem.

Theorem 14.7. Consider n ∈ Z≥1. Let G be an abelian group. Let (X,x, ϕ) be
an Eilenberg-MacLane space of type (G,n). Let Y be a CW -complex.

Then the map

γn(Y ) : [Y,X]→ Hn(Y ;G)

defined in (14.6) is bijective.

Example 14.8 (Homotopy classes of maps to S1). We conclude from Remark 14.4
or from Theorem 14.7 that we obtain for a CW -complex Y a bijection of groups

[Y, S1]
∼=−→ H1(Y ;Z)

by sending [f ] to the image of a fixed generator of the infinite cyclic group H1(S1;Z)
under the homomorphism H1(f ;Z) : H1(S1;Z)→ H1(Y ;Z).
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15. Postnikov towers

Let X be a connected CW -complex X. A Postnikov tower for X consists of
a sequence of spaces τ≤kX for k ∈ Z≥1, a sequence of maps ϕk : X → τ≤kX for
k ∈ Z≥1, and a sequence of fibrations pk : τ≤kX → τ≤k−1X for k ∈ Z≥2 with the
following properties:

• πi(τ≤k) = {0} for i ≥ k + 1;

• The map ϕk induces isomorphisms πi(ϕk) : πi(X)
∼=−→ πi(τ≤kX) for 1 ≤

i ≤ k;
• We have pk+1 ◦ ϕk+1 = ϕk for k ∈ Z≥1,
• Each space Xn has the homotopy type of a CW -complex.

The following diagram commutes

...

p5

��

τ≤4X

p4

��

τ≤3X

p3

��

τ≤2X

p2

��

X
ϕ1

//

ϕ2

11
ϕ3

44

ϕ4

66

τ≤1X.

Note that τ≤1X is necessarily a model for K(π1(X), 1) and each map ϕk is k-
connected and has K(πk(X), k) as fiber.

Remark 15.1 (The construction of a Postnikov towerr). The details of the con-
struction of a Postnikov tower can be found for instance in [26, Chapter IX]. The
basic idea is the following.

For k ∈ Z≥0 we can construct a CW -complex X ′k obtained from X by attaching
cells of dimension ≥ (k+ 2) such that inclusion ϕ′k : X → X ′k induces isomorphisms
πi(ϕk) : πi(X)→ πi(X

′
k) for i = 0, 1, 2, . . . , k and πi(X

′
k) = {0} holds for i ≥ (k+1),

see Lemma 14.2. The inclusion ϕ′i : X → Xk−1 extends to a map p′k : X ′k → X ′k−1

since X ′k is obtained from X by attaching cells of dimension ≥ (k+2) and πi(Xk−1)
vanishes for i ≥ k.
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So we get a commutative diagram

...

p5

��

X ′4

p′4
��

X ′3

p′3
��

X ′2

p′2
��

X
ϕ′1

//

ϕ′2

11
ϕ′3

44

ϕ′4

66

X ′1.

such that

• πi(X ′k) = {0} for i ≥ k + 1;

• The map ϕ′k induces isomorphisms πi(ϕ
′
k) : πi(X)

∼=−→ πi(X
′
k) for 1 ≤ i ≤ k.

Then by turning a map into a fibration starting with p′2 and working inductively
upwards, we obtain the desired Postnikov tower.

There is a canoncial map from X to the inverse limit invlimk→∞{τ≤kX, pk}
which is a weak homotopy equivalence.

Recall that pk : τ≤kX → τ≤k−1X has a fiber K(πk(X), k). Suppose that X is
a simple space, i.e., the action of the fundamental group π1(X) is the homotopy
groups πn(X) is trivial for n ∈ Z≥1. (Note that this implies that π1(X) is abelian.)
Then one can actually extend pk to a fiber sequence

K(πk(X), k)→ τ≤kX
pk−→ τ≤k−1X → K(πk(X), k + 1).

It determines a class

(15.2) [pk] ∈ [τ≤kX;K(πk(X), k + 1)] = Hk+1(τ≤k−1X;πk(X)),

called k-invariant of the Postnikov tower which determines pk up to strong fiber
homotopy equivalence.

Example 15.3. The first few terms of the Postnikov tower for the sphere S2 can
be understood explicitly. The first homotopy groups of the sphere are given by

πn(S2) ∼=


{0} n = 0, 1;

Z n = 2, 3;

Z/2 n = 4.

Hence τ≤2S
2 is K(Z, 2) for which CP∞ is a model. The fibration p3 : τ≤3S

2 →
K(Z/2) is classified by the 3-invariant which is an element in H4(τ≤2X;π3(X)) ∼=
H4(CP∞;Z) ∼= Z. This invariant is trivial if and only if τ≤3X ' K(Z/2,Z) ×
K(Z, 3). Actually, it is known that the 3-invariant is non-trivial, see [26, Example
1 in IX.5 on page 437].

16. Spectra

16.1. Basics about spectra. Note that in the sequel we often omit the base
points from the notation. Moreover, pointed space means always well pointed
space. Recall that we are working in the category of compactly generated spaces.
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Definition 16.1 (Spectrum). A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence
of pointed spaces {E(n) | n ∈ Z} together with pointed maps called structure maps

σ(n) : E(n) ∧ S1 −→ E(n+ 1)

for n ∈ Z. A map of spectra f : E→ E′ is a sequence of maps f(n) : E(n)→ E′(n)
which are compatible with the structure maps σ(n), i.e., we have f(n+ 1) ◦σ(n) =
σ′(n) ◦ (f(n) ∧ idS1) for all n ∈ Z.

Maps of spectra are sometimes called functions in the literature, they should
not be confused with the notion of a map of spectra in the stable category, see [1,
III.2.].

Note that we are not requiring that E(n) = {•} holds for n ≤ −1.

Example 16.2 (Suspension spectrum of a pointed space). Given a pointed space
X, define its suspension spectrum Σ∞X by Σ∞X(n) = {•} for n ≤ −1 and
Σ∞X(n) = X ∧ Sn for n ≥ 0. Note that Σ∞X(0) = X ∧ S0 can be identified
with X itself. Since Sn+1 can be identified with Sn ∧ S1, we can define the n-
structure map to be

id(X∧Sn)∧S1 : Σ∞X(n) ∧ S1 = (X ∧ Sn) ∧ S1

→ (X ∧ Sn) ∧ S1 = X ∧ (Sn ∧ S1) = X ∧ Sn+1 = Σ∞X(n+ 1).

Example 16.3 (Sphere spectrum). If we take X = S0 in Example 16.2, we obtain
the sphere spectrum S. Note that S(n) = {•} for n ≤ −1 and S(n) = Sn for n ≥ 0
hold and that the n-th structure map comes from the identification Sn∧S1 = Sn+1.

Example 16.4 (Eilenberg-MacLane spectrum). Given an abelian group G, we
define the associated Eilenberg Mac-Lane spectrum K(G) as follows. We put
K(G)(n) = {•} for n ≤ 0 and put K(G)(n) = K(G,n) for some model K(G,n)
of the Eilenberg MacLane space of type (G,n) for n ≥ 1. In order to define

the n-th structure map for n ≥ 0, it suffices to specify a map σ(n) : K(G,n) →
ΩK(G, (n + 1)) because of the adjunction (9.32). Recall that we have a pre-

ferred isomorphism ∂n+1(K(G,n + 1)) : πn+1(K(G,n + 1))
∼=−→ πn(ΩK(G,n + 1)),

see (10.7). We conclude from Theorem 14.3 (iii) that there is a homotopy equiva-

lence σ(n) : K(G,n)→ ΩK(G,n+1) which is uniquely determined by the property
that under the identifications πn(K(G,n)) = G and πn+1(K(G,n + 1)) = G the

map πn(σ(n)) : πn(K(G,n))→ πn(ΩK(G, (n+ 1))) and the preferred isomorphism
∂n+1 are inverse to one another.

Definition 16.5 (Homotopy groups of a spectrum). For n ∈ Z the nth homotopy
groups of a spectrum E is defined by

πn(E) := colimk→∞ πn+k(E(k))

where the kth structure map of the system πn+k(E(k)) is given by the composite

an,k(E) : πn+k(E(k))
σn+k(E(k))−−−−−−−→ πn+k+1(S1 ∧ E(k))

πn+k+1(flip)−−−−−−−−→ πn+k+1(E(k) ∧ S1)

πn+k+1(σ(k))−−−−−−−−−→ πn+k+1(E(k + 1))

of the suspension homomorphism σn+k(E(k)) of (11.15), the map induced by the

flip map flip: S1 ∧ E(k)
∼=−→ E(k) ∧ S1, and the homomorphism induced by the

structure map σ(k).
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A weak equivalence of spectra is a map f : E→ F of spectra inducing an isomor-
phism on all homotopy groups.

A spectrum E is called an Ω-spectrum if the adjoint σ(n) : En → ΩEn+1 of σ(n)
under the adjunction (9.32) induces for every n ≥ 1 and every n ∈ Z a bijection

πn(σ(n)) : πn(E(n))→ πn(ΩE(n+ 1)). The Eilenberg MacLane spectrum K(G) is
an Ω-spectrum.

Note that it may happen that πn(E) is non-trivial for some n ∈ Z with n ≤ −1.
Each of the groups πn(E) is abelian.

Note that for k, n ∈ Z with k + n ≥ 1 there is a natural map

(16.6) ψk,n : πk+n(E(k))→ πn(E).

In general this map is not bijective. It is bijective if E is an Ω-spectrum since in
view of the adjunction (9.32) one can compute πn(E) of a spectrum as the colimit
of the sequence

(16.7) πn(E(0))
πn(σ(0))−−−−−→ πn(ΩE(1))

πn(Ωσ(1))−−−−−−→ πn(Ω2E(2))
πn(Ωσ(1))−−−−−−→ · · · .

Note that our construction of the Eilenberg-Maclane spectrum K(G) of Ex-
ample 16.4 depends on choices. In any case we get a preferred isomorphism

π0(K(G))
∼=−→ G and πn(K(G)) = {0} for n 6= 0. Moreover, for any two such

constructions with different choices of K(G), there is a weak homotopy equivalence
between the resulting spectra inducing the identity on π0 under the identification
of π0 with G above.

Note that for a pointed space X the n-stable homotopy group πsn(X+) of Defi-
nition 11.20 agrees with πsn(Σ∞X) of Definition 16.5.

Given a spectrum E and a pointed space X, we can define their smash prod-
uct to be the spectrum X ∧ E whose n-th spaces is (X ∧ E)(n) := X ∧ E(n) and
whose n-th structure map is idX ∧σ(n) : X ∧ E(n) → X ∧ E(n + 1). Next in-
troduce the associated mapping spectrum map(X; E)0. Its n-th space is given by
map(X; E)0(n) = map(X,E(n))0 for n ∈ Z. Its n-th structure map for n ∈ Z is
defined to be the composite

map(X,E(n))0 map(idX ,σ(n))0−−−−−−−−−−→ map(X; ΩE(n+ 1))0 in−→ Ω map(X,E(n+ 1)0)

having the adjunction 9.32 in mind, Here in is the homeomorphism which assigns
to the pointed map f : X → ΩE(n) = map(S1, E(n))0 the pointed map g : S1 →
map(X,E(n)) sending s ∈ S1 to the map X → E(n), x 7→ f(x)(s). It can be also
witten as the composite

map(X,ΩE(n))0 = map(X,map(S1, E(n))0)0 ∼=−→ map(X ∧ S1, E(n))0

∼=−→ map(S1 ∧X,E(n))0 ∼=−→ map(S1,map(X,E(n))0)0 = Ω map(X,E(n))0.

