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Abstract. This manuscript is based on the lecture courses Algebraic Topology
I from the winter term 24/25 and Algebraic Topology II from the summer term

25. It consists of an introduction to homotopy theory starting with the basic
definitions about homotopy groups and ending with Serre’s proof that the

stable stems are finite except in dimension zero.

1. Introduction

This manuscript is based on the lecture courses Algebraic Topology I from the
winter term 24/25 and Algebraic Topology II from the summer term 25. These are
the fourth and fifth course in a series of all together five courses on topology. The
first three were Introduction to Topology and Geometry, Topology I, and Topology
II, which I presented in the Summer term 23, the winter 23/24 and the summer
term 24.

The table of contents shall give an overview about the material presented in
these courses. Key words are: homotopy groups, cofibrations, fibrations, White-
head Theorems, Hurewicz Theorem, Excision Theorem due to Blakers and Massey,
Freudenthal’s Suspension Theorem, stable homotopy theory, stable stems, spectra,
Eilenberg MacLane spaces, bordism theory, the Pontrjagin Thom construction,
spectral sequences, and Serre’s Theorem about the finiteness of stable stems.

1.1. Prerequisites. One does not need all the material of the courses Introduction
to Topology and Geometry, Topology I, and Topology II but at least the following:

• Topological spaces;
• Fundamental groups;
• CW-complexes;
• Coverings;
• Chain complexes and modules over a ring;
• Singular and cellular (co-)homology including the Universal Coefficient

Theorem.
• Basics about smooth manifolds;
• Basics about bundles and vector bundles;

No previous knowledge about homotopy theory is required except for the funda-
mental group. In the course Topology I, and Topology II I just covered [17].

1.2. Acknowledgements. I thank Dominik Kirstein and Christian Kremer who
were assistents for the courses, the tutors of the exercises, and the students. I
received many valuable comments about the manuscript from them.
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2. Basic definitions and properties of homotopy groups

2.1. Review of the fundamental group. We briefly recall the notion and the
basic properties of the fundamental group π1(X,x) of a pointed space (X,x)

Let X = (X,x) be a pointed space, i.e., a topological space X with an explicit
choice of a so called base point x ∈ X. Denote by I the unit interval [0, 1]. A
loop at x in X is a map of pairs w : (I, ∂I) → (X, {x}). Elements in π1(X,x)
are homotopy classes of loops at x in X. Note that this means that two loops
w,w′ : (I, ∂I)→ (X, {x}) are homotopic if there is a homotopy h : I × I → X such
that h(s, 0) = w(s), h(s, 1) = w′(s), and h(0, t) = h(1, t) = x hold for all s, t ∈ I.
Given two loops v, w at x in X, we get a new loop v ∗ w by putting

v ∗ w(s) =

{
v(2s) if s ∈ [0, 1/2];

w(2s− 1) if s ∈ [1/2, 1].

The group structure on π1(X,x) is given by the formula [v] · [w] = [v ∗ w]. The
unit element is given by the constant loop cx : (I, ∂I)→ (X, {x}) sending s ∈ I to
x and the inverse of [w] is given by [w−] for w− : (I, ∂I)→ (X, {x}), s 7→ w(1− s).

Here are some basic properties of the fundamental group:

• A pointed map f : (X,x)→ (Y, y) induces a group homomorphism

π1(f, x) : π1(X,x)→ π1(Y, y), [w] 7→ [f ◦ w]

which depends only on the pointed homotopy class of f ;
• We get a functor from the category of pointed spaces to the category of

groups;
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• Given pointed spaces (Xi, xi) for i = 0, 1, we get from the two projections
pri : (X0 ×X1, (x0, x1))→ (Xi, xi) for i = 0, 1 an isomorphism

π1(pr0, (x0, x1))× π1(pr1, (x0, x1)) : π1(X0 ×X1, (x0, x1))
∼=−→ π1(X0, x0)× π1(X1, x1);

• Let p : X → Y be a covering. Choose x ∈ X and put y = p(x). Then the
induced map π1(p, x) : π1(X,x)→ π1(Y, y) is injective.

If p is actually a G-covering for the group G and X is path connected,
then we obtain an exact sequence of groups

1→ π1(X,x)
π1(p,x)−−−−−→ π1(Y, y)

∂−→ G→ 1;

• The mapping degree induces an isomorphism π1(S1)
∼=−→ Z;

• There is a Seifert-van Kampen Theorem. It allows to read off a presen-
tation of the fundamental group from the 2-skeleton X2 and implies that
the inclusion X2 → X induces an isomorphism π1(X2, x) → π1(X,x) for
any choice of base point x ∈ X. In particular π1(X,x) vanishes if X is
a CW -complex which has no 1-cells. Moreover, π1(

∨r
i=1 S

1, x) is the free
group of rank r. So in general π1(X) is not abelian. Actually any group
occurs as π1(X,x) for a 2-dimensional path connected CW -complex X;

• We get a functor T1 from the fundamental groupoid Π(X) to the category
of groups by sending an object in Π(X) which is a point x ∈ X to π1(X,x).
A morphism [u] : x→ y in Π(X) is a homotopy class [u] relative endpoints
of paths u : I → X from x to y. It is send to the group homomorphism
T1([u]) : π1(X,x)→ π1(X, y) mapping [w] to [u− ∗ w ∗ u]. Recall that the
composite of the morphism [u] : x→ y and [v] : y → z in Π(X) is given by
[v] ◦ [u] = [u ∗ v]. One easily checks T1([v] ◦ [u]) = T1([v]) ◦ T1([u]). Recall
that there is a canonical isomorphism of π1(X,x) to the opposite of the
group autΠ(X)(x);

• Consider two maps f0, f1 : X → Y . Let h : X × I → Y be a homotopy
between f0 and f1. Choose a base point x and put yi = fi(x) for i =
0, 1. Let u : I → Y be the path from y0 to y1 given by u(t) = h(x, t).

We obtain a group isomorphism T1([u]) : π1(Y, y0)
∼=−→ π1(Y, y1) and the

following diagram of groups commutes

(2.1) π1(Y, y0)

T1([u])∼=

��

π1(X,x)

π1(f0,x0)
44

π1(f1,x1)
**

π1(Y, y1).

Now consider a pointed pair (X,A, x), i.e., a topological pair (X,A) together with
a choice of a base point x ∈ A. Define the set π1(X,A, x) as the set of homotopy
classes relative {0} of maps of pairs w : (I, ∂I) → (X,A) satisfying w(0) = x, or,
equivalently, of homotopy classes of maps of triads (I; {0}, {1})→ (X, {x}, A). Note
that w(1) is not necessarily equal to x and is only required to lie in A. If A = {x},
then π1(X,A, x) agrees with π1(X,x). In general there is no group structure on
π1(X,A, x).

Define π0(X) as the set of path components of X. Note that this is the same as
the homotopy classes of maps {•} → X. If (X,x) is pointed map, we sometimes
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write π0(X,x) instead of π0(X) to indicate that the set π0(X) has a preferred base
point, namely the path component containing x.

Next we construct the (in some sense exact) sequence

(2.2) π1(A, x)
π1(i,x)−−−−→ π1(X,x)

π1(j,x)−−−−→ π1(X,A, x)
∂1−→ π0(A)

π0(i)−−−→ π0(X)
π0(j)−−−→ π0(X,A)→ {∗}.

The map π1(i, x) is the group homomorphism given by the inclusion i : (A, x) →
(X,x). The map of sets π1(j, x) : π1(X,x)→ π1(X,A, x) is the obvious map given
by forgetting that w(1) = x holds in connection with π1(X,x). The map ∂1 sends
[w] represented by w : (I, ∂I)→ (X,A) to the path component of A containing w(1).
The map of sets π0(i) sends the path component C of A to the path component D
of X containing i(C). The pointed set π0(X,A) is the quotient of the set π0(X)
by collapsing the image of π0(i) : π0(A) → π0(X) to one element and π0(j) is the
obvious projection.

This sequence is exact in the following sense. The image of π1(i, x) is the
preimage under π1(j, x) of the element in π1(X,A, x) given by the constant map
cx : I → X. The image of π1(j, x) is the preimage under ∂1 of the path component
of A containing x. The image of ∂1 is the preimage under π0(i) of the path com-
ponent of X containing x. The image of π0(i) is the preimage under π0(j) of the
preferred base point in π0(X,A). The map π0(j) is surjective.

2.2. Basic definitions and the group structure on homotopy groups. Next
we want to generalize the notion of the fundamental group to the notion of the
homotopy group in degree n for all integers n ≥ 1. The basic idea is to replace
I = [0, 1] and ∂I = {0, 1} by the n-dimensional cube

In =

n∏
i=1

[0, 1] = {(s1, s2, . . . , sn) | si ∈ [0, 1]}

where we define

∂In = {(s1, s2, . . . , sn) | si ∈ I, ∃i ∈ {1, 2, . . . , n} with si ∈ {0, 1}}.

Given a pointed space X, we define the set πn(X,x) to be the set of homotopy
classes [f ] of maps of pairs f : (In, ∂In) → (X, {x}). Given two elements [f ] and
[g], we define their product [f ] · [g] by the homotopy class of the map of pairs
f ∗ g : (In, ∂In)→ (X, {x}) defined by

(2.3) f ∗ g(s1, s2, . . . , sn) =

{
f(2s1, s2, . . . , sn) if s1 ∈ [0, 1/2];

g(2s1 − 1, s2, . . . , sn) if s1 ∈ [1/2, 1].

The unit is given by the homotopy class [cx] of the constant map cx : (In, ∂In) →
(X, {x}). The inverse of [f ] is the class [f−] for the map f− : (In, ∂In)→ (X, {x})
sending (s1, s2, . . . , sn) to (1 − s1, s2, . . . , sn). The proof that this defines a group
πn(X,x) called n-homotopy group of the pointed space (X,x) is the essentially the
same as the one for π1(X). The construction above for n = 1 agrees with the
definition of π1(X,x) presented in Subsection 2.1. If we define I0 to be {•} and
∂I0 = ∅, the definition of the set π0(X,x) above agrees with the definition of π0(X)
as the set of path components of X. Recall that π0(X) has no group structure in
general and the π1(X,x) is not necessarily commutative. However, the following
lemma is true.

Lemma 2.4. The group πn(X,x) is abelian for n ≥ 2.
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Proof. The basic observation is that in the cube In for n ≥ 2 there is enough room
to show [f ] · [g] = [g] · [f ]. The desired homotopy is indicated for n = 2 by the
following sequence of pictures:

F
f g + g g f g f

g

The homotopy begins by shrinking the domains of f and g to smaller subcubes
of In, where the region outside these subcubes is mapped to the basepoint. After
this has been done, there is room to slide the two subcubes around anywhere in In

as long as they stay disjoint. Hence for n ≥ 2 they can be slided past each other,
interchanging their positions. Then to finish the homotopy, the domains of f and
g can be enlarged back to their original size. The whole process can actually be
done using just the coordinates s1 and s2, keeping the other coordinates fixed. �

Any map of pairs f : (In, ∂In)→ (X, {x}) factorizes in a unique way over the pro-
jection pr : In → In/∂In to a pointed map f : (In/∂In, ∂In/∂In)→ (X,x). Obvi-
ously this is compatible with the notion of a homotopy of maps of pairs (In, ∂In)→
(X, {x}) and of a pointed homotopy of pointed maps (In/∂In, ∂In/∂In)→ (X,x).
There is an obvious homeomorphism of pairs (In/∂In, ∂In/∂In) → (Sn, {s}) for
the fixed base point s = (1, 0, . . . , 0) ∈ Sn. Hence we can interprete an element in
πn(X,x) as a pointed homotopy of pointed maps (Sn, s)→ (X,x). The multiplica-
tion in this picture is given as follows. Consider pointed maps fi : (Sn, s)→ (X,x)
for i = 0, 1. Let [f0] and [f1] be their classes in πn(X,x). They define a pointed
map f0 ∨ f1 : (Sn ∨ Sn, s)→ (X,x). Let

(2.5) ∇n : Sn → Sn ∨ Sn

be the so-called pinching map which is obtained by collapsing the equator Sn−1 ⊆
Sn given by {(x0, x1, . . . , xn) ∈ Sn | xn = 0} to a point. Then [f0]·[f1] is represented
by the composite f0 ∨ f0 ◦ ∇n, as illustrated in the following picture
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&

f

Un
X

g

The interpretation in terms of pointed maps (Sn, s)→ (X,x) is useful for some
theoretical considerations and in connection with CW -complexes, whereas the pic-
ture in terms of maps of pairs (In, ∂In) → (X, {x}) is better suited for some
constructions and proofs, e.g., the proof of Lemma 2.4.

2.3. Functorial properties of homotopy groups. Obviously a map of pointed
spaces f : (X,x) → (Y, y) induces a group homomorphism πn(f, x) : πn(X,x) →
πn(Y, y) for n ≥ 1 by composition. We get a functor from the category of pointed
spaces to the category of abelian groups by sending (X,x) to πn(X,x) for n ≥ 2,
whereas for n = 1 we get a functor from the category of pointed spaces to the
category of groups by sending (X,x) to π1(X,x) for n = 1. We get a functor from
the category of topological spaces to sets by sending X to π0(X).

Obviously πn(f, x) depends only on the pointed homotopy class of f and π0(f)
depends only on the homotopy class of f .

Next we construct for every n ≥ 2 a functor Tn from Π(X) to the category
of abelian groups. It sends an object in Π(X), which is a point x in X, to the
abelian group πn(X,x). Consider a morphism [u] : x → y in Π(X) represented by
a path u in X from x to y. It is sent to the homomorphism of abelian groups
Tn([u]) : πn(X,x) → πn(X, y) defined as follows. Consider [f ] ∈ πn(X,x) repre-
sented by the map f : (In, ∂In)→ (X, {x}). Consider a new map uf : (In, ∂In)→
(X, {x}) by shrinking the domain of f to a smaller concentric cube in In, then
inserting the path u on each radial segment in the shell between this smaller cube
and ∂In, as indicated in the picture below
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f

We leave it to the reader to figure out the elementary proof that this definition
is independent of all the choices and indeed yields a functor Tn from Π(X) to the
category of abelian groups.

Recall that there is a canonical isomorphism of π1(X,x) to the opposite of the
group autΠ(X)(x). Hence we obtain from the functor Tn above the structure of a
Z[π1(X,x)]-module on πn(X,x) for n ≥ 2. Recall that for n = 1 the functor T1 is
actually given by conjugation.

Consider two maps f0, f1 : X → Y . Let h : X×I → Y be a homotopy between f0

and f1. Choose a base point x and put yi = fi(x) for i = 0, 1. Let u : I → Y be the
path from y0 to y1 given by u(t) = h(x, t). For n ≥ 2 we obtain an isomorphism of

abelian groups Tn([u]) : πn(Y, y0)
∼=−→ πn(Y, y1) and the following diagram of abelian

groups commutes

(2.6) πn(Y, y0)

Tn([u])∼=

��

πn(X,x)

πn(f0,x0)
44

πn(f1,x1)
**

πn(Y, y1).

A consequence of (2.1) and (2.6) is that a homotopy equivalence f : X → Y

induces for every x ∈ X and n ≥ 1 a bijection πn(f, x) : π1(X,x)
∼=−→ πn(Y, f(x)).

Moreover, for a path connected space X the isomorphism class of πn(X,x) is in-
dependent of the choice of x ∈ X. Therefore we sometimes write πn(X) instead of
πn(X,x)

Given pointed spaces (Xi, xi) for i = 0, 1, we get from the two projections
pri : (X0 ×X1, (x0, x1))→ (Xi, xi) for i = 0, 1 a group isomorphism

πn(pr0, (x0, x1))× πn(pr1, (x0, x1)) : πn(X0 ×X1, (x0, x1))
∼=−→ πn(X0, x0)× πn(X1, x1)

for every n ≥ 1.

2.4. Homotopy groups and coverings.
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Theorem 2.7 (Homotopy groups and covering). Let p : X → Y be a covering.
Choose a base point x ∈ X and put y = p(x). Then for n ≥ 2 the map induced by p

πn(p, x) : πn(X,x)→ πn(Y, y)

is bijective.

Proof. Consider a map f : Sn → Y sending the base point s to y. Since n ≥ 2 holds
by assumption, Sn is simply connected. Hence the image of π1(f, x) is contained in
the image π1(p, x). A standard theorem about coverings and liftings implies that

we can find a lift f̃ : (Sn, s)→ (X,x) of f , i.e., a pointed map f̃ satisfying p◦ f̃ = f .
This shows that πn(p, x) is surjective for n ≥ 2.

Injectivity follows from the standard theorem about lifting homotopies along
coverings, the argument is the same as for the injectivity of π1(p, x). This standard
theorem says that for a map u : Z → X and a homotopy h : Z × I → Y with

h0 = p ◦ u we can find precisely one homotopy h̃ : Z × I → X with p ◦ h̃ = h and

h̃0 = u. �

Theorem 2.7 implies for a connected CW -complex X that for the universal cov-

ering p : X̃ → X and any choice of base points x̃ ∈ X̃ and x ∈ X with p(x̃) = x

the map πn(p, x̃) : πn(X̃, x̃) → πn(X,x) is bijective for n ≥ 2. If we additionally

assume that X̃ is contractible, we get πn(X,x) = 0 for n ≥ 2. In particular we get
for any base point s ∈ S1 and n ≥ 1

(2.8) πn(S1, s) ∼=

{
Z if n = 1;

{1} if n ≥ 2,

since the universal covering of S1 is given by the map R → S1 sending t ∈ R to
exp(2πit).

2.5. The long exact sequence of a pair and a triple. Consider a pointed pair
(X,A, x), i.e., a pair of topological spaces (X,A) together with a base point x ∈ A.
We can consider In−1 as the subspace of In given by those points (s1, s2, . . . , sn)
satisfying sn = 0. Let Jn−1 be the subspace of ∂In which is the closure of ∂In\In−1

in ∂In. Explicitly we get

Jn−1 = (∂In \ In−1) ∪ ∂In−1 = {(s1, s2, . . . , sn) ∈ In

| (∃i ∈ {1, 2, . . . , (n− 1)} with si ∈ {0, 1}) or (sn = 1)}.

Obviously In−1∪Jn−1 = ∂In and In−1∩Jn−1 = ∂In−1. For n ≥ 1 we define the set
πn(X,A, x) as the set homotopy classes [f ] of maps of triples f : (In, ∂In, Jn−1)→
(X,A, {x}). For n ≥ 2, this becomes a group by defining [f0]·[f1] by the class [f0∗f1]
for the maps of triples f0∗f1 : (In, ∂In, Jn−1)→ (X,A, {x}) defined in (2.3). There
is no reasonable group structure on π1(X,A, x). It is not hard to check that this
group structure on πn(X,A, x) for n ≥ 2 is well-defined and that the following
result is true.

Lemma 2.9. The group πn(X,A, x) is abelian for n ≥ 3.

Note that there is an obvious identification of πn(X, {x}, x) defined above and
of πn(X,x) defined in Subsection 2.2.

Obviously we obtain a functor from the category of pointed pairs to the category
of groups by π2(X,A, x) and a functor from the category of pointed pairs to the
category of abelian groups by πn(X,A, x) for n ≥ 3. If two maps f0, f1 : (X,A, x)→
(Y,B, y) of pointed pairs are homotopic as maps of pointed pairs, then πn(f0, x) =
πn(f1, x) holds for n ≥ 1. Given a pair (X,A), one can define a functor Tn from
the fundamental groupoid Π(A) of A to the category of groups or abelian groups
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by assigning to a point x ∈ A the homotopy group π2(X,A, x) or πn(X,A, x) for
n ≥ 3, the construction appearing in Subsection 2.3 for a space X carries directly
over. In particular πn(X,A, x) inherits the structure of a Z[π1(A, x)]-module for
n ≥ 3.

A map of triples f : (In, ∂In, Jn−1) → (X,A, {x}) factorizes uniquely through
the projection pr : (In, ∂In, Jn−1)→ (In/Jn−1, ∂I

n/Jn−1, Jn−1/Jn−1) to a map of
pointed pairs (In/Jn−1, ∂I

n/Jn−1, Jn−1/Jn−1)→ (X,A, x). There is a homeomor-

phism (In/Jn−1, ∂I
n/Jn−1, {Jn−1/Jn−1})

∼=−→ (Dn, Sn−1, {s}) of triples. Hence one
can define πn(X,A, x) also the set of homotopy classes of pointed maps of pointed
pairs (Dn, Sn−1, s) → (X,A, x). The multiplication in this picture is given as fol-
lows. Consider pointed maps of pointed pairs fi : (Dn, Sn−1, s) → (X,A, x) for
i = 0, 1. Let [f0] and [f1] be their classes in πn(X,A, x). They define a pointed
map of pointed pairs f0 ∨ f1 : (Dn ∨Dn, Sn−1 ∨ Sn−1, s)→ (X,A, x). Let

(2.10) ∇′n : Dn → Dn ∨Dn

be the so-called pinching map which is obtained by collapsing Dn−1 ⊆ Dn given
by {(x1, . . . , xn) ∈ Dn | xn = 0} to a point. Note that ∇′n is a map of pointed
pairs (Dn, Sn−1, s)→ (Dn ∨Dn, Sn−1 ∨ Sn−1, s) and its restriction to (Sn−1, s) is
the pinching map defined in (2.5). Then [f0] · [f1] is represented by the composite
f0 ∨ f0 ◦ ∇′n.

Define for n ≥ 2 a group homomorphism ∂n : πn(X,A, x)→ π1(A, x) by sending
the class [f ] of the map of pointed pairs f : (Dn, Sn−1, s)→ (X,A, s) to the pointed
homotopy class of maps of pointed spaces obtained by restriction to (Sn−1, s). Let
i : A→ X and j : X → (X,A) be the canonical inclusions.

Theorem 2.11. We obtain a long exact sequence of groups infinite to the left

· · · ∂n+2−−−→ πn+1(A, x)
πn+1(i,x)−−−−−−→ πn+1(X,x)

πn+1(j,x)−−−−−−→ πn+1(X,A, x)

∂n+1−−−→ πn(A, x)
πn(i,x)−−−−→ πn(X,x)

πn(j,x)−−−−−→ · · ·

· · · π2(j,x)−−−−→ π2(X,A, x)
∂2−→ π1(A, x)

π1(i,x)−−−−→ π1(X,x).

Proof. We only show exactness at πn(X,A, x), the proofs at the other places are
analogous. Consider a pointed map f : (Sn, s)→ (X,x). The image of the class [f ]

under the composite πn(X,x)
πn(j,x)−−−−−→ πn(X,A, x)

∂n−→ πn−1(A, x) is by construc-
tion represented by the constant map cx : Sn−1 → A and hence zero. This shows
im(πn(j, x)) ⊆ ker(∂n). It remains to prove ker(∂n) ⊆ im(πn(j, x)).

Consider a map of pointed pairs f : (Dn, Sn−1, s) → (X,A, x) such that [f ] lies
in the kernel of ∂n : πn(X,A, x) → πn−1(A, x). Then the map of pointed spaces
f |Sn−1 : (Sn−1, s) → (A, x) is nullhomotopic as pointed map of pointed spaces.
Choose such a nullhomotopy h : Sn−1 × I → A with h0 = f |Sn−1 and h1 = cx for
the constant function. Note that h(s, t) = x holds for t ∈ I. Define a homotopy
k : Dn × I → X as follows:

k(z, t) =

{
f((t+ 1)z) if ||z|| ≤ 1

1+t ;

h
(
z
||z|| , 2||z|| −

2
1+t

)
if ||z|| ≥ 1

1+t .

Roughly speaking, kt is given on the disk 1
1+t · D

n of radius 1
1+t by f with an

appropriate scaling of z and on the anulus between 1
1+t · S

n−1 and Sn−1 by the

restriction of the homotopy h to S1 × [2− 2/(1 + t), 1]
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-

O

+
5

h
f

We have k(z, 0) = f(z) for z ∈ Dn, k(s, t) = x for t ∈ I, k(z, t) ∈ A for
z ∈ Sn−1 and t ∈ I, and k(z, 1) = x for z ∈ Sn−1. Hence k is a homotopy of
pointed maps of pointed pairs (Dn, Sn−1, s) → (X,A, x) between k0 = f and k1.
Therefore [f ] = [k1] holds in πn(X,A, x). Since k1(z) = x holds for z ∈ Sn−1,
the class [k1] lies in the image of πn(j, x) : πn(X,x) → πn(X,A, x). Hence we get
im(πn(j, x)) = ker(∂n). �

Remark 2.12. Let G be any group. Then we can find a path connected pointed
2-dimensional CW -complex (A, x) with π1(A, x) ∼= G. Let X be the cone over
A. Then we obtain a path connected pointed 3-dimensional CW -complex (X,A, x)
such that π2(X,A, x) ∼= π1(A, x) ∼= G holds by Theorem 2.11.

Remark 2.13. One can combine the exact sequences appearing in Theorem 2.2
and Theorem 2.11 to an exact sequence

(2.14) · · · ∂n+2−−−→ πn+1(A, x)
πn+1(i,x)−−−−−−→ πn+1(X,x)

πn+1(j,x)−−−−−−→ πn+1(X,A, x)

∂n+1−−−→ πn(A, x)
πn(i,x)−−−−→ πn(X,x)

πn(j,x)−−−−−→ · · · π2(j,x)−−−−→ π2(X,A, x)
∂2−→ π1(A, x)

π1(i,x)−−−−→ π1(X,x)
∂1−→ π0(A)

π0(i)−−−→ π0(X)
π0(j)−−−→ π0(X,A)→ {∗}

which is compatible with the group structures as long as these exist.
It is not hard to check that one obtains for a triple (X,B,A) and a base point

x ∈ A an exact sequence of the shape

(2.15) · · · ∂n+2−−−→ πn+1(B,A, x)
πn+1(i,x)−−−−−−→ πn+1(X,A, x)

πn+1(j,x)−−−−−−→ πn+1(X,B, x)

∂n+1−−−→ πn(B,A, x)
πn(i,x)−−−−→ πn(X,A, x)

πn(j,x)−−−−−→

· · · π2(j,x)−−−−→ π2(X,B, x)
∂2−→ π1(B,A, x)

π1(i,x)−−−−→ π1(X,A, x)
π1(j,x)−−−−→ π1(X,B, x)

∂1−→ π0(B,A)
π0(i)−−−→ π0(X,A)

π0(j)−−−→ π0(X,B)→ {∗}
which is compatible with the group structures as long as these exist.

Remark 2.16 (Long exact homotopy sequence of a pointed map). Let f : (X,x)→
(Y, y) be a map of pointed spaces. Denote by cyl(f) its mapping cylinder. Note that
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we obtain a pointed pair (cyl(f), X, x). The canoncial projection cyl(f) → Y is a
homotopy equivalence and satisfies pr(x) = y. Hence it induces an isomorphism of

groups πn(pr, x) : πn(cyl(f), x)
∼=−→ πn(Y, y) for n ≥ 1 and a bijection π0(cyl(f))

∼=−→
π0(Y ). Define πn(f, x) = πn(cyl(f), X, x) for n ≥ 1. Let π0(f) be the quotient
of π0(Y ) obtained by collapsing the image of π0(f) : π0(X) → π0(Y ). Then the
long exact sequence of the pointed pair (cyl(f), X, x) of (2.14) yields the long exact
homotopy sequence of the map f

(2.17) · · · ∂n+2−−−→ πn+1(X,x)
πn+1(f,x)−−−−−−→ πn+1(Y, y)→ πn+1(f, x)

∂n+1−−−→ πn(X,x)
πn(f,x)−−−−−→ πn(Y, y)→ · · · → π2(f, x)

∂2−→ π1(X,x)

π1(f,x)−−−−−→ π1(Y, y)
∂1−→ π0(X)

π0(f)−−−→ π0(Y )→ π0(f)→ {1}.
Note that πn(f, x) can have two different meanings in the notation above.

2.6. Connectivity.

Definition 2.18 (Connectivity). A space X is called 0-connected if π0(X) consists
of one point, or, equivalently, X is path connected. It is called n-connected for
n ≥ 1 if X is path connected and πk(X,x) is trivial for every base point x and
1 ≤ k ≤ n. It is called ∞-connected or weakly contractible if it is path connected
and πk(X,x) is trivial for every base point x and k ≥ 1.

A map f : X → X is called 0-connected if the induced map π0(f) : π0(X) →
π0(Y ) is surjective. It is called n-connected for n ≥ 1, if the map π0(f) : π0(X)→
π0(Y ) is bijective and for every base point x the map πk(f, x) : πk(X,x)→ πk(Y, f(x))
is bijective for 1 ≤ k < n and surjective for k = n. It is called ∞-connected or a
weak homotopy equivalence if the map π0(f) : π0(X) → π0(Y ) is bijective and for
every base point x and k ≥ 1 the map πk(f, x) : πk(X,x)→ πk(Y, f(x)) is bijective.
Note that f is n-connected if and only if π0(f) : π0(X) → π0(Y ) is surjective and
the group πk(f, x) defined in Remark 2.16 is trivial for 1 ≤ k ≤ n.

A pair (X,A) is called n-connected for n ≥ 0 or n =∞, if the inclusion i : A→ X
is n-connected. This is equivalent to the condition that π0(X,A) and πk(X,A, x)
for 1 ≤ k ≤ n are trivial.

Remark 2.19. One easily checks that the following assertions are equivalent for a
pointed space (X,x) and n ≥ 1:

• πn(X,x) is trivial for any base point x ∈ X;
• Every map Sn → X is nullhomotopic;
• Every map Sn → X extends to a map Dn+1 → X.

This implies that the following assertions are equivalent for a space X and n ≥ 0
or n =∞:

• X is n-connected;
• Given any k with 0 ≤ k ≤ n, every map Sk → X is nullhomotopic;
• Given any k with 0 ≤ k ≤ n, every map Sk → X extends to a map
Dk+1 → X.

Moreover, the following assertions are equivalent for a pair (X,A) and n ≥ 0 or
n =∞:

• (X,A) is n-connected;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

relative Sk−1 to a map Dk → A;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

through such maps to a map Dk → A;
• Given any k with 0 ≤ k ≤ n, every map (Dk, Sk−1)→ (X,A) is homotopic

through such maps to a constant map Dk → A.
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2.7. Homotopy groups and colimits.

Theorem 2.20 (Homotopy groups and colimits). Let X be a topological Hausdorff
space with a sequence of closed subspaces X0 ⊂ X1 ⊆ · · · ⊆ X such that X is the
union of the Xi-s and carries the colimit topology.

Then for every x0 ∈ X and n ≥ 1 the canonical group homomorphism induced
by the inclusions jk : Xk → X

colimk→∞ πn(jk, x0) : colimk→∞ πn(Xk, x0)→ πn(X,x0)

is bijective. Also the map of sets

colimk→∞ π0(jk) : colimk→∞ π0(Xk)→ π0(X,x0)

is bijective.

Proof. We first prove that for any compact subset C ⊆ X there exists a natu-
ral number k with C ⊆ Xk. Suppose that for every k ≥ 0 we have C * Xk.
Then we can choose a sequence of x0, x1, x2, . . . in C and a strictly monotone in-
creasing function j : Z≥0 → Z≥0 with xi ∈ Xj(i) \ Xj(i−1) for i = 1, 2, . . .. Put
S = {x0, x1, x2, . . .}. Obviously S is infinite. Let T ⊆ S be any subset. Note that
the intersection T ∩Xk is finite and hence a closed subset of Xk for k = 0, 1, 2, . . ..
Since X carries the colimit topology, T is closed in X. Hence S is a discrete subset
of X. As C is compact and S is a closed subset of C, the set S is compact. As S
is a discrete and compact set, it must be finite, a contradiction.

We only treat the case n ≥ 1, the case n = 0 is analogous. Consider an element
[f ] ∈ πn(X,x0) represented by a pointed map f : (Sn, s) → (X,x0). Then image
of f lies already in Xi for some i ≥ 0. Hence [f ] lies in the image of the map
πn(Xi, x0) → πn(X,x0) induced by the inclusion Xi → X. This implies that
[f ] lies in the image of colimk→∞ πn(jk, x0) : colimk→∞ πn(Xk, x0) → πn(X,x0).
Hence this map is surjective. To prove injectivity, we consider an element [g] in
its kernel. There exists i ≥ 0 and an element [g′] ∈ πn(Xi, x0) such that the
structure map πn(Xi, x0) → colimj→∞ πn(Xj , x0) sends [g′] to [g]. The element
[g′] lies in the kernel of the map πn(Xi, x0) → πn(X,x0) induced by the inclusion
Xi → X. If g′ : (Sn, s)→ (Xi, x0) is a representative of [g′], there is a nullhomotopy
h : Sn × I → X for it. The image of h lies already in Xj for some j with i ≤ j.
Hence the image of [g′] under the map πn(Xi, x0) → πn(Xj , x0) induced by the
inclusion Xi → Xj is trivial. This implies that [g] is trivial. �

3. Hopf’s Degree Theorem

In this section we give the proof of the following theorem.

Theorem 3.1 (Hopf’s Degree Theorem). Let M be a connected oriented closed
smooth manifold of dimension n ≥ 1. Then the degree defines a bijection

deg : [M,Sn]→ Z.

3.1. Some basics about differential topology and the mapping degree.
Its proof needs some preparation. We recall some basic facts about differential
topology and the mapping degree.

• Let M and N be smooth manifolds. Then a (continuous) map f : M →
N is homotopic to a smooth map. If two smooth maps M → N are
homotopic, then one can find a smooth homotopy between them.

• Let M and N be smooth manifolds and L ⊆ N \ ∂N be a smooth sub-
manifold without boundary. Then any smooth map f : M → N with
f(∂M) ∩ L = ∅ is smoothly homotopic relativ ∂M to a map g : M → N
which is transversal to L at every x ∈M , i.e., we have either f(x) /∈ L or we
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have f(x) ∈ L and Txf(TxM) + Tf(x)L = Tf(x)N . If dim(M) + dim(L) <
dim(N) holds, then f is transversal to L if and only if f(M) ∩ L = ∅.

• If L = {y} for y ∈ N \ ∂N , then we say that y is a regular value of f if f
is transversal to {y}.

• Every smooth map f : M → N has a regular value y ∈ N \ ∂N . Actually
the points in N \ ∂N for which y is not a regular value has measure zero
in N by the Theorem of Sard.

If y ∈ N \ ∂N is a regular value of f , M is compact, and dim(M) =
dim(N), then f−1(y) is finite and for every x ∈ f−1(y) the differential
induces an isomorphism Txf : TxM → TyN .

• Let f : M → N be a map of connected oriented compact smooth oriented
manifolds of dimension n such that f(∂M) ⊆ ∂N holds. Let y ∈ N \ ∂N
be any regular value. For x ∈ f−1(y) ⊆ M \ ∂M the orientations on M
and N yield orientations on the finite dimensional vector spaces TxM and

TyN . Define ε(x) ∈ {±1} to be 1 if Txf : TxM
∼=−→ TyN respects these

orientations and to be −1 otherwise.
Recall degree of f is the natural number for whichHn(f) : Hn(M,∂M)→

Hn(N, ∂N) sends [M,∂M ] to deg(f) · [N, ∂N ]. We get

(3.2) deg(f) =
∑

x∈f−1(y)

ε(x).

This formula is well-known for ∂M = ∂N = ∅. The proof in this case
extends directly to the more general case above. Or one considers the
map of closed oriented manifolds f ∪∂f f : M ∪∂M M → N ∪∂N N for
∂f : ∂M → ∂N given by f |∂M .

• Let M be a smooth Riemannian manifold and x ∈ M \ ∂M . Then there
is an ε > 0, an open subset U of M containing x, and a diffeomorphism
called exponential map

(3.3) expx : D◦εTxM := {v ∈ TxM | ||x|| < ε} → U

such that the differential T0 expx : T0(TxM) → TxM of expx at 0 ∈ TxM
becomes the identity under the canoncial identification T0(TxM) = TxM .

3.2. The proof of Hopf’s Degree Theorem. We prove Hopf’s Degree The-
orem 3.1 by induction over the dimension n = dim(M). If n = 1, then M is
diffeomorphic to S1 and elementary covering theory shows that the degree induces

a bijection deg : [S1, S1]
∼=−→ Z. The induction step from (n− 1) to n ≥ 2 is done as

follows.
Fix x ∈ M and an embedding i : Dn ↪→ M such that i(0) = x holds and

T0i : T0D
n
∼=−→ TxM is compatible with the orientations coming from the standard

orientation on Dn and the given orientation on M . Define the collaps map c : M →
Dn/Sn−1 ∼= Sn by sending i(x) for x ∈ Dn to the element given by x in Dn/Sn−1

and every point y ∈M \ i(Dn) to the point Sn−1/Sn−1 in Dn/Sn−1. We conclude
from (3.2) applied to the regular value z ∈ Dn/Sn−1 = Sn given by 0 ∈ Dn of
c that deg(c) = 1. Given any d ∈ Z, there exists a selfmap ud : Sn → Sn with
deg(ud) = d. It can be constructed as the (n − 1)-fold suspension of the map
S1 → S1 sending z to zd. Then deg(ud ◦ c) = d. This shows that deg : [M,Sn]→ Z
is surjective.

In order to show that deg : [M,Sn] → Z is injective, we have to show that two
smooth maps f, g : M → Sn with deg(f) = deg(g) are homotopic. Since there is
diffeomorphism u : Sn → Sn with degree −1 and deg(u ◦ f) = −deg(f), we can
assume in the sequel that d = deg(f) = deg(g) satisfies d ≥ 0.
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We can change f and g up to homotopy and find y ∈ Sn such that both f and
g are smooth and have y as regular value. Then we can write

f−1(y) = {x1, x2, . . . , xd} q {x+
1 , x

−
1 , . . . , x

+
m, x

−
m}

for some m ≥ 0 such that ε(xi) = 1 for i = 1, 2, . . . , d and ε(x±j ) = ±1 holds for
j = 1, 2, . . . ,m.

M S
2

X2
Xn

T
T X3= Y

L
T
-

Xit
->->a

Yet
T

ViX

We next describe a procedure how to change f up to homotopy so that m = 0,
or, equivalently f−1(y) = {x1, x2, . . . , xd} holds. This will be done by an inductive
procedure where we change f up to homotopy such that m ≥ 1 becomes (m − 1),
in other words, we get rid of the points x+

m and x−m.
Choose an embedded arc in M joining x+

m and x−m that does not meet any of the
other points in f−1(y). Let U be an open neighbourhood of x−m that is diffeomorphic
to Rn. Now perform a local homotopy of f along this arc to move x−m so close to
x+
m such that x−m lies in U .
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M

X2
Xn

T
T X3=W -LY Xt

X Vi

Hence it suffices to prove the following: Given a map f : Rn → Rn such that f is
transversal to 0 ∈ Rn, the preimage f−1(0) consists of precisely two points x0 and x1

belonging to the interior of the disk Dn ⊆ Rn, the differential Tx0
f : Tx0

Rn → T0Rn
is bijective and reverses the standard orientations, and the differential Tx1f : Tx1Rn →
T0Rn is bijective and preserves the standard orientations, then we can change f up
to homotopy relative Rn \Dn so that f−1(0) is empty.

Choose ε > 0 so small that the image of Sn−1 ⊆ Rn under f does not meet the
interior of ε ·Dn.
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i----i
------

&

Y
↑

I
↑ &

! X
Xi f I E .D2 i&

& o

D ↑ S
↑

↑

!_s] ---- 1
↑

:_+15 -- -
IR
?

IR2

Let prε : Rn → ε ·Dn be the retraction that sends x ∈ Rn to ε
||x|| · x if ||x|| ≥ ε,

and to x if ||x|| ≤ ε. Then prε ◦f induces a map of compact oriented manifolds
(Dn, Sn−1)→ (ε·Dn, ε·Sn−1). By inspecting the preimage of 0 ∈ ε·Dn we conclude
from (3.2) that its degree is zero.

&

X Xn M30f(yz E .D2& &O oD
↑

Since the following diagram commutes and the vertical maps given by boundary
homomorphisms of pairs are isomorphism of infinite cyclic groups respecting the
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fundamental classes

Hn(Dn, Sn−1)

∼=
��

Hn(f)
// Hn(ε ·Dn, ε · Sn−1)

∼=
��

Hn(Sn−1)
Hn(f |Sn−1 )

// Hn(ε · Sn−1)

the induced map (prε ◦f)|Sn−1 : Sn−1 → ε · Sn−1 has degree zero and hence is
nullhomotopic by the induction hypothesis. This implies that the map f0 : Sn−1 →
Rn \ {0} induced by f is nullhomotopic and hence extends to a map f1 : Dn →
Rn \ {0}. Let f ′ : Rn → Rn \ {0} be the map whose restriction to Dn is f1 and
whose restriction to Rn \Dn agrees with the restriction of f to Rn \Dn. We obtain
a homotopy h : f ' f ′ of maps Rn → Rn by h(x, t) = t · f ′(x) + (1 − t) · f that is
stationary outside the interior of Dn. Since the image of f ′ does not contain zero,
the claim follows.

This argument applies also to g. If d = 0, then im(f) and im(g) are con-
tained in the contractible subspace Sn \ {y} of Sn and hence f and g are homo-
topic. It remains to consider the case d ≥ 1. Then we can find finite subsets
{x1, x2, . . . , xd} and {x′1, x′2, . . . , x′d} of M such that f−1(y) = {x1, x2, . . . , xd} and
g−1(y) = {x′1, x′2, . . . , x′d} holds and the differentials Txif : TxiM → TyS

n and
Tx′ig : Tx′iM → TyS

n are orientation preserving isomorphisms for i = 1, 2, . . . , n.
Now we can construct a diffeomorphism a : M →M which is homotopic to the iden-
tity and satisfies w(xi) = x′i for i = 1, 2, . . . , d. Then g and g′ = g◦a are homotopic,
f−1(y) = g′−1(y) = {x1, x2, . . . , xd} and the differentials Txif : TxiM → TyS

n and
Txig

′ : TxiM → TyS
n are orientation preserving isomorphisms for i = 1, 2, . . . , d. It

remains to show that f and g′ are homotopic.

For this purpose we need the following construction. Let u0, u1 : Rn
∼=−→ Rn

be linear R-isomorphisms which are orientation preserving. Then we can find a
homotopy h : Rn × I → Rn such that h0 = u0 and h1 = u1 holds and ht : Rn → Rn
is a orientation preserving automorphism for t ∈ I. This follows from the fact that
{A ∈ GLn(R) | det(A) > 0} is path connected for n ≥ 1. Define the homotopy

H : Rn × I → Rn, (v, t) 7→


ht(v) if ||v|| ≤ 1;

h(2−||v||)·t(v) if 1 ≤ ||v|| ≤ 2;

u0(v) if ||v|| ≥ 2.

Then we have

H−1
t (0) = 0 for t ∈ I;

H0 = u0;

Ht(v) = u0(v) for t ∈ I and ||v|| ≥ 2;

H1(v) =


u1(v) if ||v|| ≤ 1;

h(2−||v||)(v) if 1 ≤ ||v|| ≤ 2;

u0(v) if ||v|| ≥ 2.

So H is a homotopy between H0 = u0 and H1 which is stationary on {v ∈ V |
||v|| ≥ 2} and satisfies H−1

t (0) = 0 for t ∈ I and H1(v) = u1(v) for ||v|| ≤ 1.
Using this construction and the exponential map (3.3), we can change g′ by a

homotopy to a map g′′ : M → Sn, such that for i = 1, 2, . . . , d there are disjoint
embedded disks Dn

i ⊆M such that 0 ∈ Dn
i corresponds to xi, f |Dni = g′′|Dni holds

and we have f−1(y) = (g′′)−1(y) = {x1, x2, . . . , xd}. Let X be the complement

in M of the disjoint union
∐d
i=1D

n
i \ ∂S

n−1
i . This is a manifold with boundary
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∂X =
∐d
i=1 S

n−1
i such that f(X) and g′′(X) are contained in Sn \ {y} and f |∂X =

g′′|∂X holds. As Sn \ {y} is contractible, the maps f |X and g′′|X from X to Sn are

homotopic relative ∂X. Recall that f and g′′ agree on
∐d
i=1D

n
i . Hence f and g′′

are homotopic as maps M → Sn. This implies that the maps f and g from M to
Sn are homotopic. This finishes the proof of Hopf’s Degree Theorem 3.1.

3.3. The homotopy groups of the n-sphere in the degree ≤ n.

Theorem 3.4. We get for every n ≥ 1

πk(Sn) ∼=

{
{0} k < n;

Z k = n.

There is an explicit isomorphism Z
∼=−→ πn(Sn) which sends 1 ∈ Z to [idSn ]. Its

inverse πn(Sn)
∼=−→ Z sends [f ] to the degree of f .

Proof. Suppose k < n. Let f : Sk → Sn be any map. Since we can change any
map f : Sk → Sn up to homotopy into a smooth map transversal to y ∈ Sn, we
can change f by a homotopy to map Sn → Sn \ {y}. As Sn \ {y} is contractible,
f is nullhomotopic. This implies πk(Sn, s) = {0} for every s ∈ S.

The degree defines a bijection deg : [Sn, Sn]
∼=−→ Z because of Hopf’s Degree

Theorem 3.1 for n ≥ 1. By inspecting the proof of surjectivity of this map we see
that the forgetful map πn(Sn, s) → [Sn, Sn] is surjective. We conclude from (2.1)
and (2.6) that the forgetful map πn(Sn, s)→ [Sn, Sn] is injective. �

Example 3.5 (The Hopf map and π3(S2)). One may think that πk(Sn, s) vanishes
for k > n as Hk(Sn) vanishes for k > n. But this is not true as the following
example due to Hopf shows. We can think of S3 as the subset of C2 given by
{(z1, z2) | z1z1 + z2z2 = 1}. We get an S1-action on S3 by z · (z1, z2) = (zz1zz2).
This action is free and the quotient space S3/S1 is homeomorphic to S2. Thus we
get a projection p : S3 → S2. We will later show that π3(S2) ∼= Z holds with the
class [p] of p as generator, see Theorem 10.5.

One indication that [p] is not zero in π3(S2) is the observation that the preimages
of the north and the south pole of S2 are two embedded S1-s in S3 which are linked.

&
Example 3.6 (πn(S1 ∨ Sn) is not finitely generated.).

Consider X = S1 ∨ Sn for n ≥ 2. Its universal covering X̃ is obtained from R
by glueing to each element in Z a copy of Sn along the base point.
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&

SvS

The map X̃ →
∨
i∈Z S

n given by collapsing R to point turns out to be a point
homotopy equivalence. This can be seen by a direct inspection or follows from

Lemm 8.25 and Theorem 8.28. Hence we conclude πn(X) ∼= πn(X̃) ∼= πn(
∨
i∈Z S

n)
from Theorem 2.7. For each k ∈ Z we have the pointed inclusion jk : Sn →

∨
i∈Z S

n

of the k-th summand and the pointed projection prk :
∨
i∈Z S

n → Sn onto the k-th
summand. Obviously prk ◦jk is the identity and prk ◦jl is the constant map for
k 6= l. Hence the map

⊕
i∈Z πn(ji) :

⊕
i∈Z πn(Sn) → πn(

∨
i∈Z S

n) is injective. As

πn(Sn) ∼= Z, the abelian group πn(S1 ∨ Sn) is not finitely generated.
Actually, we know that πn(S1 ∪ Sn) is a Z[π1(S1)]-module and it will turn out

that it is Z[π1(S1)]-isomorphic to Z[π1(S1)].

Remark 3.7 (Outlook about πk(Sn) for k > n). It is an open (and extremely
hard) problem to compute πk(Sn, s) for 2 ≤ n < k in general. There is not even
a formula known which might give the answer. There is no obvious pattern in the
computations, one has carried out so far. At least one knows that πk(Sn) is finite
for k > n except for π4i−1(S2i) for i ≥ 1 which is a direct sum of a copy of Z and
some finite abelian group.

4. The Cellular Approximation Theorem

In this section we want to sketch the proof of the following theorem.

Theorem 4.1 (Cellular Approximation Theorem). Let (X,A) be a CW -pair and
Y be a CW -complex. Let f : X → Y be a map whose restriction f |A : A→ Y to A
is cellular. Then f is homotopic relative A to a cellular map X → Y .

By a colimit argument one can reduce the proof of the Cellular Approximation
Theorem 4.1 to the proof of following lemma.

Lemma 4.2. Consider any k ∈ {0, 1, 2, . . .}. Let f : X → Y be a map of CW -
complexes. Suppose that f(Xk−1) ⊆ Yk−1 holds.

Then we can change f up to homotopy relative Xk−1 such that f(Xk) ⊆ Yk
holds.

In order to arrange that f(Xk) ⊆ Yk holds, we must achieve for every closed
k-dimensional cell e of X by a homotopy of f |e relative ∂e that e does not meet
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any cell of Y of dimension > k. Note that each compact subset of Y meets only
finitely many cells. Hence for a closed cell of e of X of dimension k there are
only finitely many closed cells e1, e2, . . . , em of Y satisfying f(e) ∩ ei 6= ∅. Choose
{i ∈ 1, 2, . . . ,m} such the the dimension of ei is greater than dim(e). If such an
i does not exists, we are already done for e. If such i exists, we can arrange that
dim(ei) ≥ dim(ej) holds for all j ∈ {1, 2, . . . ,m} and we have to change f |e up to
homotopy relative ∂e such that f(e) meets only the cells e1, e2, . . . , ei−1, ei+1, em
of Y . Therefore it suffices to show the following lemma.

Lemma 4.3. Consider 0 ≤ k < l. Let (W,V ) be pair for which there exists a
pushout

Sl−1 q
//

��

V

��

Dl Q
// W.

Consider any map f : (Dk, Sk−1)→ (W,V ).
Then f is homotopic relative Sk−1 to a map Dk → V .

Consider any point z ∈ W \ V . Then (W \ {z}, V ) is a strong deformation
retraction, i..e, there exists a homotopy h : W \ {z} × I → W \ {z} such that
h(y, 0) = y and h(y, 1) ∈ V hold for y ∈ W \ {z} and h(y, t) = y holds for y ∈ V
and t ∈ I. Hence Lemma 4.3 follows from the next lemma.

Lemma 4.4. Consider the situation of Lemma 4.3. Then there exists z ∈ W \ V
such that f is homotopic relative Sk−1 to a map Dk →W \ {z}.

Sketch of proof. Fix r ∈ (0, 1). Let Dl
r ⊆ Dl be the open ball of radius r, i.e,

{x ∈ Dl | ||x|| < r}. If Dk \ f−1(Q(Dl
r)) = ∅, we are obviously done. Hence we

can assume withtout loss of generality that Dk \ f−1(Q(Dl
r)) is non-empty. Then

one can arrange by an improved version of the Whitney Approximation Theorem
that f is homotopy relative to Dk \ f−1(Q(Dl

r)) to a map g : (Dl, Sl−1)→ (W,V )
such that the map induced by g from the open subset f−1(Q(Dl

r)) of Dk to the
open subset Q(DL

r ) of W , which we can be equipped with the structure of a smooth
manifold diffeomorphic to DL

r , is smooth.
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⑪w
Since by Sard’s Theorem this smooth map g has a regular value z and k < l, we

get g(Dk) ⊆W \ {z}. �

This finishes the sketch of the proof of the Cellular Approximation Theorem 4.1.

Corollary 4.5. Consider n ≥ 0. Let (X,A) be a CW -pair such that all cells in
X \ A have dimension > n. Then (X,A) is n-connected. In particular (X,Xn) is
n-connected for a CW -complex X.

Proof. We only deal with the case, where A is non-empty. The proof for A = ∅
follows from the one, where A = {x} for any zero-cell {x} ∈ X, since X is the
disjoint union of its path components and every path component contains a zero-
cell.

First we show that π0(f) : π0(A) → π0(X) is surjective for n = 0 and bijective
for n ≥ 1. Surjectivity follows from Cellular Approximation Theorem 4.1 applied
to any map {•} → X using the fact that X0 = A holds. Note for the sequel
that any path component of a CW -complex must contain a zero-cell. By the
Cellular Approximation Theorem 4.1 any path in X connecting two zero-cells in
A is homotopic relative endpoints to a path in A as X1 = A holds if n ≥ 1. This
shows the bijectivity of π0(f) if n ≥ 1.

It remains to show that πi(X,A, a) = {1} holds for any base point a ∈ A
and i ∈ {1, 2, . . . , n} Since any path component of A contains a zero-cell, dia-
grams (2.1) and (2.6) imply that we can assume without loss of generality that a
is a zero-cell of A. Consider an element [f ] ∈ πi(X,A, a) given by a map of triples
f : (Di, Si−1, {s})→ (X,A, {a}). Equip Si−1 with the CW -structure consisting of
precisely two cells, namely one 0-cell {s} given by the base point s and one (i− 1)-
cell. By the Cellular Approximation Theorem 4.1 the map f |Si−1 : Si−1 → A is
relative {s} homotopic to cellular map. One easily checks that this implies that
f : (Di, Si−1, {s})→ (X,A, {a}) is homotopic as a map of triples to a map f ′ such
that f ′|Si−1 : Si−1 → A is cellular. (This is a standard cofibration argument as we
will see later, or done by direct inspection.) By the Cellular Approximation The-
orem 4.1 the map f ′ is homotopic relative Si−1 to map f ′′ : (Di, Si−1) → (Xi, A).
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As Xi = A holds and hence π1(Xi, Xi, a) is trivial by the long exact sequence of
the pointed pair (Xi, Xi, a), see Theorem 2.11, we conclude [f ] = [f ′] = [f ′′] = 1 in
πi(X,A, a). �

5. The Whitehead Theorem

In this section we want to prove the following theorem.

Theorem 5.1 (Whitehead Theorem). Let f : Y → Z be a map.

(i) Consider any n ∈ {0, 1, 2, . . .}. Then the following assertions are equiva-
lent:
(a) The map induced by composition with f

f∗ : [X,Y ]→ [X,Z], [g] 7→ [f ◦ g]

is bijective for every CW -complex X of dimension dim(X) < n and
is surjective for every CW -complex X of dimension dim(X) = n;

(b) The map f : Y → Z is n-connected;
(ii) The following assertions are equivalent:

(a) The map induced by composition with f

f∗ : [X,Y ]→ [X,Z], [g] 7→ [f ◦ g];

is bijective for every CW -complex X;
(b) The map f : Y → Z is a weak homotopy equivalence.

Its proof needs some preparations.

Lemma 5.2. Let Y be a space which is n-connected for some n ∈ {0, 1, 2, . . .} q
{∞}. Let (X,A) be a relative CW -complex whose relative dimension dim(X,A) is
less or equal to n.

Then any map f : A→ Y can be extended to a map F : X → Y .

Proof. We construct for k = −1, 0, 1, 2, . . . with k ≤ n maps fk : Xk → Y such that
f−1 : X−1 = A → Y is the given map f and we have fk|Xk−1

= fk−1 for k ≥ 0.
Then Lemma 5.2 is a consequence of the following argument. If n < ∞, then we
can take F = fn. If n = ∞, we define F = colimk→∞ fk having in mind that by
the definition of a CW -pair we have X = colimk→∞Xk.

The induction beginning k = −1 is trivial. The induction step from (k− 1) to k
is done as follows. Choose a cellular pushout∐

i∈I S
k−1

∐
i∈I qi

//

��

Xk−1

��∐
i∈I D

k

∐
i∈I Qi

// Xk.

We conclude from the pushout property that we can construct fk from fk−1 if for
any i ∈ I we can extend the composite fk−1 ◦ qi : Sk−1 → Y to a map Dk → Y .
This can be done as Y is by assumption k-connected. �

Lemma 5.3. Let (Y,B) be a pair which is n-connected for some n ∈ {0, 1, 2, . . .}q
{∞}. Let (X,A) be a relative CW -complex whose relative dimension dim(X,A) is
less or equal to n.

Then any map f : (X,A)→ (Y,B) is homotopic relative A to a map f : (X,A)→
(Y,B) with g(X) ⊆ B.

Proof. We construct for k = −1, 0, 1, 2, . . . with k ≤ n a map

hk : Xk × I ∪Xk×{0} X × {0} → Y

such that the following conditions are satisfied:
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• h−1 : A × I ∪A×{0} ∪X × {0} → X sends (a, t) to f(a) for (a, t) ∈ A × I
and (x, 0) to f(x) for x ∈ X.

• We have hk(x, 0) = f(x) for x ∈ X;
• We have hk(x, 1) ∈ B for every x ∈ Xk

• For 0 ≤ k ≤ n we have hk|Xk−1×I = hk−1|Xk−1×I .

Then Lemma 5.3 is a consequence of the following argument. If n < ∞, then
h = hn is the desired homotopy relative A from f to a map with image in B.
Suppose n =∞. Since X = colimk→∞Xk, we get X × I = colimk→∞(Xk × I) and
we obtain the desired homotopy h by colimk→∞ hk.

The induction beginning k = −1 is trivial. The induction step from (k− 1) to k
is done as follows. Choose a cellular pushout

∐
i∈I S

k−1

∐
i∈I qi

//

��

Xk−1

��∐
i∈I D

k

∐
i∈I Qi

// Xk.

Then we obtain a pushout

∐
i∈I S

k−1 × I ∪Sk−1×{0} D
k × {0}

∐
i∈I q

′
i
//

��

Xk−1 × I ∪Xk−1×{0} X × {0}

��∐
i∈I D

k × I
∐
i∈I Q

′
i

// Xk × I ∪Xk×{0} X × {0}

where q′i is given by qi × idI ∪qi×id{0}Qi × id{0}. We conclude from the pushout
property that it suffices to construct for every i ∈ I an extension of the map

u = hk−1 ◦ q′i : Sk−1 × I ∪Sk−1×{0} D
k × {0} → Y

to a map U : Dk×I → Y such that g(Dk×{1}) ⊆ B holds. Up to homeomorphism
the pair (Sk−1×I∪Sk−1×{0}D

k×{0}, Sk−1×{1}) can be identified with (Dk, Sk−1).

So we can think of u as a map of triples (Dk, Sk−1, {s})→ (Y,B, {x}) for x = u(s).
Hence it defines a element in πk(Y,B, x). As πk(Y,B, x) is by assumption trivial,
there is a homotopy of maps of triples (Sk−1 × I ∪Sk−1×{0} D

k × {0}, Sk−1 ×
{1}, {(s, 1)}) → (Y,B, {x}) from u to the constant map cx. Obviously the latter
map extends to the constant map cx : Dk × I,Dk × {1}, {(s, 1}) → (Y,B, {x}).
Hence we can extend u to a map U : (Dk × I,Dk × {1}, {s})→ (Y,B, {x}).
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This finishes the proof of Lemma 5.3. �

Proof of the Whitehead Theorem 5.1. Let cyl(f) be the mapping cylinder of f . Let
i : X → cyl(f) and j : Y → cyl(f) be the canonical inclusions and p : cyl(f) → Y
be the canonical projection. Then p ◦ i = f , p ◦ j = idY , and j ◦ p ' idcyl(f). Hence
we can assume without loss of generality that f : Y → Z is an inclusion of pairs,
otherwise replace the given f : Y → Z by i : Y → cyl(f).

N

↑ Yo
*
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=⇒ (i)a and (ii)b =⇒ (ii)b
The surjectivity of f∗ : [X,Y ] → [X,Z] follows for dim(X) ≤ n directly from

Lemma 5.3 applied to a map g : (X, ∅)→ (Z, Y ). Finally we prove the injectivity of
f∗ under the assumption that either n = ∞ or dim(X) < n < ∞ holds. Consider
g0, g1 : X → Y and a homotopy h : f ◦ g0 ' f ◦ g1 of maps from X to Z. We obtain
a map of pairs (h, g0 q g1) : (X × I,X × {0, 1}) → (Z, Y ). This map is homotopic
relative X × {0, 1} to a map k : X × I → Y by Lemma 5.3 since dim(X × I) ≤ n
holds. Obviously k is a homotopy of maps X → Y between g0 and g1.

(i)a =⇒ (i)b and (ii)a =⇒ (ii)b The map π0(f) : π0(Y )→ π0(Z) can be identified
with the map f∗ : [{•}, Y ] → [{•}, Z]. Hence the claim is true for n = 0. So it
suffices to treat the case n ∈ Z≥1 q {∞}. Then π0(f) is bijective. It remains to
show for any y ∈ Y that πk(f, y) : πk(Y, y)→ πk(Z, f(y)) is bijective for 1 ≤ k < n
and surjective for 1 ≤ k ≤ n.

We begin with surjectivity for 1 ≤ k ≤ n. Choose an index set I and a map
v : (S, s)→ (Z, f(y)) for S =

∨
i∈I S

k equipped with the obvious base point s such
that πk(v, s) : πk(S, s)→ πk(Z, f(y)) is surjective. Then we can find by assumption
a map u : S → Y such that f ◦ u is homotopic to v. For an appropriate path
w : [0, 1]→ Z from u(s) to z, we obtain a commutative diagram

πk(Y, u(s))
πk(f,u(s))

// πk(Z, f ◦ u(s))

t[f◦w]∼=
��

πk(S, s)

πk(u,s)

OO

πk(v,s)
// πk(Z, z).

Next we show injectivity for 1 ≤ k < n. Choose an index set I and a map
u : (S, s) → (Z, f(y)) for S =

∨
i∈I S

k equipped with the obvious base point s

such that the sequence πk(S, s)
πk(u,s)−−−−−→ πk(Y, y)

πk(f,y)−−−−−→ πk(Z, f(y)) is exact. The
the composite f ◦ u : S → Z is nullhomotopic. Since S has dimension ≤ (n − 1),
the map f∗ : [S, Y ] → [S,Z] is bijective by assumption. Hence u is nullhomo-
topic. This implies that there is a path w : [0, 1] → Y from y to some point
y′ such that the composite πk(u, s) : πk(S, s) → πk(Y, y) with the isomorphism

t[w] : πk(Y, y)
∼=−→ πk(Y, y′) is trivial. Hence πk(u, s) : πk(S, s) → πk(Y, y) is trivial.

This implies that the kernel of πk(f, y) is trivial and hence that πk(f, y) is injective.
This finishes the proof of the Whitehead Theorem 5.1. �

Corollary 5.4. Let f : X → Y be a map of CW -complexes. Then f is a homotopy
equivalence if and only f is a weak homotopy equivalence.

Proof. We conclude from the diagrams (2.1) and (2.6) that f is a weak homotopy
equivalence if it is a homotopy equivalence. Suppose that f is a weak homotopy
equivalence. Theorem 5.1 (ii) implies that f∗ : [Y,X] → [Y, Y ] is bijective. Let
a : Y → X be map with f∗([a]) = [f ◦ a] = idY . Then a is a weak homotopy
equivalence. Theorem 5.1 (ii) again implies that a∗ : [X,Y ] → [X,X] is bijective.
So we can choose a map b : X → Y with [a ◦ b] = [idX ]. This implies b ' f ◦
a ◦ b ' f . Hence a is a homotopy inverse of f and in particular f is a homotopy
equivalence. �

Example 5.5 (S∞). Define the real vector space R∞ :=
⊕∞

i=1 R. It inherits a
norm by

||(x1, x2, x3, . . .)|| =

√√√√ ∞∑
i=1

x2
i .
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In particular R∞ inherits a metric and the structure of a topological space. We can
identify the topological space Rn with the subspace consisting of points (x1, x2, . . .)
for which xi = 0 for i > n holds. Let S∞ ⊆ R∞ be the subspace consisting of
points z satisfying ||z|| = 1. Then Sn can be identified with S∞ ∩ Rn+1 for n ≥ 0.
Moreover, we get:

(i) We have the nested sequence S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ S∞ such that S∞ is
the unions of the Sn-s. The colimit topology with respect to this filtration
is not the subspace topology S∞ ⊆ R∞;

(ii) S∞ equipped with the colimit topology carries a CW -structure with Sn

as n-skeleton;
(iii) S∞ equipped with the subspace topology does not carry the structure of

a CW -complex;
(iv) S∞ equipped with the subspace topology is contractible;
(v) S∞ equipped with the colimit topology is contractible;

(vi) Consider the identity S∞ → S∞, where we equip the domain with the
colimit topology and the codomain with the subspace topology. Then this
map is bijective and continuous and is a homotopy equivalence but is not
a homeomorphism.

For n ≥ 1 consider the element an in S∞ whose i-th entry is
√

1− n−1 for i = 1,
n−1 for i = 2, . . . , n + 1, and is 0 for i ≥ (n + 2). Let A = {an | n ≥ 1}. Since
the intersection of A with Sn is finite for n ≥ 1, it is a closed subspace of S∞

with respect to the colimit topology. Since (1, 0, 0, . . .) does not belong to A and
limn→∞ an = (1, 0, 0 . . .) holds with respect to the metric above, A is not closed
with respect to the subspace topology. This finishes the proof of assertion (i).

We leave the obvious proof of the assertion (ii) is left to the reader.
Assertion (iii) is proved as follows. Suppose that S∞ with the subspace topology

has a CW -structure. Since then S∞ is a metrizable CW -complex, it must be
locally compact by [9, Theorem B on page 81]. This implies there is an ε > 0 such
that that the intersection of S∞ with the closed ball of radius ε around (1, 0, 0, . . .)
is compact. Hence we can find δ > 0 such that the sequence (xn)n≥1 given by

xn =
√

1− δ · e1 +
√
δ · en with ei the i-th element of the standard base belongs to

the intersection of S∞ with the closed ball of radius ε around (1, 0, 0, . . .). Hence
it has a subsequence which is a Cauchy sequence. Since this is not the case, we get
a contradiction.

Next we prove assertion (iv). Let s : S∞ → S∞ be the shift map sending
(x1, x2, x3, . . .) to (0, x1, x2, x3, . . .) Define

h : S∞ × I → S∞, x 7→ t · s(x) + (1− t) · x
||t · s(x)x+ (1− t) · x||

.

This is a homotopy between idS∞ and s. Now consider the homotopy

k : S∞ × I → S∞, x 7→ (1− t) · s(x) + t · e1

||(1− t) · s(x) + t · e1||
for e1 = (1, 0, 0, . . .). Then k is a homotopy between s and the constant map
S∞ → S∞ with value e1. Hence S∞ with the subspace topology is contractible.

Assertion (v) follows from Theorem 2.20, Theorem 3.4, and Corollary 5.4 using
assertion (ii). Alternatively, the proof for assertion (iv) does carry over to asser-
tion (v).

Assertion (vi) is a direct consequence of the other assertions.

Example 5.6 (Warsaw circle). Let W be the Warsaw circle, i.e., the compact
subsets of R2 given by the union of {(x, sin(2π/x)) | x ∈ (0, 1]}, {(1, y) | y ∈ [−2, 0]},
{(x,−2) | x ∈ [0, 1]} and {(0, y) | y ∈ [−2, 1]}.
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&

#
Then the projection p : W → {•} is a weak homotopy equivalence but not a

homotopy equivalence. In particular W is a compact space which is not homotopy
equivalent to a CW -complex.

Remark 5.7 (Whitehead Theorem for pairs). There is the following version of the
Whitehead Theorem 5.1 (ii) for pairs. Let (F, f) : (Y,B) → (Z,C) be a map of
pairs. Then the following assertions are equivalent:

(i) The maps F : Y → Z and f : B → C are weak homotopy equivalences;
(ii) For every CW -pair (X,A) the maps of the homotopy classes of pairs in-

duced by composition with (F, f)

(F, f)∗ : [(X,A), (Y,B)]→ [(X,A), (Z,C)], [(G, g)] 7→ [(F ◦G, g ◦ f)]

is bijective.

6. CW-Approximation

Definition 6.1 (n-coconnected maps). A map f : X → Y is called n-coconnected
for n ∈ Z≥0 q {∞}, if for any base point x ∈ X the map πi(f, x) : πi(X,x) →
πi(Y, f(x)) is injective if i = n, and is bijective if i > n.

Consider a natural number n and a map f : X → Y . Then f is a weak homotopy
equivalence if and only if it is both n-connected and n-coconnected.

Definition 6.2 (n-CW -model for a pair). Consider a topological pair (Y,A) such
that A is a CW -complex and n ∈ Z≥0. (The subcomplex A may be empty.) An
n-CW -model for (Y,A) consists of an n-connected pair of CW -complexes (Z,A)
together with an n-coconnected map f : Z → Y satisfying f |A = idA.

Theorem 6.3 (n-CW -models). Consider a topological pair (Y,A) such that A is
a CW -complex and n ∈ Z≥0 q {∞}. Then there exists an n-CW -model

(f, idA) : (Z,A)→ (Y,A)

such that Z \A contains no cells of dimension ≤ n.

Proof. We construct a sequence of nested spaces Zn ⊆ Zn+1 ⊆ Zn+2 ⊆ · · · and
maps fi : Zi → Y for i ≥ n such that the following holds:
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• Zn = A and fn = idA;
• fi|Zi−1

= fi−1 for i = (n+ 1), (n+ 2), . . .;
• There exists for i ≥ n a pushout of the shape

∐
j∈Ji S

i

∐
ji∈Ji

qji
//

��

Zi

��∐
j∈Ji D

i+1

∐
j∈Ji

Qji
// Zi+1

such that the image of each map qj does not meet any closed cell in A of
dimension > i;

• For any base point z ∈ Zi the map πj(fi, z) is injective for j = n, bijective
for n < j ≤ i, and surjective for j = i.

Before we explain the construction of these data, we explain how we get the
desired n-CW -model from it. Namely, we define Z = colimi→∞ Zi and f =
colimi→∞ fi : Z → X. Then (Z,A) is a CW -pair and the i-skeleton Zi of Z is
the complement of the union of the open cells of dimension > i of A in Zi. In
particular Z \Zi contains no cells of dimension ≤ i. Since Z \A contains no k-cells
for 0 ≤ k ≤ n, the pair (Z,A) is n-connected by Corollary 4.5. We conclude from
Corollary 4.5 again that the map πm(Zi, zi) → πm(Z, zi) induced by the inclusion
Zi → Z is bijective for m < i and surjective for m = i for any i ≥ n and zi ∈ Zi.
Hence the map f is n-coconnected by Theorem 2.20.

Finally we carry out the construction of the sequence Zn ⊆ Zn+1 ⊆ Zn+2 ⊆ · · ·
and the sequence of maps fi : Zi → Y . The induction beginning is obvious, take
Zn = A and fn = idA. The induction step how to construct Zi+1 and fi+1, when Zi
and fi have already been established, is done as follows. For each path component
C of A choose a zero-cell xC in A which is contained in C. Then for every element
u in the kernel of the map πi(fi, xC) : πi(Zi, xC)→ πi(Y, xC) choose a pointed map
qC,u : (Si, s)→ (Zi, xC) with u = [qC,u]. The define Z ′i+1 as the pushout

∐
C∈π0(A)

u∈ker(πi(fi,xC))

Si

∐
C∈π0(A)

u∈ker(πi(fi,xC))

qC,u

//

��

Zi

��∐
C∈π0(A)

u∈ker(πi(fi,xC))

Di+1 // Z ′i+1.

Since each [qC,u] lies in the kernel of πi(fi, xC), each map fi ◦ qC,u : Si → Y can be
extended to a map qC,u : Di+1 → Y . By the Cellular Approximation Theorem 4.1
we can additionally arrange that the image of each map qC,u has trivial intersection
with any open cell of A of dimension i > i+ 1.

The collection of these extensions yield a map f ′i+1 : Z ′i+1 → Y by the pushout
property. We have for j ≤ (i+ 1) and C ∈ π0(A) the commutative diagram

πj(Zi, xC)
πj(fi,xC)

//

��

πj(Y, xC)

πj(Z
′
i+1, xC)

πj(f
′
i+1,xC)

44

where the vertical arrow is induced by the inclusion Zi → Zi+1. The vertical
arrow is bijective for j ≤ (i − 1) and surjective for j = i by Corollary 4.5. Hence



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 31

πj(f
′
i+1, xC) is injective for i = n and bijective for n < j ≤ (i−1), as πj(fi, xC) has

these properties by the induction hypothesis. Consider an element v in the kernel
of πi(f

′
i+1, xC). Choose u ∈ πi(Zi, xC) whose image under the vertical arrow is v.

