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ABSTRACT. This manuscript is based on the lecture courses Algebraic Topology
I from the winter term 24/25 and Algebraic Topology II from the summer term
25. It consists of an introduction to homotopy theory starting with the basic
definitions about homotopy groups and ending with Serre’s proof that the
stable stems are finite except in dimension zero.

1. INTRODUCTION

This manuscript is based on the lecture courses Algebraic Topology I from the
winter term 24/25 and Algebraic Topology II from the summer term 25. These are
the fourth and fifth course in a series of all together five courses on topology. The
first three were Introduction to Topology and Geometry, Topology I, and Topology
II, which I presented in the Summer term 23, the winter 23/24 and the summer
term 24.

The table of contents shall give an overview about the material presented in
these courses. Key words are: homotopy groups, cofibrations, fibrations, White-
head Theorems, Hurewicz Theorem, Excision Theorem due to Blakers and Massey,
Freudenthal’s Suspension Theorem, stable homotopy theory, stable stems, spectra,
Eilenberg MacLane spaces, bordism theory, the Pontrjagin Thom construction,
spectral sequences, and Serre’s Theorem about the finiteness of stable stems.

1.1. Prerequisites. One does not need all the material of the courses Introduction

to Topology and Geometry, Topology I, and Topology II but at least the following:
e Topological spaces;

Fundamental groups;

CW-complexes;

Coverings;

Chain complexes and modules over a ring;

Singular and cellular (co-)homology including the Universal Coefficient

Theorem.

Basics about smooth manifolds;

e Basics about bundles and vector bundles;

No previous knowledge about homotopy theory is required except for the funda-
mental group. In the course Topology I, and Topology II 1 just covered [I7].

1.2. Acknowledgements. I thank Dominik Kirstein and Christian Kremer who
were assistents for the courses, the tutors of the exercises, and the students. I
received many valuable comments about the manuscript from them.
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2. BASIC DEFINITIONS AND PROPERTIES OF HOMOTOPY GROUPS

2.1. Review of the fundamental group. We briefly recall the notion and the
basic properties of the fundamental group m1 (X, x) of a pointed space (X, x)

Let X = (X, ) be a pointed space, i.e., a topological space X with an explicit
choice of a so called base point x € X. Denote by I the unit interval [0,1]. A
loop at x in X is a map of pairs w: (I,0I) — (X,{z}). Elements in m (X, z)
are homotopy classes of loops at  in X. Note that this means that two loops
w,w': (I,0I) = (X, {x}) are homotopic if there is a homotopy h: I x I — X such
that h(s,0) = w(s), h(s,1) = w'(s), and h(0,t) = h(1,t) = = hold for all s,t € I.
Given two loops v, w at x in X, we get a new loop v * w by putting

~ Jw(2s) if s € [0,1/2];
vkw(s) = w(2s —1) ifse[1/2,1].

The group structure on w1 (X, x) is given by the formula [v] - [w] = [v * w]. The

unit element is given by the constant loop ¢, : (I,9I) — (X, {z}) sending s € I to

x and the inverse of [w] is given by [w™] for w™: (I,0I) — (X, {z}), s — w(l—s).
Here are some basic properties of the fundamental group:

e A pointed map f: (X,z) — (Y,y) induces a group homomorphism
m(f,z): m(X,z) = m(Yyy), [w]—[fouw]

which depends only on the pointed homotopy class of f;
e We get a functor from the category of pointed spaces to the category of
groups;
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Given pointed spaces (X;, z;) for i = 0, 1, we get from the two projections
pr;: (Xo x X1, (20, 21)) = (X;, ;) for i = 0,1 an isomorphism

m1(Pro, (To, 71)) X m1(pry, (20, 21)): m1(Xo X X1, (20, 71))

-%—) 7T1(X07l‘0) X 7T1(X17l’1);
Let p: X — Y be a covering. Choose x € X and put y = p(z). Then the
induced map w1 (p, z): m (X, x) — 71 (Y, y) is injective.

If p is actually a G-covering for the group G and X is path connected,
then we obtain an exact sequence of groups

1o m(X,z) 2% v, S 6= 1

e The mapping degree induces an isomorphism 7y (S?) =7
e There is a Seifert-van Kampen Theorem. It allows to read off a presen-

tation of the fundamental group from the 2-skeleton X5 and implies that
the inclusion X9 — X induces an isomorphism 71 (Xs, ) — 71 (X, z) for
any choice of base point € X. In particular m (X, z) vanishes if X is
a CW-complex which has no 1-cells. Moreover, 71 (\/;_, S*, ) is the free
group of rank r. So in general m(X) is not abelian. Actually any group
occurs as 71 (X, z) for a 2-dimensional path connected CTW-complex X;
We get a functor T; from the fundamental groupoid II(X) to the category
of groups by sending an object in IT(X) which is a point € X to m (X, x).
A morphism [u]: © — y in II(X) is a homotopy class [u] relative endpoints
of paths u: I — X from z to y. It is send to the group homomorphism
T ([u]): m (X, x) — 71(X,y) mapping [w] to [u™ * w x u]. Recall that the
composite of the morphism [u]:  — y and [v]: y — z in II(X) is given by
[v] o [u] = [u* v]. One easily checks T7([v] o [u]) = T1([v]) o T1([u]). Recall
that there is a canonical isomorphism of 1 (X, z) to the opposite of the
group auty(x)(x);

Consider two maps fy, f1: X — Y. Let h: X x I — Y be a homotopy
between fp and f;. Choose a base point & and put y; = f;(z) for i =
0,1. Let u: I — Y be the path from yo to y; given by u(t) = h(x,t).

o

We obtain a group isomorphism T3 ([u]): m1(Y,y0) — m1(Y,y1) and the
following diagram of groups commutes

7T1(Y, yO)

(X, x) = | Ty ([u])

m

™ (Yv yl)

Now consider a pointed pair (X, A, x), i.e., a topological pair (X, A) together with
a choice of a base point z € A. Define the set m1 (X, A, x) as the set of homotopy
classes relative {0} of maps of pairs w: (I,0I) — (X, A) satisfying w(0) = z, or,
equivalently, of homotopy classes of maps of triads (I; {0}, {1}) — (X, {z}, A). Note
that w(1) is not necessarily equal to « and is only required to lie in A. If A = {z},
then 71 (X, A, x) agrees with 71(X,z). In general there is no group structure on
1 (X, A7 ZL’)

Define mo(X) as the set of path components of X. Note that this is the same as
the homotopy classes of maps {e} — X. If (X, z) is pointed map, we sometimes
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write mo (X, x) instead of mo(X) to indicate that the set mo(X) has a preferred base
point, namely the path component containing x.
Next we construct the (in some sense exact) sequence

T (z,x)

(2.2) m(A,x) (X, 2) 29D (X, A x) 2 mo(A)

700, (X)) 9 1o(X, A) < (%)

The map 71(¢,x) is the group homomorphism given by the inclusion i: (A,z) —
(X, ). The map of sets 7 (j,2): m1(X,x) = m (X, A, x) is the obvious map given
by forgetting that w(1) = z holds in connection with 71 (X, 2). The map 0; sends
[w] represented by w: (I,01) — (X, A) to the path component of A containing w(1).
The map of sets () sends the path component C of A to the path component D
of X containing ¢(C'). The pointed set mo(X, A) is the quotient of the set my(X)
by collapsing the image of m(7): mo(A) — mo(X) to one element and 7 (j) is the
obvious projection.

This sequence is exact in the following sense. The image of m(¢,z) is the
preimage under 7 (j,z) of the element in 71(X, A, z) given by the constant map
¢z: I — X. The image of 71 (j, x) is the preimage under d; of the path component
of A containing z. The image of 0; is the preimage under m(i) of the path com-
ponent of X containing xz. The image of m((¢) is the preimage under my(j) of the
preferred base point in mo(X, A). The map 7o (j) is surjective.

2.2. Basic definitions and the group structure on homotopy groups. Next
we want to generalize the notion of the fundamental group to the notion of the
homotopy group in degree n for all integers n > 1. The basic idea is to replace
I =10,1] and 0I = {0, 1} by the n-dimensional cube

n

1" =TJ00,1] = {(s1, 52, ..., sn) | s € [0, 1]}

i=1
where we define
OI" = {(s1,82,...,8n) | si € [, € {1,2,...,n} with s; € {0,1}}.

Given a pointed space X, we define the set m,(X,z) to be the set of homotopy
classes [f] of maps of pairs f: (I",0I") — (X, {x}). Given two elements [f] and
[g], we define their product [f] - [g] by the homotopy class of the map of pairs
fxg: (I™,0I™) — (X, {x}) defined by

s )_{f(2813327"'78n) 1f$16[0,1/2},

2.3 * g(81,82,-.- =
ARG 9(251 — 1,89, ...,8,) ifs1 € [1/2,1].

The unit is given by the homotopy class [c,] of the constant map ¢, : (I"™,0I™) —
(X, {x}). The inverse of [f] is the class [f~] for the map f~: (I",0I") — (X, {z})
sending (81, 82,...,8,) to (1 — s1,89,...,8,). The proof that this defines a group
(X, x) called n-homotopy group of the pointed space (X, x) is the essentially the
same as the one for 71(X). The construction above for n = 1 agrees with the
definition of 71 (X, x) presented in Subsection If we define I° to be {e} and
OI° = (), the definition of the set my(X, x) above agrees with the definition of 7(X)
as the set of path components of X. Recall that my(X) has no group structure in
general and the 71 (X, x) is not necessarily commutative. However, the following
lemma is true.

Lemma 2.4. The group m,(X,x) is abelian for n > 2.
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Proof. The basic observation is that in the cube I for n > 2 there is enough room
to show [f] - [g] = [g] - [f]. The desired homotopy is indicated for n = 2 by the
following sequence of pictures:

[l

The homotopy begins by shrinking the domains of f and g to smaller subcubes
of I, where the region outside these subcubes is mapped to the basepoint. After
this has been done, there is room to slide the two subcubes around anywhere in I"™
as long as they stay disjoint. Hence for n > 2 they can be slided past each other,
interchanging their positions. Then to finish the homotopy, the domains of f and
g can be enlarged back to their original size. The whole process can actually be
done using just the coordinates s; and ss, keeping the other coordinates fixed. [

Any map of pairs f: (I™,01") — (X, {z}) factorizes in a unique way over the pro-
jection pr: I™ — I"™/OI™ to a pointed map f: (I"/dI", 01" /dI") — (X, z). Obvi-
ously this is compatible with the notion of a homotopy of maps of pairs (I",9I") —
(X, {z}) and of a pointed homotopy of pointed maps (I"/9I",0I" /OI") — (X, x).
There is an obvious homeomorphism of pairs (I™/9I™,0I™/0I") — (S™,{s}) for
the fixed base point s = (1,0,...,0) € S™. Hence we can interprete an element in
(X, z) as a pointed homotopy of pointed maps (S™, s) — (X, ). The multiplica-
tion in this picture is given as follows. Consider pointed maps f;: (S™,s) — (X, z)
for i = 0,1. Let [fo] and [f1] be their classes in 7, (X, z). They define a pointed
map foV fi: (S"V 8", s) = (X,z). Let

(2.5) V18" — SV S"

be the so-called pinching map which is obtained by collapsing the equator S"~! C
S™ given by {(zo, x1,...,2n) € S™ | x, = 0} to a point. Then [fo]-[f1] is represented
by the composite fo V fo o V,, as illustrated in the following picture
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T o
" 73

The interpretation in terms of pointed maps (S™,s) — (X, z) is useful for some
theoretical considerations and in connection with C'W-complexes, whereas the pic-
ture in terms of maps of pairs (I",0I") — (X,{z}) is better suited for some
constructions and proofs, e.g., the proof of Lemma

2.3. Functorial properties of homotopy groups. Obviously a map of pointed
spaces f: (X,z) — (Y,y) induces a group homomorphism 7, (f,z): 7,(X,z) —
(Y, y) for n > 1 by composition. We get a functor from the category of pointed
spaces to the category of abelian groups by sending (X, z) to 7, (X,x) for n > 2,
whereas for n = 1 we get a functor from the category of pointed spaces to the
category of groups by sending (X, z) to m1 (X, z) for n = 1. We get a functor from
the category of topological spaces to sets by sending X to mo(X).

Obviously 7, (f, ) depends only on the pointed homotopy class of f and mo(f)
depends only on the homotopy class of f.

Next we construct for every n > 2 a functor T;, from II(X) to the category
of abelian groups. It sends an object in II(X), which is a point  in X, to the
abelian group m,(X,x). Consider a morphism [u]: x — y in II(X) represented by
a path v in X from x to y. It is sent to the homomorphism of abelian groups
To([u]): mp(X,z) — 7, (X, y) defined as follows. Consider [f] € m,(X,z) repre-
sented by the map f: (I",0I™) — (X, {z}). Consider a new map uf: (I",0I") —
(X,{z}) by shrinking the domain of f to a smaller concentric cube in I”, then
inserting the path u on each radial segment in the shell between this smaller cube
and 0I™, as indicated in the picture below
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We leave it to the reader to figure out the elementary proof that this definition
is independent of all the choices and indeed yields a functor 7;, from II(X) to the
category of abelian groups.

Recall that there is a canonical isomorphism of (X, ) to the opposite of the
group autx)(z). Hence we obtain from the functor T}, above the structure of a
Z[m (X, z)]-module on 7, (X, x) for n > 2. Recall that for n = 1 the functor T} is
actually given by conjugation.

Consider two maps fy, f1: X =Y. Let h: X xI — Y be a homotopy between fj
and fi. Choose a base point  and put y; = f;(x) for i = 0,1. Let u: I — Y be the
path from yg to y; given by u(t) = h(z,t). For n > 2 we obtain an isomorphism of
abelian groups T, ([u]) : 7, (Y, yo) = (Y, y1) and the following diagram of abelian
groups commutes

(2.6) (Y, yo)

(X, ) = | T ([u])

W”(Ya yl)

A consequence of (2.1) and (2.6)) is that a homotopy equivalence f: X — Y

induces for every # € X and n > 1 a bijection m,(f,2): m1(X,2) — m.(Y, f(x)).
Moreover, for a path connected space X the isomorphism class of m, (X, ) is in-
dependent of the choice of © € X. Therefore we sometimes write 7, (X) instead of
7Tn(*Xv .’t)

Given pointed spaces (X;,z;) for ¢ = 0,1, we get from the two projections
pr;: (Xo x X1, (zo,71)) = (X;, ;) for i = 0,1 a group isomorphism

Tn(Pro, (20, 1)) X T (pry, (To, 1)) T (Xo X X1, (20, 21))

Wn(Xo,.’Eo) X 7Tn(X1,£U1)

1

for every n > 1.

2.4. Homotopy groups and coverings.
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Theorem 2.7 (Homotopy groups and covering). Let p: X — Y be a covering.
Choose a base point x € X and put y = p(x). Then for n > 2 the map induced by p

7"'n(pa ‘T) : 7Tn()(’ ‘T) - ﬂ'n(}/v y)
is bijective.
Proof. Consider a map f: S™ — Y sending the base point s to y. Since n > 2 holds
by assumption, S™ is simply connected. Hence the image of 1 (f, z) is contained in
the image 71 (p,z). A standard theorem about coverings and liftings implies that
we can find a lift fv: (8™, 8) = (X,x) of f,i.e., apointed map fsatisfying pof: f.
This shows that 7, (p, z) is surjective for n > 2.

Injectivity follows from the standard theorem about lifting homotopies along
coverings, the argument is the same as for the injectivity of 71 (p, z). This standard
theorem says that for a map u: Z — X and a homotopy h: Z x I — Y with
ho = pou we can find precisely one homotopy h: Z x I — X with poh = h and
h() = Uu. O

Theorem implies for a connected C'W-complex X that for the universal cov-
ering p: X — X and any choice of base points & € X and z € X with p(Z) = «
the map m,(p,Z): mp (X, %) — (X, @) is bijective for n > 2. If we additionally
assume that X is contractible, we get 7, (X, z) = 0 for n > 2. In particular we get
for any base point s € S* and n > 1

A ifn=1,

(2.8) T (S, s) 2 {{1} fn>2

since the universal covering of S! is given by the map R — S! sending t € R to
exp(2mit).

2.5. The long exact sequence of a pair and a triple. Consider a pointed pair
(X, A, ), i.e., a pair of topological spaces (X, A) together with a base point z € A.
We can consider I™~! as the subspace of I"™ given by those points (si, s2,...,S,)
satisfying s,, = 0. Let J,,_1 be the subspace of 91" which is the closure of 9I™ \I”*1
in OI™. Explicitly we get

Joo1 = @I"\I"YUuor" = {(s1,82,...,8n) € I"
| (Fie{l,2,...,(n—1)} with s; € {0,1}) or (s, =1)}.

Obviously I,,_1UJ,—1 = 81" and I,_1NJ,_1 = 01" . For n > 1 we define the set
(X, A, x) as the set homotopy classes [f] of maps of triples f: (I",0I", J,—1) —
(X, A, {z}). For n > 2, this becomes a group by defining [ fo]-[f1] by the class [ fo* f1]
for the maps of triples fo* f1: (I"™,0I"™, J,—1) — (X, A, {z}) defined in . There
is no reasonable group structure on (X, A, x). It is not hard to check that this
group structure on m,(X, A,z) for n > 2 is well-defined and that the following
result is true.

Lemma 2.9. The group m,(X, A, x) is abelian for n > 3.

Note that there is an obvious identification of m, (X, {z}, x) defined above and
of m,(X, ) defined in Subsection

Obviously we obtain a functor from the category of pointed pairs to the category
of groups by m2(X, A,x) and a functor from the category of pointed pairs to the
category of abelian groups by m, (X, A, x) for n > 3. If two maps fo, f1: (X, A4,2) —
(Y, B, y) of pointed pairs are homotopic as maps of pointed pairs, then m,(fo,z) =
7n(f1,2) holds for n > 1. Given a pair (X, A), one can define a functor T}, from
the fundamental groupoid II(A) of A to the category of groups or abelian groups
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by assigning to a point € A the homotopy group w2 (X, A, z) or 7, (X, A, z) for
n > 3, the construction appearing in Subsection [2.3] for a space X carries directly
over. In particular m,(X, A, z) inherits the structure of a Z[m; (A, z)]-module for
n > 3.

A map of triples f: (I",0I", Jo—1) — (X, A, {z}) factorizes uniquely through
the projection pr: (I, 01", J,—1) = (I"/Jn-1,01"/Jn—1, Jn—1/Jn—1) to a map of
pointed pairs (I"/J,—1,0I" [ Jp—1, Jn—1/Jn-1) = (X, A, x). There is a homeomor-
phism (I"/Jy_1, 01" [ Jy_1, {Jn_1/Jn_1}) — (D™, 8", {s}) of triples. Hence one
can define 7, (X, A, z) also the set of homotopy classes of pointed maps of pointed
pairs (D", S"71 s) — (X, A,x). The multiplication in this picture is given as fol-
lows. Consider pointed maps of pointed pairs f;: (D", 8"t s) — (X, A,x) for
1 =0,1. Let [fo] and [f1] be their classes in 7,(X, A,z). They define a pointed
map of pointed pairs fo V f1: (D" VvV D", S"~1 v §" 1 s) = (X, A, z). Let

(2.10) V. :D" — D" v D"

be the so-called pinching map which is obtained by collapsing D"~! C D" given
by {(z1,...,2,) € D™ | , = 0} to a point. Note that V! is a map of pointed
pairs (D", S""1 s) — (D™ Vv D", S"~1 v S"~1 5) and its restriction to (S"71,s) is
the pinching map defined in . Then [fo] - [f1] is represented by the composite
foV fooVy,.

Define for n > 2 a group homomorphism 9, : m,(X, A, z) = 71 (A, ) by sending
the class [f] of the map of pointed pairs f: (D", 5", s) — (X, A, s) to the pointed
homotopy class of maps of pointed spaces obtained by restriction to (S™~1,s). Let
i:A— X and j: X — (X, A) be the canonical inclusions.

Theorem 2.11. We obtain a long exact sequence of groups infinite to the left

LN Tt (A, x) LLEZICEON a1 (X, ) TntrG:), Tn1(X, A, x)
On+1 7Tn(A7fL') ﬂw,(ivr) 7_‘_n()(,x) ﬂn(jvm)
LU, (X Ayr) 2 (A 2) 2O (X ).

Proof. We only show exactness at m,(X, A, z), the proofs at the other places are
analogous. Consider a pointed map f: (S™,s) = (X, z). The image of the class [f]

under the composite 7, (X, z) G2, (X, A, ) On, Tn-1(A,x) is by construc-

tion represented by the constant map c,: S"~' — A and hence zero. This shows
im(7,(j, z)) C ker(0y,). It remains to prove ker(9,) C im(m, (4, )).

Consider a map of pointed pairs f: (D™, 8" ! s) — (X, A, x) such that [f] lies
in the kernel of 9,,: m,(X, A,z) — m,—1(A4,z). Then the map of pointed spaces
flgn-1: (S"71,8) — (A,z) is nullhomotopic as pointed map of pointed spaces.
Choose such a nullhomotopy h: S"~1 x I — A with hg = f|gn—1 and h; = ¢, for
the constant function. Note that h(s,t) = z holds for ¢t € I. Define a homotopy
k: D™ x I — X as follows:

U Wl 2leli - ) il 2 o

Roughly speaking, k; is given on the disk %H - D™ of radius %ﬂ by f with an
appropriate scaling of z and on the anulus between %th - 871 and S"~! by the

restriction of the homotopy h to St x [2 —2/(1 +¢),1]
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We have k(z,0) = f(z) for z € D", k(s,t) = x for t € I, k(z,t) € A for
z€ S"tandt €I, and k(z,1) = x for = € S"~!. Hence k is a homotopy of
pointed maps of pointed pairs (D", 8"~ ! s) — (X, A, x) between kg = f and k;.
Therefore [f] = [k1] holds in m,(X, A,z). Since ki(z) = z holds for z € S"71,
the class [k1] lies in the image of m,(j,x): mn(X,z) = 7,(X, A, ). Hence we get
im(m, (7, z)) = ker(9y,). O

Remark 2.12. Let G be any group. Then we can find a path connected pointed
2-dimensional CW-complex (A,x) with m1(A,z2) = G. Let X be the cone over
A. Then we obtain a path connected pointed 3-dimensional CW-complex (X, A, z)
such that m(X, A, ) = 71(A,z) = G holds by Theorem [2.11]

Remark 2.13. One can combine the exact sequences appearing in Theorem
and Theorem to an exact sequence

2.14) - 2 (Ar) T (X ) T (X AL )

,x)

On1, (A, x) LUICLIN (X, x) ™), | 7m0 ma (X, A, x) RER m1 (A, x)

71 (%,2) 7T1(X,x) 6_1> WO(A) WO—(i)) 7T0(X) Lm) WO(XvA) — {*}

which is compatible with the group structures as long as these exist.
It is not hard to check that one obtains for a triple (X, B, A) and a base point
x € A an exact sequence of the shape

(2.15) --- Oniz, Tnt1(B, A, ) Tn1 (G2, Tnt1(X, A, x) LUSEICON Tn+1(X, B, x)
Onir, (B, A, x) KGN (X, A, ) Tnlho),
U8, (X, Bya) 5 m(B, Ayx) T (X, 4,0) 2D, (X, B )
2y mo(B, A) 2 1o (X, 4) ™Y, 1 (X, B) — {x}
which is compatible with the group structures as long as these exist.

Remark 2.16 (Long exact homotopy sequence of a pointed map). Let f: (X, z) —
(Y, y) be a map of pointed spaces. Denote by cyl(f) its mapping cylinder. Note that
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we obtain a pointed pair (cyl(f), X, z). The canoncial projection cyl(f) — Y is a
homotopy equivalence and satisfies pr(z) = y. Hence it induces an isomorphism of
groups m, (pr, z): mn(cyl(f), 2) — (Y, y) for n > 1 and a bijection mo(cyl(f)) —
mo(Y). Define m,(f,z) = m,(cyl(f), X,z) for n > 1. Let mo(f) be the quotient
of (YY) obtained by collapsing the image of mo(f): mo(X) — mo(Y). Then the
long exact sequence of the pointed pair (cyl(f), X, z) of yields the long exact
homotopy sequence of the map f

(2.17) - Onsz, Tn41(X, x) Tonlf2), Tn+1(Y,y) = g (f, 2)

Oty (X, 2) 2 (i) 5 mo(f, 1) 2 m (X, )

m1(fx)

o

9 (9
m(Y,y) = mo(X) — mo(Y) = mo(f) — {1}.
Note that 7, (f, z) can have two different meanings in the notation above.
2.6. Connectivity.