16.2. Homology and cohomology theories for pointed spaces and pairs.
Fix a commutative ring R.

Definition 16.8 (Homology theory for pointed spaces). A homology theory for

pointed spaces with values in R-modules H̃∗ = (H̃∗, s∗) consists of a covariant

functor H̃∗ from the category Top0 of pointed spaces to the category of Z-graded

R-modules together with a natural transformation s∗ : H̃∗(−)→ H̃∗+1(S1∧−) such
that the following conditions are satisfied:

• Pointed homotopy invariance
Let f and g be pointed maps (X,x) → (Y, y) which are pointed homo-

topic. Then for every n ∈ Z the R-homomorphisms H̃n(f) and H̃n(g)

from H̃n(X,x) to H̃n(Y, y) agree:
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• Exactness
Let f : (X,x) → (Y, y) be a pointed map. Let i : Y → cone(f, x) be the
inclusion into the pointed mapping cone of f . Then for every n ∈ Z the
sequence of R-modules

H̃n(X,x)
H̃n(f)−−−−→ H̃n(Y, y)

H̃n(i)−−−−→ H̃n(cone(f), ∗)
is exact;

• Suspension isomorphism

For every pointed space (X,x) and every n ∈ Z the map

sn(X,x) : H̃n(X,x)
∼=−→ H̃n+1(S1 ∧X, ∗)

is bijective.

We say that H̃∗ satisfies the one point union axiom if for any collection of pointed
spaces {(Xi, xi) | i ∈ I} and every n ∈ Z the map⊕

i∈I
H̃n(ji) :

⊕
i∈I
H̃n(Xi, xi)

∼=−→ H̃n
(∨
i∈I

(Xi, xi)
)

is bijective for ji : (Xi, xi)→
∨
i∈I(Xi, xi) the inclusion of the i-th summand.

We say that H̃∗ satisfies the dimension axiom if we have H̃n(S0, s) = 0 for n 6= 0.

Definition 16.9 (Cohomology theory for pointed spaces). A cohomology theory for

pointed spaces with values in R-modules H̃∗ = (H̃∗, s∗) consists of a contravariant

functor H̃∗ from the category Top0 of pointed spaces to the category of Z-graded

R-modules together with a natural transformation s∗ : H̃∗(−)→ H̃∗+1(S1∧−) such
that the following conditions are satisfied:

• Pointed homotopy invariance
Let f and g be pointed maps (X,x) → (Y, y) which are pointed homo-

topic. Then for every n ∈ Z the R-homomorphisms H̃n(f) and H̃n(g)

from H̃n(Y, y) to H̃n(X,x) agree;
• Exactness

Let f : (X,x) → (Y, y) be a pointed map. Let i : Y → cone(f, x) be the
inclusion into the pointed mapping cone of f . Then for every n ∈ Z the
sequence of R-modules

H̃n(cone(f, x), ∗) H̃
n(i)−−−−→ H̃n(Y, y)

H̃n(f)−−−−→ H̃n(X,x)

is exact;
• Suspension isomorphism

For every pointed space (X,x) and every n ∈ Z the map

sn(X,x) : H̃n(X,x)
∼=−→ H̃n+1(S1 ∧X)

is bijective.

We say that H̃∗ satisfies the one point union axiom if for any collection of pointed
spaces {(Xi, xi) | i ∈ I} and every n ∈ Z the map∏

i∈I
H̃n(ji) : H̃n

(∨
i∈I

(Xi, xi)
)
→
∏
i∈I
H̃n(Xi, xi)

is bijective for ji : (Xi, xi)→
∨
i∈I(Xi, xi) the inclusion of the i-th summand.

We say that H̃∗ satisfies the dimension axiom if we have H̃n(S0, s) = 0 for n 6= 0.

A cohomology theory for pointed spaces is to be understood to be cohomology
theory for pointed spaces with values in Z-modules, and analogously for pairs and
homology theories.
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Remark 16.10 (Correspondence between (co-)homology theories for pointed space
and pairs). There is a one-to-one correspondence between homology theories for
pointed spaces with values in R-modules and homology theories for pairs with

values in R-modules. Let H̃∗ be a homology theory for pointed spaces with values
in R-modules. Then we can define a homology theory H∗ for pairs with values in
R-modules as follows. For a pair (X,A) define

Hn(X,A) := H̃n(X+ ∪A+ cone(A+, ∗)),

where X+ = X q {∗} is the pointed space obtained from X by adjoining an extra

base point. If A is empty, we get Hn(X) = H̃n(X+, ∗). Recall that we also have to
specify for a pair (X,A) a boundary operator ∂n(X,A) : Hn(X,A)→ Hn−1(A) for
n ∈ Z. It is defined by the composite

∂n(X,A) : Hn(X,A) = H̃n(X+ ∪X+ cone(A+, ∗), ∗)
Hn(pr)−−−−→ Hn(S1 ∧A, ∗)

sn−1(A+,∗)−1

−−−−−−−−−→ H̃n−1(A+, ∗) = Hn−1(A)

for the projection pr : X+ ∪X+ cone(A+, ∗) → S1 ∧ A+. We leave the elementary
proof that (H∗, ∂∗) is a homology theory to the reader.

Given a homology theory for pairs with values in R-modules (H∗, ∂∗), we can

define a homology theory for pointed spaces with values in R-modules H̃∗ by

H̃∗(X,x) = H(X, {x}). We leave the construction of the natural transformation

s∗(X,x) : H̃n(X,x) → H̃n+1(S1 ∧X, ∗) and the proof that (H̃∗, s∗) is a homology
theory for pointed spaces with values in R-modules to the reader.

The analogous statements and construction yields a one-to-one-correspondence
between cohomology theories for pointed spaces with values in R-modules and
cohomology theories for pairs with values in R-modules.

More details can be found for instance in [24, Section 7.6 on page 176-177].

Proposition 16.11. Let X be a (compactly generated) topological Hausdorff space
with a sequence of closed subspaces X0 ⊂ X1 ⊆ X2 ⊆ · · · ⊆ X such that X is the
union of the Xi-s and carries the colimit topology. Then:

(i) Suppose that the homology theory with values in R-modules H∗ satisfies
the disjoint union axiom for countable index sets.

Then there is for every n ∈ Z a natural R-isomorphism

colimk→∞Hn(Xk)
∼=−→ Hn(X);

(ii) Suppose that the cohomology theory H∗ with values in R-modules satisfies
the disjoint union axiom for countable index sets. Then there is for every
n ∈ Z a natural short exact sequence

0→ invlim1
k→∞Hn−1(Xk)→ Hn(X)→ invlimk→∞Hn(Xk)→ 0.

Proof. The proof can be found in [20, Proposition 7.53 on page 121 and Proposi-
tion 7.66 on page 127] in the special case that X is a CW -complex and Xk is its
k-skeleton. The proof carries directly over to our more general setting. �

Proposition 16.12.

(i) Let t∗ : H∗ → K∗ be a transformation of homology theories with values in
R-modules satisfying the disjoint union axiom. Suppose that the homo-
morphism tn({•}) : Hn({•})→ Hn({•}) is bijective for all n ∈ Z.

Then tn(X,A) : Hn(X,A) → Kn(X,A) is bijective for every CW -pair
(X,A) and n ∈ Z;
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(ii) Let t∗ : H∗ → K∗ be a transformation of cohomology theories with val-
ues in R-modules satisfying the disjoint union axiom. Suppose that the
homomorphism tn({•}) : Hn({•})→ Kn({•}) is bijective for all n ∈ Z.

Then tn(X,A) : Hn(X,A) → Kn(X,A) is bijective for every CW -pair
(X,A) and n ∈ Z.

Proof. By the long exact sequence of a pair and the Five-Lemma one can reduce
the claim to the case A = ∅. The claim follows for zero-dimensional CW -complexes
X from the disjoint union axiom. Inductively over the dimension one proves the
claim for finite-dimensional CW -complexes, where in the induction step the Mayer-
Vietoris sequence and homotopy invariance comes in. Using Proposition 16.11 one
obtains the general case from the finite-dimensional case. �

16.3. The homology and cohomology theory assigned to a spectrum.

Lemma 16.13. For a spectrum E and n ∈ Z there are equivalences

(16.14) πn(E) ' πn+1(S1 ∧E) and πn(E) ' πn−1(map(S1,E)0)

which are natural in E.

Proof. We claim that the maps

(16.15) (−1)kσn+k(E(k)) : πn+k(E(k))→ πn+k+1(S1 ∧ E(k))

assemble to an equivalence

πn(E) = colimk→∞ πn+k(E(k))(16.16)

→ colimk→∞ πn+k+1(S1 ∧ E(k)) = πn+1(S1 ∧E).

The following commutative diagram shows that the maps (−1)kσn+k(E(k)) com-
mute with the structure maps of the respective colimits and induce the map (16.16):

(16.17)

πn+k(E(k)) πn+k+1(S1 ∧ E(k))

πn+k+1(S1 ∧ E(k)) πn+k+2(S1 ∧ (S1 ∧ E(k)))

πn+k+1(E(k) ∧ S1) πn+k+2((S1 ∧ E(k)) ∧ S1)

πn+k+1(E(k + 1)) πn+k+2((S1 ∧ E(k)) ∧ S1).

−σn+k(E(k))

σn+k(E(k)) σn+k+1(S1∧E(k))

πn+k+1(flip)

− id

πn+k+2(flip)

πn+k+1(σ(k)) πn+k+2(σ(k))

σn+k+1(E(k+1))

To prove commutativity of diagram 16.17, one starts with an element [f ] ∈ πn+k(E(k))
represented by a pointed map f : Sn+k → E(k). Its image under the composite of
the left vertical arrows is [g] ∈ πn+k+2(S1 ∧ E(k + 1)) for the pointed map

g : S1 ∧ S1 ∧ Sn+k idS1 ∧ idS1 ∧f−−−−−−−−−→ S1 ∧ S1 ∧ E(k)

idS1 ∧ flip
−−−−−−→ S1 ∧ (E(k) ∧ S1)

idS1 ∧σ(k)
−−−−−−−→ S1 ∧ E(k + 1).

However, the image of [f ] ∈ πn+k(E(k)) under the composite of the right vertical
arrows is [g] ∈ πn+k+2(S1 ∧ E(k + 1)) is g ◦ (flip∧ idSn+k) (and not [g]). Since the
homomorphism flip∧ idSn+k : S1 ∧ S1 ∧ Sn+k → S1 ∧ S1 ∧ Sn+k has degree −1,
Theorem 3.4 implies that [g ◦ (flip∧ idSn+k)] = −[g] holds.