Then u lies in the kernel of πi(fi, xC). By construction u lies in the kernel of the
vertical arrow. Hence v is trivial. Therefore πi(f

′
i+1, xC) is injective. As πi(fi, xC)

is surjective by the induction hypothesis, πi(f
′
i+1, xC) is surjective. This implies

that πj(f
′
i+1, xC) is injective for i = n and bijective for n < j ≤ i for all C ∈ π0(A).

Now consider any C ∈ π0(A) and any element [wC ] ∈ πi+1(Y, xC). Choose a
map wC : (Si+1, s)→ (Y, xC) representing [wC ]. Define the desired space Zi+1 and
the desired map fi+1 : Zi+1 → Y by

Zi+1 = Z ′i+1 ∨
∨

C∈π0(A)
[wC ]∈πi+1(Y,xC)

Si+1,

fi+1 = f ′i+1 ∨
∨

C∈π0(A)
[wC ]∈πi+1(Y,xC)

wC .

We have for j ≤ (i+ 1) and C ∈ π0(A) the commutative diagram

πj(Z
′
i+1, xC)

πj(f
′
i+1,xC)

//

��

πj(Y, xC)

πj(Zi+1, xC)

πj(fi+1,xC)

44

where the vertical arrow is induced by the inclusion Z ′i+1 → Zi+1. The left vertical
arrow is bijective for j < i and surjective for j = i by Corollary 4.5. It is also
injective for j = i, since the inclusion Z ′i+1 → Zi+1 has an obvious retraction
Zi+1 → Z ′i+1. Hence the left vertical arrow is bijective for j ≤ i. This implies that
πj(fi+1, xC) is injective for i = n and bijective for n < j ≤ i for all C ∈ π0(A).
Moreover, by construction any element [wC ] is in the image of πj(fi+1, xC). Hence
πj(fi+1, xC) is surjective for all C ∈ π0(A). Since π0(A) → π0(Zi+1) is surjective,
we conclude from the diagrams (2.1) and (2.6) that for any base point z ∈ Zi+1

the map πj(fi+1, z) is injective for i = n, bijective for n < j ≤ i, and surjective for
j = (i+ 1).

This finishes the proof of Theorem 6.3. �

Remark 6.4. One can think of the n-CW -model f : (Z,A) → (Y,A) as a sort of
homotopy theoretic hybrid of A and Y . If n = 0 and Y is path connected, then
the hybrid looks like Y in the sense that f is a weak homotopy equivalence. As n
increases, the hybrid looks more and more like A, and less and less like Y . If we
take n = ∞, then the inclusion A → Z is a weak homotopy equivalence and can
actually be realized by Z = A and idA.

More precisely, if k : A→ Z and l : A→ Y are the inclusions and a ∈ A is a base
point, we get a factorization

πi(l, a) : πi(A, a)
πi(k,a)−−−−→ πi(Z, a)

πi(f,a)−−−−→ πi(Y, a)

such that the following holds:

• If i < n, then the first map πi(k, a) is bijective;
• If i = n, then the first map πi(k, a) is surjective and the second map
πi(f, a) is injective;

• If i > n, then the second map πi(f, a) is bijective.

Corollary 6.5. Consider a CW -pair (X,A) and n ∈ N. Then the following asser-
tions are equivalent:
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(i) There is a CW -pair (Z,A) such that (X,A) and (Z,A) are homotopy
equivalent relative A and Z \A contains no cells of dimension ≤ n;

(ii) The pair (X,A) is n-connected.
Proof. (i) =⇒ (ii) This follows from Corollary 4.5.

(ii) =⇒ (i) We obtain from Theorem 6.3 an n-model (f, idA) : (Z,A) → (X,A)
such that Z \ A contains no cells of dimension ≤ n. Since (Z,A) and (X,A) are
n-connected and f is n-coconnected, f : Z → X is a weak homotopy equivalence
inducing the identity on A. A version of the Whitehead Theorem 5.1 (ii) relative
A implies that (X,A) and (Z,A) are homotopy equivalent relative A. �

In particular any path connected CW -complex is homotopy equivalent to a CW -
complex Z having precisely one 0-cell.

Example 6.6. Let X be path connected CW -complex. We conclude from The-
orem 2.7 that a 1-connected CW -model for X = (X, ∅) is given by the universal

covering X̃ → X.

For this section the case n = 0 is important which we treat next.

Definition 6.7. Consider a space Y . A CW -approximation (X, f) of Y is a CW -
complex X together with a weak homotopy equivalence f : X → Y .

Theorem 6.8 (Existence and uniqueness of CW -approximations). Let Y be a
topological space. Then:

(i) There exists a CW -approximation (X, f) of Y ;
(ii) Let (X, f) and (X ′, f ′) be two CW -approximations of Y . Then there ex-

ists a homotopy equivalence g : X → X ′ for which the following diagram
commutes up to homotopy

X
g

//

f
  

X ′

f ′
~~

Y.

The homotopy equivalence g is up to homotopy uniquely determined by the
property f ′ ◦ g ' f .

Proof. (i) Consider a path component C of Y . From Theorem 6.3 applied to the
pair (C, ∅) and n = 0 we obtain a CW -complex XC and weak homotopy equivalence
fC : XC → C. Then we get from X =

∐
C∈π0(C)XC and f =

∐
C∈π0(C) fC a CW -

approximation of Y .

(ii) We conclude from the Whitehead Theorem 5.1 (ii) that there exists a map
g : X → X ′ which is uniquely determined up to homotopy by the property f ′◦g ' f .
The map g is a weak homotopy equivalence and hence a homotopy equivalence by
Corollary 5.4. �

Remark 6.9. One may think of Theorem 6.8 as the topological analogue of the fact
that any positive R-chain complex C∗ possesses a projective R-resolution f∗ : P∗ →
C∗, i.e., a projective positive R-chain complex P∗ together with an R-chain map
f∗ : P∗ → C∗ inducing an isomorphism on all homology modules, and that for
two projective resolutions (P∗, f∗) and (P ′∗, f

′
∗) of C∗ there is a R-chain homotopy

equivalence g∗ : P∗ → P ′∗ which is a up to R-chain homotopy uniquely determined
by the property f ′∗ ◦ g∗ ' f∗.

Theorem 6.10. Let f : X → Y be a weak homotopy equivalence of spaces. Then
the induced map on singular homology Hn(f) : Hn(X)→ Hn(Y ) is bijective for all
n ≥ 0.
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Proof. See [31, Theorem 9.5.3 on page 237]. �

Remark 6.11 (CW -approximations for pairs). Consider a pair (Y,B). Choose a
CW -approximation u : A → B for B. Let cyl(u) be the mapping cylinder of u.
It contains the CW -complex A as subspace. Let g : (X,A) → (cyl(f), A) be a 0-
CW -model which exists by Theorem 6.3. Thus we obtain a pair of CW -complexes
(X,A) together with a weak homotopy equivalence g : X → Y satisfying g|A = idA.
Let p : cyl(f)→ Y be the projection which is a homotopy equivalence and satisfies
p|A = u. Let f : X → Y be the composite p ◦ v. Then f : X → Y and f |A =
u : A → B are weak homotopy equivalences. So we obtain a CW -approximation
(f, u) : (X,A)→ (Y,B) for pairs.

A relative version of the Whitehead Theorem 5.1 (ii), see Remark 5.7, shows
that for two such CW -approximations f : (X,A) → (Y,B) and f ′ : (X ′, A′) →
(Y,B) there is a homotopy equivalence of pairs g : (X,A) → (X ′, A′) which is up
to homotopy uniquely determined by the property that f and f ′ ◦ g are homotopic
as maps of pairs (X,A)→ (Y,B).

7. The category of compactly generated spaces

We briefly recall some basics about compactly generated spaces. More informa-
tion and proofs can be found in [25]. A topological space X is compactly generated
if it is a Hausdorff space and a set A ⊆ X is closed if and only if for any compact
subset C ⊂ X the intersection C ∩A is a closed subspace of C.

Every locally compact space, and every space satisfying the first axiom of count-
ability, e.g., a metrizable space, is compactly generated. If p : X → Y is an identifi-
cation of topological spaces and X is compactly generated and Y is Hausdorff, then
Y is compactly generated. A closed subset of a compactly generated space is again
compactly generated. For open subsets one has to be careful as it is explained in
Subsection 7.1.

7.1. Open subsets. Recall that a topological space B is called regular if for any
point x ∈ X and closed set A ⊆ X there exists open subsets U and V with x ∈ U ,
A ⊆ V and U ∩ V = ∅. A Hausdorff space is called locally compact if every
x ∈ X possesses a compact neighborhood. Equivalently, for every x ∈ X and open
neighborhood U there exists an open neighborhood V of x such that the closure
of V in X is compact and contained in U , see [23, Lemma 8.2 in Section 3-8 on
page 185].

Definition 7.1 (Quasi-regular open set and regular space). An open subset U ⊆ B
is called quasi-regular if for any x ∈ X there exists an open neighborhood Vx whose
closure in B is contained in U .

Lemma 7.2. (i) Let B be a compactly generated Hausdorff space. A quasi-
regular open subset U ⊆ B equipped with the subspace topology is compactly
generated;

(ii) Let f : X → Y be a (continuous) map between (not necessarily compactly
generated) spaces. If V ⊆ Y is a quasi-regular open subset, then f−1(V ) ⊆
X is a quasi-regular open subset;

(iii) The intersection of finitely many quasi-regular open subsets is again a
quasi-regular open subset;

(iv) A space is regular if and only if every open subset is quasi-regular;
(v) Any locally compact Hausdorff space, any metrizable space, and every CW -

complex are regular;
(vi) Every open subset of a CW -complex is quasi-regular and, equipped with

the subspace topology, compactly generated.
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Proof. (i) See [25, page 135].

(ii) Consider a point x ∈ f−1(V ). Choose an open set W of Y such that f(x) ∈W
and the closure of W in B is contained in V . Then f−1(W ) is an open subset of
X which contains x and whose closure in X is contained in f−1(V ).

(iii) Let U1, U2, . . . , Ur be quasi-regular open subsets. Consider x ∈ U :=
⋂r
i=1 Ui.

Choose for every i = 1, 2 . . . , r an open subset Vi with x ∈ Vi such that the closure Vi
of Vi in B is contained in Ui. Put V :=

⋂r
i=1 Vi. Then x ∈ V and V ⊆ ∩ri=1Vi ⊆ U .

Hence U is a quasi-regular open subset.

(iv) See [23, Lemma 2.1 in Section 4-2 on page 196].

(v) This is obvious for locally compact spaces. Metrizable spaces are treated in [23,
Theorem 2.3 in Section 4-2 on page 198]. Every CW -complex is paracompact,
see [22], and hence in particular regular, see [23, Theorem 4.1 in Section 6-4 on
page 255].

(vi) This follows from assertions (i), (iv), and (v). �

7.2. The retraction functor k. There is a construction which assigns to a topo-
logical Hausdorff space X a new topological space k(X) such that X and k(X) have
the same underlying sets, k(X) is compactly generated, X and k(X) have the same
compact subsets, the identity k(X)→ X is continuous and is a homeomorphism if
and only if X is compactly generated. Namely, define the new topology on k(X)
by declaring a subset A ⊆ X to be closed if and only if for every compact subset
of X the intersection A ∩ C is a closed subset of C.

7.3. Mapping spaces, product spaces, and subspaces. Given two compactly
generated spaces X and Y , denote by map(X,Y )k.o. the set of maps X → Y with
the compact-open-topology, i.e., a subbasis for the compact-open-topology is given
by the setsW (C,U) = {f : X → Y | f(C) ⊆ U}, where C runs through the compact
subsets of X and U runs though the open subsets of Y . Note that map(X,Y )k.o.
is not compactly generated in general. We denote by map(X,Y ) the topological
space given by k(map(X,Y )k.o.). Sometimes we abbreviate map(X,Y ) by Y X

and denote for a map f : Y → Z the induced map map(idX , f) : map(X,Y ) →
map(X,Z), g 7→ f ◦ g by fX : Y X → ZX . If X and Y are compactly generated
spaces, then X × Y stands for k(X ×p X), where X ×p Y is the topological space
with respect to the “classical” product topology.

If A ⊆ X is a subset of a compactly generated space, the subspace topology
means that we take k(Ast) for Ast the topology space given by the “classical”
subspace topology on A.

Roughly speaking, all the usual constructions of topologies are made compactly
generated by passing from Y to k(Y ) in order to stay within the category of com-
pactly generated spaces.

7.4. Basic features of the category of compactly generated spaces. The
category of compactly generated spaces has the following convenient features:

• A map f : X → Y of compactly generated spaces is continuous if and only
if its restriction f |C : C → Y to any compact subset C ⊆ X is continuous;

• If X, Y , and Z are compactly generated spaces, then the obvious maps

map(X,map(Y,Z))
∼=−→ map(X × Y,Z);

map(X,Y × Z)
∼=−→ map(X,Y )×map(X,Z),

are homeomorphisms and the map given by composition

map(X,Y )×map(Y ;Z)→ map(X,Z)
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is continuous;
• The product of two identifications is again an identification;
• If X is locally compact and Y compactly generated, then X×Y and X×pY

are the same topological spaces;
• Let X0 ⊆ X1 ⊆ X2 ⊆ · · · be a sequence of inclusions of compactly gener-

ated spaces such that Xi is a closed subspace of Xi+1 for i = 0, 1, 2, . . ..
Then the colimit colimi→∞Xi exists in the category of compactly gener-

ated Hausdorf spaces. Moreover, if Y is a compactly generated space, then
colimi→∞(Xi × Y ) exists in the category of compactly generated spaces
and the canonical map

colimi→∞(Xi × Y )
∼=−→
(
colimi→∞Xi

)
× Y

is a homeomorphism;
• In the category of compactly generated spaces the pushout of a diagram

X1
f1←− X0

f2−→ X2 exists if f1 or f2 is the inclusion of a closed subspace;
• Given a Hausdorf space Y , the canonical map k(Y )→ Y is a weak homo-

topy equivalence and induces an isomorphism on singular homology.
• Given a pushout in the category of compactly generated spaces, its product

with a compactly generated space is again a pushout in the category of
compactly generated spaces.

• The product of two CW -complexes is again a CW -complex;

Remark 7.3 (Compactly generated weak Hausdorff spaces). There is also the cat-
egory of compactly generated weak Hausdorff spaces, see [26]. The main advantage
in contrast to the category of compactly generated Hausdorff spaces, see [25], is
that in the category of compactly generated weak Hausdorff spaces colimits for
small diagrams, for instance pushouts or filtered colimits, always exist, see [26,
Corollary 2.23]. In the category of compactly generated spaces one can define the

pushout of a diagram X1
f1←− X0

f2−→ X2 only if for the pushout in the classical
setting

X0
f1
//

f2

��

X1

f2
��

X2
f1
// X

the space X is Hausdorff, since the retraction functor k digests only Hausdorff
spaces. Note that X is Hausdorff if f1 or f2 is an inclusion of a closed subspace.
Therefore in the case treated in the manuscript this condition is always satisfies
and the pushout exists in the category of compactly generated Hausdorff spaces.

The same discussion applies to the colimit colimi→∞Xi of a sequence of inclu-
sions of compactly generated spaces of X0 ⊆ X1 ⊆ X2 ⊆ · · · .

For simplicity we will discuss these issues not anymore and will work in the
category of compactly generated Hausdorff spaces throughout this manuscript.

8. Cofibrations

8.1. Basics about cofibrations.

Definition 8.1 (Homotopy extension property). A map i : A→ X has the homo-
topy extension property (HEP) for the space Y , if for any map f : X → Y and any
homotopy h : A× I → Y with h0 = f ◦ i, there exists a homotopy H : X × I → Y
with H0 = f and H ◦ (i× idI) = h.
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In other words, HEP for the space Y means that the extension problem indicated
by the following diagram has a solution H for every map f : X → Y and homotopy
h : A× I → Y satisfying h(a, 0) = f(a) for every a ∈ A

(8.2) X

iX0 $$

f

++A

i

<<

iA0

""

X × I H
// Y

A× I

i×idI

::

h

33

where iA0 (a) = (a, 0) for a ∈ A and iX0 (x) = (x, 0) for x ∈ X.
Equivalently, one may describe the homotopy extension property by the following

diagram

(8.3) A
h
//

i

��

map(I, Y )

e0Y
��

X
f

//

H
::

Y.

where e0
Y is given by evaluation at 0 and h corresponds to h under the adjunction

homeomorphism map(A× I, Y )
∼=−→ map(A,map(I, Y )), and analogously for H and

H.

Definition 8.4 (Cofibration). A map i : A→ X is called a cofibration if it has the
homotopy extension property for every space Y .

Recall that the mapping cylinder of a map i : A→ X is defined by the pushout

(8.5) A

iA0
��

i
// X

k

��

A× I
l
// cyl(i)

and there is a canonical map s : cyl(i) → X × I defined as the pushout of the
inclusion iX0 : X → X × I and the map i× idI : A× I → X × I.
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Cpli : A-X XXI

- Ax90]

I
Proposition 8.6. The following assertions are equivalent for a map i : A→ X:

(i) The map i : A→ X is a cofibration;
(ii) The map i : A→ X has the homotopy extension property for the mapping

cylinder cyl(i);
(iii) The canonical map s : cyl(i)→ X × I has a retraction r : X × I → cyl(i).

Proof. (i) =⇒ (ii) This is obvious.

(ii) =⇒ (iii) If we apply the homotopy lifting property to the map k : X → cyl(i)
and the homotopy l : A× I → cyl(f), we obtain a map r : X × I → cyl(i) such that
r ◦ iX0 = k and r ◦ (i × idI) = l hold. Since we have r ◦ s ◦ k = r ◦ iX0 = k and
r◦s◦ l = r◦(i× idI) = l, we conclude from the pushout property that r◦s = idcyl(i)

holds.

(iii) =⇒ (i) Consider any map f : X → Y and any homotopy h : A × I → Y
satisfying h0 = f |A. We obtain from the pushout property a map a : cyl(i) → Y
such that a ◦ k = f and a ◦ l = h hold. Now define H : X × I → Y to be
a ◦ r. Then H ◦ (i × idI) = a ◦ r ◦ (i × idI) = a ◦ r ◦ s ◦ l = a ◦ l = h and
H ◦ iX0 = a ◦ r ◦ iX0 = a ◦ r ◦ s ◦ k = a ◦ k = f hold. Therefore i has the homotopy
lifting property for every space Y and hence is a cofibration. �

Remark 8.7 (Cofibrations are closed embeddings). Note that Proposition 8.6 im-
plies that a cofibration i : A → X is a closed embedding, i.e., its image i(A) is a

closed subspace of X and that i induces a homeomorphism A
∼=−→ i(A). Namely, the

the composite j : A
iA1−→ A× I l−→ cyl(i) is a closed embedding and j can be written

as the composite A
i−→ X

iX1−−→ X×I r−→ cyl(i) because of r◦iX1 ◦i = r◦(i× idI)◦iA1 =
r ◦ s ◦ l ◦ iA1 = l ◦ iA1 = j. Now use the fact that a map u is a closed embedding if
the composite v ◦ u of it with some other map v is a closed embedding.

Lemma 8.8.

(i) If i : A → X is a cofibration, then there exists a retraction r : X × I →
X × {0} ∪A×{0} A× I;
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(ii) If there exists a retraction r : X × I → X × {0} ∪A×{0} A × I and the
inclusion A→ X is a closed embedding, then the inclusion i : A→ X is a
cofibration.

Proof. (i) Put Y = X ×{0} ∪A×{0} A× I. Define f : X → Y by f(x) = (x, 0) and
h : A×I → Y by h(a, t) = (a, t). From the homotopy extension property applied to
Y , f , and h we obtain the desired retraction r = H : X×I → X×{0}∪A×{0}A×I.

(ii) Note that X × {0} ∪A×{0} A × I ⊆ X × I is to be understood to be equipped
with the subspace topology. Since the inclusion A→ X is a closed embedding, we
get with this topology a pushout

A× {0} //

��

X × {0}

��

A× I // X × {0} ∪A×{0} A× I

where all maps are inclusions.
Consider f : X → Y and h : A × I → Y with f ◦ iA0 = h0. Consider the map

g := f ∪ h : X × {0} ∪A×{0} A× I → Y . The desired homotopy H : X × I → Y is
then given by g ◦ r. �

-
&&
[0]

Axso)
Ax

Lemma 8.9. Consider a pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration.
Then i : B → Y is a cofibration.

Proof. Suppose that h : B× I → Z and ϕ : Y → Z with h0 = ϕ ◦ i are given. Then
we get a homotopy h′ = h ◦ (f × idI) and a map ϕ′ = ϕ ◦ f : X → Z satisfying
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h′0 = ϕ′ ◦ i. Since i is a cofibration, we get a homotopy H ′ : X × I → Z satisfying
H ′0 = ϕ′ and H ′ ◦ (i× idI) = h′. We have the pushout

A× I
f×idI

//

i×idI
��

B × I

i×idI
��

X × I
f×idI

// Y × I.

Hence H ′ and h define a map H : Y × idI → Z which is uniquely determined by
H ◦ (f × idI) = H ′ and H ◦ (i× idI) = h. We get H0 = ϕ, since H0 and ϕ have the
same composite with f and i. �

Lemma 8.10. Let X0 ⊆ X1 ⊆ X2 ⊆ · · · be a sequence of cofibrations. Let X be
its colimiti→∞Xi.

Then the canonical map X0 → X is a cofibration.

Proof. Because of Remark 8.7 we can assume without loss of generality that Xi is
a closed subspace of both Xi+1 and X for i = 0, 1, 2, . . . and X =

⋃∞
i=0Xi. Because

of Lemma 8.8 (ii) it suffices to construct a retraction R : X × I → X ×{0}∪X0×{0}
X0 × I. Since X × I = colimi→∞X × {0} ∪Xi×{0} (Xi × I) holds, it suffices to
construct a sequence of maps

ri : X × {0} ∪Xi×{0} Xi × I → X × {0} ∪X0×{0} X0 × I

for i = 0, 1, 2, . . . such that ri|X×{0}∪Xi−1×{0}Xi−1×I = ri−1 holds for i = 1, 2, 3, . . .

and r0 = idX×{0}∪X0×{0}X0×I holds.

We construct the desired retractions ri by induction over i = 0, 1, 2, . . .. The
induction beginning is obvious. The induction step from (i− 1) to i ≥ 1 is done as
follows. Since Xi−1 → Xi is a cofibration, there exists a retraction r′i : Xi × I →
Xi × {0} ∪Xi×{0} Xi−1 × I by Lemma 8.8 (ii). It extends to a retraction

r′i : X × {0} ∪Xi×{0} Xi × I → X × {0} ∪Xi−1×{0} Xi−1 × I

by idX×{0} ∪r′i. Now define ri to be the composite ri−1 ◦ r′′i . �

8.2. Cofibrations and NDR-pairs.

Definition 8.11 (NDR-pair). We call a pair (X,A) an NDR-pair or neighborhood
deformation retract, if there are maps h : X × I → X and v : X → I satisfying:

• h(a, t) = a for a ∈ A and t ∈ I;
• h(x, 0) = x for x ∈ X;
• v−1(0) = A;
• h(x, t) ∈ A for x ∈ X and t ∈ I with v(x) < t.

Lemma 8.12. Let (X,A) be a pair. Let i : A → X be an inclusion. Then the
following assertions are equivalent:

(i) The map i : A→ X is a cofibration;
(ii) The pair (X,A) is an NDR-pair.

Proof. (i) =⇒ (ii) We get from Remark 8.7 that A ⊆ X is closed and from
Lemma 8.8 (i) a retraction r : X × I → X × {0} ∪A×{0} A× I. Define

h : X × I → X, x 7→ prX ◦ r(x),

and

v : X → I, x 7→ sup{|t− prI ◦ r(x, t)| | t ∈ I},
where prX : X × I → X and prI : X × I → I are the canonical projections. One
easily checks that h and v satisfy the conditions appearing in Definition 8.11.
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(ii) =⇒ (i) Given the maps h and v, we can define a retraction r : X × I →
X × {0} ∪A×{0} A× I by

r(x, t) =

{
(h(x, t), 0) if t ≤ v(x);

(h(x, t), t− v(x)) if t ≥ v(x).

Since A = v−1(0) holds, A ⊆ X is closed. Moreover, A is a Gδ-subset of X, i.e.,
A is the intersection of countably many open subsets of X. Lemma 8.8 (ii) implies
that i : A→ X is a cofibration. �

Definition 8.13 (Strong neighborhood deformation retraction). Consider a pair
(X,A). We call A a strong neighborhood deformation retraction of X, if A ⊆ X is
closed, there is an open neighborhood U of A in X such that the inclusion i : A→ U
has retraction r : U → A, and there exists a homotopy relative A between idU and
i ◦ r, or, equivalently, A ⊆ X is closed, there is an open neighborhood U of A in
X and a homotopy h : U × I → U such that h(u, 0) = u and h(u, 1) ∈ A holds for
u ∈ U and we have h(a, t) = a for a ∈ A and t ∈ I.

Definition 8.14 (Neighborhood deformation retraction). Consider a pair (X,A)
We call A a neighborhood deformation retraction of X, if A ⊆ X is closed, there
is an open neighborhood U of A in X and a homotopy h : U × I → X such that
h(u, 0) = u and h(u, 1) ∈ A hold for u ∈ U and we have h(a, t) = a for a ∈ A and
t ∈ I.

Remark 8.15 (Strong neighborhood deformation retraction versus neighborhood
deformation retraction). The difference between Definition 8.13 and Definition 8.14
is that in Definition 8.13 the target of h is U , whereas in Definition 8.14 the target
of h is X. Hence a strong neighborhood deformation retraction is a neighborhood
deformation retraction. The converse is not true in general.

NEIGH .
DEF

. RETRACTION STRANG NEIGH .
DEF RETRACTION

Y Y

⑨i h(X ,+

2
h(X,

Remark 8.16 (NDR-pairs versus neighborhood deformation retractions). Let (X,A)
be an NDR-pair in the sense of Definition 8.11 which is equivalent to i : A → X
being a cofibration by Lemma 8.12. Then it is a neighborhood deformation retrac-
tion in the sense of Definition 8.14. Namely, given h : X × I → X and v : X → I



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 41

as in Definition 8.11, we get by U = v−1([0, 1)) and h|U×I : U × I → X the data
required in Definition 8.14. The converse is nor true in general.

Now suppose that (X,A) is neighborhood deformation retraction in the sense of
Definition 8.14 and assume additionally that there is a map w : X → I satisfying
w−1(0) = A and U = w−1([0, 1)). The latter additional condition is known to be
automatically satisfied if X is a perfectly normal space, i.e., a metric space or a
CW -complex, and A ⊆ X is closed, or if X is a normal space and A ⊆ X is a closed
Gδ-subset of X. Then we obtain a retraction r : X × I → X ×{0} ∪A×{0} A× I by

r(x, t) =



(x, t) if x ∈ w−1(0);

(h(x, t/2w(x)), 0) if x ∈ w−1((0, 1/2]), t ≤ 2w(x);

(h(x, 1), t− 2w(x)) if x ∈ w−1((0, 1/2]), 2w(x) ≤ t ≤ 1;

(h(x, 2t(1− w(x))), 0) if x ∈ w−1([1/2, 1));

(x, 0) x ∈ w−1(1).

Hence i : A → X is a cofibration by Lemma 8.8 (ii) which is equivalent to (X,A)
being an NDR-pair by Lemma 8.12.

8.3. Relative CW -complexes are cofibrations.

Theorem 8.17 (Relative CW -complexes are cofibrations). Let (X,A) be a relative
CW -complex. Then the inclusion i : A→ X is a cofibration.

Proof. Because of Lemma 8.10 it suffices to prove that the inclusion Xi → Xi+1 is
a cofibration for i = 0, 1, 2, . . .. Choose a pushout∐

j∈Ji S
i //

��

Xi

��∐
j∈Ji D

i+1 // Xi+1.

By Lemma 8.9 it suffices to show that the left vertical arrow in the diagram above
is a cofibration. This follows from the fact that the inclusion Si → Di+1 is a
cofibration which is a consequence of Lemma 8.8 (ii). �

One can actually show the following stronger result which we state without
giving the proof which follows essentially from the fact that (Di+1, Si) is a strong
neighborhood deformation retraction and is similar to the one of Theorem 8.17.

Theorem 8.18 (CW -complexes and strong neighborhood deformation retraction).
Let (B,A) be a strong neighborhood deformation retraction. Let (X,B) be a relative
CW -complex. Then the pair (X,A) is a strong neighborhood deformation retraction.

We omit the proof of the following result whose prove is similar to the one of
Theorem 8.18.

Theorem 8.19 (CW -complexes are locally contractible). Every CW -complex X
is locally contractible, i.e., for every point x ∈ X and every open neighborhood V
of x in X there exists an open neighborhood U of x in X such that U ⊆ V holds
and U and U are contractible.

8.4. Well-pointed spaces.

Definition 8.20 (Well-pointed space). A well-pointed space (X,x) is a pointed
space such that the inclusion of the base point {x} → X is a cofibration.

Lemma 8.21. Let {(Xi, xi) | i ∈ I} be a collection of well-pointed spaces. Then∨
i∈I(Xi, xi) with the canonical base point is well-pointed.
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Proof. We have the pushout∐
i∈I{xi} //

��

{•}

��∐
i∈I Xi

//
∨
i∈I(Xi, xi)

where the left vertical arrow is the obvious inclusion and a cofibration. Now apply
Lemma 8.9. �

8.5. Comparing pointed homotopy and homotopy. Consider a well-pointed
space (X,x) and space Y . Next we define a covariant functor

(8.22) γ = γ(X,x),Y : Π(Y )→ Sets

from the fundamental groupoid Π(Y ) to the category Sets of sets. It sends the
element y ∈ Y to the set [(X,x), (Y, y)]0 of pointed homotopy classes of pointed
maps (X,x) → (Y, y). Consider a morphism [w] : y0 → y1 in Π(Y ) represented by
path w : I → Y with w(0) = y0 and w(1) = y1 and an element [f ] ∈ [(X,x), (Y, y0)]0

represented by a pointed map f : (X,x) → (Y, y0). Since the inclusion {x} → X
is a cofibration, we can find a homotopy h : X × I → Y such that h0 = f0 and
h(x, t) = w(t) holds. Now we define γ([w])([f ]) = [h1]. We omit the proof, which
is essentially based on the fact that the inclusion {x}× I → X × I is a cofibration,
that this definitions makes sense and yields the functor γ announced in (8.22).

If we fix a point y ∈ Y , we get using the identification of π1(Y, y) with autΠ(Y )(y)
an operation

(8.23) π1(Y, y)× [(X,x), (Y, y)]0 → [(X,x), (Y, y)]0.

One easily checks that the forgetful map [(X,x), (Y, y)]0 → [X,Y ] induces a bijec-
tion

(8.24) π1(Y, y)\[(X,x), (Y, y)]0
∼=−→ [X,Y ].

Note that for a simply connected pointed space (Y, y), the bijection (8.24) reduces

to a bijection [(X,x), (Y, y)]0
∼=−→ [X,Y ].

If we take (X,x) = (Sn, s), the operation (8.23) yields an operation of π1(Y, y) on
πn(Y, y). If n = 1, this is the conjugation action, where [w] acts on [u] ∈ π1(Y, y) by
[u] 7→ [w] · [u] · [w]−1. If n ≥ 2, then πn(Y, y) is abelian and the π1(Y, y)-action is by
automorphism of abelian groups. Hence we get a left Z[π1(Y, y)]-module structure
on πn(Y, y) for n ≥ 2.

Suppose that Y is path connected and has a universal covering p : Ỹ → Y .

Choose ỹ ∈ Ỹ with p(ỹ) = y. Recall that Ỹ comes with a π1(Y, y)-action. Fix

a natural number n ≥ 2. We get for [u] ∈ π1(Y, y) a homeomorphism l[u] : Ỹ
∼=−→

Ỹ by left multiplication with [u]. Choose a path v : I → Ỹ from [u] · ỹ to ỹ.

Then we get an isomorphism Tn([v]) : πn(Ỹ , [u] · ỹ)
∼=−→ πn(Ỹ , ỹ) from (2.6), which

is independent of the choice of v as Ỹ is simply connected. Now we define a

left π1(Y, y)-action on πn(Ỹ , ỹ) by letting [u] ∈ π1(Y, y) act on πn(Ỹ , ỹ) by the

composite πn(Ỹ , ỹ)
πn(l[u],ỹ)
−−−−−−→ πn(Ỹ , [u] · ỹ)

Tn([v])−−−−→ πn(Ỹ , ỹ). One easily checks

that this defines a left Z[π1(Y, y)]-module structure on the abelian group πn(Ỹ , ỹ).

Recall the isomorphism πn(p, ỹ) : πn(Ỹ , ỹ)
∼=−→ πn(Y, y) from Theorem 2.7. One

easily checks that it is compatible with the left Z[π1(Y, y)]-module structures on

πn(Ỹ , ỹ) and πn(Y, y) constructed above.

Lemma 8.25. Let f : (X,x) → (Y, y) be a pointed map of well-pointed spaces.
Suppose that f is a homotopy equivalence (after forgetting the base points).
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Then f is a pointed homotopy equivalence.

Proof. Choose a homotopy inverse g′ : Y → X of f . Because of (8.24) we can change
g′ up to homotopy such that g′(y) = x holds. The map f∗ : [(Y, y), (X,x)]0 →
[(Y, y), (Y, y)]0 sends [g′] to the element [f ◦g′] which is mapped under the projection
[(Y, y), (Y, y)]0 → [Y, Y ] to [idY ]. Because of (8.24) there is a element v ∈ π1(Y, y)
satisfying [idY ] = v · [f ◦g′] in [(Y, y), (Y, y)]0. Since π1(f, x) : π1(X,x)→ π1(Y, y) is
bijective, we can find u ∈ π1(X,x) with π1(f, x)(u) = v. Let g : (Y, y)→ (X,x) be a
pointed map satisfying [g] = u·[g′] in [(Y, y), (X,x)]0. Then we get in [(Y, y), (Y, y)]0

[f ◦ g] = f∗([g]) = f∗(u · [g′]) = v · f∗([g′]) = v · [f ◦ g′] = [idY ].

Hence g is a pointed homotopy right inverse of f . The same argument applied to
g shows that [g] has a pointed homotopy right inverse. This implies that f is a
pointed homotopy equivalence. �

8.6. The Homotopy Theorem for pushouts and cofibrations. Given a space
B, let TopB be the category of topological spaces under B. Objects are maps
u : B → X. A morphism from u : B → X to v : B → Y is a map f : X → Y
satisfying f ◦u = v. We call two such morphism f0, f1 : u→ v homotopic if they are
homotopic through morphisms in TopB , i.e., there exists a homotopy h : X×I → Y
such that h0 = f0 and h1 = f1 holds and we have ht ◦ u = v for every t ∈ I. Let
h -TopB be the associated homotopy category, i.e., the set of objects of h -TopB

and TopB agree and a morphism from u to v in h -TopB is a homotopy class of
morphisms from u to v in TopB .

Let CofB and h -CofB respectively be the full subcategory of TopB and h -TopB

respectively consisting of those objects i : B → X for which i is a cofibration.
Given two spaces A and B, define Π(A,B) to be the following category. Objects

are maps f : A → B. A morphism from f0 to f1 is a homotopy class [h] relative
A × {0, 1} of maps h : A × I → B with h0 = f0 and h1 = f1. Note that h itself is
a homotopy between f0 and f1 and [h] is the homotopy class of such homotopies
represented by h. If A = {•}, then Π({•}, B) is the fundamental groupoid Π(B) of
B. Note that Π(A,B) is a groupoid. Given a cofibration i : A→ X, we next sketch
the construction of a contravariant functor

(8.26) βi : Π(A,B)→ h -CofB .

An object f : A→ B is sent to the cofibration γi(f) : B → Yf given by the following
pushout and Lemma 8.9

A
f

//

i

��

B

γi(f)

��

X
βi(f)

// Yf .

Now consider two maps f0, f1 : A→ B together with a homotopy h : A×I → B with
h0 = f0 and h1 = f1. As i is a cofibration, there exists a homotopy H : X×I → Yf0
with H0 = βi(f0) and H ◦ (i× idI) = γi(f0) ◦ h. Since we have the pushout

A
f1

//

i

��

B

γi(f1)

��

X
βi(f1)

// Yf1

there is precisely one map u : Yf1 → Yf0 uniquely determined by the property that
u ◦ βi(f1) = H1 and u ◦ γi(f1) = γi(f0) hold. Obviously u is a morphism from
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γi(f1) : B → Yf1 to γi(f0) : B → Yf0 in CofB . Thanks to H, we have

(8.27) u ◦ βi(f1) ' βi(f0).

We omit the proof that [u] depends only on [h] which can be found in [31, Propo-
sition 5.2.1 on page 107]. So we can define βi([h]) = [u]. We also omit the proof
that βi is a contravariant functor. Note that βi([u]) is represented by a homotopy
equivalence as π(A,B) is a groupoid.

Theorem 8.28 (Homotopy Theorem for pushouts and cofibrations). Consider a
pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration and f is a homotopy equivalence.
Then i : B → Y is a cofibration and f is a homotopy equivalence.

Proof. The map i is a cofibration by Lemma 8.9. Let g : B → A be a homotopy
inverse of f . Consider the pushout

B
g
//

i
��

A

i
��

Y
g
// Z.

The map i is a cofibration by Lemma 8.9. Since g ◦ f ' idA, we get from the
contravariant functor βi : Π(A,A)→ h -CofA of (8.26) and from (8.27) a homotopy
equivalence u : Z → X such that u◦g ◦f ' idX holds. Hence f has a left homotopy
inverse. Interchanging the role of f and g shows that f has a right homotopy
inverse. Hence f is a homotopy equivalence. �

Theorem 8.28 can easily be extended to the following theorem.

Theorem 8.29 (Homotopy Theorem for maps between pushouts). Let the follow-
ing two diagrams be pushouts

X0
i1
//

i2

��

X1

j1

��

X2
j2
// X

Y0
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y

where the left vertical arrows i2 and k2 are cofibrations. Let fi : Xi → Yi be homo-
topy equivalences for i = 0, 1, 2 satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0.
Denote by f : X → Y the map induced by f0, f1, and f2 and the pushout property.

Then f is a homotopy equivalence.

Remark 8.30. The condition that the maps i2 and k2 are cofibrations appearing
in Theorem 8.29 is necessary as the following examples shows.

We take as pushouts

Sn
i1
//

i2

��

Dn+1

j1

��

Dn+1

j2
// Sn+1

Sn
k1
//

k2

��

{•}

l1

��

{•}
l2

// {•}
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and define f0 = idSn and f1, f2, and f to be the the projections.

Example 8.31. Let B be the compact subset of R2 given by

B = {(1/n, 0) ∈ R2 | n ∈ Z≥1} q {(0, 0)}.
Let C be the cone over B with cone point (0, 1) in R2, i.e.,

C = {x ∈ R2 | ∃t ∈ I and b ∈ B satisfying x = t · b+ (1− t) · (0, 1)}.
Define

A = {x ∈ R2 | x ∈ C or − x ∈ C}.

#
Then we have:

(i) The inclusion {(0, 1)} → C is a cofibration;
(ii) C is contractible;
(iii) A is not contractible;
(iv) The inclusion {(0, 0)} → A is not a cofibration;
(v) The inclusion {(0, 0)} → C is not a cofibration;

(vi) C is a not CW -complex;
(vii) A is not a CW -complex.

Since we have the pushout whose left vertical arrow is the obvious inclusion and
a cofibration

B × {1} //

��

{•}

��

B × I // C

assertions (i) and (ii) follow from Theorem 8.28.
Next we show assertion (iii). Suppose that A is contractible. Since A is in

particular path connected, we can find a map h : A × I → A with h(a, 0) = (0, 0)
and h(a, 1) = a for all a ∈ A. Since any path from (−1/n, 0) to (0, 0) in A
must go through (0,−1), we can find elements t−n ∈ I with h(−1/n, t−n ) = (0,−1)
for n ≥ 1. Since I is compact, we can find a strictly monotone increasing function
N : N→ N and an element t− ∈ I with limn→∞ t−N(n) = t−. As limn→∞ 1/N(n) = 0

holds, we conclude h((0, 0), t−) = limn→∞ h(−1/N(n), t−N(n)) = (0,−1). Since h
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is continuous, we can choose t− such that h((0, 0), t) = (0,−1) for t ∈ I implies
t− ≤ t. Analogously we construct t+ ∈ I such that h((0, 0), t+) = (0, 1) holds
and h((0, 0), t) = (0, 1) for t ∈ I implies t+ ≤ t. Next we consider only the case
t+ ≤ t−, the other case is completely analogous. Obviously t+ 6= t− holds and
hence t+ < t−, By continuity limn→0 h(−1/n, t+) = h(0, t+) = (0, 1). Hence there
is a natural number n0 such that h(−1/n, t+) = (0, un) with un ≥ 0 holds for
n ≥ n0. Since any path from (−1/n, 0) to (0, u) for u ≥ 0 in A must go through
(0,−1) we can for every n ≥ n0 elements s−n ∈ I with h(−1/n, s−n ) = (0,−1) and
s−n ≤ t+. Since I is compact, we can find a strictly monotone increasing function
N ′ : N→ N and an element s− ∈ I with limn→∞ s−N ′(n) = s−. Obviously s− ≤ t+.

As limn→∞ 1/N ′(n) = 0 holds, we conclude (0,−1) = limn→∞ h((1/n, 0), s−n ) =
h((0, 0), s−). This implies t− ≤ s−. Hence we get t− ≤ t+, a contradiction.

Suppose that assertions (iv) is not true. As C and hence also {−x ∈ Rn | x ∈ C}
are contractible by assertion (ii), Theorem 8.29 implies that A is contractible. Since
we have already proved that A is not contractible, assertion (iv) follows.

Suppose that the inclusion {(0, 0)} → C is a cofibration. Then also the inclusion
{(0, 0)} → {−x ∈ Rn | x ∈ C} is a cofibration. This implies by Lemma 8.21 that the
inclusion {(0, 0)} → A is a cofibration. Hence assertion (iv) implies assertion (v).

Since the point (0, 0) in C has the property that any neighborhood of it in
C which does not contain (1, 0) is not contractible, assertion (vi) follows from
Theorem 8.19. The proof of assertion (vii) is analogous.

8.7. (Pointed) cylinders, cones and suspensions. Consider a space X. Recall
that its cylinder is defined by X × I, its cone cone(X) by the pushout

X × {1} //

��

{•}

��

X × I // cone(X),

and its suspension by the pushout

X //

��

cone(X)

��

cone(X) // ΣX.

Equivalently, one can define ΣX to be the quotient of X× [−1, 1] under the equiva-
lence relation generated by (x0, 1) ∼ (x1, 1) for x0, x1 ∈ X and (x0,−1) ∼ (x1,−1)
for x0, x1 ∈ X. There is an obvious pushout

X //

��

cone(X)

��

{•} // ΣX.

Consider a pointed space (X,x). Its reduced mapping cylinder cyl(X,x), its re-
duced mapping cone cone(X,x), and its reduced suspension Σ(X,x) are the defined
by the pushouts

(8.32) {x} × I //

��

{•}

��

X × I // cyl(X,x),
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(8.33) {x} × I ∪X × {1} //

��

{•}

��

X × I // cone(X,x),

and

(8.34) {x} × I ∪X × {0, 1} //

��

{•}

��

X × I // Σ(X,x).

and come with a preferred base point. Note that Σ(X,x) can be identified with the
smash product (S1, s) ∧ (X,x) = (S1 ×X)/(S1 × x ∪ {s} ×X).

Given a well-pointed pointed space (X,x), the canoncial projections cyl(X) →
cyl(X,x), cone(X)→ cone(X,x), and ΣX → Σ(X,x) are pointed homotopy equiv-
alences by Lemma 8.25, Theorem 8.28, and Theorem 8.29.

Cone(X) Cone(X
,
X

- Ecoupsis
X X

[X [(X
, x)

COLLAP)

· X-

- 2
There are obvious pushouts

{x} × I //

��

{•}

��

cyl(X,x) // cone(X,x),

and

X //

��

cone(X,x)

��

cone(X,x) // Σ(X,x).
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Let f : (X,x)→ (Y, y) be a pointed map. Its reduced mapping cone cone(f, x) is
defined by the pushout

(8.35) X
f

//

��

Y

��

cone(X,x) // cone(f, x)

or, equivalently by the pushout

(8.36) ({x} × I) ∪ (X × {0}) ∪ (X × {1}) u
//

��

Y

��

X × I // cone(f, x)

where u sends (x, t) for t ∈ I to y, (z, 1) to f(z) for z ∈ X and (z, 0) to y for z ∈ X.
Note that cone(f, x) comes with a preferred base point for which the pushout (8.35)

is a diagram of pointed maps of pointed spaces.

8.8. Turning a map into a cofibration. Consider a map f : X → Y . Then it can
be replaced up to homotopy equivalence by a cofibration. Namely let i : X → cyl(f)
be the canonical inclusion and p : cyl(i) → Y be the projection. Then we get the
factorization

f : X
i−→ cyl(f)

p−→ Y

where i is a cofibration and p is a homotopy equivalence. Actually we get a diagram

(8.37) X

i

��

f

||

f

""

Y
k

'
// cyl(f)

p

'
// Y

where the left triangle commutes up to homotopy, the right triangle commutes,
the two horizontal maps k and p are homotopy equivalences which are homotopy
inverse to one another, and the vertical arrow i is a cofibration.
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X

-

i f

-Gr G
-

Cylli) Y
P

Y

0.8 : 0

8.9. The Cofiber Sequence. A pointed map f : (X,x)→ (Y, y) induces by com-
position for every pointed space (B, b) a map

f∗ : [(Y, y), (B, b)]0 → [(X,x), (B, b)]0, [u] 7→ [u ◦ f ]

which depends only on the pointed homotopy class of f . A sequence (X,x)
f−→

(Y, y)
g−→ (Z, z) of maps of pointed spaces is called homotopy coexact if for each

pointed space (B, b) the induced sequence of pointed sets

[(Z, z), (B, b)]0
g∗−→ [(Y, y), (B, b)]0

f∗−→ [(X, y), (B, b)]0

is exact at [(Y, y), (B, b)]0 in the sense that the image of g∗ is the preimage of
f∗ of the base point in [(X, y), (B, b)]0 given by [cb] for the constant pointed map
cb : (X,x)→ (B, b). Note that this implies that g◦f is pointed homotopy equivalent
to the constant map cz : (X,x)→ (Z, z).

Lemma 8.38. Let f : (X,x)→ (Y, y) be a pointed map. Let j : (Y, y)→ cone(f, x)
be the canonical inclusion which is a map of pointed spaces.

Then the sequence

(X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗)

is homotopy coexact.

Proof. This is a direct consequence of the pushout (8.36) which says that a pointed
map (cone(f, x), ∗) → (B, b) is the same as a pointed map v : (Y, y) → (B, b)
together with a pointed homotopy h : X× I → B between the constant map cb and
v ◦ f . �

One can iterate this construction and obtains a homotopy coexact sequence of
pointed sets, infinite to the right,

X
f−→ Y

j−→ cone(f)
f2−→ cone(j)

f3−→ cone(f2)
f3−→ · · ·

where we omit the base points from the notation and homotopy coexact means that
it is exact as a sequence of pointed sets at Y , cone(f), cone(j), . . ..
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The further investigation replace the iterated mapping cones with homotopy
equivalent spaces which are more appealing, namely iterated suspensions.

Suppose additionally, that the pointed map f : (X,x) → (Y, y) is a cofibration
(after forgetting the base points). Note that then we can think of X as a closed
subspace of Y and f as the inclusion of X into Y , see Remark 8.7. Then we
obtain a pointed map p : (cone(f, x), ∗)→ (Y/X, ∗) which is homotopy equivalence
by Theorem 8.29. We conclude from Lemma 8.25 that p is a pointed homotopy
equivalence. Hence the following diagram of pointed sets commutes

(8.39) (X,x)
f
//

idX

��

(Y, y)
j
//

idY

��

(cone(f, x), ∗)

p

��

(X,x)
f
// (Y, y)

q
// (Y/X, ∗)

where q : X → X/Y is the canonical projection and all vertical arrows are pointed

homotopy equivalences. Hence the sequence (X,x)
f−→ (Y, y)

q−→ (Y/X, ∗) is homo-
topy coexact.

Note that j : (Y, y) → cone(f, x) is a cofibration and cone(f, x)/Y is homeo-
morphic to Σ(X,x) regardless whether f is a cofibration or not. Hence we obtain
from (8.39) a commutative diagram of pointed sets

(Y, y)
j
//

idY

��

(cone(f, x), ∗) k
//

idcone(f,x)

��

(cone(j, ∗), ∗)

p′

��

(Y, y)
j
// (cone(f, x), ∗)

g
// (Σ(X,x), ∗)

where all vertical arrows are pointed homotopy equivalences and g = p′ ◦ k. Hence
the sequence

(X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗) g−→ (Σ(X,x), ∗)

is homotopy coexact. Iterating this process leads to the following result. Denote
by Σn the n-fold suspension.

Theorem 8.40 (Cofiber sequence). Consider a pointed map f : (X,x) → (Y, y).
Then we obtain a homotopy coexact sequence, infinite to the right

(8.41) (X,x)
f−→ (Y, y)

j−→ (cone(f, x), ∗) g−→ (Σ(X,x), ∗) Σf−−→ (Σ(Y, y), ∗)
Σj−−→ Σ(cone(f, x), ∗) Σg−−→ (Σ2(X,x), ∗) Σ2f−−→ (Σ2(Y, y), ∗)

Σ2j−−→ Σ2(cone(f, x), ∗) Σ2g−−→ (Σ3(X,x), ∗) Σ3f−−→ · · · .

Note that this sequence (8.41) is natural in f . Moreover, it yields for every
pointed space (B, b) the following exact sequence of pointed sets, which is infinite
to the left, natural in both f and (B, b), and sometimes called the Puppe sequence:

(8.42)

· · · Σ2g∗−−−→ [Σ2 cone(f), B]0
Σ2j∗−−−→ [Σ2Y,B]0

Σ2f∗−−−→ [Σ2X,B]0
Σg∗−−→ [Σ cone(f), B]0

Σj∗−−→ [ΣY,B]0
Σf∗−−→ [ΣX,B]0

g∗−→ [cone(f), B]0
j∗−→ [Y,B]0

f∗−→ [X,B]0.

Here and also sometimes in the sequel we omit the base points from the nota-
tion. Note the obvious fact that the map f∗ : [Y,B]0 → [X,B]0 is not necessarily
surjective.
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8.10. Group structures on the Puppe Sequence. Let (X,x) be a well-pointed
space and (Y, y) be a pointed space. We have the pinching map ∇1 : S1 → S1 ∨ S1

of (2.5). It induces a pinching map

∇X : Σ(X,x) = S1 ∧X
∇1∧idX−−−−−→ (S1 ∨ S1) ∧X = (S1 ∧X) ∨ (S1 ∧X) = Σ(X,x) ∨ Σ(X,x).

Now we can define a group structure on [ΣX,Y ]0 by

(8.43) [ΣX,Y ]0 × [ΣX,Y ]0 → [ΣX,Y ]0, [f ] · [g] 7→ [(f ∨ g) ◦ ∇X ].

Analogously to the proof of Lemma 2.4, one can show that this group structure
is abelian on [ΣnX,Y ]0 for n ≥ 2. If we take (X,x) to be (S0, s), then the groups
[ΣnS0, (Y, y)]0 = [Sn, Y ]0 and πn(Y, y) agree.

The exact Puppe sequence (8.42) appearing in Theorem 8.40 is an exact sequence
of groups or abelian groups in the ranges where the group structures are defined
on the sets of pointed homotopy classes.

9. Fibrations

9.1. Basics about fibrations.

Definition 9.1 (Homotopy lifting property). A map p : E → B has the homotopy
lifting property (HLP) for the space X, if for each homotopy h : X × I → B and
each map f : X → E satisfying p ◦ f = h0, there is a homotopy H : X × I → E
with p ◦H = h and H0 = f .

In other words, the HLP for a space X means that the extension problem in-
dicated by the following diagram has a solution H for every map f : X → E and
homotopy h : X × I → Y satisfying p ◦ f = h0

(9.2) E

p

vv
B map(I, E)

map(idI ,p)

vv

e0E

hh

X
H

oo

f

ll

h
rr

map(I,B)

e0B

hh

where e0
B and e0

E are given by evaluation at 0 and h is the adjoint of h under the

canonical adjunction homeomorphism map(X × I,B)
∼=−→ map(X,map(I,X)), and

analogously for H and H.
Equivalently, one may describe the HLP with by the following diagram

(9.3) X
f
//

iX0
��

E

p

��

X × I
H

;;

h
// B.

Definition 9.4 (Fibration). A map p : E → B is called a fibration or Hurewicz
fibration if it has the homotopy lifting property for every space X.

A map p : E → B is called a Serre fibration if it has the homotopy lifting property
for the cube In for all n ≥ 1.
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Define for a map p : E → B the space W (p) by the pullback

(9.5) W (p)
ep

//

p

��

E

p

��

map(I,B)
e0B

// B.

Explicitly W (p) = {(e, w) ∈ E×map(I,B) | p(e) = w(0)} ⊆ E×map(I,B) and ep
sends (e, w) to e and p sends (e, w) to w. Note that we obtain from (9.5) a map

r : map(I, E)→W (p)

uniquely determined by the property that ep ◦r = e0
E and p◦r = map(idI , p) holds.

If we have base points e ∈ E and b ∈ B with f(e) = b, then W (p) inherits the
base point ∗ = (e, cb) for the constant map cb : I → B with image {b} and the
diagram (9.5) is a diagram of pointed spaces.

Proposition 9.6. The following assertions are equivalent for a map p : E → B:

(i) p is a fibration;
(ii) p has the HLP for W (p);

(iii) The map r : map(I, E)→W (p) has a section s.
Proof. (i) =⇒ (ii) This is obvious.

(ii) =⇒ (iii) If we apply the HLP to the map ep : W (p) → E and the homo-
topy h : W (p) × I → B which corresponds under the adjunction homeomorphism

map(W (p)× I,B)
∼=−→ map(W (p),map(I,B)) to p, we get a map s : W (p)× I → E.

Let s : W (p) → map(I, E) be the map corresponding to s under the adjunction

homeomorphism map(W (p)× I, E)
∼=−→ map(W (p),map(I, E)). Since the compos-

ite of r ◦ s and of idW (p) with both ep and p agree, we get r ◦ s = idW (p).

(iii) =⇒ (i) Consider a homotopy h : X × I → B and a map f : X → E satisfying
p ◦ f = h0. Because of the pullback (9.5) we get from (f, p) a map u : X → W (p).
Let H : X → map(I, E) be the composite s ◦ u. Let H : X × I → E be the homo-

topy corresponding to H under the adjunction homeomorphism map(X × I, E)
∼=−→

map(X,map(I, E)). Then H is a solution to the HLP given by (h, f). This shows
that p is a fibration. �

Proposition 9.7. Consider the pullback

X
f
//

q

��

Y

q

��

B
f
// C

If q is a fibration, then its pullback q along f is a fibration.

Proof. Consider a map u : A → X and a homotopy h : A × I → B such that
h0 = q ◦ u holds. As q is a fibration, we get from the HLP applied to the map
f ◦ u : A→ Y and the homotopy f ◦ h : A× [0, 1]→ Y a homotopy H : A× I → Y
satisfying q ◦H = f ◦ h and H0 = f ◦ u. Since the diagram above is a pullback, we
get a map H : A × [0, 1] → X uniquely determined by f ◦H = H and q ◦H = h.
Since H0 and u have the the same composite with both f and q, we get H0 = f .
Hence q has the HLP and therefore is a fibration. �

The elementary proof of the next result can be found in [31, Proposition 5.5.4
on page 116 and Proposition 5.5.5 and 5.5.6 on page 117].
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Proposition 9.8. Let Z be a (compactly generated) space. Let i : A → B be a
cofibration and p : E → B be a fibration. Then:

(i) The induced map

map(i, idZ) : map(B,Z)→ map(A,Z)

is a fibration;
(ii) The induced map

map(idZ , p) : map(Z,E)→ map(Z,B)

is a fibration;
(iii) The canonical map map(I, E)→W (p) sending v to (v(0), p ◦ v) is a fibra-

tion;
(iv) Consider the pullback

Ei
i
//

p

��

E

p

��

A
i
// B.

Then the upper horizontal arrow i : Ei → E is a cofibration.

The elementary proof the next result can be found in [31, Corollary 5.5.3 on
page 116].

Proposition 9.9 (Improved HLP). Let p : E → B be a fibration and i : A→ B be a
cofibration which is the inclusion of a closed subspace A of B. Consider a homotopy
h : X×I → B and a map f : A×I ∪X×{0} → E. Let j : A×I ∪X×{0} → X×I
be the obvious inclusion. Suppose p ◦ f = h ◦ j.

Then there exists a homotopy H : X×I → E satisfying p◦H = h and H ◦j = f ,
in other words, we can solve the following extension problem

A× I ∪X × {0}
f
//

j

��

E

p

��

X × I
H

88

h
// B.

9.2. Turning a map into a fibration. Let f : X → Y be a map. Consider the

space W (f) defined in 9.5. Then the composite qf : W (f)
f−→ map(I, Y )

e1Y−−→ Y is a
fibration by the following argument.

Consider a homotopy h : A× I → Y and a map u : A→ X satisfying f ◦ u = h0.
Since (9.5) is a pullback, there is a homotopy H : A× I →W (f) which is uniquely

determined by the properties that ef ◦H is the composite A × I prA−−→ A
u−→ X for

prA the canonical projection and that f ◦H : A× I → map(I,B) agrees under the

adjunction map(A × I,map(I, Y ))
∼=−→ map(A × I × I → Y ) with the composite

A × I × I idA×v−−−−→ A × I h−→ Y for the map v : I × I → I sending (s, t) → s · t.
Explicitly H sends (a, t) to the pair (u(a), w) where w : I → Y sends s to h(a, st).
One easily checks that H0 = u and qf ◦H = h holds.

We have the inclusion i : X → W (f) sending x to (x, cf(x)). Its composite with
the map ef : W (f)→ X appearing in (9.5) is the identity on X. Define a homotopy
k : W (f) × [0, 1] → W (f) by sending ((x,w), t) to (x,wt) for the path wt : I → Y
sending s to w(st). Then k0 = i ◦ ef and k1 = idW (p). Hence ef is a homotopy
equivalence with homotopy inverse i. Obviously qf ◦ i = f holds. So we get a
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factorization f : X
i−→ W (f)

qf−→ Y into a homotopy equivalence i followed by a
fibration qf . Actually we obtain a diagram

(9.10) X
i

'
//

f
""

W (f)
ef

'
//

qf

��

X

f
||

Y

such that the left triangle commutes, the right triangle commutes up to homotopy,
the two horizontal arrows are homotopy equivalences and homotopy inverse to one
another, and the middle vertical arrow qf is a fibration. Recall that we have

W (f) = {(x,w) ∈ X ×map(I, Y ) | p(x) = w(0)};
i(x) = (x, cf(x));

ef (x,w) = x;

qf (x,w) = w(1).

9.3. Homotopy Theorem for pullbacks and fibrations.

Theorem 9.11 (Homotopy Theorem for pullbacks and fibrations). Consider the
pullback

X
f
//

p

��

E

p

��

A
f
// B.

Suppose that p is a fibration and f is a homotopy equivalence. Then p is a fibration
and f is a homotopy equivalence.

Proof. We have already shown in Proposition 9.7 that p is a fibration. The proof
that f is a homotopy equivalence is omitted and can be found in [31, Proposi-
tion 5.5.10 on page 118]. �

Theorem 9.11 can easily be extended to the following theorem.

Theorem 9.12 (Homotopy Theorem for maps between pullbacks). Let the follow-
ing two diagrams be pullbacks

X
i1
//

i2

��

X1

j1

��

X2
j2
// X0

Y
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y0

where the right vertical arrows j1 and l1 are fibrations. Let fi : Xi → Yi be homotopy
equivalences for i = 0, 1, 2 satisfying l1 ◦ f1 = f0 ◦ j1 and l2 ◦ f2 = f0 ◦ j2. Denote
by f : X → Y the map induced by f0, f1, and f2 and the pullback property.

Then f is a homotopy equivalence.

Remark 9.13. The condition that j1 and l1 are fibrations appearing in Theo-
rem 9.12 is necessary as the following examples shows.

Given a pointed space (X,x), let P (X,x) be the subspace of map(I,X) consisting
of path w with w(0) = x and Ω(X,x) be the subspace of map(I,X) consisting of
path w with w(0) = w(1) = x. Often Ω(X,x) is called the loop space of X. One
easily checks that P (X,x) is contractible. We take as pullbacks
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Ω(X,x)
i1
//

i2

��

P (X,x)

j1

��

{•}
j2

// X

{•} k1
//

k2

��

{•}

l1

��

{•}
l2

// X

where j1 is by evaluation at 1 and j2, l1, and l2 have as image the base point x.
Take f1 : P (X,x)→ {•} to be the projection, f2 = id{•}, and f0 = idX . Note that
Ω(X,x) is in general not contractible.

9.4. The fiber transport. Let p : E → B be a fibration. Next we construct a
functor

(9.14) τ : Π(B)→ h -Top.

It sends an object x in the fundamental groupoid to the fiber Fx := p−1(x) of p
over x. Consider a morphism [w] : x→ y. Choose a path w : I → B with w(0) = x
and w(1) = y representing w. Apply HLP to the inclusion ix : Fx → E and the

homotopy h : Fx × I
prI−−→ I

w−→ B for the projection prI . This yields a homotopy
H : Fx × I → E with H0 = ix and p ◦H = h. Then H1 is a map Fx → Fy and we
define τ([w]) = [H1]. We leave it to the reader to check that [H1] depends only on
[w] and is independent of the choices of w and H and yields a covariant functor.

Proposition 9.15. Let p : E → B be a fibration over a path connected space B.
Then for any two points x and y the fibers Fx and Fy are homotopy equivalent.

Proof. This follows from the functor τ of (9.14) and the fact that Π(B) is a
groupoid. �

9.5. Homotopy equivalences and fibrations.

Definition 9.16 (Fiber homotopy equivalence). Let p0 : E0 → B and p1 : E1 → B
be fibrations over B.

A fiber preserving map f : p0 → p1 is a map f : E0 → E1 satisfying p1 ◦ f = p0.
Two such fiber preserving maps f0, f1 : p0 → p1 are called fiber homotopy equiv-

alent if there is a homotopy h : E0 × I → E1 such that h0 = f0 and h1 = f1 hold
and ht : E0 → E1 is a fiber preserving map ht : p0 → p1 for each t ∈ I.

A fiber preserving map f : E0 → E1 is a fiber homotopy equivalence if there is
a fiber preserving map g : E1 → E0 such that g ◦ f is fiber homotopy equivalent to
idE0

and f ◦ g is fiber homotopy equivalent to idE1
.

Theorem 9.17 (Characterization of fiber homotopy equivalences). Let p0 : E0 →
B and p1 : E1 → B be fibrations over B.

Then a fiber preserving map f : p0 → p1 is a fiber homotopy equivalence if and
only if the underlying map f : E0 → E1 is a homotopy equivalence.

Proof. The proof is indicated for instance in [20, Proposition in Section 5 of Chap-
ter 7 on page 52]. �

Theorem 9.18 (Homotopy Covering Theorem). Let p : E → B be a fibration.
Consider two maps f0, f1 : X → B which are homotopic. Let pi : Ei → X be the
fibration obtained by the pulling back of p to fi for i = 0, 1.

Then p0 and p1 are fiber homotopy equivalent.

Proof. See [27, Proposition 15.16 on page 344]. �

Corollary 9.19. Let p : E → B be a fibration over a contractible space B. Then p
is fiber homotopy equivalent to a trivial fibration B × F → B.
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9.6. The Fiber Sequence. A pointed map f : (X,x)→ (Y, y) induces by compo-
sition for every pointed space (A, a) a map

f∗ : [(A, a), (X,x)]0 → [(A, a), (Y, y)]0, [u] 7→ [f ◦ u]

which depends only on the pointed homotopy class of f . A sequence (X,x)
f−→

(Y, y)
g−→ (Z, z) of maps of pointed space is called homotopy exact if for each pointed

space (A, a) the induced sequence of pointed sets

[(A, a), (X,x)]0
f∗−→ [(A, a), (Y, y)]0

g∗−→ [(A, a), (Z, z)]0

is exact at [(A, a), (Y, y)]0 in the sense that the image of f∗ is the preimage of
g∗ of the base point in [(A, a), (Z, z)] given by [cz] for the constant pointed map
cz : (B, b)→ (Z, z). Note that this implies that g◦f is pointed homotopy equivalent
to the constant map cz : (X,x)→ (Z, z).

Recall that P (Y, y) is the subspace of map(I, Y ) consisting of path w with w(0) =
y. It has the constant path cy as base point. Equivalently, one define P (Y, y) by
the pullback

(9.20) P (Y, y)
cy
//

��

map(I, Y )

e0Y
��

{•}
cy

// Y.

Define the space P (f, x) by the pullback

(9.21) P (f, x)
f
//

pf

��

P (Y, y)

e1Y
��

X
f

// Y.

The space P (f, x) inherits from the base points x ∈ X and cy ∈ P (Y, y) a base point
∗ for which the diagram (9.21) becomes a diagram of pointed spaces. Explicitly
P (f, x) is the subspace of X ×map(I, Y ) consisting of those pairs (z, w) for which
w(0) = y and w(1) = f(z) holds. The map f sends (z, w) to w and pf sends (z, w)
to z.

Lemma 9.22. Let f : (X,x) → (Y, y) be a pointed map of pointed spaces. Let
pf : P (f, x)→ X be the map defined in (9.21). Then

(P (f, x), ∗) pf−→ (X,x)
f−→ (Y, y)

is homotopy exact.

Proof. This is a direct consequence of the pullback (9.21) and the adjunction

map(A,map(I,X))
∼=−→ map(A × I,X). Namely, they imply that a pointed map

(A, a)→ (P (f, x), ∗) is the same as a pointed map u : (A, a)→ (X,x) together with
a pointed homotopy h : (A, a) × I → (Y, y) between the constant map cy : B → Y
and f ◦ u : (A, a)→ (Y, y). �

One can iterate this process and obtains a homotopy exact sequence, infinite to
the left

· · · f5−→ P (f3)
f4−→ P (f2)

f3−→ P (f1)
f2−→ P (pf )

f1−→ P (f)
pf−→ X

f−→ Y.

Here and also sometimes in the sequel we omit the base points from the notation.
The further investigations replace the spaces P (f1), P (f2), . . . by more appealing

spaces, namely by iterated loop spaces Ωn(X,x). Recall that the loop space Ω(X,x)
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is the subspace of map(I,X) consisting of maps w : I → X with w(0) = w(1) = x.
It can also be described by the pullback

(9.23) Ω(X,x)
i
//

��

P (X,x)

e1X
��

{•}
cx

// X

or, equivalently,

(9.24) Ω(X,x)
i
//

��

map(I,X)

map(i,idX)

��

{•} // map(∂I,X)

where i : ∂I → I is the inclusion and the lower horizontal arrow has the constant
map cx with value x as image.

Suppose additionally that the pointed map f : (X,x)→ (Y, y) is a fibration (after
forgetting the base points) and that (X,x) and (Y, y) are well-pointed. We have
the commutative diagram

{•}
cy

//

j'
��

Y

idY

��

X
f
oo

idX

��

P (Y, y)
e1Y

// Y X
f
oo

where j is the map onto the base point ∗ on P (Y, y). The pullback of the upper
row is f−1(y), whereas the pullback of the lower row is P (f, x) because of (9.21).
All vertical maps are homotopy equivalences. Hence the diagram induces by the
Homotopy Theorem 9.11 a homotopy equivalence

g : f−1(y)
'−→ P (f, x).

It is a pointed homotopy equivalence by Lemma 8.25, since its domain and codomain
are well-pointed. The following diagram of well-pointed spaces commutes

(9.25) (f−1(y), x)

g '
��

iy
// (X,x)

f
//

idX

��

(Y, y)

idY

��

(P (f, y), ∗)
pf
// (X,x)

f
// (Y, y)

for ix the inclusion and all vertical arrows are pointed homotopy equivalences. Since
the lower row is homotopy exact, the upper row is homotopy exact.

The map pf : P (f, x)→ X is a fibration by Proposition 9.7 applied to the pull-
back (9.7) since the inclusion {y} → Y is a cofibration and hence e1

Y : P (Y, y)→ Y
is a fibration by Proposition 9.8 (i). Then we obtain a pullback

(Ω(Y, y), ∗)
if
//

��

P (f, x)

pf

��

{•}
cx

// X
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from the pullbacks (9.21) and (9.23). Explicitly if : Ω(Y, y) → P (f, x) sends w to

(x,w) and induces a homeomorphism if : Ω(Y, y)→ p−1
f (x). Hence the sequence of

pointed spaces

Ω(Y, y)
if−→ (P (f, x), ∗) pf−→ (X,x)

f−→ (Y, y)

is homotopy exact. Iterating this process yields the following result.

Theorem 9.26 (Fiber sequence). Let f : (X,x)→ (Y, y) be a map of well-pointed
spaces. Then we obtain a homotopy exact sequence, infinite to the left,

(9.27) · · · Ω2pf−−−→ (Ω2(X,x), ∗) Ω2f−−→ (Ω2(Y, y), ∗) Ωif−−→ (Ω(P (f, x), ∗), , ∗)
Ωpf−−→ (Ω(X,x), ∗) Ωf−−→ (Ω(Y, y), ∗) if−→ (P (f, x), ∗) pf−→ (X,x)

f−→ (Y, y).

Note this sequence (9.27) is natural in f and yields for any pointed space (B, b)
the long exact sequence of pointed sets, infinite to the left,

(9.28) · · · (Ω2pf )∗−−−−−→ [B,Ω2(X,x)]0
(Ω2f)∗−−−−→ [B,Ω2(Y, y)]0

(Ωif )∗−−−−→ [B,ΩP (f, x)]0

(Ωpf )∗−−−−→ [B,Ω(X,x)]0
(Ωf)∗−−−−→ [B,Ω(Y, y)]0

(if )∗−−−→ [B,P (f, x)]0
(pf )∗−−−→ [B,X]0

f∗−→ [B, Y ]0

where we have omitted the base points of the pointed spaces involved. Note the
obvious fact that the map f∗ : [B,X]0 → [B, Y ]0 is not surjective in general.

9.7. Group structures on pointed sets associated to the Fiber Sequence.

Definition 9.29 (Group object in h -Top0). A group object in h -Top0 is a pointed
space (X,x) together with pointed maps

m : (X ×X, (x, x)) → (X,x);

i : (X,x) → (X,x),

satisfying the following conditions:

(i) The two pointed maps (X,x) → (X,x) sending y to m(x, y) and m(y, x)
respectively are pointed homotopic to the identity;

(ii) The two pointed maps m ◦ (idX ×m) and m ◦ (m × idX) from (X ×X ×
X, (x, x, x)) to (X,x) are pointed homotopic;

(iii) The two pointed maps m ◦ (idX ×i) and m ◦ (idX ×i) from (X ×X, (x, x))
to (X,x) are pointed homotopic to the constant map cx.

Sometimes group objects in h -Top0 are called associative H-spaces with inverse.

Example 9.30 (Examples for group object in h -Top0). A topological group is
obviously an example of a group object in h -Top0. Our main example is the loop
space Ω(X,x) of a well-pointed space (X,x) where m : Ω(X,x)×Ω(X,x)→ Ω(X,x)
sends (v, w) to the concatenation v ∗ w and i : Ω(X,x) → Ω(X,x) sends w to the
inverse path w−.