Definition 2.18 (Connectivity). A space X is called 0-connected if mo(X) consists
of one point, or, equivalently, X is path connected. It is called n-connected for
n > 1 if X is path connected and (X, x) is trivial for every base point z and
1 <k <n. It is called oco-connected or weakly contractible if it is path connected
and 7, (X, ) is trivial for every base point « and k > 1.

A map f: X — X is called 0-connected if the induced map mo(f): mo(X) —
mo(Y) is surjective. It is called n-connected for n > 1, if the map mo(f): mo(X) —
mo(Y") is bijective and for every base point  the map 7 (f, z): mx(X, z) = 7 (Y, f(2))
is bijective for 1 < k < n and surjective for k = n. It is called co-connected or a
weak homotopy equivalence if the map mo(f): mo(X) — mo(Y') is bijective and for
every base point z and k > 1 the map 7 (f, z): 7 (X, z) — 7 (Y, f(x)) is bijective.
Note that f is n-connected if and only if mo(f): mo(X) — mo(Y) is surjective and
the group 7 (f,z) defined in Remark is trivial for 1 < k < n.

A pair (X, A) is called n-connected for n > 0 or n = oo, if the inclusion i: A — X
is n~connected. This is equivalent to the condition that mo(X, A) and 7 (X, A, x)
for 1 < k <n are trivial.

Remark 2.19. One easily checks that the following assertions are equivalent for a
pointed space (X, z) and n > 1:
o 7, (X, z) is trivial for any base point = € X;
e Every map S™ — X is nullhomotopic;
e Every map S™ — X extends to a map D"*! — X.
This implies that the following assertions are equivalent for a space X and n > 0
or m = 00:
e X is n-connected;
e Given any k with 0 < k < n, every map S¥ — X is nullhomotopic;
e Given any k with 0 < k& < n, every map S*¥ — X extends to a map
Dkl X
Moreover, the following assertions are equivalent for a pair (X, A) and n > 0 or
n = oo:
e (X, A) is n-connected;
e Given any k with 0 < k < n, every map (D*, S¥~1) — (X, A) is homotopic
relative S*~! to a map D* — A;
e Given any k with 0 < k < n, every map (D¥, S¥~1) — (X, A) is homotopic
through such maps to a map DF — A;
e Given any k with 0 < k < n, every map (D*, S¥~1) — (X, A) is homotopic
through such maps to a constant map D* — A.
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2.7. Homotopy groups and colimits.

Theorem 2.20 (Homotopy groups and colimits). Let X be a topological Hausdorff
space with a sequence of closed subspaces Xog C X1 C -+ C X such that X is the
union of the X;-s and carries the colimit topology.

Then for every xg € X and n > 1 the canonical group homomorphism induced
by the inclusions ji: X — X

colimy o0 T (Jk, o) colimy o0 p (Xk, o) — T (X, 20)
is bijective. Also the map of sets

colimg 00 o (k) colimg o0 mo(Xg) — (X, z0)

is bijective.
Proof. We first prove that for any compact subset C' C X there exists a natu-
ral number k with C C Xj. Suppose that for every & > 0 we have C ¢ Xj.
Then we can choose a sequence of g, x1,Z2,... in C and a strictly monotone in-
creasing function j: Z20 — 729 with z; € Xy \ Xj—1y for i = 1,2,.... Put
S ={xg,x1,22,...}. Obviously S is infinite. Let T'C S be any subset. Note that
the intersection T'N X is finite and hence a closed subset of X for £k =0,1,2,....
Since X carries the colimit topology, T is closed in X. Hence S is a discrete subset
of X. As C is compact and S is a closed subset of C, the set S is compact. As S
is a discrete and compact set, it must be finite, a contradiction.

We only treat the case n > 1, the case n = 0 is analogous. Consider an element
[f] € mn(X, x0) represented by a pointed map f: (S™,s) — (X,zg). Then image
of f lies already in X; for some ¢ > 0. Hence [f] lies in the image of the map
(X, o) — 7 (X, 20) induced by the inclusion X; — X. This implies that
[f] lies in the image of colimy_, oo 7 (Jk, To): colimy—s oo p (Xk, o) — 7n (X, 20).
Hence this map is surjective. To prove injectivity, we consider an element [g] in
its kernel. There exists ¢ > 0 and an element [¢'] € m,(X;,20) such that the
structure map m,(X;, o) — colim;_, o 7, (X, zo) sends [¢'] to [g]. The element
[¢'] lies in the kernel of the map 7, (X;, z0) = 7, (X, xo) induced by the inclusion
X; = X. Ifg": (S™,s) = (X, o) is a representative of [¢'], there is a nullhomotopy
h: 8™ x I — X for it. The image of h lies already in X for some j with i < j.
Hence the image of [¢'] under the map m,(X;,x0) — m,(X;,2o) induced by the
inclusion X; — X is trivial. This implies that [g] is trivial. d

3. Horr’s DEGREE THEOREM
In this section we give the proof of the following theorem.

Theorem 3.1 (Hopf’s Degree Theorem). Let M be a connected oriented closed
smooth manifold of dimension n > 1. Then the degree defines a bijection

deg: [M,S"] — Z.

3.1. Some basics about differential topology and the mapping degree.
Its proof needs some preparation. We recall some basic facts about differential
topology and the mapping degree.

e Let M and N be smooth manifolds. Then a (continuous) map f: M —
N is homotopic to a smooth map. If two smooth maps M — N are
homotopic, then one can find a smooth homotopy between them.

e Let M and N be smooth manifolds and L C N \ ON be a smooth sub-
manifold without boundary. Then any smooth map f: M — N with
f(OM)N L = ( is smoothly homotopic relativ M to a map g: M — N
which is transversal to L at every © € M, i.e., we have either f(z) ¢ L or we
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have f(x) € L and T, f(T M) + Ty L = Ty(z)N. If dim(M) + dim(L) <
dim(N) holds, then f is transversal to L if and only if f(M)N L = 0.

o If L ={y} for y € N\ ON, then we say that y is a regular value of f if f
is transversal to {y}.

e Every smooth map f: M — N has a regular value y € N\ ON. Actually
the points in N\ ON for which y is not a regular value has measure zero
in N by the Theorem of Sard.

If y € N\ ON is a regular value of f, M is compact, and dim(M) =
dim(N), then f~1(y) is finite and for every x € f~1(y) the differential
induces an isomorphism T, f: T, M — T, N.

e Let f: M — N be a map of connected oriented compact smooth oriented
manifolds of dimension n such that f(OM) C ON holds. Let y € N\ ON
be any regular value. For z € f~!(y) € M \ OM the orientations on M
and NN yield orientations on the finite dimensional vector spaces T, M and
T,N. Define e(x) € {£1} to be 1 if T, f: T,M —» T,N respects these
orientations and to be —1 otherwise.

Recall degree of f is the natural number for which H,, (f): H,(M,0M) —
H,(N,0N) sends [M,0M] to deg(f) - [N,ON]. We get

(3.2) deg(N) = Y ela).

z€f~1(y)

This formula is well-known for M = ON = (). The proof in this case
extends directly to the more general case above. Or one considers the
map of closed oriented manifolds f Uss f: M Upyr M — N Usny N for
Of: OM — ON given by f|ons.

e Let M be a smooth Riemannian manifold and x € M \ M. Then there
is an € > 0, an open subset U of M containing x, and a diffeomorphism
called exponential map

(3.3) exp,: DT, M ={veT,M]||z||<e} - U

such that the differential Tpexp, : To(TeM) — TuM of exp, at 0 € T, M
becomes the identity under the canoncial identification To(T, M) = T, M.

3.2. The proof of Hopf’s Degree Theorem. We prove Hopf’s Degree The-
orem by induction over the dimension n = dim(M). If n = 1, then M is
diffeomorphic to S! and elementary covering theory shows that the degree induces
a bijection deg: [S1, S!] =5 Z. The induction step from (n—1) ton > 2 is done as
follows.

Fix # € M and an embedding i: D" — M such that i(0) = z holds and

Toi: Ty D™ = T, M is compatible with the orientations coming from the standard
orientation on D™ and the given orientation on M. Define the collaps map ¢: M —
D" /8"~1 = §" by sending i(x) for z € D™ to the element given by z in D"/S"~!
and every point y € M \ i(D™) to the point S"~1/S"~1 in D"/S"~1. We conclude
from applied to the regular value z € D"/S"~! = S™ given by 0 € D™ of
¢ that deg(c) = 1. Given any d € Z, there exists a selfmap ug: S™ — S™ with
deg(ug) = d. Tt can be constructed as the (n — 1)-fold suspension of the map
St — S sending z to z?. Then deg(ugoc) = d. This shows that deg: [M,S"] — Z
is surjective.

In order to show that deg: [M,S™] — Z is injective, we have to show that two
smooth maps f,g: M — S™ with deg(f) = deg(g) are homotopic. Since there is
diffeomorphism u: S™ — S™ with degree —1 and deg(u o f) = — deg(f), we can
assume in the sequel that d = deg(f) = deg(g) satisfies d > 0.
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We can change f and g up to homotopy and find y € S™ such that both f and
g are smooth and have y as regular value. Then we can write

f_l(y) ={xy,z9,...,zq} W{z], 2y ,..., 0} 2}

for some m > 0 such that e(z;) =1 for ¢ = 1,2,...,d and e(:v;t) = =1 holds for

i=1,2,...,m.
52

We next describe a procedure how to change f up to homotopy so that m = 0,
or, equivalently f~!(y) = {x1,%2,...,24} holds. This will be done by an inductive
procedure where we change f up to homotopy such that m > 1 becomes (m — 1),
in other words, we get rid of the points z;}, and =z, .

Choose an embedded arc in M joining x;}, and z,, that does not meet any of the
other points in f~!(y). Let U be an open neighbourhood of x;,, that is diffeomorphic
to R™. Now perform a local homotopy of f along this arc to move ., so close to
x} such that z, lies in U.
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Hence it suffices to prove the following: Given a map f: R™ — R™ such that f is
transversal to 0 € R", the preimage f~1(0) consists of precisely two points zg and x1
belonging to the interior of the disk D™ C R", the differential T}, f: T,,R" — TpR"
is bijective and reverses the standard orientations, and the differential 7, f: T, R™ —
ToR™ is bijective and preserves the standard orientations, then we can change f up
to homotopy relative R™ \ D" so that f~1(0) is empty.

Choose € > 0 so small that the image of S"~! C R™ under f does not meet the
interior of €- D™.
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Let pr.: R™ — €¢- D,, be the retraction that sends z € R" to HTGH cxif ||z]] > ¢,

and to z if ||z|| < e. Then pr_of induces a map of compact oriented manifolds

(D", S"71) — (e-D",e-S™~1). By inspecting the preimage of 0 € €- D™ we conclude
from (3.2)) that its degree is zero.

"NEO‘F‘D3'> £ 0*

C

Since the following diagram commutes and the vertical maps given by boundary
homomorphisms of pairs are isomorphism of infinite cyclic groups respecting the
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fundamental classes

Ho (D", 571 2 g (e pn e gy

”J F

H, (5" 1) ————— Hy(e- 5™
Hn(f‘snfl)

the induced map (pr.of)|gn-1: S"™1 — €. S""! has degree zero and hence is
nullhomotopic by the induction hypothesis. This implies that the map fo: S~ —
R™ \ {0} induced by f is nullhomotopic and hence extends to a map f;: D™ —
R™\ {0}. Let f': R™ — R™\ {0} be the map whose restriction to D™ is f; and
whose restriction to R™\ D™ agrees with the restriction of f to R™\ D™. We obtain
a homotopy h: f ~ f’ of maps R” — R"™ by h(z,t) =t f'(x) + (1 —t) - f that is
stationary outside the interior of D™. Since the image of f’ does not contain zero,
the claim follows.

This argument applies also to g. If d = 0, then im(f) and im(g) are con-
tained in the contractible subspace S™ \ {y} of S™ and hence f and g are homo-
topic. It remains to consider the case d > 1. Then we can find finite subsets
{@1,22,..., 24} and {x}, 2%, ..., 24} of M such that f~'(y) = {x1,22,...,24} and
g y) = {x},7,...,2,} holds and the differentials T}, f: T,, M — T,S™ and
Tyg: TI;M — T, S™ are orientation preserving isomorphisms for ¢ = 1,2,...,n.
Now we can construct a diffeomorphism a: M — M which is homotopic to the iden-
tity and satisfies w(x;) = 2} fori = 1,2,...,d. Then g and ¢’ = goa are homotopic,
I y) =g '(y) = {z1,22,...,24} and the differentials T, f: T,,, M — T,,S™ and
Ty,q": Tp,M — T,S™ are orientation preserving isomorphisms for ¢ = 1,2,...,d. It
remains to show that f and ¢’ are homotopic.

For this purpose we need the following construction. Let wug,u;: R = Rre
be linear R-isomorphisms which are orientation preserving. Then we can find a
homotopy h: R™ x I — R™ such that hy = up and h; = u; holds and h;: R” — R”
is a orientation preserving automorphism for ¢ € I. This follows from the fact that
{4 € GL,(R) | det(A) > 0} is path connected for n > 1. Define the homotopy

hi(v) if |Jv]| < 1;
H:R"xI—=R"  (v,t) = hojjop(v) if1 <[] <2
uo(v) if ||v]| > 2.
Then we have
H7'0) = 0 fortel;
Hy = wup;
H:(v) = wug(v) forteland || >2;
up (v) if [[o]] < 1
Hi(v) = S he_jp)p®) ifl<|jo]] <2
ug(v) if ||v]| > 2.

So H is a homotopy between Hy = wo and H; which is stationary on {v € V|
|[v]| > 2} and satisfies H, *(0) = 0 for t € I and Hy(v) = u1(v) for |Jv|| < 1.

Using this construction and the exponential map 7 we can change g’ by a
homotopy to a map g”: M — S™, such that for i« = 1,2,...,d there are disjoint
embedded disks D' C M such that 0 € D corresponds to ;, f|pr = g"|pr holds
and we have f~(y) = (¢")"*(y) = {z1,22,...,74}. Let X be the complement
in M of the disjoint union Hf:l D? \ 9S"~'. This is a manifold with boundary
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0X = ]_[?:1 S~ such that f(X) and g”(X) are contained in ™\ {y} and f|ox =
9" |ax holds. As S™\ {y} is contractible, the maps f|x and ¢’|x from X to S™ are
homotopic relative 8X. Recall that f and ¢g” agree on ]_[?Zl DP. Hence f and ¢”
are homotopic as maps M — S™. This implies that the maps f and g from M to

S™ are homotopic. This finishes the proof of Hopf’s Degree Theorem

3.3. The homotopy groups of the n-sphere in the degree < n.
Theorem 3.4. We get for everyn > 1

= {2 L

There is an explicit isomorphism 7 —» mn(S™) which sends 1 € Z to [idgn]. Its
inverse m,(S™) = Z sends [f] to the degree of f.

Proof. Suppose k < n. Let f: S¥ — 8™ be any map. Since we can change any
map f: S¥ — S™ up to homotopy into a smooth map transversal to y € S™, we
can change f by a homotopy to map S™ — S™ \ {y}. As S™\ {y} is contractible,
f is nullhomotopic. This implies 7, (S™, s) = {0} for every s € S.

The degree defines a bijection deg: [S™, S"] =, Z because of Hopf’s Degree
Theorem [3.1] for n > 1. By inspecting the proof of surjectivity of this map we see
that the forgetful map m,(S™,s) — [S™,S™] is surjective. We conclude from
and that the forgetful map =, (S™,s) — [S™, S™] is injective. O

Example 3.5 (The Hopf map and 73(5?)). One may think that 7 (S™, s) vanishes
for k > n as Hy(S™) vanishes for k& > n. But this is not true as the following
example due to Hopf shows. We can think of S® as the subset of C? given by
{(21,22) | 2121 + 2272 = 1}. We get an S'-action on S3 by z - (21, 22) = (221222).
This action is free and the quotient space S3/S* is homeomorphic to S?. Thus we
get a projection p: S® — S2. We will later show that 73(S?) = Z holds with the
class [p] of p as generator, see Theorem

One indication that [p] is not zero in 73(S?) is the observation that the preimages
of the north and the south pole of S? are two embedded S'-s in S2 which are linked.

Example 3.6 (7, (S* Vv S") is not finitely generated.).
Consider X = S v 8™ for n > 2. Its universal covering X is obtained from R
by glueing to each element in Z a copy of S™ along the base point.
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The map X — Viez S™ given by collapsing R to point turns out to be a point
homotopy equivalence. This can be seen by a direct inspection or follows from
Lemm -89_2L5| and Theorem Hence we conclude 7, (X) 2 7, (X) = Tn(Viez S™)
from Theorem For each k € Z we have the pointed inclusion jy: S™ — \/,c, S"
of the k-th summand and the pointed projection pry,: \/,;., S™ — S™ onto the k-th
summand. Obviously prj oji is the identity and prj oj; is the constant map for
k # 1. Hence the map @,y mn(ji): @iy ™n(S™) = mn(V;ez S™) is injective. As
o (S™) 2 Z, the abelian group m,(S* Vv S") is not finitely generated.

Actually, we know that ,(S* U S™) is a Z[r1(S')]-module and it will turn out
that it is Z[m (S)]-isomorphic to Z[m (S1)].

Remark 3.7 (Outlook about m(S™) for kK > n). It is an open (and extremely
hard) problem to compute 7 (S™,s) for 2 < n < k in general. There is not even
a formula known which might give the answer. There is no obvious pattern in the
computations, one has carried out so far. At least one knows that 71 (S™) is finite
for k > n except for my;_1(S?") for i > 1 which is a direct sum of a copy of Z and
some finite abelian group.

4. THE CELLULAR APPROXIMATION THEOREM

In this section we want to sketch the proof of the following theorem.

Theorem 4.1 (Cellular Approximation Theorem). Let (X, A) be a CW -pair and
Y be a CW-complex. Let f: X —Y be a map whose restriction fla: A—=Y to A
is cellular. Then f is homotopic relative A to a cellular map X — Y.

By a colimit argument one can reduce the proof of the Cellular Approximation
Theorem [£.1] to the proof of following lemma.

Lemma 4.2. Consider any k € {0,1,2,...}. Let f: X — Y be a map of CW-
complezes. Suppose that f(Xp_1) C Yi_1 holds.

Then we can change [ up to homotopy relative Xy_1 such that f(Xg) C Yi
holds.

In order to arrange that f(Xj;) C Y holds, we must achieve for every closed
k-dimensional cell e of X by a homotopy of f|. relative de that e does not meet
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any cell of Y of dimension > k. Note that each compact subset of Y meets only
finitely many cells. Hence for a closed cell of e of X of dimension k there are
only finitely many closed cells ey, es, ..., e, of Y satisfying f(e) Ne; # 0. Choose
{i € 1,2,...,m} such the the dimension of e; is greater than dim(e). If such an
1 does not exists, we are already done for e. If such i exists, we can arrange that
dim(e;) > dim(e;) holds for all j € {1,2,...,m} and we have to change f|. up to
homotopy relative de such that f(e) meets only the cells e, es,...,€;-1,€i11,€m
of Y. Therefore it suffices to show the following lemma.

Lemma 4.3. Consider 0 < k < I. Let (W,V) be pair for which there exists a
pushout

gi-1_ % Ly

L, |

Dl ——W.

Consider any map f: (D*,S*=1) — (W, V).
Then f is homotopic relative S*~' to a map D* — V.

Consider any point z € W\ V. Then (W \ {z},V) is a strong deformation
retraction, i..e, there exists a homotopy h: W\ {z} x I — W \ {z} such that
h(y,0) = y and h(y,1) € V hold for y € W\ {z} and h(y,t) = y holds for y € V
and ¢t € I. Hence Lemma, follows from the next lemma.

Lemma 4.4. Consider the situation of Lemma . Then there exists z € W\ V
such that f is homotopic relative S*¥~1 to a map D¥ — W\ {z}.

Sketch of proof. Fix r € (0,1). Let D! C D! be the open ball of radius r, i.e,
{x € D' | ||z|| < r}. If DF\ f~3Q(DL)) = 0, we are obviously done. Hence we
can assume withtout loss of generality that D* \ f~1(Q(D!)) is non-empty. Then
one can arrange by an improved version of the Whitney Approximation Theorem
that f is homotopy relative to D* \ f~1(Q(D.)) to a map g: (D', S'"1) — (W, V)
such that the map induced by g from the open subset f~'(Q(D.)) of D* to the
open subset Q(DL) of W, which we can be equipped with the structure of a smooth
manifold diffeomorphic to DE, is smooth.
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DZ

1" (k) ll

v

Since by Sard’s Theorem this smooth map ¢ has a regular value z and k < [, we
get g(D¥) C W\ {z}. 0

This finishes the sketch of the proof of the Cellular Approximation Theorem [4.1

Corollary 4.5. Consider n > 0. Let (X, A) be a CW -pair such that all cells in
X \ A have dimension > n. Then (X, A) is n-connected. In particular (X, X,,) is
n-connected for a CW-complexr X.

Proof. We only deal with the case, where A is non-empty. The proof for A = ()
follows from the one, where A = {z} for any zero-cell {z} € X, since X is the
disjoint union of its path components and every path component contains a zero-
cell.

First we show that 7o(f): mo(A) — mo(X) is surjective for n = 0 and bijective
for n > 1. Surjectivity follows from Cellular Approximation Theorem applied
to any map {e} — X using the fact that Xy = A holds. Note for the sequel
that any path component of a CW-complex must contain a zero-cell. By the
Cellular Approximation Theorem any path in X connecting two zero-cells in
A is homotopic relative endpoints to a path in A as X7 = A holds if n > 1. This
shows the bijectivity of mo(f) if n > 1.

It remains to show that m;(X,A,a) = {1} holds for any base point a € A
and ¢ € {1,2,...,n} Since any path component of A contains a zero-cell, dia-
grams and imply that we can assume without loss of generality that a
is a zero-cell of A. Consider an element [f] € 7;(X, A, a) given by a map of triples
f: (D}, S {s}) — (X, A, {a}). Equip S*~! with the CW-structure consisting of
precisely two cells, namely one 0-cell {s} given by the base point s and one (i — 1)-
cell. By the Cellular Approximation Theorem the map fl|gi-1: 8771 = Ais
relative {s} homotopic to cellular map. One easily checks that this implies that
f: (DS {s}) — (X, A, {a}) is homotopic as a map of triples to a map f’ such
that f’|gi-1: S°~! — A is cellular. (This is a standard cofibration argument as we
will see later, or done by direct inspection.) By the Cellular Approximation The-
oremthe map f is homotopic relative S*=! to map f”: (D%, S*~1) — (X;, A).
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As X; = A holds and hence 71 (X;, X;,a) is trivial by the long exact sequence of
the pointed pair (X;, X;, a), see Theorem we conclude [f] =[f']=[f"]=1in
mi (X, A, a). O

5. THE WHITEHEAD THEOREM

In this section we want to prove the following theorem.

Theorem 5.1 (Whitehead Theorem). Let f: Y — Z be a map.

(i) Consider any n € {0,1,2,...}. Then the following assertions are equiva-
lent:
(a) The map induced by composition with f

L (XY= [X, Z], [g]w[foyl

is bijective for every CW -complex X of dimension dim(X) < n and
is surjective for every CW-complex X of dimension dim(X) = n;
(b) The map f:Y — Z is n-connected;
(ii) The following assertions are equivalent:
(a) The map induced by composition with f

Jer [X7Y]_>[XvZ]7 [g]H[fogk

is bijective for every CW -complexr X ;
(b) The map f:Y — Z is a weak homotopy equivalence.

Its proof needs some preparations.

Lemma 5.2. Let Y be a space which is n-connected for some n € {0,1,2,...} I
{o0}. Let (X, A) be a relative CW -complex whose relative dimension dim(X, A) is
less or equal to n.