It remains to show that the map (16.16) is an equivalence. Recall the general

fact that for a directed system of abelian groups A0
φ0−→ A1

φ1−→ A2
φ2−→ · · · every

element in the colimit can be written as ψm(am) for some m ∈ Z≥0 and some
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am ∈ Am for the structure map ψm : Am → colimk→∞Ak and the element ψm(am)
is zero in the colimit if and only if there exists n ∈ Z≥0 with n ≥ m such that the
composite φn−1 ◦ φn−2 ◦ · · · ◦ φm : Am → An sends am to zero. Now note that the
upper left triangle in diagram 16.17 with the dashed map commutes, which implies
injectivity of (16.16). Surjectivity is more difficult. We only show that the twofold
suspension πn(E)→ πn+1(S1∧E)→ πn+2(S1∧S1∧E) is surjective. As both maps
are injective this proves that they are equivalences. Consider f : Sn+k → S2∧E(k).
We will show that [f ] ∈ πn+2(S1 ∧ S1 ∧E) is the image of [g] ∈ πn(E) for the map

(16.18) g : Sn+k+2 f−→ S2 ∧ E(k)
flip−−→ E(k) ∧ S2 σ2

−→ E(k + 2).

Consider the the diagram

(16.19)

S2 ∧ Sn+k+2 Sn+k+2 ∧ S2

S2 ∧ (S2 ∧ E(k)) (S2 ∧ E(k)) ∧ S2

S2 ∧ E(k) ∧ S2 S2 ∧ E(k + 2).

flip

id∧f f∧id

flip

id∧ flip id∧σ2α

id∧σ2

The map α : S2∧E(k)∧S2 → S2∧E(k)∧S2 is the map swapping the first and last
factor. As this swap map of S2 ∧ S2 has degree 1, we see that α ' id. Similarly,
the flip map S2 ∧ Sn+k+2 → Sn+k+2 ∧ S2 is homotopic to the identity. This is the
reason why we have to suspend twice! Now the upper square and middle triangle
in diagram 16.19 obviously commute. The bottom right triangle commutes up to
homotopy using id ' α. The right vertical composite represents [f ] ∈ πn+2(S2∧E).
The bottom left composite is the image of [g] under πn(E)→ πn+2(S1 ∧ S1 ∧E).

The proof of the equivalence πn(E) ' πn−1(map(S1,E)0) is easy using the equiv-
alence πn(ΩX) ' πn+1(X) for a pointed space X. �

Definition 16.20. Let E be a spectrum and X be a pointed space. Define the
reduced E-(co)homology of X by

H̃n(X; E) = πn(X ∧E) and H̃n(X; E) = π−n(map(X,E)0).

Theorem 16.21 (The homology and cohomology theory assigned to a spectrum).

Let E be a spectrum. Then:

(i) The reduced E-homology H̃∗(−,E) is a homology theory of pointed spaces
with values in Z-modules. Its associated homology theory on pairs of spaces
satisfies the disjoint union axiom. For every n ∈ Z there is an isomorphism

αn(E) : Hn({•}; E)
∼=−→ πn(E);

(ii) The reduced E-cohomology H̃∗(−; E) is a cohomology theory of pointed
spaces with values in Z-modules. Its associated cohomology theory on pairs
of spaces satisfies

αn(E) : Hn({•}; E)
∼=−→ π−n(E).

If E is an Ω-spectrum and we consider as input only pointed CW -complexes,
then H∗(−; E) satisfies the disjoint union axiom.

Proof. (i). Because of Remark 16.10 it suffices to construct a homology theory for

pointed spaces H̃∗.
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We begin by showing how H̃n(X; E) = πn(X ∧ E) from definition 16.20 is a
homology theory for pointed spaces. Is is obviously a functor from pointed spaces
to Z-graded abelian groups. Furthermore, it sends pointed homotopic maps to the

same map on H̃n(−; E) As suspension isomorphism we use the isomorphism

sn(x) : H̃n(X; E) = πn(X ∧E) ' πn+1(S1 ∧X ∧E) = H̃n+1(X; E)

from lemma 16.13 for the spectrum X ∧E, which is natural in X.
Next we prove exactness. Consider a pointed map f : X → Y . We have to prove

the exactness of the sequence

πn(X ∧E)
πn(f∧idE)−−−−−−−→ πn(Y ∧E)

πn(i∧idE)−−−−−−→ πn(cone(f) ∧E)

for i : Y → cone(f) the inclusion into the pointed mapping cone of f . Since the
composite i◦f is pointed nullhomotopic, we get im(πn(f ∧ idE)) ⊆ ker(πn(i∧ idE)).
It remains to show ker(πn(i ∧ idE)) ⊆ im(πn(f ∧ idE)).

Consider an element z ∈ ker(πn(i ∧ idE)). Then we can find k ∈ Z≥0 and
a pointed map g : Sn+k → Y ∧ E(k) such that [g] ∈ πn+k(Y ∧ E(k)) represents
z ∈ ker(πn(i∧ idE)) and πn+k(i∧ idE(k)) : πn+k(Y ∧E(k))→ πn+k(cone(f)∧E(n))
sends [g] to zero. Let h : cone(f)∧E(n)∧I → cone(f)∧E(n) be a pointed homotopy
with h0 = i ◦ g and h1 the constant map. Next we construct the following diagram

(16.22) Sn+k g
//

j

��

Y ∧ E(n)

i∧idE(n)

��

i∧idE(n)

))

cone(idSn+k)

p(idSn )

��

H
// cone(f ∧ idE(n))

p(f∧idE(n))

��

φ

∼=
// cone(f) ∧ E(n)

Sn+k ∧ S1

id
Sn+k∧S1

��

β
// X ∧ E(n) ∧ S1

f∧idE(n) ∧ idS1

��

idX ∧σ(n)
// X ∧ E(n+ 1)

f∧idE(n+1)

��

Sn+k ∧ S1
g∧idS1

// Y ∧ E(n) ∧ S1
idY ∧σ(n)

// Y ∧ E(n+ 1)

The left column is part of the cofibration sequence of the pointed map idSn , whereas
the middle column is part of the cofibration sequence of the pointed map f ∧ idE(n),
see Theorem 8.40. The map H is given by the map g and the homotopy h and
makes the uppermost left square commutative. The map β is the map uniquely
determined by the property that the left middle square commutes. The map φ is
the canoncial homeomorphism and makes the corresponding triangle commutative.
The lowermost right square commutes. The left lowermost square does not commute
but it does commute up to pointed homotopy. The elementary verification of this
fact is left to the reader or can be extracted from [20, Lemma 8.31 on page 143].

Now the composite (idY ∧σ(n))◦(g∧ idS1) : Sn+k∧S1 → Y ∧E(n+1) is another
representative of z ∈ ker(πn(i ∧ idE)). We conclude from the diagram 16.22 that
the composite (idX ∧σ(n)) ◦ β : Sn+k ∧ S1 → X ∧ E(n + 1) represents an element
in πn(X ∧ E) which sent by πn(f ∧ idE) to z. This finishes the proof of exactness

and hence of the assertion that (H̃∗(−; E), s∗) defines homology theory for pointed
spaces in the sense of Defintion 16.9.

It remains to check that H̃∗(−; E) satisfies the one point union axiom, i.e., that
the map

(16.23)
⊕
i∈I

πn(Xi ∧ E)→ πn(
∨
i∈I

Xi ∧ E)
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is an equivalence. Recall from exercise 47 on sheet 12 that for two spectra E1 and
E2 the canonical map E1 ∨ E2 → E1 × E2 is a weak homotopy equivalence. This
shows that the map (16.23) is an equivalence if I is finite. For general I, use the
equivalences

πn(
∨
i∈I

Xi ∧ E) ' colimF⊆I finite πn(
∨
i∈F

Xi ∧ E) and(16.24) ⊕
i∈I

πn(Xi ∧ E) ' colimF⊆I finite

⊕
i∈F

πn(Xi ∧ E).(16.25)

The first equivalence follows from the following argument: Consider a compact
subset C ⊆

∨
i∈I(Xi, xi). We want to show that there is a finite subset J ⊆ I with

C ⊆ I. Suppose that this is not the case. Then we can find a sequence of elements
j(1), j(2), j(3), . . . of pairwise distincts elements in I and a sequence of pairwise
distinct points s1, s2, s3, . . . in C satisfying si ∈ C ∩Xj(i) \{xj(i)}. Consider the set
S = {s1, s2, s3, . . . , }. Let T ⊆ S be any subset of S. Then T ∩Xi is either empty
of consists of one point for i ∈ I. Since each Xi is Hausdorff, T ∩ Xi is closed in
Xi for every i ∈ I. This implies that T is a closed subset of

∨
i∈I Xi. Hence S is a

discrete subset of
∨
i∈I Xi and contained in a compact subset C of X. This implies

that S is finite, a contradiction.
The proof that the reduced E-cohomology

H̃n(X; E) = π−n(map(X,E)0)

is a cohomology theory for pointed spaces is analogous to the one for homology
except that some care is necessary for the disjoint union axiom. The additional
difficulty is that we have a homeomorphism

map
(∨
i∈I

Xi; E(n)
)0

=
∏
i∈I

map(Xi,E(n))0

and hence we get for k, n an isomorphism

πn+k

(
map

(∨
i∈I

Xi; E(n)
)0) ∼=−→∏

i∈I
πn+k

(
map(Xi; E(n))0

)
but colimits and products do not commute. Therefore we need the assumption that
E is an Ω-spectrum, Namely, with this assumption, structure map of (16.6)

ψn,k : πn+k(map(Y,E(k))0)→ πn(map(Y,E)0)

is an isomorphism for every pointed space (Y, y) and we do not have to take the
colimit, since map(X; E)0 is an Ω-spectrum by Theorem 16.6 and Theorem 10.1
applied to the fibration map(X,E(n))0 → map(X,E(n)) → E(n), as E is an Ω-
spectrum and X is a CW -complex. �

Example 16.26 (Sphere spectrum and stable homotopy). Let S be the sphere
spectrum of Example 16.3. Then the associated homology theory H∗(−; S) agrees
with the stable homotopy theory πs∗(−) introduced in Defintion 11.20 and Theo-
rem 11.24 follows from Theorem 16.21 (i).

Example 16.27 (The Eilenberg-MacLane spectrum and singular homology). We
have introduced for an abelian group G the Eilenberg-Maclane spectrum K(G) in
Definition 16.4. Theorem 16.21 (ii) we obtain a cohomology theory which satisfies
the disjoint union axiom and the dimension axiom and H0({•}) ∼= G. Singular
cohomology H∗(−;G) with coefficients in G is also a cohomology theory which
satisfies the disjoint union axiom and the dimension axiom and H0({•};G) ∼= G.
We obtain from the maps γn(Y ) : [Y,K(G,n)] → Hn(Y ;G) of (14.6) a natural
transformation of cohomology theories γ∗ : H∗(−; K(G))→ H∗(;G) which induces



98 LÜCK, WOLFGANG

an isomorphism γ0({•}) : H∗({•}; K(G)) → H∗({•};G). Proposition 16.12 (ii)
implies that we get a natural equivalence of cohomology theories

γ∗ : H∗(−; K(G))
∼=−→ H∗(−;G).

In particular we see that for every n ∈ Z the map γn(X) : [X,K(G,n)]→ Hn(Y ;G)
of (14.6) bijective for every CW -complex X, as predicted in Theorem 14.7.

We mention without proof that H∗(−; K(A)) can be identified with singular
homology H∗(−;A) with coefficients in A.