Remark 9.31. Let (B, b) be a pointed space and (X,x) be a group object in
h -Top0. Then [(B, b), (X,x)] inherits a group structure by the multiplication given
by

[(B, b), (X,x)]0 × [(B, b), (X,x)]0 → [(B, b), (X,x)]0, ([f ], [g]) 7→ [m ◦ (f × g)].

The unit is given by the class [cx] of the constant map. The inverse of [f ] ∈
[(B, b), (X,x)]0 is given by [i ◦ f ].

In particular we obtain for a well-pointed space (X,x) a group structure on
[(B, b), (Ω(X,x), ∗)]0. This group structure on [(B, b), (Ωn(X,x), ∗)]0 is abelian for
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n ≥ 2. The sequence (9.28) is compatible with the group structures as long as they
exist.

9.8. The adjunction between suspension and loop spaces. Let (X,x) and
(Y, y) be well-pointed spaces. Then there is a natural adjunction homeomorphism

(9.32) ad: map((Σ(X,x), ∗), (Y, y))0 ∼=−→ map((X,x), (Ω(Y, y), ∗))0

between mapping spaces of pointed spaces. It is uniquely determined by the prop-
erty that it makes the following diagram commutative,

map((Σ(X,x), ∗), (Y, y))0 ad
//

��

map((X,x), (Ω(Y, y), ∗))0

��

map(X × I, Y ) ∼=
// map(X,map(I, Y ))

where the lower horizontal arrow is the natural adjunction homeomorphism, the
left vertical is the closed embedding coming from the projection X × I → Σ(X,x)
and the right vertical arrow is the closed embedding coming from the canonical
inclusion Ω(Y, y) → map(I, Y ). By passing to π0, we obtain from (9.32) natural
adjunction bijection

(9.33) [(Σ(X,x), ∗), (Y, y)]0
∼=−→ [(X,x), (Ω(Y, y), ∗)]0.

It is compatible with the group structure on the domain introduced in (8.43) and
on the codomain introduced in Remark 9.31.

If we take (X,x) = (Sn, s), we obtain for n = 0, 1, 2, . . . a natural bijection of
groups

(9.34) πn+1(Y, y)
∼=−→ πn(Ω(Y, y), ∗)

for n ≥ 0. Iterating this, we get a bijection of groups

(9.35) [(S0, s), (Ωn(X,x), ∗)]0 = π0(Ωn(X,x))
∼=−→ πn(X,x).

9.9. Locally trivial bundles are fibrations. The proof of the following result
can be found in [31, Theorem 13.4.1 on page 32].

Theorem 9.36 (Being a fibration is a local property). Let p : E → B be a
continuous map and let U = {Ui | i ∈ I} be an open covering of B. Sup-
pose that U is numerable, i.e., admits a subordinate partition of unity, and that
p|p−1(Ui) : p−1(Ui)→ Ui is a fibration for every i ∈ I.

Then p is a fibration.

Recall that a partition of unity subordinate to U is a family {ti : Ui → [0, 1] | i ∈
I} of functions ti satisfying:

• The support supp(ti) := {b ∈ B | ti(b) 6= 0} ⊆ B of ti is contained in Ui
for i ∈ I;

• The family {ti : Ui → [0, 1] | i ∈ I} is locally finite, i.e., for every b ∈ B
there is an open neighborhood V together with a finite subset I0 ⊆ I such
that ti(v) = 0 holds for all v ∈ V and i ∈ I \ I0;

• The (finite) sum
∑
i∈I tj(b) is 1 for every b ∈ B.

A space B is called paracompact if every open covering U = {Ui | i ∈ I} has
a refinement V = {vj | j ∈ J} which is locally finite, i.e., for every b ∈ B there
exists an open neighborhood W of b in B and a finite subset I0 ⊆ I satisfying
W ∩ Ui =⇒ i ∈ I0. Note that such V is automatically numerable. Every metric
space is paracompact, see [23, Theorem 4.3 on page 256]. Every CW -complex is
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paracompact, see [22] or [10, Theorem 1.3.5]. Theorem 9.36 and the discussion
above imply the following result.

Theorem 9.37 (Locally trivial bundles are fibrations). Let p : E → B be a locally
trivial bundle over a paracompact space, e.g., a principal G-bundle for a topological
group G, a vector bundle, or a covering over a space B which is a CW -complex or
a metric space.

Then p is a fibration.

9.10. Duality between cofibrations and fibrations. There is a kind of duality
between cofibrations and fibrations which we want to discuss next. One has to
interchange X × I and map(I,X), interchange pushouts with pullbacks, Σ with Ω
and invert all arrows. Here is a list of some examples.

• (HEP) and (HLP)

Consider the diagrams (8.3) and (9.3)

Y X
f

oo

H
zz

map(I, Y )

e0Y

OO

A

i

OO

h

oo

and

X
f
//

iX0
��

E

p

��

X × I
H

;;

h
// B;

• mapping cylinder and W(p)

Consider the diagrams (8.5) and (9.5)

cyl(i) X
k

oo

A× I

l

OO

A

i

OO

iA0

oo

and

W (p)
ep

//

p

��

E

p

��

map(I,B)
e0B

// B;

• Turning a maps into cofibration or fibration

Consider the diagrams (8.37) and (9.10)

Y cyl(f)
p

'
oo Y

k

'
oo

X

f

bb

f

<<

i

OO

and

X
i

'
//

f
""

W (f)
ep

'
//

qf

��

X

f
||

Y ;

• The Homotopy Theorems 8.28 and 9.11 where the relevant diagrams are

the pushout

Y X
f

oo

B

i

OO

A
f

oo

i

OO

and the pullback

X
f
//

p

��

E

p

��

A
f
// B.

• The Cofiber Sequence appearing in Theorem 8.40 and the Fiber Sequence
appearing in Theorem 9.26 as well as the long exact sequences of pointed
homotopy classes associated to them, see (8.42) and (9.28).

10. The long exact homotopy sequence associated to a fibration

10.1. The homotopy sequence.

Theorem 10.1 (The long exact homotopy sequence associated to a fibration). Let
(E, e) and (B, b) be well-pointed spaces. Let p : E → B be a fibration with p(e) = b.
Put Fb = p−1(b). Denote by i : Fb → E the inclusion.
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Then we obtain a long exact sequence, infinite to the left

(10.2) · · · ∂n+1−−−→ πn(Fb, e)
πn(i,e)−−−−→ πn(E, e)

πn(p,e)−−−−−→ πn(B, b)
∂n−→

· · · ∂2−→ π1(Fb, e)
π1(i,e)−−−−→ π1(E, e)

π1(p,e)−−−−→ π1(B, b)

∂1−→ π0(Fb)
π0(i)−−−→ π0(E)

π0(p)−−−→ π0(B)

with the following properties:

• It is an exact sequence of groups in the range until π1(B, b);
• It is exact at π1(B, b) in the sense that the image of π1(p, e) is the preimage

of the component in Fb containing e under ∂1;
• It is exact at π0(Fb) in the sense that the image of ∂1 is the preimage of

the component in E containing e under π0(i);
• It is exact at π0(E) in the sense that the image of π0(i) is the preimage of

the component in B containing b under π0(p);
• The boundary operator ∂n+1 : πn+1(B, b)→ πn(Fb, e) is defined as follows.

Consider u ∈ πn+1(B, b). Choose a map h : Sn × [0, 1] → B which sends
Sn×{0, 1}∪{s}×I to b such that for the pointed standard homeomorphism

q : (Sn × [0, 1]/(Sn × {0, 1} ∪ {s})× I, ∗)
∼=−→ (Sn+1, b)

the composite h = h◦q : (Sn+1, s)→ (B, b) represents u. Choose a solution
H to the lifting problem

Sn × {0} ∪ {s} × I ce
//

i

��

E

p

��

Sn × [0, 1]

H

88

h
// B

which exists by Proposition 9.9. Then ∂n+1(x) is represented by the pointed
map H1 : (Sn, s)→ (Fb, e).

Proof. This follows from the exact sequence (9.28) applied in the case (B, b) =
(S0, s),

· · · (Ω2pp)∗−−−−−→ [S0,Ω2E]0
(Ω2p)∗−−−−→ [S0,Ω2B]0

(Ωip)∗−−−−→ [S0,ΩP (p, e)]0

(Ωpp)∗−−−−→ [S0,ΩE]0
(Ωp)∗−−−→ [S0,ΩB]0

(ip)∗−−−→ [S0, P (p, e)]0
(pp)∗−−−→ [S0, E]0

p∗−→ [S0, B]0,

the isomorphism (9.35)

[(S0, s), (Ωn(X,x), ∗)]0 = π0(Ωn(X,x))
∼=−→ πn(X,x)

and the diagram (9.25) which becomes in the situation considered here

(Fb, e)

g '
��

ib
// (X,x)

f
//

idX

��

(Y, y)

idY

��

(P (p, e), ∗)
pp
// (X,x)

f
// (Y, y).

�

Remark 10.3 (Serre fibrations and the homotopy sequence). In order to have the
long exact homotopy sequence of Theorem 10.1 available, one needs only to know
that p : E → B is a Serre fibration, see [31, Theorem 6.3.2 on page 130].The obvious
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version of Theorem 9.36 holds also for Serre fibrations, see [31, Theorem 6.3.3 on
page 130].

10.2. The Hopf fibration. Fix d ∈ Z≥1. We can consider S1 as a subgroup
of C \ {0} with respect to multiplication of complex numbers. In particular S1

acts diagonally on Cd+1. Then S2d+1 ⊆ Cd+1 inherits an S1-action, which is free.
Recall that CPd is the set of 1-dimensional complex vector spaces of Cd+1 and is
equipped with the quotient topology with respect to the map f : Cd+1 \{0} → CPd
sending z ∈ Cd+1 \ {0} to the 1-dimensional complex vector space generated by
z. Consider the map p : S2d+1 → CPd obtained by restricting f to S2d+1. Then
p : S2d+1 → CPd is an identification. Obviously it factorizes over the projection

pr : S2d+1 → S2d+1/S1 into a bijective map u : S2d+1/S1
∼=−→ CPd. Since p and pr

are identifications, u is a bijective identification and hence a homeomorphism. Now
one easily checks that p : S2d+1 → CPd is a principal S1-bundle. Theorem 9.36
implies that p is a fibration. From Theorem 10.1 we obtain a long exact sequence
of groups

· · · ∂n+1−−−→ πn(S1)→ πn(S2d+1)
πn(p)−−−→ πn(CPd) ∂n−→

· · · ∂2−→ π1(S1)→ π1(S2d+1)
π1(p)−−−→ π1(CPd)→ {1}.

Since π1(S1) ∼= Z and πn(S1) = {0} for n ≥ 2 by (2.8), we obtain an isomorphism

(10.4) πn(p) : πn(S2d+1)→ πn(CPd) for n ≥ 3

and an exact sequence of abelian groups

{0} → π2(S2d+1)→ π2(CPd)→ π1(S1)→ π1(S2d+1)→ π1(CPd)→ {0}.
Recall that πm(Sn) ∼= {0} for m < n and πn(Sn) ∼= Z by Theorem 3.4. Hence CPd
is simply connected and we get an isomorphism

π2(CPd) ∼= Z.
Since CP1 is homeomorphic to S2, we get from (10.4) the following theorem, which
we have already briefly discussed in Example 3.5.

Theorem 10.5 (π3(S2) is infinite cyclic). The abelian group π3(S2) is an infinite
group with [p] for the so called Hopf map p : S3 → CP1 = S2 as generator.

10.3. Homotopy groups of loop spaces.

Proposition 10.6. Let (E, e) and (B, b) be well-pointed spaces. Let p : E → B be
a fibration with p(e) = b. Put Fb = p−1(b). Suppose that E is weakly contractible.
Then we get isomorphisms

πn+1(B, b)
∼=−→ πn(Fb, e)

for n ≥ 1.

Proof. This follows directly from Theorem 10.1. �

Suppose that (X,x) is a path connected well-pointed space. Then we have
the fibration p : P (X,x) → X whose fiber over x ∈ X is the loop space Ω(X,x).
As P (X,x) is contractible, we get from Proposition 10.6 for n ≥ 0 a preferred
isomorphism of groups

(10.7) ∂n+1(X,x) : πn+1(X,x)
∼=−→ πn(Ω(X,x)).

Note that π0(Ω(X,x)) = [(S0, s), (Ω(X,x), ∗)]0 has a group structure by Exam-
ple 9.30 and Remark 9.31. Iterating this, we get for every n ≥ 1 a group isomor-
phism πn(X,x) ∼= π0(Ωn(X,x)), as already mentioned in (9.35).
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10.4. Homotopy groups of classifying spaces BG. Let G be a topological
group and p : EG → BG be the universal principal G-bundle. Recall that it has
the property that the pullback construction defines for every CW -complex X a
bijection

(10.8) [X,BG]
∼=−→ {isomorphism classes of principal G-bundles over X}

and is up to isomorphism of G-bundles uniquely characterized by the property that
EG is weakly contractible. Proposition 10.6 implies that BG is path connected and
satisfies for n ≥ 1

(10.9) πn(BG) ∼= πn−1(G)

for e ∈ G the unit element.

10.5. On the homotopy groups of some classical Lie groups. Denote by F
one of the (skew)fields R, C, or H given by the reals numbers, the complex numbers,
or the quaternions. We have the associated orthogonal, unitary, or symplectic
groups which are Lie groups:

O(n) = O(n,R) = {A ∈ M(n, n,R) | AtA = In};
SO(n) = SO(n,R) = {A ∈ O(n) | det(A) = 1};
U(n) = O(n,C) = {A ∈ M(n, n,C) | A∗A = In};
SU(n) = SO(n,C) = {A ∈ U(n) | det(A) = 1};
Sp(n) = O(n,H).

The action of these groups on the unit spheres yield locally trivial fiber bundles
and hence by Theorem 9.36 fibrations for d = dimR(F)

O(n,F)
i−→ O(n+ 1,F) → Sd(n+1)−1;

SO(n,F)
j−→ SO(n+ 1,F) → Sd(n+1)−1.

The inclusions i and j come from A 7→
(
A 0
0 1

)
.

By passing to colimits we get the topological groups

O(∞;F) = colimn→∞O(n,F);

SO(∞;F) = colimn→∞ SO(n,F).

Since Sd(n+1)−1 is (d(n + 1) − 2)-connected by Theorem 3.4, we conclude from
Theorem 2.20 and Theorem 10.1

Proposition 10.10.

(i) For 1 ≤ n < m the inclusions O(n,F) → O(m,F) and SO(n,F) →
SO(m,F) are (d(n+ 1)− 2)-connected;

(ii) For 1 ≤ n the inclusions O(n,F) → O(∞,F) and SO(n,F) → SO(∞,F)
are (d(n+ 1)− 2)-connected.

The associated Stiefel manifold of orthogonal k-frames in Fn are defined by

Vk(Rn) = O(n,R)/O(n− k,R) ∼= SO(n,R)/SO(n− k,R);
Vk(Cn) = U(n,R)/U(n− k,C) ∼= SU(n,R)/ SU(n− k,C);
Vk(Hn) = Sp(n)/ Sp(n− k).

We have the fibration O(n−k,R)→ O(n,R)→ Vk(Rn) and analogous fibrations for
Vk(Cn) and Vk(Hn). The next proposition is a direct consequence of Theorem 10.1
and Proposition 10.10.

Proposition 10.11. The space Vk(Fn) is (d(n− k + 1)− 2)-connected.
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There is a fibration Vk(Fn) → Vk+1(Fn+1)
p−→ V1(Fn+1), where p sends a frame

{v1, v2, . . . , vk+1} to the frame {vk+1}. The next proposition follows from Theo-
rem 10.1 and Proposition 10.11.

Proposition 10.12. The inclusion Vk(Fn)→ Vk+1(Fn+1) is (d(n+1)−2)-connected.

Proposition 10.13. We have

π2(n−k)+1(Vk(Cn)) ∼= Z;

π4(n−k)+3(Vk(Hn)) ∼= Z;

πn−k(Vk(Rn)) ∼=

{
Z if k = 1 or (n− k) even;

Z/2 if k ≥ 2 and (n− k) odd.

Proof. The cases F = C and H follows by induction using V1(Fn) ∼= Sdn−1 and
πn(Sn) ∼= Z and Proposition 10.12. The case F = R needs more than we have
accumulated so far and can be found in [31, Proposition 6.8.5 on page 148]. �

Example 10.14. There are homeomorphisms SO(2)
∼=−→ S1 and SO(3)

∼=−→ RP3.
Since the universal covering of S1 is the principal Z-bundle R → S1 and the uni-
versal covering of RP3 is the principal Z/2-bundle S3 → RP3, we conclude from
Proposition 10.10

π1(SO(n)) ∼=

{
Z n = 2;

Z/2 n ≥ 3,

and π1(SO) ∼= Z/2.
We conclude π2(SO(3)) ∼= π2(RP3) ∼= π2(S3) ∼= {0} from Theorem 2.7 and

Theorem 3.4. Proposition 10.10 (ii) implies π2(SO) = {0}. Actually for every
compact Lie group G we have π2(G, g) = {0} for any base point g ∈ G, see [5,
Proposition 7.5 on page 225].

11. The Excision Theorem of Blakers-Massey

11.1. The statement of the Excision Theorem of Blakers-Massey. One
basic feature of a homology theory is excision. Consider any (generalized) homology
theory H∗ with values in R-modules for a commutative ring R. Consider a CW -
complex Y with CW -subcomplexes Y0, Y1, and Y0 satisfying Y = Y1 ∪ Y2 and
Y0 = Y1∩Y2, or a topological space Y with open subspaces Y0, Y1, and Y0 satisfying
Y = Y1 ∪ Y2 and Y0 = Y1 ∩ Y2. Then the map induced by the inclusion (Y2, Y0)→
(Y, Y1) induces for all n ∈ Z an R-isomorphism

Hn(Y2, Y0)
∼=−→ Hn(Y, Y1).

This yields a a long exact Mayer-Vietoris sequence of R-modules, infinite to both
sides,

· · · Hn+1(j1)−Hn+1(j2)−−−−−−−−−−−−−→ Hn+1(X)
∂n+1−−−→ Hn(X0)

Hn(i1)⊕Hn(i2)−−−−−−−−−−→ Hn(X1)⊕Hn(X2)

Hn(j1)−Hn(j2)−−−−−−−−−−→ Hn(X)
∂n−→ Hn−1(X0)

Hn−1(i1)⊕Hn−1(i2)−−−−−−−−−−−−−→ · · ·
where ik : X0 → Xk and jk : Xk → X for k = 1, 2 are the inclusions. The cor-
responding statement is not true for homotopy groups as the following example
shows.

Example 11.1. Consider the CW -complex Y = S1∨Sn with the CW -subcomplexes

Y1 = S1, Y2 = Sn, and Y0 = {•} for n ∈ Z≥2. Suppose that πn(Y2, X0)
∼=−→

πn(Y, Y1) is an isomorphism. Since πn(Sn, {•}) is isomorphic to πn(Sn) by the
long exact homotopy sequence of the pair (Sn, {•}), we conclude from Theorem 3.4
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that πn(S1 ∨ Sn, S1) is infinite cyclic. Theorem 3.4 and the exact sequence of
abelian groups πn(S1) → πn(S1 ∨ Sn) → πn(S1 ∨ Sn, S1) coming from the long
exact homotopy sequence of the pair (S1 ∨ Sn, S1), see Theorem 2.11 imply that
πn(S1 ∨Sn) is a subgroup of an infinite cyclic group and hence a finitely generated
abelian group. This contradicts Example 3.6. Hence πn(Sn, {•})→ πn(S1∨Sn, S1)
is not bijective.

One of the main results of this course is the next theorem due to Blakers and
Massey which shows excision in a very special case for homotopy groups.

Theorem 11.2 (The Excision Theorem of Blakers-Massey). Consider p, q ∈ Z≥1.
Let Y be a topological space with open subspaces Y0, Y1, and Y0 satisfying Y = Y1∪Y2

and Y0 = Y1 ∩ Y2. Suppose that for any base point y0 ∈ Y0 we have

πi(Y1, Y0, y0) = {0} for 0 < i < p;

πi(Y2, Y0, y0) = {0} for 0 < i < q.

Then, for every base point y0 ∈ Y0, the map induced by the inclusion i : (Y2, Y0)→
(Y1, Y0)

πn(i, y0) : πn(Y2, Y0, y0)→ πn(Y, Y1, y0)

is surjective for 1 ≤ n = p+ q − 2 and bijective for 1 ≤ n ≤ p+ q − 3.

If p = 1, then there is no condition on (Y1, Y0) in Theorem 11.2. Note that in
Theorem 11.2 only the case n ≥ 1 is treated, we will say something for n = 0 in
Subsection 11.3.

11.2. The proof of the Excision Theorem of Blakers-Massey. The following
rather elementary proof of the Excision Theorem 11.2 of Blakers-Massey is due to
Dieter Puppe. The proof needs some preparation.

We begin with introducing some notation.

Notation 11.3 (Cubes and faces in Rn). A cube in Rn for n ≥ 1 is a subset of the
form

W = W (a, δ, L) := {x = (x1, x2, . . . , xn) ∈ Rn |
ai ≤ xi ≤ ai + δ for i ∈ L, ai = xi for i /∈ L}

for a = (a1, a2, . . . , an) ∈ Rn, δ > 0, and a (possibly empty) subset L ⊆ {1, 2, . . . , n}.
The dimension dim(W ) of W is defined to be |L|.

A face of W ′ of W is a subset of W of the form

W ′ = {x ∈W | xi = ai for i ∈ L0, xj = aj + δ for j ∈ L1}

for some (possibly empty) subsets L0 ⊆ L and L1 ⊆ L. (The subset W ′ may be
empty or equal to W .)

Let ∂W be the union of all faces W ′ of W which are not equal to W .
For 1 ≤ p ≤ n we define the following subsets of W :

Kp(W ) = {w ∈W | xi < ai + δ/2 for at least p values i ∈ L};
Gp(W ) = {w ∈W | xi > ai + δ/2 for at least p values i ∈ L}.

For p > dim(W ) we define Kp(W ) and Gp(W ) to be the empty sets. Note that
Kp(W ) and Gp(W ) become smaller and smaller as p becomes bigger and Gp(W )∩
Kq(W ) = ∅ if p+ q > dim(W ) hold.
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Next we prove a technical lemma which will enter in the important Proposi-
tion 11.5. It essentially says that a map W → Y , which satisfies a certain condition
on the boundary ∂W , can be changed up to homotopy relative ∂W such that the
resulting map satisfies the analog of this condition on W and not only on ∂W .

Lemma 11.4. Consider a pair (Y,A), a cube W ⊆ Rn, and a map f : W → Y .
Suppose that for p ≤ dim(W ) we have f−1(A) ∩W ′ ⊆ Kp(W

′) for all faces W ′ ⊆
∂W .

Then there exists a map g : W → Y with the following properties:

(i) g is homotopic relative ∂W to f ;
(ii) We have g−1(A) ⊆ Kp(W ).

The same conclusion holds if we replace Kp(W ) by Gp(W ) in assertion (ii).

Proof. Obviously we can assume without loss of generality that W is the stan-
dard cube In =

∏n
i=1[0, 1] = W ((0, 0, . . . , 0), 1, {1, 2, . . . , n}). Let In2 be the sub-

cube of In given by
∏n
i=1[0, 1/2] = W ((0, 0, . . . , 0), 1/2, {1, 2, . . . , n}). Put x4 =

(1/4, 1/4, . . . , 1/4).
Define a map

h : In → In

by expanding In2 to In by radial projection with center x4. Here is the precise
definition of h. Let x ∈ In be any point. If x = x4, we define h(x) = x4. Suppose
that x 6= x4. Consider the ray

r : R≥0 → Rn, t 7→ x4 + t · (x− x4)

starting at x4 through x. Let P (x) be its intersection point with ∂In2 and Q(x)
be its intersection point with ∂In. If x lies in the segment [P (x), Q(x)] of the ray
r, it is sent to Q(x). Suppose that x lies on the segment [x4, P (x)]. If we write
x = x4+t·(P (x)−x4) for some t ∈ [0, 1] then h(x) is defined to be x4+t·(Q(x)−x4).
In other words, h sends the segment [x4, P (x)] affinely to the segment [x4, Q(x)]
and the segment [P (x), Q(x)] to the point Q(x). Obviously h is homotopic relative
∂W to idW .
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Now we set g = f ◦h. Then g is homotopic relative ∂W to f . It remains to show
g−1(A) ⊆ Kp(W ).

Consider z ∈ In with g(z) ∈ A. If zi < 1/2 holds for i = 1, 2, . . . , n, then
z ∈ Kn(In) ⊆ Kp(I

n). So it suffices to treat the case, where zi ≥ 1/2 holds for
at least one i ∈ {1, 2, . . . , n}. Then h(z) ∈ ∂In holds by definition. Choose a face
W ′ ⊆ ∂In with h(z) ∈W ′. Since h(z) ∈ f−1(A) holds, we get h(z) ∈W ′ ∩ f−1(A)
and hence h(z) ∈ Kp(W

′). Hence we have h(z)i < 1/2 for at least p many elements
i ∈ {1, 2, . . . , n}. For i ∈ {1, 2, . . .} with h(z)i < 1/2 we get h(z)i = 1/4+t·(zi−1/4)
with t ≥ 1 and hence zi < 1/2. This shows z ∈ Kp(W ). This finishes the proof of
Lemma 11.4 for Kp(W ), the version for Gp(W ) is proven analogously. �

The next proposition contains the main technical result needed for the proof of
Theorem 11.2.

For the remainder of this subsection let Y be a topological space Y with open
subspaces Y0, Y1, and Y0 satisfying Y = Y1 ∪ Y2 and Y0 = Y1 ∩ Y2 and we consider
p, q ∈ Z≥0.
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F
Proposition 11.5. Suppose that (Y1, Y0) is p-connected and (Y2, Y0) is q-connected.
Let f : In → Y be a map. Let W = {W} be a subdivision of In into cubes W such
that either f(W ) ⊆ Y1 or f(W ) ⊆ Y2 holds. (It exists as In is compact.)

Then there exists a homotopy h : In × I → Y with h0 = f satisfying for every
W ∈ W:

(i) If f(W ) ⊆ Yj holds, then we have ht(W ) ⊆ Yj for every t ∈ I, where
j ∈ {0, 1, 2};

(ii) If f(W ) ⊆ Y0 holds, then we have ht|W = f |W for every t ∈ I;
(iii) If f(W ) ⊆ Y1 holds, then we have h−1

1 (Y1 \ Y0) ∩W ⊆ Kp+1(W );

(iv) If f(W ) ⊆ Y2 holds, then we have h−1
1 (Y2 \ Y0) ∩W ⊆ Gq+1(W ).

Proof. We enlarge the collection of cubes W such that for every W ∈ W all of its
faces belong toW. Let Ck ⊆ In be the union of all cubes W ∈ W with dim(W ) ≤ k.
We construct for k = 0, 1, 2 . . . , n a homotopy h[k] : Ck × I → Y satisfying for each
cube W ∈ W of dimension ≤ k the conditions (i), (ii), (iii), and (iv) such that
h[k]|Ck−1×I = h[k − 1] holds for k = 1, 2, . . . , n. Then the desired homotopy is
h = h[n].

Note in the sequel that for a cube W ∈ W, for which we have f(W ) ⊆ Y0 and
condition (ii) holds, conditions (iii) and (iv) are automatically satisfied, since then
h−1

1 (Y1 \Y0) and h−1
1 (Y2 \Y0) are empty. Moreover, if a cube W ∈ W satisfies both

f(W ) ⊆ Y1 and f(W ) ⊆ Y2, then we have f(W ) ⊆ Y0, and for each cube W ∈ W
we have f(W ) ⊆ Y1 or f(W ) ⊆ Y2. So every cube W ∈ W satisfies precisely one of
the following conditions:

• f(W ) ⊆ Y0;
• f(W ) ⊆ Y2 and f(W ) * Y1;
• f(W ) ⊆ Y1 and f(W ) * Y2.

We begin with k = 0. Consider a cube W in W of dimension 0. If W0 ⊆ Y0,
define h[0]t(W0) = W0 for t ∈ I. This is forced upon us by condition (ii). Suppose
f(W ) ⊆ Y1 and f(W ) ( Y2 hold. As (Y1, Y0) is 0-connected, we can choose a
path w : I → Y1 from f(W ) to a point y ∈ Y0. We define h[0](W, t) = w(t) for
t ∈ I. Then conditions (i) and (iii) are satisfied for trivial reasons. Analogously one
defines h[0] in the case, where f(W ) ⊆ Y2 and f(W ) ( Y0 hold. This finishes the
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construction of h[0]. One easily checks that all the conditions (i), (ii), (iii), and (iv)
are satisfied for every 0-dimensional cube W by h[0].

Next we deal with the induction step from (k − 1) to k. Consider a cube of
dimension k. Then ∂W = W ∩ Ck−1. Since ∂W → W is a cofibration, we can
extend h[k− 1]∂W×I to W × I such that conditions (i) and (ii) are satisfied. So we
get a homotopy h[k]′ : Ck × I → Y such that conditions (i) and (ii) hold for h[k]′

and any W ∈ W with dim(W ) ≤ k and the restriction of h[k]′ to Ck−1× I satisfies
conditions (i), (ii), (iii), and (iv) for any W ∈ W with dim(W ) = (k − 1).

The homotopy h[k]′ is not yet the desired homotopy h[k]. It remains to explain
why we can change h[k]′ further such that all the conditions (i), (ii), (iii), and (iv)
are satisfied for each cube W with dim(k) ≤ k. For this purpose we consider the
map h[k]′1 : Ck → Y and construct an appropriate homotopy h[k]′′ : Ck×I → Y with
h[k]′′0 = h[k]′1 and will get the desired homotopy h[k] : Ck × I → Y by h[k]′ ∗ h[k]′′.

Consider a cube W . We explain how to define h[k]′′|W×[0,1] with dim(W ) =
k. If h[k]′1(W ) ⊆ Y0, then we define h[k]′′t |W = h[k]′1|W for t ∈ [0, 1]. Suppose
that h[k]′1(W ) ⊆ Y1 and h[k]′1(W ) ( Y2 holds. If dim(W ) ≤ p, there exists a
homotopy l relative ∂W with l0 = h′[k]1 and l1(W ) ⊆ Y0, since the pair (Y1, Y0)
is p-connected. Define h[k]′′|W×I by l. If dim(W ) > p, we use Lemma 11.4 with
f = h[k]′|W to define h[k]′′|W×I . We treat the case h[k]′1(W ) ⊆ Y2 and h[k]′1(W ) (
Y1 analogously. This finishes the construction of h[k]′′ and hence of the desired
homotopy h[k]. Note that h[k]′′ is stationary on Ck−1. One easily checks that h(k)
satisfies conditions (i), (ii), (iii), and (iv) for any W ∈ W with dim(W ) ≤ k. Hence
the proof of Proposition 11.5 is finished. �

Denote by F (Y1, Y, Y2) the subspace of map(I, Y ) given by

F (Y1, Y, Y2) := {w : I → Y | w(0) ∈ Y1, w(1) ∈ Y2}.
So we are looking at paths in Y starting somewhere in Y1 and ending somewhere
in Y2. Define F (Y1, Y1, Y0) to be the subspace of map(I, Y1) given by

F (Y1, Y1, Y0) := {w : I → Y1 | w(1) ∈ Y0}.
So here we are looking at paths in Y1 ending somewhere in Y0. Since we can think
of map(I, Y1) as a subspace of map(I, Y ), we can also think of F (Y1, Y1, Y0) as a
subspace of F (Y1, Y, Y2).

Proposition 11.6. Suppose that (Y1, Y0) is p-connected and (Y2, Y0) is q-connected.
Then the inclusion

F (Y1, Y1, Y0)→ F (Y1, Y, Y2)

is (p+ q − 1)-connected.

Proof. Consider a map of pairs

ϕ : (In, ∂In)→ (F (Y1, Y, Y2), F (Y1, Y1, Y0))

for any n ≤ (p+ q − 1). We have to find a homotopy h with h0 = ϕ such that the
image of h1 is contained in F (Y1, Y1, Y0).

By the adjunction map(In×I, Z)
∼=−→ map(In,map(I;Z)) the map ϕ is the same

as a map Φ: In × I → Y satisfying:

(i) Φ(x, 0) ∈ Y1 for x ∈ In;
(ii) Φ(x, 1) ∈ Y2 for x ∈ In;
(iii) Φ(x, 1) ∈ Y0 for x ∈ ∂In, t ∈ I.

In the sequel we call a map Φ: In× I → Y satisfying the three conditions above
admissible. We have to show that any such admissible map Φ can be homotoped
through admissible maps to an admissible map Φ′ : In × I → Y with the property
Φ′(In × I) ⊆ Y1.
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Starting with an admissible map Φ: In+1 = In × I → Y , we apply Proposi-
tion 11.5 and obtain a new admissible map Ψ. One easily checks that the homotopy
coming from Proposition 11.5 is a homotopy through admissible maps.

Consider the projection pr : In × I → In. Next we show that the images of
Ψ−1(Y \Y1) and Ψ−1(Y \Y2) under pr are disjoint. Suppose the contrary. So there
are y ∈ In, z1 ∈ Ψ−1(Y \ Y1) and z2 ∈ Ψ−1(Y \ Y1) with pr(z1) = y = pr(z2).
Choose a cube W ⊆ In+1 with z1 ∈W . Since z1 ∈ Ψ−1(Y \Y1) holds, we conclude
z1 ∈ Kp+1(W ) from condition (iii) appearing in Proposition 11.5. This implies that
y ∈ Kp(I

n) holds. Analogously one shows y ∈ Gq(In), now using condition (iv)
appearing in Proposition 11.5. This is a contradiction since Kp(I

n) ∩ Gq(In) is
empty if n < p+ q holds.

The intersection of pr(Ψ−1(Y \ Y1)) and ∂In is empty since Ψ is admissible
and hence Ψ(∂In) × I ⊆ Y1 holds. Hence the closed subsets pr(Ψ−1(Y \ Y1)) and
∂In ∪ pr(Ψ−1(Y \ Y2)) of In are disjoint. Choose a continuous function τ : In → I
which assumes the value 0 on Ψ−1(Y \Y1) and the value 1 on ∂In∪pr(Ψ−1(Y \Y2)).
Then we obtain a homotopy through admissible maps

h : (In × I)× I → Y, ((x, t), s) 7→ Ψ(x, (1− s)t+ stτ(x))

such that h0 = Ψ and h1(In × I) ⊆ Y1 holds. This finishes the proof of Proposi-
tion 11.6. �

Now we are ready to give the proof of the Excision Theorem 11.2.

Proof of Theorem 11.2. We have the path fibration map(I, Y ) → Y sending w to
w(0), see Proposition 9.8 (i). The induced map p : F (Y1, Y, Y2)→ Y1 sending w to
w(0) is a fibration by Proposition 9.7.The fiber over a point y1 ∈ Y1 is F ({y0}, Y, Y2).
We obtain a commutative diagram of fibrations

F ({y0}, Y1, Y0)
i
//

��

F ({y0}, Y, Y2)

��

F (Y1, Y1, Y0)
j
//

��

F (Y1, Y, Y2)

��

Y1
id

// Y1

where i and j are the inclusions. We have already shown that j is (p + q − 1)-
connected by Proposition 11.6. Using the long exact homotopy sequences of the
two fibrations above and a kind of Five-Lemma argument shows that i is also
(p+ q − 1)-connected. There is a commutative diagram for n ≥ 1

πn−1(F ({•}, Y1, Y0), ∗) i
//

∼=
��

πn−1(F ({•}, Y, Y2), ∗)

∼=
��

πn(Y1, Y0, y0) // πn(Y, Y2, y0)

whose lower horizontal arrow is induced by the inclusion and vertical arrows are
bijections by a version of (9.34) for pairs. Hence the lower vertical arrow is surjective
for 1 ≤ n = p+ q− 2 and bijective for 1 ≤ n ≤ p+ q− 3. This finishes the proof of
Theorem 11.2. �

11.3. The Excision Theorem for n = 0. Note that in Theorem 11.2 only n ≥ 1
is considered. We also want to treat the case n = 0.
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Proposition 11.7. Let Y be a topological space Y with open subspaces Y0, Y1, and
Y0 satisfying Y = Y1 ∪ Y2, Y0 = Y1 ∩ Y2 and Y0 6= ∅.

Then the canonical map ι : π0(Y2, Y0)→ π0(Y, Y1) is bijective.

Proof. Since very element in Y belongs to Y1 or Y2, the map ι is obviously surjective.
Injectivity is proved as follows.

Consider elements C1, C2 ∈ π0(Y2). Let C1 and C2 be the classes represented
by them in π0(Y2, Y0). Suppose that they have the same image under ι. Then we
have to show C1 = C2.

We first treat the case, where ι(C1) = ι(C2) is different from the base point in
π0(Y, Y1). Then the images of C1 and C2 under the map π0(Y2) → π0(Y ) agree.
Hence we can find a path w : I → Y with w(0) ∈ C1 and w(1) ∈ C2. Since
ι(C1) = ι(C2) is different from the base point in π0(Y, Y1), this path cannot meet
w−1(Y1). Hence it is a path w : I → Y2. This implies C1 = C2 ∈ π0(Y2) and hence
C1 = C2.

Next we treat the case, where ι(C1) = ι(C2) is the base point in π0(Y, Y1). It
suffices to show that then C1 is the base point ∗ in π0(Y2, Y0). As ι(C1) is the base
point in π0(Y, Y1), there is a path component D in π0(Y1) such that the image of
C1 under π0(Y2)→ π0(Y ) and the image of D under π0(Y1)→ π0(Y ) agree. Hence
we can find a path w : I → Y with w(0) ∈ C1 and w(1) ∈ Y1. If w(0) ∈ Y0 holds,
C1 is obviously the base point in π0(Y2, Y0). Hence we can assume without loss of
generality that y1 /∈ Y0 holds. Since y1 /∈ Y0 and y1 ∈ Y1 hold, we have y1 /∈ Y2. If
w−1(Y2) is empty, w is a path in Y0 and hence C1 is the base point in π0(Y2, Y0).
Hence we can assume without loss of generality that w−1(Y2) is not empty and
y1 /∈ Y2 holds.

Let t0 be the infimum of w−1(Y2) ⊆ I. As w−1(Y2) is open, we have 0 ≤ t0 < 1.
Since 0 /∈ w−1(Y2) holds, we get t0 /∈ w−1(Y2). Hence [0, t0] ⊆ W1 holds. There
exists t1 ∈ I with t0 < t1 such that [0, t1] ∈ w−1(Y1) holds. Now choose t2 ∈ [0, 1]
satisfying t0 < t2 < t1 and t2 ∈ w−1(Y2). Note that then t2 ∈ w−1(Y1)∩w−1(Y2) =
w−1(Y0) holds. Consider the path v : I → Y sending s to w(st2). Then v is a
path in Y2 from v(0) = x2 to v(1) ∈ Y0. This implies that C1 is the base point in
π0(Y2, Y0). This finishes the proof of Proposition 11.7. �

Another shorter proof of Proposition 11.7 comes from the following observation.

The map on singular homology µ : H0(Y2, Y0;Z)
∼=−→ H0(Y, Y1;Z) induced by the

inclusion is an isomorphism by excision. The abelian group H0(Y2, Y0;Z) is a free
Z-modules with basis B1 which is the complement of the image of π0(Y0)→ π0(Y2)
in π0(Y2). The abelian group H0(Y, Y1;Z) is a free Z-modules with basis B2 which
is the complement of the image of π0(Y1)→ π0(Y ) in π0(Y ). The map µ sends an
element in π0(Y2) \ π0(Y0) to an element in π0(Y ) \ π0(Y1) or to 0.

11.4. Some applications of the Excision Theorem of Blakers-Massey.

Proposition 11.8. Let Y be a topological space Y with subspaces Y0, Y1, and Y2

satisfying Y = Y1 ∪ Y2, Y0 = Y1 ∩ Y2, and Y0 6= ∅. Consider m,n ∈ Z≥0.

(i) Suppose that (Y2, Y0) is n-connected. Then (Y, Y1) is n-connected;
(ii) Suppose that (Y1, Y0) is m-connected and (Y2, Y0) is n-connected. Then:

(a) The map π0(Y2, Y0)→ π0(Y, Y1) is bijective;
(b) For every base point y0 the following holds: The map πi(Y2, Y0, y0)→

πi(Y, Y1, y0) induced by the inclusion is bijective for 1 ≤ i ≤ m+n−1
and surjective for i = m+ n.

Proof. We only give the proof for assertion (i), the one for assertion (ii) is analogous,
if one takes Theorem 11.2 into account.
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Recall that (Y, Y1) is n-connected if and only if π0(Y, Y1) is trivial, i.e., consist
of one element, and for every element i ∈ {1, 2, . . . , n} and every base point y1 ∈ Y1

the set πi(Y, Y1, y1) is trivial. The analogous statement holds for (Y2, Y0).
Proposition 11.7 implies that π0(Y, Y1) is trivial.
Consider i with 1 ≤ i. We conclude from Theorem 11.2 that πi(Y, Y1, y0) is

trivial for every base point y0 ∈ Y0. We need to check that πi(Y, Y1, y1) is trivial
for every element i ∈ {1, 2, . . . , n} and every base point y1 ∈ Y1. Since the map
π0(Y0) → π0(Y1) is surjective by assumption, we can connected y1 by a path in
Y1 to a point y0 in Y0. The obvious version of (2.6) for pointed pairs implies
πi(Y, Y1, y1) ∼= πi(Y, Y1, y0) and hence πi(Y, Y1, y1) is trivial. �

Proposition 11.9. Consider m,n ∈ Z≥0 q {∞} and a pushout

A
f
//

i

��

B

i

��

X
f

// Y

such that i : A→ X is a cofibration.

(i) If f is n-connected, then f is n-connected;
(ii) If f is n-connected and i is m-connected, then

• The map π0(f, f) : π0(X,A)→ π0(Y,B) is bijective;
• For every a ∈ A the map πk(f, f, a) : πk(X,A, a)→ πk(Y,B, f(a)) is

bijective for 1 ≤ k ≤ m+ n− 1 and surjective for 1 ≤ k = m+ n,
where we use the convention that m+n− 1 and m+n mean ∞ if m =∞
or n =∞ holds.

Proof. Because of Subsection 8.8 and Theorem 8.29 we can replace f and i by the
inclusions into their mapping cylinders. Hence it suffices to consider in Proposi-
tion 11.9 the diagram of closed subspaces

A //

��

cyl(f)

��

cyl(i) // cyl(i) ∪A cyl(f).

Now one easily constructs open subsets W0, W1, and W2 of cyl(i) ∪A cyl(f) such
that A ⊆W0, cyl(i) ⊆W1, and cyl(f) ⊆W2 hold, the corresponding inclusions are
homotopy equivalences, and we have cyl(i)∪Acyl(f) = W1∪W2 and W0 = W1∩W2.
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D
~

Hence it suffices to show if we put W = cyl(i) ∪A cyl(f) and (W1,W0) is m-
connected and (W2,W0) is n-connected for m,n ∈ Z≥0:

• The pair (W,W2) is n-connected;
• The map induced by the inclusion π0(W1,W0)→ π0(W,W2) is bijective;
• The map induced by the inclusion πk(W1,W0, a)→ πk(W,W2, a) is bijec-

tive for 1 ≤ k ≤ m+ n− 1 and surjective for 1 ≤ ik = m+ n.

This has already been done in Proposition 11.8. �

We leave it to the reader to proof the following generalization of Proposition 11.9 (i).

Proposition 11.10. Let the following two diagrams be pushouts

X0
i1
//

i2

��

X1

j1

��

X2
j2
// X

Y0
k1
//

k2

��

Y1

l1

��

Y2
l2

// Y

where the left vertical arrows i2 and k2 are cofibrations. Let fi : Xi → Yi be maps
for i = 0, 1, 2 satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0. Denote by f : X → Y
the map induced by f0, f1, and f2 and the pushout property.

Consider n ∈ Z≥0 q {∞}. Suppose that f1 and f2 are n-connected and f0 is
(n− 1)-connected with the convention ∞− 1 =∞.

Then f is n-connected.

Proposition 11.11. Consider m,n ∈ Z≥0 q {∞} and a cofibration i : A → X.
Suppose that i is m-connected and A is n-connected. Let pr: X → X/A be the
canonical projection. Consider any a ∈ A

Then the map

πk(pr, a) : πk(X,A, a)→ πk(X/A, {∗}, ∗) = πk(X/A, ∗)

is bijective for 0 ≤ k ≤ m+ n and surjective for k = m+ n+ 1, where we use the
convention that m+ n and m+ n+ 1 mean ∞ if m =∞ or n =∞ holds.
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Proof. Consider the pushout

A
j
//

f

��

cone(A)

��

X // X ∪A cone(A)

for j the inclusion. The map j is (n+ 1)-connected as A is n-connected. Proposi-
tion 11.9 implies that πk(X,A, a) → πk(X ∪A cone(A), cone(A), ∗) induced by the
inclusion is bijective, if 0 ≤ k ≤ m+m hold, and is surjective for k = m+n+1. The
projection pr : X ∪A cone(A) → X/A is a homotopy equivalence by Theorem 8.28

and hence induces an isomorphism πk(pr) : πl(X ∪A cone(A), ∗)
∼=−→ πk(X/A, ∗) for

every k ≥ 0 by Lemma 8.25. �

The next two results are consequence of Proposition 11.9. Their rather elemen-
tary proof is left to the reader and can be found in [31, Theorem 6.10.5 on page 154
and Proposition 6.10.9 on page 156].

Proposition 11.12. Let X and Y be well pointed spaces. Consider m,n ∈ Z≥1.
Suppose that X is m-connected and Y is n-connected.

(i) The inclusion X ∨ Y → X × Y induces an isomorphism πk(X ∨ Y )
∼=−→

πk(X × Y ) for 0 ≤ k ≤ m+ n;
(ii) πk(X × Y,X ∨ Y ) and πk(X ∧ Y ) are trivial for 0 ≤ k ≤ m+ n+ 1;

(iii) The canonical map πk(X ∨ Y ) → πk(X) × πk(Y ) → is bijective for 0 ≤
k ≤ m+ n.

Note that in Proposition 11.12 we assume that m,n ≥ 1 holds which implies
that X and Y are simply connected. This assumption is need as the Example 3.6
shows.

The join X ∗ Y of X and Y is defined by the pushout

(11.13) X × Y //

��

X × cone(Y )

��

cone(X)× Y // X ∗ Y.

One can describe X ∗ Y also as the quotient space of X × I × Y under the
equivalence relation generated by (x, 0, y0) ∼ (x, 0, y1) and (x0, 1, y) ∼ (x1, 1, y)
for x, x0, x1 ∈ X and y, y0, y1 ∈ Y . Intuitively it says that each point in X is
connected to each point in Y by a unit interval. One easily checks that Sm ∗ Sn is
homeomorphic to Sm+n+1 and S0 ∗X is homeomorphic to ΣX.

The proof of the next proposition is left to the reader and can be found in [31,
Proposition 6.10.9 on page 156].

Proposition 11.14. Consider m,n ∈ Z≥−1. Let X and Y be spaces such that X
is m-connected and Y is n-connected, where (−1)-connected means that there is no
condition.

Then their join is (m+ n+ 2)-connected.

11.5. The Freudenthal Suspension Theorem. Let (X,x) be a pointed space.
The pointed suspension is a functor and hence yields a map

[(Sn, s), (X,x)]0 → [(Σ(Sn, s), ∗), (Σ(X,x), ∗)]0.
Using the standard identification (Σ(Sn, s), ∗) = (Sn+1, s) we obtain a group ho-
momorphism called suspension homomorphism for k ∈ Z≥1

(11.15) σk(X,x) : πk(X,x)→ πk+1(Σ(X,x), ∗)
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Note that σk is also defined for k = 0 but not a group homomorphism in this case.

Theorem 11.16 (Freudenthal Suspension Theorem). Let (X,x) be a well pointed
space. Consider n ∈ Z≥0. Suppose that X is n-connected. Then the suspension
homomorphism

σk(X,x) : πk(X,x)→ πk+1(Σ(X,x), ∗)

is bijective for 0 ≤ k ≤ 2n and surjective for k = 2n+ 1.

Proof. If X is path connected, then Σ(X,x) is simply connected and hence the map
σ0(X,x) : π0(X,x) → π1(Σ(X,x), ∗) is obviously bijective. Hence we can assume
k ≥ 1 in the sequel.

There is a homeomorphism u : cone(X,x)/X
∼=−→ Σ(X,x). The following diagram

commutes

πk(X,x)
σk(X,x)

// πk+1(Σ(X,x), ∗)

πk+1(cone(X,x), X, x)
πk+1(pr,x)

//

∂k+1

OO

πk+1(cone(X,x)/X, {∗}, ∗) = πk+1(cone(X,x)/X, ∗)

πk+1(u,∗)

OO

where pr : cone(X,x) → cone(X)/X is the projection and where the left verti-
cal arrow ∂n+1 is the boundary operator of the long exact homotopy sequence
of the pair (cone(X,x), X), see Remark 2.13, and is bijective, since cone(X,x) is
contractible. The right vertical arrow is bijective, as u is a pointed homeomor-
phism. Hence it remains to show that the map πl(pr, x) : πl(cone(X,x), X, x) →
πl(cone(X), x/X, {∗}, ∗) is bijective for 2 ≤ l ≤ 2n+1 and surjective for l = 2n+2.
This follows from Proposition 11.11. This finishes the proof of the Freudenthal
Suspension Theorem 11.16. �

Remark 11.17. We have the degree homomorphism degn : πn(Sn, s)→ Z, which
is known to be bijective for n = 1 by elementary covering theory and compatible
with the suspension homomorphisms. We conclude that Sn is simply connected
for n ≥ 2 from the Seifert-van Kampen Theorem. Note that the Freudenthal
Suspension Theorem 11.16 implies for n ≥ 1 that the suspension homomorphism
σk(Sn, s) : πk(Sn, s)→ πk+1(Sn+1, s) is bijective for 0 ≤ k ≤ 2n− 2 and surjective
for k = 2n − 1. This gives another proof of Theorem 3.4, which does not use
differential topology.

Remark 11.18. Let H∗ be a (generalized) homology theory. Then we have for
every n ∈ Z the suspension isomorphism

σn(X,x) : Hn(X, {x})
∼=−→ Hn+1(Σ(X,x), {∗})

whereas in Freudenthal Suspension Theorem 11.16 the suspension homomorphism
is only bijective in a range depending on the connectivity of X. The connectivity
assumptions appearing in Theorem 11.16 are necessary and actually sharp. For
instance, we know π3(S2) ∼= Z from Theorem 10.5, and one can show that π4(S3)
is cyclic of order two and that the suspension homomorphism σ3(S2, s) : π3(S2)→
π4(S3) is surjective and obviously not injective. Moreover, the suspension homo-
morphism σ2(S1) : π2(S1)→ π3(S2) is not surjective as its domain is trivial and its
codomain is not trivial.
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11.6. Stable homotopy groups. Let (X,x) be a pointed space and n ∈ Z≥0.
Consider the sequence given by the suspension homomorphisms of (11.15)

(11.19) πn(X)
σn(X)−−−−→ πn+1(ΣX)

σn+1(ΣX)−−−−−−−→ πn+2(Σ2X)

σn+2(Σ2X)−−−−−−−→ πn+3(Σ3X)
σn+3(Σ3X)−−−−−−−→ · · ·

where we omit the base points. Recall that ΣmX is (m−1)-connected for m ∈ Z≥1

by Proposition 11.11 and hence by the Freudenthal Suspension Theorem 11.16 the
map σn+m(ΣmX) : πn+m(ΣmX)→ πm+n+1(Σm+1X) is surjective for m = (n+ 1)
and bijective for m ≥ (n + 2). So after finitely many steps all these suspension
homomorphism are isomorphism of abelian groups.

Definition 11.20 (Stable homotopy groups). Define the abelian group πsn(X,x),
called nth stable homotopy group of (X,x) to be the direct limit of the sequence (11.19).

Given a (unpointed) space Y , define

πsn(Y ) := πsn(Y+)

where Y+ is the pointed space (Y q {∗}, ∗) obtained from Y by adjoining an extra
base point.

Obviously πsn(X,x) is a functor from the category of pointed spaces to the cat-
egory of abelian groups. Moreover, if the two pointed maps f0.f1 : (X,x)→ (Y, y)
are pointed homotopic, then the induced homomorphisms πsn(f0) and πsn(f1) from
πsn(X,x) to πsn(Y, y) agree. The stable homotopy groups come with a natural map

(11.21) ιn(X,x) : πn(X,x)→ πsn(X,x)

and with a natural suspension homomorphism

(11.22) σsn(X,x) : πsn(X,x)→ πsn+1(Σ(X,x), ∗).

The map ιn(X,x) is in general neither injective nor surjective. If X is m-connected
for m ∈ Z≥0, then ιn(X,x) is surjective if n = 2m + 1 and is bijective if n ≤ 2m
by the Freudenthal Suspension Theorem 11.16. The construction of the stable ho-
motopy groups is designed so that σsn(X,x) of (11.22) is bijective for every pointed
space (X,x) and n ≥ 0.

Given a (unpointed) topological pair (X,A), we define

(11.23) πsn(X,A) = πsn(X+ ∪A+
cone(A+, ∗), ∗).

Thus we obtain a functor from the category of pairs to the category of abelian groups
which is homotopy invariant, i.e., for two maps of pairs f0.f1 : (X,A)→ (Y,B) the
induced homomorphisms πsn(f0) and πsn(f1) from πsn(X,A) to πsn(Y,B) agree if f0

and f1 are homotopic as maps of pairs.
We record the following theorem whose proof we will give later when we are

dealing more generally with spectra.

Theorem 11.24 (Stable homotopy groups form a (generalized) homology theory).
There exist natural transformation ∂n+1(X,A) : πsn+1(X,A) → πsn(A) for n ∈ Z≥0

such that stable homotopy πs∗ defines a homology theory on the category of pairs
satisfying the disjoint union axiom.

Obviously πs∗ also satisfies the weak homotopy equivalence axiom saying that a
weak homotopy equivalence induces isomorphisms on the stable homotopy groups.
It does not satisfy the dimension axiom.

Definition 11.25 (Stable stems). Define the n-th stable stem πsn to be πsn({•}) =
πsn(S0, ∗) for n ≥ 0.
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Note that πsn is the direct limit of the directed system

(11.26) πn(S0, ∗) σn(S0,∗)−−−−−−→ πn+1(S1, ∗) σn+1(S1,∗)−−−−−−−→ πn+2(S2, ∗)
σn+2(S2,∗)−−−−−−−→ πn+3(S3, ∗) σn+3(S3,∗)−−−−−−−→ · · · .

where have used the standard identification (Sn+1, ∗) = (Σ(Sn, ∗), ∗). Recall that
the map σn+m(Sm, ∗) : πn+m(Sm, ∗) → πn+m+1(Sm+1, ∗) is surjective for m =
(n+ 1) and bijective for m ≥ (n+ 2).

Remark 11.27 (Outlook about πsk(Sn)). Obviously it is easier to compute πsn
instead of πn(Sm) for m > n. Nevertheless it is an open (and extremely hard)
problem to compute πsn general. At the time of writing it is fair to say that we do
not know πsn in the range n ≥ 100. Only some asymptotic results are known in that
range. There is not even a formula known which might give the answer. There is
no obvious pattern in the computations, one has carried out so far. At least one
knows that πsn is finite for n ≥ 1, see [24] or Corollary 32.4 and one knows its values
for n ≤ 61 and also for some other values for n ≤ 99. For instance we have

(11.28)

n 0 1 2 3 4 5 6 7 8 9 10 11
πsn Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 Z/22 Z/23 Z/6 Z/504

n 12 13 14 15 16 17 18 19
πsn 0 Z/3 Z/22 Z/480× Z/2 Z/22 Z/24 Z/8× Z/2 Z/264× Z/2

where Am means
⊕m

i=1A. The table above is taken from Toda [30]. More infor-
mation about the stable stems can be found for instance in [13, 14].

12. The Hurewicz Theorem

12.1. The Hurewicz homomorphism. Let (X,x) be a pointed space. Next we
define for n ∈ Z≥1 a homomorphism of groups, which is natural in X and called
n-th Hurewicz map or n-th Hurewicz homomorphism.

(12.1) hurn(X,x) : πn(X,x)→ Hn(X),

where Hn(X) denotes singular homology (with coefficients in Z).
Given an element [f ] in πn(X,x) represented by a pointed map f : (Sn, s) →

(X,x), define hurn(X,x)([f ]) to be the image of the standard fundamental class
[Sn] ∈ Hn(Sn) under the map Hn(f) : Hn(Sn)→ Hn(X) induced by f . Obviously
this definition is independent of the choice of representative f of [f ]. Let ∇n : Sn →
Sn ∨ Sn be the pinching map, see (2.5). Let prk : S1 ∨ S1 → S1 be the projection
onto the k-th functor for k = 1, 2. Then the following diagram commutes

Hn(Sn)
Hn(∇n)

//

∆n
((

Hn(Sn ∨ Sn)

Hn(pr1)×Hn(pr2)∼=
��

Hn(Sn)×Hn(Sn)

where ∆n is the diagonal map sending z to (z, z) and the right vertical arrow is
an isomorphism. Note that in πn(X,x) the inverse of [f ] is given by [f ◦ u] for
any map u : (Sn, s) → (Sn, s) of degree −1 and Hn(u) : Hn(Sn) → Hn(Sn) sends
[Sn] to −[Sn]. Now one easily checks that hurn(X,x) is a group homomorphism.
Obviously it is natural in (X,x).

The elementary proof of the following lemma is left to the reader.
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Lemma 12.2. Let w : I → X be a path from x to y. Then the following diagram
commutes

πn(X,x)

hurn(X,x)

((

∼=Tn([w])

��

Hn(X)

πn(X,x)

hurn(X,y)

66

where Tn([w]) is the isomorphism introduced in Subsection 2.3.

12.2. The Hurewicz Theorem. Before we investigate the Hurewicz homomor-
phism further, we consider the following two special cases. The first one is the case
n = 1 and has already been dealt with in a previous lecture course.

Proposition 12.3. If X is a path connected space, then for any base point x the
map induced by the Hurewicz homomorphism

π1(X,x)ab → H1(X)

for π1(X,x)ab = π1(X)/[π1(X,x), π1(X,x)] the abelianization of π1(X,x) is an
isomorphism.

Lemma 12.4. For n ∈ Z≥1 the Hurewicz homomorphism hurn(Sn, s) : πn(Sn, s)→
Hn(Sn) of (12.1) is bijective.

Proof. The map f : Z → πn(Sn) sending 1 to the class of [idSn ] is bijective by
Theorem 3.4. The composite of hurn(Sn, s) and f is the homomorphism Z →
Hn(Sn) sending 1 to [Sn] and hence bijective. This implies that hurn(Sn, s) is
bijective. �

Next we prove one of the main results of the course.

Theorem 12.5 (Hurewicz Theorem). Consider n ∈ Z≥2. Let X be an (n − 1)-
connected space. Then the Hurewicz homomorphism

hurn(X,x) : πn(X,x)→ Hn(X)

of (12.1) is bijective for any base point x ∈ X.

Proof. Since X is n-connected, it is weakly homotopy equivalent to a CW -complex
Y which has precisely one 0-cell and no cells of dimension d for 1 ≤ d ≤ (n − 1)
by Corollary 6.5. The inclusion i : Yn+1 → Y induces for the base point y0 ∈ Y0

bijections

πn(i, y0) : πn(Yn+1, y0)
∼=−→ πn(Y, y0);

Hn(i) : Hn(Yn+1)
∼=−→ Hn(Y ),

by Corollary 4.5 and the long exact homotopy sequence of the pair (Y, Yn+1). Hence
we can assume without loss of generality that X has precisely one 0-cell {x0} and
the dimension dim(e) of every cell e satisfies dim(e) ∈ {0, n, (n+ 1)}.

This implies that Xn =
∨
i∈I S

n and there exists a pushout

∐
j∈J S

n

∐
j∈J qj

//

��

Xn =
∨
i∈I S

n

��∐
j∈J D

n+1 // X.
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The Cellular Approximation Theorem 4.1 implies that each map qj : Sn → Xn is ho-
motopic to a map q′j : Sn → Xn sending s to y0. Choose a homotopy hj :

∐
i∈I S

n×
[0, 1] → Xn with (hj)0 =

∐
j∈J qj and (hj)1 =

∐
j∈J q

′
j . Consider the following

commutative diagram∐
j∈J D

n+1

l0'
��

∐
j∈J S

noo

∐
j∈J qj

//

k0'
��

Xn

idXn'

��∐
j∈J D

n+1 × I //
∐
j∈J S

n × Ioo

∐
j∈J hj

// Xn

∐
j∈J D

n+1

l1'

OO

∐
j∈J S

noo

∐
j∈J q

′
j

//

k1'

OO

Xn.

idXn'

OO

where k0 and l0 are the obvious inclusions coming from 0 ∈ I and k1 and l1 are the
obvious inclusions coming from 1 ∈ I. All vertical arrows are homotopy equivalences
and all left horizontal arrows are cofibrations. Hence the induced maps from the
pushout of the upper row to the pushout of the middle row as well as the arrow
from the pushout of the lower row to the pushout of middle row are homotopy
equivalences by Theorem 8.28. Therefore we can assume without loss of generality
that qj sends the base point s ∈ Sn to x0 and we can write X as a pushout∨

j∈J S
n f

//

��

∨
i∈I S

n

k

��∨
j∈J D

n+1 // X

where f respects the base points and k is the inclusion Xn =
∨
i∈I S

n → Xn+1 = X.
We obtain a commutative diagram of abelian groups with exact rows

πn

(∨
j∈J S

n, ∗
)

πn(f)
//

hurn(
∨
j∈J S

n,∗)
��

πn
(∨

i∈J S
n, ∗
) πn(k)

//

hurn(
∨
j∈J S

n,∗)

��

πn(X,x0)

hurn(X,x0)

��

// {0}

Hn

(∨
j∈J S

n
)

Hn(f)
// Hn

(∨
i∈J S

n
) Hn(k)

// Hn(X) // {0}

The rower low is exact by excision, the long exact homology sequence for pairs,

and the fact that Hn−1

(∨
j∈J S

n
)

= {0} holds. The upper row is exact by The-

orem 11.9, the long exact homotopy sequence for pairs, and the conclusion from

Theorem 3.4 and Proposition 11.12 (iii) that πn−1

(∨
j∈J S

n
)

= {0} holds. Hence

by the Five Lemma it suffices to prove that the left vertical arrow and the middle
vertical arrow are bijective. The following diagram commutes⊕

i∈I πn(Sn, s)

⊕
i∈I πn(ki,s)

∼=
//

⊕
i∈I hurn(Sn,s)

��

πn
(∨

i∈I S
n
)

hurn(
∨
i∈I S

n,∗)
��⊕

i∈I Hn(Sn, s) ⊕
i∈I Hn(ki)

∼=
// Hn

(∨
i∈I S

n
)
.

and has bijections as horizontal arrows by Proposition 11.12 (iii), where ki is the
inclusion of the summand belonging to i ∈ I. Since the left vertical arrow is bijective
by Lemma 12.4, the right vertical arrow is bijective. Lemma 12.2 implies that the
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Hurewicz homomorphism hurn(X,x) : πn(X,x) → Hn(X) is bijective for all base
points x ∈ X. This finishes the proof of the Hurewicz Theorem 12.5. �

Remark 12.6. The condition that X simply connected in Theorem 12.5 is neces-
sary. Consider a non-trivial group G for which Gab is trivial, e.g., the simple finite
group An for n ≥ 5. Choose a path connected CW-complex X with π1(X) ∼= G.
Then X is 0-connected and Lemma 12.3 implies that the Hurewicz homomorphism
hur1(X,x) : π1(X,x)→ H1(X) is not injective.

The condition that X is simply connected is also necessary in the following
Proposition 12.7.

Proposition 12.7. Let X be a simply connected space and n ∈ Z≥1. Then

(i) The following assertions are equivalent:
• X is n-connected;
• Hi(X) = 0 holds for 1 ≤ i ≤ n;
• Hi(X) = 0 holds for 2 ≤ i ≤ n;

(ii) The following assertions are equivalent:
• X is weakly contractible;
• Hi(X) = 0 holds for 1 ≤ i;
• Hi(X) = 0 holds for 2 ≤ i.

Proof. (i) This follows by induction over n = 1, 2, . . .. The induction beginning
n = 1 follows from the conclusion of Proposition 12.3 that H1(X) = 0 vanishes for
a simply connected space X. The induction step from (n−1) ≥ 1 to n follows from
Theorem 12.5.

(ii) This follows from assertion (i). �

We record the following stronger version of the Hurewicz Theorem whose proof
can be found in [27, Theorem 10.25 on page 185].

Theorem 12.8 (Improved Hurewicz Theorem). Consider n ∈ Z≥2. Let X be an
(n − 1)-connected space. Then for any base point x ∈ X the Hurewicz homomor-
phism

hurm(X,x) : πm(X,x)→ Hn(X)

of (12.1) is bijective for m = n and surjective for m = n+ 1.

12.3. The relative Hurewicz Theorem. There is also a relative version of the
Hurewicz map for a pointed pair (X,A, a) for n ≥ 1

(12.9) hurn(X,A, a) : πn(X,A, a)→ Hn(X,A),

which sends [f ] ∈ πn(X,A, x) represented by a map of triples f : (Dn, Sn−1, {s})→
(X,A, {a}) to the image of the standard fundamental class [Dn, Sn−1] under the
homomorphism Hn(f) : Hn(Dn, Sn−1) → Hn(X,A). It is a group homomorphism
for n ≥ 2 and the following diagram commutes for n ≥ 2

(12.10) πn(X, a) //

hurn(X,a)

��

πn(X,A, a) //

hurn(X,A,a)

��

πn−1(A, a)

hurn−1(X,a)

��

Hn(X) // Hn(X,A) // Hn−1(A, a),

where the exact upper row and the exact lower row are parts of the long exact
sequences associated to the pair (X,A).

Theorem 12.11 (The relative Hurewicz Theorem). Consider n ∈ Z≥2. Let (X,A)
be a pair. Suppose that A and X are simply connected and (X,A) is (n − 1)-
connected. Then:
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(i) The Hurewicz homomorphism

hurn(X,A, a) : πn(X,A, a)→ Hn(X,A)

of (12.10) is bijective for any base point a ∈ A;
(ii) The homology group Hi(X,A) vanishes for 2 ≤ i ≤ (n− 1).

Proof. We can arrange that the inclusion A→ X is a cofibration by Subsection 8.8.
Let pr : (X,A, {a}) → (X/A, {∗}) be the projection. We obtain a commutative
diagram

πn(X,A, a)
πn(pr,a)

∼=
//

hurn(X,A,a)

��

πn(X/A, {∗}, ∗) = πn(X/A, ∗)

hurn(X/A,∗)
��

Hn(X,A)
Hn(pr)

∼=
// Hn(X/A, {∗}) = Hn(X/A).

The upper row is bijective by Proposition 11.11 The lower row is bijective by ex-
cision. If X/A is (n − 1)-connected, then Theorem 12.5 implies that right vertical
arrow is also bijective. Hence it suffices to show for n ∈ Z≥2:

• The space X/A is (n− 1)-connected;
• The homology group Hi(X/A) vanishes for 2 ≤ i ≤ (n− 1).

This is done by induction over n = 2, 3, 4, . . ..
Since A and X are simply connected, X/A is simply connected by the Seifert-

von-Kampen Theorem. Now the induction beginning n = 2 follows. The induction
step from (n− 1) ≥ 2 to n is done as follows.

By induction hypothesis applied to the (n− 2)-connected pair (X,A), we know
that hurn−1(X,A, a) : πn−1(X,A, a) → Hn−1(X,A) is bijective and the homology
group Hi(X,A) vanishes for 2 ≤ i ≤ (n − 2). As πn−1(X,A, a) vanishes, the
homology group Hi(X,A) vanish for 2 ≤ i ≤ (n− 1). As the projection pr induces

an isomorphism Hi(X,A)
∼=−→ Hi(X/A) for i ≥ 1, the homology group Hi(X/A)

vanishes for 2 ≤ i ≤ (n− 1). This finishes the proof of Theorem 12.11. �

12.4. Applications of the Hurewicz Theorem. Next we generalize Proposi-
tion 12.7 to maps.

Proposition 12.12. Let f : X → Y be a map of simply connected spaces.

(i) The following assertions are equivalent for n ∈ Z≥1:
• f is n-connected;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for 2 ≤ i ≤ (n− 1) and surjective

for i = n;
(ii) The following assertions are equivalent:

• f is a weak homotopy equivalence;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for i ≥ 2.

Proof. Since we can replace f by the inclusion into its mapping cylinder, this follows
from the relative Hurewicz Theorem 12.11. �

The next theorem is called also sometimes the Whitehead Theorem, see also
Theorem 5.1.

Theorem 12.13 (Whitehead Theorem). Let f : X → Y be a map of simply con-
nected CW -complexes. Then the following assertions are equivalent:

• f is a homotopy equivalence;
• f is a weak homotopy equivalence;
• Hi(f) : Hi(X)→ Hi(Y ) is bijective for i ≥ 2.
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Proof. This is a direct consequence of Theorem 5.1 and Proposition 12.12. �

The condition that X and Y are simply-connected is necessary in Theorem 12.13.
Here is a more general version of Theorem 12.13 which does not need the assumption
that X and Y are simply connected.

Theorem 12.14. Let f : X → Y be a map of path connected CW -complexes. Sup-
pose that for one (and hence all) base point x ∈ X the map π1(X,x)→ π1(Y, f(x))

is bijective. We can lift f to a map between the universal coverings f̃ : X̃ → Ỹ ,
i.e., we have the commutative diagram:

X̃
f̃
//

pX

��

Ỹ

pY

��

X
f
// Y.

Then the following assertions are equivalent:

• f is a homotopy equivalence;

• Hi(f̃) : Hi(X̃)→ Hi(Ỹ ) is bijective for i ≥ 2.

Proof. We conclude from Theorem 2.7 that f is a weak homotopy equivalence if

and only if f̃ is a weak homotopy equivalence. By Theorem 12.13 f̃ is a weak

homotopy equivalence if and only if Hi(f̃) : Hi(X̃) → Hi(Ỹ ) is bijective for i ≥ 2.
Now Theorem 12.14 follows from Theorem 5.1. �

Example 12.15. Consider the spaces X = Sn ∨ Sn ∨ S2n and Y = Sn × Sn for
n ∈ Z≥2. Then X and Y are simply connected and Hi(X) ∼= Hi(Y ) holds for i ≥ 0.
But the cohomology rings of X and Y are not isomorphic and hence there is no
homotopy equivalence from X to Y .

Note that this does not contradict Theorem 12.13, since there the existence of a

map f : X → Y is required which implements the isomorphism Hi(X)
∼=−→ Hi(Y ).

Theorem 12.16 (Recognizing the sphere up to homotopy). Let X be a path con-
nected CW -complex. Then the following assertions are equivalent for n ≥ 2:

• The space X is homotopy equivalent to Sn;
• The space X is simply connected, Hi(X) vanishes for all i ≥ 2 with i 6= n

and Hn(X) is isomorphic to Z.

Proof. Suppose that the space X is simply connected, Hi(X) vanishes for all i ≥ 2
with i 6= n and Hn(X) is isomorphic to Z. Proposition 12.7 (i) implies that X is
(n−1)-connected. We conclude form the Hurewicz Theorem 12.5 that the Hurewicz
homomorphism hurn(X,x) : πn(X,x) → Hn(X,x) is bijective. Therefore we can
find a map f : Sn → X such that Hn(f) : Hn(Sn) → Hn(X) is an isomorphism.
Hence Hi(f) : Hi(S

n)→ Hi(X) is an isomorphism for 2 ≤ i. Proposition 12.12 (i)
implies that f is a homotopy equivalence.