Then any map f: A —Y can be extended to a map F: X — Y.

Proof. We construct for k = —1,0,1,2,... with £k < n maps fr: X — Y such that
fo1: X1 = A — Y is the given map f and we have fx|x,_, = fr—1 for & > 0.
Then Lemma [5.2] is a consequence of the following argument. If n < co, then we
can take F' = f,. If n = oo, we define F' = colimy_, fr having in mind that by
the definition of a C'W-pair we have X = colimg_, oo Xp-

The induction beginning k& = —1 is trivial. The induction step from (k — 1) to k
is done as follows. Choose a cellular pushout

icr 9i
k—1 i€l
. — X
H’LEIS k-1

l HiEI Qi J’

Hicr DF — X

We conclude from the pushout property that we can construct fi from fr_q if for
any ¢ € I we can extend the composite fy_1 0 ¢g;: S¥~1 — Y to a map DF — Y.
This can be done as Y is by assumption k-connected. O

Lemma 5.3. Let (Y, B) be a pair which is n-connected for some n € {0,1,2,...}1I
{o0}. Let (X, A) be a relative CW -complex whose relative dimension dim(X, A) is
less or equal to n.
Then any map f: (X, A) — (Y, B) is homotopic relative A to a map f: (X, A) —
(Y, B) with g(X) C B.
Proof. We construct for k = —1,0,1,2,... with £ <n a map
hi: Xp X IUXkX{O} X x {O} —Y

such that the following conditions are satisfied:
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® ho1: AX TUgyqoy UX x {0} — X sends (a,t) to f(a) for (a,t) € Ax I
and (z,0) to f(x) for z € X.

e We have hy(z,0) = f(z) for z € X;

e We have hy(z,1) € B for every z € X},

e For 0 S k S n we have hk|Xk,1><I = hk_l‘inlxj.

Then Lemma [5.3] is a consequence of the following argument. If n < oo, then
h = h, is the desired homotopy relative A from f to a map with image in B.
Suppose n. = oo. Since X = colimy_, 00 Xk, we get X X I = colimg_y00 (X x I) and
we obtain the desired homotopy h by colimg_, o .

The induction beginning k& = —1 is trivial. The induction step from (k — 1) to k
is done as follows. Choose a cellular pushout

icr 9i
k—1 iel
. —_— 5 X
H’LEIS k-1

l HiEI Qi J’

Hicr D X

Then we obtain a pushout

]_L‘, ‘1;
[Tic; S*1 X T Ugi-1 g0y DF x {0} e Xy X ITUx, ,xfoy X x {0}
J Iicr @ J
[, Dk x1 B Xi x T Ux,xqoy X x {0}

where ¢} is given by ¢; x id; Ug; xidgoy @i X idgoy. We conclude from the pushout
property that it suffices to construct for every ¢ € I an extension of the map

u = hg_1 Oqz/’: Sk % IUSk—lX{O} DF x {0} —Y

toamap U: D¥ x I — Y such that g(D* x {1}) C B holds. Up to homeomorphism
the pair (S* 71 x ITUgi-1 (o3 D¥ x {0}, S*~! x {1}) can be identified with (D*, S¥~1).
So we can think of u as a map of triples (D¥, S¥=1 {s}) — (Y, B, {x}) for = = u(s).
Hence it defines a element in 7, (Y, B,z). As m,(Y, B, x) is by assumption trivial,
there is a homotopy of maps of triples (S*=! x I Ugk—1x {0} DF x {0}, 8%~ x
{1}, {(s,1)}) = (Y, B,{z}) from u to the constant map c,. Obviously the latter
map extends to the constant map c,: D* x I, D* x {1},{(s,1}) — (Y, B,{x}).
Hence we can extend u to a map U: (D¥ x I, D* x {1},{s}) — (Y, B, {z}).
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G
N
a0

SR COROT SR

This finishes the proof of Lemma |5.3 (]

Proof of the Whitehead Theorem [5.1l Let cyl(f) be the mapping cylinder of f. Let
i: X = cyl(f) and j: Y — cyl(f) be the canonical inclusions and p: cyl(f) = Y
be the canonical projection. Then poi = f, poj =idy, and jop =~ idy ). Hence
we can assume without loss of generality that f: Y — Z is an inclusion of pairs,
otherwise replace the given f: Y — Z by i: Y — cyl(f).

/ ,

el Te

D5 T D
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— [ and [H —

The surjectivity of f.: [X,Y] — [X, Z] follows for dim(X) < n directly from
Lemmaapplied toamap g: (X,0) — (Z,Y). Finally we prove the injectivity of
f« under the assumption that either n = oo or dim(X) < n < oo holds. Consider
9o, 91: X = Y and a homotopy h: fogg ~ fog; of maps from X to Z. We obtain
a map of pairs (h,go 1 g1): (X x I, X x {0,1}) — (Z,Y). This map is homotopic
relative X x {0,1} to a map k: X x I — Y by Lemma [5.3] since dim(X x I) <n
holds. Obviously k is a homotopy of maps X — Y between gy and g¢;.
= [[O)bland|(ii)a] = [(ii)b] The map mo(f): m(Y") = 7o(Z) can be identified
with the map f.: [{e},Y] — [{e},Z]. Hence the claim is true for n = 0. So it
suffices to treat the case n € ZZ! 1T {oo}. Then mo(f) is bijective. It remains to
show for any y € Y that m¢(f,v): m7(Y,y) = 7 (Z, f(y)) is bijective for 1 < k <n
and surjective for 1 < k < n.

We begin with surjectivity for 1 < k < n. Choose an index set I and a map
v: (S,s) = (Z, f(y)) for S =\/,c; S* equipped with the obvious base point s such
that (v, 8): (S, s) = 7 (Z, f(y)) is surjective. Then we can find by assumption
a map u: S — Y such that f o u is homotopic to v. For an appropriate path
w: [0,1] = Z from u(s) to z, we obtain a commutative diagram

(Y u(s)) — LD (7, Fou(s)

m(u,s)w ﬁ\ﬁfow]

(S, s) m(Z, 2).

7 (v,8)

Next we show injectivity for 1 < k < mn. Choose an index set I and a map
u: (S,s) — (Z, f(y)) for S = \/;c; S* equipped with the obvious base point s

such that the sequence 74 (S, s) LLIGUN (Y, y) LLIEEIN (2, f(y)) is exact. The
the composite fowu: S — Z is nullhomotopic. Since S has dimension < (n — 1),
the map f.: [S,Y] — [S,Z] is bijective by assumption. Hence u is nullhomo-
topic. This implies that there is a path w: [0,1] — Y from y to some point
y’ such that the composite mg(u,s): mx(S,s) = m(Y,y) with the isomorphism
tr): (Y, ) = me(Y,y') is trivial. Hence 7y (u, s): mx(S, s) = mp(Y,y) is trivial.
This implies that the kernel of 7 (f, y) is trivial and hence that 4 (f, y) is injective.

This finishes the proof of the Whitehead Theorem O

Corollary 5.4. Let f: X =Y be a map of CW -complexes. Then f is a homotopy
equivalence if and only f is a weak homotopy equivalence.

Proof. We conclude from the diagrams and that f is a weak homotopy
equivalence if it is a homotopy equivalence. Suppose that f is a weak homotopy
equivalence. Theorem implies that f,.: [V, X] — [Y,Y] is bijective. Let
a:Y — X be map with f.([a]) = [f o a] = idy. Then a is a weak homotopy
equivalence. Theorem again implies that a,: [X,Y] — [X, X] is bijective.

So we can choose a map b: X — Y with [a o b] = [idx]. This implies b ~ f o
aob~ f. Hence a is a homotopy inverse of f and in particular f is a homotopy
equivalence. O

Example 5.5 (5°°). Define the real vector space R™ := @;°, R. It inherits a
norm by
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In particular R* inherits a metric and the structure of a topological space. We can
identify the topological space R™ with the subspace consisting of points (z1, 22, .. .)
for which z; = 0 for ¢ > n holds. Let S C R* be the subspace consisting of
points z satisfying ||z|| = 1. Then S™ can be identified with S NR"*! for n > 0.
Moreover, we get:

(i) We have the nested sequence S° C St C §2 C ... C S such that S is
the unions of the S™-s. The colimit topology with respect to this filtration
is not the subspace topology S C R*°;

(ii) S°° equipped with the colimit topology carries a CW-structure with S™
as n-skeleton;

(iii) S°° equipped with the subspace topology does not carry the structure of
a C'W-complex;

(iv) S°° equipped with the subspace topology is contractible;

(v) S8°° equipped with the colimit topology is contractible;

(vi) Consider the identity S>° — S°°, where we equip the domain with the
colimit topology and the codomain with the subspace topology. Then this
map is bijective and continuous and is a homotopy equivalence but is not
a homeomorphism.

For n > 1 consider the element a,, in S whose i-th entry is v/1 —n—! fori =1,
n~tfori=2...,n+1,and is 0 for i > (n+2). Let A = {a, | n > 1}. Since
the intersection of A with S™ is finite for n > 1, it is a closed subspace of S*°
with respect to the colimit topology. Since (1,0,0,...) does not belong to A and
lim,, 00 @, = (1,0,0...) holds with respect to the metric above, A is not closed
with respect to the subspace topology. This finishes the proof of assertion

We leave the obvious proof of the assertion is left to the reader.

Assertionis proved as follows. Suppose that S with the subspace topology
has a CW-structure. Since then S* is a metrizable CW-complex, it must be
locally compact by [9, Theorem B on page 81]. This implies there is an € > 0 such
that that the intersection of S with the closed ball of radius € around (1,0,0,...)
is compact. Hence we can find § > 0 such that the sequence (z,)n,>1 given by
Tp =1 —10-e; + - e, with e; the i-th element of the standard base belongs to
the intersection of S with the closed ball of radius € around (1,0,0,...). Hence
it has a subsequence which is a Cauchy sequence. Since this is not the case, we get
a contradiction.

Next we prove assertion Let s: S — S be the shift map sending
(z1,22,23,...) to (0,21, 29, x3,...) Define

t-s(z)+(1—-t) -z
|t s(z)z+(1—t) x|
This is a homotopy between idge and s. Now consider the homotopy
(1—-t)-s(z)+t e
(11 —=1) - s(x) +1- e

for e = (1,0,0,...). Then k is a homotopy between s and the constant map
S5 — §°° with value e;. Hence S°° with the subspace topology is contractible.

Asserti follows from Theorem [2.20, Theorem and Corollary using

assertion |(ii)} Alternatively, the proof for assertion does carry over to asser-

tion |(v)]

Assertion is a direct consequence of the other assertions.

h: S xI— 8% x—

k: S xI— 8 x—

Example 5.6 (Warsaw circle). Let W be the Warsaw circle, i.e., the compact
subsets of R? given by the union of {(z,sin(27/z)) | z € (0,1]}, {(1,v) | vy € [-2,0]},
{(z,=2) |z €[0,1]} and {(0,y) [ y € [-2,1]}.
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Then the projection p: W — {e} is a weak homotopy equivalence but not a
homotopy equivalence. In particular W is a compact space which is not homotopy
equivalent to a C'W-complex.

Remark 5.7 (Whitehead Theorem for pairs). There is the following version of the
Whitehead Theorem for pairs. Let (F,f): (Y,B) — (Z,C) be a map of
pairs. Then the following assertions are equivalent:

(i) The maps F: Y — Z and f: B — C are weak homotopy equivalences;
(ii) For every CW-pair (X, A) the maps of the homotopy classes of pairs in-
duced by composition with (F, f)

(F, f)e: [(X,A), (Y, B)] = [(X,4),(Z,0)], [(G,9)] = [(FoG,gof)
is bijective.
6. CW-APPROXIMATION

Definition 6.1 (n-coconnected maps). A map f: X — Y is called n-coconnected
for n € Z=° 11 {cc}, if for any base point # € X the map m;(f,x): m(X,z) —
m (Y, f(x)) is injective if i = n, and is bijective if i > n.

Consider a natural number n and a map f: X — Y. Then f is a weak homotopy
equivalence if and only if it is both n-connected and n-coconnected.

Definition 6.2 (n-CW-model for a pair). Consider a topological pair (Y, A) such
that A is a CW-complex and n € Z=Z°. (The subcomplex A may be empty.) An
n-CW-model for (Y, A) consists of an n-connected pair of CW-complexes (Z, A)
together with an n-coconnected map f: Z — Y satisfying f|4 = ida.

Theorem 6.3 (n-CW-models). Consider a topological pair (Y, A) such that A is
a CW-complex and n € ZZ°11 {oco}. Then there exists an n-CW -model

(f,ida): (Z,A) — (Y, A)
such that Z \ A contains no cells of dimension < n.

Proof. We construct a sequence of nested spaces Z, C Z,41 C Zp42 C -+ and
maps f;: Z; — Y for ¢ > n such that the following holds:
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o 7, =Aand f, =idyu;
o filzi,=ficifori=(n+1),(n+2),..;
e There exists for i > n a pushout of the shape

. Uj,es, a
e, 5° ne Z;
J . e, @1 |
e, Dt : Zit1

such that the image of each map ¢; does not meet any closed cell in A of
dimension > ¢;

e For any base point z € Z; the map 7;(f;, z) is injective for j = n, bijective
for n < j <14, and surjective for j = 1.

Before we explain the construction of these data, we explain how we get the
desired n-CW-model from it. Namely, we define Z = colim; ., Z; and f =
colim; o0 fi: Z — X. Then (Z, A) is a CW-pair and the i-skeleton Z; of Z is
the complement of the union of the open cells of dimension > i of A in Z;. In
particular Z \ Z; contains no cells of dimension < 4. Since Z \ A contains no k-cells
for 0 < k < n, the pair (Z, A) is n-connected by Corollary We conclude from
Corollary again that the map m,,(Z;, z;) = mm(Z, z;) induced by the inclusion
Z; — Z is bijective for m < i and surjective for m = i for any ¢ > n and z; € Z;.
Hence the map f is n-coconnected by Theorem [2.20

Finally we carry out the construction of the sequence Z,, C Z,,11 C Z,42 C ---
and the sequence of maps f;: Z; — Y. The induction beginning is obvious, take
Z, = Aand f,, =id4. The induction step how to construct Z; 1 and f; 1, when Z;
and f; have already been established, is done as follows. For each path component
C of A choose a zero-cell ¢ in A which is contained in C'. Then for every element
w in the kernel of the map 7;(f;, x¢): mi(Zs, xc) — mi(Y, xz¢) choose a pointed map
qo.u: (8% s) = (Zi,x¢) with u = [go,]. The define Z/,, as the pushout

11 Cemo(A) qc,u
; u€ker(m; (fi,zc))
T cemay S Zi
u€ker(m; (fi,zc))

J

I cen pDitl Zi.
u€ker(m; (fi,zc))

Since each [gc ] lies in the kernel of 7;(fi, z¢), each map fiogo.,: S* — Y can be
extended to a map g, : DT — Y. By the Cellular Approximation Theorem
we can additionally arrange that the image of each map ¢ ,, has trivial intersection
with any open cell of A of dimension i > i + 1.

The collection of these extensions yield a map f,,: Z;,; — Y by the pushout

property. We have for j < (i + 1) and C € mo(A) the commutative diagram

i (fi,xzc)

7i(Zi,zc) (Y, zc)

J Wj(fi’+11zc)
”TJ'(Z1{+13 xc)

where the vertical arrow is induced by the inclusion Z; — Z;;;. The vertical
arrow is bijective for j < (i — 1) and surjective for j = ¢ by Corollary Hence
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7 (fi41,xc) is injective for ¢ = n and bijective for n < j < (i—1), as 7;(fi, z¢) has
these properties by the induction hypothesis. Consider an element v in the kernel
of mi(f{;1,2¢c). Choose u € m;(Z;, xc) whose image under the vertical arrow is v.
Then u lies in the kernel of 7;(f;, z¢). By construction u lies in the kernel of the
vertical arrow. Hence v is trivial. Therefore m;(f{, |, z¢) is injective. As m;(fs,z¢)

is surjective by the induction hypothesis, m;(f;,,z¢) is surjective. This implies

that 7;(f{, 1, 2zc) is injective for i = n and bijective for n < j < for all C' € mo(A).
Now consider any C' € mp(A) and any element [w¢] € 741 (Y, 2¢). Choose a
map wc: (S s) — (Y, z¢) representing [we]. Define the desired space Z; 1 and

the desired map f;11: Z;41 — Y by

Ziyn = Ziy Vv \/ Clans
Cemp(A)
lwelemiv1 (Yyae)
firn = fipV V we-
CEﬂ'(](A)
lwelemiv1(Yzco)

We have for j < (i+ 1) and C € mo(A) the commutative diagram

Wj(f1{+1,:tc)
Ti(Ziy1,0c) ————— m;(Y,20)

J, i (fir1,xc)
7j(Zit1,%c)

where the vertical arrow is induced by the inclusion Z, 11— Ziy1. The left vertical
arrow is bijective for j < ¢ and surjective for j = i by Corollary It is also
injective for j = 4, since the inclusion Z; ; — Z;;; has an obvious retraction
Ziy1 — Zj,. Hence the left vertical arrow is bijective for j < 4. This implies that
7i(fit1,zc) is injective for ¢ = n and bijective for n < j < ¢ for all C' € my(A).
Moreover, by construction any element [w¢] is in the image of 7;(fiy1,z¢). Hence
7j(fit1,zc) is surjective for all C' € mo(A). Since mo(A) — mo(Zi41) is surjective,
we conclude from the diagrams and that for any base point z € Z; 4
the map 7;(fiy1, 2) is injective for i = n, bijective for n < j < ¢, and surjective for
ji=0G+1).

This finishes the proof of Theorem [6.3 (|

Remark 6.4. One can think of the n-CW-model f: (Z, A) — (Y, A) as a sort of
homotopy theoretic hybrid of A and Y. If n = 0 and Y is path connected, then
the hybrid looks like Y in the sense that f is a weak homotopy equivalence. As n
increases, the hybrid looks more and more like A, and less and less like Y. If we
take n = oo, then the inclusion A — Z is a weak homotopy equivalence and can
actually be realized by Z = A and id 4.

More precisely, if k: A — Z and l: A — Y are the inclusions and a € A is a base
point, we get a factorization

T, i(Zya) T Y, )

mi(l,a): mi(A, a)

such that the following holds:

e If i < n, then the first map m;(k, a) is bijective;

e If i = n, then the first map m;(k,a) is surjective and the second map

;i (f,a) is injective;

e If i > n, then the second map m;(f, a) is bijective.
Corollary 6.5. Consider a CW -pair (X, A) and n € N. Then the following asser-
tions are equivalent:
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(i) There is a CW-pair (Z,A) such that (X,A) and (Z,A) are homotopy
equivalent relative A and Z \ A contains no cells of dimension < n;

(i) The pair (X, A) is n-connected.
Proof. . — |(i1)| This follows from Corollary .
()] = [ We obtam from Theorem [6.3] an n-model (f,id4): (Z,A4) — (X, A)
such that Z \ A contains no cells of dimension < n. Since (Z, A) and (X, A) are
n-connected and f is m-coconnected, f: Z — X is a weak homotopy equivalence
inducing the identity on A. A version of the Whitehead Theorem relative
A implies that (X, A) and (Z, A) are homotopy equivalent relative A. O

In particular any path connected CW-complex is homotopy equivalent to a CW-
complex Z having precisely one 0-cell.

Example 6.6. Let X be path connected CW-complex. We conclude from The-
orem that a 1-connected CW-model for X = (X, () is given by the universal
covering X — X.

For this section the case n = 0 is important which we treat next.

Definition 6.7. Consider a space Y. A CW -approzimation (X, f) of Y is a CW-
complex X together with a weak homotopy equivalence f: X — Y.

Theorem 6.8 (Existence and uniqueness of CW-approximations). Let Y be a
topological space. Then:
(i) There exists a CW -approzimation (X, f) of Y;
(it) Let (X, f) and (X', f") be two CW -approximations of Y. Then there ex-
ists a homotopy equivalence g: X — X' for which the following diagram
commutes up to homotopy

x—7% L x

NS

The homotopy equivalence g is up to homotopy uniquely determined by the
property f'og =~ f.
Proof. Consider a path component C of Y. From Theorem applied to the
pair (C,0) and n = 0 we obtain a CW-complex X and weak homotopy equivalence
fo: Xo — C. Then we get from X = HCewo(C) Xc and f = HCewo(C) fcaCW-
approximation of Y.

We conclude from the Whitehead Theorem that there exists a map
g: X — X' which is uniquely determined up to homotopy by the property f'og ~ f.
The map g is a weak homotopy equivalence and hence a homotopy equivalence by
Corollary O

Remark 6.9. One may think of Theorem [6.8|as the topological analogue of the fact
that any positive R-chain complex C, possesses a projective R-resolution fi: P, —
C,, i.e., a projective positive R-chain complex P, together with an R-chain map
f«: P. — C, inducing an isomorphism on all homology modules, and that for
two projective resolutions (Py, fx) and (P, f1) of C, there is a R-chain homotopy
equivalence g,: P, — P/ which is a up to R-chain homotopy uniquely determined

by the property f. o g. =~ fi.
Theorem 6.10. Let f: X — Y be a weak homotopy equivalence of spaces. Then

the induced map on singular homology Hy,(f): Hn(X) — H,(Y) is bijective for all
n > 0.
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Proof. See [31], Theorem 9.5.3 on page 237]. O

Remark 6.11 (CW-approximations for pairs). Consider a pair (Y, B). Choose a
CW-approximation u: A — B for B. Let cyl(u) be the mapping cylinder of w.
It contains the CW-complex A as subspace. Let g: (X, A) — (cyl(f), A) be a 0-
CW-model which exists by Theorem Thus we obtain a pair of CW-complexes
(X, A) together with a weak homotopy equivalence g: X — Y satisfying g|4 = id 4.
Let p: cyl(f) — Y be the projection which is a homotopy equivalence and satisfies
pla = u. Let f: X — Y be the composite powv. Then f: X — Y and fla =
u: A — B are weak homotopy equivalences. So we obtain a C'W-approximation
(f,u): (X,A) = (Y, B) for pairs.

A relative version of the Whitehead Theorem see Remark shows
that for two such CW-approximations f: (X,A4) — (V,B) and f: (X', A") —
(Y, B) there is a homotopy equivalence of pairs g: (X, A) — (X', A’) which is up
to homotopy uniquely determined by the property that f and f’ o g are homotopic
as maps of pairs (X, A) — (Y, B).

7. THE CATEGORY OF COMPACTLY GENERATED SPACES

We briefly recall some basics about compactly generated spaces. More informa-
tion and proofs can be found in [25]. A topological space X is compactly generated
if it is a Hausdorff space and a set A C X is closed if and only if for any compact
subset C' C X the intersection C'N A is a closed subspace of C.

Every locally compact space, and every space satisfying the first axiom of count-
ability, e.g., a metrizable space, is compactly generated. If p: X — Y is an identifi-
cation of topological spaces and X is compactly generated and Y is Hausdorff, then
Y is compactly generated. A closed subset of a compactly generated space is again
compactly generated. For open subsets one has to be careful as it is explained in
Subsection [T1]

7.1. Open subsets. Recall that a topological space B is called regular if for any
point « € X and closed set A C X there exists open subsets U and V with x € U,
ACVand UNV = 0. A Hausdorff space is called locally compact if every
x € X possesses a compact neighborhood. Equivalently, for every x € X and open
neighborhood U there exists an open neighborhood V' of z such that the closure
of V in X is compact and contained in U, see [23, Lemma 8.2 in Section 3-8 on
page 185].

Definition 7.1 (Quasi-regular open set and regular space). An open subset U C B
is called quasi-regular if for any x € X there exists an open neighborhood V,, whose
closure in B is contained in U.

Lemma 7.2. (i) Let B be a compactly generated Hausdorff space. A quasi-
regular open subset U C B equipped with the subspace topology is compactly
generated;

(i) Let f: X =Y be a (continuous) map between (not necessarily compactly
generated) spaces. If V. CY is a quasi-regular open subset, then f~1(V) C
X is a quasi-reqular open subset;

(11i) The intersection of finitely many quasi-reqular open subsets is again a
quasi-reqular open subset;

(iv) A space is reqular if and only if every open subset is quasi-reqular;

(v) Any locally compact Hausdorff space, any metrizable space, and every CW -
complex are reqular;

(vi) Every open subset of a CW -complex is quasi-reqular and, equipped with
the subspace topology, compactly generated.
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Proof. See [25] page 135].