Example 16.28 (Hopf’s Theorem revisited). Let M be a closed smooth manifold
of dimension d. Let K(Z, d) be a model for the Eilenberg-MacLane space of type

(Z, d). Choose a map f : Sd → K(Z, d) inducing an isomorphism πd(f) : πd(S
d)
∼=−→

πd(K(Z, d)). Since f is (d+ 1)-connected and any smooth d-dimensional manifold

carries a d-dimensional CW -structure, we obtain a bijection [M,Sd]
∼=−→ [M,K(Z, d)]

by sending [g] to [f ◦ g] from the Whitehead Theorem 5.1 (i). Composing it with

the bijection γn(Y ) : [Y,K(G,n)]
∼=−→ Hd(Y ;G) of (14.6) yields a bijection

ν : [M,Sd]
∼=−→ Hd(M), [f ] 7→ Hd(f)([Sd])

for the fundamental class [Sd] ∈ Hd(Sd).
Suppose that M is oriented. If we compose ν with the bijective homomorphism

Hd(M)
∼=−→ Z sending u to 〈u, [M ]〉 for the fundamental class [M ] ∈ Hd(M), then

we obtain a bijection

[M,Sd]
∼=−→ Z, [f ] 7→ deg(f).

Thus we rediscover Hopf’s Degree Theorem 3.1.
Suppose that M is not orientable. We mention without giving the proof that

Hd(M ;Z) is isomorphic to Z/2 and ν : [M,Sd]
∼=−→ Z/2 sends f : M → Sd to

zero, if Hd(f,Z/2) : Hd(M,Z/2) → Hd(S
d;Z/2) is trivial, and to the generator

if Hd(f,Z/2) : Hd(M,Z/2)→ Hd(S
d;Z/2) is bijective.

16.4. Brown’s Representation Theorem. Let f : E → F be a map of spectra.
It induces in the obvious way a natural transformation of homology theories with
values in Z-modules

(16.29) tf∗ : H∗(−; E)→ H∗(−; F)

such that the following diagram commutes

Hn({•}; E)
tfn({•})

//

∼=
��

Hn({•}; F)

∼=
��

πn(E)
πn(f)

// πn(E).

It also induces in the obvious way a natural transformation of cohomology theories
with values in Z-modules

(16.30) t∗f : H∗(−; E)→ H∗(−; F)

such that the following diagram commutes

Hn({•}; E)
tnf ({•})

//

∼=
��

Hn({•}; F)

∼=
��

πn(E)
πn(f)

// πn(E).
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A proof of the next theorem can be found in [20, Theorem 9.27 on page 164 and
Theorem 9.28 on page 165]

Theorem 16.31 (Brown’s Representation Theorem).

(i) Let K∗ be a cohomology theory with values in Z-modules defined on the
category of CW -pairs satisfying the disjoint union axiom. Then there is
an Ω-spectrum E and a natural equivalence of cohomology theories

t∗ : H∗(−; E)
∼=−→ K∗;

(ii) Consider two Ω-spectra E and F. Let t∗ : H∗(−; E) → H∗(−; F) be a
natural

transformation of cohomology theories.
Then there is a map of spectra f : E→ F such that for every CW -pair

(X,A) and n ∈ Z the maps tn(X,A) and Hn(X,A; f) from Hn(−; E) to
Hn(−; F) agree.

If t∗ : H∗(−; E) → H∗(−; F) is a natural equivalence of cohomology
theories with values in Z-modules, then f is a weak homotopy equivalence.

One knows for a homology theory H∗ with values in Z-modules satisfying the
disjoint union that it can be identified on CW -pairs with H∗(−; E) for some spec-
trum E but in contrast to cohomology with values in Z-modules E is not uniquely
determined by this property up to weak homotopy equivalence.

16.5. Basics about vector bundles. Vector bundles are always to be understood
to be finite dimensional real or complex vector bundles. For a vector bundle ξ we
denote by pξ : E → B its bundle projection. For a finite dimensional real or com-
plex vector space V and a CW -complex B we denote by V B the trivial vector
bundle over B whose bundle projection B × V → B is the canonical projection
onto B. If B is clear from the context, we simply write V . If V is oriented, then V
inherits an orientation. We will equip Rk always with the standard orientation and
Ck considered as a real vector spaces with the preferred orientation coming from
{v1, iv1, v2, iv2, . . . , vn, ivn} for any complex basis {v1, v2, . . . , vn}. Given two bun-
dles ξ and η with projections pξ : Eξ → Bξ and pη : Eη → Bη, a bundle morphism

(f, f) consists of two maps for which the following diagram is commutative

Eξ
f
//

pξ

��

Eη

pη

��

Bξ
f
// Bη

and for each b ∈ Bξ the maps induced by f from the fiber p−1
ξ (b) of ξ over b to the

fiber p−1
η (f(b)) of η over f(b) is a linear isomorphism. We call two bundles ξ and

η over the same basis space B isomorphic over B, if there is a bundle map (f, f)
with f = idB .

The proof of the next result can be found for instance in [9, Theorem 4.7 on
page 30].

Proposition 16.32. Let X and Y be CW -complexes. Let η be a vector bundle
over the CW -complex Y . Let f, g : X → Y be maps which are homotopic.

Then the vector bundles f∗η and g∗η over X obtained from the pull back con-
struction applied to f and g are isomorphic over X. Moreover, if η is oriented,
then f∗η and g∗η inherits orientations and are oriented isomorphic over X.

Let X be a CW -complex and let VBk(X) be the set of isomorphism classes [ξ]
of k-dimensional real vector bundles ξ over X. There is a universal k-dimensional
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bundle γk over a CW -complex BO(k) such that for any k-dimensional real vector
bundle ξ there is a map cξ : X → BO(k) uniquely determined up to homotopy
by the property that ξ is isomorphic over X to c∗ξγk. Moreover, the homotopy

class [cξ] depends only on the isomorphism class [ξ]. Sometimes cξ is called the
classifying map of ξ. The space BO(k) is uniquely up to homotopy determined
by the property that there exists a principal O(k)-bundle EO(k) → BO(k) with
contractible total space EO(k). The k-dimensional vector bundle γk is given by the
canoncial projection EO(k)×O(k) Rk → BO(k).

All this has an analog for oriented k-dimensional real vector bundles. Namely,
let X be a CW -complex and let VBk(X) be the set of oriented isomorphism classes
[ξ] of oriented k-dimensional real vector bundles ξ over X. There is a universal
oriented k-dimensional real bundle γk over a CW -complex BSO(k) such that for
any oriented k-dimensional real vector bundle ξ there is a map cξ : X → BSO(k)
uniquely determined up to homotopy by the property that ξ is oriented isomorphic
over X to c∗ξγk. Moreover, the homotopy class [cξ] depends only on the oriented
isomorphism class [ξ]. The space BSO(k) is uniquely up to homotopy determined
by the property that there exists a principal SO(k)-bundle ESO(k)→ BSO(k) with
contractible total space ESO(k). The oriented k-dimensional real vector bundle γk
is given by the canoncial projection ESO(k) ×SO(k) Rk → BSO(k) and inherits an

orientation from the standard orientation of Rk.
All this has an analog for k-dimensional complex vector bundles. Namely, let

X be a CW -complex and let VBC
k (X) be the set of isomorphism classes [ξ] of k-

dimensional complex vector bundles ξ over X. There is a universal k-dimensional
complex bundle γCk over a CW -complex BU(k) such that for any k-dimensional
complex k-vector bundle ξ there is a map cCξ : X → BU(k) uniquely determined up

to homotopy by the property that ξ is isomorphic over X to (cCξ )∗γCk . Moreover,

the homotopy class [cCξ ] depends only on the isomorphism class [ξ]. The space

BU(k) is uniquely up to homotopy determined by the property that there exists a
principal U(k)-bundle EU(k)→ BU(k) with contractible total space EU(k). The k-
dimensional vector bundle γCk is given by the canoncial projection EU(k)×U(k)Ck →
BU(k).

For the proof of the next theorem we refer, for instance, to [14, Chapter 5]. It is a
prototype of a connection between a geometric classification problem to homotopy
theory.

Theorem 16.33 (Classification of vector bundles). If X is a CW -complex, then
the maps

VBk(X) → [X,BO(k)], [ξ] 7→ [cξ];

VBk(X) → [X,BSO(k)], [ξ] 7→ [cξ];

VBC
k (X) → [X,BU(k)], [ξ] 7→ [cCξ ],

are bijective. Their inverses send [f ] to [f∗γk], [f∗γk] and [f∗γCk ].

The spaces BO(k), BSO(k), and BU(k) are path connected and unique up to
homotopy.

For a real vector bundle ξ : E → X with Riemannian metric define its disk bundle
pDE : DE → X by DE = {v ∈ E | ||v|| ≤ 1} and its sphere bundle pSE : SE → X
by SE = {v ∈ E | ||v|| = 1}, where pDE and pSE are the restrictions of p. Its Thom
space Th(ξ) is defined by DE/SE. It has a preferred base point∞ := SE/SE. The
Thom space can be defined without a choice of a Riemannian metric as follows. Put
Th(ξ) = E ∪{∞} for some extra point∞. Equip Th(ξ) with the smallest topology
for which any open subset U of E is an open subset of Th(ξ) and a basis of open
neighbourhoods for ∞ is given by the complements of closed subsets A ⊂ E for
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which A ∩ Ex is compact for each fiber Ex. If X is compact, E is locally compact
and Th(ξ) is the one-point-compactification of E. The advantage of this definition
is that any bundle map (f, f) : ξ0 → ξ1 of vector bundles ξ0 and ξ1 canonically
induces a pointed map Th(f, f) : Th(ξ0) → Th(ξ1). Denote by Rk the trivial
vector bundle with fiber Rk. We mention that there are pointed homeomorphisms,
see for instance [21, Proposition 12.28].

Th(ξ × η) ∼= Th(ξ) ∧ Th(η);(16.34)

Th(ξ ⊕ Rk) ∼= Th(ξ) ∧ Sk.(16.35)

16.6. Thom spaces and Thom spectra.

Definition 16.36 (Stable system of vector bundles bundles). Given l ∈ Z≥0, an
l-dimensional stable system of vector bundles µ = {(ξk, (fk, fk)) | k ∈ Z≥0} is a
sequence of vector bundles {ξk | k ∈ Z≥0} such that ξk is a (k+l)-dimensional vector
bundle with projection pξk : Ek → Bk for a CW -complex Bk as basis together with
a bundle maps

Ek ⊕ R
fk
//

pk⊕pR
��

Ek+1

pξk+1

��

Bk
fk
// Bk+1

for k ∈ Z≥0.
We call the system oriented if each each vector bundle ξk is oriented and each

bundle map (fk, fk) respects the orientations.

Given an l-dimensional vector bundle ξ over B, we can associated to it an l-
dimensional stable vector bundle system ξ by putting ξ

k
= ξ ⊕ Rk for k ∈ Z≥0 by

defining the structure maps (idB , fk) to be the obvious bundle isomorphism over B

from ξ ⊕ Rk ⊕ R
∼=−→ ξ ⊕ Rk+1.