The other implication is obviously true. �

13. Moore spaces

Definition 13.1 (Moore space). Consider n ≥ 1 and an abelian group G. A
Moore space (X,ϕ) of type (G,n) consists of a path connected CW -complex X and

an isomorphisms ϕ : Hn(X)
∼=−→ G such that Hi(X) = {0} for i /∈ {0, n} holds and

that X is simply connected if n ≥ 2.
Sometimes (X,x, ϕ) is denoted by M(G,n)
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Lemma 13.2. Consider n ≥ 1 and a group G which is assumed to be abelian if
n ≥ 2 holds. Then:

(i) There exists an (n + 1)-dimensional CW -complex X with the following
properties:
• The space X is the reduced mapping cone of some map f :

∨
i∈I S

n →∨
j∈J S

n;
• There is an exact sequence of groups

0→ πn
(∨
j∈J

Sn
) πn(f,x)−−−−−→ πn

(∨
i∈I

Sn
) πn(k)−−−→ πn(X,x)→ 0

for k : Xn =
∨
j∈J S

n → X the inclusion and n ≥ 2;

• We have {•} = X0 = Xn−1;
• The space X is (n− 1)-connected;
• We have πn(X,x) ∼= G for any base point x ∈ X;
• The homology group Hi(X) vanishes for i ≥ (n+ 1) if G abelian;
• The homology group Hi(X) vanishes for 1 ≤ i ≤ (n− 1);
• If G is finitely presented or if G is finitely generated abelian, then X

can be choose to be a finite CW -complex.
(ii) Suppose that n ≥ 2 holds. Let X be the space constructed in the proof

of assertion (i). Let x ∈ X be any base point. Let (Y, y) be any pointed

CW -complex. Let ψ : πn(X,x)
∼=−→ πn(Y, y) be any group homomorphism.

Then there is a pointed map u : (X,x)→ (Y, y) satisfying πn(u, x) = ψ.
Proof. (i) For n = 1 one can choose a presentation of the group and consider
the associated presentation CW -complex, which is path connected and satisfies
π1(X,x) ∼= G for any base point x. In general H2(X) is not trivial. This can
be arranged if G is abelian. Choose an exact sequence of abelian groups 0 →⊕

i∈I Z
α−→
⊕

j∈J Z → G → 0. If G is finitely generated abelian, one can choose I

and J to be finite. Then one can find a map f :
∨
i∈I S

1 →
∨
i∈I S

1 such that the
following diagram commutes⊕

i∈I Z
α

//

∼=
��

⊕
j∈J Z

∼=
��

H1

(∨
i∈I S

n
)
H1(f)

// H1

(∨
j∈J S

n
)

where the vertical maps are the obvious isomorphisms. We have the short exact
sequence

H2

(∨
j∈j

Sn
)
→ H2(X)→ H1

(∨
i∈I

Sn
) H1(f)−−−−→ H1

(∨
j∈j

Sn
)
→ H1(X)

→ H0

(∨
i∈I

Sn
) H0(f)−−−−→ H0

(∨
j∈j

Sn
)

This implies H2(X) = {0} and H1(X) ∼= G. Since X is 2-dimensional, we get
Hi(X) = {0} for i ≥ 2.

Suppose n ≥ 2. Then G is an abelian group and we can choose an exact sequence

of abelian groups 0→
⊕

i∈I Z
α−→
⊕

j∈J Z→ G→ 0. If G is finitely generated, one

can choose I and J to be finite. Let {ei | i ∈ I} and {e′j | j ∈ J} be the standard
basis of

⊕
i∈I Z and

⊕
j∈J Z. Then there is a set of integers {di,j | i ∈ I, j ∈ J}

such that the set {j ∈ J | di,j 6= 0} is finite for every i ∈ I and α(ei) =
∑
j∈J di,j ·e′j
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holds. The canonical maps⊕
i∈I

πn(Sn, s)
∼=−→ πn

(∨
i∈I

Sn, s
)
;(13.3)

⊕
j∈J

πn(Sn, s)
∼=−→ πn

(∨
j∈J

Sn, s
)
,(13.4)

are bijective by Proposition 11.12 (iii). Because of Theorem 3.4 there is a pointed
map fi : (Sn, s) →

(∨
j∈J S

n, s
)

such that for every j ∈ J its composite with the

projection prk :
∨
j∈J S

n → Sn to the factor k belonging to k ∈ J has degree di,k.
Define the pointed map

f :=
∨
i∈I

fi :
∨
i∈I

Sn →
∨
j∈J

Sn.

Under the obvious identifications coming from the isomorphisms (13.3) and (13.4)
the homomorphism α can be identified with

πn(f, s) : πn
(∨
i∈I

Sn, s
)
→ πn

(∨
j∈J

Sn, s
)
.

Hence the cokernel of the latter map is isomorphic to G and its kernel is trivial.
Let X be the reduced mapping cone of f with the preferred base point x ∈ X0.
The sequence

0→ πn
(∨
i∈I

Sn, s
) πn(f,s)−−−−−→ πn

(∨
j∈J

Sn, s
)
→ πn(X,x)→ 0

is exact by Theorem 2.11, Theorem 3.4, and Theorem 11.11. Hence X is a path
connected CW -complex which is has precisely one zero cell, no cells e of dimension
1 ≤ dim(e) ≤ n − 1, is (n − 1)-connected by Corollary 4.5, satisfies πn(X,x) ∼= G
for the base point x ∈ X0 and hence for all base points in X by the diagram (2.6),
and the homology groups Hi(X) vanish for 1 ≤ i ≤ (n − 1). It remains to show
that Hi(X) vanishes for i ≥ (n+ 1). As X is (n+ 1)-dimensional, it suffices to do
this for i = (n+ 1). The following diagram commutes

Hn+1

(∨
j∈J S

n
)

= {0}

Hn+1(k)

��

{0}

��

Hn+1(X)

∂n+1

��

πn
(∨

i∈I S
n, s
)

πn(f,s)

��

hurn

(∨
i∈I S

n,s
)

∼=
// Hn

(∨
i∈I S

n
)

Hn(f)

��

πn
(∨

j∈J S
n, s
)

πn(k,x)

��

hurn

(∨
j∈J S

n,s
)

∼=
// Hn

(∨
j∈J S

n
)

Hn(k)

��

πn(X,x)

��

hurn(X,x)

∼=
// Hn(X)

��

{0} {0}

where the column are exact and the horizontal arrows are bijective by Hurewicz
Theorem 12.5 since X,

∨
i∈I S

n, and
∨
i∈I S

n are (n−1)-connected by Corollary 4.5.
Hence Hn+1(X) vanishes.
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(ii). We start with the case n ≥ 2. Recall that X is the reduced mapping cone of
a specific map

f :=
∨
i∈I

fi :
∨
i∈I

Sn →
∨
j∈J

Sn

such that we have an exact sequence of abelian groups

0→ πn
(∨
i∈I

Sn
) πn(f,x)−−−−−→ πn

(∨
j∈J

Sn
) πn(k)−−−→ πn(X,x)→ 0

for k : Xn =
∨
j∈J S

n → X the inclusion and that we have isomorphisms (13.3)

and (13.4). Because of (2.6) we can assume without loss of generality that the base
point of X is the standard base point s in Xn =

∨
j∈J S

n ⊆ X. For every j ∈ J let

aj : (Sn, s)→ (Y, y) be the pointed map whose class in πn(Y, y) is the image of the
standard generator of πn(Sn, s) under the composite

πn(Sn, s)
lj−→
⊕
j∈J

πn(Sn, s)
∼=−→ πn

(∨
j∈J

Sn, s
) πn(k)−−−→ πn(X,x)

ψ−→ πn(Y, y),

where lj is the inclusion of the j-th summand. Define the pointed map

un :=
∨
j∈J

aj : (Xn, x) =
(∨
j∈J

Sn, s
)
→ (Y, y).

Then the composite of the homomorphism πn(un, s) : π
(∨

j∈J S
n, s
)
→ πn(Y, y)

with the homomorphism πn(f, s) : πn(
∨
i∈I S

n, s)→ πn
(∨

j∈J S
n, s
)

is trivial. This
implies that the composite un ◦ f is pointed nullhomotopic. Hence un extends to a
pointed map u : (X,x)→ (Y, y). We get by construction πn(u, x) = ψ. �

Theorem 13.5 (Existence and uniqueness of Moore spaces). Consider n ∈ Z≥1

and two abelian groups G and G′ Then:

(i) There exists a Moore space (X,φ) of type (G,n) such that the Xn−1 =
X0 = {x} holds;

(ii) If n ≥ 2 and (X,φ) and (X ′, φ′) are Moore spaces of type (G,n), then
there is a homotopy equivalence f : X → X ′ satisfying φ′ ◦Hn(f) = φ.

Proof. (i) This follows from Lemma 13.2 (i).

(ii) We can suppose without loss of generality that X is a CW -complex as it occurs
in Lemma 13.2 (i). Then we obtain from Lemma 13.2 (ii) and Hurewicz Theo-
rem 12.5 a map f : X → X ′ such that the following diagram with isomorphisms as
vertical maps commutes

πn(X)
πn(f)

//

hurn ∼=
��

πn(X ′)

∼= hurn

��

Hn(X)
Hn(f)

//

φ ∼=
��

Hn(X ′)

∼= φ′

��

G
α

// G′.

This implies that Hi(f) : Hi(X)→ Hi(X
′) is bijective for i ≥ 1. Since X and X ′ are

simply connected, f is a homotopy equivalence by Whitehead Theorem 12.13. �
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14. Eilenberg-MacLane spaces

Definition 14.1 (Eilenberg-MacLane space). Consider n ≥ 1 and a group G which
is assumed to be abelian if n ≥ 2 holds. An Eilenberg MacLane space (X,x, ψ) of
type (G,n) consists of a path connected pointed CW -complex (X,x) and a group

isomorphism ψ : πn(X,x)
∼=−→ G such that πi(X,x) = {0} holds for 1 ≤ i with i 6= n.

Sometimes (X,x, ϕ) is denoted by K(G,n).

Lemma 14.2. Let (A, a) be a path connected pointed CW -complex and n ∈ Z≥0.
Then there is a CW -pair (X,A) such that X is path connected and obtained from
A by attaching cells of dimension ≥ (n + 2), the inclusion j : A → X induces an
isomorphism πi(A, a) → πi(X, a) for 1 ≤ i ≤ n, and πi(X, a) = {1} holds for
i ≥ (n+ 1).

Proof. Consider the pair (cone(A), A). Apply Theorem 6.3 to it for the natural
number (n+ 1). Then we obtain a CW -pair (X,A) and a map of pairs (f, idA)→
(cone(A), A) such that the pair (X,A) is (n+1)-connected and the homomorphism
πi(f, a) : πi(X, a) → πi(cone(f), a) is injective for i = (n + 1) and bijective for
i ≥ (n + 2). Since cone(A) is contractible, this implies πi(X, a) = {1} for i ≥
(n + 1). As (X,A) is (n + 1)-connected, the map πi(A, a) → πi(X, a) is bijective
for 1 ≤ i ≤ n. �

Theorem 14.3 (Existence and uniqueness of Eilenberg-MacLane spaces). Con-
sider n ∈ Z≥1 and two groups G and G′ which are assumed to be abelian if n ≥ 2
holds. Then:

(i) There exists an Eilenberg-MacLane space (X,x, ϕ) of type (G,n) such that
the Xn−1 = X0 = {x} holds;

(ii) Let (X,x) be a pointed n-connected CW -complex and (X ′, x′, ϕ′) be an
Eilenberg-Maclane space of type (G′, n).

We obtain a bijection

[(X,x), (X ′, x′)]0
∼=−→ hom(πn(X,x), G′), [f ] 7→ ϕ′ ◦ πn(f, x).

Moreover, the forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for
n ≥ 2;

(iii) Let (X,x, ϕ) be an Eilenberg-Maclane space of type (G,n) and (X ′, x′, ϕ′)
be an Eilenberg-Maclane space of type (G′, n).

We obtain a bijection

[(X,x), (X ′, x′)]0
∼=−→ hom(G,G′), [f ] 7→ ϕ′ ◦ πn(f, x) ◦ ϕ−1.

Moreover, the forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for
n ≥ 2;

(iv) Let (X,x, ϕ) and (X ′, x′, ϕ′) be two Eilenberg-MacLane spaces of type
(G,n). Then there exists a pointed homotopy equivalence f : (X,x) →
(X ′, x′) which is up to pointed homotopy equivalence uniquely determined
by the property that ϕ′ ◦ π1(f, x) = ϕ holds.

Proof. (i) This follows from Lemma 13.2 (i) and Lemma 14.2.

(ii) The forgetful map [(X,x), (X ′, x′)]0 → [X,X ′] is bijective for n ≥ 2 because
of (8.24), since X ′ is simply connected.

We can find by Corollary 6.5 a CW -pair (Y, y) together with a pointed homotopy
equivalence (Y, y)→ (X,x) such that Yn−1 = Y0 = {y} holds. Hence we can assume
without generality that Xn−1 = X0 = {x} holds. Then Xn looks like

∨
i∈I S

n and
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we have canonical isomorphisms⊕
i∈I

πn(Sn, s)
∼=−→ πn(

∨
i∈I

Sn, x);

Z
∼=−→ πn(Sn, s).

Consider a homomorphism v : πn(X,x) → G′. For every i ∈ I choose a pointed
map ui : (Sn, s)→ (X ′, x′) such that the composite

πn(Sn, s)
ji−→
⊕
i∈I

πn(Sn, s)
∼=−→ πn(Xn, x)

πn(k)−−−→ πn(X,x)
v−→ G′

φ′−1

−−−→ πn(X ′, x′)

sends [idSn ] to [ui], where ji is the inclusion of the i-th summand and k : Xn → X
is the inclusion. Define the map

fn =
∨
i∈I

ui : Xn =
∨
i∈I

Sn → X ′.

It sends the basepoint x ofXn to the base points x′ ofX ′. The map πn(fn, x) : πn(Xn, x)→
πn(X ′, x′) agrees with the composite

πn(Xn, x)
πn(k)−−−→ πn(X,x)

v−→ G′
(ϕ′)−1

−−−−→ πn(X ′, x′).

We can define inductively maps fj : (Xj , x)→ (X ′, x′) for j = n, (n+1), (n+2), . . .
satisfying fj+1|Xj = fj for j = n, (n + 1), (n + 2), . . ., since the attaching map
q : Sn → Xn of any (n+1)-cell of X lies in the kernel of πn(k) : πn(Xn, x)→ πn(X)
and πj(X

′, x′) = 0 holds for j = (n+ 1), (n+ 2), . . .. Define the map

f := colimj→∞ fj : X = colimj→∞Xj → X ′

Then f(x) = x′ holds and v agrees with the composite πn(X,x)
πn(f,x)−−−−−→ πn(X ′, x′)

ϕ′−→
G′. This proves surjectivity.

Injectivity is proved as follows. Consider two pointed maps f0, f1 : (X,x) →
(X ′, x′) such that πn(f0, x) = πn(f1, x) holds. We have to construct a pointed
homotopy equivalence h : (X,x) × I → (X ′, x′) between f0 and f1. We construct
inductive maps hj : Xj × I ∪X × {0, 1} → X ′ for j = 0, 1, 2, . . . such that

h0 : X0 × I ∪X × {0, 1} = {x} × I ∪X × {0, 1} → X ′

sends every element in {x}× I to x and is given on X ×{k} by fk for k = 0, 1 and
we have for j = 0, 1, 2, . . .

hj+1|Xj×I∪X×{0,1} = hj .

Since X × I is colimj→∞Xj × I ∪ X × {0, 1}, we can define the desired pointed
homotopy h by colimj→∞ hj .

It remains to construct the map hj for j = 0, 1, 2, . . .. We have constructed h0

already. Since Xn−1 = X0 holds, we have Xn−1×I∪X×{0, 1} = X0×I∪X×{0, 1}
and can define hj = h0 for 1 ≤ j ≤ (n − 1) Next we construct hn. We have

Xn =
∨
i∈I S

n. We have to specify for each i ∈ I a map hn,i : S
n−1
i × I → X ′

such that hn,i sends an element in {s} × I to x′ and its restriction to Sn−1
i × {k}

is fk|Sn−1
i

for k = 0, 1, where Sni is the i-th summand in
∨
i∈I S

n, since then the

collection of the maps hn,i-s yields the desired map hn by hn|X0×I∪X×{0,1} = h0

and hn|Sni ×I = hn,i. The existence of hn,i follows from πn(f0, x) = πn(f1, x) since

this implies that the pointed maps f0|Sn−1
i

and f1|Sn−1
i

from (Sn−1
j , s) → (X ′, x′)

are pointed homotopic. This finishes the construction of hn.
Since Xi+1 × I ∪X × {0, 1} is obtained from Xi × I ∪X × {0, 1} by attaching

cells of dimension (i + 2) and πi+1(X ′, x′) vanishes, we can extend hi to hi+1 for
i = n, (n+ 1), (n+ 1), . . .. This finishes the proof of assertion (ii).
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(iii) This follows from assertion (ii).

(iv) This follows from assertion (iii). �

Remark 14.4 (Eilenberg MacLane space of type (G, 1) and unpointed homotopy
classes). In Theorem 14.3 we have treated unpointed homotopy classes only for
n ≥ 2. We briefly discuss what happens in the case n = 1.

Consider the situation of assertion (ii) of Theorem 14.3. Then one obtains a
bijection from [X,X ′] to the set [Π(X),Π(X ′)] of natural equivalence classes of
functors from Π(X) to Π(X ′) by sending [f ] to [Π(f)]. In terms of fundamental
groups one obtains a bijection for Inn(G′) the group of inner automorphisms of G′

[X,X ′]
∼=−→ Inn(G′)\ hom(π1(X,x), G′)

defined as follows. For [f ] we can choose a representative f with f(x) = x′ and
associate to [f ] the class of ϕ′ ◦π1(f, x). These claims follow from Theorem 14.3 (ii)
using the bijection (8.24).

In the situation of assertion (iii) of Theorem 14.3 we obtain a bijection

[X,X ′]
∼=−→ Inn(G′)\ hom(G,G′).

Note that Inn(G′) is trivial if and only if G′ is abelian. So for abelian G′ we get
also for n = 1 that the forgetful map [(X,x), (X ′, x′)] → [X,X ′] is bijective in
assertions (ii) and (iii) of Theorem 14.3.

Consider an abelian groupG and n ∈ Z≥1. Let (X,x, ϕ) be an Eilenberg-Maclane

space of type (G,n). Then the Hurewicz homomorphism hurn(X,x, ϕ) : πn(X,x)
∼=−→

Hn(X) is bijective by Theorem 12.5. Moreover Hi(X) is trivial for 1 ≤ i < n by
Proposition 12.7 (i) and H0(X) ∼= Z. By the Universal Coefficient Theorem we

obtain an isomorphism αn : Hn(X;G)
∼=−→ homZ(Hn(X), G). Hence the following

composite is an isomorphism

β : homZ(G,G)
homZ(ϕ,idG)−−−−−−−−→ homZ(πn(X,x), G)

homZ(hurn(X,x)−1,idG)−−−−−−−−−−−−−−−→ homZ(Hn(X), G)
α−1
n−−→ Hn(X;G).

Let

(14.5) ιn(X,x, ϕ) ∈ Hn(X;G)

be the element which us uniquely determined by βn(idG) = ιn(X,x, ϕ). Let Y be
a CW -complex. Consider the map

(14.6) γn(Y ) : [Y,X]→ Hn(Y ;G), [f ] 7→ Hn(f ;G)(ιn(X,x, ϕ)).

We will later give the proof of the following theorem.

Theorem 14.7. Consider n ∈ Z≥1. Let G be an abelian group. Let (X,x, ϕ) be
an Eilenberg-MacLane space of type (G,n). Let Y be a CW -complex.

Then the map

γn(Y ) : [Y,X]→ Hn(Y ;G)

defined in (14.6) is bijective.

Example 14.8 (Homotopy classes of maps to S1). We conclude from Remark 14.4
or from Theorem 14.7 that we obtain for a CW -complex Y a bijection of groups

[Y, S1]
∼=−→ H1(Y ;Z)

by sending [f ] to the image of a fixed generator of the infinite cyclic group H1(S1;Z)
under the homomorphism H1(f ;Z) : H1(S1;Z)→ H1(Y ;Z).
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15. Postnikov towers

Let X be a connected CW -complex X. A Postnikov tower for X consists of
a sequence of spaces τ≤kX for k ∈ Z≥1, a sequence of maps ϕk : X → τ≤kX for
k ∈ Z≥1, and a sequence of fibrations pk : τ≤kX → τ≤k−1X for k ∈ Z≥2 with the
following properties:

• πi(τ≤k) = {0} for i ≥ k + 1;

• The map ϕk induces isomorphisms πi(ϕk) : πi(X)
∼=−→ πi(τ≤kX) for 1 ≤

i ≤ k;
• We have pk+1 ◦ ϕk+1 = ϕk for k ∈ Z≥1,
• Each space Xn has the homotopy type of a CW -complex.

The following diagram commutes

...

p5

��

τ≤4X

p4

��

τ≤3X

p3

��

τ≤2X

p2

��

X
ϕ1

//

ϕ2

11
ϕ3

44

ϕ4

66

τ≤1X.

Note that τ≤1X is necessarily a model for K(π1(X), 1) and each map ϕk is k-
connected and has K(πk(X), k) as fiber.

Remark 15.1 (The construction of a Postnikov tower). The details of the con-
struction of a Postnikov tower can be found for instance in [33, Chapter IX]. The
basic idea is the following.

For k ∈ Z≥0 we can construct a CW -complex X ′k obtained from X by attaching
cells of dimension ≥ (k+ 2) such that inclusion ϕ′k : X → X ′k induces isomorphisms
πi(ϕk) : πi(X)→ πi(X

′
k) for i = 0, 1, 2, . . . , k and πi(X

′
k) = {0} holds for i ≥ (k+1),

see Lemma 14.2. The inclusion ϕ′i : X → Xk−1 extends to a map p′k : X ′k → X ′k−1

since X ′k is obtained from X by attaching cells of dimension ≥ (k+2) and πi(Xk−1)
vanishes for i ≥ k.
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So we get a commutative diagram

...

p5

��

X ′4

p′4
��

X ′3

p′3
��

X ′2

p′2
��

X
ϕ′1

//

ϕ′2

11
ϕ′3

44

ϕ′4

66

X ′1.

such that

• πi(X ′k) = {0} for i ≥ k + 1;

• The map ϕ′k induces isomorphisms πi(ϕ
′
k) : πi(X)

∼=−→ πi(X
′
k) for 1 ≤ i ≤ k.

Then by turning a map into a fibration starting with p′2 and working inductively
upwards, we obtain the desired Postnikov tower.

There is a canoncial map from X to the inverse limit invlimk→∞{τ≤kX, pk}
which is a weak homotopy equivalence.

Recall that pk : τ≤kX → τ≤k−1X has a fiber K(πk(X), k). Suppose that X is
a simple space, i.e., the action of the fundamental group π1(X) is the homotopy
groups πn(X) is trivial for n ∈ Z≥1. (Note that this implies that π1(X) is abelian.)
Then one can actually extend pk to a fiber sequence

K(πk(X), k)→ τ≤kX
pk−→ τ≤k−1X → K(πk(X), k + 1).

It determines a class

(15.2) [pk] ∈ [τ≤kX;K(πk(X), k + 1)] = Hk+1(τ≤k−1X;πk(X)),

called k-invariant of the Postnikov tower which determines pk up to strong fiber
homotopy equivalence.

Example 15.3. The first few terms of the Postnikov tower for the sphere S2 can
be understood explicitly. The first homotopy groups of the sphere are given by

πn(S2) ∼=


{0} n = 0, 1;

Z n = 2, 3;

Z/2 n = 4.

Hence τ≤2S
2 is K(Z, 2) for which CP∞ is a model. The fibration p3 : τ≤3S

2 →
K(Z/2) is classified by the 3-invariant which is an element in H4(τ≤2X;π3(X)) ∼=
H4(CP∞;Z) ∼= Z. This invariant is trivial if and only if τ≤3X ' K(Z/2,Z) ×
K(Z, 3). Actually, it is known that the 3-invariant is non-trivial, see [33, Example
1 in IX.5 on page 437].

16. Spectra

16.1. Basics about spectra. Note that in the sequel we often omit the base
points from the notation. Moreover, pointed space means always well pointed
space. Recall that we are working in the category of compactly generated spaces.
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Definition 16.1 (Spectrum). A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence
of pointed spaces {E(n) | n ∈ Z} together with pointed maps called structure maps

σ(n) : E(n) ∧ S1 −→ E(n+ 1)

for n ∈ Z. A map of spectra f : E→ E′ is a sequence of maps f(n) : E(n)→ E′(n)
which are compatible with the structure maps σ(n), i.e., we have f(n+ 1) ◦σ(n) =
σ′(n) ◦ (f(n) ∧ idS1) for all n ∈ Z.

Maps of spectra are sometimes called functions in the literature, they should
not be confused with the notion of a map of spectra in the stable category, see [1,
III.2.].

Note that we are not requiring that E(n) = {•} holds for n ≤ −1.

Example 16.2 (Suspension spectrum of a pointed space). Given a pointed space
X, define its suspension spectrum Σ∞X by Σ∞X(n) = {•} for n ≤ −1 and
Σ∞X(n) = X ∧ Sn for n ≥ 0. Note that Σ∞X(0) = X ∧ S0 can be identified
with X itself. Since Sn+1 can be identified with Sn ∧ S1, we can define the n-
structure map to be

id(X∧Sn)∧S1 : Σ∞X(n) ∧ S1 = (X ∧ Sn) ∧ S1

→ (X ∧ Sn) ∧ S1 = X ∧ (Sn ∧ S1) = X ∧ Sn+1 = Σ∞X(n+ 1).

Example 16.3 (Sphere spectrum). If we take X = S0 in Example 16.2, we obtain
the sphere spectrum S. Note that S(n) = {•} for n ≤ −1 and S(n) = Sn for n ≥ 0
hold and that the n-th structure map comes from the identification Sn∧S1 = Sn+1.

Example 16.4 (Eilenberg-MacLane spectrum). Given an abelian group G, we
define the associated Eilenberg Mac-Lane spectrum K(G) as follows. We put
K(G)(n) = {•} for n ≤ 0 and put K(G)(n) = K(G,n) for some model K(G,n)
of the Eilenberg MacLane space of type (G,n) for n ≥ 1. In order to define

the n-th structure map for n ≥ 0, it suffices to specify a map σ(n) : K(G,n) →
ΩK(G, (n + 1)) because of the adjunction (9.32). Recall that we have a pre-

ferred isomorphism ∂n+1(K(G,n + 1)) : πn+1(K(G,n + 1))
∼=−→ πn(ΩK(G,n + 1)),

see (10.7). We conclude from Theorem 14.3 (iii) that there is a homotopy equiva-

lence σ(n) : K(G,n)→ ΩK(G,n+1) which is uniquely determined by the property
that under the identifications πn(K(G,n)) = G and πn+1(K(G,n + 1)) = G the

map πn(σ(n)) : πn(K(G,n))→ πn(ΩK(G, (n+ 1))) and the preferred isomorphism
∂n+1 are inverse to one another.

Definition 16.5 (Homotopy groups of a spectrum). For n ∈ Z the nth homotopy
groups of a spectrum E is defined by

πn(E) := colimk→∞ πn+k(E(k))

where the kth structure map of the system πn+k(E(k)) is given by the composite

an,k(E) : πn+k(E(k))
σn+k(E(k))−−−−−−−→ πn+k+1(S1 ∧ E(k))

πn+k+1(flip)−−−−−−−−→ πn+k+1(E(k) ∧ S1)

πn+k+1(σ(k))−−−−−−−−−→ πn+k+1(E(k + 1))

of the suspension homomorphism σn+k(E(k)) of (11.15), the map induced by the

flip map flip: S1 ∧ E(k)
∼=−→ E(k) ∧ S1, and the homomorphism induced by the

structure map σ(k).
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A weak equivalence of spectra is a map f : E→ F of spectra inducing an isomor-
phism on all homotopy groups.

A spectrum E is called an Ω-spectrum if the adjoint σ(n) : En → ΩEn+1 of σ(n)
under the adjunction (9.32) induces for every n ≥ 1 and every n ∈ Z a bijection

πn(σ(n)) : πn(E(n))→ πn(ΩE(n+ 1)). The Eilenberg MacLane spectrum K(G) is
an Ω-spectrum.

Note that it may happen that πn(E) is non-trivial for some n ∈ Z with n ≤ −1.
Each of the groups πn(E) is abelian.

Note that for k, n ∈ Z with k + n ≥ 1 there is a natural map

(16.6) ψk,n : πk+n(E(k))→ πn(E).

In general this map is not bijective. It is bijective if E is an Ω-spectrum since in
view of the adjunction (9.32) one can compute πn(E) of a spectrum as the colimit
of the sequence

(16.7) πn(E(0))
πn(σ(0))−−−−−→ πn(ΩE(1))

πn(Ωσ(1))−−−−−−→ πn(Ω2E(2))
πn(Ωσ(1))−−−−−−→ · · · .

Note that our construction of the Eilenberg-Maclane spectrum K(G) of Ex-
ample 16.4 depends on choices. In any case we get a preferred isomorphism

π0(K(G))
∼=−→ G and πn(K(G)) = {0} for n 6= 0. Moreover, for any two such

constructions with different choices of K(G), there is a weak homotopy equivalence
between the resulting spectra inducing the identity on π0 under the identification
of π0 with G above.

Note that for a pointed space X the n-stable homotopy group πsn(X+) of Defi-
nition 11.20 agrees with πsn(Σ∞X) of Definition 16.5.

Given a spectrum E and a pointed space X, we can define their smash prod-
uct to be the spectrum X ∧ E whose n-th spaces is (X ∧ E)(n) := X ∧ E(n) and
whose n-th structure map is idX ∧σ(n) : X ∧ E(n) → X ∧ E(n + 1). Next in-
troduce the associated mapping spectrum map(X; E)0. Its n-th space is given by
map(X; E)0(n) = map(X,E(n))0 for n ∈ Z. Its n-th structure map for n ∈ Z is
defined to be the composite

map(X,E(n))0 map(idX ,σ(n))0−−−−−−−−−−→ map(X; ΩE(n+ 1))0 in−→ Ω map(X,E(n+ 1)0)

having the adjunction 9.32 in mind, Here in is the homeomorphism which assigns
to the pointed map f : X → ΩE(n) = map(S1, E(n))0 the pointed map g : S1 →
map(X,E(n)) sending s ∈ S1 to the map X → E(n), x 7→ f(x)(s). It can be also
witten as the composite

map(X,ΩE(n))0 = map(X,map(S1, E(n))0)0 ∼=−→ map(X ∧ S1, E(n))0

∼=−→ map(S1 ∧X,E(n))0 ∼=−→ map(S1,map(X,E(n))0)0 = Ω map(X,E(n))0.

16.2. Homology and cohomology theories for pointed spaces and pairs.
Fix a commutative ring R.

Definition 16.8 (Homology theory for pointed spaces). A homology theory for

pointed spaces with values in R-modules H̃∗ = (H̃∗, s∗) consists of a covariant

functor H̃∗ from the category Top0 of pointed spaces to the category of Z-graded

R-modules together with a natural transformation s∗ : H̃∗(−)→ H̃∗+1(S1∧−) such
that the following conditions are satisfied:

• Pointed homotopy invariance
Let f and g be pointed maps (X,x) → (Y, y) which are pointed homo-

topic. Then for every n ∈ Z the R-homomorphisms H̃n(f) and H̃n(g)

from H̃n(X,x) to H̃n(Y, y) agree:
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• Exactness
Let f : (X,x) → (Y, y) be a pointed map. Let i : Y → cone(f, x) be the
inclusion into the pointed mapping cone of f . Then for every n ∈ Z the
sequence of R-modules

H̃n(X,x)
H̃n(f)−−−−→ H̃n(Y, y)

H̃n(i)−−−−→ H̃n(cone(f), ∗)
is exact;

• Suspension isomorphism

For every pointed space (X,x) and every n ∈ Z the map

sn(X,x) : H̃n(X,x)
∼=−→ H̃n+1(S1 ∧X, ∗)

is bijective.

We say that H̃∗ satisfies the one point union axiom if for any collection of pointed
spaces {(Xi, xi) | i ∈ I} and every n ∈ Z the map⊕

i∈I
H̃n(ji) :

⊕
i∈I
H̃n(Xi, xi)

∼=−→ H̃n
(∨
i∈I

(Xi, xi)
)

is bijective for ji : (Xi, xi)→
∨
i∈I(Xi, xi) the inclusion of the i-th summand.

We say that H̃∗ satisfies the dimension axiom if we have H̃n(S0, s) = 0 for n 6= 0.

Definition 16.9 (Cohomology theory for pointed spaces). A cohomology theory for

pointed spaces with values in R-modules H̃∗ = (H̃∗, s∗) consists of a contravariant

functor H̃∗ from the category Top0 of pointed spaces to the category of Z-graded

R-modules together with a natural transformation s∗ : H̃∗(−)→ H̃∗+1(S1∧−) such
that the following conditions are satisfied:

• Pointed homotopy invariance
Let f and g be pointed maps (X,x) → (Y, y) which are pointed homo-

topic. Then for every n ∈ Z the R-homomorphisms H̃n(f) and H̃n(g)

from H̃n(Y, y) to H̃n(X,x) agree;
• Exactness

Let f : (X,x) → (Y, y) be a pointed map. Let i : Y → cone(f, x) be the
inclusion into the pointed mapping cone of f . Then for every n ∈ Z the
sequence of R-modules

H̃n(cone(f, x), ∗) H̃
n(i)−−−−→ H̃n(Y, y)

H̃n(f)−−−−→ H̃n(X,x)

is exact;
• Suspension isomorphism

For every pointed space (X,x) and every n ∈ Z the map

sn(X,x) : H̃n(X,x)
∼=−→ H̃n+1(S1 ∧X)

is bijective.

We say that H̃∗ satisfies the one point union axiom if for any collection of pointed
spaces {(Xi, xi) | i ∈ I} and every n ∈ Z the map∏

i∈I
H̃n(ji) : H̃n

(∨
i∈I

(Xi, xi)
)
→
∏
i∈I
H̃n(Xi, xi)

is bijective for ji : (Xi, xi)→
∨
i∈I(Xi, xi) the inclusion of the i-th summand.

We say that H̃∗ satisfies the dimension axiom if we have H̃n(S0, s) = 0 for n 6= 0.

A cohomology theory for pointed spaces is to be understood to be cohomology
theory for pointed spaces with values in Z-modules, and analogously for pairs and
homology theories.
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Remark 16.10 (Correspondence between (co-)homology theories for pointed space
and pairs). There is a one-to-one correspondence between homology theories for
pointed spaces with values in R-modules and homology theories for pairs with

values in R-modules. Let H̃∗ be a homology theory for pointed spaces with values
in R-modules. Then we can define a homology theory H∗ for pairs with values in
R-modules as follows. For a pair (X,A) define

Hn(X,A) := H̃n(X+ ∪A+ cone(A+, ∗)),

where X+ = X q {∗} is the pointed space obtained from X by adjoining an extra

base point. If A is empty, we get Hn(X) = H̃n(X+, ∗). Recall that we also have to
specify for a pair (X,A) a boundary operator ∂n(X,A) : Hn(X,A)→ Hn−1(A) for
n ∈ Z. It is defined by the composite

∂n(X,A) : Hn(X,A) = H̃n(X+ ∪X+ cone(A+, ∗), ∗)
Hn(pr)−−−−→ Hn(S1 ∧A+, ∗)

sn−1(A+,∗)−1

−−−−−−−−−→ H̃n−1(A+, ∗) = Hn−1(A)

for the projection pr : X+ ∪X+ cone(A+, ∗) → S1 ∧ A+. We leave the elementary
proof that (H∗, ∂∗) is a homology theory to the reader.

Given a homology theory for pairs with values in R-modules (H∗, ∂∗), we can

define a homology theory for pointed spaces with values in R-modules H̃∗ by

H̃∗(X,x) = H(X, {x}). We leave the construction of the natural transformation

s∗(X,x) : H̃n(X,x) → H̃n+1(S1 ∧X, ∗) and the proof that (H̃∗, s∗) is a homology
theory for pointed spaces with values in R-modules to the reader.

The analogous statements and construction yields a one-to-one-correspondence
between cohomology theories for pointed spaces with values in R-modules and
cohomology theories for pairs with values in R-modules.

More details can be found for instance in [31, Section 7.6 on page 176-177].

Proposition 16.11. Let X be a (compactly generated) topological Hausdorff space
with a sequence of closed subspaces X0 ⊂ X1 ⊆ X2 ⊆ · · · ⊆ X such that X is the
union of the Xi-s and carries the colimit topology. Then:

(i) Suppose that the homology theory with values in R-modules H∗ satisfies
the disjoint union axiom for countable index sets.

Then there is for every n ∈ Z a natural R-isomorphism

colimk→∞Hn(Xk)
∼=−→ Hn(X);

(ii) Suppose that the cohomology theory H∗ with values in R-modules satisfies
the disjoint union axiom for countable index sets. Then there is for every
n ∈ Z a natural short exact sequence

0→ invlim1
k→∞Hn−1(Xk)→ Hn(X)→ invlimk→∞Hn(Xk)→ 0.

Proof. The proof can be found in [27, Proposition 7.53 on page 121 and Proposi-
tion 7.66 on page 127] in the special case that X is a CW -complex and Xk is its
k-skeleton. The proof carries directly over to our more general setting. �

Proposition 16.12.

(i) Let t∗ : H∗ → K∗ be a transformation of homology theories with values in
R-modules satisfying the disjoint union axiom. Suppose that the homo-
morphism tn({•}) : Hn({•})→ Hn({•}) is bijective for all n ∈ Z.

Then tn(X,A) : Hn(X,A) → Kn(X,A) is bijective for every CW -pair
(X,A) and n ∈ Z;
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(ii) Let t∗ : H∗ → K∗ be a transformation of cohomology theories with val-
ues in R-modules satisfying the disjoint union axiom. Suppose that the
homomorphism tn({•}) : Hn({•})→ Kn({•}) is bijective for all n ∈ Z.

Then tn(X,A) : Hn(X,A) → Kn(X,A) is bijective for every CW -pair
(X,A) and n ∈ Z.

Proof. By the long exact sequence of a pair and the Five-Lemma one can reduce
the claim to the case A = ∅. The claim follows for zero-dimensional CW -complexes
X from the disjoint union axiom. Inductively over the dimension one proves the
claim for finite-dimensional CW -complexes, where in the induction step the Mayer-
Vietoris sequence and homotopy invariance comes in. Using Proposition 16.11 one
obtains the general case from the finite-dimensional case. �

16.3. The homology and cohomology theory assigned to a spectrum.

Lemma 16.13. For a spectrum E and n ∈ Z there are equivalences

(16.14) πn(E) ' πn+1(S1 ∧E) and πn(E) ' πn−1(map(S1,E)0)

which are natural in E.

Proof. We claim that the maps

(16.15) (−1)kσn+k(E(k)) : πn+k(E(k))→ πn+k+1(S1 ∧ E(k))

assemble to an equivalence

πn(E) = colimk→∞ πn+k(E(k))(16.16)

→ colimk→∞ πn+k+1(S1 ∧ E(k)) = πn+1(S1 ∧E).

The following commutative diagram shows that the maps (−1)kσn+k(E(k)) com-
mute with the structure maps of the respective colimits and induce the map (16.16):

(16.17)

πn+k(E(k)) πn+k+1(S1 ∧ E(k))

πn+k+1(S1 ∧ E(k)) πn+k+2(S1 ∧ (S1 ∧ E(k)))

πn+k+1(E(k) ∧ S1) πn+k+2((S1 ∧ E(k)) ∧ S1)

πn+k+1(E(k + 1)) πn+k+2((S1 ∧ E(k)) ∧ S1).

−σn+k(E(k))

σn+k(E(k)) σn+k+1(S1∧E(k))

πn+k+1(flip)

− id

πn+k+2(flip)

πn+k+1(σ(k)) πn+k+2(σ(k))

σn+k+1(E(k+1))

To prove commutativity of diagram 16.17, one starts with an element [f ] ∈ πn+k(E(k))
represented by a pointed map f : Sn+k → E(k). Its image under the composite of
the left vertical arrows is [g] ∈ πn+k+2(S1 ∧ E(k + 1)) for the pointed map

g : S1 ∧ S1 ∧ Sn+k idS1 ∧ idS1 ∧f−−−−−−−−−→ S1 ∧ S1 ∧ E(k)

idS1 ∧ flip
−−−−−−→ S1 ∧ (E(k) ∧ S1)

idS1 ∧σ(k)
−−−−−−−→ S1 ∧ E(k + 1).

However, the image of [f ] ∈ πn+k(E(k)) under the composite of the right vertical
arrows is [g] ∈ πn+k+2(S1 ∧ E(k + 1)) is g ◦ (flip∧ idSn+k) (and not [g]). Since the
homomorphism flip∧ idSn+k : S1 ∧ S1 ∧ Sn+k → S1 ∧ S1 ∧ Sn+k has degree −1,
Theorem 3.4 implies that [g ◦ (flip∧ idSn+k)] = −[g] holds.

It remains to show that the map (16.16) is an equivalence. Recall the general

fact that for a directed system of abelian groups A0
φ0−→ A1

φ1−→ A2
φ2−→ · · · every

element in the colimit can be written as ψm(am) for some m ∈ Z≥0 and some
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am ∈ Am for the structure map ψm : Am → colimk→∞Ak and the element ψm(am)
is zero in the colimit if and only if there exists n ∈ Z≥0 with n ≥ m such that the
composite φn−1 ◦ φn−2 ◦ · · · ◦ φm : Am → An sends am to zero. Now note that the
upper left triangle in diagram 16.17 with the dashed map commutes, which implies
injectivity of (16.16). Surjectivity is more difficult. We only show that the twofold
suspension πn(E)→ πn+1(S1∧E)→ πn+2(S1∧S1∧E) is surjective. As both maps
are injective this proves that they are equivalences. Consider f : Sn+k → S2∧E(k).
We will show that [f ] ∈ πn+2(S1 ∧ S1 ∧E) is the image of [g] ∈ πn(E) for the map

(16.18) g : Sn+k+2 f−→ S2 ∧ E(k)
flip−−→ E(k) ∧ S2 σ2

−→ E(k + 2).

Consider the the diagram

(16.19)

S2 ∧ Sn+k+2 Sn+k+2 ∧ S2

S2 ∧ (S2 ∧ E(k)) (S2 ∧ E(k)) ∧ S2

S2 ∧ E(k) ∧ S2 S2 ∧ E(k + 2).

flip

id∧f f∧id

flip

id∧ flip id∧σ2α

id∧σ2

The map α : S2∧E(k)∧S2 → S2∧E(k)∧S2 is the map swapping the first and last
factor. As this swap map of S2 ∧ S2 has degree 1, we see that α ' id. Similarly,
the flip map S2 ∧ Sn+k+2 → Sn+k+2 ∧ S2 is homotopic to the identity. This is the
reason why we have to suspend twice! Now the upper square and middle triangle
in diagram 16.19 obviously commute. The bottom right triangle commutes up to
homotopy using id ' α. The right vertical composite represents [f ] ∈ πn+2(S2∧E).
The bottom left composite is the image of [g] under πn(E)→ πn+2(S1 ∧ S1 ∧E).

The proof of the equivalence πn(E) ' πn−1(map(S1,E)0) is easy using the equiv-
alence πn(ΩX) ' πn+1(X) for a pointed space X. �

Definition 16.20. Let E be a spectrum and X be a pointed space. Define the
reduced E-(co)homology of X by

H̃n(X; E) = πn(X ∧E) and H̃n(X; E) = π−n(map(X,E)0).

Theorem 16.21 (The homology and cohomology theory assigned to a spectrum).

Let E be a spectrum. Then:

(i) The reduced E-homology H̃∗(−,E) is a homology theory of pointed spaces
with values in Z-modules. Its associated homology theory on pairs of spaces
satisfies the disjoint union axiom. For every n ∈ Z there is an isomorphism

αn(E) : Hn({•}; E)
∼=−→ πn(E);

(ii) The reduced E-cohomology H̃∗(−; E) is a cohomology theory of pointed
spaces with values in Z-modules. Its associated cohomology theory on pairs
of spaces satisfies

αn(E) : Hn({•}; E)
∼=−→ π−n(E).

If E is an Ω-spectrum and we consider as input only pointed CW -complexes,
then H∗(−; E) satisfies the disjoint union axiom.

Proof. (i). Because of Remark 16.10 it suffices to construct a homology theory for

pointed spaces H̃∗.
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We begin by showing how H̃n(X; E) = πn(X ∧ E) from definition 16.20 is a
homology theory for pointed spaces. Is is obviously a functor from pointed spaces
to Z-graded abelian groups. Furthermore, it sends pointed homotopic maps to the

same map on H̃n(−; E) As suspension isomorphism we use the isomorphism

sn(x) : H̃n(X; E) = πn(X ∧E) ' πn+1(S1 ∧X ∧E) = H̃n+1(X; E)

from lemma 16.13 for the spectrum X ∧E, which is natural in X.
Next we prove exactness. Consider a pointed map f : X → Y . We have to prove

the exactness of the sequence

πn(X ∧E)
πn(f∧idE)−−−−−−−→ πn(Y ∧E)

πn(i∧idE)−−−−−−→ πn(cone(f) ∧E)

for i : Y → cone(f) the inclusion into the pointed mapping cone of f . Since the
composite i◦f is pointed nullhomotopic, we get im(πn(f ∧ idE)) ⊆ ker(πn(i∧ idE)).
It remains to show ker(πn(i ∧ idE)) ⊆ im(πn(f ∧ idE)).

Consider an element z ∈ ker(πn(i ∧ idE)). Then we can find k ∈ Z≥0 and
a pointed map g : Sn+k → Y ∧ E(k) such that [g] ∈ πn+k(Y ∧ E(k)) represents
z ∈ ker(πn(i∧ idE)) and πn+k(i∧ idE(k)) : πn+k(Y ∧E(k))→ πn+k(cone(f)∧E(n))
sends [g] to zero. Let h : cone(f)∧E(n)∧I → cone(f)∧E(n) be a pointed homotopy
with h0 = i ◦ g and h1 the constant map. Next we construct the following diagram

(16.22) Sn+k g
//

j

��

Y ∧ E(n)

i∧idE(n)

��

i∧idE(n)

))

cone(idSn+k)

p(idSn )

��

H
// cone(f ∧ idE(n))

p(f∧idE(n))

��

φ

∼=
// cone(f) ∧ E(n)

Sn+k ∧ S1

id
Sn+k∧S1

��

β
// X ∧ E(n) ∧ S1

f∧idE(n) ∧ idS1

��

idX ∧σ(n)
// X ∧ E(n+ 1)

f∧idE(n+1)

��

Sn+k ∧ S1
g∧idS1

// Y ∧ E(n) ∧ S1
idY ∧σ(n)

// Y ∧ E(n+ 1)

The left column is part of the cofibration sequence of the pointed map idSn , whereas
the middle column is part of the cofibration sequence of the pointed map f ∧ idE(n),
see Theorem 8.40. The map H is given by the map g and the homotopy h and
makes the uppermost left square commutative. The map β is the map uniquely
determined by the property that the left middle square commutes. The map φ is
the canoncial homeomorphism and makes the corresponding triangle commutative.
The lowermost right square commutes. The left lowermost square does not commute
but it does commute up to pointed homotopy. The elementary verification of this
fact is left to the reader or can be extracted from [27, Lemma 8.31 on page 143].

Now the composite (idY ∧σ(n))◦(g∧ idS1) : Sn+k∧S1 → Y ∧E(n+1) is another
representative of z ∈ ker(πn(i ∧ idE)). We conclude from the diagram 16.22 that
the composite (idX ∧σ(n)) ◦ β : Sn+k ∧ S1 → X ∧ E(n + 1) represents an element
in πn(X ∧ E) which sent by πn(f ∧ idE) to z. This finishes the proof of exactness

and hence of the assertion that (H̃∗(−; E), s∗) defines homology theory for pointed
spaces in the sense of Defintion 16.9.

It remains to check that H̃∗(−; E) satisfies the one point union axiom, i.e., that
the map

(16.23)
⊕
i∈I

πn(Xi ∧ E)→ πn(
∨
i∈I

Xi ∧ E)
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is an equivalence. Recall from exercise 47 on sheet 12 that for two spectra E1 and
E2 the canonical map E1 ∨ E2 → E1 × E2 is a weak homotopy equivalence. This
shows that the map (16.23) is an equivalence if I is finite. For general I, use the
equivalences

πn(
∨
i∈I

Xi ∧ E) ' colimF⊆I finite πn(
∨
i∈F

Xi ∧ E) and(16.24) ⊕
i∈I

πn(Xi ∧ E) ' colimF⊆I finite

⊕
i∈F

πn(Xi ∧ E).(16.25)

The first equivalence follows from the following argument: Consider a compact
subset C ⊆

∨
i∈I(Xi, xi). We want to show that there is a finite subset J ⊆ I with

C ⊆ I. Suppose that this is not the case. Then we can find a sequence of elements
j(1), j(2), j(3), . . . of pairwise distincts elements in I and a sequence of pairwise
distinct points s1, s2, s3, . . . in C satisfying si ∈ C ∩Xj(i) \{xj(i)}. Consider the set
S = {s1, s2, s3, . . . , }. Let T ⊆ S be any subset of S. Then T ∩Xi is either empty
of consists of one point for i ∈ I. Since each Xi is Hausdorff, T ∩ Xi is closed in
Xi for every i ∈ I. This implies that T is a closed subset of

∨
i∈I Xi. Hence S is a

discrete subset of
∨
i∈I Xi and contained in a compact subset C of X. This implies

that S is finite, a contradiction.
The proof that the reduced E-cohomology

H̃n(X; E) = π−n(map(X,E)0)

is a cohomology theory for pointed spaces is analogous to the one for homology
except that some care is necessary for the disjoint union axiom. The additional
difficulty is that we have a homeomorphism

map
(∨
i∈I

Xi; E(n)
)0

=
∏
i∈I

map(Xi,E(n))0

and hence we get for k, n an isomorphism

πn+k

(
map

(∨
i∈I

Xi; E(n)
)0) ∼=−→∏

i∈I
πn+k

(
map(Xi; E(n))0

)
but colimits and products do not commute. Therefore we need the assumption that
E is an Ω-spectrum, Namely, with this assumption, structure map of (16.6)

ψn,k : πn+k(map(Y,E(k))0)→ πn(map(Y,E)0)

is an isomorphism for every pointed space (Y, y) and we do not have to take the
colimit, since map(X; E)0 is an Ω-spectrum by Theorem 16.6 and Theorem 10.1
applied to the fibration map(X,E(n))0 → map(X,E(n)) → E(n), as E is an Ω-
spectrum and X is a CW -complex. �

Example 16.26 (Sphere spectrum and stable homotopy). Let S be the sphere
spectrum of Example 16.3. Then the associated homology theory H∗(−; S) agrees
with the stable homotopy theory πs∗(−) introduced in Defintion 11.20 and Theo-
rem 11.24 follows from Theorem 16.21 (i).

Example 16.27 (The Eilenberg-MacLane spectrum and singular homology). We
have introduced for an abelian group G the Eilenberg-Maclane spectrum K(G) in
Definition 16.4. Theorem 16.21 (ii) we obtain a cohomology theory which satisfies
the disjoint union axiom and the dimension axiom and H0({•}) ∼= G. Singular
cohomology H∗(−;G) with coefficients in G is also a cohomology theory which
satisfies the disjoint union axiom and the dimension axiom and H0({•};G) ∼= G.
We obtain from the maps γn(Y ) : [Y,K(G,n)] → Hn(Y ;G) of (14.6) a natural
transformation of cohomology theories γ∗ : H∗(−; K(G))→ H∗(;G) which induces
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an isomorphism γ0({•}) : H∗({•}; K(G)) → H∗({•};G). Proposition 16.12 (ii)
implies that we get a natural equivalence of cohomology theories

γ∗ : H∗(−; K(G))
∼=−→ H∗(−;G).

In particular we see that for every n ∈ Z the map γn(X) : [X,K(G,n)]→ Hn(Y ;G)
of (14.6) bijective for every CW -complex X, as predicted in Theorem 14.7.

We mention without proof that H∗(−; K(A)) can be identified with singular
homology H∗(−;A) with coefficients in A.

Example 16.28 (Hopf’s Theorem revisited). Let M be a closed smooth manifold
of dimension d. Let K(Z, d) be a model for the Eilenberg-MacLane space of type

(Z, d). Choose a map f : Sd → K(Z, d) inducing an isomorphism πd(f) : πd(S
d)
∼=−→

πd(K(Z, d)). Since f is (d+ 1)-connected and any smooth d-dimensional manifold

carries a d-dimensional CW -structure, we obtain a bijection [M,Sd]
∼=−→ [M,K(Z, d)]

by sending [g] to [f ◦ g] from the Whitehead Theorem 5.1 (i). Composing it with

the bijection γn(Y ) : [Y,K(G,n)]
∼=−→ Hd(Y ;G) of (14.6) yields a bijection

ν : [M,Sd]
∼=−→ Hd(M), [f ] 7→ Hd(f)([Sd])

for the fundamental class [Sd] ∈ Hd(Sd).
Suppose that M is oriented. If we compose ν with the bijective homomorphism

Hd(M)
∼=−→ Z sending u to 〈u, [M ]〉 for the fundamental class [M ] ∈ Hd(M), then

we obtain a bijection

[M,Sd]
∼=−→ Z, [f ] 7→ deg(f).

Thus we rediscover Hopf’s Degree Theorem 3.1.
Suppose that M is not orientable. We mention without giving the proof that

Hd(M ;Z) is isomorphic to Z/2 and ν : [M,Sd]
∼=−→ Z/2 sends f : M → Sd to

zero, if Hd(f,Z/2) : Hd(M,Z/2) → Hd(S
d;Z/2) is trivial, and to the generator

if Hd(f,Z/2) : Hd(M,Z/2)→ Hd(S
d;Z/2) is bijective.

16.4. Brown’s Representation Theorem. Let f : E → F be a map of spectra.
It induces in the obvious way a natural transformation of homology theories with
values in Z-modules

(16.29) tf∗ : H∗(−; E)→ H∗(−; F)

such that the following diagram commutes

Hn({•}; E)
tfn({•})

//

∼=
��

Hn({•}; F)

∼=
��

πn(E)
πn(f)

// πn(E).

It also induces in the obvious way a natural transformation of cohomology theories
with values in Z-modules

(16.30) t∗f : H∗(−; E)→ H∗(−; F)

such that the following diagram commutes

Hn({•}; E)
tnf ({•})

//

∼=
��

Hn({•}; F)

∼=
��

π−n(E)
πn(f)

// π−n(E).
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A proof of the next theorem can be found in [27, Theorem 9.27 on page 164 and
Theorem 9.28 on page 165]

Theorem 16.31 (Brown’s Representation Theorem).

(i) Let K∗ be a cohomology theory with values in Z-modules defined on the
category of CW -pairs satisfying the disjoint union axiom. Then there is
an Ω-spectrum E and a natural equivalence of cohomology theories

t∗ : H∗(−; E)
∼=−→ K∗;

(ii) Consider two Ω-spectra E and F. Let t∗ : H∗(−; E) → H∗(−; F) be a
natural transformation of cohomology theories.

Then there is a map of spectra f : E→ F such that for every CW -pair
(X,A) and n ∈ Z the maps tn(X,A) and Hn(X,A; f) from Hn(−; E) to
Hn(−; F) agree.

If t∗ : H∗(−; E) → H∗(−; F) is a natural equivalence of cohomology
theories with values in Z-modules, then f is a weak homotopy equivalence.

One knows for a homology theory H∗ with values in Z-modules satisfying the
disjoint union that it can be identified on CW -pairs with H∗(−; E) for some spec-
trum E but in contrast to cohomology with values in Z-modules E is not uniquely
determined by this property up to weak homotopy equivalence.

16.5. Basics about vector bundles. Vector bundles are always to be understood
to be finite dimensional real or complex vector bundles. For a vector bundle ξ we
denote by pξ : E → B its bundle projection. For a finite dimensional real or com-
plex vector space V and a CW -complex B we denote by V B the trivial vector
bundle over B whose bundle projection B × V → B is the canonical projection
onto B. If B is clear from the context, we simply write V . If V is oriented, then V
inherits an orientation. We will equip Rk always with the standard orientation and
Ck considered as a real vector spaces with the preferred orientation coming from
{v1, iv1, v2, iv2, . . . , vn, ivn} for any complex basis {v1, v2, . . . , vn}. Given two bun-
dles ξ and η with projections pξ : Eξ → Bξ and pη : Eη → Bη, a bundle morphism

(f, f) consists of two maps for which the following diagram is commutative

Eξ
f
//

pξ

��

Eη

pη

��

Bξ
f
// Bη

and for each b ∈ Bξ the maps induced by f from the fiber p−1
ξ (b) of ξ over b to the

fiber p−1
η (f(b)) of η over f(b) is a linear isomorphism. We call two bundles ξ and

η over the same basis space B isomorphic over B, if there is a bundle map (f, f)
with f = idB .

The proof of the next result can be found for instance in [12, Theorem 4.7 on
page 30].

Proposition 16.32. Let X and Y be CW -complexes. Let η be a vector bundle
over the CW -complex Y . Let f, g : X → Y be maps which are homotopic.

Then the vector bundles f∗η and g∗η over X obtained from the pull back con-
struction applied to f and g are isomorphic over X. Moreover, if η is oriented,
then f∗η and g∗η inherits orientations and are oriented isomorphic over X.

Let X be a CW -complex and let VBk(X) be the set of isomorphism classes [ξ]
of k-dimensional real vector bundles ξ over X. There is a universal k-dimensional
bundle γk over a CW -complex BO(k) such that for any k-dimensional real vector
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bundle ξ there is a map cξ : X → BO(k) uniquely determined up to homotopy
by the property that ξ is isomorphic over X to c∗ξγk. Moreover, the homotopy

class [cξ] depends only on the isomorphism class [ξ]. Sometimes cξ is called the
classifying map of ξ. The space BO(k) is uniquely up to homotopy determined
by the property that there exists a principal O(k)-bundle EO(k) → BO(k) with
contractible total space EO(k). The k-dimensional vector bundle γk is given by the
canoncial projection EO(k)×O(k) Rk → BO(k).

All this has an analog for oriented k-dimensional real vector bundles. Namely,
let X be a CW -complex and let VBk(X) be the set of oriented isomorphism classes
[ξ] of oriented k-dimensional real vector bundles ξ over X. There is a universal
oriented k-dimensional real bundle γk over a CW -complex BSO(k) such that for
any oriented k-dimensional real vector bundle ξ there is a map cξ : X → BSO(k)
uniquely determined up to homotopy by the property that ξ is oriented isomorphic
over X to c∗ξγk. Moreover, the homotopy class [cξ] depends only on the oriented
isomorphism class [ξ]. The space BSO(k) is uniquely up to homotopy determined
by the property that there exists a principal SO(k)-bundle ESO(k)→ BSO(k) with
contractible total space ESO(k). The oriented k-dimensional real vector bundle γk
is given by the canoncial projection ESO(k) ×SO(k) Rk → BSO(k) and inherits an

orientation from the standard orientation of Rk.
All this has an analog for k-dimensional complex vector bundles. Namely, let

X be a CW -complex and let VBC
k (X) be the set of isomorphism classes [ξ] of k-

dimensional complex vector bundles ξ over X. There is a universal k-dimensional
complex bundle γCk over a CW -complex BU(k) such that for any k-dimensional
complex k-vector bundle ξ there is a map cCξ : X → BU(k) uniquely determined up

to homotopy by the property that ξ is isomorphic over X to (cCξ )∗γCk . Moreover,

the homotopy class [cCξ ] depends only on the isomorphism class [ξ]. The space

BU(k) is uniquely up to homotopy determined by the property that there exists a
principal U(k)-bundle EU(k)→ BU(k) with contractible total space EU(k). The k-
dimensional vector bundle γCk is given by the canoncial projection EU(k)×U(k)Ck →
BU(k).

For the proof of the next theorem we refer, for instance, to [21, Chapter 5]. It is a
prototype of a connection between a geometric classification problem to homotopy
theory.

Theorem 16.33 (Classification of vector bundles). If X is a CW -complex, then
the maps

VBk(X) → [X,BO(k)], [ξ] 7→ [cξ];

VBk(X) → [X,BSO(k)], [ξ] 7→ [cξ];

VBC
k (X) → [X,BU(k)], [ξ] 7→ [cCξ ],

are bijective. Their inverses send [f ] to [f∗γk], [f∗γk] and [f∗γCk ].

The spaces BO(k), BSO(k), and BU(k) are path connected and unique up to
homotopy.

For a real vector bundle ξ : E → X with Riemannian metric define its disk bundle
pDE : DE → X by DE = {v ∈ E | ||v|| ≤ 1} and its sphere bundle pSE : SE → X
by SE = {v ∈ E | ||v|| = 1}, where pDE and pSE are the restrictions of p. Its Thom
space Th(ξ) is defined by DE/SE. It has a preferred base point∞ := SE/SE. The
Thom space can be defined without a choice of a Riemannian metric as follows. Put
Th(ξ) = E ∪{∞} for some extra point∞. Equip Th(ξ) with the smallest topology
for which any open subset U of E is an open subset of Th(ξ) and a basis of open
neighbourhoods for ∞ is given by the complements of closed subsets A ⊂ E for
which A ∩ Ex is compact for each fiber Ex. If X is compact, E is locally compact
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and Th(ξ) is the one-point-compactification of E. The advantage of this definition
is that any bundle map (f, f) : ξ0 → ξ1 of vector bundles ξ0 and ξ1 canonically
induces a pointed map Th(f, f) : Th(ξ0) → Th(ξ1). Denote by Rk the trivial
vector bundle with fiber Rk. We mention that there are pointed homeomorphisms,
see for instance [28, Proposition 12.28].

Th(ξ × η) ∼= Th(ξ) ∧ Th(η);(16.34)

Th(ξ ⊕ Rk) ∼= Th(ξ) ∧ Sk.(16.35)

16.6. Thom spaces and Thom spectra.

Definition 16.36 (Stable system of vector bundles bundles). Given l ∈ Z≥0, an
l-dimensional stable system of vector bundles µ = {(ξk, (fk, fk)) | k ∈ Z≥0} is a
sequence of vector bundles {ξk | k ∈ Z≥0} such that ξk is a (k+l)-dimensional vector
bundle with projection pξk : Ek → Bk for a CW -complex Bk as basis together with
a bundle maps

Ek ⊕ R
fk
//

pk⊕pR
��

Ek+1

pξk+1

��

Bk
fk
// Bk+1

for k ∈ Z≥0.
We call the system oriented if each each vector bundle ξk is oriented and each

bundle map (fk, fk) respects the orientations.

Given an l-dimensional vector bundle ξ over B, we can associated to it an l-
dimensional stable vector bundle system ξ by putting ξ

k
= ξ ⊕ Rk for k ∈ Z≥0 by

defining the structure maps (idB , fk) to be the obvious bundle isomorphism over B

from ξ ⊕ Rk ⊕ R
∼=−→ ξ ⊕ Rk+1.

Definition 16.37 (Thom spectrum of a stable system of vector bundles bundles).
Consider an l-dimensional stable system of vector bundles µ = {(ξk, (fk, fk)) | k ∈
Z≥0}. Define the associated Thom spectrum Th(µ) as follows. Its k-th space
Th(µ)k is {•} for k < 0 and Th(µ)k = Th(ξk) for k ≥ 0. The kth-structure map is
given by the composite

Th(µ)k ∧ S1 = Th(ξk) ∧ S1 (16.35)
= Th(ξk ⊕ R)

Th(fk,fk)−−−−−−→ Th(ξk+1) = Th(µ)k+1.

Example 16.38 (Suspension spectrum). Let X be a CW -complex. Consider the
zero-dimensional vector bundle R0

X over X. Let R0
X be the associated stable

system of bundles maps. We have introduced its Thom spectrum Th(R0
X) in

Definition 16.37. Note that its 0-th space is X+. Then Th(R0
X) agrees with the

suspension spectrum Σ∞X+ of Example 16.2. If we take X = {•}, then Σ∞{•}+ =
Σ∞(S0, s) is the sphere spectrum S of Example 16.3.

Example 16.39 (The spectra MO and MSO). Choose for any k a model for the
universal k-dimensional bundle γk over BO(k). By the universal property of γk+1

we can choose a bundle map (fk, fk) : γk ⊕RBO(k) → γk+1. We can arrange by the

construction of Subsection 8.8 that each map fk : BO(k)→ BO(k+1) is an inclusion
of CW -complexes and in particular a cofibration. We obtain a stable system γ of
bundle maps by the collection of the bundles γk and bundle maps (fk, fk). The
associated Thom spectrum of Definition 16.37 is denoted by MO = Th(µ).

Note that MO depends on some choices. But one can show for the result MO′ for
any other choices that there are homotopy equivalences of spectra MO→MO′ and
MO′ →MO which are homotopy inverse to one another. (Here it is crucial that the
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maps fk are cofibrations.) In particular MO →MO′ and MO′ →MO are weak
homotopy equivalences and we get from Proposition 16.12 natural equivalences of

(co)homology theories H∗(−MO)
∼=−→ H∗(−MO′) and H∗(−MO)

∼=−→ H∗(−MO′)
which actually are inverse to one another. Moreover, there is actually a canonical
construction MO for which no additional choices are made. Therefore we ignore
this ambiguity about MO in the sequel.

There is an analog µ and MSO = Th(µ), where one replaces γk by γk and
BO(k) by BSO(k).

Note that we have constructed the sphere spectrum S, the Eilenberg-MacLane
spectrum K(A) for an abelian group A, and the spectra MO and MSO so far.
Recall that associated to them are (co-)homology theories in Theorem 16.21. For
S we have identified H∗(−; S) with the stable homotopy groups πs∗(−), see Exam-
ple 16.26. These will be identified with more geometric terms, namely with framed
bordism, in Theorem 17.15. For K(A) we have identified H∗(−; K(A)) with the
singular cohomology H∗(−;A) with coefficients in A, see Example 16.27. We will
identify H∗(−; MO) and H∗(−; MSO) with more geometric terms, namely with
unoriented and oriented bordism theory, see Theorem 17.11 and Theorem 17.14.

16.7. Topological K-theory. One can define topological groups

O = colimk→∞O(k);

SO = colimk→∞ SO(k);

U = colimk→∞U(k),

for the inclusions O(k) → O(k + 1), SO(k) → SO(k + 1), and U(k) → U(k + 1)
given by taking the block sum with the (1, 1) matrix (1).

There is a principal O-bundle EO→ BO over a CW -complex BO for which EO
is contractible. Up to homotopy one can obtain BO also as colimk→∞ BO(k) if one
chooses adequate models for BO(k) and arranges that each map BO(k)→ BO(k+
1) is an inclusion of CW -complexes and in particular a cofibration. Analogously
one can construct spaces BSO and BU. The spaces BO, BSO, and BU are path
connected. We have π1(BO) ∼= /IZ/2 and the spaces BSO and BU are actually
simply connected.

A deep theorem of Bott says that there are weak homotopy equivalences

βR : Z× BO
'−→ Ω8(Z× BO);

βC : Z× BU
'−→ Ω2(Z× BU),

where Z is equipped with the discrete topology and the base point 0 ∈ Z and we
choose some base point in the path connected spaces BO and BU.

For n ∈ Z define k(n) ∈ {0, 1, 2, 3, 4, 5, 6, 7} to be the unique element satisfying

k(n) ≡ n mod 8. Define an Ω-spectrum KO by defining the n-th space KOR
n to

be Ω8−k(n)(Z× BO) if k(n) 6= 0 and to be Z× BO if k(n) = 0. The n-th structure
map is

id : Ω8−k(n)(Z× BO)→ ΩΩ8−(k(n)+1)(Z× BO) = Ω8−k(n)(Z× BO)

if k(n) 6= 0 and βR : (Z × BO) → ΩΩ7(Z × BO) = Ω8(Z × BO). So the spectrum
KO is 8-periodic and looks in tte range from 0 to 8 like

Z× BO,Ω7(Z× BO),Ω6(Z× BO), . . . ,Ω1(Z× BO),Z× BO .

Similarly we define the Ω-spectrum K. Define Kn to be Z×BU if n is even, and
to be Ω(Z × BU) if n is odd. The n-th structure map is the identity idΩ(Z×BU) if
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n is odd, and is βC if n is even. So the spectrum K is 2-periodic and looks in the
range 0 to 2 like

Z× BU,Ω(Z× BU),Z× BU .

Associated to these Ω-spectra are cohomology theories satisfying the disjoint
union axiom

KO∗(X,A) := H∗(X,A; KO);

K∗(X,A) = H∗(X,A; K),

called real and complex topological K-theory. Note thatKO∗ is 8-periodic, i.e., there

are natural isomorphisms KO∗(X,A)
∼=−→ KO∗+8(X,A), whereas K∗ is 2-periodic,

i.e., there are natural isomorphisms K∗(X,A)
∼=−→ K∗+2(X,A).

Associated to these Ω-spectra are homology theories satisfying the disjoint union
axiom

KO∗(X,A) := H∗(X,A; KO);

K∗(X,A) = H∗(X,A; KO),

called real and complex topological K-homology Note that KO∗ is 8-periodic, i.e.,

there are natural isomorphisms KO∗(X,A)
∼=−→ KO∗+8(X,A), whereas K∗ is 2-

periodic, i.e., there are natural isomorphisms K∗(X,A)
∼=−→ KO∗+2(X,A).

The coefficients are given for the real case by

(16.40) KOn({•}) = KO8−n({•}) = Z,Z/2,Z/2, {0},Z, , {0}, {0}, {0},Z,
for n = 0, 1, 2 . . . , 7

and in the complex case by

(16.41) Kn({•}) = Kn({•}) =

{
Z if n is even;

{0} if n is odd.

If X is a finite CW -complex, the abelian group KO0(X) can be identified with
the Grothendieck construction applied to the abelian semi-group of stable isomor-
phism classes of finite-dimensional real vector bundles over X, where two finite-
dimensional real vector bundles ξ and η over X are called stably isomorphic if

ξ ⊕Rk and ηRl are isomorphic for some natural numbers k and l and the addition
comes from the Whitney sum. The analogous statement holds for the complex case.

Remark 16.42. Topological K-theory is a very valuable cohomology theory which
had many applications to problems in topology. It was later extended to C∗-
algebras and plays a prominent role in the classification and the theory of C∗-
algebras and in index theory.

16.8. Outlook. The approach to spectra presented above can be called “classical”
or “naive”. Moreover, we have not defined the notion of a smash product of two
spectra and of a ring spectrum.

One can define the smash product E ∧ F of two spectra E and E in the setting
discussed in these notes but it depends on certain choices. Moreover associativity
or commutativity of this smash product make only sense up to homotopy. This
has led to the notions of highly structured spectra such as symmetric or orthogonal
spectra, where the smash product is strictly defined and also associativity and
commutativity of the smash product hold strictly.

Moreover, one works with spectra in the setting of higher category theory nowa-
days. An introduction to higher categories can be found for instance in [15].
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17. The Pontrjagin-Thom Construction

17.1. ξ-bordism. Let (M, i) be an embedding i : Mn → Rn+k of a closed n-
dimensional manifold M into Rn+k. Note that TRn+k comes with an explicit

trivialisation Rn+k × Rn+k
∼=−→ TRn+k and the standard Euclidean inner product

induces a Riemannian metric on TRn+k. Denote by ν(i) the normal bundle, which
is the orthogonal complement of TM in i∗TRn+k or can be thought of as the quo-
tient bundle i∗TRn+k/TM . Sometimes we write ν(M) instead of ν(i) if i is clear
from the context.