Consider a point z € f~1(V). Choose an open set W of Y such that f(z) € W
and the closure of W in B is contained in V. Then f~'(W) is an open subset of
X which contains z and whose closure in X is contained in f~1(V).

Let Uy, Us, ..., U, be quasi-regular open subsets. Consider z € U := ﬂ:zl U;.
Choose for every i = 1,2...,7 an open subset V; with 2 € V; such that the closure Vj
of V; in B is contained in U;. Put V :=(),_; V;. Thenz € Vand V CNI_,V; CU.
Hence U is a quasi-regular open subset.

See [23] Lemma 2.1 in Section 4-2 on page 196].

This is obvious for locally compact spaces. Metrizable spaces are treated in [23]
Theorem 2.3 in Section 4-2 on page 198]. Every CW-complex is paracompact,
see [22], and hence in particular regular, see [23] Theorem 4.1 in Section 6-4 on
page 255].

This follows from assertions and O

7.2. The retraction functor k. There is a construction which assigns to a topo-
logical Hausdorff space X a new topological space k(X) such that X and k(X) have
the same underlying sets, k(X) is compactly generated, X and k(X) have the same
compact subsets, the identity k(X ) — X is continuous and is a homeomorphism if
and only if X is compactly generated. Namely, define the new topology on k(X)
by declaring a subset A C X to be closed if and only if for every compact subset
of X the intersection AN C' is a closed subset of C.

7.3. Mapping spaces, product spaces, and subspaces. Given two compactly
generated spaces X and Y, denote by map(X,Y )., the set of maps X — Y with
the compact-open-topology, i.e., a subbasis for the compact-open-topology is given
by thesets W(C,U) = {f: X =Y | f(C) C U}, where C runs through the compact
subsets of X and U runs though the open subsets of Y. Note that map(X,Y )k ,.
is not compactly generated in general. We denote by map(X,Y’) the topological
space given by k(map(X,Y )i, ). Sometimes we abbreviate map(X,Y) by Y
and denote for a map f: Y — Z the induced map map(idx, f): map(X,Y) —
map(X,Z), g+ fogby fX:YX — ZX_ If X and Y are compactly generated
spaces, then X x Y stands for k(X X, X), where X x, Y is the topological space
with respect to the “classical” product topology.

If A C X is a subset of a compactly generated space, the subspace topology
means that we take k(As:) for Ay the topology space given by the “classical”
subspace topology on A.

Roughly speaking, all the usual constructions of topologies are made compactly
generated by passing from Y to k(YY) in order to stay within the category of com-
pactly generated spaces.

7.4. Basic features of the category of compactly generated spaces. The
category of compactly generated spaces has the following convenient features:

e A map f: X — Y of compactly generated spaces is continuous if and only
if its restriction f|c: C — Y to any compact subset C' C X is continuous;
e If X, Y and Z are compactly generated spaces, then the obvious maps

map(X, map(Y, Z)) = map(X x Y, Z);
map(X,Y x Z) =N map(X,Y) x map(X, Z),
are homeomorphisms and the map given by composition

map(X,Y) x map(Y; Z) — map(X, Z)
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is continuous;

e The product of two identifications is again an identification;

e If X is locally compact and Y compactly generated, then X xY and X x,Y
are the same topological spaces;

e Let Xo C X; C Xy C - be a sequence of inclusions of compactly gener-
ated spaces such that X; is a closed subspace of X;1; fori=0,1,2,....

Then the colimit colim;_, ., X; exists in the category of compactly gener-

ated Hausdorf spaces. Moreover, if Y is a compactly generated space, then
colim;,~(X; X Y) exists in the category of compactly generated spaces
and the canonical map

colim; o0 (X; X Y) =N (Colimi_>oo Xi) xY

is a homeomorphism;
e In the category of compactly generated spaces the pushout of a diagram

X1 <£ X0 f—2> X5 exists if f1 or fo is the inclusion of a closed subspace;

e Given a Hausdorf space Y, the canonical map k(Y) — Y is a weak homo-
topy equivalence and induces an isomorphism on singular homology.

e Given a pushout in the category of compactly generated spaces, its product
with a compactly generated space is again a pushout in the category of
compactly generated spaces.

e The product of two C'W-complexes is again a CW-complex;

Remark 7.3 (Compactly generated weak Hausdorff spaces). There is also the cat-
egory of compactly generated weak Hausdorff spaces, see [26]. The main advantage
in contrast to the category of compactly generated Hausdorff spaces, see [25], is
that in the category of compactly generated weak Hausdorff spaces colimits for
small diagrams, for instance pushouts or filtered colimits, always exist, see |26,
Corollary 2.23]. In the category of compactly generated spaces one can define the

pushout of a diagram X; il Xo EEN X5 only if for the pushout in the classical
setting

XOL)Xl

[T
I

XQ‘)X

the space X is Hausdorff, since the retraction functor k digests only Hausdorff
spaces. Note that X is Hausdorfl if f; or fy is an inclusion of a closed subspace.
Therefore in the case treated in the manuscript this condition is always satisfies
and the pushout exists in the category of compactly generated Hausdorff spaces.

The same discussion applies to the colimit colim;_,., X; of a sequence of inclu-
sions of compactly generated spaces of Xg C X7 C Xo C ---.

For simplicity we will discuss these issues not anymore and will work in the
category of compactly generated Hausdorff spaces throughout this manuscript.

8. COFIBRATIONS

8.1. Basics about cofibrations.

Definition 8.1 (Homotopy extension property). A map i: A — X has the homo-
topy extension property (HEP) for the space Y, if for any map f: X — Y and any
homotopy h: A x I — Y with hg = f o, there exists a homotopy H: X x I — Y
with Hy = f and H o (i x idy) = h.
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In other words, HEP for the space Y means that the extension problem indicated

by the following diagram has a solution H for every map f: X — Y and homotopy
h: Ax I —Y satistying h(a,0) = f(a) for every a € A

(8.2)

/X
A
&
AxIT

where if!(a) = (a,0) for a € A and i (v) = (z,0) for z € X.
Equivalently, one may describe the homotopy extension property by the following
diagram

(8.3)

where €). is given by evaluation at 0 and h corresponds to h under the adjunction

homeomorphism map(A x I,Y) = map(A, map(I,Y)), and analogously for H and
H.

Definition 8.4 (Cofibration). A map i: A — X is called a cofibration if it has the
homotopy extension property for every space Y.

Recall that the mapping cylinder of a map i: A — X is defined by the pushout

and there is a canonical map s: cyl(i) — X x I defined as the pushout of the
inclusion 4§ : X — X x I and the map i x id;: Ax I — X x I.
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Cpli-A—x) —° . XxI

P [ x40
@ )

Proposition 8.6. The following assertions are equivalent for a map i: A — X:
(i) The map i: A — X is a cofibration;
(ii) The map i: A — X has the homotopy extension property for the mapping
cylinder cyl(i);
(11i) The canonical map s: cyl(i) = X x I has a retraction r: X x I — cyl(i).

Proof. = |(i1)| Thhis is obvious.

= If we apply the homotopy lifting property to the map k: X — cyl(7)
and the homotopy I: A x I — cyl(f), we obtain a map r: X x I — cyl(¢) such that
roif =k and ro (i x id;) = [ hold. Since we have rosok = roif = k and
rosol =ro(ixids) = I, we conclude from the pushout property that ros = idcy(;)
holds.

(ii1)] = Consider any map f: X — Y and any homotopy h: A x I — Y
satisfying hg = f|a. We obtain from the pushout property a map a: cyl(i) - Y
such that a ok = f and aol = h hold. Now define H: X x I — Y to be
aor. Then Ho (i xidy) = aoro (i xid;) =aorosol =aol = h and
Hoif =aoroif =aorosok=aok= f hold. Therefore i has the homotopy
lifting property for every space Y and hence is a cofibration. O

Remark 8.7 (Cofibrations are closed embeddings). Note that Proposition im-
plies that a cofibration i: A — X is a closed embedding, i.e., its image i(A) is a

closed subspace of X and that ¢ induces a homeomorphism A =N i(A). Namely, the
A
the composite j: A SAxT L cyl(7) is a closed embedding and j can be written
e

as the composite A LHX S XxxI D cyl(i) because of roif 0i = ro(ixid;)oift =
rosoloiff =loiff = j. Now use the fact that a map u is a closed embedding if
the composite v o u of it with some other map v is a closed embedding.

Lemma 8.8.

(i) If i: A — X is a cofibration, then there exists a retraction r: X x I —
X x {0} Uaxqoy A x I;
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(ii) If there exists a retraction r: X x I — X x {0} Ugxqoy A x I and the
inclusion A — X is a closed embedding, then the inclusion i: A — X is a
cofibration.

Proof. Put Y = X x {0} Uaxfoy Ax I. Define f: X =Y by f(z) = (2,0) and
h: AxI —Y by h(a,t) = (a,t). From the homotopy extension property applied to
Y, f, and h we obtain the desired retraction 7 = H: X xI — X x {0} Uy oy A X 1.

Note that X x {0} Uaxqoy A x I € X x I is to be understood to be equipped
with the subspace topology. Since the inclusion A — X is a closed embedding, we
get with this topology a pushout

Ax {0} —— X x {0}
AX T ——— X x {0} Uaxqoy Ax T

where all maps are inclusions.

Consider f: X — Y and h: A x I — Y with f oy = hg. Consider the map
g:=fUh: X x {0} Uaxqoy Ax I — Y. The desired homotopy H: X x I — Y is
then given by gor. O

N

=

Xefolo,  Axlodl  Xx[ou

Lemma 8.9. Consider a pushout

L}B

|

—Y

f

A
X
such that i: A — X is a cofibration.
Theni: B —Y s a cofibration.

Proof. Suppose that h: Bx I — Z and ¢: Y — Z with hg = @ o1 are given. Then

we get a homotopy h' = ho (f xidy) and a map ¢’ = po f: X — Z satisfying
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o = ¢’ oi. Since i is a cofibration, we get a homotopy H': X x I — Z satisfying
Hj = ¢ and H' o (i x id;) = h’. We have the pushout

AxT fidr BxI

ixidIJ Jixidl

XX ——Y x 1.
fxidy

Hence H "and h define a map H:Y x id; — Z which is uniquely determined by
Ho(fxidr)=H"and Ho (i x id;) = h. We get Hy = ¢, since Hy and ¢ have the
same composite with f and 3. O

Lemma 8.10. Let Xo C X; C Xy C -+ be a sequence of cofibrations. Let X be
1ts colimit;_ oo X;.
Then the canonical map Xog — X is a cofibration.

Proof. Because of Remark we can assume without loss of generality that X; is
a closed subspace of both X;; and X for¢=0,1,2,... and X = U;}io X;. Because
of Lemma it suffices to construct a retraction R: X x I — X x {0} Ux,x {0}
Xo x I. Since X x I = colim; oo X x {0} Ux,x{0} (X; x I) holds, it suffices to
construct a sequence of maps

ri: X X {0} Ux; x{0} X;xI—-Xx {O} Uxox {0} Xox 1T

for i = 0,1,2,... such that r;|x x (o}u . x1 =Ti—1 holds for i =1,2,3,...

_1xfoyX
and ro = idXX{O}Uxox{O}XOXI holds.

We construct the desired retractions r; by induction over ¢ = 0,1,2,.... The
induction beginning is obvious. The induction step from (i — 1) to i > 1 is done as
follows. Since X;_1 — X is a cofibration, there exists a retraction r;: X; x [ —

Xi x {0} Ux,x g0y Xi—1 x I by Lemma It extends to a retraction

i X x {0} Ux, g0y Xi x T = X x {0} Ux, , xqo1 Xic1 X T
by idx x {0y Urj. Now define r; to be the composite r;_ o7}’ O
8.2. Cofibrations and NDR-pairs.

Definition 8.11 (NDR-pair). We call a pair (X, A) an NDR-pair or neighborhood
deformation retract, if there are maps h: X x I — X and v: X — [ satisfying:

h(a,t) =a fora € A and t € I;

h(z,0) =z for z € X

v 1(0) = A;

h(z,t) € A for x € X and ¢ € I with v(z) < t.

Lemma 8.12. Let (X, A) be a pair. Let i: A — X be an inclusion. Then the
following assertions are equivalent:

(i) The map i: A — X is a cofibration;

(i) The pair (X, A) is an NDR-pair.
Proof. = We get from Remark that A C X is closed and from
Lemma a retraction 7: X x I — X x {0} Ugyx (o} A x I. Define

h: X xI—X, xzwpryor(z),
and
v: X = I, xzwsup{|t—pryor(z,t)]|tel},

where pry: X x I — X and pr;: X x I — I are the canonical projections. One
easily checks that h and v satisfy the conditions appearing in Definition [8.11
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(i) = Given the maps h and v, we can define a retraction r: X x [ —
X x {0} Uax{o} A x I by

) (h(x,t),t—y(x)) lfth(x)

Since A = v~=%(0) holds, A C X is closed. Moreover, A is a Gs-subset of X, i.e.,
A is the intersection of countably many open subsets of X. Lemma implies
that i: A — X is a cofibration. O

Definition 8.13 (Strong neighborhood deformation retraction). Consider a pair
(X, A). We call A a strong neighborhood deformation retraction of X, if A C X is
closed, there is an open neighborhood U of A in X such that the inclusioni: A — U
has retraction r: U — A, and there exists a homotopy relative A between idy and
ior, or, equivalently, A C X is closed, there is an open neighborhood U of A in
X and a homotopy h: U x I — U such that h(u,0) = v and h(u,1) € A holds for
u € U and we have h(a,t) =afora € Aandt e I.

Definition 8.14 (Neighborhood deformation retraction). Consider a pair (X, A)
We call A a neighborhood deformation retraction of X, if A C X is closed, there
is an open neighborhood U of A in X and a homotopy h: U x I — X such that
h(u,0) = w and h(u,1) € A hold for u € U and we have h(a,t) = a for a € A and
tel

Remark 8.15 (Strong neighborhood deformation retraction versus neighborhood
deformation retraction). The difference between Definition [8.13 and Definition [8.14]
is that in Definition the target of h is U, whereas in Definition [8.14] the target
of h is X. Hence a strong neighborhood deformation retraction is a neighborhood
deformation retraction. The converse is not true in general.

7

Remark 8.16 (NDR-pairs versus neighborhood deformation retractions). Let (X, A)
be an NDR-pair in the sense of Definition which is equivalent to i: A — X
being a cofibration by Lemma Then it is a neighborhood deformation retrac-
tion in the sense of Definition Namely, given h: X x I — X and v: X — I
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as in Deﬁnition we get by U = v71([0,1)) and hlyxr: U x I — X the data
required in Definition The converse is nor true in general.

Now suppose that (X, A) is neighborhood deformation retraction in the sense of
Definition and assume additionally that there is a map w: X — [ satisfying
w~1(0) = A and U = w1([0,1)). The latter additional condition is known to be
automatically satisfied if X is a perfectly normal space, i.e., a metric space or a
CW-complex, and A C X is closed, or if X is a normal space and A C X is a closed
Gs-subset of X. Then we obtain a retraction r: X x I — X x {0} Uaxoy A x I by

h(z,2t(1 — w(x))),0) ifxew ([1/2,1));
x,0) r ew (1).

Hence i: A — X is a cofibration by Lemma which is equivalent to (X, A)
being an NDR-pair by Lemma

(z,) if z € w™1(0);

(h(z,t/2w(x)),0) if z € w™1((0,1/2]),t < 2w(z);
r(z,t) =< (h(z,1),t — 2w(x)) if v € w=((0,1/2]),2w(x) <t < 1;

( I

(

8.3. Relative CW-complexes are cofibrations.

Theorem 8.17 (Relative CW-complexes are cofibrations). Let (X, A) be a relative
CW -complex. Then the inclusion i: A — X is a cofibration.

Proof. Because of Lemma [8.10] it suffices to prove that the inclusion X; — X; 1 is
a cofibration for ¢ = 0,1,2,.... Choose a pushout

[Ljes, 8" — X,

L]

i+1
HjGJi D't 4’Xi+1-

By Lemma [8.9] it suffices to show that the left vertical arrow in the diagram above
is a cofibration. This follows from the fact that the inclusion S* — D™+l is a
cofibration which is a consequence of Lemma O

One can actually show the following stronger result which we state without
giving the proof which follows essentially from the fact that (D! S%) is a strong
neighborhood deformation retraction and is similar to the one of Theorem

Theorem 8.18 (CW-complexes and strong neighborhood deformation retraction).
Let (B, A) be a strong neighborhood deformation retraction. Let (X, B) be a relative
CW -complex. Then the pair (X, A) is a strong neighborhood deformation retraction.

We omit the proof of the following result whose prove is similar to the one of
Theorem R.18

Theorem 8.19 (CW-complexes are locally contractible). Every CW -complex X
is locally contractible, i.e., for every point x € X and every open neighborhood V
of x in X there exists an open neighborhood U of x in X such that U C V holds
and U and U are contractible.

8.4. Well-pointed spaces.

Definition 8.20 (Well-pointed space). A well-pointed space (X, x) is a pointed
space such that the inclusion of the base point {z} — X is a cofibration.

Lemma 8.21. Let {(X;,z;) | i € I} be a collection of well-pointed spaces. Then
Vier(Xi, z;) with the canonical base point is well-pointed.
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Proof. We have the pushout

iz} ———— {e}

| J

Hz‘eI Xi ’ \/ieI(Xi, ;)

where the left vertical arrow is the obvious inclusion and a cofibration. Now apply
Lemma O

8.5. Comparing pointed homotopy and homotopy. Consider a well-pointed
space (X, z) and space Y. Next we define a covariant functor

(822) Y=V X,z),Y " H(Y) — Sets

from the fundamental groupoid II(Y") to the category Sets of sets. It sends the
element y € Y to the set [(X,z),(Y,)]° of pointed homotopy classes of pointed
maps (X,z) — (Y,y). Consider a morphism [w]: yo — y1 in II(Y') represented by
path w: I — Y with w(0) = yo and w(1) = y; and an element [f] € [(X,z), (Y, y0)]°
represented by a pointed map f: (X,z) — (Y,yo). Since the inclusion {z} — X
is a cofibration, we can find a homotopy h: X x I — Y such that hyg = fy and
h(z,t) = w(t) holds. Now we define y([w])([f]) = [h1]. We omit the proof, which
is essentially based on the fact that the inclusion {z} x I — X x I is a cofibration,
that this definitions makes sense and yields the functor v announced in .

If we fix a point y € Y, we get using the identification of 71 (Y,y) with autry)(y)
an operation

(8.23) m (Y, y) x [(X,2), (V.9)]” = [(X,2), (Y, 9)]°.
One easily checks that the forgetful map [(X, ), (Y,y)]° — [X, Y] induces a bijec-
tion

Note that for a simply connected pointed space (Y, y), the bijection (8.24]) reduces
to a bijection [(X,z), (Y,y)]° = [X,Y].

If we take (X, z) = (S™, s), the operation (8.23)) yields an operation of 71 (Y, y) on
(Y, y). If n =1, this is the conjugation action, where [w] acts on [u] € 71 (Y, y) by
[u] = [w]-[u] - [w]~t. If n > 2, then 7, (Y, y) is abelian and the 71 (Y, y)-action is by
automorphism of abelian groups. Hence we get a left Z[m (Y, y)]-module structure
on 7, (Y,y) for n > 2.

Suppose that Y is path connected and has a universal covering p: Y - Y.
Choose §j € Y with p(§) = y. Recall that ¥ comes with a (Y, y)-action. le
a natural number n > 2. We get for [u] € 71(Y,y) a homeomorphism I[;: y 5
Y by left multiplication with [u]. Choose a path v: I = Y from [u] - ¥ to ¥.
Then we get an isomorphism T, ([v]): 7rn( ,[u] - 9) = (Y, 7) from (2.6), which
is independent of the choice of v as Y is simply connected. Now we define a
left m (Y, y)-action on m,(Y,y) by letting [u] € m1(Y,y) act on m,(Y,y) by the

Tn l i n (v and .
composite m,(Y,§) ——ts ( %) (Y, [u] - 9) TnD, (Y, 7). One easily checks
that this defines a left Z[m1 (Y, y)]-module structure on the abelian group m, (Y, 7).
Recall the isomorphism 7, (p,): m (Y ,7) N 7mn(Y,y) from Theorem One
easily checks that it is compatible with the left Z[r (Y, y)]-module structures on
(Y, ) and 7, (Y, y) constructed above.

Lemma 8.25. Let f: (X,2) — (Y,y) be a pointed map of well-pointed spaces.
Suppose that f is a homotopy equivalence (after forgetting the base points).
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Then f is a pointed homotopy equivalence.

Proof. Choose a homotopy inverse ¢': Y — X of f. Because of we can change
g’ up to homotopy such that ¢’(y) = x holds. The map f.: [(Y,y),(X,z)]° —
(Y, ), (Y,y)]° sends [¢'] to the element [fog'] Which is mapped under the projection
[(Y,y), (Y,y)]° — [Y,Y] to [idy]. Because of there is a element v € m1(Y,y)
satifying (] = o- o0 in [(V0). (V). Simce (1295 ma(X, ) > 71 (Vo)
bijective, we can find u € m (X, x) with 7r1(f z)(u) =v. Let g: (Y,y) — (X,z) be a
pointed map satisfying [g] = u-[¢'] in [(Y,y), (X, 2)]°. Then we get in [(Y,y), (Y, y)]°

[fogl = fullg) = fulu-[g']) = v fullg']) = v [f o '] = [idy].
Hence g is a pointed homotopy right inverse of f. The same argument applied to

g shows that [g] has a pointed homotopy right inverse. This implies that f is a
pointed homotopy equivalence. O

8.6. The Homotopy Theorem for pushouts and cofibrations. Given a space
B, let TopB be the category of topological spaces under B. Objects are maps
uw: B — X. A morphism from u: B -+ X tov: B - Yisamap f: X — Y
satisfying fou = v. We call two such morphism fy, f1: © — v homotopic if they are
homotopic through morphisms in TopB , i.e., there exists a homotopy h: X xI — Y
such that hg = fy and h; = f; holds and we have h; ou = v for every t € I. Let
h—TopB be the associated homotopy category, i.e., the set of objects of h—TopB
and TopB agree and a morphism from u to v in h—TopB is a homotopy class of
morphisms from v to v in Top?.

Let Cof? and h-Cof? respectively be the full subcategory of TopB and h—TopB
respectively consisting of those objects i: B — X for which i is a cofibration.

Given two spaces A and B, define TI(A, B) to be the following category. Objects
are maps f: A — B. A morphism from fy to f1 is a homotopy class [h] relative
A x {0,1} of maps h: A x I — B with hg = fy and hy = f1. Note that h itself is
a homotopy between fy and f; and [h] is the homotopy class of such homotopies
represented by h. If A = {e}, then II({e}, B) is the fundamental groupoid II(B) of
B. Note that II(A, B) is a groupoid. Given a cofibration i: A — X, we next sketch
the construction of a contravariant functor

(8.26) Bi: TI(A, B) — h-Cof®.

An object f: A — B is sent to the cofibration v;(f): B — Y} given by the following
pushout and Lemma [8.9]

A—L B

ZL J’Yi(f)

X ——Y;.
8:(/)

Now consider two maps fo, f1: A — B together with a homotopy h: AxI — B with
ho = fo and hy = f1. As i is a cofibration, there exists a homotopy H: X xI — Y},
with Hy = B;(fo) and H o (i x id;) = 7;(fo) o h. Since we have the pushout

A—I B

zi J,%(fl)

X —Yy
/B’L(fl)

there is precisely one map u: Yy, — Yy, uniquely determined by the property that
wo fB;(f1) = Hy and uwo v;(f1) = 7 (fo) hold. Obviously u is a morphism from
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Yi(f1): B = Yy, to vi(fo): B — Yy, in Cof?. Thanks to H, we have

(8.27) wo Bi(f1) = Bi(fo)-

We omit the proof that [u] depends only on [h] which can be found in [3I, Propo-
sition 5.2.1 on page 107]. So we can define 3;([h]) = [u]. We also omit the proof
that f8; is a contravariant functor. Note that 8;([u]) is represented by a homotopy
equivalence as (A, B) is a groupoid.