Definition 16.37 (Thom spectrum of a stable system of vector bundles bundles).
Consider an l-dimensional stable system of vector bundles µ = {(ξk, (fk, fk)) | k ∈
Z≥0}. Define the associated Thom spectrum Th(µ) as follows. Its k-th space
Th(µ)k is {•} for k < 0 and Th(µ)k = Th(ξk) for k ≥ 0. The kth-structure map is
given by the composite

Th(µ)k ∧ S1 = Th(ξk) ∧ S1 (16.35)
= Th(ξk ⊕ R)

Th(fk,fk)−−−−−−→ Th(ξk+1) = Th(µ)k+1.

Example 16.38 (Suspension spectrum). Let X be a CW -complex. Consider the
zero-dimensional vector bundle R0

X over X. Let R0
X be the associated stable

system of bundles maps. We have introduced its Thom spectrum Th(R0
X) in

Definition 16.37. Note that its 0-th space is X+. Then Th(R0
X) agrees with the

suspension spectrum Σ∞X+ of Example 16.2. If we take X = {•}, then Σ∞{•}+ =
Σ∞(S0, s) is the sphere spectrum S of Example 16.3.

Example 16.39 (The spectra MO and MSO). Choose for any k a model for the
universal k-dimensional bundle γk over BO(k). By the universal property of γk+1

we can choose a bundle map (fk, fk) : γk ⊕RBO(k) → γk+1. We can arrange by the

construction of Subsection 8.8 that each map fk : BO(k)→ BO(k+1) is an inclusion
of CW -complexes and in particular a cofibration. We obtain a stable system γ of
bundle maps by the collection of the bundles γk and bundle maps (fk, fk). The
associated Thom spectrum of Definition 16.37 is denoted by MO = Th(µ).

Note that MO depends on some choices. But one can show for the result MO′ for
any other choices that there are homotopy equivalences of spectra MO→MO′ and
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MO′ →MO which are homotopy inverse to one another. (Here it is crucial that the
maps fk are cofibrations.) In particular MO →MO′ and MO′ →MO are weak
homotopy equivalences and we get from Proposition 16.12 natural equivalences of

(co)homology theories H∗(−MO)
∼=−→ H∗(−MO′) and H∗(−MO)

∼=−→ H∗(−MO′)
which actually are inverse to one another. Moreover, there is actually a canonical
construction MO for which no additional choices are made. Therefore we ignore
this ambiguity about MO in the sequel.

There is an analog µ and MSO = Th(µ), where one replaces γk by γk and
BO(k) by BSO(k).

Note that we have constructed the sphere spectrum S, the Eilenberg-MacLane
spectrum K(A) for an abelian group A, and the spectra MO and MSO so far.
Recall that associated to them are (co-)homology theories in Theorem 16.21. For
S we have identified H∗(−; S) with the stable homotopy groups πs∗(−), see Exam-
ple 16.26. These will be identified with more geometric terms, namely with framed
bordism, in Theorem 17.15. For K(A) we have identified H∗(−; K(A)) with the
singular cohomology H∗(−;A) with coefficients in A, see Example 16.27. We will
identify H∗(−; MO) and H∗(−; MSO) with more geometric terms, namely with
unoriented and oriented bordism theory, see Theorem 17.11 and Theorem 17.14.

16.7. Topological K-theory. One can define topological groups

O = colimk→∞O(k);

SO = colimk→∞ SO(k);

U = colimk→∞U(k),

for the inclusions O(k) → O(k + 1), SO(k) → SO(k + 1), and U(k) → U(k + 1)
given by taking the block sum with the (1, 1) matrix (1).

There is a principal O-bundle EO→ BO over a CW -complex BO for which EO
is contractible. Up to homotopy one can obtain BO also as colimk→∞ BO(k) if one
chooses adequate models for BO(k) and arranges that each map BO(k)→ BO(k+
1) is an inclusion of CW -complexes and in particular a cofibration. Analogously
one can construct spaces BSO and BU. The spaces BO, BSO, and BU are path
connected. We have π1(BO) ∼= /IZ/2 and the spaces BSO and BU are actually
simply connected.

A deep theorem of Bott says that there are weak homotopy equivalences

βR : Z× BO
'−→ Ω8(Z× BO);

βC : Z× BU
'−→ Ω2(Z× BU),

where Z is equipped with the discrete topology and the base point 0 ∈ Z and we
choose some base point in the path connected spaces BO and BU.

For n ∈ Z define k(n) ∈ {0, 1, 2, 3, 4, 5, 6, 7} to be the unique element satisfying

k(n) ≡ n mod 8. Define an Ω-spectrum KO by defining the n-th space KOR
n to

be Ω8−k(n)(Z× BO) if k(n) 6= 0 and to be Z× BO if k(n) = 0. The n-th structure
map is

id : Ω8−k(n)(Z× BO)→ ΩΩ8−(k(n)+1)(Z× BO) = Ω8−k(n)(Z× BO)

if k(n) 6= 0 and βR : (Z × BO) → ΩΩ7(Z × BO) = Ω8(Z × BO). So the spectrum
KO is 8-periodic and looks in tte range from 0 to 8 like

Z× BO,Ω7(Z× BO),Ω6(Z× BO), . . . ,Ω1(Z× BO),Z× BO .

Similarly we define the Ω-spectrum K. Define Kn to be Z×BU if n is even, and
to be Ω(Z × BU) if n is odd. The n-th structure map is the identity idΩ(Z×BU) if



ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 103

n is odd, and is βC if n is even. So the spectrum K is 2-periodic and looks in the
range 0 to 2 like

Z× BU,Ω(Z× BU),Z× BU .

Associated to these Ω-spectra are cohomology theories satisfying the disjoint
union axiom

KO∗(X,A) := H∗(X,A; KO);

K∗(X,A) = H∗(X,A; K),

called real and complex topological K-theory. Note thatKO∗ is 8-periodic, i.e., there

are natural isomorphisms KO∗(X,A)
∼=−→ KO∗+8(X,A), whereas K∗ is 2-periodic,

i.e., there are natural isomorphisms K∗(X,A)
∼=−→ K∗+2(X,A).

Associated to these Ω-spectra are homology theories satisfying the disjoint union
axiom

KO∗(X,A) := H∗(X,A; KO);

K∗(X,A) = H∗(X,A; KO),

called real and complex topological K-homology Note that KO∗ is 8-periodic, i.e.,

there are natural isomorphisms KO∗(X,A)
∼=−→ KO∗+8(X,A), whereas K∗ is 2-

periodic, i.e., there are natural isomorphisms K∗(X,A)
∼=−→ KO∗+2(X,A).

The coefficients are given for the real case by

(16.40) KOn({•}) = KO8−n({•}) = Z,Z/2,Z/2, {0},Z, , {0}, {0}, {0},Z,
for n = 0, 1, 2 . . . , 7

and in the complex case by

(16.41) Kn({•}) = Kn({•}) =

{
Z if n is even;

{0} if n is odd.

If X is a finite CW -complex, the abelian group KO0(X) can be identified with
the Grothendieck construction applied to the abelian semi-group of stable isomor-
phism classes of finite-dimensional real vector bundles over X, where two finite-
dimensional real vector bundles ξ and η over X are called stably isomorphic if

ξ ⊕Rk and ηRl are isomorphic for some natural numbers k and l and the addition
comes from the Whitney sum. The analogous statement holds for the complex case.

Remark 16.42. Topological K-theory is a very valuable cohomology theory which
had many applications to problems in topology. It was later extended to C∗-
algebras and plays a prominent role in the classification and the theory of C∗-
algebras and in index theory.

16.8. Outlook. The approach to spectra presented above can be called “classical”
or “naive”. Moreover, we have not defined the notion of a smash product of two
spectra and of a ring spectrum.

One can define the smash product E ∧ F of two spectra E and E in the setting
discussed in these notes but it depends on certain choices. Moreover associativity
or commutativity of this smash product make only sense up to homotopy. This
has led to the notions of highly structured spectra such as symmetric or orthogonal
spectra, where the smash product is strictly defined and also associativity and
commutativity of the smash product hold strictly.

Moreover, one works with spectra in the setting of higher category theory nowa-
days. An introduction to higher categories can be found for instance in [12].
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17. The Pontrjagin-Thom Construction

17.1. ξ-bordism. Let (M, i) be an embedding i : Mn → Rn+k of a closed n-
dimensional manifold M into Rn+k. Note that TRn+k comes with an explicit

trivialisation Rn+k × Rn+k
∼=−→ TRn+k and the standard Euclidean inner product

induces a Riemannian metric on TRn+k. Denote by ν(i) the normal bundle, which is
the orthogonal complement of TM in i∗TRn+k or can be thought of as the quotient
bundle i∗TRn+k/TM .

Mc IR3

&
Next we apply this construction to bordism. Fix a space X together with a

k-dimensional vector bundle ξ over X. We define the bordism set

(17.1) Ωn(ξ)

of normal ξ-bordism classes of normal ξ-maps as follows.

Definition 17.2 (Normal ξ-map).
A normal ξ-map (M, i, f, f) is a quadruple consisting of:

• A closed manifold M of dimension n;
• An embedding i : M → Rn+k;
• A map f : M → X;
• A bundle map (f, f) : ν(i)→ ξ covering f , where ν(i) is the normal bundle

of the embedding i.

Definition 17.3 (Bordism of normal ξ-maps).
A normal ξ-bordism from the normal ξ-map (M0, i0, f0, f0) to the normal ξ-map

(M1, i1, f1, f1) is a quadruple (W, I, F, F ) consisting of:

• A compact manifold W of dimension (n + 1) whose boundary ∂W is the
disjoint union ∂0W q ∂1W ;

• An embedding of manifolds with boundary I : W → Rn+k × [0, 1] sending
∂mW to Rn+k × {m} for m = 0, 1;

• Diffeomorphisms um : Mm → ∂mW and Um : Rn+k → Rn+k × {m} for
m = 0, 1 satisfying I ◦ um = Um ◦ im;

• A map F : W → X × [0, 1] satisfying jm ◦ fm = F ◦ um for m = 0, 1 where
jm : X → X × [0, 1] sends x to (x,m);
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• A bundle map (F, F ) : ν(I)→ ξ covering F such that F ◦ν(um, Um) = fm
holds for m = 0, 1 where (um, ν(um, Um)) : ν(im) → ν(I) is the obvious
bundle map induced by Tum and TUm.

Remark 17.4. Note that in the definition above the following implicit identifica-
tion

ν(∂W ⊆ Rn+k × {0, 1}) = ν(W ⊆ Rn+1 × [0, 1])|∂W
is used, which is based on the convention that at {0} we take the inward normal
field and at {1} the outward normal vector field to get identifications

TRn × [0, 1]|Rn×{0,1} = TRn × {0, 1} ⊕ R;

TW |∂W = T∂W ⊕ R.

This convention guarantees that we can stack two cobordisms together to prove
transitivity of the bordism relation.