Mc IR3

&
Next we apply this construction to bordism. Fix a space X together with a

k-dimensional vector bundle ξ over X. We define the bordism set

(17.1) Ωn(ξ)

of normal ξ-bordism classes of normal ξ-maps as follows.

Definition 17.2 (Normal ξ-map).
A normal ξ-map (M, i, f, f) is a quadruple consisting of:

• A closed manifold M of dimension n;
• An embedding i : M → Rn+k;
• A map f : M → X;
• A bundle map (f, f) : ν(i)→ ξ covering f , where ν(i) is the normal bundle

of the embedding i.

Definition 17.3 (Bordism of normal ξ-maps).
A normal ξ-bordism from the normal ξ-map (M0, i0, f0, f0) to the normal ξ-map

(M1, i1, f1, f1) is a quadruple (W, I, F, F ) consisting of:

• A compact manifold W of dimension (n + 1) whose boundary ∂W is the
disjoint union ∂0W q ∂1W ;

• An embedding of manifolds with boundary I : W → Rn+k × [0, 1] sending
∂mW to Rn+k × {m} for m = 0, 1;

• Diffeomorphisms um : Mm → ∂mW and Um : Rn+k → Rn+k × {m} for
m = 0, 1 satisfying I ◦ um = Um ◦ im;

• A map F : W → X × [0, 1] satisfying jm ◦ fm = F ◦ um for m = 0, 1 where
jm : X → X × [0, 1] sends x to (x,m);
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• A bundle map (F, F ) : ν(I)→ ξ covering F such that F ◦ν(um, Um) = fm
holds for m = 0, 1 where (um, ν(um, Um)) : ν(im) → ν(I) is the obvious
bundle map induced by Tum and TUm.

Remark 17.4. Note that in the definition above the following implicit identifica-
tion

ν(∂W ⊆ Rn+k × {0, 1}) = ν(W ⊆ Rn+1 × [0, 1])|∂W
is used, which is based on the convention that at {0} we take the inward normal
field and at {1} the outward normal vector field to get identifications

TRn × [0, 1]|Rn×{0,1} = TRn × {0, 1} ⊕ R;

TW |∂W = T∂W ⊕ R.

This convention guarantees that we can stack two cobordisms together to prove
transitivity of the bordism relation.

IR2x90] IR&x913

p
17.2. The Pontrjagin-Thom construction of ξ-bordism. Consider a normal
ξ-map (M, i, f, f), see Definition 17.2. Note that for any vector bundle η over a
manifold B with total space E there exists a canonical bundle isomorphism TB ⊕
η
∼=−→ s∗TE over B, where s : B → E is the zero-section. So we get an identification

TB ⊕ η = TE|B . Let (N(M), ∂N(M)) be a tubular neighbourhood of M . Recall
that there is a diffeomorphism

u : (Dν(M), Sν(M))→ (N(M), ∂N(M))

with the property that its restriction to M is i and under the canonical identification
T (Dν(M))|M = TM ⊕ ν(i) the composite

ν(i) = {0} ⊕ ν(i)→ TM ⊕ ν(i) = T (Dν(M))|M
Tu|M−−−−→ i∗TRn+k → i∗TRn+k/TM = ν(i)

is the identity. Such a tubular neighborhood is unique up to diffeotopy on Rn+k

relative M . See for instance [3, Theorem 21.11 on page 130 and Theorem 12.13 on
page 131].
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The Thom collapse map

c : Sn+k = Rn+k q {∞} → Th(ν(M))(17.5)

is the pointed map that is given by the diffeomorphism u−1 on the interior of N(M)
and sends the complement of the interior of N(M) to the preferred base point ∞.

COLLAPSE COLLAPSE
-> Dwin/Swin)

↑ Duny If

SW(M
COLLAPSE 7 c IR3 Th/bIMI
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The homology group Hn+k(Th(ν(M))) ∼= Hn+k(N(M), ∂N(M)) is infinite cyclic
ifM is connected, sinceN(M) is a connected compact orientable (n+k)-dimensional
manifold with boundary ∂N(M). The Hurewicz homomorphism

hurn+k : πn+k(Th(ν(i)))→ Hn+k(Th(ν(i)))

sends the class [c] of c to a generator. This follows from the fact that any point
in the interior of N(M) is a regular value of c and has precisely one point in its
preimage.

Theorem 17.6 (Pontrjagin-Thom Construction). Let ξ : E → X be a k-dimensional
vector bundle over a CW -complex X. Then the map

Pn(ξ) : Ωn(ξ) −→ πn+k(Th(ξ)),

which sends the bordism class of (M, i, f, f) to the homotopy class of the composite

Sn+k c−→ Th(ν(M))
Th(f,f)−−−−−→ Th(ξ), is a well-defined bijection, natural in ξ.

Proof. The details can be found in [4, Satz 3.1 on page 28, Satz 4.9 on page 35]
or [11, Section 7.2 on page 172]. The basic idea becomes clear after we have
explained the construction of the inverse for a finite CW -complex X. Consider a
pointed map (Sn+k,∞) → (Th(ξ),∞). We can change f up to homotopy relative
{∞} so that f becomes transverse to X. Note that transversality makes sense
although X is not a manifold, one needs only the fact that X can identified with
the image of a zero-section of a vector bundle. PutM = f−1(X). The transversality

construction yields a bundle map (f |M , f |M ) : ν(M)→ ξ covering f |M . Let i : M →
Rn+k = Sn+k −{∞} be the inclusion. Then the inverse of Pn(ξ) sends the class of

f to the class of (M, i, f |M , f |M ).
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17.3. The Pontrjagin-Thom construction and bordism for stable systems
of bundles. Consider an n-dimensional system µ of vector bundles µ given by
vector bundles ξk and bundle morphisms (fk, fk) : ξk ⊕ R → ξk+1. For n, k ∈ Z≥0

we next define a map

Ωn(fk, fk) : Ωn(ξk)→ Ωn(ξk+1).

Consider an element z in Ωn(ξk) represented by normal ξk-map (M, i, u, u). Let
j : Rn+k = Rn+k × {0} → Rn+k+1 be the standard inclusion. Then there is a
natural identification of ν(j ◦ i) with ν(i)⊕ R. Consider the bundle map

(v, v) : ν(j ◦ i) = ν(i)⊕ RM
(f,f)⊕(u,u)−−−−−−−→ ξk ⊕ RBk

(fk,fk)−−−−→ ξk+1

where (u, u) is the obvious bundle map induced by u and idR. Then we obtain a
normal ξk+1-map (M, j ◦ i, v, v). Its bordism class in Ωn(ξk+1) is the image of z
under Ωn(fk, fk). We omit the proof that Ωn(fk, fk) is well-defined. We define the
set

(17.7) Ωn(µ) = colimk→∞Ωn(ξk)

with respect to the structure maps Ωn(fk, fk).
The set Ωn(µ) carries in contrast to each of the sets Ωn(ξk) the structure of an

abelian group. The unit is given by the class of the normal ξk-map (M, i, v, v) with
M = ∅ for any k ∈ Z≥. Consider two elements z and z′ in Ωn(µ). We can find
representatives (M, i, u, u) and (M ′, i′, u′, u′) with k = k′ and im(i) ∩ im(i′) = ∅
and define z1 + z2 by the class of the disjoint union (M qM ′, iq i′, uq u′, uq u′).
The inverse of a class represented by (M, i, u, u) is the class represented by (M, j ◦
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i, fk ◦ u, fk ◦ u), where j : Rn+k → Rn+k+1 is the standard inclusion, we identify
ν(j ◦ i) with ν(i)⊕ R and (fk◦, fk ◦ u) is the composite

(j ◦ u, fk ◦ u, ) : ν(j ◦ i) = ν(i)⊕ RM
(u,u)⊕− idRu−−−−−−−−→ ξk ⊕ RBk

(fk,fk)−−−−−→ ξk+1

for − idRu the obvious bundle map induced by u and − idR.

Let sn,k : πn+k(Th(ξk)) → πn+k+1(Th(ξk+1)) be the composite of the suspen-
sion homomorphism πn+k(Th(ξk)) → πn+k+1(Th(ξk) ∧ S1) and the homomor-
phism πn+k+1(Th(ξk) ∧ S1) → πn+k+1(Th(ξk+1)) induced by the kth structure
map Th(ξk) ∧ S1 → Th(ξk+1) of the Thom spectrum Th(µ) of Definition 16.37.
Then we get from the definitions

πn(Th(µ)) = colimk→∞ πn+k(Th(ξk))

with respect to the structure maps sn,k.
One easily checks that we obtain a commutative diagram

Ωn(ξk)
Ωn(fk,f̃k)

//

Pn(ξk) ∼=
��

Ωn(ξk+1)

Pn(ξk+1)∼=
��

πn+k(Th(ξk))
sn,k
// πn+k+1(Th(ξk+1)).

Therefore we obtain the following result.

Theorem 17.8 (Pontrjagin-Thom Construction for stable bundle systems).
Let µ be a stable bundle system. Then we obtain an isomorphism of abelian

groups
Pn(µ) : Ωn(µ) −→ πn(Th(µ))

by putting Pn(µ) = colimk→∞ Pn(ξk).

17.4. Unoriented bordism. Consider a pair (X,A) and n ∈ Z≥0. A singular
n-manifold over (X,A) is a map (u, ∂u) : (M,∂M) → (X,A) with target (X,A)
and a compact smooth manifold M with boundary ∂M of dimension n as source.
Consider two singular n-maps (uk, ∂uk) : (Mk, ∂Mk) → (X,A) for k = 0, 1. A
singular (n+ 1)-dimensional bordism between them consists of:

• A compact smooth manifold W of dimension (n+ 1) with boundary ∂W ;
• A decomposition ∂W = ∂0W ∪∂1W ∪∂2W for smooth submanifolds ∂0W ,
∂1W , and ∂2W of ∂W satisfying ∂(∂0W ) ∩ ∂(∂1W ) = ∅ and ∂(∂2W ) =
∂(∂0W )q ∂(∂1W );

• A map U : W → X;

• Diffeomorphisms (vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW )) for k = 0, 1

such that ∂U ◦ vk = ∂uk holds for k = 0, 1;
• We have U(∂2W ) ⊆ A.

If (u1, ∂u1) : (M1, ∂M1) → (X,A) is given by M1 = ∅, we call such a (n + 1)-
dimensional bordism a nullbordism for (u0, ∂u0) : (M0, ∂M0)→ (X,A).

If there exists a bordism between two singular n-manifolds over (X,A), we call
them bordant. This turns out to be an equivalence relation, for transitivity one has
to glue two bordisms together. So we can define the set Nn(X,A) to be the set of
of bordism classes of singular n-manifolds over (X,A).

If A is empty, then for a singular bordism (u, ∂u) : (M,∂M) → (X,A) over
X = (X, ∅) we have ∂M = ∅ and hence M is just a closed manifold with a map
u : M → X. Also the notion of a bordism simplifies, since ∂2W must be empty and
hence ∂W is just the disjoint union ∂0W q ∂1W .

The set Nn(X,A) inherits the structure of an abelian group as follows. The unit
is given by the bordism class of the singular n-manifold (u, ∂u) : (M,∂M)→ (X,A)
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for which M = ∅. Given two singular n-manifolds (uk, ∂uk) : (Mk, ∂Mk)→ (X,A)
for k = 0, 1, define the sum of their bordism classes to be the bordism class of
the disjoint union (u0, ∂u0) q (u1, ∂u1) : (M0, ∂M0) q (M1, ∂M1) → (X,A). The
inverse of the bordism class of (u, ∂u) : (M,∂M)→ (X,A) is given by the bordism
class of (u, ∂u) : (M,∂M) → (X,A) again, since a nullbordism for their disjoint
union (u, ∂u)q (u, ∂u) : (M,∂M)q (M,∂M)→ (X,A) can be constructed from the
cylinder M×I in the obvious way. Note that this implies that Nn(X,A) is actually
an F2-vector space.

A map of pairs (F, f) : (X,A) → (Y,B) induces a homomorphism of F2-vector
spaces by sending the bordism class of (u, ∂u) : (M,∂M)→ (X,A) to the bordism
class of (F ◦ u, f ◦ ∂u) : (M,∂M) → (X,A). We omit the proof that we obtain a
covariant functor Nn(−) from the category of topological pairs to the category of
F2-vector spaces for n ∈ Z≥0. We define Nn(X,A) for n ∈ Z≤−1 to be {0}. For a
pair (X,A) define the homomorphism

(17.9) ∂n(X,A) : Nn(X,A)→ Nn−1(A)

by sending the bordism class of (u, ∂u) : (M,∂M)→ (X,A) to the bordism class of
∂u : ∂M → A.

Theorem 17.10 (Singular bordism is a homology theory satisfying the disjoint
union axiom).

We obtain a homology theory with values in F2-vector spaces satisfying the dis-
joint union axiom by N∗(−) and ∂∗(−).

Sketch of the proof. We start with homotopy invariance. Consider for k = 0, 1 the
maps (Fk, fk) : (X,A) → (Y,B) and a homotopy h : (X,A) × I → (Y,B) between
them. We have to show N (F0, f0) = N (F1, f1). Consider a singular n-manifold
(u, ∂u) : (M,∂M) → (X,A). We have to show that (F0, f0) ◦ (u, ∂u) : (M,∂M) →
(X,A) and (F1, f1)◦ (u, ∂u) : (M,∂M)→ (X,A) are bordant. The desired bordism

can easily be constructed from the composite M × I u×idI−−−−→ X × I h−→ Y .
Consider a pair (X,A). We have to show that we obtain a long exact sequence

of F2-vector spaces

· · · ∂n+2−−−→ Nn+1(A)
Nn+1(i)−−−−−→ Nn+1(X)

Nn+1(j)−−−−−→ Nn+1(X,A)

· · · ∂n+1−−−→ Nn(A)
Nn(i)−−−−→ Nn(X)

Nn(j)−−−−→ Nn(X,A)
∂n−→ · · ·

where i : A → X and j : X = (X, ∅) → (X,A) are the inclusions. We only explain
exactness at Nn+1(X,A). Consider an element in Nn+1(X) given by the bordism
class of u : M → X. Its image under the composite ∂n+1 ◦ Nn+1(j) is represented
by the singular map with the empty set as domain and hence is zero. This shows
im(Nn+1(j)) ⊆ ker(∂n+1). It remains to prove ker(∂n+1) ⊆ im(Nn+1(j)). Con-
sider a singular (n + 1)-manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) such
that its bordism class lies in ker(∂n+1). Hence we can find a nullbordism for
∂uk : ∂M → A, i.e., a compact manifold W with boundary ∂W , a map U : W → A
and a diffeomorphism v : ∂M → ∂W with U ◦ v = ∂u. Then we obtain a sin-
gular n-manifold over X by u ∪v U : M ∪v W → X. We claim that its bor-
dism class is sent under Nn+1(j) : Nn+1(X) → Nn+1(X,A) is the bordism class
of (u, ∂u) : (M,∂M)→ (X,A) over (X,A). This follows from the fact that one can

construct from the composite M ∪vW ×I
(u∪vU)×idI−−−−−−−−→ Y ×I prY−−→ Y for the prY the

canonical projection a bordism of singular (n + 1)-manifolds over (X,A) between
u ∪v U : (M ∪v W, ∅) → (X,A) and (u, ∂u) : (M,∂M) → (X,A). This finishes the
proof of exactness at Nn+1(X,A). The proof of exactness at the other places is
similar.
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The disjoint union axiom follows from the fact that for a compact subset C of
the disjoint union

∐
i∈I Xi of the collection of spaces {Xi | i ∈ I} there is a finite

subset J ⊆ I with C ⊆
∐
i∈J Xi.

We omit the proof that excision holds, i.e., if X is a space with subspaces A ⊆
B ⊆ X satisfying A ⊆ B◦, then the inclusion i : (X \ A,B \ A) → (X,A) induces
for every n ∈ Z a bijection Nn(i) : Nn(X \ A,B \ A) → Nn(X,A). For a proof
of the Mayer-Vietoris sequence for space X with open subspaces X0, X1, and X2

satisfying X = X1 ∪X2 and X0 = X1 ∩X2, we refer to [31, Proposition 21.1.7 on
page 523]. The existence of such a Mayer-Vietoris sequence is essentially the same
as excision. �

Theorem 17.11 (Unoriented singular bordism and the spectrum MO).
There is a natural equivalence of homology theories

N∗(−)
∼=−→ H∗(−; MO)

where H∗(−; MO) is the homology theory associated in Theorem 16.21 (i), to the
spectrum MO defined in Example 16.39.

Sketch of proof. We only construct for every space X and n ∈ Z an isomorphism

of abelian groups Nn(X)
∼=−→ H∗(X; MO). We leave it to the reader to show that

it can be extended to pairs (X,A), is natural in (X,A), and is compatible with the
boundary operators of (X,A) and hence defines the desired natural equivalence of

homology theories N∗(−)
∼=−→ H∗(−; MO).

Recall the stable system of vector bundles µ of Example 16.39 whose k-th vector
bundle γk is the universal k-dimensional vector bundle over BO(k). For a space
X, define the stable system of vector bundles pr∗ µ as follows. The k-th vector
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bundle is pr∗ γk over X × BO(k) which is obtained from the vector bundle γk by
the pullback construction applied to the projection pr : X ×BO(k)→ BO(k). The
k-th bundle map is given by pr∗(fk, fk) for the bundle map (fk, fk) : γk⊕R→ γk+1

using the obvious identification pr∗ RBO(k) = RX×BO(k). Then we can identify the

spectrum Th(pr∗ µ) with the spectrum X+ ∧ Th(µ) using (16.35). We get from
Theorem 17.8 an isomorphism of abelian groups

Ωn(pr∗ µ)
∼=−→ πn(X+ ∧Th(µ)) = Hn(X; MO).

Hence it suffices to construct a bijection

(17.12) αn : Ωn(pr∗ µ)→ Nn(X).

One can define αn as a forgetful map. More precisely, αn sends the class of a normal
µk-map (M, i, f, f) to the bordism class of the singular n-manifold prX ◦f : M → X
for the projection pr : X × BO(k) → X. Obviously αn is a well-defined homomor-
phism of abelian groups, It remains to show that αn is bijective.

We begin with surjectivity. Consider a singular n-manifold f : M → X repre-
senting an element z ∈ Nn(X). We can choose k ∈ Z≥0, actually k = n+1 suffices,
and an embedding i : M → Rn+k. Let (u, u) be a bundle map from ν(i) to µk. We
obtain a bundle map (f × u, f × u) from ν(i) to pr∗ γk. Then (M, i, f × u, f × u)
is a normal pr∗ µk-map and hence defines an element y ∈ Ωn(pr∗ µ). The image of
y under αn is z. Hence αn is surjective.

Next we show injectivity of αn. Consider an element z ∈ Ωn(pr∗ µ) which is
sent to zero under αn. Choose k ∈ Z with k ≥ 2n + 3 and a normal pr∗ µk-map
(M, i, f × u, f × u) for f : M → X and (u, u) : ν(i) → γk, whose normal bordism
class is z. Then αn(z) is represented by the singular n-map f : M → X. Hence
we can find a compact (n + 1)-dimensional manifold W with boundary ∂W , a
diffeomorphism t : M → ∂W , and a map F : W → X satisfying F ◦ t = f . Now we
have to find the right data to construct out of (W,F,w) a normal pr∗ µ-nullbordism
for (M, i, f × u, f × u).

Since k ≥ 2n+ 3 we can construct an embedding of manifolds with boundary

(J, j) : (W,∂W )→ (Rn+k × [0, 1),Rn+k × {0}).

Then there is a natural identification ν(J)|∂W = ν(j). The embedding j ◦ t : M →
Rn+k and the given embedding i : M → Rn+k are related by a diffeotopy Φ: Rn+k×
R→ Rn+k because of k ≥ 2n+3. Hence we can find a diffeomorphism T : Rn+k

∼=−→
Rn+k such that T ◦ i = j ◦ t holds. We get a bundle isomorphism (t, t) : ν(i)

∼=−→
ν(J)|∂W = ν(j) coming from the differentials of t and T . Choose a bundle map
(v, v) : ν(J) → µk. Then the bundle maps (v, v) ◦ (t, t) and (u, u) from ν(i) to γk
are homotopic. By a cofibration argument we can change (v, v) up to homotopy
of bundle maps ν(J) → γk such that (v, v) ◦ (t, t) = (u, u) holds. These data
yield a normal pr∗ µ-nullbordism (W,J, F × v, F × v) for (M, i, f, f). Hence z = 0.
This finishes the proof that the map αn of (17.12) is bijective and therefore of
Theorem 17.11. �

17.5. The unoriented bordism ring. There is an external multiplicative struc-
ture on N∗(−) coming from taking the cartesian product. In particular we get for
m,n ∈ Z≥0 and every two pairs (X,A) and (Y,B) a natural bilinear pairing

Nm(X,A)×Nn(Y,B)→ Nm+n((X,A)× (Y,B)).

This induces on N∗ = N∗({•}) the structure of a commutative Z-graded F2-algebra
whose unit is given by id: {•} → {•}. Thom [29] has shown that N∗, which is
called the unoriented bordism ring, is a polynomial ring over F2 in variables xi for
i 6= 2k−1 and that for i even one can take the bordism class of RPi for xi. Dold [7]
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has constructed explicit closed manifolds representing xi for i odd. In particular
we get

(17.13) Nn = F2, {0},F2, {0},F2 ⊕ F2,F2, for n = 0, 1, 2, 4, 5.

Moreover, two closed manifolds are cobordant, or, equivalently, determine the
same element in N∗, if and only if they have the same Stiefel-Whitney numbers. For
the definition of Stiefel-Whitney numbers were refer for instance to [21, Chapter 4].

17.6. Conventions about orientations. Let us discuss our orientation conven-
tions for manifolds. For simplicity we will only consider a connected compact ori-
entable n-dimensional manifold M with (possibly empty or non-connected) bound-
ary ∂M , where orientable means that Hn(M ; ∂M) is infinite cyclic. Here is a list
of desired properties or standard conventions.

(i) On the vector space Rn for n ≥ 1 we use the standard orientation given
by the ordered standard basis {e1, e2, . . . , en}, where ei is the vector

(0, 0, . . . , 0, 1, 0, . . . , 0)

whose only non-zero entry is at position i. If n = 0, an orientation on R0

is a choice of an element in {+,−};
(ii) For n ≥ 1 an orientation on a TM is a choice of orientation on every TxM

for x ∈ M such that for every x ∈ M there is an open neighbourhood U

together with an isomorphism TM |U
∼=−→ Rn of vector bundles over U with

the property that for every x ∈ U the isomorphism TxM
∼=−→ Rn respects

the given orientation on TxM and the standard orientation of Rn.
For n = 0 a choice of an orientation on TM is a choice of an element in

{+,−}.
This makes actually sense for any vector bundle over M ;

(iii) Since TDn is TRn|Dn and we have the standard trivialisation Rn
∼=−→ TRn,

the standard orientation on the vector space Rn induces a standard orien-
tation on TDn. In particular on D1 = [−1, 1] we use the orientation on
TD1 coming from moving from −1 to 1;

(iv) An orientation on M is a choice of a generator [M,∂M ] of the infinite
cyclic group Hn(M,∂M);

(v) There is a preferred one-to-one-correspondence between the orientations
on TM and the orientations on M which comes from the identification
Hn(TxM,TxM \{0})

∼=−→ Hn(M,M \{x}) induced by the exponential map
for x ∈M \ ∂M ;

(vi) The boundary homomorphism Hn(M,∂M) → Hn−1(∂M) sends [M,∂M ]
to a class [∂M ] which induces for every path component C ∈ ∂M a gen-
erator [C] ∈ Hn−1(C). Thus an orientation on M induces an orientation
on C.

(vii) We use the outward normal vector field and the canonical isomorphism

nv ⊕ Ti : R ⊕ T∂M
∼=−→ TM |∂M in order to assign to an orientation on

TxM an orientation on Tx∂M for x ∈ X. Thus an orientation on TM
induces an orientation on TC for every path component C of ∂M ;

(viii) On a product M × N of oriented connected closed smooth manifolds we
use the orientation coming from the isomorphism induced by the cross

product Hdim(M)(M ;Z)⊗Z Hdim(N)(N ;Z)
∼=−→ Hdim(M×N)(M ×N ;Z);

(ix) On a direct sum V ⊕W of oriented vector spaces we use the orientation
coming from assigning to two ordered basis of V andW the obvious ordered
basis of V ⊕W by stacking the basis together.
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This yields also a preferred procedure to define a preferred orientation
on the Whitney sum ξ ⊕ η of two oriented vector bundles ξ and η;

(x) All the items above are compatible with one another;
(xi) These conventions together with the standard orientation on the vector

space Rn yield on S1 respectively TS1 the anticlockwise orientation and
on [−1, 1] and T [−1, 1] respectively the orientation corresponding from
moving from −1 to 1;

(xii) With these conventions the standard orientation on T [−1, 1] induces on
T∂D1 = T∂[−1, 1] = T{−1, 1} the orientation which corresponds to − on
−1 and + on 1.

We leave it to the reader to check that this can be arranged if and only if we use
the outward normal field and the convention that in the identification nv⊕Ti : R⊕
T∂M

∼=−→ TM |∂M we choose the order R ⊕ T∂M and not the order T∂M ⊕ R.
Namely (xii) forces us to use the outward normal field and the order is determined
by (iii) and (xi).

17.7. Oriented bordism. Now we can modify the definition of the unoriented
bordism group Nn(X,A) to the oriented bordism group Ωn(X,A). W call a com-
pact manifold M with (possibly empty) boundary ∂M oriented if for each path
component C of M the homology group Hn(C; ∂C) is infinite cyclic and we have
chosen a generator [C, ∂C] ∈ Hn(C; ∂C). Given an oriented compact manifold M ,
we denote by M− the oriented compact manifold whose underlying manifold is M
but where we use the orientation, where we replace [C, ∂C] by −[C, ∂C].

The difference in the new definition of Ωn(X,A) and in the definition ofNn(X,A)
appearing in Subsection 17.4 is that we additionally require for a singular n-
manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) that M is an oriented manifold
and in the definition of the bordism relation we additionally require that W is an

oriented manifold and the diffeomorphism (vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW ))

preserve the orientions for k = 0, 1. The addition and the unit is defined as before.
However, the inverse of the bordism class of (u, ∂u) : (M,∂M)→ (X,A) is given by
the bordism class of (u, ∂u) : (M−, ∂M−)→ (X,A) and not by (u, ∂u) : (M,∂M)→
(X,A); we have to reverse the orientations. This has the effect that Ωn(X,A) is an
abelian group but in general not a F2-vector space which was the case for Nn(X,A).
The proof that we get a homology theory Ω∗(−) satisfying the disjoint union axiom
is analogous to the proof of Theorem 17.10.

The proof of the next theorem is analogous to the proof of Theorem 17.11.

Theorem 17.14 (Oriented singular bordism and the spectrum MSO).
There is a natural equivalence of homology theories

Ω∗(−)
∼=−→ H∗(−; MSO)

where H∗(−; MSO) is the homology theory associated in Theorem 16.21 (i), to the
spectrum MSO defined in Example 16.39.

17.8. The oriented bordism ring. There is an external multiplicative structure
on Ω∗(−) coming from taking the cartesian product. In particular we get for m,n ∈
Z≥0 and every two pairs (X,A) and (Y,B) a natural bilinear pairing

Ωm(X,A)× Ωn(Y,B)→ Ωm+n((X,A)× (Y,B)).

This induces on Ω∗ = Ω∗({•}) the structure of a commutative Z-graded ring whose
unit is given by id: {•} → {•} with the standard orientation + on the domain.
Its structure was completely determined by Wall [32]. In particular Ω∗ ⊗Z Q is a
polynomial Q-algebra whose generators as a polynomial Q-algebra can be taken to
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be the oriented bordism classes of CP2n for n ≥ 1. Each Ωn is a finitely generated
abelian group in which the order of any nontrivial torsion element is 2.

Moreover, two oriented closed manifolds are oriented cobordant, or, equivalently,
determine the same element in Ω∗, if and only if they have the same Pontrjagin
and Stiefel-Whitney numbers. For the definition of Pontrjagin and Stiefel-Whitney
numbers were refer for instance to [21, Chapter 4 and 16].

Here is some information about Ωn in low degrees n:

• There is an isomorphism of abelian groups

Ω0

∼=−→ Z

which sends the bordism class of a 0-dimensional oriented manifold which
is just a finite collection of points equipped with a sign + or − to the sum
of these signs;

• The signature defines an isomorphism of abelian groups

sign: Ω4

∼=−→ Z

and the preimage of 1 ∈ Z is the bordism class of CP2.
• We have Ωn = {0} if and only if n ∈ {1, 2, 3, 6, 7};
• We have

Ωn ∼=


Z/2 n = 5;

Z⊕ Z n = 8;

Z/2⊕ Z/2 n = 9;

Z/2 n = 10.

17.9. Framed bordism. Let ξ be an n-dimensional vector bundle over the space

B. For l ∈ Z≥0 an l-framing of ξ is a bundle isomorphism (idB , u) : Rn+l
∼=−→ ξ⊕Rl

over B. We call an l0-framing (idB , u0) : Rn+l0
∼=−→ ξ ⊕ Rl0 and an l1-framing

(idB , u1) : Rn+l1
∼=−→ ξ ⊕ Rl1 equivalent if there exists l ∈ Z≥0 with l ≥ l0, l1 such

that for i = 0, 1 the two bundle isomorphisms over B

Rn+l = Rn+li ⊕ Rl−li
(idB ,ui)⊕idRl−li−−−−−−−−−−−→ ξ ⊕ Rli ⊕ Rl−li = ξ ⊕ Rl

are homotopic through bundle isomorphisms over B.
For a compact manifold M a stable framing is a stable framing of its tangent

bundle TM . Of course not every compact manifold admits a framing. Every
compact manifold with a stable framing is orientable and inherits from the stable
framing an orientation. Let i : (M,∂M)→ (Rm×R≥0,Rm×{0}) be an embedding
of the compact manifold M (with possibly empty) boundary ∂M . Then we will
tacitly use in the sequel the fact that there is a one-to-one correspondence between
the stable framings of M and the stable framings of the normal bundle ν(i).

Now one can define for a pair (X,A) its framed bordism group Ωfr
n(X,A) anal-

ogously to how we modified the definition of unoriented bordism N∗(−) to ori-
ented bordism Ω∗(−). The difference in the new definition of Ωfr

n(X,A) and in
the definition of Nn(X,A) appearing in Subsection 17.4 is that we additionally
require for a singular n-manifold (u, ∂u) : (M,∂M) → (X,A) over (X,A) that M
comes with a stable framing and in the definition of the bordism relation we ad-
ditionally require that W comes with a stable framing and the diffeomorphism

(vk, ∂vk) : (Mk, ∂Mk)
∼=−→ (∂kW,∂(∂kW )) is compatible with the stable framings.

The addition and the unit is defined as before. However, the inverse of the class
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represented is now defined by replacing a given stable framing by the new stable
framing obtained by precomposition with the bundle automorphism for l ∈ Z≥1

Rn+l = Rn+l−1 ⊕ R
idRn+l−1 ⊕− idR

−−−−−−−−−−→ Rn+l−1 ⊕ R = Rn+l.

The proof of the next theorem is a variation of the proof of Theorem 17.11 in
view of Example 16.26 and Remark 16.37.

Theorem 17.15 (Framed bordism and the stable homotopy). There is a natural
equivalence of homology theories

Ωfr
∗ (−)

∼=−→ πs∗(−).

Remark 17.16. One can give rather elementary geometric proofs of the formula

Ωfr
n
∼=

{
Z n = 0;

Z/2 n = 1.

which agrees with the values of the n-stem πsn for n = 0, 1 by Theorem 17.15.
It is not hard to check that the forgetful map Ωfr

0 → Ω0 is bijective and we have
computed Ω0 already in Subsection 17.8.

Any connected closed 1-dimensional manifold M is diffeomorphic to S1. Because
of Example 10.14 we get [S1,SO] ∼= Z/2 and hence there are precisely two stable
framings on S1. One of them extends to D2 and the other does not. Then one can
show that Ωfr

1
∼= Z/2 with the bordism class of S1 equipped with the framing not

extending to D2 as generator. From πs1
∼= Z/2, Theorem 10.5, and the Freudenthal

Suspension Theorem 11.20 we conclude

πn+1(Sn) ∼=


{0} n = 1;

Z n = 2;

Z/2 n ≥ 3.

Let us sketch the proof that Ωfr
1
∼= Z/2 with the bordism class of S1 with the

framing which does not extend to D2 as generator. We first show that S1 with
the framing which does not extend to D2 is not framed nullbordant. Suppose the
contrary, i.e., that there is a framed nullbordism W for it. We can assume without
loss of generality that W is path connected. In the sequel we identify S1 = ∂W .
Then W ∪S1 D2 is a closed 2-dimensional manifold. Its first Stiefel-Whitney class
vanishes, since H1(W ∪S1 D2;F2) → H1(W ;F2) is injective and sends it to the
Stiefel-Whitney class of W which is trivial. Hence W ∪S1 D2 is orientable. We
can choose an embedding i : W → R3 such that i restricted to S1 is given by the
inclusion S1 ⊂ R2 = R2 × {0} ⊆ R3 and i maps D2 to (R3)≤0 and W to (R3)≥0.
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IR2x50)

f
Since W and R3 are orientable, the normal bundle ν(i) is orientable and hence

trivial. We choose an identification ν(i) = R. Note that this yields a specific stable
framing on W . We get identifications ν(i|S1) = R2, ν(i|D2) = R, and ν(i|W ) = R.
So we get on S1 the stable framing which extends to D2 and comes from the specific
stable framing on W . The problem is that there are different stable framing on W .
They differ from the specific stable framing by an automorphism of RkW for large
k ∈ Z≥0. We conclude from Proposition 10.10 (ii) that the set of stable framing
of W can be identified with [W, SO]. Hence it suffices to show for the inclusion
k : S1 = ∂W → W that the map k∗ : [W, SO] → [S1,SO] sending [g] to [g ◦ k] is
trivial, since then the induced stable framing on S1 is the same for all possible
stable framings on W and hence extends to D2. We have shown π2(SO) = {0}
and π1(SO) ∼= Z/2 in Example 10.14. We conclude from Theorem 14.3 (ii) that
there is a map f : SO → K(Z/2, 1) which is 3-connected. Since W and S1 are
CW -complexes of dimension ≤ 2, we conclude from the Whitehead Theorem that
it suffices to show that k∗ : [W,K(Z/2, 1)] → [S1,K(Z/2, 1)] is trivial. Because of
Theorem 14.7 it suffices to show that H1(k;Z/2) : H1(W,Z/2) → H1(∂W ;Z/2) is
the trivial map. This follows from the part of the long exact cohomology sequence
of (W,∂W )

H1(W,Z/2)
H1(k;Z/2)−−−−−−→ H1(∂W ;Z/2)→ H2(W,∂W ;Z/2)→ H2(W ;Z/2)

and from the computationsH1(∂W ;Z/2) ∼= Z/2, H2(W,∂W ;Z/2) ∼= H0(W ;Z/2) ∼=
Z/2, and H2(W ;Z/2) ∼= H0(W,∂W ;Z/2) ∼= {0}. Thus we have shown that S1 with
the framing which does not extend to D2 is not framed nullbordant and hence de-
fines a non-trivial element in N1.



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 119

The framed bordism class of any framed 1-dimensional closed manifold is a Z-
linear combination of the elements in N1 represented by S1 with the framing which
extends to D2 and by S1 with the framing that does not extend to D2. Obviously
the class of S1 with the stable framing which extends to D2 represents zero in
N1. One easily checks that the cylinder over S1 gives a framed nullbordism for the
disjoint union of two copies of S1 equipped with the framing which does not extend
to D2. Hence the element represented in Ωfr

1 by S1 equipped with the framing which
does not extend to D2 has order precisely two and generates the abelian group N1.

18. The Atiyah-Hirzebruch spectral sequence for homology for
arbitrary filtrations

Fix a commutative ring R. Let H∗ be a homology theory with values in R-
modules satisfying the disjoint union axiom and the WHE-axiom, but not nec-
essarily the dimension axiom. Recall that the WHE-axiom says that any weak
homotopy equivalence f : Y → Z induces isomorphisms Hp(f) : Hp(Y ) → Hp(Z)
for every p ∈ Z. Note that any homology theory which is defined only for pairs of
CW -complexes can be extended to a homology theory for all pairs satisfying the
WHE-axiom using cellular approximation. Moreover, stable homotopy and singu-
lar homology satisfy the WHE-axiom, see Theorem 6.10. Let X be a space coming
with a filtration by subspaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X
such that X = colimp→∞Xp.

Problem 18.1. How much can we say about Hn(X) for n ∈ Z, if we know
Hp(Xq, Xq−1) for p ∈ Z≥0 and q ∈ Z. More precisely, is there a machine which
starts with the knowledge of Hp(Xq, Xq−1) for p ∈ Z≥0 and q ∈ Z and gives some
information about Hn(X), which in favourable situation leads to actual computa-
tions?

As a warmup we consider the following examples.

Example 18.2 (Cellular homology). In this example we appeal to some facts from
the lecture course Topology I, see for instance [17, Chapter 3].

Let H∗ be a homology theory with values in R-modules satisfying the disjoint
union axiom and the dimension axiom. Let M be the R-module given by H0({•}).
Let X be a CW -complex. Consider the R-chain complex CH∗ whose n-the chain
module is Hn(Xn, Xn−1) and whose n-th differential is the boundary operator of
the triple (Xn, Xn−1, Xn−2). Then there is a canonical R-isomorphism

Hn(CH∗∗ (X))
∼=−→ Hn(X).

So this is a recipe how to compute Hn(X) from the R-modules Hn(Xn, Xn−1). Of
course one needs to figure out the differentials of the R-chain complex CH∗∗ . Recall
that we have assigned to X its cellular Z-chain complex C∗(X) and that there is
an R-chain isomorphism

Cc∗(X)⊗Z H0({•})
∼=−→ CH∗∗ (X).

Hence we rediscover the fact that Hn(X) can be computed by the cellular homology
Hn(C∗(X)⊗Z H0({•})) of X with coefficients in H0({•}).

One may say that in the sequel we want to drop the condition that H∗ satisfies
the dimension axiom. This is illustrated by the following example.



120 LÜCK, WOLFGANG

Example 18.3 (Long exact sequence of a pair). Let H∗ be a homology theory
with values in R-modules satisfying the disjoint union axiom. Suppose that the
filtration of X has length 1, i.e., X = X1. Then we can look at the long exact
sequence of the pair (X,X0)

· · · → Hp(X0, X−1)→ Hp(X,X−1)→ Hp(X,X0)→ Hq−1(X0, X−1)

→ Hp−1(X,X−1)→ Hp−1(X,X0)→ · · · .

If we define

Fp,q = im
(
Hp+q(Xp)→ Hp+q(X)

)
,

we get a filtration of Hq(X) by

{0} = F−1,q+1 ⊆ F0,q ⊆ F1,q−1 = Hq(X).

Put

E∞p,q = Fp,q/Fp−1,q+1.

Then the computation of E∞p,q would give some information aboutHp+q(X), namely
we would obtain an extension

(18.4) 0→ E∞0,q → Hq(X)→ E∞1,q−1 → 0.

Then we are left with this extension problem. In general there are several solutions.
In the favourable case that E∞1,q−1 is free, we would even obtain an explicit answer,
namely,

Hq(X) ∼= E∞1,q−1 ⊕ E∞0,q.
Sometimes one does not want to compute Hq(X) but only an invariant of it. For
instance suppose that R is a principle ideal domain and we want to figure out
rkR(Hq(X)). In this situation one gets a complete answer, namely

(18.5) rkR(Hq(X)) = rkR(E∞1,q−1) + rkR(E∞0,q).

Consider the chain complex C[q]∗

· · · → C[q]p+1 = Hp+q+1(Xp+1, Xp)→ C[q]p = Hp+q(Xp, Xp−1)

→ C[q]p−1 = Hp−q+q(Xp−1, Xp−2)→ · · ·

whose p-th differential is the composite

Hp+q(Xp, Xp−1)
∂p+q−−−→ Hp+q−1(Xp−1)→ Hp+q−1(Xp−1, Xp−2).

Next we show

(18.6) E∞p,q
∼= Hp(C[q]∗).

For p = 0 we have E∞0,q = F∞0,q = im
(
Hq(X0)→ Hq(X)

)
. The chain complex C[q]∗

in dimensions looks like

· · · → {0} → C[q]2 = Hq+2(X,X) = {0} → C[q]1 = Hq+1(X,X0)→
C[q]0 = Hq(X0)→ C[q]−1 = Hq(∅, ∅) = {0} → {0} → · · · .

Hence H0(C[q]∗) is the cokernel of ∂q+1 : Hq+1(X,X0) → Hq(X0). This is by
the long exact sequence isomorphic to im

(
Hq(X0) → Hq(X)

)
. We have get from

the definitions E∞0,q = F∞0,q = im
(
Hq(X0) → Hq(X)

)
. Moreover, H1(C[q]∗) is

the kernel of ∂q+1 : Hq+1(X,X0) → Hq(X0). This is by the long exact sequence
isomorphic to cok

(
Hq+1(X0)→ Hq+1(X)

)
. We have get from the definitions E∞1,q =

cok
(
Hq+1(X0)→ Hq+1(X)

)
.

So we have a recipe how to computeHp+q(X) from the modules Hp+q(Xp, Xp−1)
which is a two stage process in view of (18.4) and (18.6). But this requires that
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we can figure out the differentials of C[q]∗ and then the homology of it. In the
favourite case that Hp+q(Xp, Xp−1) = {0} holds for odd q and p ∈ Z, we get

E∞p,q =

{
0 if q is odd;

Hp+q(Xp, Xp−1) if q is even.

and hence

Hn(X) =

{
Hn(X,X0) if n is odd;

Hn(X0) if n is even.

If we assume that R is a principle ideal domain, each R-module Hp+q(Xp, Xp−1)
is finitely generated and there is a number d such that Hp+q(Xp, Xp−1) vanishes
for |p + q| ≥ d, then we can conclude that Hn(X) is finitely generated for every n
and vanishes for |n| ≥ d, and get a computation of the Euler characteristic with
respect to H∗ of X by

χH∗(X) :=
∑
n

(−1)n · rkR(Hn(X))

=
∑
n

(−1)n ·
(
rkR(E∞1,n−1) + rkR(E∞0,n)

)
=

∑
n

(−1)n ·
(
rkR(E∞0,n)− rkR(E∞1,n)

)
=

∑
n

(−1)n · χ(C[n]∗)

=
∑
n

(−1)n · (rkR(C[n]0)− rkR(C[n]1))

=
∑
n

(−1)n · rkR(Hn(X0, X−1))− rkR(Hn+1(X,X0))

=
∑
n

(−1)n · rkR(Hn(X0, X−1)) +
∑
n

(−1)n · rkR(Hn(X,X0))

=
∑
p,q

(−1)p+q · rkR(Hp+q(Xp, Xp−1)).

So we can compute the invariant χH∗(X) directly from the numbers rkR(Hp+q(Xp, Xp−1)),
and we do not have to solve the extension problem (18.4) and to determine the

differentials and the homology of the chain complex C[q]∗.

Next we consider the general case. The extension of Example 18.3 to the general
case is essentially a problem of a good book keeping.

We define for p ∈ Z≥0, q ∈ Z, and r ∈ Z≥1, where we put Xm = ∅ for m ≤ −1,

Zrp,q = im
(
Hp+q(Xp, Xp−r)→ Hp+q(Xp, Xp−1)

)
;(18.7)

Brp,q = im
(
∆p+q+1 : Hp+q+1(Xp+r−1, Xp)→ Hp+q(Xp, Xp−1)

)
;(18.8)

Z∞p,q = im
(
Hp+q(Xp)→ Hp+q(Xp, Xp−1)

)
;(18.9)

B∞p,q = im
(
∆p+q+1 : Hp+q+1(X,Xp)→ Hp+q(Xp, Xp−1)

)
;(18.10)

Fp,q = im
(
Hp+q(Xp)→ Hp+q(X)

)
.(18.11)

Here ∆p+q+1 is the boundary operator of the corresponding triple. Recall that for
a triple (Z2, Z1, Z0) given by Z0 ⊆ Z1 ⊆ Z2 its n-th boundary operator is defined
to be the composite

∆n = ∆[Z2, Z1, Z0]n : Hn(Z2, Z1)
∂[Z2,Z1]n−−−−−−→ Hn−1(Z1)→ Hn−1(Z1, Z0),
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where ∂[Z2, Z1]n is the n-th boundary operator of the pair (Z2, Z1), and that we
have the long exact triple sequence

(18.12) · · · ∆[Z2,Z1,Z0]n+1−−−−−−−−−−→ Hn(Z1, Z0)→ Hn(Z2, Z0)→ Hn(Z2, Z1)

∆[Z2,Z1,Z0]n−−−−−−−−−→ Hn−1(Z1, Z0)→ Hn−1(Z2, Z0)→ Hn−1(Z2, Z1)
∆[Z2,Z1,Z0]n−1−−−−−−−−−−→ · · ·

Obviously we have the inclusions

{0} = B1
p,q ⊆ B2

p,q ⊆ · · · ⊆ Brp,q ⊆ Br+1
p,q ⊆ · · · ⊆ B∞p,q
⊆ Z∞p,q ⊆ · · · ⊆ Zr+1

p,q ⊆ Zrp,q ⊆ · · · ⊆ Z1
p,q.

So we can define

Erp,q = Zrp,q/B
r
p,q;(18.13)

E∞p,q = Z∞p,q/B
∞
p,q.(18.14)

Lemma 18.15. There are canonical isomorphisms

Zrp,q/Z
r+1
p,q

∼=−→ Br+1
p−r,q+r−1/B

r
p−r,q+r−1.

Proof. This follows from the following commutative diagram

Hp+q(Xp, Xp−r−1)

�� ))

Hp+q(Xp−1, Xp−r) //

∆[Xp,Xp−1,Xp−r]p+q
**

Hp+q(Xp, Xp−r)

∆[Xp,Xp−r,Xp−r−1]p+q

��

// Hp+q(Xp, Xp−1)

Hp+q−1(Xp−r, Xp−r−1)

and the long exact sequence (18.12) of the triple (Xp, Xp−1, Xp−r) and the triple
(Xp, Xp−r, Xp−r−1). �

Because of Lemma 18.15 we can define a map

(18.16) drp,q : Erp,q → Erp−r,q+r−1

by the composite

Erp,q := Zrp,q/B
r
p,q → Zrp,q/Z

r+1
p,q

∼=−→ Br+1
p−r,q+r−1/B

r
p−r,q+r−1

→ Zrp−r,q+r−1/B
r
p−r,q+r−1 =: Erp−r,q+r−1.

Note that the first map appearing in the composite above is the canoncial projec-
tion and hence surjective and the third map is the canoncial inclusion and hence
injective. So we get

ker(drp,q) = Zr+1
p,q /B

r
p,q;

im(drp,q) = Br+1
p−r,q+r−1/B

r
p−r,q+r−1.

Hence we have im(drp+r,q−r+1) ⊆ ker(drp,q) and we get canonical R-isomorphisms

ker(drp,q)/ im(drp+r,q−r+1) ∼=
(
Zr+1
p,q /B

r
p,q

)
/
(
Br+1
p,q /B

r
p,q

) ∼= Zr+1
p,q /B

r+1
p,q =: Er+1

p,q .

Hence we have shown the following lemma.

Lemma 18.17. We have drp,q ◦ drp+r,q−r+1 = 0 and therefore obtain an R-chain
complex Cr[q]∗ if we define the lth chain module by Erp−(l−p)r,(l−p)(1−r)+q and the

lth-differential by drp,q. Moreover, there are canonical R-isomorphisms

Hp(C
r[q]∗)

∼=−→ Er+1
p,q .
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Lemma 18.18. We have the obvious inclusions

{0} = F−1,p+q+1 ⊆ F0,p+q ⊆ · · · ⊆ Fp,q ⊆ · · · ⊆ Hp+q(X)

satisfying

Hp+q(X) =

∞⋃
r=−1

Fr,p+q−r.

Moreover, there are canonical isomorphisms

Fp,q/Fp−1,q+1

∼=−→ E∞p,q.

Proof. Since X = colimr→∞Xr, the canonical map

(18.19) colimr→∞Hp+q(Xr)
∼=−→ Hp+q(X)

is bijective by Proposition 16.11 (i). This impliesHp+q(X) =
⋃∞
r=−1 Fr,p+q−r, since

Fr,p+q−r is by definition the image of Hp+q(Xr)→ Hp+q(X).

This desired isomorphisms Fp,q/Fp−1,q+1

∼=−→ E∞p,q come from the following com-
mutative diagram

Hp+q+1(X,Xp)

��

∆[X,Xp,Xp−1]p+q

((

Hp+q(Xp−1) //

((

Hp+q(Xp)

��

// Hp+q(Xp, Xp−1)

Hp+q(X)

and the long exact sequences of the triple(X,Xp, Xp−1). �

Finally we relate the E∞p,q to the modules Erp,q.

Lemma 18.20. We have

Zrp,q = Z∞p,q if r > p;

B∞p,q =
⋃
r≥1

Brp,q.

Therefore we have for r > p epimorphism Erp,q → E∞p,q and we get

E∞p,q = colimr→∞Erp,q

Proof. Since Xp−r = ∅ holds for p > r, we get Zrp,q = Z∞p,q if r > p.
Since X = colimr→∞Xr, the canonical map

(18.21) colimr→∞Hp+q+1(Xp+r−1, Xp)
∼=−→ Hp+q(X,Xp)

is bijective by Proposition 16.11 (i). We have the obvious map

colimr→∞∆[Xp+r−1, Xp, Xp−1]p+q+1 : colimr→∞Hp+q+1(Xp+r−1, Xp)

→ Hp+q(Xp, Xp−1).

It factorizes as the composite

colimr→∞Hp+q+1(Xp+r−1, Xp)
∼=−→ Hp+q(X,Xp) → Hp+q(Xp, Xp−1).

where the first map is the isomorphism (18.21). This implies B∞p,q =
⋃
r≥1B

r
p,q.

Now the other claims are obviously true. �
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Remark 18.22 (General strategy). Let X be a space coming with a filtration by
subspaces

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X

such that X = colimp→∞Xp. Let H∗ be a homology theory H∗ with values in R-
modules satisfying the disjoint union axiom and the WHE-axiom. Let us summarize
how we can use the construction above to compute Hn(X) for an element n ∈ Z
by trying to carry out the following program, where p ∈ Z≥0 and q ∈ Z.

(i) Identify E1
p,q = Hp+q(Xp, Xp−1);

(ii) Identify the differentials d1
p,q;

(iii) Compute the homology E2
p,q = Hp(C

1[q]∗) of theR-chain complexes C1[q]∗;

(iv) Identify the differentials d2
p,q;

(v) Compute the homology E3
p,q = Hp(C

2[q]∗) of theR-chain complexes C2[q]∗;
(vi) Repeat this process thus identifying Erp,q for all r ≥ 1;
(vii) Compute E∞p,q = colimr→∞Erp,q;

(viii) Put F0,n = E∞0,n. Solve the extension problems 0 → Fp−1,n−p+1 →
Fp,n−p → E∞p,n−p → 0, thus determining Fp,n−q for all p ∈ Z≥0;

(ix) Then Hn(X) =
⋃
p≥0 Fp,n−p for the filtration F0,n ⊆ F1,n−1 ⊆ F2,n−2 ⊆

F3,n−3 ⊆ · · · .

Of course in this generality one cannot carry out this program completely, but
we will see that in many interesting cases one gets very useful information about
Hn(X).

19. Basic notions and facts about homological spectral sequences

Next we describe the abstract setting underlying the homological Atiyah-Hirzebruch
spectral sequence.

Definition 19.1 (Homological spectral sequence with values in R-modules). A
homological spectral sequence with values in R-modules starting at d for d ∈ Z≥1

E∗∗,∗ consists of the following data:

• A family of R-modules {Erp,q} for r ∈ Z≥d, p, q ∈ Z such that Erp,q = {0}
for p ≤ −1;

• Maps drp,q : Erp,q → Erp−r,q+r−1 called differentials for r ∈ Z≥d, p, q ∈ Z
such that the composite drp,q ◦ drp−r,q−r+1 vanishes for r ∈ Z≥d, p, q ∈ Z.

In particular we get R- chain complexes Cr[q]∗ for r ∈ Z≥d and p ∈ Z
whose q-th differential is drp,q, in other words it is given by the lines of

slope − r−1
r ;

• R-isomorphisms

αrp,q : Hp(C
r[q]∗)

∼=−→ Er+1
p,q

for r ∈ Z≥d, p, q ∈ Z.

We call the data given by {Erp,q, drp,q | p, q ∈ Z} for r ∈ Z≥s the r-th page of the
spectral sequence. Note that the r-th page determines the underlying modules of
the (r + 1)-th page but not the differentials appearing on the (r + 1)th page.
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Here is a picture of the first page:
(19.2)

...
...

...
...

... . .
.

E1
0,2 E1

1,2

d11,2
oo E1

2,2

d12,2
oo E1

3,2

d13,2
oo E1

4,2

d14,2
oo · · ·

E1
0,1 E1

1,1

d11,1
oo E1

2,1

d12,1
oo E1

3,1

d13,1
oo E1

4,1

d14,1
oo · · ·

E1
0,0 E1

1,0

d11,0
oo E1

2,0

d12,0
oo E1

3,0

d13,0
oo E1

4,0

d14,0
oo · · ·

E1
0,−1 E1

1,−1

d11,−1
oo E1

2,−1

d12,−1
oo E1

3,−1

d13,−1
oo E1

4,−1

d14,−1
oo · · ·

E1
0,−2 E1

1,−2

d11,−2
oo E1

2,−2

d11,−2
oo E1

3,−2

d11,−2
oo E1

4,−2

d11,−2
oo · · ·

...
...

...
...

...
. . .

Here is a picture of the second page:
(19.3)

...
...

...
...

... . .
.

E2
0,2 E2

1,2 E2
2,2 E2

3,2 E2
4,2 · · ·

E2
0,1 E2

1,1 E2
2,1

d22,1

jj

E2
3,1

d23,1

jj

E2
4,1

d24,1

jj

· · ·

E2
0,0 E2

1,0 E2
2,0

d22,0

jj

E2
3,0

d23,0

jj

E2
4,0

d24,0

jj

· · ·

E2
0,−1 E2

1,−1 E2
2,−1

d22,−1

jj

E2
3,−1

d23,−1

jj

E2
4,−1

d24,−1

jj

· · ·

E2
0,−2 E2

1,−2 E2
2,−2

d22,−2

jj

E2
3,−2

d23,−2

jj

E2
4,−2

d24,−2

jj

· · ·

...
...

...
...

...
. . .
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Here is a picture of the third page:
(19.4)

...
...

...
...

... . .
.

E3
0,2 E3

1,2 E3
2,2 E3

3,2 E3
4,2 · · ·

E3
0,1 E3

1,1 E3
2,1 E3

3,1 E3
4,1 · · ·

E3
0,0 E3

1,0 E3
2,0 E3

3,0

d33,0

hh

E3
4,0

d34,0

hh

· · ·

E3
0,−1 E3

1,−1 E3
2,−1 E3

3,−1

d33,−1

hh

E3
4,−1

d34,−1

hh

· · ·

E3
0,−2 E3

1,−2 E3
2,−2 E3

3,−2

d33,−2

hh

E3
4,−2

d34,−2

hh

· · ·

...
...

...
...

...
. . .

So the differential drp,q starts at (p, q) and points to the place which is r steps
to the left and (r − 1) steps upwards. The relevant chain complexes Cr[p]∗ appear
in the picture in the obvious way by the corresponding lines of slope − r−1

r . Note
that all entries at (p, q) for p < 0 are {0}.

Note that for given (p, q) we have

Erp,q = {0} =⇒ Er+1
p,q = 0 =⇒ E∞p,q = {0}.

We say that the spectral sequence collapses if all differentials are trivial. Note
that this implies Edp,q = Erp,q = E∞p,q for all r ∈ Z≥d, p, q ∈ Z.

We call the spectral sequence a first quadrant spectral sequence if Edp,q = 0 holds
for q ≤ −1.

A morphism f∗∗,∗ : E∗∗,∗ → E′
∗
∗,∗ of homological spectra sequences is a family of

R-homomorphism {frp,,q : Erp,q → E′
r
p,q} for r ∈ Z≥d, p, q ∈ Z which is compatible

with the differentials drp,q : Erp,q → Erp−r,q+r−1 and d′rp,q : E′
r
p,q → E′

r
p−r,q+r−1 and

with the isomorphisms αrp,q : Hp(C
r[q]∗)

∼=−→ Er+1
p,q and α′rp,q : Hp(C

′r[q]∗)
∼=−→ E′

r+1
p,q .

The next lemma is a direct consequence of the Five-Lemma.

Lemma 19.5. Let f∗∗,∗ : E∗∗,∗ → E′
∗
∗,∗ be a morphism of homological spectral se-

quences starting at d ∈ Z≥1. Suppose that fdp,q : Edp,q → E′
d
p,q is bijective for all

p, q ∈ Z. Then frp,q : Erp,q → E′
r
p,q is bijective for all r ∈ Z≥d, p, q ∈ Z.

So in the favourite case one hopes for instance that many of the entries Erp,q
are zero so that all differentials starting or ending at such a place must be trivial.
Sometimes one knows that a differential drp,q is trivial, since its source is a finite
abelian group and its target is a free abelian group. Computing the differentials in
general is difficult. Often one needs to know some clever tricks or some previous
knowledge about the groups E∞p,q.



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 127

Note that we obtain for every p, q ∈ Z a sequence of epimorphisms of R-modules

Erp,q → Er+1
p,q → Er+2

p,q →

for r ∈ Z≥p+1, since the differential drp,q : Erp,q → Erp−r,q+r−1 has {0} as target and
hence vanishes for r ≥ p+ 1. Therefore we can define

E∞p,q = colimr→∞Erp,q.

Consider a Z-graded R-module module H∗ = {Hn | n ∈ Z}. It is called filtered if
for every n ∈ Z there is a preferred ascending filtration

{0} = F−1,n+1 ⊆ F0,n ⊆ F1,n−1 ⊆ F2,n−2 ⊆ · · · ⊆ Hn
with Hn =

⋃
p≥0 Fn−p,p. We say that a homological spectral sequences converges

to the filtered Z-graded R-module module {Hn | n ∈ Z} if there is for every p, q ∈ Z
a preferred R-isomorphism

βp,q : Fp,q/Fp−1,q+1

∼=−→ E∞p,q.

We say that there are no extension problems for the homological spectral sequence
E∗∗,∗ converging to the filtered Z-graded R-module module H∗ if we have

Hn ∼=
⊕
p≥0

Fn−p,p/Fn−p−1,p+1.

We say that the homological spectral sequence E∗∗,∗ converging to the filtered Z-
graded R-module module H∗ strongly collapses if it collapses and there are no
extension problems. In this rare and favourite cases we get

Hn =
⊕
p≥0

Edn−p,p

20. The Atiyah-Hirzebruch spectral sequence for homology

There is the following favourite case, namely, where X is a CW -complex and
∅ = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X is the skeletal filtration. Then we get an
identification

(20.1) E2
p,q = Hp(X;Hq({•})),

where H∗ is a homology theory with values in R-module satisfying the disjoint
union axiom. Next we sketch the proof of (20.1). Choose for every p a pushout

∐
ip∈Ip S

p−1

∐
ip∈Ip c

p
i

//

��

Xp−1

p

��∐
i∈Ip D

p

∐
ip∈Ip C

p
i

// Xp.

Then we get isomorphisms

ϕp :
⊕
ip∈Ip

Hq({•})
∼=−→ Hp+q(Xp, Xp−1).

Given two indices ip ∈ Ip and ip−1 ∈ Ip−1, we define the following endomorphism
of Sp−1

Sp−1
cpip−−→ Xp

pr−→ Xp/(Xp)ip−1

(C
p−1
ip,ip−1

)−1

−−−−−−−−→ Dp−1/Sp−2 µp−1−−−→ Sp−1,

where (Xp)ip−1 is the union of Xp−1 and all the closed cells associated to i ∈ Ip
with i 6= ip, the homeomorphism C

p−1

ip,ip−1
: Dp−1/Sp−2

∼=−→ Xp/(Xp)ip−1 is induced

by the characteristic map Cp−1
ip

, and µp−1 : Dp−1/Sp−2 → Sp−1 is the standard
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homeomorphism. Let dIp,ip−1
∈ Z be the degree of this map. Then the following

diagram commutes

⊕
ip∈Ip Hq({•})

Dp
//

∼=ϕp

��

⊕
ip−1∈Ip−1

Hq({•})

∼=ϕp−1

��

Hp+q(Xp, Xp−1)
d1p,q

// Hp+q−1(Xp−1, Xp−2)

where Dp is given by the collection of integers dip,ip−1
. The latter definition makes

sense, since for fixed ip there are only finitely many ip−1 ∈ Z with dip,ip−1 6= 0.

Hence the chain complex C2[1]∗ can be identified with C∗(X) ⊗Z Hq({•}) for the
cellular chain complex C∗(X). This finishes the proof of (20.1).

Notation 20.2. Let R be a commutative ring and H∗ be a homology theory
taking values in R-modules satisfying the disjoint union axiom. If we use the
skeletal filtration, we call the spectral sequence constructed in Section 19 the Atiyah-
Hirzebruch spectral sequence for homology converging to H∗.

Note that the Atiyah-Hirzebruch spectral sequence converges to the filtered Z-
graded R-module H∗(X), where the filtration is described in (18.11), namely Fp,q is
the image of Hp+q(Xp)→ Hp+q(X). It starts at 2. If we abbreviate Hq = Hq({•}),
its second page looks like

...
...

...
...

... . .
.

H0(X;H2) H1(X;H2) H2(X;H2) H3(X;H2) H4(X;H2) · · ·

H0(X;H1) H1(X;H1) H2(X;H1)

d22,1
jj

H3(X;H1)

d23,1
jj

H4(X;H1)

d24,1
jj

· · ·

H0(X;H0) H1(X;H0) H2(X;H0)

d22,0
jj

H3(X;H0)

d23,0
jj

H4(X;H0)

d24,0
jj

· · ·

H0(X;H−1) H1(X;H−1) H2(X;H−1)

d22,−1

jj

H3(X;H−1)

d23,−1

jj

H4(X;H−1)

d24,−1

jj

· · ·

H0(X;H−2) H1(X;H−2) H2(X;H−2)

d22,−2

jj

H3(X;H−2)

d23,−2

jj

H4(X;H−2)

d24,−2

jj

· · ·

...
...

...
...

...
. . .

Example 20.3 (Homology satisfying the dimension axiom.). LetH∗ be a homology
theory taking values in R-modules satisfying the disjoint union axion, the WHE-
axiom, and the dimension axiom. Then the E2-terms of the Atiyah-Hirzebruch
spectral sequence satisfies

E2
p,q
∼=

{
Hp(X;H0({•})) p ∈ Z≥0, q = 0;

{0} otherwise.
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So the second page looks like

...
...

...
... . .

.

0 0 0 0 · · ·

0 0 0 0 · · ·

0 0 0 0 · · ·

H0(X;H0({•})) H1(X;H0({•})) H2(X;H0({•})) H3(X;H0({•})) · · ·

Hence it strongly collapses and yields for n ∈ Z the well-know isomorphism

Hn(X;H0({•})) ∼= Hn(X).

Example 20.4. Let p be an odd prime. Consider a homology theoryH∗ with values
in Fp-modules satisfying the disjoint union axiom. Let M be any Fp-module. Then
an easy calculation using the cellular Z-chain complex chain complex of RP∞ and
the fact that 2 ∈ Fp is a unit shows that Hp(RP∞;M) vanishes for p ∈ Z≥1 and
is M if p = 0. Hence the second page of the Atiyah-Hirzebruch spectral sequence
looks like

E2
p,q = Hp(RP∞;Hq({•})) =

{
Hq({•}) if p = 0;

{0} otherwise.

So the second page is concentrated in the 0th column and looks like

...
...

...
... . .

.

H3({•}) 0 0 0 · · ·

H2({•}) 0 0 0 · · ·

H1({•}) 0 0 0 · · ·

H0({•}) 0 0 0 · · ·

Hence it collapses strongly and we get for n ∈ Z≥0

Hn(RP∞) ∼= Hn({•}).

Example 20.5 (Topological K-homology of complex projective spaces). Let K∗
be the homology theory satisfying the disjoint union axiom given by complex K-
homology, see Subsection 16.7. For the purpose here we only need to know that
Kn({•}) is Z for n even and {0} for n odd. Let CPd be the complex projective
space of dimension d for d ∈ Z≥0 q ∞ Recall that it carries the structure of a
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CW -complex which has precisely one cell of dimension 2n for n ∈ Z with n ≤ d
and no cells in any other dimension. Hence we get for the E2-page

E2
p,q = Hp(CPd;Kq({•})) ∼=

{
Z if p and q are even and p ≤ 2d;

{0} otherwise.

So the second page looks like:

...
...

...
...

... . .
.

Z 0 Z 0 Z · · ·

0 0 0

jj

0 0

jj

· · ·

Z 0 Z

jj

0 Z

jj

· · ·

0 0 0

jj

0 0

jj

· · ·

Z 0 Z

jj

0 Z

jj

· · ·

...
...

...
...

...
. . .

This implies that for every r ≥ 2 we have Erp,q = 0 if p or q is odd. Since the
differential drp,q has as source Erp,q and as target Erp−r,q+r−1, either its source or its
target is trivial and hence the differential itself is trivial. This implies for all r ≥ 2

E2
p,q = Erp,q = E∞p,q

∼=

{
Z if p and q are even and p ≤ 2d;

{0} otherwise.

Fix n ∈ Z. Then we have the filtration

{0} = F−1,n+1 ⊆ F0,n ⊆ F1,n−1 ⊆ F2,n−2 ⊆ F3,n−3 ⊆ · · · ⊆ Kn(CPd)

satisfying

Kn(CPd) =
⋃
p≥0

Fp,n−p

F2d,0 = Kn(CPd) if d <∞;

Fp,n−p/Fp−1,n−p+1
∼=

{
Z if p and n− p are even and p ≤ 2d;

{0} otherwise.

Hence we get

Kn(CPd) ∼=


Zd+1 if n is even and d <∞;⊕∞

i=0 Z if n is even and d =∞;

{0} if n is odd.

So in this case the Atiyah-Hirzebruch spectral sequence strongly collapses.
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Example 20.6 (Topological K-homology of RP4). We get for the E2-page

E2
p,q = Hp(RP4;Kq({•})) ∼=


Z if p = 0 and q is even;

Z/2 if p = 1, 3 and q is even;

{0} otherwise.

So the second page looks like:

...
...

...
...

... . .
.

Z Z/2 0 Z/2 0 · · ·

0 0 0

jj

0 0

jj

· · ·

Z Z/2 0

jj

Z/2

jj

0

jj

· · ·

0 0 0

jj

0 0

jj

· · ·

Z Z/2 0

jj

Z/2

jj

0

jj

· · ·

...
...

...
...

...
. . .

Hence all the second differentials are trivial. So the third page looks like:

...
...

...
...

... . .
.

Z Z/2 0 Z/2 0 · · ·

0 0 0 0 0 · · ·

Z Z/2 0 Z/2

ii

0

ii

· · ·

0 0 0 0

ii

0

ii

· · ·

Z Z/2 0 Z/2

ii

0

ii

· · ·

...
...

...
...

...
. . .
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Hence all the third differentials are trivial. So the fourth page looks like:

...
...

...
...

... . .
.

Z Z/2 0 Z/2 0 · · ·

0 0 0 0 0 · · ·

Z Z/2 0 Z/2 0 · · ·

0 0 0 0 0

hh

· · ·

Z Z/2 0 Z/2 0

hh

· · ·

...
...

...
...

...
. . .

Hence we get inductively over r

E∞p,q =


Z if p = 0 and q is even;

Z/2 if p = 1, 3 and q is even;

{0} otherwise.

This implies

K0(RP4) ∼= Z
and that there is a short exact sequence

0→ Z/2→ K1(RP4)→ Z/2→ 0.

Hence we know thatK1(RP4) is isomorphic to either Z/2⊕Z/2 or Z/4 but we cannot
decide whether it is Z/2⊕Z/2 or Z/4 from the spectral sequence alone. Actually, it
is Z/4. So in this case the Atiyah-Hirzebruch spectral sequence collapses but does
not collaps strongly.

20.1. Chern characters. Fix a commutative ring R with Q ⊆ R.
For every pointed pair (Z,B, z) we have the Hurewicz homomorphism

hurn(Z,B, z) : πn(Z,B, z)→ Hn(Z;B),

see (12.9). It induces for any pair (Z,B) a homomorphism of abelian groups

hursn(Z,B) : πsn(Z,B)→ Hn(Z,B).

It is not hard to check that this defines a transformation of homology theories
with values in Z-modules. Note that hursn({•}) : πsn({•}) → Hn({•}) is bijective
for p = 0 and obviously surjective for all p ≥ 1 but is not injective in general for
p ≥ 1, since Hn({•}) vanishes for p ≥ 1. We will later show that πsn({•}) is a finite
group for all p ≥ 1, see Theorem 32.4, and we will use this fact for the remainder
of this subsection. Hence the R-homomorphism hursn({•})⊗Z idR : πsn({•})⊗ZR→
Hn({•})⊗ZR is bijective for n ∈ Z≥0. Since R is flat over Z, we get by πsn(Z,B)⊗ZR
a homology theory with values in R-modules satisfying the disjoint union axiom
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and the WHE-axiom. This is also true for for Hn(Z,B)⊗Z R ∼= Hn(X,B;R). We
conclude from Theorem 16.12 ((i))

Lemma 20.7. For every pair (Z,B) the map

hursn(Z,B)⊗Z idR : πsn(Z,B)⊗Z R→ Hn(Z,B)⊗Z R

is bijective.

Next we describe a construction due to Dold [8]. Consider a homology theory
H∗ with values in R-modules. Then the Chern character for a CW -complex X is
given by the following composite

chn(X) :
⊕
p+q=n

Hp(X;Hq({•}))
αn−−→

⊕
p+q=n

Hp(X;R)⊗R Hq({•})

⊕
p+q=n hursp(X)−1⊗id

−−−−−−−−−−−−−−−→
⊕
p+q=n

πsp(X)⊗Z R⊗R Hq({•})

⊕
p+q=nDp,q−−−−−−−−−→ Hn(X).

Here the canonical map αn is bijective by the Universal Coefficient Theorem, since
any R-module is flat over Z because of the assumption Q ⊂ R. The second bijective
map comes from the Hurewicz isomorphisms of Lemma 20.7. The map Dp,q is
defined as follows. For an element a⊗ b ∈ πsp(X)⊗Z Hq(∗) choose a representative

f : Sp+k → Sk∧X+ of a. Define Dp,q(a⊗b) to be the image of b under the composite

Hq({•})
∼=−→ Hq(S0, ∗) σ′−→ Hp+q+k(Sp+k, ∗)

Hp+q+k(f)−−−−−−−→ Hp+q+k(Sk ∧X+, ∗)
σ−1

−−→ Hp+q(X)

where σ′ and σ denote iterated suspension isomorphism. We leave it to the reader to
check that this homomorphism Dp,q is well-defined. It is not hard to show that the
definition of the map chn(X) extends to pairs (X,A). and we thus get a transforma-
tion χ∗ of homology theories with values in R-modules from

⊕
p+q=∗Hp(;Hq({•}))

to H∗. which induces an isomorphism for X = {•}. Hence the following theorem
follows from Theorem 16.12 (i).

Theorem 20.8. Let R be a commutative ring with Q ⊆ R and H∗ be a homology
theory with values in R-modules satisfying the disjoint union axiom and the WHE-
axiom.