Theorem 8.28 (Homotopy Theorem for pushouts and cofibrations). Consider a

pushout
A B
X

—Y
!
such that i: A — X is a cofibration and f is a homotopy equivalence.
Theni: B —Y is a cofibration and f is a homotopy equivalence.

Proof. The map i is a cofibration by Lemma Let g: B — A be a homotopy
inverse of f. Consider the pushout

B A

{ Jz

Y Z.

The map ¢ is a cofibration by Lemma Since g o f ~ ida, we get from the
contravariant functor 8;: II(A, A) — h-Cof? of and from a homotopy
equivalence u: Z — X such that uogo f ~ idx holds. Hence f has a left homotopy
inverse. Interchanging the role of f and g shows that f has a right homotopy
inverse. Hence f is a homotopy equivalence. 0

J\

g
—

—

Theorem [8.28] can easily be extended to the following theorem.

Theorem 8.29 (Homotopy Theorem for maps between pushouts). Let the follow-
ing two diagrams be pushouts

Xo —1 X, Yo vy
inr le kQJV Jrll
X2 — X Y2 —Y
J2 l2

where the left vertical arrows is and ko are cofibrations. Let f;: X; — Y; be homo-

topy equivalences for i = 0,1,2 satisfying f1 o171 = ki1 o fo and fy 0ia = kg o fy.

Denote by f: X — Y the map induced by fy, f1, and fo and the pushout property.
Then f is a homotopy equivalence.

Remark 8.30. The condition that the maps is and ko are cofibrations appearing
in Theorem [8.29| is necessary as the following examples shows.
We take as pushouts

gn ", pntl sn—E, (e}

I

Dl g {o} —— (s}
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and define fy =idg~» and f1, f2, and f to be the the projections.
Example 8.31. Let B be the compact subset of R? given by
B ={(1/n,0) € R? | n € Z='} 11 {(0,0)}.
Let C be the cone over B with cone point (0,1) in R? i.e.,
C={zcR?*|3tcTandbc Bsatisfyingz =t-b+ (1 —1)-(0,1)}.

Define
A={zecR?*|z€Cor —x€C}.

Then we have:

(i) The inclusion {(0,1)} — C is a cofibration;
C' is contractible;

(vii) A is not a CW-complex.
Since we have the pushout whose left vertical arrow is the obvious inclusion and

a cofibration
B x {1} _ {o}

|

BxI—C

assertions |(i)| and follow from Theorem
Next we show assertion Suppose that A is contractible. Since A is in

particular path connected, we can find a map h: A x I — A with h(a,0) = (0,0)
and h(a,1) = a for all a € A. Since any path from (—1/n,0) to (0,0) in A
must go through (0, —1), we can find elements ¢, € I with h(—1/n,t,) = (0,—1)
for n > 1. Since I is compact, we can find a strictly monotone increasing function
N: N — Nand an element ¢t~ € I with lim,, s t;,(n) =t". Aslim, o 1/N(n) =0
holds, we conclude h((0,0),t7) = lim, oo h(—l/N(n),tX,(n)) = (0,—1). Since h
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is continuous, we can choose t~ such that h((0,0),t) = (0,—1) for ¢ € I implies
t~ < t. Analogously we construct t+ € I such that h((0,0),t7) = (0,1) holds
and h((0,0),t) = (0,1) for ¢t € I implies tT < ¢. Next we consider only the case
tT < t7, the other case is completely analogous. Obviously ¢tT # ¢~ holds and
hence ¢t* < ¢t7, By continuity lim, 0 h(—1/n,tt) = h(0,tT) = (0,1). Hence there
is a natural number ng such that h(—1/n,t*) = (0,u,) with u, > 0 holds for
n > ng. Since any path from (—1/n,0) to (0,u) for v > 0 in A must go through
(0, —1) we can for every n > ng elements s, € I with h(—1/n,s, ) = (0,—1) and
s, < t*. Since I is compact, we can find a strictly monotone increasing function
N’: N — N and an element s~ € I with lim,,_, Sni(n) =S - Obviously s~ < tt.
As lim, 00 1/N'(n) = 0 holds, we conclude (0,—1) = lim,,—, h((1/n,0),s,) =
h((0,0),s™). This implies t~ < s~. Hence we get t~ < T, a contradiction.

Suppose that assertions|(iv)|is not true. As C and hence also {—x € R" | z € C'}
are contractible by assertio Theorem implies that A is contractible. Since
we have already proved that A is not contractible, assertion follows.

Suppose that the inclusion {(0,0)} — C'is a cofibration. Then also the inclusion
{(0,0)} = {—z € R" | # € C} is a cofibration. This implies by Lemma[8.21that the
inclusion {(0,0)} — A is a cofibration. Hence assertion implies assertion

Since the point (0,0) in C has the property that any neighborhood of it in
C which does not contain (1,0) is not contractible, assertion follows from
Theorem The proof of assertion is analogous.

8.7. (Pointed) cylinders, cones and suspensions. Consider a space X. Recall
that its cylinder is defined by X x I, its cone cone(X) by the pushout

X x {1} ——— {e}
X x I — cone(X),
and its suspension by the pushout
X ———— cone(X)
cone(X) —— ¥ X.

Equivalently, one can define XX to be the quotient of X x [—1, 1] under the equiva-
lence relation generated by (xg,1) ~ (x1,1) for zo, 21 € X and (xg, —1) ~ (z1,—1)
for xg,z1 € X. There is an obvious pushout

)[ — cone(X)
{o} — ¥ X.

Consider a pointed space (X, x). Its reduced mapping cylinder cyl(X,x), its re-
duced mapping cone cone(X, x), and its reduced suspension (X, z) are the defined
by the pushouts

(8.32) {z} x I ——— {}

|

X x I ——cyl(X, x),
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(8.33) {z} x TUX x {1} ——— {o}

X x I ———— cone(X, z),

and

(8.34) {z} x TUX x{0,1} ——— {e}

| |

X xI—%(X,x).
and come with a preferred base point. Note that ¥(X, z) can be identified with the
smash product (S1,s) A (X, z) = (ST x X)/(S* x 2 U {s} x X).
Given a well-pointed pointed space (X, z), the canoncial projections cyl(X) —

cyl(X, x), cone(X) — cone(X, z), and XX — 3(X, x) are pointed homotopy equiv-
alences by Lemma [8.25, Theorem [8.28] and Theorem [8.29]

Cone (X x)
; z =~ ; ifounm

7 (¥.x)

Cuum

There are obvious pushouts

{z} x I ——— {o}

J J

cyl(X, x) — cone(X, x),

and

X —— cone(X, x)

| |

cone(X,z) — (X, x).
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Let f: (X,z) — (Y,y) be a pointed map. Its reduced mapping cone cone(f, z) is
defined by the pushout

(8.35) x—>1

or, equivalently by the pushout

(8.36) ({z} x 1) U (X x {0}) U (X x {1}) %I

X xI cone(f,x)

where u sends (x,t) for t € I toy, (2,1) to f(z) for z € X and (2,0) to y for z € X.
Note that cone( f, z) comes with a preferred base point for which the pushout (8.35))
is a diagram of pointed maps of pointed spaces.

8.8. Turning a map into a cofibration. Consider a map f: X — Y. Then it can
be replaced up to homotopy equivalence by a cofibration. Namely let i: X — cyl(f)
be the canonical inclusion and p: cyl(i) — Y be the projection. Then we get the
factorization

X Sel(f) By

where i is a cofibration and p is a homotopy equivalence. Actually we get a diagram

(8.37) X

AN

Y —=aoyl(f) ——= Y

where the left triangle commutes up to homotopy, the right triangle commutes,
the two horizontal maps k£ and p are homotopy equivalences which are homotopy
inverse to one another, and the vertical arrow i is a cofibration.
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)(

7%

b? @

8.9. The Cofiber Sequence. A pointed map f: (X, z) — (Y, y) induces by com-
position for every pointed space (B, b) a map

Ay, (B0 = [(X,2),(B.b)]", [u] = [uo f]

which depends only on the pointed homotopy class of f. A sequence (X,z) EN

(Y, y) EN (Z,z) of maps of pointed spaces is called homotopy coezact if for each
pointed space (B,b) the induced sequence of pointed sets

[(Z,2), (B,b)]* £ [(V9), (B, 0)]° L5 [(X,9), (B,B)]°

is exact at [(Y,y),(B,b)]° in the sense that the image of g* is the preimage of
f* of the base point in [(X,y), (B,b)]° given by [¢] for the constant pointed map
¢p: (X,2) — (B,b). Note that this implies that go f is pointed homotopy equivalent
to the constant map ¢,: (X, z) — (Z, 2).

Lemma 8.38. Let f: (X,z) — (Y,y) be a pointed map. Let j: (Y,y) — cone(f,z)
be the canonical inclusion which is a map of pointed spaces.
Then the sequence

(X,2) L (v,9) & (cone(f,2), %)

is homotopy coexact.

Proof. This is a direct consequence of the pushout (8.36)) which says that a pointed
map (cone(f,x),*) — (B,b) is the same as a pointed map v: (Y,y) — (B,b)
together with a pointed homotopy h: X x I — B between the constant map ¢, and
vo f. (]

One can iterate this construction and obtains a homotopy coexact sequence of
pointed sets, infinite to the right,

/ J

X L v 24 cone(f) L2 cone(j) L2 cone(fo) £ -

where we omit the base points from the notation and homotopy coexact means that
it is exact as a sequence of pointed sets at Y, cone(f), cone(j), .. ..
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The further investigation replace the iterated mapping cones with homotopy
equivalent spaces which are more appealing, namely iterated suspensions.

Suppose additionally, that the pointed map f: (X,z) — (Y,y) is a cofibration
(after forgetting the base points). Note that then we can think of X as a closed
subspace of Y and f as the inclusion of X into Y, see Remark Then we
obtain a pointed map p: (cone(f,x),*) — (Y/X, x) which is homotopy equivalence
by Theorem [8.29, We conclude from Lemma that p is a pointed homotopy
equivalence. Hence the following diagram of pointed sets commutes

(8.39) (X, z) L» (Y, y) I, (cone(f,x), %)

o

q

(X,2) L (V,y9) — 2 (V/X, %)

where ¢: X — X/Y is the canonical projection and all vertical arrows are pointed

homotopy equivalences. Hence the sequence (X, ) ER (Y, y) 4, (Y/X, %) is homo-
topy coexact.

Note that j: (Y,y) — cone(f,z) is a cofibration and cone(f,z)/Y is homeo-
morphic to (X, x) regardless whether f is a cofibration or not. Hence we obtain
from a commutative diagram of pointed sets

(Y,%) 7, (cone(f,x), %) LN (cone(7, *), *)

dey Jridcunc(f,z) JVPI

(K y) #) (cone(f,a:), *) 94) (E(X’ x)? *)

where all vertical arrows are pointed homotopy equivalences and g = p’ o k. Hence
the sequence

(X,2) L (V) L (cone(f,2), %) & (B(X,2), %)

is homotopy coexact. Iterating this process leads to the following result. Denote
by %" the n-fold suspension.

Theorem 8.40 (Cofiber sequence). Consider a pointed map f: (X,z) — (Y,y).
Then we obtain a homotopy coexact sequence, infinite to the right

(841) (X,2) L (V) L (cone(f,2), %) & (B(X,2), ) =D (S(Y,9), %)

Z0, S conel(f, ), #) =2 (Z2(X, 2), ) =Ly (Z2(Y, y), )
=, »?(cone(f, ), *) N (23(X, x), %) RN

Note that this sequence (8.41) is natural in f. Moreover, it yields for every
pointed space (B,b) the following exact sequence of pointed sets, which is infinite
to the left, natural in both f and (B,b), and sometimes called the Puppe sequence:

(8.42)

RN [22 cone(f),BP - 3%, B] =5 22, B] [2 cone(), B’

22y, B 252X, B £ [cone(f), B° L [v, B° 5 [X, B]".

Here and also sometimes in the sequel we omit the base points from the nota-
tion. Note the obvious fact that the map f*: [Y, B]° — [X, B]° is not necessarily
surjective.
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8.10. Group structures on the Puppe Sequence. Let (X, z) be a well-pointed
space and (Y,y) be a pointed space. We have the pinching map V;: St — St v St
of (2.5)). It induces a pinching map

Vx:S(X,z)=S'"AX
Mndx, (51 v SHA X = (ST AX) V(ST AX) = B(X,2) VI(X, 2).
Now we can define a group structure on [¥X,Y]" by

(8.43) (EX, V] % [2X, Y] —» [BX, Y], [f][g] = [(f Vg) o Vx].

Analogously to the proof of Lemma one can show that this group structure
is abelian on [ X, Y] for n > 2. If we take (X, z) to be (S, s), then the groups
(£S89 (Y, y)]° =[S, Y]? and 7, (Y, y) agree.

The exact Puppe sequence appearing in Theoremis an exact sequence
of groups or abelian groups in the ranges where the group structures are defined
on the sets of pointed homotopy classes.

9. FIBRATIONS

9.1. Basics about fibrations.

Definition 9.1 (Homotopy lifting property). A map p: E — B has the homotopy
lifting property (HLP) for the space X, if for each homotopy h: X x I — B and
each map f: X — FE satisfying po f = hg, there is a homotopy H: X x I — F
with po H = h and Hy = f.

In other words, the HLP for a space X means that the extension problem in-
dicated by the following diagram has a solution H for every map f: X — E and
homotopy h: X x I — Y satisfying po f = hg

(9.2) E

/

map(I, B)

where €% and e}, are given by evaluation at 0 and h is the adjoint of h under the
canonical adjunction homeomorphism map(X x I, B) = map(X, map(J, X)), and
analogously for H and H.

Equivalently, one may describe the HLP with by the following diagram

(9.3) x—1 L E

A
« -
g //H p
-

XXIT>B.

Definition 9.4 (Fibration). A map p: E — B is called a fibration or Hurewicz
fibration if it has the homotopy lifting property for every space X.

A map p: F — Bis called a Serre fibration if it has the homotopy lifting property
for the cube I™ for all n > 1.
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Define for a map p: E — B the space W (p) by the pullback

(9.5) W(p) ——— E

[

map(/, B) —— B.
€B
Explicitly W(p) = {(e,w) € E xmap(I, B) | p(e) = w(0)} C E x map(I, B) and e,
sends (e, w) to e and P sends (e, w) to w. Note that we obtain from (9.5) a map
r: map(l, E) = W(p)
uniquely determined by the property that e, or = €% and por = map(id;, p) holds.
If we have base points e € E and b € B with f(e) = b, then W(p) inherits the

base point * = (e,¢) for the constant map c¢,: I — B with image {b} and the
diagram (9.5]) is a diagram of pointed spaces.

Proposition 9.6. The following assertions are equivalent for a map p: E — B:
(i) p is a fibration;

(i) p has the HLP for W(p);

(11i) The map r: map(I, E) — W (p) has a section s.
Proof. = This is obvious.
= If we apply the HLP to the map e,: W(p) — E and the homo-
topy h: W(p) x I — B which corresponds under the adjunction homeomorphism
map(W (p) x I, B) =N map(W (p), map(I, B)) to D, we get a map 5: W(p) x [ — E.
Let s: W(p) — map(I, E) be the map corresponding to § under the adjunction
homeomorphism map(W (p) x I, E) — map(W (p), map(I, E)). Since the compos-
ite of 7 o s and of idyy(,) with both e, and p agree, we get r o s = idyy(p)-
== Consider a homotopy h: X x I — B and a map f: X — E satisfying
po f = ho. Because of the pullback (9.5) we get from (f,p) a map u: X — W(p).
Let H: X — map(I, F) be the composite sou. Let H: X x I — E be the homo-
topy corresponding to H under the adjunction homeomorphism map(X x I, E) =
map(X, map(I, E)). Then H is a solution to the HLP given by (h, f). This shows
that p is a fibration. O

Proposition 9.7. Consider the pullback

x— .y
I
BT)C

If q is a fibration, then its pullback § along f is a fibration.

Proof. Consider a map u: A — X and a homotopy h: A x I — B such that
ho = gou holds. As ¢ is a fibration, we get from the HLP applied to the map
fou: A—Y and the homotopy foh: A x [0,1] =Y a homotopy H: Ax I =Y
satisfying go H = foh and Hy = f ou. Since the diagram above is a pullback, we
get a map H: A x [0,1] — X uniquely determined by fo H = H and Go H = h.
Since Hy and u have the the same composite with both f and g, we get Hy = f.
Hence g has the HLP and therefore is a fibration. O

The elementary proof of the next result can be found in [3I, Proposition 5.5.4
on page 116 and Proposition 5.5.5 and 5.5.6 on page 117].
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Proposition 9.8. Let Z be a (compactly generated) space. Let i: A — B be a
cofibration and p: E — B be a fibration. Then:

(i) The induced map
map(i,idz): map(B,Z) — map(A4, 2)

18 a fibration;
(ii) The induced map

map(idz,p): map(Z, E) — map(Z, B)

18 a fibration;

(11i) The canonical map map(I, E) — W (p) sending v to (v(0),pov) is a fibra-
tion;

(iv) Consider the pullback

E—E
ATB'

Then the upper horizontal arrow i: E; — E is a cofibration.

The elementary proof the next result can be found in [31, Corollary 5.5.3 on
page 116].

Proposition 9.9 (Improved HLP). Letp: E — B be a fibration andi: A — B be a
cofibration which is the inclusion of a closed subspace A of B. Consider a homotopy
h: XxI—Bandamap f: AXIUX x{0} - E. Let j: AxITUX x{0} - X xI
be the obvious inclusion. Suppose po f=hoj.

Then there exists a homotopy H: X x I — E satisfyingpoH =h and Hoj = f,
in other words, we can solve the following extension problem

AXIUXX{O}L))E

-
J/] //H
-~

XXITB.

9.2. Turning a map into a fibration. Let f: X — Y be a map. Con51der the

space W (f) defined in Then the composite gy: W(f) ER map(I,Y) -—> Yisa
fibration by the followmg argument.

Consider a homotopy h: A x I — Y and a map u: A — X satisfying fou = hyg.
Since is a pullback, there is a homotopy H: A x I — W(f) which is uniquely
determined by the properties that ey o H is the composite A x I Py A X for
pr 4 the canonical projection and that fo H: A x I — map(I, B) agrees under the

adjunction map(A x I, map(I,Y)) — map(A x I x I — Y) with the composite

AxTxT227% A5 T2 Y for the map v: I x I — I sending (s,t) — s - .
Explicitly H sends (a,t) to the pair (u(a),w) where w: I — Y sends s to h(a, st).
One easily checks that Hy = v and ¢y o H = h holds.

We have the inclusion i: X — W(f) sending z to (z,cg(y)). Its composite with
the map ey: W(f) — X appearing in is the identity on X. Define a homotopy
k: W(f) x[0,1] = W(f) by sending ((z,w),t) to (x,w;) for the path w;: I =Y
sending s to w(st). Then ky = ioey and ky = idy (). Hence ef is a homotopy
equivalence with homotopy inverse 7. Obviously gy o4 = f holds. So we get a
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factorization f: X BN W(f) 25 Y into a homotopy equivalence i followed by a
fibration gy. Actually we obtain a diagram

(9.10) X —w(h) 22X

af
S
Y
such that the left triangle commutes, the right triangle commutes up to homotopy,

the two horizontal arrows are homotopy equivalences and homotopy inverse to one
another, and the middle vertical arrow ¢y is a fibration. Recall that we have

W(f) = {(z,w) € X xmap(l,Y) | p(z) = w(0)};
i(x) = (z,¢p());
ef(z,w) = w
gf(z,w) = w(l).

9.3. Homotopy Theorem for pullbacks and fibrations.

Theorem 9.11 (Homotopy Theorem for pullbacks and fibrations). Consider the

pullback
X E
| b
A

— B.
!

Suppose that p is a fibration and f is a homotopy equivalence. Then P is a fibration

and f is a homotopy equivalence.

ji
—

Proof. We have already shown in Proposition that p is a fibration. The proof
that f is a homotopy equivalence is omitted and can be found in [3I], Proposi-
tion 5.5.10 on page 118]. O

Theorem [9.11] can easily be extended to the following theorem.

Theorem 9.12 (Homotopy Theorem for maps between pullbacks). Let the follow-
ing two diagrams be pullbacks

X i1 X, Y ki Y3

inr J]& k2JV Jrll

Xo ]4> Xo Yo 14) Yo
2 2

where the right vertical arrows j1 and ly are fibrations. Let f;: X; — Y; be homotopy
equivalences for i = 0,1,2 satisfying l1 o f1 = fo o j1 and ls o fo = fo o ja. Denote
by f: X =Y the map induced by fo, f1, and fo and the pullback property.

Then f is a homotopy equivalence.

Remark 9.13. The condition that j; and l; are fibrations appearing in Theo-
rem is necessary as the following examples shows.

Given a pointed space (X, z), let P(X, z) be the subspace of map (I, X) consisting
of path w with w(0) = x and Q(X,x) be the subspace of map(l, X') consisting of
path w with w(0) = w(1) = z. Often Q(X, ) is called the loop space of X. One
easily checks that P(X,z) is contractible. We take as pullbacks
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(X, z) — P(X, 1) {o} —1 {0}
[
{o} ——X {o} —— X

where j; is by evaluation at 1 and js, I, and s have as image the base point z.
Take fi: P(X,z) — {e} to be the projection, fo = ide}, and fo = idx. Note that
Q(X, z) is in general not contractible.

9.4. The fiber transport. Let p: F — B be a fibration. Next we construct a
functor

(9.14) 7: II(B) — h-Top.

It sends an object z in the fundamental groupoid to the fiber F, := p~!(z) of p
over z. Consider a morphism [w]:  — y. Choose a path w: I — B with w(0) =«
and w(1) = y representing w. Apply HLP to the inclusion i,: F, — E and the
homotopy h: F, x I P 1Y B for the projection pr;. This yields a homotopy
H: F, xI— E with Hy =i, and po H = h. Then H; is a map F, — F, and we
define 7([w]) = [H;]. We leave it to the reader to check that [H;] depends only on
[w] and is independent of the choices of w and H and yields a covariant functor.

Proposition 9.15. Let p: E — B be a fibration over a path connected space B.
Then for any two points x and y the fibers F,, and F, are homotopy equivalent.

Proof. This follows from the functor 7 of (9.14) and the fact that II(B) is a
groupoid. (|

9.5. Homotopy equivalences and fibrations.

Definition 9.16 (Fiber homotopy equivalence). Let py: Ey — B and p;: E; — B
be fibrations over B.

A fiber preserving map f: pg — p1 is amap f: Ey — F; satisfying p; o f = pog.

Two such fiber preserving maps fo, f1: po — p1 are called fiber homotopy equiv-
alent if there is a homotopy h: Ey x I — F4 such that hg = fy and h; = f; hold
and h;: Eg — E7 is a fiber preserving map h;: pg — p1 for each t € I.

A fiber preserving map f: Fy — F; is a fiber homotopy equivalence if there is
a fiber preserving map g: Fh, — FEj such that g o f is fiber homotopy equivalent to
idg, and f o g is fiber homotopy equivalent to idg, .

Theorem 9.17 (Characterization of fiber homotopy equivalences). Let po: Ey —
B and p: E1 — B be fibrations over B.

Then a fiber preserving map f: po — p1 s a fiber homotopy equivalence if and
only if the underlying map f: Eqg — E1 is a homotopy equivalence.

Proof. The proof is indicated for instance in [20, Proposition in Section 5 of Chap-
ter 7 on page 52]. O

Theorem 9.18 (Homotopy Covering Theorem). Let p: E — B be a fibration.
Consider two maps fo, f1: X — B which are homotopic. Let p;: E; — X be the
fibration obtained by the pulling back of p to f; fori=20,1.

Then pg and py are fiber homotopy equivalent.