IR2x90] IR&x913

p
17.2. The Pontrjagin-Thom construction of ξ-bordism. Consider a normal
ξ-map (M, i, f, f), see Definition 17.2. Note that for any vector bundle η over a
manifold B with total space E there exists a canonical bundle isomorphism TB ⊕
η
∼=−→ s∗TE over B, where s : B → E is the zero-section. So we get an identification

TB ⊕ η = TE|B . Let (N(M), ∂N(M)) be a tubular neighbourhood of M . Recall
that there is a diffeomorphism

u : (Dν(M), Sν(M))→ (N(M), ∂N(M))

with the property that its restriction to M is i and under the canonical identification
T (Dν(M))|M = TM ⊕ ν(i) the composite

ν(i) = {0} ⊕ ν(i)→ TM ⊕ ν(i) = T (Dν(M))|M
Tu|M−−−−→ i∗TRn+k → i∗TRn+k/TM = ν(i)

is the identity. Such a tubular neighborhood is unique up to diffeotopy on Rn+k

relative M . See for instance [2, Theorem 21.11 on page 130 and Theorem 12.13 on
page 131].
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The Thom collapse map

c : Sn+k = Rn+k q {∞} → Th(ν(M))(17.5)

is the pointed map that is given by the diffeomorphism u−1 on the interior of N(M)
and sends the complement of the interior of N(M) to the preferred base point ∞.

COLLAPSE COLLAPSE
-> Dwin/Swin)

↑ Duny If

SW(M
COLLAPSE 7 c IR3 Th/bIMI
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The homology group Hn+k(Th(ν(M))) ∼= Hn+k(N(M), ∂N(M)) is infinite cyclic
ifM is connected, sinceN(M) is a connected compact orientable (n+k)-dimensional
manifold with boundary ∂N(M). The Hurewicz homomorphism

hurn+k : πn+k(Th(ν(i)))→ Hn+k(Th(ν(i)))

sends the class [c] of c to a generator. This follows from the fact that any point
in the interior of N(M) is a regular value of c and has precisely one point in its
preimage.

Theorem 17.6 (Pontrjagin-Thom Construction). Let ξ : E → X be a k-dimensional
vector bundle over a CW -complex X. Then the map

Pn(ξ) : Ωn(ξ) −→ πn+k(Th(ξ)),

which sends the bordism class of (M, i, f, f) to the homotopy class of the composite

Sn+k c−→ Th(ν(M))
Th(f,f)−−−−−→ Th(ξ), is a well-defined bijection, natural in ξ.

Proof. The details can be found in [3, Satz 3.1 on page 28, Satz 4.9 on page 35] or [8,
Section 7.2 on page 172]. The basic idea becomes clear after we have explained the
construction of the inverse for a finite CW -complex X. Consider a pointed map
(Sn+k,∞) → (Th(ξ),∞). We can change f up to homotopy relative {∞} so that
f becomes transverse to X. Note that transversality makes sense although X is
not a manifold, one needs only the fact that X can identified with the image of a
zero-section of a vector bundle. Put M = f−1(X). The transversality construction

yields a bundle map (f |M , f |M ) : ν(M) → ξ covering f |M . Let i : M → Rn+k =
Sn+k −{∞} be the inclusion. Then the inverse of Pn(ξ) sends the class of f to the

class of (M, i, f |M , f |M ).
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17.3. The Pontrjagin-Thom construction and bordism for stable systems
of bundles. Consider an n-dimensional system µ of vector bundles µ given by
vector bundles ξk and bundle morphisms (fk, fk) : ξk ⊕ R → ξk+1. For n, k ∈ Z≥0

we next define a map

Ωn(fk, fk) : Ωn(ξk)→ Ωn(ξk+1).

Consider an element z in Ωn(ξk) represented by normal ξk-map (M, i, u, u). Let
j : Rn+k = Rn+k × {0} → Rn+k+1 be the standard inclusion. Then there is a
natural identification of ν(j ◦ i) with ν(i)⊕ R. Consider the bundle map

(v, v) : ν(j ◦ i) = ν(i)⊕ RM
(f,f)⊕(u,u)−−−−−−−→ ξk ⊕ RBk

(fk,fk)−−−−→ ξk+1

where (u, u) is the obvious bundle map induced by u and idR. Then we obtain a
normal ξk+1-map (M, j ◦ i, v, v). Its bordism class in Ωn(ξk+1) is the image of z
under Ωn(fk, fk). We omit the proof that Ωn(fk, fk) is well-defined. We define the
set

(17.7) Ωn(µ) = colimk→∞Ωn(ξk)

with respect to the structure maps Ωn(fk, fk).
The set Ωn(µ) carries in contrast to each of the sets Ωn(ξk) the structure of an

abelian group. The unit is given by the class of the normal ξk-map (M, i, v, v) with
M = ∅ for any k ∈ Z≥. Consider two elements z and z′ in Ωn(µ). We can find
representatives (M, i, u, u) and (M ′, i′, u′, u′) with k = k′ and im(i) ∩ im(i′) = ∅
and define z1 + z2 by the class of the disjoint union (M qM ′, iq i′, uq u′, uq u′).
The inverse of a class represented by (M, i, u, u) is the class represented by (M, j ◦
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i, fk ◦ u, fk ◦ u), where j : Rn+k → Rn+k+1 is the standard inclusion, we identify
ν(j ◦ i) with ν(i)⊕ R and (fk◦, fk ◦ u) is the composite

(j ◦ u, fk ◦ u, ) : ν(j ◦ i) = ν(i)⊕ RM
(u,u)⊕− idRu−−−−−−−−→ ξk ⊕ RBk

(fk,fk)−−−−−→ ξk+1

for − idRu the obvious bundle map induced by u and − idR.

Let sn,k : πn+k(Th(ξk)) → πn+k+1(Th(ξk+1)) be the composite of the suspen-
sion homomorphism πn+k(Th(ξk)) → πn+k+1(Th(ξk) ∧ S1) and the homomor-
phism πn+k+1(Th(ξk) ∧ S1) → πn+k+1(Th(ξk+1)) induced by the kth structure
map Th(ξk) ∧ S1 → Th(ξk+1) of the Thom spectrum Th(µ) of Definition 16.37.
Then we get from the definitions

πn(Th(µ)) = colimk→∞ πn+k(Th(ξk))

with respect to the structure maps sn,k.
One easily checks that we obtain a commutative diagram

Ωn(ξk)
Ωn(fk,f̃k)

//

Pn(ξk) ∼=
��

Ωn(ξk+1)

Pn(ξk+1)∼=
��

πn+k(Th(ξk))
sn,k
// πn+k+1(Th(ξk+1)).

Therefore we obtain the following result.

Theorem 17.8 (Pontrjagin-Thom Construction for stable bundle systems).
Let µ be a stable bundle system. Then we obtain an isomorphism of abelian

groups
Pn(µ) : Ωn(µ) −→ πn(Th(µ))

by putting Pn(µ) = colimk→∞ Pn(ξk).

17.4. Unoriented bordism. Consider a pair (X,A) and n ∈ Z≥0. A singular
n-manifold over (X,A) is a map (u, ∂u) : (M,∂M) → (X,A) with target (X,A)
and a compact smooth manifold M with boundary ∂M of dimension n as source.
Consider two singular n-maps (uk, ∂uk) : (Mk, ∂Mk) → (X,A) for k = 0, 1. A
singular (n+ 1)-dimensional bordism between them consists of:

• A compact smooth manifold W of dimension (n+ 1) with boundary ∂W ;
• A decomposition ∂W = ∂0W ∪∂1W ∪∂2W for smooth submanifolds ∂0W ,
∂1W , and ∂2W of ∂W satisfying ∂(∂0W ) ∩ ∂(∂1W ) = ∅ and ∂(∂2W ) =
∂(∂0W )q ∂(∂1W );

• A map (U, ∂U) : (W,∂W )→ (X,A);

• Diffeomorphisms (vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW )) for k = 0, 1

such that ∂U ◦ vk = ∂uk holds for k = 0, 1;
• We have U(∂2W ) ⊆ A.

If (u1, ∂u1) : (M1, ∂M1) → (X,A) is given by M1 = ∅, we call such a (n + 1)-
dimensional bordism a nullbordism for (u0, ∂u0) : (M0, ∂M0)→ (X,A).

If there exists a bordism between two singular n-manifolds over (X,A), we call
them bordant. This turns out to be an equivalence relation, for transitivity one has
to glue two bordisms together. So we can define the set Nn(X,A) to be the set of
of bordism classes of singular n-manifolds over (X,A).

If A is empty, then for a singular bordism (u, ∂u) : (M,∂M) → (X,A) over
X = (X, ∅) we have ∂M = ∅ and hence M is just a closed manifold with a map
u : M → X. Also the notion of a bordism simplifies, since ∂2W must be empty and
hence ∂W is just the disjoint union ∂0W q ∂1W .

The set Nn(X,A) inherits the structure of an abelian group as follows. The unit
is given by the bordism class of the singular n-manifold (u, ∂u) : (M,∂M)→ (X,A)
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for which M = ∅. Given two singular n-manifolds (uk, ∂uk) : (Mk, ∂Mk)→ (X,A)
for k = 0, 1, define the sum of their bordism classes to be the bordism class of
the disjoint union (u0, ∂u0) q (u1, ∂u1) : (M0, ∂M0) q (M1, ∂M1) → (X,A). The
inverse of the bordism class of (u, ∂u) : (M,∂M)→ (X,A) is given by the bordism
class of (u, ∂u) : (M,∂M) → (X,A) again, since a nullbordism for their disjoint
union (u, ∂u)q (u, ∂u) : (M,∂M)q (M,∂M)→ (X,A) can be constructed from the
cylinder M×I in the obvious way. Note that this implies that Nn(X,A) is actually
an F2-vector space.

A map of pairs (F, f) : (X,A) → (Y,B) induces a homomorphism of F2-vector
spaces by sending the bordism class of (u, ∂u) : (M,∂M)→ (X,A) to the bordism
class of (F ◦ u, f ◦ ∂u) : (M,∂M) → (X,A). We omit the proof that we obtain a
covariant functor Nn(−) from the category of topological pairs to the category of
F2-vector spaces for n ∈ Z≥0. We define Nn(X,A) for n ∈ Z≤−1 to be {0}. For a
pair (X,A) define the homomorphism

(17.9) ∂n(X,A) : Nn(X,A)→ Nn−1(A)

by sending the bordism class of (u, ∂u) : (M,∂M)→ (X,A) to the bordism class of
∂u : ∂M → A.

Theorem 17.10 (Singular bordism is a homology theory satisfying the disjoint
union axiom).

We obtain a homology theory with values in F2-vector spaces satisfying the dis-
joint union axiom by N∗(−) and ∂∗(−).