We get by ch∗ an equivalence of homology theories with values in R-modules.
In particular we get for every pair (X,A) and n ∈ Z an isomorphism, natural in
(X,A)

chn(X,A) :
⊕
p+q=n

Hp(X,A;Hq({•}))
∼=−→ Hn(X,A).

Corollary 20.9.

(i) Let R be a commutative ring with Q ⊆ R and H∗ be a homology theory
with values in R-modules satisfying the disjoint union axiom. Then the
Atiyah-Hirzebruch spectral sequence converging to H∗ collapses strongly;

(ii) Let H∗ be a homology theory with values in Z-modules satisfying the dis-
joint union axiom. Then every differential drp,q vanishes rationally, i.e.,
idQ⊗Zd

r
p,q vanishes, or, equivalently, its image consists only of torsion

elements.
Proof. (i) Since the Chern character is a transformation of homology theories, it
induced an isomorphism of the Atiyah-Hirzebruch spectral sequence converging to
homology theory

⊕
p+q=∗Hp(−;Hq({•})) toH∗ and the one converging toH∗. The
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one for
⊕

p+q=∗Hp(−;Hq({•})) strongly collapses, since the Atiyah-Hirzebruch
spectral sequence is compatible with direct sums of homology theories and obvious
strongly collapses for singular homology, see Example 20.3

(ii) IfH∗ is a homology theory with values in Z-modules satisfying the disjoint union
axiom, then H∗ ⊗Z Q is a homology theory with values in Q-modules satisfying
the disjoint union axiom. Since Q is flat over Z, the Atiyah-Hirzebruch spectral
sequence converging to H∗ ⊗Z Q is obtained from the Atiyah-Hirzebruch spectral
sequence converging to H∗ by applying the functor −⊗ZQ. Now apply assertion (i).

�

21. (Co)homology with local coefficients

21.1. Modules over a category. Let C be a small category. Our main example
for C will be the fundamental groupoid Π(X) of a space X. Let R be a commuta-
tive ring. A covariant or contravariant RC-module is a covariant or contravariant
functor M from C to the category R-Mod of R-modules. A morphism between
a covariant or contravariant RC-module is a natural transformation of such func-
tors. Let RC-Mod and Mod-RC respectively be the category of covariant and con-
travariant respectively RC-modules. One easily checks that RC-Mod and Mod-RC
inherits from R-Mod the structure of an abelian category. For instance a sequence

of RC-modules L
i−→ M

p−→ N is exact at M if for any object x ∈ C the sequence

of R-modules L(x)
i(x)−−→ M(x)

p(x)−−−→ N(x) is exact at M(x). The kernel of a mor-
phisms f : M → N of RC-modules is defined to be the RC-module whose value at
an object x ∈ C is the kernel of the R-homomorphism f(x) : M(x)→ N(x).

Given a contravariant RC-module M and a covariant RC-module N , their tensor
product M ⊗RC N is defined to be the following R-module. Consider the R-module⊕

x∈ob(C)M(x)⊗N(x). Let T be the R-submodule of M generated by the subset

{mf ⊗ n−m⊗ fn | x, y ∈ ob(C), f ∈ morC(x, y),m ∈M(y), n ∈ N(x)}, where mf
stands for M(f)(m) and fn for N(f)(n). Define

(21.1) M ⊗RC N :=
( ⊕
x∈ob(C)

M(x)⊗N(x)
)/

T.

Given two contravariant RC-modules M and N , define the R-module homRC(M,N)
to be the R-module whose underlying set is morRC(M,N), i.e., the set of transfor-
mations from M → N . The R-module structure comes from

(r1 · f1 + r2 · f2)(x) = r1 · f1(x) + r2 · f2(x)

for r1, r2 ∈ R, f1, f2 ∈ morRC(M,N), and x ∈ ob(C).
Let C and D be two small categories. An RC-RD-bimodule B is a covariant

R(C × Dop)-module. Let M be a contravariant RC-module. Then for any object
d ∈ D we obtain a covariant RC-module B(?, d) by freezing the variable in D and
hence an R-module M⊗RCB(?, d). This becomes in the obvious way a contravariant
RD-module by assigning to a morphism u : d → d′ the R-homomorphism M ⊗RC
B(?, u) : M ⊗RC B(?, d′) → M ⊗RC B(?, d). We denote this contravariant RD-
module by M ⊗RC B. Let N be a contravariant RD-module. For any object c ∈ C
we obtain a contravariant RD-module B(c, ??) and can consider the R-module
homRD(B(c, ??), N). Using functoriality in c we obtain a contravariant RC-module
which we will denote by homRD(B,N). Define a R-homomorphism

(21.2) ad: homRD(M ⊗RC B,N)→ homRC(M,homRD(B,N))

by sending the homomorphism of contravariant RD-modules φ : M ⊗RC B → N
to the homomorphism of contravariant RC-modules ad(f) : M → homRD(B,N)
which assigs to m ∈M(x) for x ∈ ob(C) the RD-homomorphism B(x, ??)→ N(??)
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sending b ∈ B(x, ??) to φ(??)(m⊗ b), where m⊗ b is the element in (M ⊗RC B)(??)
represented by m⊗b ∈M(x)⊗RB(x, ??). The elementary proof of the next lemma
is left to the reader.

Lemma 21.3. The R-homomorphism ad of (21.2) is bijective and natural in M ,
N , and B.

Let C∗ = (C∗, c∗) be a contravariant RC-chain complex. If M is a covariant
RC-module, we have the R-chain complex C∗ ⊗RC M . If N is a contravariant
RC-module, we have the R-cochain complex homRC(C∗, N).

Given an object c in C, we define a covariant or contravariant RC-module respec-
tively by RmorC(c, ?) and RmorC(?, c), where here and in the sequel we denote for
a set S by RS the free R-module with R-basis, i.e., the R-module of all maps
u : S → Z for which {s ∈ S | u(s) 6= 0} is finite.

Lemma 21.4 (Yoneda Lemma). Let c be an object, M be a contravariant, and N
be covariant RC-module. Then the R-homomorphisms

homRC(RmorC(?, c),M)→M(c), ϕ 7→ ϕ(c)(idc)

and

RmorC(?, c)⊗RC N → N(c), u⊗ n 7→ ϕ(u)(n)

are bijective. The analogous statement holds for RmorC(c, ?).

A systematic study of RC-modules can be found in [16, Section 9 and 10]. We
will only be interested in the special and easy case where C is a groupoid G, i.e., a
small category in which every morphism is an isomorphism.

Example 21.5. Let H and G be groups and R a commutative ring. Denote by
I(G) the groupoid having precisely one object whose automorphism group is G.
Then the category of covariant RI(G)-modules is the category of left RG-modules,
whereas the category of contravariant RI(G)-modules is the category of right RG-
modules. Given a contravariant RI(G)-module M and a covariant RI(G)-module
N , the R-module M ⊗RI(G) N and M ⊗RG N agree. Given contravariant RI(G)-
modules M and N , the R-modules homRI(G)(M,N) and homRG(M,N) agree.
Given a contravariant RI(G)-module M , a contravariant RI(H)-module N , and a
RI(G)-RI(H)-bimodule B, then the adjunction isomorphism ad of (21.2) reduces
to the well-known adjunction isomorphism

homRH(M ⊗RG B,N)
∼=−→ homRG(M,homRH(B,N)).

Remark 21.6. Let G be a connected groupoid, where connected means that be-
tween any two objects there exists a morphism. The fundamental groupoid Π(X)
is connected if and only if X is path connected. Consider an object x in G. Let
autG(x) be the group of automorphisms of x in G. We denote the group ring
R[autG(x)] by R[x]. Let C∗ be a contravariant RG-chain complex. Let M be a
covariant RG-module and let N be a be a contravariant RG-module. Then C∗(x)
is a chain complex of right R[x]-modules, M(x) is a left R[x]-module, and N(x) is
a right R[x]-module and we obtain obvious isomorphisms of R-chain complexes

C∗(x)⊗R[x] M(x)
∼=−→ C∗ ⊗RG M ;

homR[x](C∗(x), N(x))
∼=−→ homRG(C∗, N).

21.2. (Co)homology for local coefficient systems coming from a fibration.
LetX be a connected CW -complex. Recall that its fundamental groupoid Π(X) has
as objects elements in X and a morphism from x to y is a homotopy class relative
endpoints [w] of a path w : [0, 1] → X with w(0) = x and w(1) = y. Composition
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comes from concatenation of paths. Next we define for a connected CW -complex
X a contravariant functor

(21.7) X̃ : Π(X)→ CW-compl.

to the category of CW -complexes. Define X̃(x) to be the set of morphisms in Π(X)
with x as source and arbitrary target. The constant path cx at x defines a preferred

base point x̃ ∈ X̃(x). Let evx : (X̃(x), x̃) → (X,x) be the pointed map sending a

morphism [w] : x→ y to y. Now there is precisely one topology on X̃(x) for which

evx : X̃ → X is a model for the universal covering of X. A CW -structure on X̃ is
given by defining the n-th skeleton to be the preimage of the n-skeleton of X under

evx. Given a morphism [v] : x→ y in Π(X), we obtain a cellular map X̃(y)→ X̃(x)

by precomposition in Π(X), i.e., by sending [w] : y → z in X̃(y) to [w] ◦ [v] : x→ z.
Now we can compose this functor with the functor from CW-compl. to the

category of R-chain complexes given by taking the cellular chain complex with R-
coefficients and obtain a contravariantRΠ(X)-chain complex called cellular RΠ(X)-
chain complex

(21.8) CΠ
∗ (X;R) : Π(X)→ R-Ch. Compl., x 7→ C∗(X̃(x)).

For n ∈ Z≥0 consider a pushout

(21.9)
∐
i∈In S

n−1

∐
i∈In q

n
i
//

��

Xn−1

��∐
i∈In D

n

∐
i∈In Q

n
i

// Xn.

Recall that the existence of such a pushout is required for a CW -structure on
X but a choice of it is not part of the CW -structure on X. Note that In can
be identified with the set of open n-cells of X. Put xni = Qni (0) for the ori-

gin 0 ∈ Dn. There is precisely one map q̃ni : Dn → X̃(xni ) such that q̃ni sends

the origin 0 ∈ Dn to x̃ni and satisfies evxi ◦q̃ni = qni . Let σn : H0({•};R)
∼=−→

Hn(Dn, Sn−1;R) be the suspension isomorphism. Then the image of the element
in H0({•};R) represented by the singular 0-simplex given by the homeomorphism
∆0 → {•} under σn is denoted by [Dn, Sn−1] ∈ Hn(Dn, Sn−1;R) and is called

the standard generator. The map Q̃ni yields maps of pairs Q̃ni : (Dn, Sn−1) →
X̃(xni )n, X̃(xni )n−1. Define the element ani ∈ CΠ

n (X;R)(xni ) to be the image of

[Dn, Sn−1] under the induced homomorphisms Hn(Q̃ni ;R) : Hn(Dn, Sn−1;R) →
Hn(X̃(xni )n, X̃(xni )n−1;R) = CΠ

n (X;R)(xni ). Because of Lemma 21.4 there is
precisely one RΠ(X)-homomorphism ani : RmorΠ(X)(?, x

n
i ) → CΠ

n (X;R) sending
idxni ∈ RmorΠ(X)(?, x

n
i ) to ani . We leave the elementary proof of the next lemma

to the reader.

Lemma 21.10. The RΠ(X)-homomorphism⊕
i∈In

RmorΠ(X)(?, x
n
i )→ CΠ

n (X;R)

is bijective for all n ∈ Z≥0.

Definition 21.11. Let X be a CW -complex and M be a covariant RΠ(X)-module
and N be a contravariant RΠ(X)-module. Then we define the (co)homology of X
with coefficients in M or N to be

HΠ
n (X;M) = Hn

(
CΠ
∗ (X;R)⊗RΠ(X) M

)
;

Hn
Π(X;N) = Hn

(
homRΠ(X)(C

Π
∗ (X;R), N)

)
.
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Lemma 21.12. Let M be an R-module. Let CM : Π(X)→ R-Mod be the constant
functor with value M . We can view CM as a covariant and as a contravariant
RΠ(X)-module. Then we get isomorphism of R-(co)chain complexes

CΠ
∗ (X;R)⊗RΠ(X) CM

∼=−→ C∗(X;R)⊗RM ;

homRΠ(X)(C
Π
∗ (X;R), CM )

∼=−→ homR(C∗(X;R),M),

where C∗(X;R) is the cellular R-chain complex of the CW -complex X.

Proof. The desired isomorphisms are induced by the cellular maps evx : X̃(x) →
X. �

Example 21.13 (Coefficient system of a fibration). Let p : E → B be a fibration
over a connected CW -complex B. We have assigned to it a covariant functor called
fiber transport

τ : Π(B)→ h -Top, b→ Fb = p−1(b)

in (9.14). Let H∗ be a homology theory with values in R-modules. Then we get for
every q ∈ Z a covariant RΠ(B)-module

(21.14) Hπ(X)
q (F ) : Π(B)→ R-Mod, b→ Hq(τ(b)).

Hence we can consider the R-chain complex CΠ
∗ (B)⊗RΠ(B) H

Π(X)
q (F ). We define

(21.15) HΠ
p (B;Hq(F )) := Hp(C

Π
∗ (B)⊗RΠ(B) HΠ(X)

q (F )).

This notion will be relevant for us as it appears as the E2-term in the Leray-Serre
spectral sequence.

We conclude directly from Remark 21.6.

Remark 21.16. Consider the situation of Example 21.13. Choose a base point

b ∈ B. Let π = π1(B, b) and consider any model for the universal covering B̃ → B

of B. Recall that the cellular chain complex Cc∗(B̃) is a free Rπ-chain complex.
We get a Rπ-module Hq(Fb) from the R-module Hq(Fb) and the π-action coming
from the fiber transport. We conclude directly from Remark 21.6 that we obtain
an isomorphism of R-modules

HΠ
p (B;Hq(F )) ∼= Hp(C

c
∗(B̃)⊗Rπ Hq(Fb))

So we can compute HΠ
p (B;Hq(F )) in terms of the group ring Rπ.

The situation simplifies considerably in the following favourite cases, where we
just have to look at classical singular homology with coefficients in an R-module
and do not have to pass to group rings and the universal covering.

Lemma 21.17. Let p : E → B be a fibration over a connected CW -complex B.
Let H∗ be a homology theory with values in R-modules. Suppose that one of the
following conditions is satisfied:

(i) For one (and hence all) b ∈ B the following is true: For every loop w in
B at b the map Hq(τ([w])) : Hq(Fb)→ Hq(Fb) is the identity;

(ii) The fibration is orientable, i.e., for one (and hence all) b ∈ B the following
is true: The fiber transport satisfies τ([w]) = [idFb ] for every loop w in B
at b;

(iii) p : E → B is a principal G-bundle for a path connected topological group
G.

(iv) The space B is simply connected.
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Then there is an isomorphism

HΠ
p (X;Hq(F ))

∼=−→ Hp(X;Hq(F ))

where Hp(X;Hq(F )) is the singular homology of X with coefficients in the R-module
Hq(Fb) for some b ∈ B.

Proof. If condition (i) holds, this follows from Lemma 21.12. One easily checks the
implications (iii) =⇒ (ii) =⇒ (i), and (iv) =⇒ (ii). �

21.3. Poincaré duality for non-orientable closed manifolds. Before we turn
to the Leray-Serre spectral sequence, we revisite Poincaré duality. Let M be a
connected closed manifold of dimension d. Let TM → M be its tangent bundle.
Then we get a 1-dimensional real vector bundle ΛdTM → M . It defines Z/2-
principal bundle oM : M → M called orientation covering, if we define M to be
the quotient of ΛdTM \ {0} under the equivalence relation v ∼ w generated by
identifying v, w ∈ TxM for x ∈ M if there exists r ∈ R>0 with v = r · w. If we
choose a Riemannian metric on TM , we can consider the associated sphere bundle
STM → M . The choice of the Riemannian metric will not matter in the sequel,
since the isomorphism type of the locally trivial bundle pSTM : STM → M with
typical fiber Sd−1 is independent of it. Since pSTM : STM → M is in particular a
fibration, we have the fiber transport

τ : Π(M)→ h -Top, b→ p−1
STM (b)

In particular we get a ZΠ(M)-module OM : Π(M)→ Z-Mod by sending x ∈M to
Hd−1(p−1(b)).

Definition 21.18 (First Stiefel-Whitney class). A covariant or contravariant ZΠ(M)-
module O is called infinite cyclic if O(x) is an infinite cyclic group for all x ∈M .

Define the Stiefel-Whitney class of an infinite cyclic ZΠ(M)-module O to be the
element

w1(O) ∈ H1(M ;Z/2)

coming after a choice of an element x ∈ X from the group homomorphism π1(X,x)→
Z/2 which sends a loop to zero, if O(w) : O(x)

∼=−→ O(x) is the identity, and to the

non-trivial element otherwise, the isomorphismH1(M ;Z/2)
∼=−→ homZ(H1(M ;Z),Z/2),

and the Hurewicz homomorphism π1(X,x)→ H1(M ;Z).
Define the first Stiefel-Whitney class of M to be

w1(M) = w1(OM ) ∈ H1(M ;Z/2).

We leave it to the reader figure out the elementary proofs of the following three
lemmas.

Lemma 21.19. Two infinite cyclic (covariant or contravariant) ZΠ(X)-modules O
and O′ are isomorphic as ZΠ(X)-modules if and only if w1(O) = w1(O′). Given an
infinite cyclic (covariant or contravariant) ZΠ(X)-modules O, there are precisely
two automorphisms of it, namely ± id.

Consider the orientation covering oM : M → M . Then there is up to homotopy
precisely one map coM : M → RP∞ such that oM is isomorphic as principal Z/2-
bundle to the pullback with cM with the universal covering S∞ → IP∞. Recall
that H1(RP∞;Z/2) ∼= Z/2.

Lemma 21.20. Then w1(M) is the image of the generator of H1(RP∞;Z/2) under
the homomorphism H1(coM ;Z/2) : H1(RP∞;Z/2)→ H1(M ;Z/2).

Lemma 21.21. The following assertions are equivalent:

(i) M is Z-orientable in the sense of [17, Definition 8.2 on page 129];
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(ii) Hd(M ;Z) is infinite cyclic;
(iii) Hd(M ;Z) is non-trivial;
(iv) The Zπ(X)-module OM is isomorphic to the constant ZΠ(M)-module CZ

with value Z;
(v) The first Stiefel-Whitney class w1(M) ∈ H1(M ;F2) vanishes;

(vi) The tangent bundle TM is orientable as a real vector bundle;
(vii) The 1-dimensional real vector bundle ΛdTM →M is orientable;

(viii) The 1-dimensional real vector bundle ΛdTM →M has a nowhere vanish-
ing section;

(ix) The 1-dimensional real vector bundle ΛdTM →M is trivial;
(x) The orientation covering oM is trivial as principal Z/2-bundle;

(xi) M is not connected.

Next we explain that there is a notion of Poincaré duality for non-orientable man-
ifolds. Let M be a connected closed manifold of dimension d. We have the R-chain
complex CΠ

∗ (M)⊗ZΠ(M)OM . Define theR-chain complex homZΠ(M)(C
Π
d−∗(M̃), OM )

by defining its n-th differential to be

(−1)d−n+1 · homZΠ(M)(c
Π
d−(n−1), OM ) : homZΠ(M)(C

Π
d−n(M̃), OM )

→ homZΠ(M)(C
Π
d−(n−1)(M̃), OM )

for cΠd−(n−1) : CΠ
d−(n−1)(M̃)→ CΠ

d−n(M̃) the d− (n− 1)-differential of the RΠ(M)-

chain complex CΠ
∗ (M̃). Define

HΠ
n (M ;OM ) := Hn(CΠ

∗ (M̃)⊗ZΠ(M) OM );

Hn
Π(M ;OM ) := Hd−n(homZΠ(M)(Cd−∗(M̃), OM )).

An element u ∈ HΠ
d (M ;OM ) defines R-chain maps unique up to R-chain homo-

topy

homZΠ(M)(C
π
d−∗(M̃), OM ) → Cc∗(M)

homZ(Ccd−∗(M),Z) → CΠ
∗ (M)⊗ZΠ(M) OM ;

where Cc∗(M) is the cellular Z-chain complex of M and hence for every n ∈ Z
R-homomorphisms

− ∩ u : Hd−n
Π (M ;OM ) → Hn(M ;Z);(21.22)

− ∩ u : Hd−n(M ;Z) → HΠ
n (M ;OM ).(21.23)

Theorem 21.24 (Poincaré duality). Let M be a connected closed manifold of
dimension d. Then HΠ

d (M ;OM ) is infinite cyclic. Let [M ] ∈ HΠ
d (M ;OM ) be a

generator. Then the Z-homomorphisms (21.22) and (21.23) for u = [M ]

− ∩ u : Hd−n
Π (M ;OM ) → Hn(M ;Z);

− ∩ u : Hd−n(M ;Z) → HΠ
n (M ;OM ),

are bijective for n ∈ Z.

Remark 21.25. If M is orientable, then HΠ
d (M ;OM ) reduces to Hd(M,Z) and

[M ] ∈ Hd(M ;Z) is the classical fundamental class class. Moreover the Z-homo-
morphisms (21.22) and (21.23) reduce by Lemma 21.12 to the classical Poincaré
duality isomorphisms

− ∩ [M ] : Hd−n(M ;Z)
∼=−→ Hn(M ;Z).

The proof of Theorem 21.24 is a variation of the proof in the oriented case.
So Theorem 21.24 essentially says that Poincaré duality holds for (not necessarily

Z-oriented) connected closed manifolds, one has just to replace [M ] ∈ Hd(M ;Z) by
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[M ] ∈ HΠ
d (M ;OM ) and the cohomology or the homology by the versions twisted

by the infinite cyclic ZΠ(M)-module OM .

Example 21.26 (Real projective spaces). Consider the d-dimensional real projec-
tive space RPd for d ∈ Z≥1. Recall that its fundamental group is Z/2. Its universal
covering is the principal Z/2-bundle p : Sn → RPn, where Z/2 acts on Sn by the
antipodal map an : Sn → Sn coming from − idRn+1 : Rn+1 → Rn+1. The cellular

Z[Z/2]-chain complex C∗(R̃Pd) = C∗(S
d) is d-dimensional. Its n-th chain module

is Z[Z/2] for 0 ≤ n ≤ d and trivial otherwise. Let t ∈ Z/2 be the generator.
The n-th differential is t − 1: Z[Z/2] → Z[Z/2] for 1 ≤ n ≤ d and odd n and is
t+ 1: Z[Z/2]→ Z[Z/2] for 1 ≤ n ≤ d and even n. Hence C∗(S

d) looks like

· · · → {0} → Z[Z/2]
t+(−1)d−−−−−→ Z[Z/2]

t−(−1)d−−−−−→ · · · → · · ·
t+1−−→ Z[Z/2]

t−1−−→ Z[Z/2]→ {0} → · · · .

Denote by Z and Z− respectively the Z[Z/2]-module whose underlying abelian
group is Z and on which the generator of Z/2 acts by idZ and − idZ respectively.
Then C∗(S

d)⊗Z[Z/2] Z looks like

· · · → {0} → Z 1+(−1)d−−−−−→ Z 1−(−1)d−−−−−→ · · · → · · · 2−→ Z 0−→ Z→ {0} → · · · ,

C∗(S
d)⊗Z[Z/2] Z− looks like

· · · → {0} → Z −1+(−1)d−−−−−−−→ Z −1−(−1)d−−−−−−−→ · · · → · · · 0−→ Z −2−−→ Z→ {0} → · · · ,

homZ[Z/2](Cd−∗(S
d),Z) looks like

· · · → {0} → Z 0−→ Z −2−−→ · · · → · · · 1−(−1)d−−−−−→ Z 1+(−1)d−−−−−→ Z→ {0} → · · · ,

and homZ[Z/2](Cd−∗(S
d),Z−) looks like

· · · → {0} → Z −2−−→ Z 0−→ · · · → · · · −1−(−1)d−−−−−−−→ Z −1+(−1)d−−−−−−−→ Z→ {0} → · · · .

Let T be the constant infinite cyclic ZΠ(RPn)-module with value Z and let T−

be the infinite cyclic ZΠ(RPn)-module which is not isomorphic to T . We get from
Lemma 21.6 and Lemma 21.12 isomorphism of Z-chain complexes

CΠ
∗ (R̃Pd)⊗ZΠ(RPd) T ∼= C∗(RPd);

CΠ
∗ (R̃Pd)⊗ZΠ(RPd) T

− ∼= C∗(S
d)⊗Z[Z/2] Z−

homZΠ(RPd)(Cd−∗(R̃Pd), T ) ∼= homZ[Z/2](Cd−∗(S
d),Z);

homZΠ(RPd)(Cd−∗(R̃Pd), T−) ∼= homZ(Cd−∗(RPd),Z−).

Hence we get
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Hn(CΠ
∗ (R̃Pd)⊗ZΠ(RPd) ⊗T ) ∼=


Z if n = 0;

Z if n = d and d is odd;

Z/2 if 1 ≤ n ≤ d− 1 and n is odd;

{0} otherwise.

Hn(CΠ
∗ (R̃Pd)⊗ZΠ(RPd) ⊗T−) ∼=


Z/2 if 0 ≤ n ≤ d and n is even;

Z if n = d and d is even;

{0} otherwise.

Hn
(
homZΠ(RPd)(Cd−∗(R̃Pd), T )

) ∼=


Z if n = d;

Z if n = 0 and d is odd;

Z/2 if 1 ≤ n ≤ d− 1 and d− n is odd;

{0} otherwise.

Hn
(
homZΠ(RPd)(Cd−∗(R̃Pd), T−)

) ∼=


Z if n = 0 and d is even;

Z/2 if 0 ≤ n ≤ d and d− n is odd;

{0} otherwise.

The following facts are essentially consequences of Lemma 21.21. SinceHd(RPd;Z)
is Z if d is even, and is {0} if d is even, RPd is Z-orientable if and only if d is odd.
This is consistent with the fact that the antipodal map a : Sd → Sd has degree 1 if
d is odd and degree −1 if d is even. The orientation covering of RPd is the universal
covering Sd → RPd if d is even, and the trivial covering Z/2 × RPd → RPd if d is
odd. The first Stiefel-Whitney class w1(RPd) ∈ Hd(RPd;Z/2) ∼= Z/2 is trivial if
and only if d is odd. The infinite cyclic Zπ(RPn)-module ORPd is isomorphic to T ,
if d is odd, and to T− if d is even.

One easily checks that the computations above are compatible with Theorem 21.24
which predicts for n ∈ Z

Hd−n
Π (RPd;ORPd) ∼= Hn(RPd;Z) if d is even;
Hd−n(RPd;Z) ∼= HΠ

n (RPd;ORPd) if d is even;
Hd−n(RPd;Z) ∼= Hn(RPd;Z) if d is odd.

22. (Co)homology theories over a space

22.1. Homology theories over a space. Next we describe the category Top ↓ B
of spaces over B. An object is a pair (X,u) consisting of a space X and a map
u : X → B. A morphism or map of spaces over B f : (X,u) → (Y, v) is a map
f : X → Y satisfying v ◦ f = u, i.e., the following diagram commutes

X
f

//

u
  

Y

v
~~

B.

Given two maps f0, f1 : (X,u)→ (Y, v) of spaces over B, we call them homotopic if
there is a map h : X × I → Y such that we have hk = fk for k = 0, 1 and v ◦ht = u
for t ∈ I. A map i : (X,u) → (Y, v) of spaces over B is called a cofibration if the
underlying map i : X → Y is a cofibration. A CW -complex over B is a space (X,u)
over B such that X is a CW -complex. One easily checks that a diagram of spaces
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over B

(X0, u0)
i1
//

i2

��

(X1, u1)

j1

��

(X2, u2)
j2
// (X,u)

is a pushout in Top ↓ B if and only if the underlying diagram of spaces

X0
i1
//

i2

��

X1

j1

��

X2
j2
// X

is a pushout in Top. A pair of spaces (X,A, u) over B is a pair (X,A) together
with a reference map u : X → B. Note that we can assign to it the spaces over B
given by (X,u) and (A, u|A). Thus we get the category Top2 ↓ B.

Let R be a commutative ring. The definition of a homology theory H∗ for
pairs over B with values in R-modules is the following variation of the notion
of a homology for pairs with values in R-modules. It is a covariant functor from
Top2 ↓ B to the category of Z-graded R-modules together with a natural trans-
formation ∂∗(X,A, u) : H∗(X,A, u) → H∗−1(A, u|A) such that the obvious ver-
sions of the long exact sequence of a pair and of excision hold and we have ho-
motopy invariance in the following sense: Given a map f : (X,u) → (Y, v) of
spaces over B such that the underlying map of spaces f : X → Y is a homo-
topy equivalence, then Hn(f) : Hn(X,u) → Hn(Y, v) is bijective for all n ∈ Z.
Note that by the long exact sequence of a pair and the Five Lemma this im-
plies that for a map f : (X,A, u) → (Y,B, v) of pairs over B such that the un-
derlying map f : (X,A) → (Y,B) is a homotopy equivalence of maps of pairs,
Hn(f) : Hn(X,A, u)→ Hn(Y,B, v) is bijective for all n ∈ Z.

Note that this is a stronger condition than the following version which the reader
may have expected, namely, that for two homotopic maps f0, f1 : (X,u)→ (Y, v) of
pairs over B we have Hn(f0) = Hn(f1) for n ∈ Z. This latter version follows from
the homotopy invariance defined above as follows. Choose a homotopy h : f ' g of
maps of pairs over B. Recall that h is given by a map h : X× I → Y of spaces such
that ht(A) ⊆ B and v ◦ ht = u holds for t ∈ [0, 1] and we have hk = fk for k = 0, 1.
Now we have the inclusion jk : (X,A, u)→ (X×I, A×I, u◦prX) for k = 0, 1, where
prX : X×I → X is the projection and the map jk : X → X× [0, 1] sends x to (x, k).
We also get a map of pairs over B by prX : (X × I, A× I, u ◦ prX)→ (X,A, u). As
we have prK ◦jk = id(X,A,u) we get Hn(prX) ◦ Hn(jk) = idHn(X,A,u) for k = 0, 1.
Since prX : (X × I, A × I) → (X,A) is a homotopy equivalence of pairs, the map
Hn(prX) is by assumption bijective for n ∈ Z. This implies Hn(j0) = Hn(j1). We
have the map h : (X × I, A× I, u ◦ prX)→ (Y, v) of pairs over B. Since h ◦ jk = fk
holds for k = 0, 1, we get

Hn(f0) = Hn(h ◦ j0) = Hn(h) ◦ H(j0) = Hn(h) ◦ H(j1) = Hn(h ◦ j1) = Hn(f1).

The notion of the disjoint union axiom and the WHE-axiom for homology theories
for pairs over B with values in R-modules is obvious.

It is now interesting to figure out what the coefficients of a homology theory for
pairs over B with values in R-modules are, since instead of the one point space {•}
we have to consider all maps u : {•} → B. The answer is given by the construction
of the following covariant functor

(22.1) Hq({•}; ?) : Π(B)→ R-Mod
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called the q-th coefficient system of H∗ for q ∈ Z
It sends an element b ∈ B to Hq({•}, cb) for the map cb : {•} → B given by

b. Now consider a morphism [w] : b0 → b1 in Π(X). It is represented by path
w : I → B from b0 = w(0) to b1 = w(1). It defines an object (I, w) in Top ↓
B. Let jk : ({•}, cbk) → (I, w) be the morphism in Top ↓ B given by the map
jk : {•} → I with image {k} for k = 0, 1. Since jk is a homotopy equivalence, we

get isomorphisms Hn(jk) : Hq({•}, cbk)
∼=−→ Hq(I, w). We want to define

Hq({•}; ?)([w]) : Hq({•}, cb0)
Hn(j0)−−−−→ Hq(I, w)

Hn(j1)−1

−−−−−−→ Hq({•}, cb1).

We have to show that Hq({•}, cb0)
Hn(j0)−−−−→ Hq(I, w)

Hn(j1)−1

−−−−−−→ Hq({•}, cb1) depends
only on the homotopy class of w relative endpoints. Consider two paths wk : I → B
from b0 to b1 for k = 0, 1 and a homotopy H : I × I → B of such paths relative
endpoints from w0 to w1 Let lk : I → I × I be the map sending t to (t, k). Then
H ◦l0◦jk = H ◦l1◦jk = bk holds for k = 0, 1 Hence the following diagram commutes
for k = 0, 1

Hq(X, cbk)
Hq(jk)

∼=
//

Hq(jk) ∼=
��

Hq(I, w0)

Hq(l0)∼=
��

Hq(I, w1)
Hq(l1)

∼=
// Hq(I × I,H).

We conclude that the following diagram commutes

Hq(I, w0)

Hq(l0) ∼=
��

Hq({•}, cb0)

Hq(j0)

∼=

55

Hq(j0)

∼=

))

Hq(I × I,H) Hq({•}, cb1)

Hq(j1)

∼=

ii

Hq(j1)

∼=

uu

Hq(I, w1)

Hq(l1) ∼=

OO

This implies that Hq({•}, cb0)
Hn(j0)−−−−→ Hq(I, wk)

Hn(j1)−1

−−−−−−→ Hq({•}, cb1) is indepen-
dent of k. Hence Hq({•}; ?)([w]) is well-defined. We leave it to the reader to check
that we indeed get a covariant functor Hq({•}; ?) as announced in (22.1).

22.2. Cohomology theories over a space. We leave it to the reader to figure
out the obvious notion of a cohomology theory with values in R-modules over a
space B and the associated contravariant coefficient system

(22.2) Hq({•}; ?) : Π(B)→ R-Mod.

Let H∗ be a cohomology theory with values in R-modules. Recall that multi-
plicative structure assigns to a CW -complex X with CW -subcomplexes A,B ⊆ X
natural R-homomorphisms

∪n,n′ : Hn(X,A)⊗R Hn
′
(X,B) → Hn+n′(X,A ∪B).(22.3)

This product is required to be compatible with the boundary homomorphism of
the long exact sequence of a pair, to be graded commutative, to be associative, and
to have a unit 1 ∈ H0({•}). The cup product on singular cohomology H∗(−;R) is
an example.

The definition of a multiplicative structure has an obvious analog for cohomology
theory with values in R-modules over a space B.
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22.3. The Leray-Hirsch Theorem.

Theorem 22.4 (Leray-Hirsch Theorem). Let H∗ be a cohomology theory with val-
ues in R-modules satisfying the disjoint union axiom which comes with a multi-
plicative structure. Let B be a connected CW -complex with a base point b ∈ B. Let
(p, p0) : (E,E0)→ B be a pair of fibrations over B with (F, F0) = (p−1(b), p−1

0 (b0))
as fiber over b. Suppose that {e1, e2, . . . er} is a subset of H∗(E,E0) such that
H∗(F, F0) is a free graded H∗({•})-module with basis {i∗e1, i

∗e2, . . . , i
∗er} for the

inclusion i : (F, F0)→ (E,E0). Consider H∗(E,E0) as a graded H∗(B)-module with
respect to the action given by b · e := p∗(b) ∪ e for b ∈ H∗(B) and e ∈ H∗(E,E0).

Then H∗(E,E0) is a free graded H∗(B)-module with basis {e1, e2, . . . , er}.
Proof. Consider w ∈ π = π1(B, b) and let f : (F, F0)→ (F, F0) be a representative
of the fiber transport τ(w). Then the following diagram commutes up to homotopy

(F, F0)

f

��

i

%%

(E,E0)

(F, F0)

i

::

Hence f∗ ◦ i∗(ek) = i∗(ek) for k = 1, 2, . . . , r. Since {i∗e1, i
∗e2, . . . , i

∗er} is a basis
for the graded H∗({•})-module H∗(F, F0), the map f∗ : H∗(F, F0)→ H∗(F, F0) is
the identity. Hence we conclude for two paths w0, w1 : [0, 1]→ B from b1 to b0 that
the maps τ([w0])∗ = τ([w1])∗ : H∗(p−1(b0), p−1

0 (b0)) → H∗(p−1(b1), p−1
0 (b1)) agree

for the element τ([w]) ∈ [(p−1(b1), p−1
0 (b1)), (p−1(b0), p−1

0 (b0))] given by the fiber
transport. Hence we can define for two points b0, b1 a homomorphism of graded
H∗({•})-modules

η(b0, b1) ∈ H∗(p−1(b0), p−1
0 (b0))→ H∗(p−1(b1), p−1

0 (b1))

by η(b0, b1) = τ([w])∗ for any path w : [0, 1] → B from b1 to b0. We get η(b1, b2) ◦
η(b0, b1) = η(b0, b2) and η(b0, b0) = idH∗(p−1(b0),p−1

0 (b0)) for b0, b1, b2 ∈ B.

Define a cohomology theory K∗ with values in R-modules satisfying the disjoint
union axiom

K∗(X,A) = H∗(X,A)⊗H∗({•}) H∗(F, F0).

Since H∗(F, F0) is a free graded H∗({•})-module with finite basis, the functor
−⊗H∗({•})H∗(F, F0) is exact and compatible with direct sums over arbitrary index
sets. Hence the axioms of a cohomology theory with values in R-modules satisfying
the disjoint union axiom are satisfied. We can consider it as a cohomology theory
K∗ with values in R-modules over B satisfying the disjoint union axiom by ignoring
the reference maps u to B.

We have the pullbacks

u∗E
u
//

pu
��

E

p

��

X
u
// B

and

u∗E0
u0
//

p0u
��

E0

p0

��

X
u
// B.
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We get another cohomology theory L∗ with values in R-modules over B satisfying
the disjoint union axiom for pairs by defining

L∗(X,A, u) = H∗(p−1
u (X), p−1

u (A) ∪ p0
−1
u (X)).

We define a transformation of cohomology theories with values in R-modules over
B satisfying the disjoint union axiom

T ∗ : K∗ → L∗

by assigning to a pair (X,A, u) over B the homomorphism

T ∗(X,A, u) : H∗(X,A)⊗H∗({•}) H∗(F, F0)→ H∗(p−1
u (X), p−1

u (A) ∪ p0
−1
u (X)),

(y ⊗ z) 7→ p∗u(y) ∪ j∗u(x) ◦ η(b0, u(x))∗(z)

for any x ∈ X and ju(x) : (p−1(u(x)), p−1
0 (u(x))) → (p−1

u (X), p−1
u (A) ∪ p0

−1
u (X))

the inclusion. It is not hard to check that this is independent of the choice of
x ∈ X using the assumption that the space B is path connected. The homomor-
phism T ∗({•}, u) : H∗({•}) ⊗H∗({•}) H∗(F, F0) → H∗(p−1

u ({•})) can be identified

with η(b, u({•})) : H∗(F, F0) → H∗(p−1(u({•})), p−1
0 (u({•}))) and hence is bijec-

tive for any space over B of the shape ({•}, u). There is an obvious version of
Proposition 16.12 (ii) for cohomology theories with values in R-modules satisfying
the disjoint union axiom over B, whose proof is analogous to the one of Proposi-
tion 16.12 (ii). Hence T ∗ : L∗ → K∗ is an equivalence of cohomology theories with
values in R-modules satisfying the disjoint union axiom over B. If we apply this to
the space (B, idB) over B, we obtain an isomorphism of H∗(B)-moduls

H∗(B)⊗H∗({•}) H∗(F, F0)→ H∗(E,E0), (y ⊗ z) 7→ p∗(y) ∪ i∗(z).

Hence H∗(E,E0) is a free graded H∗(B)-module with basis {e1, e2, . . . , er} �

22.4. The Thom Isomorphism. Let p : E → B be a (k − 1)-spherical fibra-
tion, i.e., a fibration with fiber Sk−1. The associated disk fibration is defined by
Dp : DE := cyl(p) → B, where cyl(p) is the mapping cylinder of p and Dp is
the obvious map. A simple application of [6, Proposition 1.3] shows that Dp is a
fibration.

Define the Thom space Th(p) of p to be the pointed space cone(p), where cone(p)
is the mapping cone of p with its canonical base point, or, equivalently, put Th(p) =
DE/E. If k = 0, then DE = B and Th(p) = B+. If pξ : E → B is the projection
of a k-dimensional vector bundle ξ over B with sphere bundle pSE : SE → B, then
we can identify the disk bundle of ξ with the mapping cylinder of pSE , so that
DE = cyl(pSE). Note that the canonical inclusion of B in cyl(pSE) is a homotopy
equivalence, which is analogous to the fact that the inclusion defined by the zero-
section of ξ is a homotopy equivalence. The canonical inclusion of E into cyl(p)
corresponds to the inclusion of SE ⊂ DE. Hence the definition Th(p) = DE/E =
cone(p) for a (k − 1)-spherical fibration p corresponds to Th(ξ) = DE/SE for the
k-dimensional vector bundle ξ.

Put Fx := p−1(x). It comes with a preferred infinite cyclic local coefficient
system

(22.5) Op : Π(B)→ Z-MOD., b 7→ Hk(cone(Fb), Fb;Z).

It sends a morphism [w] : b0 → b1 to the isomorphism of infinite cyclic groups
Hk(cone(t[w]), t[w];Z) : Hk(cone(Fb0), Fb0 ;Z) → Hk(cone(Fb1), Fb1 ;Z) induced by
the homotopy class τ([w]) of maps Fb0 → Fb1 coming from the fibre transport
along w, see (9.14).
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For b ∈ B let i(b) : {b} → B be the inclusion. Recall that pDE : DE → X is the
canonical projection. Hence we get an infinite local coefficient system p∗DEOp. We
get from i(b) an isomorphism

Hk(DE,E; p∗DEOp)
∼=−→ Hk(cone(Fb), Fb; i(x)∗p∗DEOp).

The elementary proof that it is bijective can be found in [19, Lemma 4.2 (iii) on
page 156]. Since i(x)∗p∗DEOp is the constant infinite cyclic local coefficient system
on cone(Ex) with value Op(b), we get a canonical isomorphism

Hk(cone(Fb), Fb; i(b)
∗p∗DEOp)

∼=−→ Hk(cone(Fb), Fb;Op(b)).
The universal coefficient theorem yields a natural isomorphism

Hk(cone(Fb), Fb;Op(b))
∼=−→ homZ(Hk(cone(Fb), Fb),Op(b))

∼=−→ homZ(Op(b),Op(b)).
Putting these isomorphisms together yields a isomorphism

(22.6) αp(b) : Hk(DE,E; p∗DEOp)
∼=−→ homZ(Op(b),Op(b)).

Suppose from now on that B is a connected CW -complex. Then the map αp
of (22.6) turns out to be an isomorphism and for path w : I → B with w(0) = b0
and w(1) = b1 the following diagram commutes

homZ(Op(b0),Op(b0))

homZ(Op([w])−1,Op([w]))∼=

��

Hk(DE,E; p∗DEOp)

αp(b0)

∼=

44

αp(b1)

∼=

**

homZ(Op(b1),Op(b1)).

This is proved for instance in [19, Lemma 6.42 (iii) on page 156]. If we compose

αp(b) with the inverse of the isomorphism Z
∼=−→ homZ(Op(b),Op(b)) sending n to

n · idOp(b), we get an isomorphism

(22.7) βp : Hk(DE,E; p∗DEOp)
∼=−→ Z,

which is, by the observations above, indeed independent of the choice of b ∈ B.

Definition 22.8. Let p : E → X be a (k − 1)-spherical fibration. Its Thom class

Up ∈ Hk(DE,E; p∗DEOp)
is defined to be the preimage of 1 ∈ Z under the isomorphism βp of (22.7).

Theorem 22.9 (Thom Isomorphism Theorem). Let p : E → B be a (k − 1)-
spherical fibration of connected finite CW -complexes with first Stiefel-Whitney class
w : π = π1(B)→ {±1} for k ∈ Z≥1.

Then the composites

Hn(DE,E;Z)
Up∩−−−−−→ Hπ

n−k(DE;Zw)
Hπn−k(pDE)
−−−−−−−−→ Hπ

n−k(B;Zw);

Hπ
n (DE,E;Zw)

Up∩−−−−−→ Hn−k(DE;Z)
Hn−k(pDE)−−−−−−−−→ Hn−k(B;Z);

Hn(B;Z)
Hn(pDE)−−−−−−→ Hn(DE;Z)

−∪Up−−−−→ Hn+k
π (DE,E;Zw);

Hn
π (B;Zw)

Hnπ (pDE)−−−−−−→ Hn
π (DE;Zw)

−∪Up−−−−→ Hn+k(DE,E;Z),



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 147

are bijective for n ∈ Z≥0. (These maps are called Thom isomorphisms.)

Proof. The proof can be found in [19, Theorem 6.45 on page 160]. We indi-
cate its proof for cohomology in the special case where w is trivial. Choose
b0 ∈ B and fix a generator [Fb] of the infinite cyclic group Hk(cone(Fb0), Fb0 ;Z).
This yields an isomorphism of infinite local coefficient systems between p∗DEOp
and the constant system with values Z which in turn induces an identification
Hk(DE,E; p∗DEOp) ∼= Hk(DE,E;Z). Hence the Thom class Up of Definition 22.8
is an element in Hk(DE,E;Z) such that for any element b ∈ B the homomorphism
i(b)∗ : Hk(DE,E) → Hk(cone(Fb), Fb;Z) induced by the inclusion i(b) : Fb → W
sends Up to a generator of the infinite cyclic group Hk(cone(Fb), Fb;Z). Now we
conclude from the Leray-Hirsch Theorem 22.4 applied to p and to H∗ = H∗(−;Z)
that the composite

Hn(B;Z)
Hnπ (pDE)−−−−−−→ Hp

π(DE;Z)
−∪Up−−−−→ Hn+k(DE,E;Z)

is bijective. �

Example 22.10 (Singular Cohomology ring of RP∞). Consider the (1−1)-spherical

fibration S0 → S∞
p−→ RP∞. Let U ∈ H1(DS∞, S∞; p∗DS∞Op) be its Thom class.

We obtain from Theorem 22.9 isomorphisms

Hn(RP∞;Z)
Hn(pDE)−−−−−−→ Hn(DS∞;Z)

−∪Up−−−−→ Hn+1
π (DS∞, S∞;Zw).

As S∞ is contractible, the map Hn+1
π (DS∞, S∞;Zw)→ Hn+1

π (DS∞,Zw) is bijec-
tive for n ≥ 1. Since pDE is a homotopy equivalence, it induces an isomorphism

Hn+1
π (RP∞,Zw)

∼=−→ Hn+1
π (DS∞,Zw). Therefore we obtain an isomorphism for

n ≥ 1

Hn(RP∞;Z)
∼=−→ Hn+1(RP∞;Zw).

Analogously one obtains an isomorphism

Hn+1(RP∞;Zw)
∼=−→ Hn+2(RP∞;Z).

So we get for n ≥ 1 an isomorphism

Hn(RP∞;Z)
∼=−→ Hn+2(RP∞;Z),

which turns out to be the cup product with an element u ∈ H2(RP∞;Z). Since
H2(RP∞;Z) ∼= Z/2, H0(RP∞) ∼= Z, and H1(RP∞) ∼= {0} hold, we conclude that
for i ≥ 1 we have H2i(RP∞;Z) ∼= Z/2 with ui as generator and H2i−1(RP∞;Z) ∼=
{0}.

We leave it to the reader to figure out using the Bockstein sequence associated
to 0→ Z→ Z→ Z/2 that H∗(RP∞;F2) ∼= F2[x] for |x| = 1 holds.

23. The construction of the Leray-Serre spectral sequence

Theorem 23.1. Let p : E → B be a fibration over a CW -complex B. Consider
a commutative ring R. Let H∗ be a homology theory with values in R-modules
satisfying the disjoint union axiom and the WHE-axiom. Then there exists the
Leray-Serre spectral sequence converging to Hn(E) whose E2-page satisfies

E2
p,q
∼= HΠ

p (B;Hq(F ))

where HΠ
p (B;Hq(F )) has been defined in (21.15).

We at least sketch the construction of this spectral sequence. This needs some
preparations.

Now the construction of the Atiyah-Hirzebruch spectral sequence of Sections 18
and 20 carries over to the homology theory H∗ for pairs over B with values in
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R-modules. So we get for any CW -complex (X,u) over B a spectral sequence
converging to Hn(X,u) whose E1-term is given by

E1
p,q = Hp(Xq, Xq−1, u|Xq )

whose differential d1
p,q are given by the composite

d1
p,q : Hp(Xq, Xq−1, u|Xq )

∂q−→ Hp(Xq−1, u|Xq−1)→ Hp(Xq−1, Xq−2, u|Xq−1
),

and whose filtration of Hp+q(X,u) is given by

Fp,q = im
(
Hq(Xp, u|Xp)→ Hp+q(X,u)

)
.

Lemma 23.2. There is a canoncial R-isomorphism

E2
p,q
∼= HΠ

p (X;Huq ({•}; ?))

where the covariant RΠ(X)-module Huq ({•}; ?) is obtained from the covariant RΠ(B)-
module Hq({•}; ?) of (22.1) by precomposition with Π(u) : Π(X) → Π(B) and the
R-module HΠ

p (X;Huq ({•}; ?)) has been introduced in Definition 21.11.

Proof. Consider n ≥ Z≥0.
Consider a cellular pushout as described in (21.9), where we here replace n ∈ Z≥0

by p ∈ Z≥0 in (21.9) and consider any q ∈ Z.
Then we obtain by excision and the disjoint union axiom for every q ∈ Z an

isomorphism ⊕
i∈Ip

Hp+q(Dp, Sp−1, u ◦Qni )
∼=−→ Hp+q(Xp, Xp−1, u|Xp).

Put xni = Qni (0) and yni = u ◦Qni (0) for the origin 0 ∈ Dp. We denote by cxni and
cu(xni ) the constant maps {•} → X and {•} → B with image {xni } and {u(xni )}.
Then there is an suspension isomorphism

σi : Huq ({•}, cxni ) = Hq({•}, cu(xni ))
∼=−→ Hp+q(Dp, Sp−1, u ◦Qni ).

Thus we obtain an isomorphism

Up,q :
⊕
i∈Ip

Huq ({•}, cxni )
∼=−→ Hp+q(Xp, Xp−1, u|Xp).

We obtain from Lemma 21.4 and Lemma 21.10 isomorphisms

Vp,q :
⊕
i∈Ip

Huq ({•}, cxni )
∼=−→ CΠ(X)

p (X;R)⊗RΠ(X) Huq ({•}; ?).

Thus we obtain an isomorphism of R-modules

Wp,q = Vp,q ◦ U−1
p,q : Hp+q(Xp, Xp−1, u|Xp)

∼=−→ CΠ(X)
p (X;R)⊗RΠ(X) Huq ({•}; ?).

Note that both Up,q and Vp,q depend on the choice of the cellular pushout (21.9).
Recall that such a choice is not part of the structure of a CW -complex on X.
However, one can show that Wp,q does not depend on the choice of the cellular
pushout (21.9) and hence depends only on the CW -structure on X as follows.

Suppose we have made another choice of a cellular pushout

(23.3)
∐
i∈In S

n−1

∐
i∈In q

n
i
//

��

Xn−1

��∐
i∈In D

n

∐
i∈In Q

n
i

// Xn.
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resulting in isomorphism Up,q and V p,q. Choose for every i ∈ In a path wi : I → X

from xni = Qni (0) to xni = Q
n

i (0). Then there is for every i ∈ In an element
εi ∈ {±1} such that for the isomorphism

Tp,q =
⊕
i∈In

εi · Huq ({•}; [wi]) :
⊕
i∈In

Huq ({•}, cxni )
∼=−→ Huq ({•}, cxni )

we have

Up,q ◦ Tp,q = Up,q;

V p,q ◦ Tp,q = Vp,q.

This implies

Vp,q ◦ U−1
p,q = V p,q ◦ U

−1

p,q.

Moreover, one can show that the collection of the maps Wp,q is compatible with
the differentials and hence we obtain for every q ∈ Z an isomorphisms of R-chain
complexes

T∗,q : H∗+q(X∗, X∗−1, u|X∗)
∼=−→ CΠ

∗ (X)⊗RΠ(X) Huq ({•}; ?).

Now the desired isomorphism

E2
p,q

∼=−→ HΠ
p (X;Huq ({•}; ?))

is given by applying Hp(−) to T∗,q. �

Obviously a homology theory for pairs over B with values in R-modules is the
same as a homology theory of pairs with values in R-modules if B = {•}. Moreover,
given a homology theory of pairs with values in R-modules, we obtain a homology
theory of pairs over B with values in R-modules by forgetting the reference maps
to B, i.e., by assigning to (X,A, u) the Z-graded R-module H∗(X,A). Here is our
main example of a homology theory for pairs over B with values in R-modules.

Example 23.4. Let R be a commutative ring and H∗ be a homology theory for
pairs over B with values in R-modules satisfying the WHE-axiom. Let p : E → B
be a fibration. Then we obtain a homology theory Hp∗ for pairs over B with values
in R-modules by defining for a pair (X,A, u) over B

Hpn(X,A, u) = Hn(u∗E, (u|A)∗E)

where u∗E is defined by the pullback

u∗E
u
//

p

��

E

p

��

X
u
// B

and analogously for (u|A)∗E. We omit the proof that Hp∗ is a homology theory for
pairs over B with values in R-modules which is essentially a direct consequence of
Proposition 9.8 (iv) and Theorem 9.18.

Obviously Hp∗ satisfies the disjoint union axiom or the WHE-axiom, if H∗ does.
One easily checks that the covariant ZΠ(X)-module Hpq({•}; ?) of (22.1) is iso-

morphic to the covariant ZΠ(X)-module Hq(F ) of (21.14) and hence we get an
identification of HΠ

p (B;Hq({•}; ?)) and HΠ
p (B;Hq(F )) introduced in (21.15).

Now Theorem 23.1 follows from the Atiyah-Hirzebruch spectral sequence for
spaces over B applied to X = B and the situation of Example 23.4.
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24. Some applications of the Leray-Serre spectral sequence

As preliminary we mention the following result due to Maschke and Wedderburn.

Theorem 24.1. Let F be a field and G be a finite group such that |G| is invertible
in F . Then:

(i) The group ring FG is semisimple, i.e., every FG-module is projective;
(ii) Every irreducible FG-module is isomorphic to an ideal in FG and every

FG-module is a direct sum of simple modules, where simple means that
the only submodules are {0} and the module itself;

(iii) There are only finitely many pairwise non-isomorphic simple ideals I1, I2,
. . . , In in FG;

(iv) Let Dj be EndFG(Ij) for j = 1, 2, . . . , n. Then each Di is a skewfield and
there are elements di ∈ Z≥1 such that we get an identification of rings

FG ∼=
n∏
j=1

Mdi,di(Di).

Example 24.2. Let p be an odd prime. Consider a homology theory H∗ with

values in Fp-modules satisfying the disjoint union axiom. Let F
i−→ E

p−→ RP∞ be a
fibration.

Let M be any Fp[Z/2]-module. Let Fp or F−p respectively be the Fp[Z/2]-module
whose underlying Fp-module is Fp and on which the generator of Z/2-acts trivially
or by − idFp respectively. We conclude from Theorem 24.1 that any FG-module is
a direct sum of copies of Fp and F−p . An easy calculation using the cellular Z[Z/2]-

chain complex of RP∞ and the fact that 2 ∈ Fp is a unit shows that Hπ
k (RP∞;M)

vanishes for k ∈ Z≥1 and is Fp ⊗Fp[Z/2] M if k = 0. So the second page is concen-
trated in the 0th column and looks like

...
...

... . .
.

Fp ⊗Fp[Z/2] H3(F ) 0 0 · · ·

Fp ⊗Fp[Z/2] H2(F ) 0 0 · · ·

Fp ⊗Fp[Z/2] H1(F ) 0 0 · · ·

Fp ⊗Fp[Z/2] H0(F ) 0 0 · · ·

where the π1(RP∞) = Z/2-action on Hq(F ) comes from the fiber transport. Hence
it strongly collapses and yields for n ∈ Z the isomorphism

Fp ⊗Fp[Z/2] Hn(F ) ∼= Hn(E).

It comes from the mapHn(i) : Hn(F )
∼=−→ Hn(E) induced by the inclusion i : F → E

which factorizes through the projection Hn(F )→ Fp ⊗Fp[Z/2] Hn(F ), since for the
automorphism induced by the fiber transport τ : F → F we have i ◦ τ ' i. This
claim follows from the naturality of the Leray-Serre spectral sequence by inspecting
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the map of fibrations

F
idF

//

idF
��

F

i

��

F
i
//

��

E

��

{•} // B

Example 24.3 (Fibrations over Sl for l ≥ 2). Let F → E
f−→ Sl be a fibration

over the sphere Sl for l ∈ Z≥2. Then Sl is simply connected. We conclude

Hp(S
l;Hq({•})) =

{
Hq({•}) p = 0, l;

{0} otherwise,

from Lemma 21.17. So the E2-term and hence each Er-term and the E∞-term of
the Leray Serre spectral sequence associated to f has non-trivial entries only in the
columns for q = 0 and q = l. So we get E2

p,q = Erp,q for r ≤ l and Erp,q = E∞p,q for
r ≥ l + 1, and the only non-trivial differentials occur on the lth page, where they
look like dlp,q : Elp,q → Elp−l,q+l−1. So for l = 3 the l-th page looks like

...
...

...
...

... . .
.

H2(F ) 0 0 H2(F ) 0 · · ·

H1(F ) 0 0 H1(F ) 0 · · ·

H0(F ) 0 0 H0(F )

hh

0 · · ·

H−1(F ) 0 0 H−1(F )

hh

0 · · ·

H−2(F ) 0 0 H−2(F )

hh

· · ·

...
...

...
...

...
. . .

So we get exact sequences

0→ E∞l,q → Hq(F )
dll,q−−→ Hq+l−1(F )→ E∞0,q+l−1 → 0

and filtrations

{0} ⊆ F0,n ⊆ Fl,n−l = Hn(E)
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satisfying F0,n = E∞0,n and Hn(E)/F0,n = E∞l,n−l. These data can be spliced to-
gether to a long exact sequence

· · · → Hn−l+2(F )
dll,n−l+2−−−−−→ Hn+1(F )

Hn+1(i)−−−−−→ Hn+1(E)
∂n+1−−−→

Hn+1−l(F )
dll,n−l+1−−−−−→ Hn(F )

Hn(i)−−−−→ Hn(E)
∂n−→ Hn−l(F )

Hn−l(i)−−−−−→ · · · .

where i : F → E is the inclusion.

Example 24.4 (Fibrations over S1). Since π1(S1) infinite cyclic, the fiber trans-
port is given by a selfhomotopy equivalence τ : F → F . So HΠ

p (S1;Hq(F )) fits into
the exact sequence

0→ HΠ
1 (S1;Hq(F ))→ Hq(F )

idHq(F )−Hq(τ)
−−−−−−−−−−→ Hq(F )→ HΠ

0 (S1;Hq(F ))→ 0.

Each Er-term and the E∞-term of the Leray Serre spectral sequence associated to
p has non-trivial entries only in the columns for q = 0 and q = 1 and hence

E∞p,q = E2
p,q =

{
HΠ
p (S1;Hq(F )) p = 0, 1;

{0}. otherwise.

Hence we obtain a long exact sequence

(24.5) · · · ∂n+1−−−→ Hn(F )
idHn(F )−Hn(τ)
−−−−−−−−−−→ Hn(F )

Hn(i)−−−−→ Hn(E)

∂n−→ Hn−1(F )
idHn−1(F )−Hn−1(f)
−−−−−−−−−−−−−−→ Hn−1(F )

Hn−1(i)−−−−−→ · · ·

Consider the pushout

{0, 1} //

��

{•}

��

[0, 1] // S1

We conclude from Proposition 9.8 (iv) and Theorem 9.11 that the pullback con-
struction yields a pushout

F
∐
F

id
∐
τ

//

��

F

��

F × [0, 1] // E

Hence E is homotopy equivalent to the mapping torus and the sequence 24.5 is the
so called Wang sequence which can be obtained from the pushout above by the
Mayer-Vietoris sequence.

Example 24.6 (Fibrations with Sl as fiber). Consider a fibration Sl → E
f−→ B

over a connected CW -complex B with fiber Sl for l ≥ 1. Let H∗(−;G) be singular
homology with coefficients in the abelian group G. Then Hq(S

l;G) is G for q = 0, l
and trivial otherwise. The G-action of π = π1(B) on H0(Sd;G) is trivial and hence
HΠ
p (B;H0(Sl;G)) = Hp(B,G). We get HΠ

p (B;Hl(S
l;G)) = Hπ

p (B;Gρ) for the
π-action on G given by w · g = ρ(w) · g for w ∈ π and g ∈ G for the homomorphism
ρ : π → {±} sending w ∈ π to the degree of the map Sl → Sl given by the fiber
transport applied to w. Then the E2-term and hence the Er-term for r ∈ Z≥2q{∞}
of Leray-Serre spectral sequence for f and H∗(−;G) has non-trivial entries only in
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the 0-th row and in the lth row. The only non-trivial differentials appear on the
(l + 1)-th page and are given

dl+1
p,0 : El+1

p,0 = Hπ
p (B;G)→ El+1

p−l−1,l = Hp−l−1(B;Gρ).

So for l = 2 the (l + 1)-th page looks like

...
...

...
...

... . .
.

0 0 0 0 0 · · ·

Hπ
0 (B;Gρ) Hπ

1 (B;Gρ) Hπ
2 (B;Gρ) Hπ

3 (B;Gρ) Hπ
4 (B;Gρ) · · ·

0 0 0 0 0 · · ·

H0(B;G) H1(B;G) H2(B;G) H3(B;G)

d33,0

ii

H4(B;G)

d34,0

ii

· · ·

We obtain for every n ∈ Z≥0 a filtration

{0} ⊆ Fn−l,l ⊆ Fn,0 = Hn(E;G)

and an exact sequence

0→ E∞n−l,l → Hn(E;G)→ E∞n,0 → 0.

These data can be spliced together to a long exact sequence

· · · ∂n−l+1−−−−→ Hn+1(E;G)
Hn+1(f ;G)−−−−−−−→ Hn+1(B;G)

dl+1
n+1,0−−−−→ Hπ

n−l(B;Gρ)
∂n−l−−−→

Hn(E;G)
Hn(f ;G)−−−−−→ Hn(B;G)

dl+1
n,0−−−→ Hπ

n−l−1(B;Gρ)
∂n−l−1−−−−→ · · · .

Let R be a principal ideal domain. We call a space X R-homological finite if
Hm(X;R) is a finitely generated R-module for every m ∈ Z≥0 and is non-trivial
for only finitely many elements m ∈ Z≥. In this case we define its R-homological
Euler characteristic by

(24.7) χ(X;R) :=
∑
m≥0

(−1)m · rkR(Hm(X;R)) ∈ Z

If X is a finite CW -complex then it is R-homological finite and χR(X;R) agrees
with ch(M) :=

∑
m≥0(−1)m · |Im| for Im the set of m-cells of X.

Theorem 24.8 (Multiplicativity of the Euler characteristic). Let R be a principal

ideal domain. Let F → E
f−→ B be a fibration such that F and B are R-homological

finite and the action of π1(B) on Hm(F ;R) induced by the fiber transport is trivial.
Then E is R-homological finite and we get

χ(E;R) = χ(F ;R) · χ(B;R).

Proof. Consider the Leray-Serre spectral sequence for the fibration f and singu-
lar homology H∗(−;R) with R-coefficients. Then there exists a number d such
that E2

p,q = Hp(B,Hq(F ;R)) 6= 0 =⇒ p, q ≤ d. The Universal Coefficient
Theorem yields an exact sequence of R-modules 0 → Hp(B;R) ⊗R Hq(F ;R) →
Hp(B;Hq(F ;R)) → TorR1 (Hp−1(B;R), Hq(F ;R) → 0. By assumption Hp(B;R)
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and Hq(F ;R) are finitely generated for p, q ∈ Z≥0. This implies that the R-

module TorR1 (Hp−1(B;R), Hq(F ;R)) is a finitely generated R-module of rank zero
and Hp(B;R)⊗R Hq(F ;R) is a finitely generated R-module satisfying

rkR(Hp(B;R)⊗R Hq(F ;R)) = rkR(Hp(B;R)) · rkR(Hq(F ;R)).

We conclude that Hp(B;Hq(F ;R)) is a finitely generated R-module satisfying

(24.9) rkR(Hp(B;Hq(F ;R))) = rkR(Hp(B;R)) · rkR(Hq(F ;R)).

Hence we conclude for every r ∈ Z≥1 q {∞} that Erp,q is a finitely generated R-

module for p, q ∈ Z≥0 and that E2
p,q = Hp(B,Hq(F ;R)) 6= 0 =⇒ p, q ≤ d holds.

Hence we can define for r ∈ Z≥2 q {∞}

χr =
∑
p,q∈Z

(−1)p+q · rkR(Erp,q) =
∑
p,q∈Z

0≤p,q≤d

(−1)p+q · rkR(Erp,q) ∈ Z.

We compute

χ(B;R) · χ(F ;R) =
(∑
p∈Z

(−1)p · rkR(Hp(F ;R))
)
·
(∑
q∈Z

(−1)q · rkR(Hq(B;R))
)

=
∑
p,q∈Z

(−1)p · rkR(Hp(F ;R)) · (−1)q · rkR(Hq(B;R))

=
∑
p,q∈Z

(−1)p+q · rkR(Hp(F ;R)) · rkR(Hq(B;R))

(24.9)
=

∑
p,q∈Z

(−1)p+q · rkR(Hp(B;Hq(F ;R)))

=
∑
p,q∈Z

(−1)p+q · rkR(E2
p,q)

= χ2.

If C∗ is a chain complex of finitely generated R-module which is bounded, i.e.,
Cm 6= {0} only for finitely many m ∈ Z. Then Hm(C∗) is finitely generated for
m ∈ Z and non-trivial only for finitely many m ∈ Z and we get

(24.10)
∑
m∈Z

(−1)m · rkR(Cm) =
∑
m∈Z

(−1)m · rkR(Hm(C∗)).
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We compute for r ∈ Z≥2.

χr+1 =
∑
p,q∈Z

(−1)p+q · rkR(Er+1
p,q )

=
∑
p∈Z

r−2∑
i=0

∑
s∈Z

(−1)p−l·s+i+(l−1)·s · rkR(Er+1
p−l·s,i+(l−1)·s)

=
∑
p∈Z

r−2∑
i=0

∑
s∈Z

(−1)p+i+s · rkR
(
Hs(E

r
p−l·∗,i+(l−1)·∗, d

r
p−l·∗,i+(l−1)·∗)

)
=

∑
p∈Z

r−2∑
i=0

(−1)p+i ·
(∑
s∈Z

(−1)s · rkR
(
(Hs(E

r
p−l·∗,i−(l−1)·∗, d

r
p−l·∗,i+(l−1)·∗)

))
(24.10)

= =
∑
p∈Z

r−2∑
i=0

(−1)p+i ·
(∑
s∈Z

(−1)s · rkR(Erp−l·s,i+(l−1)·s)
)

=
∑
p∈Z

r−2∑
i=0

∑
s∈Z

(−1)p+i+s · rkR(Erp−l·s,i+(l−1)·s)

=
∑
p∈Z

r−2∑
i=0

∑
s∈Z
−1)p−l·s+i+(l−1)·s · rkR(Erp−l·s,i+(l−1)·s)

=
∑
p,q∈Z

(−1)p+q · rkR(Erp,q)

= χr.

Since E∞p,q = Ed+1
p,q holds, we get

χ(B;R) · χ(F ;R) = χ2 = χ∞.

From the filtration

{0} ⊆ F0,n ⊆ F1,n−1 ⊆ F2,n−2 ⊆ ·F0,n = Hn(E;R)

with filtration quotients Fp,q/Fp−1,q+1 = E∞p,q we conclude

χ(E;R) =
∑
n∈Z

(−1)n · rkR(Hn(E;R))

=
∑
n∈Z

(−1)n ·
(∑
t∈Z

rkR(E∞n−t,t)
)

=
∑
p,q∈Z

(−1)p+q · rkR(E∞p,q)

= χ∞

= χ(B;R) · χ(F ;R).

�

25. Naturality properties of spectral sequences

Let f : X → Y be a cellular map of CW -complexes. Let H∗ be a homology
theory with values in R-modules satisfying the disjoint union axiom. Then we get
a morphism from the Atiyah-Hirzebruch spectral sequences for X to the one for Y .
Hence Lemma 19.5 implies the next result.

Theorem 25.1. Suppose that Hn(f ;R) : Hn(X;R)→ Hn(Y ;R) is bijective for all
all n ∈ Z≥0.

Then the map Hn(f) : Hn(X)→ Hn(Y ) is bijective for all n ∈ Z.
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Consider a pullback of fibrations with CW -complexes as base space

E0
f
//

p0

��

E1

p1

��

B0
f
// B1.

Theorem 25.2. Suppose that for any n ∈ Z≥0, any b1 ∈ B1, and any loop w in
B1 at b1 the automorphism Hn(p−1

1 (bk)) → Hn(p−1
1 (bk)) induced by the element

τ1(w1) ∈ [p−1
1 (b), p−1

1 (b)] given by the fiber transport is the identity. Assume that
Hn(f ;R) : Hn(B0;R)→ Hn(B1;R) is bijective for all n ∈ Z≥0.

Then the map Hn(f) : Hn(E0)→ Hn(E1) is bijective for every n ∈ Z.

Proof. This follows from the Universal Coefficient Theorem and Lemma 19.5 using
the Leray-Serre spectral sequence. �

We also mention that one can feed in pairs into the Atiyah-Hirzebruch spectral
sequence and pairs of fibrations over the same base space into the Leray-Serre
spectral sequence.

26. Basic notions and facts about cohomological spectral sequences

Next we discuss what can be said if one considers cohomology. The basic setup
concerning pages and differentials yielding finally the terms Ep,q∞ is essentially the
same, if one takes into account that the differentials now have the opposite slope
and the Er-term is given by cohomology of the r-terms and the computations of
the E1- or E2-terms will now be in cohomological terms. However, the convergence
issue is much more complicated. Fortunately, there are some favourite situations,
where the convergence is as good as in the homological case, but now with re-
spect to descending filtrations. Cohomology theories often come with a valuable
multiplicative structure and the cohomological spectral sequences do respect these.

Next we describe the abstract setting of a cohomological spectral sequence.

Definition 26.1 (Cohomological spectral sequence with values in R-modules). A
cohomological spectral sequence with values in R-modules starting at d for d ∈ Z≥1

E∗,∗r consists of the following data:

• A family of R-modules {Ep,qr } for r ∈ Z≥d, p, q ∈ Z such that Ep,qr = {0}
for p ≤ −1;

• Maps dp,qr : Ep,qr → Ep+r,q−r+1
r called differentials for r ∈ Z≥d, p, q ∈ Z

such that the composite drp,q ◦ drp−r,q+r−1 vanishes for r ∈ Z≥d, p, q ∈ Z.

In particular we get R- chain complexes Cr[q]
∗ for r ∈ Z≥d and p ∈ Z

whose p-th differential is dp,qr , in other words it is given by the lines of
slope − r−1

r ;
• R-isomorphism

αp,qr : Hp(Cr[q]
∗)
∼=−→ Ep,qr+1

for r ∈ Z≥d, p, q ∈ Z.

We call the data given by {Ep,qr , dp,qr | p, q ∈ Z} for r ∈ Z≥s the r-th page of the
spectral sequence. Note that the r-th pages determines the underlying modules of
the (r + 1)th page but not the differentials appearing on the (r + 1)th page.
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Here is a picture of the first page:
(26.2)

...
...

...
...

... . .
.