Proof. See [27), Proposition 15.16 on page 344]. O

Corollary 9.19. Let p: E — B be a fibration over a contractible space B. Then p
is fiber homotopy equivalent to a trivial fibration B x F — B.
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9.6. The Fiber Sequence. A pointed map f: (X,z) — (Y, y) induces by compo-
sition for every pointed space (A, a) a map

fer[(Aa), (X)) = [(A,a), (V,9)]°, [ul = [fou]

which depends only on the pointed homotopy class of f. A sequence (X,z) — ER

(Y,y) % (Z, 2) of maps of pointed space is called homotopy ezact if for each pointed
space (A, a) the induced sequence of pointed sets

[(4,a), (X, 2)] L5 [(4,0), (v,9)° 25 [(4,0), (Z,2)]°

is exact at [(4,a),(Y,y)]° in the sense that the image of f, is the preimage of
g« of the base point in [(A,a), (Z, 2)] given by [c.] for the constant pointed map
¢.: (B,b) = (Z, z). Note that this implies that go f is pointed homotopy equivalent
to the constant map c,: (X,z) — (Z, 2).

Recall that P(Y,y) is the subspace of map(I,Y") consisting of path w with w(0) =
y. It has the constant path ¢, as base point. Equivalently, one define P(Y,y) by
the pullback

(9.20) P(Y,y) SN map(I,Y)
{o} ——VY
Define the space P(f,x) by the pullback
(9.21) P(f,2) —= P(V,y)
T
X f) Y.

The space P(f,z) inherits from the base points € X and ¢, € P(Y,y) a base point
x for which the diagram becomes a diagram of pointed spaces. Explicitly
P(f,x) is the subspace of X x map(I,Y") consisting of those pairs (z,w) for which
w(0) = y and w(1) = f(2) holds. The map f sends (z,w) to w and py sends (z,w)
to z.

Lemma 9.22. Let f: (X,z) — (Y,y) be a pointed map of pointed spaces. Let
pr: P(f,z) — X be the map defined in (9.21). Then

(P(f.2),%) 25 (X,2) L (Y,y)
is homotopy ezxact.
Proof. This is a direct consequence of the pullback (9.21) and the adjunction
map(A, map(I, X)) = map(A x I, X). Namely, they imply that a pointed map
(A,a) — (P(f,z),*) is the same as a pointed map u: (A, a) — (X, z) together with
a pointed homotopy h: (A,a) x I — (Y,y) between the constant map c¢,: B — Y
and fou: (4,a) = (Y,y). O

One can iterate this process and obtains a homotopy exact sequence, infinite to
the left

5 P(fa) 25 P(fa) &5 P(f) £ Pop) 25 PP 2o X .
Here and also sometimes in the sequel we omit the base points from the notation.

The further investigations replace the spaces P(f1), P(f2),... by more appealing
spaces, namely by iterated loop spaces Q" (X, z). Recall that the loop space Q(X, x)
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|
8

is the subspace of map(I, X) consisting of maps w: I — X with w(0) = w(1)
It can also be described by the pullback

(9.23) Q(X,2) —— P(X,z)

T

{o} ——X

or, equivalently,

(9.24) Q(X, ) —— map(I, X)

JV Jmap(i,idx)

{¢} ——— map(dI, X)

where i: I — I is the inclusion and the lower horizontal arrow has the constant
map c, with value x as image.

Suppose additionally that the pointed map f: (X, z) — (Y, y) is a fibration (after
forgetting the base points) and that (X, z) and (Y,y) are well-pointed. We have
the commutative diagram

{o}L)YAX

ey

where j is the map onto the base point * on P(Y,y). The pullback of the upper
row is f~!(y), whereas the pullback of the lower row is P(f,z) because of .
All vertical maps are homotopy equivalences. Hence the diagram induces by the
Homotopy Theorem a homotopy equivalence

g: 17 () = P(f,2).
It is a pointed homotopy equivalence by Lemmal[8.25] since its domain and codomain
are well-pointed. The following diagram of well-pointed spaces commutes

i

(9.25) (F (), 2) s (X, 2) —— (V,1)

(P(f7 y)v *) Tf) (Xv .Z’) T) (Y7 y)
for i, the inclusion and all vertical arrows are pointed homotopy equivalences. Since
the lower row is homotopy exact, the upper row is homotopy exact.

The map py: P(f,xz) = X is a fibration by Proposition applied to the pull-
back since the inclusion {y} — Y is a cofibration and hence ei.: P(Y,y) =Y
is a fibration by Proposition Then we obtain a pullback

(Q(Y, 9), %) L P(f,2)

{.}T)X



58 LUCK, WOLFGANG

from the pullbacks (9 and ([9.23). Explicitly iy: Q(Y,y) — P(f,z) sends w to
(z,w) and induces a homeomorphlsm i QY,y) = py ~1(z). Hence the sequence of

pointed spaces 4
AYy) L (P(f,2),%) 2 (X,2) L (V)

is homotopy exact. Iterating this process yields the following result.

Theorem 9.26 (Fiber sequence). Let f: (X,z) — (Y,y) be a map of well-pointed
spaces. Then we obtain a homotopy exact sequence, infinite to the left,

9.27) o I (@2, 1), ) s 02V, ), 0) 2 (UP(F,2), ), %)
pr

22 QXL 2),0) s Q) 0) D (P(foa),x) 2 (Xx) L (V).

Note this sequence (9.27)) is natural in f and yields for any pointed space (B, b)
the long exact sequence of pointed sets, infinite to the left,

A0, 1B, 02(X, )0 LI 3,02y, )0 L2 (B,0P(f,2))"

(pr)*

(9.28)

L2 1B, (X, 2)]) L (B, oY, )

—>“f)* B, P(f,2)]° 2% (B, x]° I (B, Y]

where we have omitted the base points of the pointed spaces involved. Note the
obvious fact that the map f,: [B, X]° — [B,Y]° is not surjective in general.

9.7. Group structures on pointed sets associated to the Fiber Sequence.

Definition 9.29 (Group object in h-Top®). A group object in h -Top® is a pointed
space (X, z) together with pointed maps

m: (X x X, (z,z)) — (X, x);
(X, z) —
satisfying the following conditions:
(i) The two pointed maps (X, z) — (X, z) sending y to m(z,y) and m(y, )
respectively are pointed homotopic to the identity;
(ii) The two pointed maps m o (idx xm) and m o (m x idx) from (X x X x
X, (z,z,x)) to (X, z) are pointed homotopic;
(iii) The two pointed maps mo (idx xi) and mo (idx xi) from (X x X, (z,x))
to (X, ) are pointed homotopic to the constant map c,.

Sometimes group objects in h—Top0 are called associative H-spaces with inverse.

Example 9.30 (Examples for group object in h—TopO). A topological group is
obviously an example of a group object in h-TopO. Our main example is the loop
space Q(X, z) of a well-pointed space (X, z) where m: Q(X,z) x Q(X,z) = Q(X,x)
sends (v, w) to the concatenation v *x w and i: Q(X,z) — Q(X, ) sends w to the
inverse path w™.

Remark 9.31. Let (B,b) be a pointed space and (X,z) be a group object in
h-Top”. Then [(B,b), (X, z)] inherits a group structure by the multiplication given
by

[(B,), (X, 2)]°  [(B,1), (X, 2)]° = [(B,b), (X, )%, ([f],[g]) = [mo (f x 9)].
The unit is given by the class [c;] of the constant map. The inverse of [f] €
[(B,b), (X, z)]% is given by [io f].

In particular we obtain for a well-pointed space (X, z) a group structure on
[(B,b), (X, x),*)]° This group structure on [(B,b), (2"(X, ), )]" is abelian for
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n > 2. The sequence ({9.28) is compatible with the group structures as long as they
exist.

9.8. The adjunction between suspension and loop spaces. Let (X, z) and
(Y, y) be well-pointed spaces. Then there is a natural adjunction homeomorphism

(9.32) ad: map((S(X, @), %), (Y,9))° = map((X,2), (AY.y), %))°

between mapping spaces of pointed spaces. It is uniquely determined by the prop-
erty that it makes the following diagram commutative,

map((X(X, z), ), (Y,))° —29 map((X, z), (Y, y), ))°

| |

map(X x I,Y) —————— map(X,map(/,Y))

where the lower horizontal arrow is the natural adjunction homeomorphism, the
left vertical is the closed embedding coming from the projection X x I — X(X, x)
and the right vertical arrow is the closed embedding coming from the canonical
inclusion Q(Y,y) — map(I,Y). By passing to 7y, we obtain from natural
adjunction bijection

(9.33) [(B(X,2), %), (V,)]° = [(X,2), (Y, y), #)]°.

It is compatible with the group structure on the domain introduced in and
on the codomain introduced in Remark

If we take (X,z) = (S™,s), we obtain for n = 0,1,2,... a natural bijection of
groups

(934) 7Tn+1(Y7 y) i ﬂ-n(Q(Ya y)? *)
for n > 0. Iterating this, we get a bijection of groups
(9.35) [(S°,5), (Q"(X, z),%)]° = 70(*(X, z)) = (X, 2).

9.9. Locally trivial bundles are fibrations. The proof of the following result
can be found in [31, Theorem 13.4.1 on page 32].

Theorem 9.36 (Being a fibration is a local property). Let p: E — B be a
continuous map and let U = {U; | i € I} be an open covering of B. Sup-
pose that U is numerable, i.e., admits a subordinate partition of unity, and that
plp-1wy: 0 (Us) = U; is a fibration for every i € 1.

Then p is a fibration.

Recall that a partition of unity subordinate to U is a family {¢;: U; — [0,1] | i €
I} of functions t; satisfying:

e The support supp(t;) := {b € B | t;(b) # 0} C B of ¢; is contained in U;
fori € I;

e The family {t;: U; — [0,1] | ¢ € I} is locally finite, i.e., for every b € B
there is an open neighborhood V' together with a finite subset Iy C I such
that ¢;(v) = 0 holds for all v € V and i € T \ Ip;

e The (finite) sum ), ;¢;(b) is 1 for every b € B.

A space B is called paracompact if every open covering U = {U; | i € I} has
a refinement V = {v; | j € J} which is locally finite, i.e., for every b € B there
exists an open neighborhood W of b in B and a finite subset Iy C I satisfying
WNU; = ¢ € Iy. Note that such V is automatically numerable. Every metric
space is paracompact, see [23, Theorem 4.3 on page 256]. Every CW-complex is
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paracompact, see [22] or [10, Theorem 1.3.5]. Theorem and the discussion
above imply the following result.

Theorem 9.37 (Locally trivial bundles are fibrations). Let p: E — B be a locally
trivial bundle over a paracompact space, e.g., a principal G-bundle for a topological
group G, a vector bundle, or a covering over a space B which is a CW -complex or
a metric space.

Then p is a fibration.

9.10. Duality between cofibrations and fibrations. There is a kind of duality
between cofibrations and fibrations which we want to discuss next. One has to
interchange X x I and map(I, X), interchange pushouts with pullbacks, ¥ with
and invert all arrows. Here is a list of some examples.

e (HEP) and (HLP)
Consider the diagrams (8.3)) and (9.3

ye—Tl X x—F
[ S T and J
e s
map(IY)TA XXIT>B,
e mapping cylinder and W(p)
Consider the diagrams (8.5) and (9.5))
eyl(i) —— X W(p) —2——E
II J and pJ Jp
AxTe——A map(l, B) —— B;
g B
e Turning a maps into cofibration or fibration
Consider the diagrams (8.37)) and ( -
Y%cyl(f)%y X —Sw(f) 22X
DR ond N
X Y
e The Homotopy Theorems and where the relevant diagrams are
Vi X x—1E
the pushout L J and the pullback J J
B L A A 4) B.

e The Cofiber Sequence appearing in Theorem [8:40] and the Fiber Sequence
appearing in Theorem [9.26| as well as the long exact sequences of pointed
homotopy classes associated to them, see and -

10. THE LONG EXACT HOMOTOPY SEQUENCE ASSOCIATED TO A FIBRATION

10.1. The homotopy sequence.

Theorem 10.1 (The long exact homotopy sequence associated to a fibration). Let
(E,e) and (B,b) be well-pointed spaces. Let p: E — B be a fibration with p(e) = b.
Put F, = p~1(b). Denote by i: Fy, — E the inclusion.
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Then we obtain a long exact sequence, infinite to the left
T (i,€) T (D,€)

(10.2) - 2 (B e) 0 p (B, e) TP 1 (B b) O

™1 (’L e)

N 71 (Fy,e) —— m1(FE,e) mpe), m1(B,b)

25 o (Fy) 29 o (B) 2 1 (B)

with the following properties:

e [t is an exact sequence of groups in the range until w1 (B,b);

o [tis exact at w1 (B,b) in the sense that the image of m1(p, €) is the preimage
of the component in F, containing e under 0;;

o [t is exact at wo(Fy) in the sense that the image of Oy is the preimage of
the component in E containing e under mo(i);

o [t is exact at mo(E) in the sense that the image of mo (i) is the preimage of
the component in B containing b under wo(p);

e The boundary operator Op1: Tpi1(B,b) = m,(Fy, €) is defined as follows.
Consider u € m,41(B,b). Choose a map h: S™ x [0,1] = B which sends
S™x{0,1}U{s} x I to b such that for the pointed standard homeomorphism

q: (8™ x[0,1]/(S™ x {0,1} U {s}) x I,%) = (S, b)

the composite h = hogq: (S™t1, s) = (B, b) represents u. Choose a solution
H to the lifting problem

S"x{O}U{s}xI%E
J’i //H/ Jp
S™ % [O,I]TB

which exists by Proposition . Then O,41(x) is represented by the pointed
map Hy: (S",8) = (Fp,e).

Proof. This follows from the exact sequence (9.28) applied in the case (B,b) =
(8%, ),

2
Ay 150,020 K20, 150, 02B) 1, 150 Qp(p, )
)., -

(S0, QF]° —=
L 180, Plp, )] 2 [5°, E]° £ [8°, BI",

% [5°,0B)°

the isomorphism ((9.35|)
(S, 5), (Q"(X, ), %)) = m(Q"(X, 2)) = ma(X, )
and the diagram (9.25)) which becomes in the situation considered here

(Fye) — " (X,2) —— (V. )

[

(P(pre), ) —5 (X,2) —— (Vo).

O
Remark 10.3 (Serre fibrations and the homotopy sequence). In order to have the

long exact homotopy sequence of Theorem [10.1] available, one needs only to know
that p: E — B is a Serre fibration, see [31, Theorem 6.3.2 on page 130].The obvious
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version of Theorem holds also for Serre fibrations, see [31, Theorem 6.3.3 on
page 130].

10.2. The Hopf fibration. Fix d € ZZ!. We can consider S! as a subgroup
of C\ {0} with respect to multiplication of complex numbers. In particular S*
acts diagonally on C%*!. Then S??*! C C4+! inherits an S'-action, which is free.
Recall that CP? is the set of 1-dimensional complex vector spaces of C?*! and is
equipped with the quotient topology with respect to the map f: C4t1\ {0} — CP?¢
sending z € C4*t1 \ {0} to the 1-dimensional complex vector space generated by
z. Consider the map p: S24+1 — CP? obtained by restricting f to S2?*!. Then
p: S?*1 5 CPY is an identification. Obviously it factorizes over the projection
pr: §2d+1 _ §2d+1/61 into a bijective map u: $24+1/51 =5 CPY. Since p and pr
are identifications, u is a bijective identification and hence a homeomorphism. Now
one easily checks that p: §2¢+1 — CP¢ is a principal S'-bundle. Theorem m
implies that p is a fibration. From Theorem we obtain a long exact sequence
of groups

co 2 (SY) & (820 I o opdy 2

P2 (8Y) (824 TP 1 cpd) s (1),

Since 71 (S') = Z and 7, (S*) = {0} for n > 2 by (2.8), we obtain an isomorphism
(10.4) T (p): T (S*4TY) — 7, (CP?)  forn >3
and an exact sequence of abelian groups

{0} = (820 = 1y (CPY) — 71 (ST) — 71 (S?¢FY) — 7 (CPY) — {0}.

Recall that ,,(S™) 2 {0} for m < n and ,(S™) = Z by Theorem 3.4, Hence CP?
is simply connected and we get an isomorphism

o ((CIPd) = 7.

Since CP! is homeomorphic to S?, we get from (10.4) the following theorem, which
we have already briefly discussed in Example (3.5

Theorem 10.5 (73(S?) is infinite cyclic). The abelian group w3(S?) is an infinite
group with [p] for the so called Hopf map p: S* — CP! = S? as generator.

10.3. Homotopy groups of loop spaces.

Proposition 10.6. Let (E,e) and (B,b) be well-pointed spaces. Let p: E — B be
a fibration with p(e) = b. Put Fy, = p~'(b). Suppose that E is weakly contractible.
Then we get isomorphisms

Ti1(B,b) =5 7, (Fy, )
forn > 1.
Proof. This follows directly from Theorem [10.1 (]

Suppose that (X, z) is a path connected well-pointed space. Then we have
the fibration p: P(X,x) — X whose fiber over x € X is the loop space Q(X,x).
As P(X,z) is contractible, we get from Proposition for n > 0 a preferred
isomorphism of groups

(10.7) Opi1 (X, ) Tny1 (X, 2) = 70 (QUX, 3)).

Note that mo(Q(X,z)) = [(S°,s), (X, x),*)]° has a group structure by Exam-
ple and Remark Iterating this, we get for every n > 1 a group isomor-
phism 7, (X, z) & m(Q"(X, z)), as already mentioned in (9.35)).
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10.4. Homotopy groups of classifying spaces BG. Let G be a topological
group and p: EG — BG be the universal principal G-bundle. Recall that it has
the property that the pullback construction defines for every CW-complex X a
bijection

(10.8) [X, BG] = {isomorphism classes of principal G-bundles over X }

and is up to isomorphism of G-bundles uniquely characterized by the property that
EG is weakly contractible. Proposition implies that BG is path connected and
satisfies for n > 1

(10.9) Tn(BG) 2 m,—1(G)

for e € G the unit element.

10.5. On the homotopy groups of some classical Lie groups. Denote by F
one of the (skew)fields R, C, or H given by the reals numbers, the complex numbers,

or the quaternions. We have the associated orthogonal, unitary, or symplectic
groups which are Lie groups:

O(n) = On,R) = {AeMn,nR)|A'A=1,}
SO(n) = SO(n,R) = {Ae€O(n)|det(4) =1},
Umn) = 0OMmn,C) = {AeMn,nC)|A*A=1,}
SU(n) = SO(n,C) = {Ae€U(n)|det(A) =1}
Sp(n) = O(n,H).

The action of these groups on the unit spheres yield locally trivial fiber bundles
and hence by Theorem fibrations for d = dimg(F)

omn,F) &% Omn+1,F) — gdrth-1,
SO(n,F) L& SO(n+1,F) — gdnth-1,
A0
0 1
By passing to colimits we get the topological groups
O(o0;F) = colimy,—y 00 O(n,F);
SO(co;F) = colimy_,e0 SO(n, F).
Since S4m+1)=1 ig (d(n + 1) — 2)-connected by Theorem [3.4, we conclude from
Theorem 220 and Theorem [0
Proposition 10.10.
(i) For 1 < n < m the inclusions O(n,F) — O(m,F) and SO(n,F) —
SO(m,F) are (d(n+ 1) — 2)-connected;
(i) For 1 < m the inclusions O(n,F) — O(oc0,F) and SO(n,F) — SO(co,F)
are (d(n 4+ 1) — 2)-connected.

The inclusions ¢ and j come from A +—

The associated Stiefel manifold of orthogonal k-frames in F™ are defined by

V:(R") = O(n,R)/O(n—kR) = SO(n,R)/SO(n—Ek,R);
V% (C") = Un,R)/Un—-kC) = SU(n,R)/SUn —k,C);
Vi(H") = Sp(n)/Sp(n — k).

We have the fibration O(n—k,R) — O(n,R) — V;(R") and analogous fibrations for
V:(C™) and Vi, (H™). The next proposition is a direct consequence of Theorem m

and Proposition [10.10}
Proposition 10.11. The space Vi, (F™) is (d(n — k 4+ 1) — 2)-connected.
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There is a fibration Vi (F") = Vi1 (F?1) & Vi (F7+1), where p sends a frame
{v1,v2,...,vp+1} to the frame {viy1}. The next proposition follows from Theo-
rem |10.1] and Proposition |10.11

Proposition 10.12. The inclusion Vi, (F") — Vjy1 (F"1) is (d(n+1)—2)-connected.
Proposition 10.13. We have

Totn—k)+1(Va(C™")) = Z;
Tan—k)+3 (Vi (H")) Z;

Tn-k(Vk(R")) = {

1%

Z ifk =1 or(n—k) even;
Z/2 ifk>2and (n—k) odd.

Proof. The cases F = C and H follows by induction using V;(F?) = S§9~! and
T (S™) = Z and Proposition [10.12] The case F = R needs more than we have
accumulated so far and can be found in [3I], Proposition 6.8.5 on page 148]. O

Example 10.14. There are homeomorphisms SO(2) — S' and SO(3) —» RP3.
Since the universal covering of S! is the principal Z-bundle R — S! and the uni-
versal covering of RP? is the principal Z/2-bundle S — RP?, we conclude from
Proposition

Y/ n=2;

71(SO(n)) {Z P

and m1(SO) 2 Z/2.

We conclude m2(SO(3)) = m(RP?) = m(S3) = {0} from Theorem and
Theorem Proposition [10.10 implies m2(SO) = {0}. Actually for every

compact Lie group G we have mo(G,g) = {0} for any base point g € G, see [5]
Proposition 7.5 on page 225].

11. THE EXCISION THEOREM OF BLAKERS-MASSEY

11.1. The statement of the Excision Theorem of Blakers-Massey. One
basic feature of a homology theory is excision. Consider any (generalized) homology
theory H, with values in R-modules for a commutative ring R. Consider a C'W-
complex Y with CW-subcomplexes Yy, Y1, and Y satisfying ¥ = Y; UY;5 and
Yy = Y1NY5, or a topological space Y with open subspaces Yy, Y1, and Y} satisfying
Y =Y, UY, and Yy = Y1 NY5. Then the map induced by the inclusion (Ya,Yy) —
(Y,Y7) induces for all n € Z an R-isomorphism

Ho (Y2, Yy) = Ha(Y,Y1).

This yields a a long exact Mayer-Vietoris sequence of R-modules, infinite to both
sides,

~ Hap1 ()= Hnt1(2) o1 (X) On+1 H,.(Xo) Hin(i1)BHn (i2) Ho(X1) B H, (Xo)

Hn(§1)—Hn(j2) (11)®Hn—1(i2) o

Ho(X) 25 Ho1 (Xo) 222

where i : Xo — Xi and ji: X — X for k£ = 1,2 are the inclusions. The cor-
responding statement is not true for homotopy groups as the following example
shows.

Example 11.1. Consider the CW-complex Y = S'Vv.S™ with the CW-subcomplexes
Y; = SY Yo = S", and Yy = {e} for n € Z=2. Suppose that 7, (Y2, Xo) =
7, (Y, Y1) is an isomorphism. Since m,(S™,{e}) is isomorphic to m,(S™) by the
long exact homotopy sequence of the pair (S™, {e}), we conclude from Theorem
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that m,(S! v S, S) is infinite cyclic. Theorem and the exact sequence of
abelian groups m,(S!) — 7,(S* Vv 8*) — m,(S' v S",S!) coming from the long
exact homotopy sequence of the pair (S v S™, St), see Theorem imply that
(S V S™) is a subgroup of an infinite cyclic group and hence a finitely generated
abelian group. This contradicts Example Hence 7, (S™, {®}) — m,(StvS™, S1)
is not bijective.

One of the main results of this course is the next theorem due to Blakers and
Massey which shows excision in a very special case for homotopy groups.

Theorem 11.2 (The Excision Theorem of Blakers-Massey). Consider p,q € Z=1.
LetY be a topological space with open subspaces Yy, Y1, and Yy satisfyingY = Y1UYs
and Yo = Y1 NYs. Suppose that for any base point yo € Yy we have

mi(Y1,Yo,90) = {0} for0 <i<p;
(Y2, Yo,y0) = {0} for0<i<q.
Then, for every base point yo € Yo, the map induced by the inclusioni: (Ya,Yy) —
(Y1,Y)
(2, 90) : Tn (Y2, Yo, 90) — mn (Y, Y1,%0)
is surjective for 1 <n =p+ q— 2 and bijective for 1 <n <p+q— 3.
If p = 1, then there is no condition on (¥7,Ys) in Theorem Note that in

Theorem only the case n > 1 is treated, we will say something for n = 0 in
Subsection [1.31

11.2. The proof of the Excision Theorem of Blakers-Massey. The following
rather elementary proof of the Excision Theorem of Blakers-Massey is due to
Dieter Puppe. The proof needs some preparation.