Sketch of the proof. We start with homotopy invariance. Consider for k = 0, 1 the
maps (Fk, fk) : (X,A) → (Y,B) and a homotopy h : (X,A) × I → (Y,B) between
them. We have to show N (F0, f0) = N (F1, f1). Consider a singular n-manifold
(u, ∂u) : (M,∂M) → (X,A). We have to show that (F0, f0) ◦ (u, ∂u) : (M,∂M) →
(X,A) and (F1, f1)◦ (u, ∂u) : (M,∂M)→ (X,A) are bordant. The desired bordism

can easily be constructed from the composite M × I u×idI−−−−→ X × I h−→ Y .
Consider a pair (X,A). We have to show that we obtain a long exact sequence

of F2-vector spaces

· · · ∂n+2−−−→ Nn+1(A)
Nn+1(i)−−−−−→ Nn+1(X)

Nn+1(j)−−−−−→ Nn+1(X,A)

· · · ∂n+1−−−→ Nn(A)
Nn(i)−−−−→ Nn(X)

Nn(j)−−−−→ Nn(X,A)
∂n−→ · · ·

where i : A → X and j : X = (X, ∅) → (X,A) are the inclusions. We only explain
exactness at Nn+1(X,A). Consider an element in Nn+1(X) given by the bordism
class of u : M → X. Its image under the composite ∂n+1 ◦ Nn+1(j) is represented
by the singular map with the empty set as domain and hence is zero. This shows
im(Nn+1(j)) ⊆ ker(∂n+1). It remains to prove ker(∂n+1) ⊆ im(Nn+1(j)). Con-
sider a singular (n + 1)-manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) such
that its bordism class lies in ker(∂n+1). Hence we can find a nullbordism for
∂uk : ∂M → A, i.e., a compact manifold W with boundary ∂W , a map U : W → A
and a diffeomorphism v : ∂M → ∂W with U ◦ v = ∂u. Then we obtain a sin-
gular n-manifold over X by u ∪v U : M ∪v W → X. We claim that its bor-
dism class is sent under Nn+1(j) : Nn+1(X) → Nn+1(X,A) is the bordism class
of (u, ∂u) : (M,∂M)→ (X,A) over (X,A). This follows from the fact that one can

construct from the composite M ∪vW ×I
(u∪vU)×idI−−−−−−−−→ Y ×I prY−−→ Y for the prY the

canonical projection a bordism of singular (n + 1)-manifolds over (X,A) between
u ∪v U : (M ∪v W, ∅) → (X,A) and (u, ∂u) : (M,∂M) → (X,A). This finishes the
proof of exactness at Nn+1(X,A). The proof of exactness at the other places is
similar.
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The disjoint union axiom follows from the fact that for a compact subset C of
the disjoint union

∐
i∈I Xi of the collection of spaces {Xi | i ∈ I} there is a finite

subset J ⊆ I with C ⊆
∐
i∈J Xi.

We omit the proof that excision holds, i.e., if X is a space with subspaces A ⊆
B ⊆ X satisfying A ⊆ B◦, then the inclusion i : (X \ A,B \ A) → (X,A) induces
for every n ∈ Z a bijection Nn(i) : N (X \ A,B \ A) → Nn(X,A). For a proof
of the Mayer-Vietoris sequence for space X with open subspaces X0, X1, and X2

satisfying X = X1 ∪X2 and X0 = X1 ∩X2, we refer to [24, Proposition 21.1.7 on
page 523]. The existence of such a Mayer-Vietoris sequence is essentially the same
as excision. �

Theorem 17.11 (Unoriented singular bordism and the spectrum MO).
There is a natural equivalence of homology theories

N∗(−)
∼=−→ H∗(−; MO)

where H∗(−; MO) is the homology theory associated in Theorem 16.21 (i), to the
spectrum MO defined in Example 16.39.

Sketch of proof. We only construct for every space X and n ∈ Z an isomorphism

of abelian groups Nn(X)
∼=−→ H∗(X; MO). We leave it to the reader to show that

it can be extended to pairs (X,A), is natural in (X,A), and is compatible with the
boundary operators of (X,A) and hence defines the desired natural equivalence of

homology theories N∗(−)
∼=−→ H∗(−; MO).

Recall the stable system of vector bundles µ of Example 16.39 whose k-th vector
bundle γk is the universal k-dimensional vector bundle over BO(k). For a space
X, define the stable system of vector bundles pr∗ µ as follows. The k-th vector
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bundle is pr∗ γk over X × BO(k) which is obtained from the vector bundle γk by
the pullback construction applied to the projection pr : X ×BO(k)→ BO(k). The
k-th bundle map is given by pr∗(fk, fk) for the bundle map (fk, fk) : γk⊕R→ γk+1

using the obvious identification pr∗RBO(k) = RX×BO(k). Then we can identify the

spectrum Th(pr∗ µ) with the spectrum X+ ∧ Th(µ) using (16.35). We get from
Theorem 17.8 an isomorphism of abelian groups

Ωn(pr∗ µ)
∼=−→ πn(X+ ∧Th(µ)) = Hn(X; MO).

Hence it suffices to construct a bijection

(17.12) αn : Ωn(pr∗ µ)→ Nn(X).

One can define αn as a forgetful map. More precisely, αn sends the class of a normal
µk-map (M, i, f, f) to the bordism class of the singular n-manifold prX ◦f : M → X
for the projection pr : X × BO(k) → X. Obviously αn is a well-defined homomor-
phism of abelian groups, It remains to show that αn is bijective.

We begin with surjectivity. Consider a singular n-manifold f : M → X repre-
senting an element z ∈ Nn(X). We can choose k ∈ Z≥0, actually k = n+1 suffices,
and an embedding i : M → Rn+k. Let (u, u) be a bundle map from ν(i) to µk. We
obtain a bundle map (f × u, f × u) from ν(i) to pr∗ γk. Then (M, i, f × u, f × u)
is a normal pr∗ µk-map and hence defines an element y ∈ Ωn(pr∗ µ). The image of
y under αn is z. Hence αn is surjective.

Next we show injectivity of αn. Consider an element z ∈ Ωn(pr∗ µ) which is
sent to zero under αn. Choose k ∈ Z with k ≥ 2n + 3 and a normal pr∗ µk-map
(M, i, f × u, f × u) for f : M → X and (u, u) : ν(i) → γk, whose normal bordism
class is z. Then αn(z) is represented by the singular n-map f : M → X. Hence
we can find a compact (n + 1)-dimensional manifold W with boundary ∂W , a
diffeomorphism t : M → ∂W , and a map F : W → X satisfying F ◦ t = f . Now we
have to find the right data to construct out of (W,F,w) a normal pr∗ µ-nullbordism
for (M, i, f × u, f × u).

Since k ≥ 2n+ 3 we can construct an embedding of manifolds with boundary

(J, j) : (W,∂W )→ (Rn+k × [0, 1),Rn+k × {0}).

Then there is a natural identification ν(J)|∂W = ν(j). The embedding j ◦ t : M →
Rn+k and the given embedding i : M → Rn+k are related by a diffeotopy Φ: Rn+k×
R→ Rn+k because of k ≥ 2n+3. Hence we can find a diffeomorphism T : Rn+k

∼=−→
Rn+k such that T ◦ i = j ◦ t holds. We get a bundle isomorphism (t, t) : ν(i)

∼=−→
ν(J)|∂W = ν(j) coming from the differentials of t and T . Choose a bundle map
(v, v) : ν(J) → µk. Then the bundle maps (v, v) ◦ (t, t) and (u, u) from ν(i) to γk
are homotopic. By a cofibration argument we can change (v, v) up to homotopy
of bundle maps ν(J) → γk such that (v, v) ◦ (t, t) = (u, u) holds. These data
yield a normal pr∗ µ-nullbordism (W,J, F × v, F × v) for (M, i, f, f). Hence z = 0.
This finishes the proof that the map αn of (17.12) is bijective and therefore of
Theorem 17.11. �

17.5. The unoriented bordism ring. There is an external multiplicative struc-
ture on N∗(−) coming from taking the cartesian product. In particular we get for
m,n ∈ Z≥0 and every two pairs (X,A) and (Y,B) a natural bilinear pairing

Nm(X,A)×Nn(Y,B)→ Nm+n((X,A)× (Y,B)).

This induces on N∗ = N∗({•}) the structure of a commutative Z-graded F2-algebra
whose unit is given by id: {•} → {•}. Thom [22] has shown that N∗, which is
called the unoriented bordism ring, is a polynomial ring over F2 in variables xi for
i 6= 2k−1 and that for i even one can take the bordism class of RPi for xi. Dold [5]
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has constructed explicit closed manifolds representing xi for i odd. In particular
we get

(17.13) Nn = F2, {0},F2, {0},F2 ⊕ F2,F2, for n = 0, 1, 2, 4, 5.

Moreover, two closed manifolds are cobordant, or, equivalently, determine the
same element in N∗, if and only if they have the same Stiefel-Whitney numbers. For
the definition of Stiefel-Whitney numbers were refer for instance to [14, Chapter 4].

17.6. Conventions about orientations. Let us discuss our orientation conven-
tions for manifolds. For simplicity we will only consider a connected compact ori-
entable n-dimensional manifold M with (possibly empty or non-connected) bound-
ary ∂M , where orientable means that Hn(M ; ∂M) is infinite cyclic. Here is a list
of desired properties or standard conventions.

(i) On the vector space Rn for n ≥ 1 we use the standard orientation given
by the ordered standard basis {e1, e2, . . . , en}, where ei is the vector

(0, 0, . . . , 0, 1, 0, . . . , 0)

whose only non-zero entry is at position i. If n = 0, an orientation on R0

is a choice of an element in {+,−};
(ii) For n ≥ 1 an orientation on a TM is a choice of orientation on every TxM

for x ∈ M such that for every x ∈ M there is an open neighbourhood U

together with an isomorphism TM |U
∼=−→ Rn of vector bundles over U with

the property that for every x ∈ U the isomorphism TxM
∼=−→ Rn respects

the given orientation on TxM and the standard orientation of Rn.
For n = 0 a choice of an orientation on TM is a choice of an element in

{+,−}.
This makes actually sense for any vector bundle over M ;

(iii) Since TDn is TRn|Dn and we have the standard trivialisation Rn
∼=−→ TRn,

the standard orientation on the vector space Rn induces a standard orien-
tation on TDn. In particular on D1 = [−1, 1] we use the orientation on
TD1 coming from moving from −1 to 1;

(iv) An orientation on M is a choice of a generator [M,∂M ] of the infinite
cyclic group Hn(M,∂M);

(v) There is a preferred one-to-one-correspondence between the orientations
on TM and the orientations on M which comes from the identification
Hn(TxM,TxM \{0})

∼=−→ Hn(M,M \{x}) induced by the exponential map
for x ∈M \ ∂M ;

(vi) The boundary homomorphism Hn(M,∂M) → Hn−1(∂M) sends [M,∂M ]
to a class [∂M ] which induces for every path component C ∈ ∂M a gen-
erator [C] ∈ Hn−1(C). Thus an orientation on M induces an orientation
on C.

(vii) We use the outward normal vector field and the canonical isomorphism

nv ⊕ Ti : R ⊕ T∂M
∼=−→ TM |∂M in order to assign to an orientation on

TxM an orientation on Tx∂M for x ∈ X. Thus an orientation on TM
induces an orientation on TC for every path component C of ∂M ;

(viii) On a product M × N of oriented connected closed smooth manifolds we
use the orientation coming from the isomorphism induced by the cross

product Hdim(M)(M ;Z)⊗Z Hdim(N)(N ;Z)
∼=−→ Hdim(M×N)(M ×N ;Z);

(ix) On a direct sum V ⊕W of oriented vector spaces we use the orientation
coming from assigning to two ordered basis of V andW the obvious ordered
basis of V ⊕W by stacking the basis together.
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This yields also a preferred procedure to define a preferred orientation
on the Whitney sum ξ ⊕ η of two orientable vector bundles ξ and η;

(x) All the items above are compatible with one another;
(xi) These conventions together with the standard orientation on the vector

space Rn yield on S1 respectively TS1 the anticlockwise orientation and
on [−1, 1] and T [−1, 1] respectively the orientation corresponding from
moving from −1 to 1;

(xii) With these conventions the standard orientation on T [−1, 1] induces on
T∂D1 = T∂[−1, 1] = T{−1, 1} the orientation which corresponds to − on
−1 and + on 1.