E0,2
1

d0,21
// E1,2

1

d1,21
// E2,2

1

d2,21
// E3,2

1

d3,21
// E4,2

1 · · ·

E0,1
1

d0,11
// E1,1

1

d1,11
// E2,1

1

d2,11
// E3,1

1

d3,11
// E4,1

1 · · ·

E0,0
1

d0,01
// E1,0

1

d1,01
// E2,0

1

d2,01
// E3,0

1

d3,01
// E4,0

1 · · ·

E0,−1
1

d0,−1
1

// E1,−1
1

d1,−1
1

// E2,−1
1

d2,−1
1

// E3,−1
1

d3,−1
1

// E4,−1
1 · · ·

E0,−2
1

d10−2
1

// E1,−2
1

d1,−2
1

// E2,−2
1

d1,−2
1

// E3,−2
1

d1,−2
1

// E4,−2
1 · · ·

...
...

...
...

...
. . .

Here is a picture of the second page:
(26.3)

...
...

...
...

... . .
.

E0,2
2

d0,22

**

E1,2
2

d1,22

**

E2,2
2

d2,22

**

E3,2
2 E4,2

2 · · ·

E0,1
2

d0,12

**

E1,1
2

d1,12

**

E2,1
2

d2,12

**

E3,1
2 E4,1

2 · · ·

E0,0
2

d0,02

**

E1,0
2

d1,02

**

E2,0
2

d2,02

**

E3,0
2 E4,0

2 · · ·

E0,−1
2

d0,−1
2

**

E1,−1
2

d1,−1
2

**

E2,−1
2

d2,−1
2

**

E3,−1
2 E4,−1

2 · · ·

E0,−2
2 E1,−2

2 E2,−2
2

d2,−2
2

**

E3,−2
2 E4,−2

2 · · ·

...
...

...
...

...
. . .
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Here is a picture of the third page:
(26.4)

...
...

...
...

... . .
.

E0,2
3

d0,23

((

E1,2
3

d1,23

((

E2,2
3 E3,2

3 E4,2
3 · · ·

E0,1
3

d0,13

((

E1,1
3

d1,13

((

E2,1
3 E3,1

3 E4,1
3 · · ·

E0,0
3

d0,03

((

E1,0
3 E2,0

3 E3,0
3 E4,0

3 · · ·

E0,−1
3 E1,−1

3 E2,−1
3 E3,−1

3 E4,−1
3 · · ·

E0,−2
3 E1,−2

3 E2,−2
3 E3,−2

3 E4,−2
3 · · ·

...
...

...
...

...
. . .

So the differential dp,qr starts at (p, q) and points to the place which is r steps
to the right and (r − 1) steps downwards. The relevant cochain complexes Cr[p]

∗

appear in the picture in the obvious way by the corresponding lines of slope − r−1
r .

Note that all entries at (p, q) for p < 0 are {0}. So differentials beginning in the
region (p, q) with p < 0 are automatically trivial. This implies that all differentials
of the r-th page ending at (p, q) are trivial for p < r. Hence we get for r > p an
inclusion Ep,qr+1 → Ep,qr . Hence we can define

Ep,q∞ = invlimr→∞Ep,qr =
⋂
r≥p

Ep,qr .

Note that for given (p, q) we have

Ep,qr = {0} =⇒ Ep,qr+1 = 0 =⇒ Ep,q∞ = {0}.

We say that the spectral sequence collapses if all differentials are trivial. Note
that this implies Ep,qd = Ep,qr = Ep,q∞ for all r ∈ Z≥d, p, q ∈ Z.

We call the spectral sequence a first quadrant spectral sequence if Ep,qr = 0 holds
for q ≤ −1 holds for r ≥ 1.

A morphism f∗,∗∗ : E∗,∗∗ → E′
∗,∗
∗ of cohomological spectra sequences is a family of

R-homomorphism {fp,,qr : Ep,qr → E′
p,q
r } for r ∈ Z≥d, p, q ∈ Z which is compatible

with the differentials dp,qr : Ep,qr → Ep+r,q−r+1
r and (d′)p,qr : E′

p,q
r → E′

p−r,q+r−1
r

and with the isomorphisms αp,qr : Hq(Cr[p]
∗)
∼=−→ Ep,qr+1 and (α′)p,qr : Hq((C

′)r[p]
∗)
∼=−→

E′
p,q
r+1.
The next lemma is a direct consequence of the Five-Lemma.

Lemma 26.5. Let f∗,∗∗ : E∗,∗∗ → E′
∗,∗
∗ be a morphism of cohomological spectral

sequences starting at d ∈ Z≥1. Suppose that fp,qd : Ep,qd → E′
p,q
d is bijective for all

p, q ∈ Z. Then fp,qr : Ep,qr → E′
p,q
r is bijective for all r ∈ Z≥d q {∞}, p, q ∈ Z.
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Consider a Z-graded R-module module H∗ = {Hn | n ∈ Z}. It is called descend-
ingly filtered if for every n ∈ Z there is a preferred descending filtration

Hn = F−1,n+1 ⊇ F 0,n ⊇ F 1,n−1 ⊇ F 2,n−2 ⊇ · · ·

with {0} =
⋂
p≥0 F

n−p,p. We say that a cohomological spectral sequence converges

to the descendingly filtered Z-graded R-module {Hn | i ∈ Z} if there are for every
p, q ∈ Z preferred R-isomorphisms

βp,q : F p,q/F p−1,q+1 ∼=−→ Ep,q∞ .

We say that there are no extension problems for the homological spectral sequence
E∗∗,∗ converging to the descendingly filtered Z-graded R-module module H∗ if we
have

Hn ∼=
∏
p≥0

Fn−p,p/Fn−p+1,q−1.

We say that the cohomological spectral sequence E∗∗,∗ converging to the filtered
Z-graded R-module module H∗ strongly collapses if it collapses and there are no
extension problems. In this rare and favourite cases we get

Hn =
∏
p≥0

Edn−p,p.

26.1. The convergence problem cohomology. Recall that the homological ver-
sions of the Atiyah-Hirzebruch spectral sequence converges to Hp+q(X) and the ho-
mological versions of the Leray-Serre spectral sequence converges to Hp+q(E). The
main technical reason for this is Proposition 16.11 (i) which essentially says that
homology commutes with colimits indexed by N. Recall that this is not true for co-
homology, a correction term given by lim1-terms comes in, see Proposition 16.11 (ii).
Therefore one needs extra assumptions to guarantee converges. The easiest way to
circumvent this problem is to arrange that the descending filtration reaches already
after finitely many steps {0}, or, equivalently, for every n ∈ Z there exists a number
d(n) such that Fp.n−p = {0} holds for p ≥ d(n). This leads to the following result.

Theorem 26.6. Let H∗ be a cohomology theory with values in R-modules satisfying
the disjoint union axiom. Let X be a CW -complex and let p : E → B be a fibration
over a CW -complex B.

Then cohomological Atiyah-Hirzebruch spectral sequence converges to Hp+q(X)
and the cohomological Leray-Serre spectral sequence converges to Hp+q(E) if one
of the following conditions is satisfied:

(i) The CW -complex X respectively B is finite-dimensional;
(ii) The cohomology theory H∗ is bounded from below, i.e, there is an integer

d such that Hq({•}) vanishes for q ≤ d;
(iii) The spectral sequence is bounded in the sense that for any n ∈ Z the set

{p ∈ Z≥0 | E2
p,n−p 6= 0} is finite.

Remark 26.7. Recall from Proposition 16.11 (ii) that there is an exact sequence

(26.8) 0→ invlim1
k→∞Hn−1(Xk)→ Hn(X)→ invlimk→∞Hn(Xk)→ 0.

In the general case one can only expect that the Atiyah-Hirzebruch spectral se-
quence converges in some sense to invlimp→∞Hn(Xp) and that it gives no in-

formation about invlim1
p→∞Hn(Xp). Actually, there exists a descending filtra-

tion F p,n−p invlimn→∞Hn
C (Xn; E) for p = 0, 1, 2, . . . of invlimn→∞Hn

C (Xn; E) and
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the following exact sequence, see [33, Theorem XIII.3.4 on page 615 and Theo-
rem XIII.3.5 and Theorem XIII.3.6 on page 616],

0→ F p,qinvlimn→∞H
p+q
C (Xn)/F p+1,q−1invlimn→∞H

p+q
C (Xn)→ Ep,q∞

→ invlim1
m→∞H

p+q
C (Xp+m, Xp)→ invlim1

m→∞H
p+q
C (Xp+m, Xp−1).

Recall that the Mittag-Leffler condition is a good criterion to guarantee that invlim1-
terms are is trivial.

If none of the conditions appearing in Lemma 26.6 are satisfies the general strat-
egy is to compute by the Atiyah-Hirzebruch spectral sequence Hn(Xp) for each
p ∈ Z≥0 including the obvious map Hn(Xp) → Hn(Xp−1) and then to apply the
exact sequence (26.8). In good situations each map Hn(Xp)→ Hn(Xp−1) is surjec-
tive, or, more generally, the Mittag-Leffler condition is satisfied, which implies that

the canonical map Hn(X)
∼=−→ invlimp→∞Hn(Xp) for n ∈ Z. is an isomorphism.

Example 26.9 (Topological K-theory of RP∞). Let us describe what happens
for the topological K-theory of RP∞. So first one tries to compute K∗(RPd) for
d ∈ Z≥1. The E2-term of the Atiyah-Hirzebruch spectral sequence looks like

Ep,q2 = Hp(RPd;Kq({•}))


Z if p = 0 and q even;

Z if p = d and d is odd and q even;

Z/2 if 2 ≤ p ≤ d and p is even and q even;

{0} otherwise.

Hence all the second differentials are obviously trivial except the differentials
starting at the place (p, 0) for p even. These are also trivial by the following
argument. Consider the map pr: RPd → {•}. It induces maps of cohomological
spectral sequences from the Atyiah-Hirzebruch spectral sequence of {•} to the one
of RPd. Hence the following diagram commutes

H0({•},Kq({•}))
d0,q2

//

H0(pr;Kq({•})) ∼=
��

H2({•};Kq−1({•})) = {0}

H2(pr;Kq−1({•}))
��

H0(RPd,Kq({•}))
d0,q2

// H2(RP;Kq−1({•})).

This implies that the map d0,q
2 : H0(RPd;Kq({•}))→ H2({•};Kq−1({•})) is trivial,

Using induction over r one can show by a similar argument that all differentials
drp,q vanish. In other words the cohomological Atiyah-Hirzebruch spectral collapses.
This implies

Ep,q∞ = Hp(RPd;Kq({•}))


Z if p = 0 and q even;

Z if p = d and d is odd and q even;

Z/2 if 2 ≤ p ≤ d and p is even and q even;

{0} otherwise.

This implies

K1(RPd) ∼=

{
Z if d is odd;

{0} if d is even;

and there is descending filtration

K0(RPd) = F−1,d+1 ⊇ F 0,d ⊇ F 1,d−1 ⊇ F 2,d−2 ⊇ · · · ⊇ F 0,d ⊇ F−1,d+1 = {0}
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such that

F p,d−p/F p+1,d−p−1 ∼=


Z/2 if p is even and satisfies 2 ≤ p ≤ d;

Z if p = 0;

{0} otherwise.

Now one has to solve the extension problems and that requires additional input
going beyond the spectral sequence which we will not explain here. At least we
state what the result is. Namely, one gets

K0(RPd) ∼= Z⊕ Z/2k for d = 2k or d = 2k + 1

and that the maps K0(RPd+1)→ K0(RPd) are given under these identification by
the identity if d = 2k is even and by idZ⊕pr for the projection Z/2k+1 → Z/2k
if d = 2k + 1. Hence these maps are always surjective and the Mittag-Leffler
condition is satisfied. This implies invlim1

k→∞Hn−1(RPk) = {0}. We get from the
exact sequence (26.8) an isomorphism

K0(RP∞) ∼= invlimk→∞(Z⊕ Z/2k) = Z⊕ Z2̂,

where Z2̂ = invlimk→∞ Z/2k is the ring of the 2-adic integers. Moreover, we get

K1(RP∞) = {0}.

26.2. Outlook: The Completion Theorem of Atiyah and Segal. Let G be
a finite group. We denote by RC(G) the complex representation ring of G. The
underlying abelian group is the Grothendieck construction applied to the abelian
semigroup of isomorphism classes of finite dimensional complex G-representations
under direct sum. The ring structure comes from the tensor product of complex
vector spaces and the diagonal G-action. The unit element is given by C with
the trivial G-action. Consider the ring homomorphism dimC : R(G) → Z sending
a finite-dimensional complex G-representation to the dimension of the underlying
complex vector space. The augmentation ideal I = I(G) of R(C) is its kernel.
Taking the k-th fold product Ik of I yields a descending filtration

R(G) ⊇ I ⊇ I2 ⊇ I3 ⊇ · · · .

The I-adic completion of RC(G) is defined to be the ring

RC(G)̂I = invlimk→∞RC(G)/Ik.

The Atiyah-Segal Completion Theorem, see [2], says:

Kn(BG) ∼=

{
RC(G)̂I n even;

{0} n odd.

This yields to the following explicite calculation of K0(BG), see [18, Theorem 0.3].
If Gp ⊆ G is a p-Sylow subgroup, restriction defines a map I(G) → I(Gp). Let
Ip(G) be the quotient of I(G) by the kernel of this map. This is independent of the
choice of the p-Sylow subgroup since two p-Sylow subgroups of G are conjugate.

There is an obvious isomorphism Ip(G)
∼=−→ im(I(G)→ I(Gp)). For a prime p denote

by r(p) = | conp(G)| the number of conjugacy classes (g) of elements g ∈ G whose
order |g| is pd for some integer d ≥ 1. Then there are isomorphisms of abelian
groups

K0(BG) ∼= Z×
∏

p prime

Ip(G)⊗Z Zp̂ ∼= Z×
∏

p prime

(Zp̂)r(p);

K1(BG) ∼= 0.
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The isomorphism K0(BG)
∼=−→ Z ×

∏
p prime Ip(G) ⊗Z Zp̂ is compatible with the

standard ring structure on the source and the ring structure on the target given by

(m,up ⊗ ap) · (n, vp ⊗ bp) =
(
mn,m · vp ⊗ bp + n · up ⊗ ap + (upvp)⊗ (apbp)

)
for m,n ∈ Z, up, vp ∈ Ip(G) and ap, bp ∈ Zp̂ and the obvious multiplication in Z,
Ip(G), and Zp̂.

This computation is remarkable since one does not have such a formula for the
singular cohomology H∗(BG;Z). If G = Z/2, then BZ/2 is PP∞ and we rediscover
the computation above based on the Atiyah-Hirzebruch spectral sequence.

Example 26.10 (G = Z/2). Note that RZ(Z/2) is as abelian group isomorphic to
Z2 with the class [C] of the trivial Z/2-representation C and the class [C−] of the
Z/2-representation C− given by − idC : C→ C as basis. The augmentation ideal is
I = {n · ([C−] − [C]) | n ∈ Z}. Since we have ([C−] − [C])2 = 2 · ([C−] − [C]), we

see that Ik = 2k · I. We get an isomorphism of abelian group Z × I
∼=−→ RC(Z/2)

sending (n, x) → n · [C] + x. Using this isomorphism the quotient RC(Z/2)/Ik+1

can be identified with Z × Z/2k and the projection RC(Z/2)/Ik+1 → RC(Z/2)/Ik
becomes idZ× prk for the projection prk : Z/2k → Z/2k−1. Hence we get

RC(Z/2)̂I ∼= Z× Z2̂.

This confirms all the computations and statements above in the special case G =
Z/2.

26.3. Multiplicative structures. The Atiyah-Hirzebruch spectral sequence in-
herits the following multiplicative structure if we apply it to a cohomology theory
with values in R-modules coming with a multiplicative structure. For every r ∈ Z≥2

the page E∗,∗r becomes a bi-graded ring, i.e., for p0, p1,∈ Z≥0 and q0, q1 ∈ Z we
have a R-bilinear maps

Ep0,q0r × Ep1,q1r → Ep0+p1,q0+q1
r , x, y 7→ x · y

and an element 1 ∈ E0,0
r such that the following holds for xi ∈ Epi,qir for i = 0, 1, 2:

(x0 · x1) · x2 = x0 · (x1 · x2);

x0 · x1 = (−1)(p0+q0)·(p1+q1)x1 · x0;

1 · x0 = x0.

The differentials satisfy

dp0+p1,q0+q1
r (x0 · x1) = dp0,q0r (x0) · x1 + (−1)p0+q0 · x0 · dp1,q1r (x1).

The identification of the E2-term

Ep,q2

∼=−→ Hp(X;Hq)

is compatible the products up to a sign (−1)(p0+q0)p1 . The descending filtration
F p,q of Hp+q is compatible with the multiplicative structure of H∗ in the sense
that for x0 ∈ F p0,q0 and x1 ∈ F p1,q1 we have x0 ∪ x1 ∈ F p0+p1,q0+q1 , and the
identification

F p,q/F p−1,q+1 ∼= Ep,q∞

is compatible with the induced products.
All the analogous statements hold for the Leray-Serre spectral sequence, see [33,

Theorem XIII.8.10 on page 668].
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27. Edge homomorphisms

Consider a homological spectral sequence E∗∗,∗ starting at d ∈ Z≥2 and converg-
ing to the ascendingly filtered Z-graded module H∗. Then each differential dr0,q
starting at (0,q) has zero as target and hence is trivial. Therefore Er+1

0,q is a quo-

tient of Er0,q. Hence we get a surjective homomorphism Ed0,q → E∞0,q. Recall that

we have an identification E0,q
∞ = F 0,q, since F−1,q+1 = {0}. As F 0,q ⊆ Hq, we

obtain a canonical homomorphism, called qth edge homomorphism at (0,q),

edge0,q : Ed0,q → Hq

which is the composite Ed0,q → E∞0,q = F 0,q ⊆ Hq.
Consider a cohomological spectral sequence E∗,∗∗ starting at d ∈ Z≥2 converging

to the descendingly filtered Z-graded module H∗. Then each differential d−r,q+r−1
r

ending at (0, q) has zero as source and hence is trivial. Hence E0,q
r+1 is a submodule

of E0,q
r . Therefore we get an injective homomorphism E0,q

∞ → E0,q
d . Recall that

we have an identification E0,q
∞ = Hq/F 0,q. Hence we obtain a canonical homomor-

phism, called edge homomorphism at (0,q),

edge0,q : Hq → E0,q
d

which is the composite Hq → Hq/F 0,q = E0,q
∞ ⊆ E

0,q
d .

Consider a homological spectral sequence E∗∗,∗ starting at d∈ Z≥2 converging
to the ascendingly filtered Z-graded module Hn which is a first quadrant spectral
sequence. Then each differential drp+r,−r+1 ending at Erp,0 is trivial. Hence Er+1

p,0 is

a submodule of Erp,0 for r ≥ d. This implies that E∞p,0 is a submodule of Edp,0. Recall
that we have an identification Hp/Fp,0 = E∞p,0. Hence we get a homomorphism

edgep,0 : Hp → Edp,0

called edge homomorphism at (p,0).
Consider a cohomological spectral sequence E∗,∗∗ starting at d∈ Z≥2 converging

to the descendingly filtered Z-graded module Hn which is a first quadrant spectral
sequence. Then each differential drp,0 starting at (p, 0) has zero target and hence

is trivial. Hence Ep,0r+1 is a quotient module of Ep,0r . Therefore we get a surjective

homomorphism Ep,0d → Ep,0∞ . Recall that we have an identification Ep,0∞ = F p,0 ⊆
Hp. Hence we obtain a canonical homomorphism

edgep,0 : Ep,0d → Hp

called edge homomorphism at (0,q).
For the homological Atiyah-Hirzebruch spectral sequence edge0,q can be identi-

fied with the canonical map⊕
C∈π0(X)

Hq(iC) : H0(X;Hq({•})) =
⊕

C∈π0(X)

Hq({•})→ Hq(X).

where iC : {•} → X is any map with image in C.
For the cohomological Atiyah-Hirzebruch spectral sequence edge0,q can be iden-

tified with the canonical map∏
C∈π0(X)

Hq(iC) : Hq(X)→ H0(X;Hq({•})) =
∏

C∈π0(X)

Hq({•}).

The edge homomorphism edgep,0 : Hp(X) → Hp(X;H0({•})) does not have in
general an explicite description but can be very interesting in special cases, see
Example 27.2. The same comment applies to the cohomological edgep,0.
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For the homological Leray-Serre spectral sequence for the fibration F → E
p−→ B

with a connected CW -complex B as base space edge0,q can be identified with the
canonical map

H0(B;Hq(F )) = Z⊗Zπ Hq(Fb)→ Hq(E)

where b is any point in B, Fb = p−1(b) is the fiber over b, the π = π1(B, b)
action on Hq(Fb) comes from the fiber transport, and the map is induced by
Hq(jb) : Hq(Fb)→ Hq(E) for the inclusion jb : Fb → E.

For the cohomological version edge0,q can be identified with the map

Hq(E)→ H0(B;Hq(F )) = Hq(Fb)π

induced by Hq(jb) : Hq(E)→ Hq(Fb).
For the homological Leray-Serre spectral sequence for the fibration F → E

p−→ B
with a connected CW -complex B and a path connected F and singular homology
H∗(−;R), the edge homomorphism edgep,0 can be identified with the canonical
map

Hp(p;R) : Hp(E;R)→ HΠ
p (B,H0(F,R)) = Hp(B;R)

For the cohomological Leray-Serre sequence for the fibration F → E
p−→ B with

a connected CW -complex B and a path connected F and singular cohomology
H∗(−;R), the edge homomorphism edgep,0 can be identified with the canonical
map

Hp(p;R) : Hp
Π(B,H0(F,R)) = Hp(B;R)→ Hp(E;R)

These identifications of the edge homomorphisms at (0, q) follow for the Atiyah-
Hirzebruch spectral sequence by naturality applied to the inclusions {•} → X.
For the Leray Serre spectral sequence one uses naturality applied to the map of
fibrations from p : E → B to idB : B → B induced by p and idB and from pr: F →
{•} to p : E → B induced by i and the inclusion {•} → F .

Example 27.1. Consider the homological Atiyah-Serre spectral sequence and as-
sume (for simplicity) that the CW -complex X is connected. Let i : {•} → X be
the inclusion and pr: X → {•} be the projection. Then the following diagram
commutes

H0({•};Hq({•}))
edge({•})0,q
∼=

//

H0(i;Hq({•})) ∼=
��

Hq({•})

Hq(i)
��

H0(X;Hq({•}))
edge(X)0,q

// Hq(X)

The right vertical arrow is injective as it has the retraction Hq(pr). The left vertical
and the upper horizontal arrows are obviously bijective, Hence the lower horizontal
arrow is injective. This implies for the homological Atiyah-Serre spectral sequence
for X that E2

0,q = E∞0,q holds and all differentials drr,q−r+1 ending at (0, q) are trivial.
Analogously one can show for the cohomological Atiyah-Hirzebruch spectral se-

quence that E0,q
2 = E0,q

∞ holds and all differentials starting at (0, q) are trivial.

Now suppose that the CW -complex X is d-dimensional. Then the same consid-
erations yield for the Atiyah-Hirzebruch spectral sequence edge homomorphism

edged,q : Hq+d(X) → Hd(X;Hq({•}));

edged,q : Hd(X;Hq) → Hq+d(X).

Now suppose that the CW -complex B is d-dimensional. Then the same consid-
erations yield for the Leray-Serre spectral sequence edge homomorphism

edgeq,d : Hq+d(E) → HΠ
q+d(B;Hq(F ));

edgeq,d : Hd
Π(B;Hq(F )) → Hq+d(E).
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Next we suppose that Hq({•}) = {0} for q < 0. Then we obtain for the Atiyah-
Hirzebruch spectral sequence edge homomorphisms

edgep,0 : Hp(X) → Hp(X;H0({•}));
edgep,0 : Hp(X;H0({•})) → Hp(X).

and for the Leray-Serre spectral sequences edge homomorphisms

edgep,0 : Hp(E) → HΠ
p (B;H0(F ));

edgep,0 : Hp
Π(B;H0(F )) → Hp(E).

Example 27.2 (Edge homomorphisms for bordism theory). Consider the homol-
ogy theory oriented bordism Ω∗. It satisfies Ωq({•}) = {0} for q ≤ −1. We obtain

an isomorphism Ω0({•})
∼=−→ Z by sending a point {•} with the orientation ± to

±1. Hence we obtain an edge homomorphism

edgep,0 : Ωp(X)→ Hp(X; Ω0({•})) ∼= Hp(X;Z).

It sends the class of a closed oriented manifold M with reference map f : M →
X to the image of its fundamental class [M ] under the induced homomorphism
Hp(f,Z) : Hp(M ;Z)→ Hp(X;Z).

Consider the homology theory unoriented bordismN∗. It satisfiesNq({•}) = {0}
for q ≤ −1. We obtain an isomorphism N0({•})

∼=−→ Z/2 by sending a closed
manifold M to the image of its cardinality under the projection Z → Z/2. Hence
we obtain an edge homomorphism

edgep,0 : Np(X)→ Hp(X;N0({•})) ∼= Hp(X;Z/2).

It sends the class of a closed manifold M of dimension p with reference map f : M →
X to the image of the element in Hp(M ;Z/2) ∼= H0(M ;Z/2) = map(π0(M),Z/2)
given by the constant function with value 1 under the induced homomorphism
Hp(f,Z/2) : Hp(M ;Z/2)→ Hp(X;Z/2).

Example 27.3 (Ωn(X) for n ≤ 4). We have already explained that Ω0({•}) ∼= Z
in Example 27.2. We have Ωq({•}) = {0} for q = 1, 2, 3. The signature defines an

isomorphism sign: Ω4({•})
∼=−→ Z.

Consider a connected CW -complex. We conclude from the Atiyah-Hirzebruch
spectral sequence and Example 27.2 that we obtain an isomorphism

sign× edge4,0 : Ω4(X)
∼=−→ Z×H4(X;Z)

sending the class of a closed oriented manifold M with reference map f : M → X
to (sign(M), H4(f ;Z)([M ])), that we obtain for n = 1, 2, 3 isomorphisms

edgen,0 : Ωn(X)
∼=−→ H3(X;Z), (M,f)→ Hn(f ;Z)([M ])

and that the projection pr : X → {•} induces an isomorphism

Ω0(pr) : Ω0(X)→ Ω0({•}) ∼= Z.

Proposition 27.4 (Serre sequence). Let F
i−→ E

p−→ B be a fibration over a con-
nected CW -complex B with path connected fiber F . Suppose the following conditions
for k, l ∈ Z≥1:

(i) The action of π1(B) on Hq(F ) induced by the fiber transport is trivial for
q ∈ Z≥0;

(ii) Hi(B) vanishes for 0 < i < k;
(iii) Hi(F ) vanishes for 0 < i < l.



166 LÜCK, WOLFGANG

Then there exists an exact sequence

Hk+l−1(F )
Hk+l−1(i)−−−−−−→ Hk+l−1(E)

Hk+l−1(p)−−−−−−−→ Hk+l−1(B)
∂k+l−1−−−−→ Hk+l−2(F )

Hk+l−2(i)−−−−−−→ · · · ∂2−→ H1(F )
H1(i)−−−→ H1(E)

H1(p)−−−−→ H1(B)→ 0.

Proof. We apply the Leray-Serre spectral sequence. We have the exact sequence

0→ Hp(B)⊗Z Hq(F )→ E2
p,q = Hp(B;Hq(F ))→ Tor1(Hp−1(B), Hq(F ))→ 0.

Hence E2
p,q vanishes if one of the following conditions are satisfied

• 0 < p < k and q ≥ 0;
• p ≥ 0 and 0 < q < l.

So for k = l = 3 the second page looks in the range 0 ≤ p ≤ 5 and 0 ≤ q ≤ 5 like

H5(F ) 0 0 En3,5 En4,5 En5,5

H4(F ) 0 0 En3,4 En4,4 En5,4

H3(F ) 0 0 En3,3 En4,3 En5,3

0 0 0 0 0 0

0 0 0 0 0 0

Z 0 0 H3(B) H4(B) H5(B)

Hence the differential drp,0 : Erp,0 → Erp−r,r−1 vanishes for 2 ≤ r < p ≤ k + l and
the differential drr,q+1−r : Err,q+1−r → Er0,q is trivial for 2 ≤ r < q + 1 ≤ k + l − 1.

This implies Enn,0 = E2
n,0 = Hn(B) and En0,n−1 = E2

0,n−1 = Hn−1(F ) for n ≤
k+ l− 1. We conclude E∞n,0 = ker(dnn,0) and E∞0,n−1 = cok(dnn,0) for the differential
dnn,0 : Enn,0 = Hn(B) → En0,n−1 = Hn−1(F ) if n ≤ k + l − 1 holds. Now we get
from the construction and the identification of the edge homomorphism an exact
sequence

Hk+l−1(F )
Hk+l−1(i)−−−−−−→ Hk+l−1(E)

Hk+l−1(p)−−−−−−−→ Hk+l−1(B)
∂k+l−1−−−−→ Hk+l−2(F )

Hk+l−2(i)−−−−−−→ · · · ∂2−→ H1(F )
H1(i)−−−→ H1(E)

H1(p)−−−−→ H1(B)→ 0.

if we put ∂n = dnn,0.
�

28. Applications of the cohomological Leray-Serre spectral
sequence

28.1. The Gysin sequence. Consider a fibration Sl → E
f−→ B over a connected

CW -complex B with fiber Sl for l ≥ 1. Let H∗(−;G) be singular cohomology
with coefficients in the abelian group G. Then Hq(Sl;G) is G for q = 0, l and
trivial otherwise. The G-action of π = π1(B) on H0(Sd;G) is trivial and hence
Hp

Π(B;H0(Sl;G)) = Hp(B,G). We get Hp
Π(B;H0(Sl;G)) = Hp

π(B;Gρ) for the
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π-action on G given by w · g = ρ(w) · g for w ∈ π and g ∈ G for the homomorphism
ρ : π → {±} sending w ∈ π to the degree of the map Sl → Sl given by the fiber
transport applied to w. Then the E2-term and hence the Er-term for r ∈ Z≥2q{∞}
of Leray-Serre spectral sequence for f and H∗(−;G) has non-trivial entries only in
the 0-th row and in the l-th row. The only non-trivial differentials appear on the
(l + 1)-th page and are given by

dp,ll+1 : Ep,ll+1 = Hp
π(B;Gρ)→ El+1

p−l+1,0 = Hp+l+1(B;G).

So for l = 2 the (l + 1)-th page looks like

...
...

...
...

... . .
.

0 0 0 0 0 · · ·

H0
π(B;Gρ)

d0,33

))

H1
π(B;Gρ)

d1,33

))

H2
π(B;Gρ) H3

π(B;Gρ) H4
π(B;Gρ) · · ·

0 0 0 0 0 · · ·

H0(B;G) H1(B;G) H2(B;G) H3(B;G) H4(B;G) · · ·

So we get exact sequences

0→ Ep,l∞ → Hp
π(B;Gρ)

dp,ll+1−−−→ Hp+l+1(B;G)→ Ep+l+1,0
∞ → {0}.

We have the ascending filtration

Hn(E,G) = Fn−l,l ⊇ Fn,0 ⊇ {0}

with filtration quotients Hn(E,G)/Fn,0 = En−l,l∞ and Fn,0 = En,0∞ . We can splice
these data together to a long exact sequence

(28.1) · · · δ
n−1

−−−→ Hn−1−l(B;G)
dn−1−l,l
l+1−−−−−→ Hn

π (B;Gρ)
Hn(f ;G)−−−−−−→ Hn(E;G)

δn−→ Hn−l(B;G)
dn−l,ll+1−−−−→ Hn+1

π (B;Gρ)
Hn+l(f ;G)−−−−−−−→ Hn+1(E;G)

dn+1−l+1,l
l+1−−−−−−−→ · · · .

So far this is just dual as the in the homological case. But now one can use
the multiplicative structure on singular cohomology and the induced multiplicative
structure on the Leray-Serre spectral sequence to get a better understanding of the

differentials dn−1−l,l
l+1 in the case, where ρ is trivial and G is actually a commutative

ring R. Let 1 ∈ H0(B;R) ∼= R be the generator given by the constant function from
the set of singular zero-simplices in B to R with value 1 ∈ R. Let ef ∈ H l+1(B;R)

be the image of 1 under the differential d0,l
l+1 : H0

π(B;R) → H l+1(B;R), where we

consider 1 an element in E0,l
l+1. Then we compute for x ∈ Hn−1−l(B;G) which we

can think of as an element in both En−1−l,l
l+1 and in En−1−l,0

l+1 .

dn−1−l,l
l+1 (x) = dn−1−l,l

l+1 (1 ∪ x) = d0,l
l+1(1) ∪ x+ (−1)n−1 · 1 ∪ dn−1−l,0

l+1 (x)

= ef ∪ x+ (−1)n−1 · 1 ∪ 0 = ef ∪ x.
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Hence the long exact sequence (28.1) becomes

(28.2) · · · δ
n−1

−−−→ Hn−1−l(B;R)
ef∪−−−−→ Hn

π (B;R)
Hn(f ;R)−−−−−→ Hn(E;R)

δn−→ Hn−l(B;R)
ef∪−−−−→ Hn+1

π (B;R)
Hn+l(f ;R)−−−−−−−→ Hn+1(E;R)

dn+1−l+1,l
l+1−−−−−−−→ · · · .

Consider the universal principal S1-bundle f : ES1 f−→ BS1. An explicite model
is given by S1 → S∞ → CP∞. Recall that CP∞ is a model for K(Z, 2) and we get
for any CW -complex B an isomorphism

[B,CP∞]
∼=−→ H2(B;Z), [g] 7→ H2(g;Z)(cf ).

Note that f is orientable, i.e., has trivial fiber transport. Since ES1 is contractible,
we get from the Gysin sequence (28.1) isomorphisms for n ∈ Z≥0.

ef ∪ − : Hn(CP∞;Z)
∼=−→ Hn+2(CP∞;Z).

Since CP∞ is simply connected H1(CP∞;Z) vanishes. Hence we obtain the follow-
ing theorem.

Theorem 28.3. The cohomology ring H∗(CP∞;Z) is isomorphic to the free poly-
nomial Z[x] for a generator x in degree 2 which is given by ef ∈ H2(CP∞;Z).

28.2. The first Chern class of a principal S1-bundle. Let p : E → B be a
principal S1-bundle. Recall that up to homotopy there is a map cp : B → CP∞
which is up to homotopy uniquely determined by the property that the pullback
of the universal principal S1-bundle f : ES1 → BS1 with cp is isomorphic as a
principal S1-bundle is isomorphic to p. Denote by

(28.4) c1(p) ∈ H2(B;Z)

the preimage of ef ∈ H2(CP∞;Z/2). This element is called the first Chern class
of p. It has the following properties.

Theorem 28.5. (i) Consider a map f : A→ B between CW -complexes. Let
p : E → B be a principal S1-bundle over a CW -complex B. Let the prin-
cipal S1-bundle f∗p over A be the pullback of p with f . Then we get

c1(f∗p) = f∗(c1(p));

(ii) Let p1 : E1 → B and p2 : E2 → B be principal S1-bundles over the CW -
complex B. Then they are isomorphic as principal S1-bundles if and only
c1(p1) = c2(p2) holds;

(iii) Consider a CW -complex B and an element y ∈ H2(B;Z). Then there
exists a principal S1-bundle p : E → B with

c1(p) = x.

28.3. A variation of the Leray-Hirsch Theorem. We mention the following
variation of the Leray-Hirsch Theorem.

Theorem 28.6 (Leray-Hirsch Theorem for singular cohomology with field coeffi-

cients). Let k be a field and F
i−→ E

p−→ B be a fibration over a connected CW -
complex B. Suppose that the following conditions are satisfied:

(i) The π1(B)-action on the singular cohomology H∗(F ; k) with coefficients in
k coming from the fiber transport is trivial;

(ii) The k-module Hp(B; k) is finitely generated for p ∈ Z≥0;
(iii) The map i∗ : H∗(E; k)→ H∗(F ; k) is surjective.
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Then we obtain an isomorphism of graded H∗(B; k)-modules

H∗(B; k)⊗k H∗(F ; k)
∼=−→ H∗(E; k)

where we equip H∗(E; k) with the H∗(B; k)-module structure coming from the cup
product on H∗(E; k) and the homomorphism of graded k-algebras p∗ : H∗(B; k) →
H∗(E; k) and we equip H∗(B; k) ⊗k H∗(F ; k) with the obvious H∗(B; k)-module
structure given by u⊗ (v ⊗ w) = uv ⊗ w for u, v ∈ H∗(B; k) and w ∈ H∗(F ; k).

If we furthermore assume that H∗(F ; k) is a free graded commutative k-algebra,
then we obtain an isomorphism of graded commutative k-algebras

H∗(B; k)⊗k H∗(F ; k)
∼=−→ H∗(E; k)

Proof. Since Hp(B; k) is finitely generated as k-module and k is a field, we can
identify the second page of the Leray-Serre spectral sequence using the Universal
Coefficient Theorem to be

Ep,q2 = Hp(B;Hq(F ; k)) ∼= homk(Hp(B; k), Hq(F ; k))

∼= homk(Hp(B; k), k)⊗k Hq(F ;K)) ∼= Hp(B; k)⊗k Hq(F ; k).

This identification is compatible with the multiplicative structure coming from
the cup product on singular cohomology and is natural in B and F .

Consider p, q ∈ Z≥0. We conclude that the multiplication map

Ep,02 ⊗k E0,q
2 → Ep,q2

is bijective for p, q ∈ Z≥0. Since i∗ : Hq(F ; k)→ Hq(E; k) is by assumption surjec-

tive, the differential d0,q
2 is trivial. Since the differential dp,q2 is a derivation, we get

for a ∈ Ep,02 and b ∈ E0,q
2

dp,q2 (a · b) = dp,02 (a) · b+ (−1)p · a · d0,q
2 (b) = 0 · b+ (−1)p · a · 0 = 0.

Hence all second differentials are trivial and we have Ep,q2 = Ep,q3 . This argument
can be repeated and yields the equality Ep,q2 = Ep,qr for all p, q ∈ Z≥0 and r ∈ Z≥3.
Hence we get an identification

Ep,q∞ = Hp(B; k)⊗k Hq(F ; k).

Fix a section s∗ : H∗(F ; k)→ H∗(E; k) of the surjective map of graded k-modules
i∗ : H∗(E; k) → H∗(F ; k). By inspecting the filtrations of H∗(E; k) appearing in
the Leray-Serre spectral sequence and the Five Lemma, one easily checks the map

Φ∗ : H∗(B; k)⊗k H∗(F ; k)→ H∗(E; k), a⊗ b 7→ p∗(a) ∪ s∗(b)

is bijective. Obviously it is a map of graded H∗(B; k)-modules.
Now suppose additionally that H∗(F ; k) is a free graded k-algebra. Then we

can choose s∗ such that it becomes an map of k-algebras and hence Φ∗ is a map of
graded k-algebras. �

If we replace in Theorem 28.6 the condition that the k-module Hp(B; k) is finitely
generated for p ∈ Z≥0 by the condition that there exists an element d ∈ Z≥1

such that the k-module Hq(F ; k) is finitely generated for 0 ≤ p ≤ d and vanishes
for p ≥ (d + 1), then Theorem 28.6 follows from Theorem 22.4. The proof of
Theorem 28.6 in general is an obvious variation of the one for Theorem 22.4.
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28.4. An example concerning the Leray-Hirsch Theorem 28.6. One may
ask whether one can replace in Theorem 28.6 the condition thatH∗(i; k) is surjective
by the condition that H∗(p; k) : H∗(B; k) → H∗(E; k) is injective. This is not

the case, as we will show by constructing a fibration S3 × S2 → E
p−→ S2 for

which H∗(p) : H∗(B) → H∗(E) is injective but the Leray-Serre spectral sequence
has a non trivial differential and hence does not strongly collapses as predicted
by Theorem 28.6. Figuring out this example is a good exercise for working with
spectral sequence and fibrations.

Let S3 → S7 q−→ S4 be the quaternionic Hopf-fibration for H2 using the iden-
tification S4 ∼= HP1. Note that S3 inherits from its embedding into the skewfield
of quaternions H the structure of a topological group and the quaternionic Hopf-
fibration is actually a principal S3-bundle. Let c : S2 × S2 → S4 be the map
obtained by collapsing the 2-skeleton of S2×S2 to a point. This is a map of closed
oriented smooth 4-manifolds of degree 1. Consider the pull back

E

q

��

c
// S7

q

��

S2 × S2
c
// S4

Then q : E → S2 × S2 is a fibration. Define

p : E
q−→ S2 × S2 pr1−−→ S2

where pr1 is the projection onto the first coordinate. This is a fibration as q and
pr1 are fibrations. Let s ∈ S2 be the standard base point. Put F = p−1(s) =
q−1({s} × S2). We have the pullback

F

��

// S7

q

��

S2

c◦i2
// S4

for the inclusion i2 : S2 = {s}×S2 → S2×S2. Since c ◦ i2 is the constant map and
q is a fibration with fiber S3, we get a homotopy equivalence F ' S2 × S3. This

finishes the construction of the fibration S3 × S2 → E
p−→ S2. Since S2 is simply

connected, its fiber transport is trivial. The Leary-Serre spectral sequence of it has
the following second page and there is at most one differential, namely d2

3,0, which
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may be nontrivial:

H0(S2;H5(S3 × S2)) ∼= Z 0 H2(S2;H5(S3 × S2)) ∼= Z

H0(S2;H4(S3 × S2)) ∼= 0 0 H2(S2;H4(S3 × S2)) ∼= 0

H0(S2;H3(S3 × S2)) ∼= Z
d3,02

,,

0 H2(S2;H3(S3 × S2)) ∼= Z

H0(S2;H2(S3 × S2)) ∼= Z 0 H2(S2;H2(S3 × S2)) ∼= Z

H0(S2;H1(S3 × S2)) ∼= 0 0 H2(S2;H1(S3 × S2)) ∼= 0

H0(S2;H0(S3 × S2)) ∼= Z 0 H2(S2;H0(S3 × S2)) ∼= Z

We obtain from the Leray-Serre spectral sequence that H∗(p) : H∗(S2) → H∗(E)
is injective and we have the exact sequence

{0} → H3(E)→ H0(S2;H3(S3 × S2)) ∼= Z
d3,02−−→ H2(S2;H2(S3 × S2)) ∼= Z.

Hence d3,0
2 is non-trivial if and only if H3(E) vanishes. Now the Gysin sequences

of S3 → E
q−→ S2 × S2 and S3 → S7 q−→ S4 fit together to a commutative diagram

with exact rows

H3(S2 × S2) = {0} //

H3(c)

��

H3(E) //

H3(c)

��

H0(S2 × S2)

H0(c)∼=
��

// H4(S4)

H4(c)∼=
��

H3(S4) = {0} // H4(S7) = {0} // H0(S4) // H4(S4)

The Five Lemma implies that H3(E) vanishes and hence d3,0
2 is non-trivial. We get

Hn(E) ∼=


Z n = 0, 7;

Z2 n = 2, 5;

{0} n = 1, 3, 6, ; or n ≥ 8;

cok(d3,0
2 ) n = 4.

for a finite cyclic group cok(d3,0
2 ). So we get by the Universal Coefficient Theorem

Hn(E;Q) ∼=


Q n = 0, 7;

Q2 n = 2, 5;

{0} n = 1, 3, 4, 6, ; or n ≥ 8,

whereas

(
H∗(S2;Q)⊗Q H

∗(S3 × S2;Q)
)n ∼=


Q n = 0, 3, 4, 7;

Q2 n = 2, 5;

{0} n = 1, 6, or n ≥ 8.
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28.5. Computation of the singular cohomology ring with rational coeffi-
cients of U(n).

Theorem 28.7. The singular cohomology ring H∗(U(n);Q) with rational coeffi-
cients of the Lie group U(n) is the exterior algebra ΛQ(x1, x2, . . . , xn), where the
degree |xi| of i is 2i− 1.

Proof. We use induction over n.
In the induction beginning we have U(1) = S1 and we know already the equality

H∗(S2n−1;Q) ∼= ΛQ(xn) for |xn| = 2n− 1.
In the induction step from (n−1) to n for n ≥ 2 we use the fibration U(n−1)→

U(n) → S2n−1 coming from the obvious U(n)-action on S2n−1. Since S2n−1 is
(2n− 2)-connected, the map U(n− 1)→ U(n) is (2n− 2)-connected. The relative
Hurewicz Theorem 12.11 implies that Hk(U(n − 1);Z) → Hk(U(n);Z) is bijective
for k ≤ 2n− 3 and surjective for k = 2n− 2.

We conclude from Universal Coefficient Theorem that the map i∗ : H∗(U(n);Q)→
H∗(U(n−1);Q) is surjective, since Hk(U(n−1);Q) vanishes for k ≥ (2n−1). Now
Theorem 28.6 yields an isomorphism of graded k-algebras

H∗(U(n);Q) ∼= H∗(U(n− 1);Q)⊗k H∗(S2n−1;Q)

∼= ΛQ(x1, x2, . . . , xn−1)⊗Q ΛQ(xn) ∼= ΛQ(x1, x2, . . . , xn).

�

28.6. Singular Cohomology of ΩS3. Recall that we have H∗(S3) ∼= ΛZ(x) =
Z[x]/(x2) for |x| = 3. We apply the Leray-Serre spectral sequence to the fibration
ΩS3 → P (S3) → S3. Then the third page agrees with the second page and looks
like

...
...

...
...

... . .
.

H6(ΩS3)

d0,63

((

0 0 H6(ΩS3) 0 · · ·

H5(ΩS3)

d0,53

((

0 0 H5(ΩS3) 0 · · ·

H4(ΩS3)

d0,43

((

0 0 H4(ΩS3) 0 · · ·

H3(ΩS3)

d0,33

((

0 0 H3(ΩS3) 0 · · ·

H2(ΩS3)

d0,23

((

0 0 H2(ΩS3) 0 · · ·

H1(ΩS3) 0 0 H1(ΩS3) 0 · · ·

H0(ΩS3) 0 0 H0(ΩS3) 0 · · ·
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The fourth page agrees with the rth page for r ∈ Z≥4. Since the Leray-Serre
spectral sequences converges to P (S3) which is contractible and hence satisfies

Hn(P (S3)) = {0} for n ≥ 1, all the differentials d0,q
3 for q ≥ 3 are isomorphisms

and we have H1(ΩS3) = {0}. Hence Hn(ΩS3) = {0} for odd n and Hn(ΩS3) = Z
for even n. Therefore the E3-page reduces to

...
...

...
...

... . .
.

H6(ΩS3) ∼= Z

d0,63

∼=

((

0 0 H6(ΩS3) ∼= Z 0 · · ·

0 0 0 0 0 · · ·

H4(ΩS3) ∼= Z

d0,43

∼=

((

0 0 H4(ΩS3) ∼= Z 0 · · ·

0 0 0 0 0 · · ·

H2(ΩS3) ∼= Z

d0,23

∼=

((

0 0 H2(ΩS3) ∼= Z 0 · · ·

0 0 0 0 0 · · ·

H0(ΩS3) ∼= Z 0 0 H0(ΩS3) ∼= Z 0 · · ·

The obvious identification

Ep,q3 = Ep,q2 = Hp(S3;Hq(Ω3S3)) = Hp(S3)⊗Hq(ΩS3)

is compatible with the obvious product structure on Hp(S3)⊗Hq(ΩS3). Hence the
pairing

Ep,03 ⊗ E0,q
3 → Ep,q3

is an isomorphism and we can choose generators zq ∈ E0,2q
3 for q ∈ Z≥0 such that

zq ·d0,2
3 (z1) = d

0,2(q+1)
3 (zq+1) holds for q ∈ Z≥0 and z0 ·u = u holds for all u ∈ Ep,q3 .

Then we denote the E3-page as follows indicating generators
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...
...

...
...

... . .
.

Z〈z3〉

d0,63

∼=

((

0 0 Z 0 · · ·

0 0 0 0 0 · · ·

Z〈z2〉

d0,43

∼=

((

0 0 Z 0 · · ·

0 0 0 0 0 · · ·

Z〈z1〉

d0,23

∼=

((

0 0 Z 0 · · ·

0 0 0 0 0 · · ·

Z〈z0〉 0 0 Z 0 · · ·

Next we we show by induction over n ∈ Z≥1 that zn1 = n! · zn holds. The
induction begin n = 1 is trivial. The induction step from n to n + 1 for n ∈ Z≥1

follows from the following calculation, since d
0,2(n+1)
3 is bijective.

d
0,2(n+1)
3 (zn+1

1 ) = d
0,2(n+1)
3 (z1 · zn1 )

= d0,2
3 (z1) · zn1 + z1 · d0,2n

3 (zn1 )

= d0,2
3 (z1) · n! · zn + z1 · d0,2n

3 (n! · zn)

= n! · zn · d0,2
3 (z1) + n! · z1 · d0,2n

3 (zn)

= n! · d0,2(n+1)
3 (zn+1) + n! · z1 · d0,2

3 (z1) · zn−1

= n! · d0,2(n+1)
3 (zn+1) + n · z1 · (n− 1)! · zn−1 · d0,2

3 (z1)

= n! · d0,2(n+1)
3 (zn+1) + n · z1 · zn−1

1 · d0,2
3 (z1)

= n! · d0,2(n+1)
3 (zn+1) + n · zn1 · d

0,2
3 (z1)

= n! · d0,2(n+1)
3 (zn+1) + n · n! · zn · d0,2

3 (z1)

= n! · d0,2(n+1)
3 (zn+1) + n · n! · d0,2(n+1)

3 (zn+1)

= (n+ 1)! · d0,2(n+1)
3 (zn+1)

= d
0,2(n+1)
3 ((n+ 1)! · zn+1).

Hence the graded ring H∗(Ω3S3) agrees with the so called divided power algebra
which is denoted by

Z
[
y,
y2

2!
,
y3

3!
,
y4

4!
· · ·
]
.

where y has degree two and corresponds to z1 in the notation above. Explicitly the
underlying graded Z-module has Z as entry in degree n if n ∈ Z≥0 and n is even,
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and {0} otherwise. If zn is the standard generator of the 2nth module, then the
multiplication is given by the formula

zm · zn =
(m+ n)!

m! · n!
· zm+n.

Note that the divided power algebra is isomorphic to Z[y] for |y| = 2 as graded
abelian group, but not as graded commutative ring.

Note that in this argument we have computed the cohomology of the fiber of the
fibration ΩS3 → P (S3) → S3 from the knowledge of the cohomology of the total
space and the base base, whereas before we have always computed the cohomology
of the total space from the one of the fiber and the base space.

28.7. Computation of πs1. We give another proof that πs1
∼= Z/2 holds. Because

of the Freudenthal Suspension Theorem 11.16 it suffices to prove π4(S3) ∼= Z/2.
Choose a map f : S3 → K(Z, 3) which induces an isomorphism π3(f). We can

turn it into fibration f : E → K(Z, 3). Let F be its fiber. We conclude from the long
homotopy sequence of f that F is 3-connected and π4(F ) ∼= π4(S3). By the Hurwicz
Theorem 12.5 we get H4(F ) ∼= π4(S3). So it remains to prove H4(F ) ∼= Z/2.

We have the fibration ΩK(Z, 3) → F → E. Since E is homotopy equivalent to
S3 and CP∞ is homotopy equivalent to ΩK(Z, 3), there exists a fibration CP∞ →
F

p−→ S3. Recall that the cohomology ring H∗(CP∞) is Z[c] for |c| = 2 and the
cohomology ring of H∗(S3) is Z[x]/(x2) for |x| = 3.

Next we apply the Leray-Serre spectral sequence to the fibration p and singular
cohomology with Z-coefficients. The second page is concentrated in the two columns
over 0 and 3. Hence it agrees with the the third page:

...
...

...
...

... . .
.

Z〈c3〉

d0,63

))

0 0 Z〈xc3〉 0 · · ·

0 0 0 0 0 · · ·

Z〈c2〉

d0,43

))

0 0 Z〈xc2〉 0 · · ·

0 0 0 0 0 · · ·

Z〈c〉

d0,23

∼=

))

0 0 Z〈xc〉 0 · · ·

0 0 0 0 0 · · ·

Z〈c0〉 0 0 Z〈x〉 0 · · ·

Here we also indicate the generators of the infinite cyclic groups Z. The differential
d0,2

3 is an isomorphism as H2(F ) vanishes. Without loss of generality we can assume
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d0,2
3 (c) = x. We claim

d0,2k
3 (ck) = k · ck−1 · x.

The induction begin k = 1 has already been taken care of. The induction step
from k ≥ 1 to (k + 1) follows from the following computation using the fact that
differentials are derivations.

d
0,2(k+1)
3 (ck+1) = d0,2k

3 (c · ck) = d0,2
3 (c) · ck + c · d0,2k

3 (ck)

= x · ck + c · k · ck−1 · x = (k + 1) · ck · x.

This implies

Hi(F ) ∼=


Z/k if i = 2k + 1 ≥ 5;

Z i = 0;

{0} otherwise.

An easy application of the homological Leray-Serre spectral sequence to the fibra-
tion CP∞ → F → S3 shows that the singular homology Hi(F ) of F is finitely
generated for all i ∈ Z≥0. We obtain from the Universal Coefficient Theorem the
exact sequence

0→ Ext1
Z(Hi−1(F ),Z)→ Hi(F )→ homZ(Hi(F );Z)→ 0.

Since Hi(F ) is finitely generated, homZ(Hi(F );Z) is a finitely generated free abelian
group. Since Hi(F ) is a finite abelian group for i ≥ 1, we conclude for i ≥ 1 that
tors(Hi−1(F )) ∼= Hi−1(F ) holds and we get

Hi(F ) ∼= Ext1
Z(Hi−1(F ),Z) ∼= Ext1

Z(tors(Hi−1(F )),Z) ∼= tors(Hi−1(F )) ∼= Hi−1(F ).

This implies

Hi(F ) ∼=


Z/k if i = 2k ≥ 4;

Z i = 0;

{0} otherwise.

This finishes the proof that πs1
∼= Z/2 holds.

28.8. The rational singular cohomology of K(Z, n). Next want to show the
following result.

Theorem 28.8. We get isomorphisms of graded Q-algebras

H∗(K(Z, n);Q) ∼=

{
Q[xn] if n is even;

ΛQ(xn) if n is odd,

where |xn| = n.

Proof. We have already taken care of the cases n = 1, 2. Next we handle the case
n = 3. We want to apply the Leray-Serre spectral sequence to the path fibration
K(Z, 2) → P (K(Z, 3)) → K(Z, 3). Since K(Z, 3) is 2 connected, the first and
second column of the second page are trivial. Since H3(K(Z, 3);Q) ∼= Q the third
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page looks in the region 0 ≤ p ≤ 3 and 0 ≤ q ≤ 6 as follows

Q〈x3
2〉

d0,63

++

0 0 Q〈x3
2x3〉

0 0 0 0

Q〈x2
2〉

d0,43

++

0 0 Q〈x2
2x3〉

0 0 0 0

Q〈x2〉

d0,23

++

0 0 Q〈x2x3〉

0 0 0 0

Q〈x0
2〉 0 0 Q〈x3〉

As H2(P (K(Z, 3));Q) vanishes, the differential d0,2
3 is bijective. Since the differ-

entials d0,2n
3 are derivations and the pairings E0,2q

r ⊗E3,0
r → E3,q

r are isomorphism
for q ∈ Z≥1 and r = 2, 3, we compute for a ∈ E0,2q

r and m ∈ Z and q ∈ Z≥1

d
0,2(q+1)
3 (a · (m · x3)) = d0,2q

3 (a) · (m · x3) + a · d3,0
3 (m · x3) = m · d0,2q

3 (a) · x3

Since the map E2q,0
3

∼=−→ E
2(q+1),0
3 sending b to b·x3 is bijective for q ∈ Z≥1, d

0,2(q+1)
3

is bijective if and only if d0,2q
3 is bijective. This implies that the differentials d0,2q

3

are bijective for q ∈ Z≥0. Hence the fourth page looks in the region 0 ≤ p ≤ 4 and



178 LÜCK, WOLFGANG

0 ≤ q ≤ 6 like

0 0 0 0 E4,6
4

0 0 0 0 0

0 0 0 0 E4,4
4

0 0 0 0 0

0 0 0 0 E4,2
4

0 0 0 0 0

Q 0 0 0 E4,0
4

Note that E4,0
4 = E4,0

2 = H4(K(Z, 3);H0(CP∞)) ∼= H4(K(Z, 3)) holds, since
no differentials of the previous pages can hit the entry at (4, 0). Obviously we

have E4,0
4 = E4,0

∞ . Since H4(P (K(Z, 3))) = {0}, we must have {0} = E4,0
∞
∼=

H4(K(Z, 3)). We conclude

E4,q
2 = H4(K(Z, 3);Hq(CP∞)) ∼= H4(K(Z, 3);Q) = {0}.

This implies E4,q
4 = {0} for q ∈ Z≥0. Hence we have shown that Hi(K(Z, 3);Q)

vanishes for i = 1, 2, 4 and that the fifth page looks in the range 0 ≤ p ≤ 5 and
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0 ≤ q ≤ 6 like

0 0 0 0 0 E4,6
5

0 0 0 0 0 0

0 0 0 0 0 E5,4
5

0 0 0 0 0 0

0 0 0 0 0 E5,2
5

0 0 0 0 0 0

Q 0 0 0 0 E5,0
5

Now one repeats the argument over and over again and concludes thatHi(K(Z, 3);Q)
vanishes for i 6= 0, 3 and is Q for i = 0, 3. This implies H∗(K(Z, 3);Q) ∼= ΛQ(x3)
for |x3| = 3.

Next we explain why H∗(K(Z, 4);Q) ∼= Q[x4] for |x4| = 4 holds. Since the
argument is similar to the one, where we computed H∗(K(Z, 2);Q), we will give
only a sketch. The fourth page of the Leray Serre spectral sequence for the path
fibration K(Z, 3) → P (K(Z, 4)) → K(Z, 4) has only non-trivial entries in the 0th
and 3rd row and looks in the range 0 ≤ p ≤ 8 and 0 ≤ q ≤ 3 like

Q〈x3〉

d0,34

$$

0 0 0 Q〈x3x4〉

d4,34

$$

0 0 0 Q〈x3x
2
4〉

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Q〈x0
4〉 0 0 0 Q〈x4〉 0 0 0 Q〈x2

4〉

As the Leray-Serre spectral sequence converges toH∗(P (K(Z, 4));Q) ∼= H∗({•};Q),

the differential d4p,3
4 is an isomorphism for p ∈ Z≥0 and we can define x4 ∈ E4,0

4 =

H4(K(Z, 4);Q) by x4 = d0,3
4 (x3). Since the differentials are derivations and each

pairing E0,3
4 ⊗Q E

4p,0
4

∼=−→ E4p,3
4 is an isomorphism, we get d4p,3

4 (x3x
p
4) = xp+1

4 for

p ∈ Z≥0 and that x3x
p
4 generates E4p,3

4 and xp4 generates E4p,0
4 for p ∈ Z≥0. This

implies H∗(K(Z, 4);Q) ∼= Q[x4] for |x4| = 4.
Now one repeats the argument again to conclude H∗(K(Z/5);Q) ∼= ΛQ(x5) for

|x5| = 5, H∗(K(Z, 6);Q) ∼= Q[x6] for |x6| = 6, and so on. �
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29. Serre classes

29.1. Basics about Serre classes. Let R be a principal ideal domain, e.g., Z or
a field.

Definition 29.1 (Serre class). A non-empty full subcategory C of the category of
R-modules R-Mod is called a Serre class if for any exact sequence 0→ A→ B →
C → 0 we have

A,C ∈ C ⇐⇒ B ∈ C.

Remark 29.2. A non-empty full subcategory C of the category of R-modules
R-Mod is a Serre class, if it is closed under extensions, taking quotient modules,
and taking submodules. A Serre class C contains {0} and satisfies M,N ∈ C =⇒
M ⊕N ∈ C.

Example 29.3 (Examples of Serre classes). Let R be a principal ideal domain.
Then the following full subcategories of R-Mod are Serre classes:

(i) C = R-Mod;
(ii) The full subcategory R-Triv consisting of the trivial R-module {0};
(iii) The full subcategory R-Modfg of finitely generated R-modules;
(iv) The full subcategory R-Tors of torsion R-modules, i.e., R-modules M such

that for every m ∈M there exists r ∈ R with r 6= 0 and rm = 0;
(v) Let R = Z and P be a collection of prime numbers. Then

R-TorsP = {M ∈ Z-Mod |M is a P-primary torsion module}
is a Serre class in Z-Mod, where an R-module M is called P-primary if
for every m ∈M there exists r ∈ Z≥1, a finite subset {p1, p2, . . . , pr} ⊆ P
and elements n1, n2, . . . nr ∈ Z≥1 such that (pn−1

1 · pn2
2 · · · · · pnrr ) ·m = 0

holds.
If P consists of one element p only, i.e., P = {p}, then we write R-Torsp

instead of R-TorsP and P-primary means that for every m ∈ M there
exists n ∈ Z≥1 satisfying pn ·m = 0;

If P consists of all primes different from a given prime p, then we write
R-Tors(p) instead of R-TorsP . A module in R-Tors(p) is sometimes called
p-coprimary.

(vi) The full subcategory R-Modfin of R-Mod of R-modules whose underlying
set is finite is a Serre class;

(vii) The intersection of two Serre classes of R-Mod is again a Serre class.

Example 29.4 (Non-examples of Serre classes). Let R be a principal ideal domain.
Then the following full subcategories of R-Mod given by projective R-modules,
finitely generated projective R-module, free R-modules, and finitely generated free
R-modules are in general not Serre classes in R-Mod. They are Serre classes if R
is a field.

Lemma 29.5. Let R be a principal ideal domain and C ⊆ R-Mod a Serre class.
Then:

(i) If L
f−→ M

g−→ N is an exact sequence of R-modules and L and N belong
to C, then M belongs to C;

(ii) Let C∗ be an R-chain complex. Consider n ∈ Z with the property Cn
belongs to C. Then Hn(C∗) belongs to C;

(iii) Consider a finite filtration of the R-module M

{0} = F0M ⊆ F1M ⊆ F2M ⊆ · · · ⊆ FkM = M

for k ∈ Z≥1. Then the quotient R-module FiM/Fi−1M lies in C for i =
1, 2, . . . , k if and only if M lies in C.
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Proof. (i) This follows from Remark 29.2, the factorization of f = i ◦ f for the
inclusion i : im(f) → M and the epimorphism f : L → im(f) induced by f , the
factorization of g as j ◦ g for the inclusion j : im(g) → N and the epimorphism
g : M → im(g) induced by g, and the fact that we obtain an exact sequence 0 →
im(f)

i−→M
g−→ im(g)→ 0.

(ii) This follows from Remark 29.2 since Hn(C∗) is a subquotient of Cn.

(iii) Suppose that the quotient R-module FiM/Fi−1M lies in C for i = 1, 2, . . . , k.
We want to prove that M lies in C. This is done by induction over k = 1, 2, . . ..
The induction beginning k = 1 is obvious. The induction step from (k − 1) to
k ≥ 2 follows from the observation that by the induction hypothesis Fk−1M belongs
to C, by assumption M/Fk−1M belongs to C, and we have the exact sequence
0→ Fk−1M →M →M/Fk−1M → 0.

Suppose that M lies in C. Consider i ∈ {1, 2, . . . , k}. Since FiM/Fi−1M is a
subquotient of M , it belongs to C by Remark 29.2. �

29.2. Some applications using spectral sequences.

Lemma 29.6.

(i) Let (E∗,∗∗ , d∗,∗∗ ) be a homological first quadrant spectral sequence starting
at d for d ∈ Z≥1 which converges to the graded R-module H∗. Consider
any r ∈ Z≥d. Then:
(a) If Erp,q belongs to C for every p, q ∈ Z≥0, then Er+1

p,q belongs to C for

every p, q ∈ Z≥0;
(b) The R-module E∞p,q belongs to C for every p, q ∈ Z≥0 if Erp,q belongs

to C for every p, q ∈ Z≥0.
(c) The R-module Hn belongs to C for every n ∈ Z if and only if E∞p,q

belongs to C for every p, q ∈ Z≥0.
(ii) The analogous statements hold for cohomological first quadrant spectral

sequence.

Proof. We give only the proof of assertion (i), the one for assertion (ii) is completely
analogous.

(i)a Since Er+1
p,q is computed as the homology modules of an appropriate R-chain

complex whose chain modules are given by the modules Ers,t and hence belong to

C, each Er+1
p,q belongs to C by Lemma 29.5 (ii).

(i)b Consider p, q ∈ Z≥0. Since the sequence is assumed to be first quadrant spectral
sequence, there exists s ∈ Z≥r such that Esp,q = E∞p,q holds. By assertion (i)a we
get Esp,q ∈ C and hence E∞p,q ∈ C.
Since the spectral sequence is a first quadrant spectral sequence, the ascending
filtration

{0} = F−1,n+1 ⊆ F0,n ⊆ F1,n−1 ⊆ F2,n−2 ⊆ · · · ⊆ Hn
is finite, since Fn,0 = Hn holds. Recall that Fp,q/Fp−1,q+1

∼= E∞p,q holds for p, q ∈
Z≥0. Now the claim follows from Lemma 29.5 (iii). �

The next corollary is a direct consequence of the Leray-Serre spectral sequence
and Lemma 29.6.

Corollary 29.7. Let F → EE → B be a fibration over a path connected CW -
complex. Let C be a Serre class in R-Mod. Suppose that HΠ

p (B;Hq(F ;R)) belongs

to C for p, q ∈ Z≥0.
Then Hn(E;R) belongs to C for every n ∈ Z≥0.
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Example 29.8. Let F → E → E → B be a fibration over a path connected
CW -complex. Suppose that R is a field and that C is the Serre class of finitely
generated R-modules. Assume that the π1(B)-action on Hq(F ;R) is trivial and
R is a field. Then HΠ

p (B;Hq(F ;R)) is R-isomorphic to Hp(B;R) ⊗R Hq(F ;R).
Hence Corollary 29.7 implies that Hn(E;R) is finitely generated for every n ∈ Z,
provided that Hp(B;R) for every p ∈ Z≥0 and Hq(F ;R) for every q ∈ Z≥0 are
finitely generated.

Next we will prove a stronger version of Corollary 29.7. For this purpose we need
the following additional assumption.

Definition 29.9 (Property (TT)). We say that a Serre class C in R-Mod has

property (TT) if for two objects A and B of C the objects A⊗R B and TorR1 (A,B)
lie in C.

Proposition 29.10. Let F → E → E → B be a fibration over a path connected
CW -complex such that F has only finitely many path components. Assume that the
π1(B)-action on Hq(F ;R) is trivial. Let C be a Serre class in R-Mod satisfying
property (TT). For n ∈ Z≥1 consider the following assertions:

(Bn) Hk(B;R) ∈ C for 1 ≤ k ≤ n;
(Fn) Hk(F ;R) ∈ C for 1 ≤ k ≤ n;
(En) Hk(E;R) ∈ C for 1 ≤ k ≤ n.

Then we have the following implications:

(i) If (Fn) and (Bn) hold, then so does (En);
(ii) If (Fn−1) and (En) hold, then so does (Bn);

(iii) If (En) and (Bn+1) and hold, then so does (Fn).
Proof. (i) Since the π1(B)-action on Hq(F ;R) is trivial, the R-module E2

p,q =

HΠ
p (B;Hq(F ;R)) is isomorphic to Hp(B;Hq(F ;R)). The Universal Coefficient

Theorem yields an exact sequence

0→ Hp(B;R)⊗R Hq(F ;R)→ E2
p,q = Hp(B;Hq(F ;R))

→ TorR1 (Hp−1(B;R), Hq(F ;R))→ 0.

The term Hp(B;R)⊗R Hq(F ;R) belongs to C for p = 1 and 1 ≤ q ≤ n because of

property (TT). Moreover, the term TorR1 (Hp−1(B;R), Hq(F ;R)) vanishes for p = 1
and 1 ≤ q ≤ n, as H0(B;R) ∼= R. Hence E2

p,q belongs to C for p = 1 and 1 ≤ q ≤ n.

Analogously one can show that E2
p,q belongs to C if 1 ≤ p ≤ n and q = 0 holds, since

H0(F ;R) is a finitely generated free R-module. For 2 ≤ p ≤ n and 1 ≤ q ≤ n the
first and the third term belong to C because of (TT) and hence E2

p,q is in C. Thus

we have shown that E2
p,q belongs to C for (p, q) ∈ Z2 if (p, q) 6= 0 and 0 ≤ p, q ≤ n

hold. Given p, q ∈ Z≥0, we have Erp,q = E∞p,q for large enough r and Er+1
p,q is a

subquotient of Erp,q for r ∈ Z≥2. Hence Remark 29.2 implies that E∞p,q belongs to

C for p, q ∈ Z≥0 with 1 ≤ p+ q ≤ n. For 1 ≤ k ≤ n we have the finite filtration

0 ⊆ F0,k ⊆ F1,k−1 ⊆ · · · ⊆ Fk,0 = Hk(E;R)

with Ep,q/Fp−1,q+1
∼= E∞p,q. Lemma 29.5 (iii) implies Hk(E;R) ∈ C for 1 ≤ k ≤ n.

(ii) Since Hk(E;R) lies in C for 1 ≤ k ≤ n, we conclude from Lemma 29.5 (iii) that
E∞p,q belongs to C for p, q ∈ Z≥0 with 1 ≤ p+ q ≤ n.

Next we show by induction for k = 1, 2, . . . , n that Hl(B;R) belongs to C for
1 ≤ l ≤ k. The induction beginning k = 1 follows from H1(B;R) ∼= E2

1,0 = E∞1,0.
The induction step from (k − 1) to k for 2 ≤ k ≤ n is done as follows.

By the induction hypothesis we know thatHl(B;R) belongs to C for 1 ≤ l ≤ k−1.
Next we show by induction that Erk,0 lies in C for all r ∈ Z≥2. We have Erk,0 = E∞k,0
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and hence Erk,0 ∈ C for r ≥ k+1. Hence it remains to show by downward induction

that Erk,0 ∈ C holds for r = (k+1), k, (k−1), . . . , 2. The induction step from (r+1)

to 2 ≤ r ≤ k is done as follows. By the induction hypothesis Er+1
k,0 belongs to C.

There is a short exact sequence

0→ Er+1
k,0 → Erk,0 → im

(
drk,0 : Erk,0 → Erk−r,r−1

)
→ 0.

Obviously im(drk,0) is a submodule of Erk−r,r−1 which is a subquotient of E2
k−r,r−1

∼=
Hk−r(B;Hr−1(F ;R)). We have 0 ≤ k − r < k ≤ n and 1 ≤ r − 1 < k ≤ n
and H0(B;Hr−1(F ;R)) ∼= Hr−1(F ;R). As we assume conditions (Fn−1), (En),
and (TT) and (Bn−1) holds by the induction hypothesis, the Universal Coefficient
implies that Hk−r(B;Hr−1(F ;R)) and hence im(drk,0) lie in C. Therefore Erk,0 lies

in C. This finishes the proof that E2
k,0 lies in C. Since E2

k,0
∼= Hk(B,H0(F ;R)) holds

and H0(F ;R) is a finitely generated free R-module, Hk(B;R) is a direct summand
in E2

k,0 and hence belongs to C. This finishes the proof of assertion (ii).

(iii) This proof is omitted, since it is completely analogous to the one of assertion(ii).
�

Remark 29.11. Obviously Proposition 29.10 holds also for n =∞ if we interprete
∞± 1 =∞.

Example 29.12. Let C be a Serre class in R-Mod satisfying property (TT). Let
X be a simply connected CW -complex. Then we can apply Proposition 29.10 to
the path fibration ΩX → P (X) → X. Since P (X) is contractible, Hn(P (X);R)
lies in C for n ∈ Z≥1.

Hence Hn(ΩX;R) lies in C for every n ∈ Z≥1 if and only if Hn(X;R) lies in C
for every n ∈ Z≥1.