We begin with introducing some notation.

Notation 11.3 (Cubes and faces in R™). A cube in R™ for n > 1 is a subset of the
form

W =W(a,d,L) :={x = (x1,22,...,2,) € R"|
a; <z;<a;+dforie€ Lya;=uz;fori¢ L}
fora = (ay,as,...,a,) € R™", § > 0, and a (possibly empty) subset L C {1,2,...,n}.

The dimension dim(W) of W is defined to be |L|.
A face of W' of W is a subset of W of the form

W' ={zeW |z;=a;fori € Lo,z; =aj+dforj€ Ly}

for some (possibly empty) subsets Ly C L and Ly C L. (The subset W’ may be
empty or equal to W.)

Let OW be the union of all faces W’ of W which are not equal to W.

For 1 < p < n we define the following subsets of W:

K,(W) = {weW |z <a;+6/2for at least p values i € L};
Gp,(W) = {weW|x; >a;+d/2for at least p values i € L}.
For p > dim(W) we define K,(W) and G,(W) to be the empty sets. Note that

K,(W) and G,(W) become smaller and smaller as p becomes bigger and G,(W) N
K (W) =0if p+ q > dim(W) hold.
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Next we prove a technical lemma which will enter in the important Proposi-
tion[I1.5] It essentially says that a map W — Y, which satisfies a certain condition
on the boundary OW, can be changed up to homotopy relative 9W such that the
resulting map satisfies the analog of this condition on W and not only on OW.

Lemma 11.4. Consider a pair (Y,A), a cube W C R"™, and a map f: W — Y.
Suppose that for p < dim(W) we have f~1(A)NW' C K,(W’') for all faces W' C
ow.

Then there exists a map g: W — Y with the following properties:

(i) g is homotopic relative OW to f;
(ii) We have g=1(A) C K,(W).

The same conclusion holds if we replace K,(W) by G,(W) in assertion|(ii)

Proof. Obviously we can assume without loss of generality that W is the stan-
dard cube I" = T]"_,[0,1] = W((0,0,...,0),1,{1,2,...,n}). Let I} be the sub-
cube of I™ given by [],[0,1/2] = W((0,0,...,0),1/2,{1,2,...,n}). Put a4 =
(1/4,1/4,...,1/4).
Define a map
h: " — 1"

by expanding I3 to I"™ by radial projection with center x4. Here is the precise
definition of h. Let x € I"™ be any point. If z = x4, we define h(x) = x4. Suppose
that x # x4. Consider the ray

r: RO SR, tsay+t-(z—34)

starting at x4 through z. Let P(z) be its intersection point with dIF and Q(x)
be its intersection point with 0I™. If x lies in the segment [P(x), Q(x)] of the ray
r, it is sent to Q(z). Suppose that z lies on the segment [z4, P(z)]. If we write
x = x4+t (P(x)—x4) for some ¢ € [0,1] then h(z) is defined to be x4+1t-(Q(z) —x4).
In other words, h sends the segment [z4, P(z)] affinely to the segment [z4,Q(z)]
and the segment [P(z), Q(z)] to the point Q(x). Obviously h is homotopic relative



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 67

Now we set g = foh. Then g is homotopic relative OW to f. It remains to show
g71(A) C K, ().

Consider z € I™ with g(z) € A. If z; < 1/2 holds for i = 1,2,...,n, then
z € K,(I") C K,(I™). So it suffices to treat the case, where z; > 1/2 holds for
at least one 7 € {1,2,...,n}. Then h(z) € OI"™ holds by definition. Choose a face
W' C 91" with h(z) € W'. Since h(z) € f~(A) holds, we get h(z) € W' N f~1(A)
and hence h(z) € K,(W’). Hence we have h(z); < 1/2 for at least p many elements
ie{l,2,...,n}. Fori e {1,2,...} with h(z); < 1/2 we get h(z); = 1/4+t-(z,—1/4)
with ¢ > 1 and hence z; < 1/2. This shows z € K,(WW). This finishes the proof of
Lemma for K,(W), the version for G,(W) is proven analogously. O

The next proposition contains the main technical result needed for the proof of
Theorem

For the remainder of this subsection let Y be a topological space Y with open
subspaces Yy, Y7, and Yj satisfying Y = Y; UY; and Yy = Y7 NY5 and we consider
p,q € 7Z2°.
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Proposition 11.5. Suppose that (Y1,Yy) is p-connected and (Ya,Yy) is g-connected.
Let f: I =Y be a map. Let W= {W} be a subdivision of I™ into cubes W such
that either f(W) C Yy or f(W) CY; holds. (It exists as I™ is compact.)
Then there exists a homotopy h: I" x I — Y with hg = [ satisfying for every
W eWw:
(i) If f(W) C Y, holds, then we have hy(W) C Y, for every t € I, where
j €40,1,2};
(ii) If f(W) C Yy holds, then we have hi|w = flw for every t € I;
(iii) If f(W) C Yy holds, then we have hi (Y1 \ Yo) "W C K, 1 (W);
(i) If f(W) C Yy holds, then we have hi' (Y2 \ Yo) N W C Gyy1(W).

Proof. We enlarge the collection of cubes W such that for every W € W all of its
faces belong to W. Let Cj, C I"™ be the union of all cubes W € W with dim(W) < k.
We construct for k =0,1,2...,n a homotopy hlk]: Cix x I — Y satisfying for each
cube W € W of dimension < k the conditions and such that
hlk]|c._yxr = hlk — 1] holds for k = 1,2,...,n. Then the desired homotopy is
h = h[n].

Note in the sequel that for a cube W € W, for which we have f(W) C Yy and
condition holds, conditions and are automatically satisfied, since then
Ryt (Y1 \Yp) and hyt(Ys\ Yp) are empty. Moreover, if a cube W € W satisfies both
f(W) CY; and f(W) C Ya, then we have f(W) C Yy, and for each cube W € W
we have f(W) CY; or f(W) CYs. So every cube W € W satisfies precisely one of
the following conditions:

e f(W)C Yy;
o f(W)CYsand f(W) L Y1
o f(W)CY;and f(W) € Y.

We begin with £ = 0. Consider a cube W in W of dimension 0. If Wy C Y,
define h[0]:(Wy) = Wy for ¢ € I. This is forced upon us by condition Suppose
f(W) C Yy and f(W) C Y3 hold. As (Y7,Y)) is O-connected, we can choose a
path w: I — Y; from f(W) to a point y € Y. We define R[0](W,t) = w(t) for
t € I. Then conditions and are satisfied for trivial reasons. Analogously one
defines h[0] in the case, where f(W) C Y3 and f(W) C Yp hold. This finishes the
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construction of h[0]. One easily checks that all the conditions and

are satisfied for every 0-dimensional cube W by h[0].

Next we deal with the induction step from (k — 1) to k. Consider a cube of
dimension k. Then OW = W N Ci_1. Since OW — W is a cofibration, we can
extend h[k — 1]ow«s to W x I such that conditions [(i)| and [(ii)| are satisfied. So we
get a homotopy h[k]': Cr x I — Y such that conditions d hold for h[k)’
and any W € W with dim(W) < k and the restriction of h[k]' to C_1 x I satisfies
conditions and for any W € W with dim(W) = (k — 1).

The homotopy h[k]’ is not yet the desired homotopy h[k]. It remains to explain
why we can change h[k]’ further such that all the conditions and
are satisfied for each cube W with dim(k) < k. For this purpose we consider the
map h[k]}: Cr — Y and construct an appropriate homotopy h[k]”: CyxI — Y with
hlk]y = h[k]} and will get the desired homotopy h[k]: Cy x I — Y by h[k]’ = h[k]".

Consider a cube W. We explain how to define h[k]” |y x[o,1) With dim(W) =
k. If hlk];(W) C Yoy, then we define hlk]/|w = h[k]}|lw for t € [0,1]. Suppose
that A[k]}(W) C Y7 and hlk]j(W) C Y3 holds. If dim(WW) < p, there exists a
homotopy [ relative OW with lp = A'[k]; and i (W) C Yy, since the pair (Y7,Y))
is p-connected. Define h[k]”|w s by I. If dim(W) > p, we use Lemma with
f = hlk)'|w to define hlk]”|wx 1. We treat the case h[k]} (W) C Y3 and h[k]; (W) C
Y7 analogously. This finishes the construction of hlk]” and hence of the desired
homotopy h[k]. Note that h[k]” is stationary on C_1. One easily checks that h(k)

satisfies conditions and for any W € W with dim(W) < k. Hence
the proof of Proposition is finished. O

Denote by F(Y1,Y,Y2) the subspace of map(I,Y") given by
F(Y1,Y,Ys) = {w: I = Y | w(0) € Y1, w(1) € Ya}.

So we are looking at paths in Y starting somewhere in Y7 and ending somewhere
in Y5. Define F'(Y7,Y7,Ys) to be the subspace of map(I,Y7) given by

F(Y1,1,Y0) :={w: I = Y1 |w(l) € Yp}.

So here we are looking at paths in Y7 ending somewhere in Y;. Since we can think
of map(7,Y7) as a subspace of map(I,Y), we can also think of F(Y1,Y7,Ys) as a
subspace of F(Y1,Y,Y3).

Proposition 11.6. Suppose that (Y1,Yy) is p-connected and (Ya,Yy) is g-connected.
Then the inclusion

F(Y1,11,Yy) = F(Y1,Y,Y2)
is (p+ q — 1)-connected.

Proof. Consider a map of pairs
: (I",0I") — (F(Y1,Y,Y2), F(Y1,Y1,Y0))

for any n < (p+ ¢ —1). We have to find a homotopy h with hy = ¢ such that the
image of hy is contained in F(Y7,Y7,Y0).
By the adjunction map(I"™ x I, Z) = map(I"™, map([; Z)) the map ¢ is the same
as a map ¢: I" x I — Y satisfying:
(i) ®(x,0) € Y for x € I'™;
(ii) ®(x,1) € Y, for x € I,
(ii) ®(z,1) €Yy for z € 0I™, t € I.
In the sequel we call a map ®: I™ x I — Y satisfying the three conditions above
admissible. We have to show that any such admissible map ® can be homotoped

through admissible maps to an admissible map ®': I™ x I — Y with the property
O'(I" x I) C Y.
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Starting with an admissible map ®: I"*! = I" x I = Y, we apply Proposi-
tion and obtain a new admissible map W. One easily checks that the homotopy
coming from Proposition is a homotopy through admissible maps.

Consider the projection pr: I™ x I — I™. Next we show that the images of
U1V \ Y1) and $=1(Y'\ Y2) under pr are disjoint. Suppose the contrary. So there
are y € I", 20 € W"H(Y \V]) and 20 € U71(Y \ Y1) with pr(z1) = y = pr(za).
Choose a cube W C I"! with 2; € W. Since 213 € ¥~1(Y '\ Y1) holds, we conclude
21 € Kprq (W) from condition appearing in Proposition[11.5} This implies that
y € K,(I™) holds. Analogously one shows y € G¢4(I™), now using condition
appearing in Proposition [I1.5] This is a contradiction since K,(I") N G4(I™) is
empty if n < p + ¢ holds.

The intersection of pr(¥=1(Y \ Y7)) and 9I™ is empty since ¥ is admissible
and hence W(AI™) x I C Y; holds. Hence the closed subsets pr(¥~1(Y \ ¥7)) and
OI" Upr(¥—1(Y \ Y2)) of I" are disjoint. Choose a continuous function 7: I"™ — T
which assumes the value 0 on ¥~1(Y\ Y1) and the value 1 on 9" Upr(¥~1(Y'\ ¥2)).
Then we obtain a homotopy through admissible maps

h:(I"xI)xI—=Y, ((z1t),s)— Uz, (1—s)t+str(z))
such that hg = ¥ and hy(I"™ x I) C Y; holds. This finishes the proof of Proposi-
tion [11.6l O
Now we are ready to give the proof of the Excision Theorem [I1.2]

Proof of Theorem[I1.2. We have the path fibration map(/,Y) — Y sending w to
w(0), see Proposition The induced map p: F(Y1,Y,Y2) = Y7 sending w to
w(0) is a fibration by PropositionThe fiber over a point y; € Y7 is F({yo},Y, Y2).
We obtain a commutative diagram of fibrations

F({yo}, Y1, Yo) —— F({y}. Y, Y2)

| J

F(Y1,Y1,Yy) —L— F(Y3,Y, Ys)

L]

Y, id Y,

where 7 and j are the inclusions. We have already shown that j is (p + ¢ — 1)-
connected by Proposition [11.6] Using the long exact homotopy sequences of the
two fibrations above and a kind of Five-Lemma argument shows that ¢ is also
(p + g — 1)-connected. There is a commutative diagram for n > 1

Tn_1(F({8},Y1,Y)), %) —— mn_1 (F({o},Y, Y2), ¥)

: ]

T (Y1, Y0, o) ———————— (¥, Y2,50)

whose lower horizontal arrow is induced by the inclusion and vertical arrows are
bijections by a version of for pairs. Hence the lower vertical arrow is surjective
for 1 <n = p+ q— 2 and bijective for 1 <n < p+ ¢ — 3. This finishes the proof of
Theorem 1.2 1

11.3. The Excision Theorem for n = 0. Note that in Theorem only n > 1
is considered. We also want to treat the case n = 0.
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Proposition 11.7. LetY be a topological space Y with open subspaces Yy, Y1, and
Yy satisfying Y =Y, UY,, Yo =Y NYs and Yy # 0.
Then the canonical map ¢: wo(Ya, Yy) — mo(Y, Y1) is bijective.

Proof. Since very element in Y belongs to Y; or Y5, the map ¢ is obviously surjective.
Injectivity is proved as follows.

Consider elements C1,Co € my(Y2). Let C; and C be the classes represented
by them in 7y(Ya, Yp). Suppose that they have the same image under ¢. Then we
have to show C; = Cs.

We first treat the case, where ((C7) = 1(Cy) is different from the base point in
mo(Y,Y1). Then the images of C; and Cy under the map m(Y2) — mo(Y) agree.
Hence we can find a path w: I — Y with w(0) € C; and w(1) € C3. Since
1(Cy) = 1(Cy) is different from the base point in (Y, Y;), this path cannot meet
w~™1(Y1). Hence it is a path w: I — Y,. This implies C; = Cy € mo(Y2) and hence
Cy =Cs.

Next we treat the case, where t(C1) = 1(Cs) is the base point in m(Y,Y1). It
suffices to show that then C; is the base point * in my(Y2, Yp). As ¢(C}) is the base
point in (Y, Y1), there is a path component D in (Y1) such that the image of
Cy under mo(Yz) — mo(Y) and the image of D under my(Y1) — mo(Y) agree. Hence
we can find a path w: I — Y with w(0) € Cy and w(1) € Y;. If w(0) € Y} holds,
C is obviously the base point in 7(Ya,Yy). Hence we can assume without loss of
generality that y; ¢ Y; holds. Since y; ¢ Yy and y; € Y7 hold, we have y; ¢ Y. If
w~1(Y3) is empty, w is a path in Yy and hence C; is the base point in (Y2, Yp).
Hence we can assume without loss of generality that w=!(Y3) is not empty and
Y1 ¢ Y2 holds.

Let to be the infimum of w=1(Y3) C I. As w™!(Y2) is open, we have 0 < ¢, < 1.
Since 0 ¢ w™!(Y2) holds, we get tg ¢ w'(Y2). Hence [0,%y] C W; holds. There
exists t; € I with to < ¢; such that [0,#;] € w™!(Y7) holds. Now choose ts € [0, 1]
satisfying to < ta < t1 and t5 € w!(Y2). Note that then ty € w= (Y1) Nw=1(Ys) =
w~1(Yy) holds. Consider the path v: I — Y sending s to w(stz). Then v is a
path in Y3 from v(0) = x5 to v(1) € Yp. This implies that C7 is the base point in
mo(Y2,Yp). This finishes the proof of Proposition O

Another shorter proof of Proposition [11.7] comes from the following observation.
The map on singular homology u: Hy (Y3, Yo; Z) =N Hy(Y,Y1;Z) induced by the
inclusion is an isomorphism by excision. The abelian group Hy (Y2, Yp;Z) is a free
Z-modules with basis By which is the complement of the image of 7y (Yy) — 7 (Y2)
in 7p(Y2). The abelian group Hy(Y,Y1;Z) is a free Z-modules with basis Bs which
is the complement of the image of (Y1) — mo(Y) in mo(Y'). The map p sends an
element in 7 (Y2) \ mo(Yp) to an element in mo(Y") \ m (Y1) or to 0.

11.4. Some applications of the Excision Theorem of Blakers-Massey.

Proposition 11.8. Let Y be a topological space Y with subspaces Yy, Y1, and Yo
satisfyingY =Y, UYs, Yo = Y1 NYa, and Yy # 0. Consider m,n € Z=20°.
(i) Suppose that (Ya,Yy) is n-connected. Then (Y, Y1) is n-connected;
(ii) Suppose that (Y1,Yy) is m-connected and (Y2,Yy) is n-connected. Then:
(a) The map mo(Ya, Yo) — mo(Y, Y1) is bijective;
(b) For every base point yo the following holds: The map 7;(Ya, Yo, yo) —
(Y, Y1, y0) induced by the inclusion is bijective for 1 <i<m-+n-—1
and surjective for i =m +n.

Proof. We only give the proof for assertion the one for assertionis analogous,
if one takes Theorem [[1.2] into account.
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Recall that (Y,Y7) is n-connected if and only if mo(Y,Y7) is trivial, i.e., consist
of one element, and for every element i € {1,2,...,n} and every base point y; € ¥}
the set m;(Y, Y1, y1) is trivial. The analogous statement holds for (Y2, Yp).

Proposition implies that 7o(Y,Y7) is trivial.

Consider i with 1 < i. We conclude from Theorem that m;(Y,Y1,90) is
trivial for every base point yo € Yy. We need to check that m;(Y,Y7,y1) is trivial
for every element i € {1,2,...,n} and every base point y; € Y;. Since the map
mo(Yo) — mo(Y71) is surjective by assumption, we can connected y; by a path in
Y1 to a point yg in Yy. The obvious version of for pointed pairs implies
mi (Y, Y1,11) & m (Y, Y1, y0) and hence m;(Y, Y1, y1) is trivial. O

Proposition 11.9. Consider m,n € Z=° 11 {co} and a pushout

.

E

such that i: A — X is a cofibration.

(i) If f is n-connected, then f is n-connected;
(i) If f is n-connected and i is m-connected, then
e The map mo(f, f): mo(X, A) — mo(Y, B) is bijective;
e For every a € A the map m,(f, f,a): m(X, A a) = 7 (Y, B, f(a)) is
bijective for 1 < k < m+n —1 and surjective for 1 <k =m +n,
where we use the convention that m+n—1 and m+n mean oo if m = oo
orn = oo holds.

Proof. Because of Subsection [8.8) and Theorem [8.29] we can replace f and i by the
inclusions into their mapping cylinders. Hence it suffices to consider in Proposi-
tion the diagram of closed subspaces

A——ceyl(f)

| |

cyl(i) —— cyl(i) Ua eyl(f).

Now one easily constructs open subsets Wy, Wi, and Wy of cyl(i) Ua cyl(f) such
that A C Wy, cyl(i) C€ W1, and cyl(f) € W hold, the corresponding inclusions are
homotopy equivalences, and we have cyl(i)Uacyl(f) = W1 UWs and Wy = WiNWa.
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W2

Hence it suffices to show if we put W = cyl(i) Ua cyl(f) and (Wi, Wy) is m-
connected and (Wa, Wp) is n-connected for m,n € Z=°:

e The pair (W, W>) is n-connected;

e The map induced by the inclusion mo(W1, Wy) — mo(W, Wa) is bijective;

e The map induced by the inclusion 7y, (W7, Wy, a) — 7 (W, Wa, a) is bijec-
tive for 1 <k <m +n — 1 and surjective for 1 < ik =m + n.

This has already been done in Proposition [I1.8] O

We leave it to the reader to proof the following generalization of Proposition

Proposition 11.10. Let the following two diagrams be pushouts

Xo—25 X, Yo 25y

inr J,jl k2JV Jrll

X5 T) X Y, l—) Y
2 2

where the left vertical arrows io and ko are cofibrations. Let f;: X; — Y; be maps
fori=0,1,2 satisfying f1 011 = k10 fo and faois = koo fo. Denote by f: X —Y
the map induced by fo, f1, and fo and the pushout property.

Consider n € ZZ° 11 {oo}. Suppose that f; and fo are n-connected and fy is
(n — 1)-connected with the convention co — 1 = oo.

Then f is n-connected.

Proposition 11.11. Consider m,n € Z=° 11 {co} and a cofibration i: A — X.
Suppose that i is m-connected and A is n-connected. Let pr: X — X/A be the
canonical projection. Consider any a € A

Then the map

wk(pr,a): 71'19(X7 A, a) — 7Tk()(/Aa {*}v *) = ﬂ-k(X/Av *)

is bijective for 0 < k < m +n and surjective for k = m + n + 1, where we use the
convention that m +n and m+n+ 1 mean oo if m = oo or n = oo holds.
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Proof. Consider the pushout

A7 cone(A)

1

X —— X Uy cone(A)

for j the inclusion. The map j is (n 4 1)-connected as A is n-connected. Proposi-
tion implies that 7, (X, A,a) — 7 (X Ua cone(A), cone(A), *) induced by the
inclusion is bijective, if 0 < k < m+m hold, and is surjective for k = m+n+1. The
projection pr: X Ua cone(A) — X/A is a homotopy equivalence by Theorem
and hence induces an isomorphism 7 (pr): m (X Ua cone(A), %) = (X/A, ) for
every k > 0 by Lemma [8.25 O

The next two results are consequence of Proposition Their rather elemen-
tary proof is left to the reader and can be found in [31, Theorem 6.10.5 on page 154
and Proposition 6.10.9 on page 156].

Proposition 11.12. Let X and Y be well pointed spaces. Consider m,n € Z=1.
Suppose that X is m-connected and Y is n-connected.

(i) The inclusion X VY — X x Y induces an isomorphism (X VY) =N
(X XY) for 0 <k <m+n;
(ii) (X x Y, X VY) and m,(X AY) are trivial for 0 <k <m+n+1;
(i) The canonical map (X VY) = m(X) x m(Y) — is bijective for 0 <
k<m-+n.

Note that in Proposition we assume that m,n > 1 holds which implies
that X and Y are simply connected. This assumption is need as the Example [3.]
shows.

The join X *Y of X and Y is defined by the pushout

(11.13) X XY — X xcone(Y)

\ |

cone(X) XY —— X «Y.

One can describe X *x Y also as the quotient space of X x I x Y under the
equivalence relation generated by (x,0,y9) ~ (z,0,y1) and (zo,1,y) ~ (z1,1,y)
for z,z9,21 € X and y,y0,y1 € Y. Intuitively it says that each point in X is
connected to each point in Y by a unit interval. One easily checks that S™ % S™ is
homeomorphic to S™+"*+1 and S° x X is homeomorphic to XX

The proof of the next proposition is left to the reader and can be found in [31]
Proposition 6.10.9 on page 156].

Proposition 11.14. Consider m,n € Z=~'. Let X and Y be spaces such that X
is m-connected and Y is n-connected, where (—1)-connected means that there is no
condition.

Then their join is (m + n + 2)-connected.

11.5. The Freudenthal Suspension Theorem. Let (X, z) be a pointed space.
The pointed suspension is a functor and hence yields a map

[(5™,5), (X, 2)]° = [(B(S", 5), %), (Z(X, 2), %)]".
Using the standard identification (X(S™,s),*) = (S™*!,s) we obtain a group ho-
momorphism called suspension homomorphism for k € Z=1
(11.15) o(X,z): m(X, x) = 1 (B(X, x), %)



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 75

Note that oy, is also defined for £ = 0 but not a group homomorphism in this case.