We leave it to the reader to check that this can be arranged if and only if we use
the outward normal field and the convention that in the identification nv⊕Ti : R⊕
T∂M

∼=−→ TM |∂M we choose the order R ⊕ T∂M and not the order T∂M ⊕ R.
Namely ((xii)) forces us to use the outward normal field and the order is determined
by ((iii)) and ((xi)).

17.7. Oriented bordism. Now we can modify the definition of the unoriented
bordism group Nn(X,A) to the oriented bordism group Ωn(X,A). W call a com-
pact manifold M with (possibly empty) boundary ∂M oriented if for each path
component C of M the homology group Hn(C; ∂C) is infinite cyclic and we have
chosen a generator [C, ∂C] ∈ Hn(C; ∂C). Given an oriented compact manifold M ,
we denote by M− the oriented compact manifold whose underlying manifold is M
but where we use the orientation, where we replace [C, ∂C] by −[C, ∂C].

The difference in the new definition of Ωn(X,A) and in the definition ofNn(X,A)
appearing in Subsection 17.4 is that we additionally require for a singular n-
manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) that M is an oriented manifold
and in the definition of the bordism relation we additionally require that W is an

oriented manifold and the diffeomorphism (vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW ))

preserve the orientions for k = 0, 1. The addition and the unit is defined as before.
However, the inverse of the bordism class of (u, ∂u) : (M,∂M)→ (X,A) is given by
the bordism class of (u, ∂u) : (M−, ∂M−)→ (X,A) and not by (u, ∂u) : (M,∂M)→
(X,A); we have to reverse the orientations. This has the effect that Ωn(X,A) is an
abelian group but in general not a F2-vector space which was the case for Nn(X,A).
The proof that we get a homology theory Ω∗(−) satisfying the disjoint union axiom
is analogous to the proof of Theorem 17.10.

The proof of the next theorem is analogous to the proof of Theorem 17.11.

Theorem 17.14 (Oriented singular bordism and the spectrum MSO).
There is a natural equivalence of homology theories

Ω∗(−)
∼=−→ H∗(−; MSO)

where H∗(−; MSO) is the homology theory associated in Theorem 16.21 (i), to the
spectrum MSO defined in Example 16.39.

17.8. The oriented bordism ring. There is an external multiplicative structure
on Ω∗(−) coming from taking the cartesian product. In particular we get for m,n ∈
Z≥0 and every two pairs (X,A) and (Y,B) a natural bilinear pairing

Ωm(X,A)× Ωn(Y,B)→ Ωm+n((X,A)× (Y,B)).

This induces on Ω∗ = Ω∗({•}) the structure of a commutative Z-graded ring whose
unit is given by id: {•} → {•} with the standard orientation + on the domain.
Its structure was completely determined by Wall [25]. In particular Ω∗ ⊗Z Q is a
polynomial Q-algebra whose generators as a polynomial Q-algebra can be taken to
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be the oriented bordism classes of CP2n for n ≥ 1. Each Ωn is a finitely generated
abelian group in which the order of any nontrivial torsion element is 2.

Moreover, two oriented closed manifolds are oriented cobordant, or, equivalently,
determine the same element in Ω∗, if and only if they have the same Pontrjagin
and Stiefel-Whitney numbers. For the definition of Pontrjagin and Stiefel-Whitney
numbers were refer for instance to [14, Chapter 4 and 16].

Here is some information about Ωn in low degrees n:

• There is an isomorphism of abelian groups

Ω0

∼=−→ Z

which sends the bordism class of a 0-dimensional oriented manifold which
is just a finite collection of points equipped with a sign + or − to the sum
of these signs;

• The signature defines an isomorphism of abelian groups

sign: Ω4

∼=−→ Z

and the preimage of 1 ∈ Z is the bordism class of CP2.
• We have Ωn = {0} if and only if n ∈ {1, 2, 3, 6, 7};
• We have

Ωn ∼=


Z/2 n = 5;

Z⊕ Z n = 8;

Z/2⊕ Z/2 n = 9;

Z/2 n = 10.

17.9. Framed bordism. Let ξ be an n-dimensional vector bundle over the space

B. For l ∈ Z≥0 an l-framing of ξ is a bundle isomorphism (idB , u) : Rn+l
∼=−→ ξ⊕Rl

over B. We call an l0-framing (idB , u0) : Rn+l0
∼=−→ ξ ⊕ Rl0 and an l1-framing

(idB , u1) : Rn+l1
∼=−→ ξ ⊕ Rl1 equivalent if there exists l ∈ Z≥0 with l ≥ l0, l1 such

that for i = 0, 1 the two bundle isomorphisms over B

Rn+l = Rn+li ⊕ Rl−li
(idB ,ui)⊕idRl−li−−−−−−−−−−−→ ξ ⊕ Rli ⊕ Rl−li = ξ ⊕ Rl

are homotopic through bundle isomorphisms over B.
For a compact manifold M a stable framing is a stable framing of its tangent

bundle TM . Of course not every compact manifold admits a framing. Every
compact manifold with a stable framing is orientable and inherits from the stable
framing an orientation. Let i : (M,∂M)→ (Rm×R≥0,Rm×{0}) be an embedding
of the compact manifold M (with possibly empty) boundary ∂M . Then we will
tacitly use in the sequel the fact that there is a one-to-one correspondence between
the stable framings of M and the stable framings of the normal bundle ν(i).

Now one can define for a pair (X,A) its framed bordism group Ωfr
n(X,A) anal-

ogously to how we modified the definition of unoriented bordism N∗(−) to ori-
ented bordism Ω∗(−). The difference in the new definition of Ωfr

n(X,A) and in
the definition of Nn(X,A) appearing in Subsection 17.4 is that we additionally
require for a singular n-manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) that M
comes with a stable framing and in the definition of the bordism relation we ad-
ditionally require that W comes with a stable framing and the diffeomorphism

(vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW )) is compatible with the stable framings.

The addition and the unit is defined as before. However, the inverse of the class
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represented is now defined by replacing a given stable framing by the new stable
framing obtained by precomposition with the bundle automorphism for l ∈ Z≥1

Rn+l = Rn+l−1 ⊕ R
idRn+l−1 ⊕− idR

−−−−−−−−−−→ Rn+l−1 ⊕ R = Rn+l.

The proof of the next theorem is a variation of the proof of Theorem 17.11 in
view of Example 16.26 and Remark 16.37.

Theorem 17.15 (Framed bordism and the stable homotopy). There is a natural
equivalence of homology theories

Ωfr
∗ (−)

∼=−→ πs∗(−).

Remark 17.16. One can give rather elementary geometric proofs of the formula

Ωfr
n
∼=

{
Z n = 0;

Z/2 n = 1.

which agrees with the values of the n-stem πsn for n = 0, 1 by Theorem 17.15.
It is not hard to check that the forgetful map Ωfr

0 → Ω0 is bijective and we have
computed Ω0 already in Subsection 17.8.

Any connected closed 1-dimensional manifold M is diffeomorphic to S1. Because
of Example 10.14 we get [S1,SO] ∼= Z/2 and hence there are precisely two stable
framings on S1. One of them extends to D2 and the other does not. Then one can
show that N1

∼= Z/2 with the bordism class of S1 equipped with the framing not
extending to D2 as generator. From πs1

∼= Z/2, Theorem 10.5, and the Freudenthal
Suspension Theorem 11.20 we conclude

πn+1(Sn) ∼=


{0} n = 1;

Z n = 2;

Z/2 n ≥ 3.

Let us sketch the proof that N1
∼= Z/2 with the bordism class of S1 with the

framing which does not extend to D2 as generator. We first show that S1 with
the framing which does not extend to D2 is not framed nullbordant. Suppose the
contrary, i.e., that there is a framed nullbordism W for it. We can assume without
loss of generality that W is path connected. In the sequel we identify S1 = ∂W .
Then W ∪S1 D2 is a closed 2-dimensional manifold. Its first Stiefel-Whitney class
vanishes, since H1(W ∪S1 D2;F2) → H1(W ;F2) is injective and sends it to the
Stiefel-Whitney class of W which is trivial. Hence W ∪S1 D2 is orientable. We
can choose an embedding i : W → R3 such that i restricted to S1 is given by the
inclusion S1 ⊂ R2 = R2 × {0} ⊆ R3 and i maps D2 to (R3)≤0 and W to (R3)≥0.
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IR2x50)

f
Since W and R3 are orientable, the normal bundle ν(i) is orientable and hence

trivial. We choose an identification ν(i) = R. Note that this yields a specific stable
framing on W . We get identifications ν(i|S1) = R2, ν(i|D2) = R, and ν(i|W ) = R.
So we get on S1 the stable framing which extends to D2 and comes from the specific
stable framing on W . The problem is that there are different stable framing on W .
They differ from the specific stable framing by an automorphism of RkW for large
k ∈ Z≥0. We conclude from Proposition 10.10 (ii) that the set of stable framing
of W can be identified with [W, SO]. Hence it suffices to show for the inclusion
k : S1 = ∂W → W that the map k∗ : [W, SO] → [S1,SO] sending [g] to [g ◦ k] is
trivial, since then the induced stable framing on S1 is the same for all possible
stable framings on W and hence extends to D2. We have shown π2(SO) = {0}
and π1(SO) ∼= Z/2 in Example 10.14. We conclude from Theorem 14.3 (ii) that
there is a map f : SO → K(Z/2, 1) which is 3-connected. Since W and S1 are
CW -complexes of dimension ≤ 2, we conclude from the Whitehead Theorem that
it suffices to show that k∗ : [W,K(Z/2, 1)] → [S1,K(Z/2, 1)] is trivial. Because of
Theorem 14.7 it suffices to show that H1(k;Z/2) : H1(W,Z/2) → H1(∂W ;Z/2) is
the trivial map. This follows from the part of the long exact cohomology sequence
of (W,∂W )

H1(W,Z/2)
H1(k;Z/2)−−−−−−→ H1(∂W ;Z/2)→ H2(W,∂W ;Z/2)→ H2(W ;Z/2)

and from the computationsH1(∂W ;Z/2) ∼= Z/2, H2(W,∂W ;Z/2) ∼= H0(W ;Z/2) ∼=
Z/2, and H2(W ;Z/2) ∼= H0(W,∂W ;Z/2) ∼= {0}. Thus we have shown that S1 with
the framing which does not extend to D2 is not framed nullbordant and hence de-
fines a non-trivial element in N1.
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The framed bordism class of any framed 1-dimensional closed manifold is a Z-
linear combination of the elements in N1 represented by S1 with the framing which
extends to D2 and by S1 with the framing that does not extend to D2. Obviously
the class of S1 with the stable framing which extends to D2 represents zero in N1.
One easily checks the cylinder over S1 gives a framed nullbordism for the disjoint
union of two copies of S1 equipped with the framing which does not extend to D2.
Hence the element represented in N1 by S1 equipped with the framing which does
not extend to D2 has order precisely two and generates the abelian group N1.
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