Definition 29.13 (Properties (K) and (TTK)). A Serre class C in R-Mod has
property (K) if for every A ∈ C and n ∈ Z≥1 the R-module Hn(K(A, 1);R) lies in
C.

A Serre class in R-Mod has property (TTK) if it has property both (TT) and
property (K).

The next corollary follows directly from Example 29.12 and the path fibration
K(A,n− 1)→ P (K(A,n))→ K(A,n) for n ∈ Z≥2.

Corollary 29.14. Suppose that C is a Serre class in R-Mod having property
(TTK). Consider A ∈ C.

Then for n, k ∈ Z≥1 we have Hk(K(A,n);R) ∈ C.

Lemma 29.15. The Serre classes in Z-Mod given by Z-Mod, Z-Triv, Z-Modfg,
Z-Modfin, Z-Tors, and Z-TorsP for any set of primes P satisfy the condition
(TTK).

Proof. Obviously Z-Mod and Z-Triv satisfy (TTK), since K({0}, 1) is contractible.
The classes Z-Tors and Z-TorsP are closed under tensor products since for two Z-

modulesM andN , x ∈M , y ∈ N and n ∈ Z we have n·(x⊗y) = (nx)⊗y = x⊗(ny).
The category Z-Modfg is closed under tensor products since Zm ⊗Z Zn ∼= Zm·n
holds and for two epimorphisms of Z-modules f : Zm → M and g : N → Zn the
Z-homomorphism f ⊗Z g : Zm ⊗Z Zn → M ⊗Z N is surjective. Since Z-Modfin =
Z-Modfg ∩ Z-Tors, also Z-Modfin is closed under tensor products.

If M belongs to Z-Modfg, we can find a 1-dimensional resolution by finitely
generated free Z-modules 0→ F1 → F0 →M → 0. Hence we get for M ∈ Z-Modfg

and any N ∈ Z-Mod an exact sequence

0→ TorsZ1 (M,N)→ F0 ⊗Z N → F1 ⊗Z N.
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If N belongs to the Serre class C of Z-Mod, then we conclude TorsZ1 (M,N) ∈ C for
every M ∈ Z-Modfg by Remark 29.2. Hence the classes Z-Modfg and Z-Modfin

are closed under the passage to TorZ1 (−,−). Since TorsZ1 (−, N) commutes with
directed colimits, every Z-module is the directed union of its finitely generated Z-
submodules and Z-Tors and Z-TorsP are closed under directed colimits, also Z-Tors
and Z-TorsP are closed under the passage to TorZ1 (−,−). Hence the Serre classes
Z-Modfg, Z-Modfin, Z-Tors, and Z-TorsP for any set of primes P satisfy condition
(TT).

A model for K(Z, 1) is S1. A model for K(Z/m, 1) is given by the quotient
S∞/Z/m where the free Z/m-action on S∞ is given by restricting the canonical
S1-action to the subgroup Z/m ⊆ Z. Let t ∈ Z/m be the generator and put N =∑m−1
i=0 ti. Denote by ε : Z[Z/m] → Z the augmentation homomorphism sending∑m−1
i=0 ni · ti to

∑m−1
i=0 ni. One easily checks that

· · · t−1−−→ Z[Z/m]
N−→ Z[Z/m]

t−1−−→ Z[Z/m]
N−→ Z[Z/m]

t−1−−→ Z[Z/m]
ε−→ Z→ 0

is a free Z[Z/m]-resolution F∗ of the trivial Z[Z/m]-module Z. (Actually this is the
Z-chain complex of S∞ for an appropriate CW -structure on S∞ coming from one
on S∞/Z/m.) By the Fundamental Lemma of Homological algebra we get for any
CW -structure on S∞/Z/m that Hn(K(Z/m, 1);Z) ∼= Hn(Z ⊗Z[Z/m] F∗) holds for

n ∈ Z≥0. Since Z⊗Z[Z/m] F∗ looks like

· · · 0−→ Z m−→ Z 0−→ Z m−→ Z 0−→ Z,

we get

Hn(K(Z/m, 1);Z) ∼=


Z n = 0;

Z/m n ≥ 1 and n is odd;

{0} otherwise.

If A is a finitely generated Z-module, we get an isomorphism

A ∼= Zr ⊕
s⊕
i=1

Z/ni

for appropriate elements r, s ∈ Z≥0 and ni ∈ Z≥2. Hence we obtain a model for
K(A, 1) by

∏r
i=1K(Z, 1) ×

∏s
i=1K(Z/ni, 1). Now the Künneth Theorem implies

that Hn(K(A, 1);Z) is finitely generated for n ∈ Z≥0. Hence the class Z-Modfg

satisfies (TTK).
If A is finite, we get r = 0 in the decomposition above, and again by the Künneth

Theorem we conclude that Hn(K(A, 1);Z) is finite for n ∈ Z≥1. Hence the class
Z-Modfin satisfies (TTK).

Let P be a set of primes and A be an element in Z-Modfg ∩ Z-TorsP . Then
in the decomposition above we get r = 0 and each number ni can be written as∏l
k=1 p

mk
k for some l ∈ Z≥1, pi ∈ P, and ni ∈ Z≥1. Again by the Künneth Theorem

we conclude that Hn(K(A, 1);Z) belongs to Z-Modfg ∩ Z-TorsP for n ∈ Z≥1.
Next consider A in Z-TorsP . Let I be the set of finitely generated Z-submodules

of A, directed by inclusion. Then A is the directed union
⋃
i∈I Ai. One can show

for every n ∈ Z≥0

Hn(K(A, 1);Z) = colimi∈I Hn(K(Ai, 1);Z).

SinceHn(K(Ai, 1);Z) belongs to Z-TorsP for i ∈ I, the same is true forHn(K(A, 1);Z).
Hence Z-TorsP satisfies the condition (TTK).

Since Z-Tors is Z-TorsP if P consist of all prime numbers, the proof of Lemma 29.15
is finished. �
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30. The Hurewicz Theorem modulo a Serre class

Definition 30.1. Let C be a Serre class in R-Mod. Consider a morphism of R-
modules f : M → N .

(i) We call f a C-monomorphism if ker(f) belongs to C;
(ii) We call f a C-epimorphism if cok(f) belongs to C;
(iii) We call f a C-isomorphism if ker(f) and cok(f) belongs to C.

Theorem 30.2 (Hurewicz Theorem modulo a Serre class). Let X be a simply
connected space. Consider n ∈ Z≥2 and a Serre class of Z-Mod satisfying condition
(TTK).

Then the following statements are equivalent:

(i) πk(X) lies in C for 2 ≤ k ≤ (n− 1);
(ii) Hk(X) lies in C for 2 ≤ k ≤ (n− 1).

If one of the conditions above is satisfied, then the Hurewicz homomorphism

hurn(X) : πn(X)→ Hn(X)

is a C-isomorphism.

Proof. We begin with the implication (i) =⇒ (ii). We choose a Postnikov tower
{τ≤kX, pk, ϕk} for X in the sense of Section 15. Since X is simply connected, we
have τ≤2X ' K(π2(X), 2). The fiber of pk : τ≤kX → τ≤k−1X is K(πk(X), k) for
k ≥ 3. Corollary 29.14 implies that Hi(K(πk(X), k)) belongs to C for 2 ≤ k ≤
(n− 1) and i ∈ Z≥1. We conclude from Proposition 29.10 and Remark 29.11 that
Hi(τ≤n−1X) belongs to C for i ∈ Z≥1.

Since ϕn−1 : X → τ≤n−1X is an n-connected map of simply connected spaces,
the induced map Hk(X) → Hk(τ≤n−1X) is bijective for 1 ≤ k ≤ (n − 1) by the
classical Hurewicz Theorem, see Proposition 12.12 (i). Hence Hk(X) belong to C
for 1 ≤ k ≤ (n− 1).

Next we show that, if the condition (ii) is satisfied, the condition (i) holds
and hurn(X) : πn(X) → Hn(X) is a C-isomorphism. It suffices to show that
hurk(X) : πk(X) → Hk(X) is a C-isomorphism for 2 ≤ k ≤ n. This will be done
by induction over k = 2, 3, . . . , n. The induction beginning follows from the classi-
cal Hurewicz Theorem, see Proposition 12.12 (i). In the induction step from k to
k+1 ≤ n we can assume by the induction hypothesis that huri(X) : πi(X)→ Hi(X)
a C-isomorphism for 2 ≤ i ≤ k ≤ n−1. From the arguments appearing in the proof
of the the implication (i) =⇒ (ii) we conclude that Hi(τ≤kX) and Hi(τ≤k+1X)
belong to C for i ∈ Z≥1. We have H1(τ≤kX) = H1(τ≤k+1X) = {0} since τ≤kX
and τ≤k+1X are simply connected. From the Hurwicz Theorem 12.8 we conclude
Hi(K(πk+1(X), k + 1)) = {0} for 1 ≤ i ≤ k. Now the Serre sequence, see Proposi-
tion 27.4, yields the exact sequence

Hk+2(τ≤kX)→ Hk+1(K(πk+1(X), k + 1))

j−→ Hk+1(τ≤k+1X)→ Hk+1(τ≤k+1X)→ {0}.

Since Hk+2(τ≤kX) and Hk+1(τ≤k+1X) belong to C, the R-homomorphism j is a
C-isomorphism. The following diagram commutes and all maps marked with ∼= are
C-isomorphisms

πk+1(K(πk+1(X), k + 1)) ∼=
//

∼= hurk+1(K(πk+1(X),k+1))

��

πk+1(τ≤k+1X)

��

hurk+1(τ≤k+1X)

��

πk+1(X)

hurk+1(X)

��

πk+1(ϕk+1)

∼=
oo

Hk+1(K(πk+1(X), k + 1))
j

// Hk+1(τ≤k+1X) Hk+1(X).
Hk+1(ϕk+1)

∼=
oo
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As j is a C-isomorphism, hurk+1(X) is a C-isomorphism. This finishes the proof of
Theorem 30.2. �

Corollary 30.3. Let X be a simply connected CW -complex such that Hn(X) is
finitely generated for every n ≥ Z. Then πn(X) is finitely generated for every
n ≥ Z.

Proof. This follows from Theorem 30.2 applied to the Serre class R-Modfg. �

31. The Whitehead Theorem modulo a Serre ideal

Definition 31.1 (Serre ideal). A Serre class C in R-Mod is called an ideal if for

any object M in C and any R-module N both M ⊗R N and TorsR1 (M,N) lie in C.

Obviously a Serre ideal has property (TT) and is closed under direct sums over
arbitrary index sets.

Theorem 31.2 (Whitehead Theorem modulo a Serre ideal). Let f : X → Y be
a map of simply connected spaces such that π2(f) : π2(X) → π2(Y ) is surjective.
Consider n ∈ Z≥2 and a Serre ideal C in Z-Mod satisfying property (K). Then:

(i) The following assertions are equivalent:
(a) The homomorphism πk(f) : πk(X) → πk(Y ) is a C-isomorphism for

2 ≤ k < n and a C-epimorphism for k = n;
(b) The homomorphism Hk(f) : Hk(X)→ πk(Y ) is a C-isomorphism for

2 ≤ k < n and a C-epimorphism for k = n.
(ii) The following assertions are equivalent:

(a) The homomorphism πk(f) : πk(X) → πk(Y ) is a C-isomorphism for
every k ∈ Z≥2;

(b) The homomorphism Hk(f) : Hk(X)→ πk(Y ) is a C-isomorphism for
every k ∈ Z≥2.

Proof. Obviously assertion (ii) follows from assertion (i) which is proved as follows.
Since we can turn f into a fibration, we can assume without loss of generality

that f itself is a fibration. Let F be its fiber. The long exact homotopy sequence
associated to f and the assumption that π2(f) is surjective imply that F is simply
connected.

We start with the implication (i)a =⇒ (i)b.
The long exact homotopy sequence of f and Lemma 29.5 (i) imply that πk(F )

belongs to C for k < n. Hence Hk(F ) belongs to C for 2 ≤ k < n by the Hurewicz
Theorem modulo a Serre class, see Theorem 30.2.

Next we consider the Leray-Serre spectral sequence of the fibration F
i−→ X

f−→ Y
for singular homology. Note that this is a first quadrant spectral sequence.

We get from the Universal Coefficient Theorem a short exact sequence

{0} → Hp(Y )⊗Z Hq(F )→ Hp(Y ;Hq(F ))→ TorsZ1 (Hp−1(Y ), Hq(F ))→ {0}.

Since C is a Serre ideal, E2
p,q = Hp(Y ;Hq(F )) belongs to C for p, q ∈ Z≥0 if 0 < q < n

holds. This implies that Erp,q = Hp(Y ;Hq(F )) belongs to C for p, q ∈ Z≥0 and

r ∈ Z≥2 q {∞} if 0 < q < n holds.
Recall that we have the filtration

{0} = F−1,k+1 ⊆ F0,k ⊆ F1,k−1 ⊆ · · · ⊆ Fk−1,1 ⊆ Fk,0 = Hk(X)

such that Fi,k−i/Fi−1,k−i+1
∼= E∞i,k−i holds for i = 0, 1, 2 . . . , k. Hence Fi,k−i be-

longs to C for i = 0, 1, 2, . . . , (k−1) by Lemma 29.5 (iii) if k < n holds. In particular
Fk−1,1 belongs to C if k < n holds.
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Moreover, we have the filtration

{0} ⊆ E∞k,0 ∼= Ek+1
k,0 ⊆ E

k
k,0 ⊆ Ek−1

k,0 ⊆ · · · ⊆ E
2
k,0
∼= Hk(Y,H0(F )) ∼= Hk(Y ).

The filtration quotients are given by E∞k,0, im(dkk,0), im(dk−1
k,0 ), . . . , im(d2

k,0). In par-

ticular we obtain a filtration of Hk(Y )/E∞k,0 whose filtration quotients are im(dkk,0),

im(dk−1
k,0 ), . . . , im(d2

k,0). Since im(drk,0) is a submodule of Erk−r,r−1 which lies for

2 ≤ r ≤ k ≤ n in C, each of these filteration quotients lie in C. Hence Hk(Y )/E∞k,0
lies in C for k ≤ n by Lemma 29.5 (iii).

We get from the edge homomorphism edgek,0 the exact sequence

{0} → Fk−1,1 → Hk(X)
Hk(f)−−−−→ Hk(Y )→ Hk(Y )/E∞k,0 → {0}

Since Fk−1,1 belongs to C if k < n holds and Hk(Y )/E∞k,0 belong to C for k ≤ n,

the homomorphism Hk(X)
Hk(f)−−−−→ Hk(Y ) is a C-isomorphism for k < n and a

C-epimorphism for k = n. Hence assertion (i)b holds.
Next we prove the implication (i)b =⇒ (i)a. Thanks to the long homotopy

sequence of f it suffices to show that πk(F ) belongs to C for k < n. Assume that
contrary. So we can choose k ∈ {2, 3, . . . , n−1} such that πk(F ) does not belong to
C but πi(F ) belongs to C for i ∈ {2, 3, . . . , k − 1}. The Hurewicz Theorem modulo
a Serre class, see Theorem 30.2 implies that E2

0,k = H0(Y ;Hk(F )) ∼= Hk(F ) does
not belong to C.

The same argument as the first step shows that Erp,q belong to C for p, q ∈ Z≥0

and r ∈ Z≥2 if 0 < q < r holds.
Next we show that Ek+1

0,k does not belong to C. The induction beginning r = 2

as already been taken care of. The induction step from r for 2 ≤ r ≤ k to (r + 1)
is done as follows. We have the exact sequence

Err,k−r+1

drr,k−r+1−−−−−−→ Er0,k → Er+1
0,k → {0}.

The middle term Er0,k does not belong to C by the induction hypothesis. Since
2 ≤ r ≤ k implies 0 < k − r + 1 < k, we know already that Err,k−r+1 belongs to

C. This implies that Er+1
0,k does not belong to C. This finishes the proof that Ek+1

0,k

does not belong to C.
In the next step we show Ek+2

0,k = E∞0,k does not belong to C. Consider the exact
sequence

Ek+1
k+1,0

dk+1
k+1,0−−−−→ Ek+1

0,k → Ek+2
0,k → {0}.

The differential dk+1
k+1,0 factorizes as the composite of a monomorphism and epimor-

phism by

Ek+1
k+1,0 → Ek+1

0,k / ker(dk+1
k+1,0)→ Ek+2

0,k .

Since ker(dk+1
k+1,0) ∼= Ek+2

k+1,0
∼= E∞k+1,0

∼= im(Hk+1(f)) holds, we get an injection

Ek+1
0,k / ker(dk+1

k+1,0)→ Hk+1(Y )/ im(Hk+1(f)) ∼= cok(Hk+1(f)).

Since k < n and hence Hk+1(f) is a C-epimorphism, Ek+1
0,k / ker(dk+1

k+1,0) belongs to

C. Since Ek+1
0,k does not belong to C, Ek+2

0,k = E∞0,k does not belong to C.
On the other hand E∞0,k is contained in Fk−1,1 ⊆ Hk(X) and Fk−1,1 is the kernel

of Hk(f). As k < n holds, Hk(f) is a C-isomorphism by assumption. This implies
that the kernel of Hk(f) and hence also E∞0,k lies in C, a contradiction. Hence we

have shown that πk(F ) belongs to C for k ≤ n which implies assertion (i)a. This
finishes the proof of Theorem 31.2. �
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Remark 31.3. One can generalize Theorem 30.2 and Theorem 31.2 as follows.
One can drop in Theorem 30.2 the assumption that X is simply connected by
the assumption that X is a nilpotent space, i.e, the π1(X)-action on the higher
homotopy groups is nilpotent. (This is a weaker condition than being a simple
space). In Theorem 31.2 one can replace the assumptions that X and Y are simply
connected and π2(f) is surjective by the assumption that X and Y are nilpotent
spaces.

32. (Stable) Homotopy groups of spheres

Definition 32.1. Let P be a set of primes. Let Z[1/P] ⊆ Q be the subring
containing Z and p−1 for every p ∈ P.

If p is a prime and P = {p}, then we write Z[1/p] instead of Z[1/P]. If p is a
prime and P consists of all primes different from p, then we write Z(p) instead of
Z[1/P].

If P is empty, then Z[1/P] agrees with Z. f P is consists of all primes, then
Z[1/P] agrees with Q.

The proof of the next result is left to the reader.

Lemma 32.2. Consider the functor I : Z-Mod → Z[1/P]-Mod sending M to
M ⊗Z Z[1/P].

(i) The functor I has a right adjoint given by restriction with the inclusion
Z→ Z[1/P];

(ii) The functor I commutes with colimits over directed systems of Z-modules;
(iii) The functor I is exact;
(iv) Let f : M → N be a Z-homomorphism of Z-modules. Then

idZ[1/P]⊗Zf : Z[1/P]⊗Z M → Z[1/P]⊗Z N

is trivial if and only if f is a Z-TorsP -isomorphism.

32.1. Finite generation and rational computations.

Theorem 32.3. Consider k, n ∈ Z≥1. If n is odd and k > n, then πk(Sn) is finite.

Proof. For n = 1 we know already πk(S1) = {0} for k > n. So we can assume with-
out loss of generality that n ≥ 3 holds. Choose a map f : Sn → K(Z, n) inducing

an isomorphism πn(f) : πn(Sn)
∼=−→ πn(K(Z, n)). We conclude from Theorem 28.8

that Hk(f ;Q) : Hk(Sn;Q)
∼=−→ Hk(K(Z, n);Q) is bijective for all k ∈ Z≥0. The Uni-

versal Coefficient Theorem implies that Hk(f ;Q) : Hk(Sn;Q)
∼=−→ Hk(K(Z, n);Q)

is bijective for all k ∈ Z≥0. The Whitehead Theorem modulo a Serre ideal, see
Theorem 31.2 (ii), and Lemma 32.2 imply that idQ⊗Zπk(f) : Q ⊗Z πk(Sn) →
Q ⊗Z πk(K(Z, n)) is an isomorphism for k ∈ Z≥0. Therefore Q ⊗Z πk(Sn) van-
ishes for k > n. Hence πk(Sn) belongs to the Serre class Z-Tors. Since Hk(Sn)
is finitely generated for k ∈ Z≥0, we conclude from Corollary 30.3 that πk(Sn) is
finitely generated for k > n. We conclude that πk(Sn) is finite for k > n. �

Corollary 32.4. The abelian group πsk({•}) is finite for k ≥ 1.

Proof. We conclude from the Freudenthal Suspension Theorem 11.16 that πsk({•}) ∼=
πk+n(Sn) holds for n ≥ k + 2. Now apply Theorem 32.3. �

Theorem 32.5. Consider k, n ∈ Z≥1 such that n is even. Then πk(Sn) is finite
for k /∈ {n, (2n − 1)} and we have πn(Sn) ∼= Z and πn(S2n−1) ∼= Z ⊕ F for some
finite abelian group F .
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Proof. We get H∗(K(Z, n);Q) ∼= Q[xn] with |xn| = n from Theorem 28.8. Choose
a map f : K(Z, n) → K(Q, 2n) representing x2

n ∈ Hn(K(Z, n);Q) under the iden-
tification [K(Z, n),K(Q, 2n)] = Hn(K(Z, n);Q) appearing in Example 16.26. We
can turn f into a fibration. Let F be its fiber. Then we obtain a fibration

K(Q, 2n− 1) = ΩK(Q, 2n)→ F
p−→ K(Z, n).

Next we compute H∗(F ;Q) using the Leray-Serre spectral sequence applied to
the fibration above. We have shown H∗(K(Z; 2n − 1);Q) ∼= ΛQ(y2n−1) with
|y2n−1| = 2n− 1 in Theorem 28.8. Let g : K(Z, 2n− 1)→ K(Q, 2n− 1) be the map
representing the generator y2n−1 of H2n−1(K(Z, 2n− 1);Q). It induces an isomor-

phism idQ⊗Zπk(g) : Q⊗Z πk(K(Z, 2n− 1))
∼=−→ Q⊗Z πk(K(Q, 2n− 1)) for k ∈ Z≥1.

The Whitehead Theorem modulo the Serre ideal R-Tors, see Theorem 31.2 together
with Lemma 32.2 imply that Hk(g;Q) : Hk(K(Z, 2n−1);Q)→ Hk(K(Q, 2n−1);Q)
is bijective for every k ∈ Z≥1. We conclude from the Universal Coefficient Theorem
that we obtain for every k ∈ Z≥1 an isomorphism

Hk(g;Q) : Hk(K(Q, 2n− 1);Q)
∼=−→ Hk(K(Z, 2n− 1);Q).

The (2n)th page of the cohomological Leray-Serre spectral sequence for the fibration
p : F → K(Z, n) is the only page with possible non-trivial differentials. We have

Ep,q2n = Ep,q2 = Hp(K(Z, n);Hq(K(Q, 2n− 1);Q)

= Hp(K(Z, n);Q)⊗Hq(K(Q, 2n− 1);Q) = Q[xn]⊗ ΛQ(y2n−1).

and the only possible non-trivial differentials are d2npn, 2n− 1: Epn,2n−1
2n → E

(p+2)n,0
2n

for p ∈ Q≥0.
For n = 3 it looks in the range 0 ≤ p ≤ 9 and 0 ≤ q ≤ 5 like

Q〈y5〉

d0,53

""

0 0 Q〈x3y5〉

d3,53

""

0 0 Q〈x2
3y5〉 0 0 Q〈x3

3y5〉

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Q 0 0 Q〈x3〉 0 0 Q〈x2
3〉 0 0 Q〈x3

3〉

The composite

H2nK(Q, 2n);Q)
H2n(f ;Q)−−−−−−→ H2n(K(Z, n);Q)

H2n(p;Q)−−−−−−→ H2n(F ;Q)

is trivial, since f ◦ p is null homotopic. The map H2n(f ;Q) sends the canonical
generator of H2n(K(Q, 2n);Q) ∼= Q to x2

n. Hence Hn(p;Q) : Hn(K(Z, n);Q) →
Hn(F ;Q) sends x2

n to zero and therefore is the trivial map. Recall from the
discussions about the edge homomorphism edge2n,0 and the fact that E0,2n−1

∞ =
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E0,2n−1
2n+1 holds that we obtain an exact sequence

E0,2n−1
2n

d0,2n−1
2n−−−−−→ E2n,0

2n → E2n,0
2n+1 = E2n,0

∞ → {0}

and the equality

E2n,0
∞ = im

(
H2n(p;Q) : H2n(K(Z, n);Q)→ H2n(F ;Q)

)
.

Since Hn(p;Q) is trivial, we conclude that the differential

d0,2n−1
2n : E0,2n−1

2n = Q〈y2n−1〉 → E2n,0
2n = Q〈x2

n〉

is surjective and hence bijective, as its source and its domain have the same dimen-
sion. Choose r ∈ Q with r 6= 0 and d0,2n−1

2n (y2n−1) = r · x2
n.

Next we show for k ∈ 0, 1, 2, . . .

dkn,2n−1
2n (xkny2n−1) = (−1)kn · r · xk+2

n .

The induction beginning k = 0 is obvious. The induction step from k to (k + 1)
follows from the computation

d
(k+1)n,2n−1
2n (xk+1

n y2n−1) = d
(k+1)n,2n−1
2n (xn(xkny2n−1))

= dn,02n (xn)(xkny2n−1) + (−1)n · xn · dkn,2n−1
2n (xkny2n−1)

= 0 + (−1)nxn((−1)kn · 7 · xk+2
n ) = (−1)(k+1)n · r · x(k+1)+2

n .

Hence for k ∈ Z≥0 the differential

dkn,2n−1
2n : Ekn,2n−1

2n = Q〈xkny2n−1〉 → E
(k+2)n,0
2n = Q〈xk+2

n 〉

is bijective. Let z be the image of xn under the map Hn(p;Q) : Hn(K(Z, n);Q)→
Hn(F ;Q). So we get

Ep,q∞ =


Q p = q = 0;

Q〈xn〉 p = n, q = 0;

{0} otherwise.

This implies

H∗(F ;Q) ∼= ΛQ[z] for |z| = n.

Let s : Sn → K(Z, n) be a map representing a generator of πn(K(Z, n)) ∼= Z.
Since its composite with the map f : K(Z, n) → K(Q, 2n) is nullhomotopic, we
can find a map t : Sn → F whose composite with p : F → K(Z, n) is homotopic
to s. Then Hk(t;Q) : Hk(Sn;Q) → Hk(F ;Q) is bijective for all k ∈ Z≥0. The
Whitehead Theorem modulo the Serre ideal Z-Tors, see Theorem 31.2 together
with Lemma 32.2 imply that idQ⊗Zπk(t) : Q⊗Z πk(Sn)→ Q⊗Z πk(F ) is bijective
for all k ∈ Z≥. The long exact homotopy sequence associated to the fibration

F → K(Z, n)
f−→ K(Q, 2n) implies

πk(F ) ∼=


Z k = n;

Q k = 2n− 1;

{0} otherwise.

Hence we get

Q⊗Z πk(Sn) ∼=

{
Q k ∈ {n, 2n− 1};
{0} otherwise.

We know already that πn(Sn) ∼= Z holds and that πk(Sn) is finitely generated
for all k ∈ Z≥1, see Theorem 3.4 and Corollary 30.3. This finishes the proof of
Theorem 32.5. �
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32.2. p-coprimary computations. Note that Corollary 30.3 implies that for fixed
n ∈ Z≥1 we get

πk(Sn) ∼= Zr ⊕
⊕

p prime

sp⊕
i=1

Z/pli,p

for sp ∈ Z≥0 and li,p ∈ Z≥1. We have figured out the value of ri in Theorem 32.3
and Theorem 32.5, namely

r =


1 if k = n;

1 if k = 2n− 1 and n is even;

0 otherwise.

In general the values of sp and li,p are not known. In order to get some information,
it is useful to attack this problem for each prime separately. The key idea is the
formula

Z(p) ⊗ πk(Sn) ∼= Zr(p) ⊕
sp⊕
i=1

Z/pli,p .

Proposition 32.6. Let p be a prime. Then we get

πk(S3)(p)
∼=


Z(p) k = 3;

{0} k < 2p, k 6= 3;

Z/p k = 2p.

Proof. Consider a mp s : S3 → K(Z, 3) such that π3(s) : π3(S3)
∼=−→ π3(K(Z, 3))

is bijective. We can turn it into a fibration. Let F be the fiber. The long exact
homotopy sequence implies πk(F ) ∼= πk(S3) for k ∈ Z≥4. In Subsection 28.7 we
have proved

Hk(F ) ∼=


Z/l if k = 2l ≥ 4;

Z k = 0;

{0} otherwise.

Hence Hk(F ) belong to the Serre class Z-Tors(p) for k < 2p, or, equivalently
Z(p) ⊗Z Hk(F ) vanishes for k < 2p. The Hurewicz Theorem modulo Z-Tors(p),
see Theorem 30.2 implies that πk(F ) belongs to Z-Tors(p) for k < 2p and that
the Hurewicz homomorphism π2p(F ) → H2p(F ) is a Z-Tors(p)-isomorphism. This
finishes the proof of Proposition 32.6. �

One interesting aspect of Proposition 32.6 is that πk(S3) is non trivial for infinite
many values of k. It also implies π4(S3) ∼= Z/2 and πs1

∼= Z/2.

Proposition 32.7. Let l be a prime. Consider n ∈ Z3 which is odd. Then the
double suspension homomorphism

σ2
k(Sn) : πk(Sn)→ πk+2(Sn+k)

is a Z-Tors(l)-isomorphism for k < l(n + 1) − 3 and a Z-Tors(l)-epimorphism for
k = l(n+ 1)− 3.

Proof. Let ω : Sn → Ω2Sn+2 be the adjoint of idSn+2 : S2 ∧ Sn = Sn+2 → Sn+2.
Since we have the commutative diagram

πk(Sn)
πk(ω)

//

σ2
k(Sn) ))

πk(Ω2Sn+2)

∼=
��

πk+2(Sn+1)
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it suffices consider πk(ω) instead of σ2
k(Sn), Because of the Whitehead Theo-

rem modulo the Serre ideal Z-Tors(l), see Theorem 31.2, it suffices to show that

Hk(ω) : Hk(Sn)→ Hk(Ω2Sn+2) is a Z-Tors(l)-isomorphism for k < l(n+ 1)−3 and
a Z-Tors(l)-epimorphism for k = l(n+ 1)− 3.

We have already proved that πk(Ω2Sn+2) ∼= πk(Sk) is finitely generated for
all k ∈ Z≥1, see Corollary 30.3. The Hurewicz Theorem modulo the Serre class
Z-Modfg, see Theorem 30.2, implies that Hk(Ω2Sn+2) is finitely generated for
k ∈ Z≥1. Hence the kernel and the cokernel of Hk(ω) are finitely generated abelian
groups. Hence it suffices to show that Fl⊗Z ker(Hk(ω)) is trivial for k < l(n+1)−3
and Fl ⊗Z cok(Hk(ω)) is trivial for k ≤ l(n+ 1)− 3.

Since the homology of Sn is concentrated in dimension n and Hn(ω) : Hn(Sn)→
Hn(Ω2Sn+2) is an isomorphism by the Hurewicz Theorem, see Proposition 12.12,
we get ker(Hk(ω)) = {0} for k ∈ Z≥1 and cok(Hk(ω)) = {0} for k = n. Hence it
remains to show that Fl ⊗Z cok(Hk(ω)) is trivial for k ≤ l(n+ 1)− 3, k 6= n.

Consider the commutative diagram

Fl ⊗Z Hk(Sn)

idFl ⊗ZHk(ω)

��

∼=
// Hk(Sn;Fl)

idHk(ω;Fl)

��

Fl ⊗Z Hk(Ω2Sn+2) //

��

Hk(Ω2Sn+2;Fl)

��

Fl ⊗Z cok(Hk(ω))

��

// cok(Hk(ω;Fl))

��

{0} {0}

whose rows are exact and whose top arrow and second top vertical arrow come from
the Universal Coefficient Theorem. An easy diagram chase shows that it suffices to
prove that that cok(Hk(ω;Fl)) is trivial for k ≤ l(n+ 1)− 3, k 6= n.

Next we compute H∗(ΩSn+2;Fl) in a range. We apply the Leray-Serre spectral
sequence to the path fibration ΩSn+2 → P (Sn) → Sn. The only nontrivial differ-
entials occur on the (n+ 2)th page. For n = 3 it looks in the range 0 ≤ p ≤ 5 and
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0 ≤ q ≤ 8 like

H8(ΩS5;Fl)

d0,85

&&

0 0 0 0 H8(ΩS5;Fl)

H7(ΩS5;Fl)

d0,75

&&

0 0 0 0 H7(ΩS5;Fl)

H6(ΩS5;Fl)

d0,65

&&

0 0 0 0 H6(ΩS5;Fl)

H5(ΩS5;Fl)

d0,55

&&

0 0 0 0 H5(ΩS5;Fl)

H4(ΩS5;Fl)

d0,45

&&

0 0 0 0 H4(ΩS5;Fl)

H5(ΩS5;Fl) 0 0 0 0 H5(ΩS5;Fl)

H2(ΩS5;Fl) 0 0 0 0 H2(ΩS5;Fl)

H1(ΩS5;Fl) 0 0 0 0 H1(ΩS5;Fl)

H0(ΩS5;Fl) 0 0 0 0 H0(ΩS5;Fl)

Recall that P (Sn) is contractible and hence Hm(P (Sn);Fl) vanishes for m ≥ 1.

Hence all the differentials dp,0n+2 must be isomorphisms. Pick a generator x of

E0,n+1
n = Hn+1(ΩSn;Fl) = Fl and y of En+2,0

n = H0(ΩSn+2;Fl) = Fl such that
dn+2,0
n maps y to x. Hence for n = 3 the nth page it looks in the range 0 ≤ p ≤ 5
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and 0 ≤ q ≤ 6 like

Fl

d0,85

''

0 0 0 0 Fl

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Fl〈y〉

d0,45

&&

0 0 0 0 Fl

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Fl 0 0 0 0 Fl〈x〉

A computation similar to the one in Subsection 28.6 using the fact that the
differentials are derivations shows that

(32.8) d
0,(n+1)k
n+1 (yk) = k! · uk holds for some generator uk ∈ Fl

For k < l, the number k! a unit in Fl. Hence the map

Fl[y]→ H∗(ΩSn+2;Fl)
is an isomorphism in degrees < l(n+ 1).

Next we consider the path fibration Ω2Sn+2 → P (ΩSn+2) → ΩSn+2 and we
apply the Leray-Serre spectral sequence to it. We conclude from the Künneth
Theorem

Ep,q2 = Hp(ΩSn+2;Hq(Ω2Sn+2;Fl)) = Hp(ΩSn+2;Fl)⊗Fl H
q(Ω2Sn+2;Fl).

Recall that P (ΩSn+2) is contractible and hence Hm(P (ΩSn+2);Fl) = {0} holds for
m ∈ Z≥1. This implies that Ep,q∞ must be trivial if (p, q) 6= (0, 0) holds. We have
Ep,q2 = Hp(ΩSn+2;Fl) ⊗Fl H

q(Ω2Sn+2;Fl) = {0} Hence Ep,qr vanishes for every
r ∈ Z≥2 q {∞}, unless q = m · (n+ 1) holds for some m ∈ Z≥.

Let us consider the (n+1)th page which does agree with the second page. Every
differential dp,0r for 0 ≤ p < n−1 and r ∈ Z≥2q{∞} has {0} as target and hence is

trivial. This implies that Ep,02 = Hp(ΩSn+2;Fl) vanishes for 0 ≤ p < n− 1. Hence
Ep,qr = 0 for every r ∈ Z≥2 q {∞}, unless q = m · (n + 1) holds for some m ∈ Z≥
and p ≥ n holds. The differential

d0,n
n+1 : E0,n

n+1 = Hn(ΩSn+2;Fl)→ En+1,0
n+1 = Hn+1(ΩSn+2;Fl)

must be an isomorphism, since E0,n
∞ vanishes and each differential d0,n

n+1 for r ≥ n+2

has trivial target and hence vanishes. This implies that Hn(Ω2Sn+2;Fl) ∼= Fl
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holds and that we can choose a generator z ∈ Hn(Ω2Sn+2;Fl) which is sent under

d0,n
n+1 to the generator y ∈ Hn+1(ΩSn+2;Fl). Recall the map Hp(ΩSn+2;Fl) →
Hp+n+1(ΩSn+2;Fl) given by multiplication with y is bijective for p < (l−1)(n+1)

and the zero map for p = (l−1)(n+1). Hence the map Ep,q2 = Ep,qn+1 → Ep+n+1,q
2 =

Ep+n+1,q
n+1 is for all q ∈ Z≥0 an isomorphism for p < (l− 1)(n+ 1) and the zero map

for p = (l − 1)(n+ 1).
So the (n + 1)th page looks schematically in the range 0 ≤ p ≤ l(n + 1) and

0 ≤ q ≤ n

Fl〈z〉

dn,0n+1
∼= $$

Fl〈zy〉

dn,n+1
n+1

∼= $$

· · · Fl〈zyl−3〉

d
n,(l−3)(n+1)
n+1

∼= $$

Fl〈zyl−2〉

d
n,(l−2)(n+1)
n+1

∼= $$

Fl〈zyl−1〉

d
n,(l−1)(n+1)
n+1

0
$$

?

Fl Fl〈y〉 Fl〈y2〉 · · · Fl〈yl−2〉 Fl〈yl−1〉 ?

where we have listet the intersection of the 0-th and n-row and the columns over 0,
(n+ 1), . . . , p(n+ 2), all other entries are trivial. Since dn+1,n

n+1 is an isomorphism

and dn+1,n
n+1 ◦ d0,2n

n+1 = 0, the differential d0,2n
n+1 is trivial. Obviously the differentials

d0,p
n+1 vanish for n < p < 2n, since their targets are trivial. This implies that all

differentials starting at (p, 0) for n < p < 2n, are trivial. Hence Hp(Ω2Sn+2;Fl)
vanishes for 1 ≤ p ≤ 2n, p 6= n. Note that this implies that Ep,qn+1 for q ≤ 2n

vanishes unless (p, q) is of the form (0,m(n+1)) or (n,m(n+1)) for some m ∈ Z≥0

and that Ep,qr for q ≤ 2n and r ∈ Z≥(n+2) vanishes unless (p, q) = (0, 0). Now one
easily shows inductively for i = 2n, 2n+ 1, 2n+ 2 . . . , l(n+ 1)− 3

• All differentials starting at (p, 0) for n < p < i have {0} as target and
hence are trivial;

• Hp(Ω2Sn+2;Fl) vanishes for 1 ≤ p ≤ i, p 6= n;
• Ep,qn+1 for q ≤ i vanishes unless (p, q) is of the form (0,m(n+1)) or (n,m(n+

1)) for some m ∈ Z≥0

• Ep,qr for q ≤ 2i and r ∈ Z≥(n+2) vanishes unless (p, q) = (0, 0).

If we take i = l(n + 1) − 3, we conclude that Hk(Ω2Sn+1;Fl) is trivial for k ≤
l(n + 1) − 3, k 6= n. The Universal Coefficient Theorem implies that Hk(ΩS2;Fl)
and hence cok(Hk(ω;Fl)) is trivial for k ≤ l(n + 1) − 3, k 6= n. This finishes the
proof of Proposition 32.7.

As an addendum we mention that the fact that d
(l−1)(n+1),n
n+1 is trivial implies

that the differential

d
0,l(n+1)−2
(l−1)(n+1) : E

0,l(n+1)−2
(l−1)(n+1) → E

(l−1)(n+1),n
(l−1)(n+1)

∼= Fl

is surjective and hence Hl(n+1)−2(Ω2Sn+2;Fl) is non-trivial. �

Theorem 32.9. Let p be a prime. We have

Z(p) ⊗Z π
s
n
∼=

{
{0} n < 2p− 3;

Z/p n = 2p− 3.

Proof. Consider the sequence of double suspension maps

πn+3(S3)→ πn+5(S5)→ πn+7(S7)→ · · ·
We conclude that the first map πn+3(S3) → πn+5(S5) is a Z-Tors(p)-isomorphism
for n+ 3 < 4p− 3, or, equivalently, for n < 4p− 6. The other maps are Z-Tors(p)-
isomorphism in even larger ranges for n. We conclude from Proposition 32.6 that
Z(p) ⊗Z πn+3(S3) vanishes for 3 < n+ 3 < 2p, or, equivalently, for 0 < n < 2p− 3
and is Z/p for n = 2p− 3. Since the double suspensions map above are Z-Tors(p)-
isomorphism for n ≤ 2p− 3, Theorem 32.9 follows. �
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An interesting aspect of Theorem 32.9 is that for any prime p there is an n ∈ Z≥1

such that πsn contains p-torsion. The reader should check that the first 19 explicit
values of the stable stems from the table (11.28) are consistent with Theorem 32.9.

33. Exercises part I

Exercise 1. Let M be a connected closed 3-manifold whose fundamental group G
is perfect, i.e., G agrees with its commutator subgroup [G,G], and non-trivial.

Prove or disprove that there is a map f : M → S3 which is not a homotopy
equivalence and induces an isomorphism Hn(f ;A) : Hn(M ;A) → Hn(S3;A) for
any abelian group A and any n ≥ 0.

Exercise 2. Let f : X → Y be a homotopy equivalence. Show that for any x ∈ X
and n ≥ 1 the induced map πn(f, x) : πn(X,x)→ πn(Y, f(x)) is an isomorphism.

Exercise 3. Compute πn(T k × Rl, x) for all k, l, n ≥ 1, where T k is the k-torus.

Exercise 4. Consider a path connected space X with base point x ∈ X and n ≥ 1.

(i) Let [Sn] ∈ Hn(Sn) be a generator. Show that we get a well-defined group
homomorphism

hurn : πn(X,x)→ Hn(X)

by sending [f ] represented by the pointed map f : (Sn, s)→ (X,x) to the
image of the fundamental class [Sn] under the map Hn(f) : Hn(Sn) →
Hn(X).

(ii) Give for every n ≥ 2 examples of closed connected orientable manifolds
M,N of dimension n such that hurn : πn(M,x) → Hn(M) is surjective
and hurn : πn(N, x)→ Hn(N) is trivial.

Exercise 5. Let W be the Warsaw circle, i.e., the union of subsets of R2 given by
the union of {(x, sin(2π/x)) | x ∈ (0, 1]}, {(1, y) | y ∈ [−2, 0]}, {(x,−2) | x ∈ [0, 1]}
and {(0, y) | y ∈ [−2, 1]}.

Show that the projection p : W → {•} is a weak homotopy equivalence but not
a homotopy equivalence.

Exercise 6. Let X ⊆ Rn+1 be the union
⋃∞
k=0 Yk, where Yk is the sphere around

(1/k, 0, 0, . . . , 0) of radius 1/k.
Prove or disprove that there is a surjective homomorphism πn(X,x) →

∏∞
i=0 Z

and hence πn(X,x) is uncountable for any base point x ∈ X.

Exercise 7. Compute the set of homotopy classes [X,Y ] of maps X → Y for the
following cases:

(i) X = Y = Sn for 1 ≤ n;
(ii) X = Sm and Y = Sn for 0 ≤ m < n;
(iii) X = Sn and Y = Tn for n ≥ 2;
(iv) X = CPn and Y = S2n for n ≥ 1;
(v) X = CPn and Y = S1 for n ≥ 1.

Exercise 8. Let (X,A) be a topological pair such that A is (n − 1)-connected
and X is n-connected for n ∈ {1, 2, . . .} q {∞}. Prove or disprove that (X,A) is
n-connected.

Exercise 9. Prove or disprove for n ≥ 0 that an n-connected CW -complex of
dimension n is contractible.

Exercise 10. Let X be a CW -complex such that for every natural number m
there is a natural number n with m ≤ n such that the inclusion Xm → Xn is
nullhomotopic. Prove or disprove that X is contractible.
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Exercise 11. Let G be a finitely generated abelian group G and n ∈ Z≥1. Con-
struct a compact (n+1)-dimensional path connected CW -complex X with πn(X) ∼=
G.

Exercise 12. Let N be a path connected oriented closed smooth n-manifold which
has the following property: For any path connected oriented closed smooth n-
manifold M the degree defines a bijection deg : [M,N ]→ Z.

Prove or disprove that N is oriented homotopy equivalent to Sn.

Exercise 13. Let X be a topological space which is dominated by a CW -complex
Y , i.e., there exists a CW -complex Y with maps i : X → Y and r : Y → X with
r ◦ i ' idX .

Prove or disprove that X has the homotopy type of a CW -complex.

Exercise 14. Prove or disprove that a compact metric space Y has a CW -approximation
f : X → Y with compact X.

Exercise 15. Let X be a m-connected and Y be a n-connected CW -complex
coming with base points. Prove or disprove that X ∧ Y is (m+ n+ 1)-connected.

Exercise 16. Let X be the space obtained from S1 ⊆ R2 by identifying the open
subsets {(x, y) ∈ S1 | y > 0} and {(x, y) ∈ S1 | y < 0}. Let p : S1 → X be the
projection.Then the set X has four points, namely, the images of (0, 1), (0,−1),
(1, 0), and (0,−1) under p.

(i) Describe the open subsets of X and show that X is not a Hausdorff space,
is path connected, and is pre-compact, i.e., every open covering has a finite
subcovering;

(ii) Prove or disprove that X has a universal covering p : X̃ → X;
(iii) Prove or disprove that p : S1 → X is a CW -approximation;
(iv) Prove or disprove that S1 and X are homotopy equivalent.

Exercise 17. Show that any metric space and any locally compact Hausdorff space
is compactly generated.

Exercise 18. Prove or disprove:

(i) The composite of two cofibrations is again a cofibration;
(ii) The product of two cofibrations is again a cofibration (i.e., if f1 : A1 → X1

and f2 : A2 → X2 are cofibrations, then f1 × f2 : A1 ×A2 → X1 ×X2 is a
cofibration);

(iii) A cofibration with non-empty domain is surjective if and only if it is a
homeomorphism.

Exercise 19. Let (X,A) be a NDR. Prove or disprove that the canonical projection
p : X → X/A is a homotopy equivalence if A is contractible.

Exercise 20. Consider closed subspaces A and B of X. Suppose that the inclusions
A→ X, B → X, and A ∩B → X are cofibrations.

Prove or disprove that the inclusion A ∪B → X is a cofibration.

Exercise 21. Consider the pushout

A
f
//

i

��

B

i
��

X
f

// Y.

Suppose that i is the inclusion of a strong neighborhood deformation retraction
(X,A).
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Prove or disprove that i is the inclusion of a strong neighborhood deformation
retraction (Y,B).

Exercise 22. Let i : A → X be a cofibration. Let f : (X,A) → (Y,B) be a map
which is as a map of pairs homotopic to a map g : (X,A) → (Y,B) satisfying
g(X) ⊆ A.

Prove or disprove that f is homotopic relative A to a map g : (X,A) → (Y,B)
satisfying g(X) ⊆ A.

Exercise 23. Let X and Y be well-pointed spaces. Prove or disprove that their
smash product X ∧ Y is well-pointed.

Exercise 24. Consider the commutative diagram

X0
i0
//

f0

��

X1
i1
//

f1

��

X2
i2
//

f2

��

· · ·

Y0
j0
// Y1

j1
// Y2

j2
// · · ·

Suppose that each horizontal arrow is a cofibration and each vertical arrow is a
homotopy equivalence.

Prove or disprove that the induced map

colimn→∞ fn : colimn→∞Xn → colimn→∞ Yn

is a homotopy equivalence.

Exercise 25. Consider the subspace X = I × {0} ∪ {0} × I of R2. Let f : X → I
be the map sending (x, y) to x.

Prove or disprove that f is a fibration.

Exercise 26. Let F be a finite set equipped with the discrete topology. Put
X =

∏
n∈Z F with respect to the classical product topology. Let Xd be the set X

equipped with the discrete topology and let p : Xd → X be the map given by the
identity. Prove:

(i) X is a compact Hausdorff space;
(ii) X is a compactly generated space;

(iii) X is totally disconnected, i.e., each of its components contains only one
point;

(iv) Each path components of X contains only one point;
(v) p is continuous and bijective;

(vi) p is a not homeomorphism;
(vii) p is a fibration.

Exercise 27. Prove or disprove:

(i) The composite of two fibrations is again a fibration;
(ii) The product of two fibrations is again a fibration;

(iii) A fibration with non-empty domain and locally contractible codomain is
injective if and only if it is a homeomorphism.

Exercise 28. Let p : E → S1 be a fibration. Let Fs = p−1(s) be the fiber of s. Let
the homotopy equivalence f : Fs → Fs be a representative of the fiber transport
associated to a generator of π1(S1, s).

Prove that E is homotopy equivalent to the mapping torus Tf of f .

Exercise 29. Let G be a path connected topological group and p : E → B be
a principal G-bundle. Prove or disprove that the fiber transport associated to p
regarded as a fibration is trivial.
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Exercise 30. Let H : Z → π3(S2) be the isomorphism sending 1 ∈ Z to the class
[p] of the Hopf fibration p : S3 → S2. Let f : S3 → S3 and g : S2 → S2 be maps.
Prove: H(deg(f)) = [p ◦ f ] and H(deg(g)2) = [g ◦ p].

Exercise 31. Decide for which d ∈ Z≥1 any principal G-bundle over any d-
dimensional CW -complex is trivial, where G is Z with the discrete topology, S1,
or S3 with the multiplication coming from the embedding S3 ⊆ H into the field of
quaternions.

Exercise 32. Let p : E → B be a fibration over a path connected space B. Let
F = p−1(b) for some b ∈ B. Recall that a space X is called aspherical if it is path
connected and πn(X,x) vanishes for all base points x ∈ X and n ≥ 2. Prove or
disprove:

(i) If F and B are aspherical, then E is aspherical;
(ii) If F and E are aspherical, then B is aspherical;

(iii) If E and B are aspherical, then F is aspherical.

Exercise 33. Compute for n ≥ 2 and k ≥ 1:

(i) π1(Sn−1 × SO(n)× RPn × CPn);
(ii) πk(Tn × RP∞ × CP∞);

(iii) π2(Sn ∨ CPn).

Exercise 34. Prove or disprove that the obvious map π3(D2, S1)→ π3(D2/S1) is
surjective.

Exercise 35. Consider m,n ∈ Z≥−1. Let X and Y be spaces such that X is
m connected and Y is n-connected, where (−1)-connected means that there is no
condition. The join X ∗ Y of X and Y is defined by the pushout

X × Y //

��

X × cone(Y )

��

cone(X)× Y // X ∗ Y.

Prove that the join X ∗ Y is (m+ n+ 2)-connected.

Exercise 36. Prove or disprove:

(i) For every simply connected topological group G we have π1(ΩBG) = {1};
(ii) If G is a topological group, then π1(G) is abelian;
(iii) If G is a compact connected Lie group and the universal principal G-bundle

p : EG→ BG has a section s : BG→ EG, then G is the trivial group.

Exercise 37. Let ξ be an n-dimensional vector bundle over the space B. For l ∈
Z≥0 an l-framing of ξ is a bundle isomorphism (idB , u) : Rn+l

∼=−→ ξ⊕Rl over B. We

call an l0-framing (idB , u0) : Rn+l0
∼=−→ ξ⊕Rl0 and an l1-framing (idB , u1) : Rn+l1

∼=−→
ξ ⊕ Rl1 equivalent if there exists l ∈ Z≥0 with l ≥ l0, l1 such that for i = 0, 1 the
two bundle isomorphisms over B

Rn+l = Rn+li ⊕ Rl−li
(idB ,ui)⊕idRl−li−−−−−−−−−−−→ ξ ⊕ Rli ⊕ Rl−li = ξ ⊕ Rl

are homotopic through bundle isomorphisms over B. A stable framing on ξ is an
equivalences class of l-framings.

(i) Prove that the group [B, SO] acts transitively and freely on the set of
stable framing of ξ if there exists a stable framing on ξ;

(ii) Show that the tangent bundle TS2 has precisely one stable framing;
(iii) Show that the tangent bundle TS1 has precisely two stable framings;
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(iv) Construct explicite representatives for these stable framings on TS2 and
TS1.

Exercise 38. Prove that πs0
∼= Z and that there is a surjection Z→ πs1.

Exercise 39. Construct a natural isomorphism

πsn(X)⊗Z Q
∼=−→ Hn(X;Q)

for any space X using the fact that πsn is finite for every n ∈ Z≥0.

Exercise 40. Consider n ≥ 2 and X = S1 ∨ Sn. Show that the Z[π1(X)]-module
πn(X) is free of rank 1.

Exercise 41. Decide which of the following spaces are Eilenberg-MacLane spaces
of type (G,n). If the answer is yes, specify the values for G and n:

(i) Sd for d ∈ Z≥0 q {∞};
(ii) RPd for d ∈ Z≥0 q {∞};

(iii) CPd for d ∈ Z≥0 q {∞};
(iv) S1 ∨ S1;
(v) T d for d ∈ Z≥1.

(vi) A simply connected 4-manifold.

Exercise 42. Let X be an Eilenberg-Mac-Lane space of type (G,n) for n ≥ 2.
Prove or disprove that there is a CW -approximation K(G, (n− 1))→ Ω(X,x) for
every x ∈ X.

Exercise 43. (i) Find simply connected pointed spaces X and Y such that
the inclusion X ∨ Y → X × Y is not a weak homotopy equivalence;

(ii) Let E and F be spectra. Show that we get well-defined spectra E∨F and
E×F satisfying (E∨F)n = E(n)∨F (n) and (E×F)n = E(n)×F (n) for
n ∈ Z, and that there is an obvious map of spectra i : E ∨ F→ E× F.

Prove or disprove that i is a weak homotopy equivalence of spectra.

Exercise 44. Define the nth homology of a spectrum E for n ∈ Z by

Hn(E) := colimk→∞Hn+k(E(k))

where the k-th structure map is the composite

Hn+k(E(k))
σn+k(E(k))−−−−−−−→ Hn+k+1(S1 ∧ E(k))

Hn+k+1(flip)−−−−−−−−→ Hn+k+1(E(k) ∧ S1)
Hn+k+1(σ(k))−−−−−−−−−→ Hn+k+1(E(k + 1)).

of the homological suspension isomorphism σn+k(E(k)), the map induced by the
flip map flip and the homomorphism induced by the structure map σ(k).

Decide whether for any abelian group G there is a spectrum M(G) such that
H0(M(G)) ∼= G holds and Hn(M(G)) vanishes for n 6= 0.

34. Exercises part II

Exercise 1. Let M be a simply connected closed 4-manifold whose Euler charac-
teristic χ(M) is 2. Prove or disprove that M is homotopy equivalent to S4.

Exercise 2. Let X and Y be CW -complexes and ξ and η vector bundles over X
and Y . Prove that there are pointed homeomorphisms

Th(ξ × η)
∼=−→ Th(ξ) ∧ Th(η);

Th(ξ ⊕ Rk)
∼=−→ Sk ∧ Th(ξ).

Exercise 3. Compute πs0(X) for a connected CW -complex X.
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Exercise 4. Prove:

(i) There exists a self-homotopy equivalence f : CP∞ → CP∞ which is not
homotopy to the identity.

(ii) There exists a fibration CP∞ → E → S1 such that E is homotopy equiv-
alent to the mapping torus of f ;

(iii) We have

πn(Tf ) =

{
Z if n = 1, 2;

{0} otherwise;

(iv) The mapping torus Tf is not homotopy equivalent to a product of Eilenberg-
MacLane spaces.

Exercise 5. Show that we obtain a transformation of homology theories with values
in F2-modules T∗ : N∗ → H∗(−;F2) by assigning to an element [f : (M,∂M) →
(X,A)] ∈ Nn(X,A) the image of the fundamental class [M,∂M ] ∈ Hn(M,∂M ;F2)
under the homomorphism Hn(M,∂M ;F2) → Hn(X,A;F2) induced by f . Show
that Tn(X) is bijective for any 2-dimensional CW -complex X and any n ∈ {0, 1, 2}.

Exercise 6. Show that we obtain for n ∈ Z≥0 a surjective homomorphism N2n →
Z/2 by sending an element [M ] to its Euler characteristic χ(M) modulo 2 and a
surjective homomorphism Ω4n → Z by sending an element [M ] to its signature
sign(M).

Exercise 7. Compute the topological K-theory K∗(CPd) for d ∈ Z≥1.

Exercise 8. Let M be a connected closed (n−1)-dimensional smooth submanifold
of Rn for n ∈ Z≥1. Prove or disprove that its normal bundle ν(M ⊆ Rn) is not
trivial if and only if Hn(M ;Z) vanishes.

Exercise 9. Let (P) be a property of Z-modules. We say that a connected CW -
complex X has property (P) if Hn(X) has (P) for n ∈ Z≥1. We call property (P)
compatible with products if for two connected finite CW -complexes X and Y all
three spaces X, Y , and X ×Y have property (P) if two of them have property (P).

Decide which of the following properties (P) is compatible with products:

(i) The Z-module is trivial;
(ii) The Z-module is finite;
(iii) The Z-module is finitely generated;
(iv) The Z-module is finitely generated free.

Exercise 10. LetM be a closed smooth manifold of dimension d. Let {U1, U2, . . . , Un}
be a finite set of open subsets Ui of M such that every Ui is diffeomorphic to Rd.

Construct an injective smooth map

f : M → Rdn

whose differential Txf is injective for every x ∈M .

Exercise 11. Let µ be an n-dimensional system of vector bundles over the CW -
complex X. Let µ′ be the n + 1-dimensional system of vector bundles over X
obtained from µ whose vector bundle in degree k is ξk⊕R if ξk is the vector bundle
in degree k of µ, and whose structure maps are the obvious ones.

Give and prove a formula how to compute Ω∗(µ
′) from Ω∗(µ).

Exercise 12. Is there a fibration F → S4 → B for which F and B are closed
connected orientable manifolds of dimension ≥ 1?
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Exercise 13. Let X be a CW -complex which is of finite type, i.e., each i-skeleton
is finite. Suppose that H∗ is a homology theory with values in Z-modules which
satisfies the disjoint union axiom and Hm({•}) = 0 for m < 0. Suppose that
Hm({•}) is finitely generated for all m ∈ Z≥0.

Prove or disprove that Hn(X) is finitely generated for every n ∈ Z and vanishes
for n < 0.

Exercise 14. Let f : X → Y be a weak homotopy equivalence of compactly gen-
erated Hausdorff spaces.

Prove or disprove that the induced map Ωn(f) : Ωn(X)→ Ωn(Y ) is bijective for
all n ∈ Z.

Exercise 15. Prove or disprove:

(i) Let H∗ be homology theory with values in R-modules. Let f : S1 →
S1 be the map sending z to zd for d ∈ Z. Then the induced map
Hn(f) : Hn(S1, {1})→ Hn(S1, {1}) can be identified with the mapHn−1({•})→
Hn−1({•}) given by multiplication with d;

(ii) We have:

Nn(RP2) ∼=F2
Nn({•})⊕Nn−1({•})⊕Nn−2({•}).

Exercise 16. Let G be a compact Lie group. Show that its tangent bundle is
trivial. Describe an (interesting) construction which assigns to G an element in the
stable stem πsn for n = dim(G).

Exercise 17. Let H∗ be a homology theory with values in R-modules satisfying
the disjoint union axiom. Let X be a 2-dimensional CW -complex.

Prove or disprove that for every n ∈ Z there is a filtration

{0} ⊆ A ⊆ B ⊆ Hn(X)

satisfying

A ∼=R H0(X;Hn−1({•}));
B/A ∼=R H1(X;Hn−1({•}));

H2(X)/B ∼=R H2(X;Hn−2({•})).

Exercise 18. Let X be a connected finite CW -complex with π1(X) ∼= Z/3 whose
universal covering is homeomorphic to S3.

(i) Compute Hn(X,Z) and Hn(X;F2) for n ∈ Z≥0;
(ii) Compute Kn(X) for n ∈ Z;
(iii) Compute Ωn(X) for n ∈ {0, 1, 2, 3, 4, 5}.

Exercise 19. Consider a homology theory H∗ such that Hq({•}) is finitely gener-
ated free for q ∈ Z and and a finite CW -complex X with Hp(X) finitely generated
free for every p ≥ 0

Prove or disprove that the Atiyah-Hirzebruch spectral sequence strongly col-
lapses and yields isomorphisms

Hn(X) ∼=
⊕
p+q=n

Hp(X)⊗Z Hq({•}).

Exercise 20. Let X be a CW -complex such that Hn(X;F2) vanishes for n ∈ Z≥1.
Prove or disprove that Nn(X) and Hn(X;F2) are isomorphic F2-modules.

Exercise 21. Let Z o Z be the semidirect product with respect to the group
homomorphism Z → aut(Z) sending m ∈ Z to the automorphism (−1)m · idZ.



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 203

(Note that Z o Z has the presentation 〈t, s | sts−1 = t−1〉.) Let K be the Klein
bottle K which is the quotient of R2 by the free ZoZ-action for which t and s act
by sending (r1, r2) to (r1 + 1) and (−r1, r2 + 1) respectively.

(i) Show that K is a closed 2-dimensional manifold;
(ii) Compute π1(K), Hn(K;Z), Hn(K;Z), Hn(K;F2), and Hn(K;F2) for n ≥

0;
(iii) Compute the first Stiefel Whitney class w1(M) ∈ H1(K;F2);
(iv) Decide whether K is orientable and determine its orientation covering.

Exercise 22. Prove Lemma 2.13 of the script saying that the adjunction homo-
morphism

ad: homRD(M ⊗RC B,N)→ homRC(M,homRD(B,N))

is bijective and natural.

Exercise 23. Let X be a CW -complex such that Hn(X;Z) ∼=Z Hn({•};Z) holds
for n ∈ Z≥0. Prove or disprove that for any homology theory H∗ with values in
R-modules satisfying the disjoint union axiom the R-modules Hn(X) and Hn({•})
are isomorphic for n ∈ Z.

Exercise 24. Consider d ∈ Z≥0q{∞}. Compute Q⊗ZKn(RPd) for n ∈ Z for the
complex topological K-homology K∗.

Exercise 25. Let A be a Z-module. Let A0 ⊆ A1 ⊆ A2 ⊆ · · · be a nested sequence
of Z-submodules of A such that A =

⋃
i∈I Ai holds.

Prove or disprove that for every n ∈ Z≥0 we get

Hn(K(A, 1);Z) = colimi→∞Hn(K(Ai, 1);Z).

Exercise 26. Let f : X → Y be a map of CW -complexes. Consider d ∈ Z≥1 and a
homology theory H∗ with values in R-modules satisfying the disjoint union axiom
such that Hi({•}) = {0} holds for i ≤ −1. Suppose that Hi(f ;Z) : Hi(X;Z) →
Hi(Y ;Z) is bijective for i < d and surjective for i = d.

Prove or disprove that Hi(f ;Z) : Hi(X;Z)→ Hi(Y ;Z) is bijective for i < d and
surjective for i = d.

Exercise 27. Let X be a finite CW -complex. Let H∗ homology theory with values
in Q-modules satisfying the disjoint union axiom such that Hi({•}) 6= {0} holds
only for finitely many i ∈ Z and Hi({•}) is finitely generated for every i ∈ Z.

Prove or disprove that Hn(X) is finitely generated for all i ∈ Z and we get for
the Euler characteristic

χ(X) =
∑
n∈Z

(−1)n · dimQ(Hn(X)).

Exercise 28. Let H∗ be any homology theory with values in Z-modules satisfying
the disjoint union axiom such that Hi({•}) = {0} holds for i ≤ −1. Let f : X → Y
be a map of connected finite CW -complexes. Suppose that Hi(f) : Hi(X)→ Hi(Y )
is bijective for all i ∈ Z.

Prove or disprove that Hi(f ;Z) : Hi(X;Z)→ Hi(Y ;Z) is bijective for all i ∈ Z≥0.

Exercise 29. Consider k, l, n ∈ Z≥0 for which there exists a fibration Sk → Sn →
Sl. Prove or disprove that then l = k + 1 and n = k + l holds.

Exercise 30. Consider fibration of closed connected smooth manifolds F → E →
B. Prove or disprove:

(i) We have dim(E) = dim(F ) + dim(B);
(ii) If E is orientable, then B and F are orientable;

(iii) If B and F are orientable, then E is orientable;
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(iv) If E is the total space of principal S1-bundle S1 → E → X, then χ(B) or
χ(F ) vanishes.

Exercise 31. Let H∗ be a homology theory satisfying the disjoint union axiom.
Consider a pullback of fibrations with CW -complexes as base space

E0
f
//

p0

��

E1

p1

��

B0
f
// B1.

Suppose that for any n ∈ Z≥0, any b1 ∈ B1, and any loop w in B1 at b1 the
map Hn(p−1

1 (bk))→ Hn(p−1
1 (bk)) induced by the element τ1(w1) ∈ [p−1

1 (b), p−1
1 (b)]

given by the fiber transport is the identity and that Hn(f) : Hn(B0) → Hn(B1) is
bijective.

Prove or disprove that the map Hn(f) : Hn(E0)→ Hn(E1) is bijective for every
n ∈ Z.

Exercise 32. Let F : E → B be a fibration such that the fiber transport is trivial.
Let R be a principal ideal domain. Suppose Hi(F ;R) and Hi(B;R) are finitely
generated for all i ∈ Z≥ and non-trivial only for finitely many values of i.

(i) Show that Hi(E;R) is finitely generated for all i ∈ Z≥ and non-trivial only
for finitely many values of i;

(ii) Show for the Betti numbers, which are define by bi(X;R) := rkR(Hi(X;R)),∑
i≤0

bi(E;R) ≤
(∑
j≥0

bi(F ;R)
)
·
(∑
k≥0

bk(B;R)
)

;

(iii) Suppose that the inequality above is an equality and R is a field. Prove or
disprove

Hn(E;R) =
⊕
i≥0

Hi(F ;R)⊗R Hn−i(B;R).

Exercise 33. Let F be a field and G be a finite group. Prove or disprove that the
following assertions are equivalent:

(i) FG is semisimple;
(ii) The FG-module F whose underlying F -module is F and on which G acts

trivial is projective;
(iii) The order |G| of G is invertible in F.

Exercise 34. Let p : E → B be a principal G-bundle for the discrete finite group
G. Prove or disprove that Hn(E;Q)G is isomorphic to Hn(B;Q) for n ∈ Z≥0.

Exercise 35. Let F → E → B be a fibration where F and B are path connected
closed nonorientable 2-manifolds. Suppose that the fiber transport is trivial. Prove
or disprove:

H3(E) ∼=Z TorsZ1 (H1(B), H1(F )).

Exercise 36. Let X be a space. We call a class a ∈ Hn(X,Z) realisable if there
exists a map f : M → X with M a closed oriented n-manifold such that a = f∗[M ].
Prove:

(i) The homomorphisms

Ωn(X)→ Hn(X,Z), (f : M → X) 7→ f∗[M ]

extend to a transformation of homology theories;
(ii) Every class in degrees n ≤ 5 is realisable;
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(iii) For every n, every class a ∈ Hn(X) is rationally realisable, i.e., there exists
N > 0 such that Na is realisable.

Exercise 37. Compute the first Chern class of the principal S1-bundle over S2

given by the Hopf fibration.

Exercise 38. The infinite dihedral group D∞ is defined by the presentation 〈s, t |
sts = t−1, s2 = 1〉.

(i) Show that there is a fibration S1 → BD∞ → RP∞;
(ii) Compute Hn(BD∞;Z) for n ∈ Z≥0.

Exercise 39. Let M be a closed connected 3-manifold whose fundamental group
is perfect, i.e. π = [π, π]. Consider a prime p. Let f : M → S3 be a map of a degree
which is prime to p. Consider a pullback

E
f
//

��

E

q

��

M
f
// S3

where q is a fibration. Let H∗ be a homology theory with values in Fp-modules
satisfying the disjoint union axiom.

Prove or disprove that Hn(f) : Hn(E)→ Hn(E) is an isomorphism for all n ∈ Z.

Exercise 40. Let F
i−→ E

p−→ B be a fibration of path connected spaces with a
CW -complex B as basis. Suppose that the action of π1(B) on Hq(F ) given by the
fiber transport is trivial. Denote by Ep,qr be the Leray-Serre spectral sequence for
the fibration p. Prove or disprove:

(i) The map Hn(i) : Hn(E)→ Hn(F ) factorizes as the composite Hn(E)
α−→

E0,n
∞

β−→ Hn(F ) for an epimorphism α and a monomorphism β;

(ii) The map Hn(p) : Hn(B)→ Hn(E) factorizes as the composite Hn(B)
α−→

En,0∞
β−→ Hn(E) for an epimorphism α and a monomorphism β;

Exercise 41. Let R be a torsionfree commutative ring. Prove or disprove that the

divided power R-algebra R
[
y, y

2

2! ,
y3

3! ,
y4

4! · · ·
]

and the R-algebra R[x] for |x| and |y|
even are isomorphic as graded R-algebras if and only if |x| = |y| and Q ⊆ R hold.

Exercise 42. Let R be a commutative ring. Prove or disprove:

(i) The full subcategory of R-Mod given by finitely generated R-modules is
a Serre class, if and only if R is Noetherian;

(ii) The full subcategory of R-Mod given by R-modules whose underlying set
is finite is a Serre class;

(iii) The full subcategory of R-Mod given projective R-modules is a Serre class
if and only if R is a semisimple, i.e., every R-module is projective.

(iv) The full subcategory of R-Mod given by free R-modules is a Serre class if
and only if R is a field.

Exercise 43. (i) Prove that there is an isomorphismH∗(BU(n),Z) ' Z[c1, . . . , cn]
of graded rings with generators in degrees |ci| = 2i. Hint: You may use
the fibration S2n−1 → BU(n− 1)→ BU(n) without proof.

(ii) Consider a complex rank n vector bundle ζ : E → B over a CW-complex
B and denote its classifying map by f : B → BU(n). We can define its
kth Chern class by ck(ζ) = f∗ck ∈ H2k(B,Z) for k ≤ n and ck(ζ) = 0 for
k > n. Prove the following:
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(a) c0(ζ) = 1.
(b) ck(ζ) = 0 for k ≥ 1 if ζ is trivial.
(c) Compute ck(γn) where γn is the universal rank n bundle over BU(n).
(d) Show that this definition of c1(ζ) agrees with the one from the lecture

for n = 1.
(e) Explain how cn(ζ) can be identified with the Thom class of the asso-

ciated sphere bundle S(ζ), sometimes also called its Euler class.

Exercise 44. (i) Show that the map

edgen,0(Sn)× Ωn(pr) : Ωn(Sn)→ Ωn({•})×Hn(Sn;Z)

is bijective, where pr : Sn → {•} is the projection;
(ii) Show that edgen,0(X) sends the bordism class of f : M → X to the im-

age of the fundamental class [M ] under the map Hn(f ;Z) : Hn(M ;Z) →
Hn(X;Z), provided this claim holds for X = Sn, without using exercise
36.

Exercise 45. Let X be a connected finite CW -complex with finite fundamental
group. Prove or disprove that πn(X) is finitely generated for all n ≥ 1.

Exercise 46. Let A be a finitely generated abelian group and n ∈ Z≥1. Prove or
disprove:

(i) Suppose that A has an element of infinite order. Then there exists d ∈ Z≥2

such that Hi(K(A,n);Q) = {0} holds for every for i > d if and only if n
is odd;

(ii) Suppose that A contains an element of order 2. Then H∗(K(A,n);Z) 6=
{0} in arbitrary high degrees;

(iii) We have Hi(K(A,n);Q) = {0} for every i ≥ 1 if and only if A is finite;
(iv) We have Hi(K(A,n);Z) = {0} for every i ≥ 1 if and only if A is trivial;
(v) Hi(K(A,n)) is finitely generated for all i ∈ Z≥0.

Exercise 47. Decide which of the following Serre classes in Z-Mod are Serre ideals:
Z-Torsp, Z-Tors, Z-Modfg, R-Modfin.

Exercise 48. State all the results which are presented in the script about πn(Sk)
and the stable stems πsn for n ∈ Z≥0 and k ∈ Z≥1.
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