Theorem 11.16 (Freudenthal Suspension Theorem). Let (X, z) be a well pointed
space. Consider n € Z=2°. Suppose that X is n-connected. Then the suspension
homomorphism

op(X,2): (X, 2) = 71 (B(X, x), *)
is bijective for 0 < k < 2n and surjective for k = 2n + 1.

Proof. If X is path connected, then (X, x) is simply connected and hence the map
oo(X, z): mo(X,z) = m(X(X, ), *) is obviously bijective. Hence we can assume
k > 1 in the sequel.

There is a homeomorphism u: cone(X, x)/X = 3(X, z). The following diagram
commutes

ok (X,x)

7Tk:(X7 3;) 7T]€+1(E(X, Jf),*)

6k+1] Iﬂk#—l(u’*)

mr+1(cone(X, x), X, x) . Tr+1(cone(X, z)/ X, {*}, *) = mp11(cone(X, z)/ X, *)
Tr+1(pr,z

where pr: cone(X,z) — cone(X)/X is the projection and where the left verti-
cal arrow 0,41 is the boundary operator of the long exact homotopy sequence
of the pair (cone(X, ), X), see Remark and is bijective, since cone(X,x) is
contractible. The right vertical arrow is bijective, as u is a pointed homeomor-
phism. Hence it remains to show that the map m;(pr,z): m(cone(X, z), X, x) —
m(cone(X), z/X, {*},*) is bijective for 2 < < 2n+1 and surjective for [ = 2n+ 2.
This follows from Proposition [11.11] This finishes the proof of the Freudenthal
Suspension Theorem [11.16 O

Remark 11.17. We have the degree homomorphism deg,, : ,(S™, s) — Z, which
is known to be bijective for n = 1 by elementary covering theory and compatible
with the suspension homomorphisms. We conclude that S™ is simply connected
for n > 2 from the Seifert-van Kampen Theorem. Note that the Freudenthal
Suspension Theorem implies for n > 1 that the suspension homomorphism
ok(S™, s): m(S™, s) = mEr1(S™TL, ) is bijective for 0 < k < 2n — 2 and surjective
for K = 2n — 1. This gives another proof of Theorem which does not use
differential topology.

Remark 11.18. Let H. be a (generalized) homology theory. Then we have for
every n € Z the suspension isomorphism

Un(Xv x): Hn(Xa {x}) i Hn+1(E(X7 l’), {*})

whereas in Freudenthal Suspension Theorem the suspension homomorphism
is only bijective in a range depending on the connectivity of X. The connectivity
assumptions appearing in Theorem [11.16] are necessary and actually sharp. For
instance, we know m3(S?) = Z from Theorem and one can show that m,(S?3)
is cyclic of order two and that the suspension homomorphism o3(S5?,s): 73(S5?) —
74(S?) is surjective and obviously not injective. Moreover, the suspension homo-
morphism 02(S1): 72 (S1) — 73(S?) is not surjective as its domain is trivial and its
codomain is not trivial.
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11.6. Stable homotopy groups. Let (X,x) be a pointed space and n € 720,
Consider the sequence given by the suspension homomorphisms of (|11.15])

on(X)

9 TTn —_— Tn .—._>n ) Tn E] X
] 2 ZSX
O'L+2(Z ‘i) n (23 >f) G7L+3( )

where we omit the base points. Recall that XX is (m — 1)-connected for m € Z=*
by Proposition and hence by the Freudenthal Suspension Theorem the
map 0pm(Z™X): Toim (X)) = Tins1 (™ X) is surjective for m = (n + 1)
and bijective for m > (n + 2). So after finitely many steps all these suspension
homomorphism are isomorphism of abelian groups.

Definition 11.20 (Stable homotopy groups). Define the abelian group =2 (X, ),
called nth stable homotopy group of (X, ) to be the direct limit of the sequence (11.19)).
Given a (unpointed) space Y, define

Ta (V) = (V)

n

where Y, is the pointed space (Y II {x}, *) obtained from Y by adjoining an extra
base point.

Obviously 75 (X, x) is a functor from the category of pointed spaces to the cat-
egory of abelian groups. Moreover, if the two pointed maps fo.f1: (X,z) = (Y, )
are pointed homotopic, then the induced homomorphisms 7$(fy) and 75 (f1) from
w2 (X, x) to w5 (Y, y) agree. The stable homotopy groups come with a natural map

(11.21) (X, ) m (X, 2) = ) (X, x)
and with a natural suspension homomorphism
(11.22) op(X,x): m (X, x) = 7y (B(X, x), %).

The map ¢, (X, z) is in general neither injective nor surjective. If X is m-connected
for m € Z29, then 1, (X, z) is surjective if n = 2m + 1 and is bijective if n < 2m
by the Freudenthal Suspension Theorem [I1.16] The construction of the stable ho-
motopy groups is designed so that of (X, ) of is bijective for every pointed
space (X, z) and n > 0.

Given a (unpointed) topological pair (X, A), we define

(11.23) (X, A) = m) (X4 Ua, cone(Ay, ), ).

Thus we obtain a functor from the category of pairs to the category of abelian groups
which is homotopy invariant, i.e., for two maps of pairs fo.f1: (X, A) — (Y, B) the
induced homomorphisms 7 (fy) and 72 (f1) from 72 (X, A) to 72 (Y, B) agree if fj
and f; are homotopic as maps of pairs.

We record the following theorem whose proof we will give later when we are
dealing more generally with spectra.

Theorem 11.24 (Stable homotopy groups form a (generalized) homology theory).
There exist natural transformation Oy41(X, A): 75,1 (X, A) — 75 (A) for n € Z=°
such that stable homotopy w3 defines a homology theory on the category of pairs
satisfying the disjoint union axiom.

Obviously 7¢ also satisfies the weak homotopy equivalence axiom saying that a
weak homotopy equivalence induces isomorphisms on the stable homotopy groups.
It does not satisfy the dimension axiom.

Definition 11.25 (Stable stems). Define the n-th stable stem 7% to be w3 ({e}) =
72 (89, %) for n > 0.
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Note that 7 is the direct limit of the directed system

n(S°, st
Lﬂ) 7rn+1(Sl,>k) M 7Tn+2(52,*)

071+2(S27*)
_—

(11.26) 7, (S°, %)

3 O-7L+3(5’37*)
Tn43(S”, %) ———— -
where have used the standard identification (S™*1, %) = (X(S", %), *). Recall that
the map oy 1m(S™, %): Trim(S™, %) = Tname1(S™HL %) is surjective for m =
(n+ 1) and bijective for m > (n + 2).

Remark 11.27 (Outlook about 75(S™)). Obviously it is easier to compute 75
instead of m,(S™) for m > n. Nevertheless it is an open (and extremely hard)
problem to compute 7} general. At the time of writing it is fair to say that we do
not know 7} in the range n > 100. Only some asymptotic results are known in that
range. There is not even a formula known which might give the answer. There is
no obvious pattern in the computations, one has carried out so far. At least one
knows that 3 is finite for n > 1, see [24] or Corollary [32.4]and one knows its values

for n < 61 and also for some other values for n < 99. For instance we have

(11.28)

n|0O 1 2 3 45 6 7 8 9 10 11
T | Z ZJ2 LJ2 Z]24 0 0 Z/2 Zj240 Z]2* Z]2° 1ZJ6 Z]504
n |12 13 14 15 16 17 18 19

T | 0 ZJ3 ZJ2° Z/A0xZJ2 Z]2° ZJ2" Z/8xZ[2 L]264x L2

where A™ means @;-, A. The table above is taken from Toda [30]. More infor-
mation about the stable stems can be found for instance in [13] [14].

12. THE HUREWICZ THEOREM

12.1. The Hurewicz homomorphism. Let (X, z) be a pointed space. Next we
define for n € ZZ' a homomorphism of groups, which is natural in X and called
n-th Hurewicz map or n-th Hurewicz homomorphism.

(12.1) hur, (X, z): 7, (X, z) — H,(X),

where H,,(X) denotes singular homology (with coefficients in Z).

Given an element [f] in m,(X,x) represented by a pointed map f: (S, s) —
(X, z), define hur, (X, z)([f]) to be the image of the standard fundamental class
[S"] € H,,(S™) under the map H,,(f): H,(S™) — H,(X) induced by f. Obviously
this definition is independent of the choice of representative f of [f]. Let V,,: S™ —
S™V S™ be the pinching map, see . Let pry: STV S' — S! be the projection
onto the k-th functor for £k = 1,2. Then the following diagram commutes

Hy(sm) 2 g sy smy

=~ | H, (pr,) X H,(pr
A JV (pry) (prg)

H,(5™) x Hp(S™)

where A,, is the diagonal map sending z to (z,z) and the right vertical arrow is
an isomorphism. Note that in 7,(X,z) the inverse of [f] is given by [f o u] for
any map u: (S™,s) — (S™,s) of degree —1 and H,(u): H,(S™) — H,(S™) sends
[S™] to —[S™]. Now one easily checks that hur, (X,z) is a group homomorphism.
Obviously it is natural in (X, x).

The elementary proof of the following lemma is left to the reader.
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Lemma 12.2. Let w: I — X be a path from x to y. Then the following diagram
commutes
(X, )

W)

T ([w]) | = H,(X)

A@

(X, )
where Ty, ([w]) is the isomorphism introduced in Subsection ,

12.2. The Hurewicz Theorem. Before we investigate the Hurewicz homomor-
phism further, we consider the following two special cases. The first one is the case
n = 1 and has already been dealt with in a previous lecture course.

Proposition 12.3. If X is a path connected space, then for any base point x the
map induced by the Hurewicz homomorphism

7T1(X,l’)ab — Hl(X)
for m(X,x)ap = m(X)/[m (X, ), (X, 2)] the abelianization of m (X, x) is an

isomorphism.

Lemma 12.4. Forn € Z2! the Hurewicz homomorphism hur,,(S™, s): 7,(S™,s) —
H,(S™) of (12.1)) is bijective.

Proof. The map f:Z — m,(S™) sending 1 to the class of [idg=] is bijective by
Theorem (3.4 The composite of hur,(S™,s) and f is the homomorphism Z —
H,(S™) sending 1 to [S™] and hence bijective. This implies that hur,(S™,s) is
bijective. O

Next we prove one of the main results of the course.
Theorem 12.5 (Hurewicz Theorem). Consider n € Z=2. Let X be an (n — 1)-
connected space. Then the Hurewicz homomorphism
hur, (X, z): 7 (X, 2) = H,(X)
of is bijective for any base point x € X.

Proof. Since X is n-connected, it is weakly homotopy equivalent to a CW-complex
Y which has precisely one 0-cell and no cells of dimension d for 1 < d < (n —1)
by Corollary The inclusion i: Y, 41 — Y induces for the base point yg € Yy
bijections
Tn(6,50): Tu(Yas1,%0)  — (Y, 50);
H(i): Hy(Yoy1) —  Hy(Y),

by Corollary and the long exact homotopy sequence of the pair (Y,Y,,4+1). Hence
we can assume without loss of generality that X has precisely one 0-cell {zq} and

the dimension dim(e) of every cell e satisfies dim(e) € {0,n, (n 4+ 1)}.
This implies that X,, = \/,.; S™ and there exists a pushout

Hjesa
HjeJ Sn— Xnp = \/iel Sm

| |

[e, D" X.
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The Cellular Approximation Theoremimplies that each map g;: ™ — X, is ho-
motopic to a map q;- : 8" — X, sending s to yo. Choose a homotopy h;: [[;c; S™ x
0,1] = X, with (hj)o = [[;c;¢; and (hj)1 = [[;c,¢;. Consider the following
commutative diagram

]_Ije] q;

e, D™ e, 5" Xn
Yk

[Les D" % T [, 5" % I Hies s X,
:Ll :}ﬁ :}dxn

HjeJ pDrtl HjeJ gn s 9 X,

where kg and [y are the obvious inclusions coming from 0 € I and k; and [y are the
obvious inclusions coming from 1 € I. All vertical arrows are homotopy equivalences
and all left horizontal arrows are cofibrations. Hence the induced maps from the
pushout of the upper row to the pushout of the middle row as well as the arrow
from the pushout of the lower row to the pushout of middle row are homotopy
equivalences by Theorem [B.28 Therefore we can assume without loss of generality
that g; sends the base point s € S™ to xyp and we can write X as a pushout

n f n
Ve 9" ——Vier S

J I

\/jeJ Dn+1 s X

where f respects the base points and & is the inclusion X,, = \/,; " — X,,11 = X.
We obtain a commutative diagram of abelian groups with exact rows

n T (f) mn (k)
Tn (VjeJ S ’*)

T (X, 29) ——— {0}

—— 70 (Vies 8" %)
J{hurn(\/jeJ S",*) ‘hurn (VjeJ S",*) ‘hurn(X,aco)
DN Halh) o Halh)

Hy, (VjEJS )4’Hn (ViesS™)

The rower low is exact by excision, the long exact homology sequence for pairs,
and the fact that H,,_; (VjeJ Sn) = {0} holds. The upper row is exact by The-
orem |11.9] the long exact homotopy sequence for pairs, and the conclusion from

3.4[ and Proposition |11.12 that m,_; (VjeJ S”) = {0} holds. Hence

by the Five Lemma it suffices to prove that the left vertical arrow and the middle
vertical arrow are bijective. The following diagram commutes

@i ﬂn(kias) n
Dicr ™ (S"s) EIQ Tn (Viel S )

@ielhurn(S",s)J J’hurn(\/ie] S”,*)
Dics Ha (5" 9) Doy Holkr) Hy (Vier ™) -

and has bijections as horizontal arrows by Proposition [11.12 where k; is the
inclusion of the summand belonging to i € I. Since the left vertical arrow is bijective

by Lemma the right vertical arrow is bijective. Lemma implies that the

Hn(X) {0}
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Hurewicz homomorphism hur, (X, z): m,(X,2) — H,(X) is bijective for all base
points x € X. This finishes the proof of the Hurewicz Theorem [12.5 O

Remark 12.6. The condition that X simply connected in Theorem is neces-
sary. Consider a non-trivial group G for which Gy, is trivial, e.g., the simple finite
group A, for n > 5. Choose a path connected CW-complex X with m (X) = G.
Then X is 0-connected and Lemma [12:3] implies that the Hurewicz homomorphism
hury (X, z): 71 (X, 2) — H1(X) is not injective.

The condition that X is simply connected is also necessary in the following
Proposition [12.7}
Proposition 12.7. Let X be a simply connected space and n € Z='. Then

(i) The following assertions are equivalent:
e X is n-connected;
e H;(X)=0 holds for 1 <i <n;
e H;(X)=0 holds for 2 <i<n;
(i) The following assertions are equivalent:
e X is weakly contractible;
e H;(X) =0 holds for 1 <i;
e H;(X) =0 holds for 2 <i.
Proof. This follows by induction over n = 1,2,.... The induction beginning
n = 1 follows from the conclusion of Proposition that H;(X) = 0 vanishes for
a simply connected space X. The induction step from (n—1) > 1 to n follows from
Theorem 2.5

|(i1)| This follows from assertion |(i)| O

We record the following stronger version of the Hurewicz Theorem whose proof
can be found in [27, Theorem 10.25 on page 185].

Theorem 12.8 (Improved Hurewicz Theorem). Consider n € 7Z22. Let X be an
(n — 1)-connected space. Then for any base point x € X the Hurewicz homomor-
phism

hur,, (X, 2): 7 (X, 2) = Hp(X)
of (12.1)) is bijective for m = n and surjective for m =n + 1.
12.3. The relative Hurewicz Theorem. There is also a relative version of the
Hurewicz map for a pointed pair (X, A,a) for n > 1
(12.9) hur, (X, A,a): m,(X, A,a) = H, (X, A),
which sends [f] € 7, (X, A, z) represented by a map of triples f: (D", 8"~ {s}) —
(X, A, {a}) to the image of the standard fundamental class [D", S"~!] under the
homomorphism H,(f): H,(D",S"" 1) — H,(X,A). It is a group homomorphism
for n > 2 and the following diagram commutes for n > 2

(12.10) (X, a) — (X, Aya) —— mp_1(4, a)
Jhurn(X,a) Jhurn (X,A,a) Jhurn_l(X,a)
Hn<X) Hn<X,A) anl(Aaa)a

where the exact upper row and the exact lower row are parts of the long exact
sequences associated to the pair (X, A).

Theorem 12.11 (The relative Hurewicz Theorem). Consider n € Z=2. Let (X, A)
be a pair. Suppose that A and X are simply connected and (X, A) is (n — 1)-
connected. Then:
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(i) The Hurewicz homomorphism
hur, (X, A,a): 7,(X, A,a) — H,(X, A)

of (12.10)) is bijective for any base point a € A;
(ii) The homology group H;(X, A) vanishes for 2 <i < (n—1).

Proof. We can arrange that the inclusion A — X is a cofibration by Subsection 8.8
Let pr: (X, A,{a}) — (X/A,{x}) be the projection. We obtain a commutative
diagram

(X, Ay a) — PR (XA, (), %) = m (XA, %)
hur,L(X7A,a)\ Lhurn (X/A,x)

The upper row is bijective by Proposition [11.11| The lower row is bijective by ex-
cision. If X/A is (n — 1)-connected, then Theorem implies that right vertical
arrow is also bijective. Hence it suffices to show for n € Z22:

e The space X/A is (n — 1)-connected;
e The homology group H;(X/A) vanishes for 2 <i < (n—1).

This is done by induction over n = 2,3,4,.. ..

Since A and X are simply connected, X/A is simply connected by the Seifert-
von-Kampen Theorem. Now the induction beginning n = 2 follows. The induction
step from (n — 1) > 2 to n is done as follows.

By induction hypothesis applied to the (n — 2)-connected pair (X, A), we know
that hur,_1(X, A,a): m7p—1(X, A,a) = H,_1(X, A) is bijective and the homology
group H;(X,A) vanishes for 2 < i < (n —2). As m,_1(X, A, a) vanishes, the
homology group H;(X, A) vanish for 2 <i < (n —1). As the projection pr induces
an isomorphism H;(X, A) = H;(X/A) for i > 1, the homology group H,;(X/A)
vanishes for 2 <4 < (n — 1). This finishes the proof of Theorem O

12.4. Applications of the Hurewicz Theorem. Next we generalize Proposi-
tion [I2.7] to maps.

Proposition 12.12. Let f: X — Y be a map of simply connected spaces.

(i) The following assertions are equivalent for n € Z=1:
e f is n-connected;
o H;(f): Hi(X)— H;(Y) is bijective for 2 < i < (n—1) and surjective
fori=mn;
(ii) The following assertions are equivalent:
e f is a weak homotopy equivalence;
o H(f): Hi(X)— H;(Y) is bijective for i > 2.

Proof. Since we can replace f by the inclusion into its mapping cylinder, this follows
from the relative Hurewicz Theorem [[2.171 O

The next theorem is called also sometimes the Whitehead Theorem, see also
Theorem (.11

Theorem 12.13 (Whitehead Theorem). Let f: X — Y be a map of simply con-
nected CW -complexes. Then the following assertions are equivalent:
e f is a homotopy equivalence;

o [ is a weak homotopy equivalence;
o H;(f): H(X)— H;(Y) is bijective for i > 2.
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Proof. This is a direct consequence of Theorem and Proposition [12.12 O

The condition that X and Y are simply-connected is necessary in Theorem [12.13
Here is a more general version of Theorem [12.13]which does not need the assumption
that X and Y are simply connected.

Theorem 12.14. Let f: X — Y be a map of path connected CW -complezxes. Sup-
pose that for one (and hence all) base point © € X the map m1(X,z) = m1 (Y, f(x))
is bijective. We can lift f to a map between the universal coverings f: X — §7,
i.e., we have the commutative diagram:

Xty
PX\ JVPY
XT)Y'

Then the following assertions are equivalent:

e f is a homotopy equivalence;

o Hi(f): Hi(X) — Hy(Y) is bijective for i > 2.
Proof. We conclude from Theorem that f is a weak homotopy equivalence if
and only if f is a weak homotopy equivalence. By Theorem [12.13] f is a weak
homotopy equivalence if and only if H;(f): H;(X) — H;(Y) is bijective for i > 2.
Now Theorem [[2.14 follows from Theorem [E.11 O

Example 12.15. Consider the spaces X = "V 8"V §2" and Y = " x S” for
n € Z2%. Then X and Y are simply connected and H;(X) = H;(Y') holds for i > 0.
But the cohomology rings of X and Y are not isomorphic and hence there is no
homotopy equivalence from X to Y.

Note that this does not contradict Theorem [12.13] since there the existence of a

map f: X — Y is required which implements the isomorphism H;(X) = H;(Y).

Theorem 12.16 (Recognizing the sphere up to homotopy). Let X be a path con-
nected CW -complex. Then the following assertions are equivalent for n > 2:

e The space X is homotopy equivalent to S™;
e The space X is simply connected, H;(X) vanishes for all i > 2 with i #n
and H,(X) is isomorphic to Z.

Proof. Suppose that the space X is simply connected, H;(X) vanishes for all i > 2
with i # n and H,(X) is isomorphic to Z. Proposition (1) implies that X is
(n—1)-connected. We conclude form the Hurewicz Theor that the Hurewicz
homomorphism hur, (X, z): 7,(X,z) — H,(X,z) is bijective. Therefore we can
find a map f: S™ — X such that H,(f): H,(S™) — H,(X) is an isomorphism.
Hence H;(f): H;(S™) — H;(X) is an isomorphism for 2 < 4. Proposition
implies that f is a homotopy equivalence.

The other implication is obviously true. O

13. MOORE SPACES

Definition 13.1 (Moore space). Consider n > 1 and an abelian group G. A
Moore space (X, ) of type (G, n) consists of a path connected CW-complex X and
an isomorphisms ¢: Hy(X) =5 G such that H;(X) = {0} for i ¢ {0,n} holds and
that X is simply connected if n > 2.

Sometimes (X, z, ¢) is denoted by M (G, n)
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Lemma 13.2. Consider n > 1 and a group G which is assumed to be abelian if
n > 2 holds. Then:

(i) There exists an (n + 1)-dimensional CW-complex X with the following
properties:
o The space X is the reduced mapping cone of some map f: \/
V]GJ Sn

o There is an exact sequence of groups

zEI s

0—>7Tn(\/ S" Tr"(f’x) \/S" —)ﬂ"(k) (X, 2) = 0
jeJ i€l

fork: X, = VjeJ S" — X the inclusion and n > 2;

We have {0} = Xo = X,,_1;

The space X is (n — 1)-connected;

We have m,(X,2) 2 G for any base point x € X ;

The homology group H;(X) vanishes for i > (n+ 1) if G abelian;

The homology group H;(X) vanishes for 1 <i < (n—1);

If G is finitely presented or if G is finitely generated abelian, then X

can be choose to be a finite CW -complex.

(i) Suppose that n > 2 holds. Let X be the space constructed in the proof
of assertion . Let x € X be any base point. Let (Y,y) be any pointed

CW -complex. Let ¢: mp (X, x) =N (Y, y) be any group homomorphism.

Then there is a pointed map u: (X, z) — (Y,y) satisfying 7, (u,x) = ).

Proof. For n = 1 one can choose a presentation of the group and consider

the associated presentation C'W-complex, which is path connected and satisfies

m1(X,x) = G for any base point x. In general Hy(X) is not trivial. This can

be arranged if GG is abelian. Choose an exact sequence of abelian groups 0 —

Dic/Z =t @jeJ Z — G — 0. If G is finitely generated abelian, one can choose I

and J to be finite. Then one can find a map f: \/;c; S* — \/,c; S' such that the
following diagram commutes

Dic Z @jeJ Z

”J J”

Hy (\/iel Sn) T(f)) H; (VjeJ Sn)

where the vertical maps are the obvious isomorphisms. We have the short exact
sequence

Hy(\/ 5™) = Ha(X) - Hy(\) 5") 25 11, (\/ 57) = Hi(X)
JEJ iel J€J
= Hy(\/ 57) 2 1y (\/ 57)
iel J€J

This implies Hy(X) = {0} and H;(X) = G. Since X is 2-dimensional, we get
Hy(X) = {0} for i > 2.

Suppose n > 2. Then G is an abelian group and we can choose an exact sequence
of abelian groups 0 — @, ; Z = ®D,c;Z — G — 0. If G is finitely generated, one
can choose I and J to be finite. Let {e; | i € I} and {€} | j € J} be the standard
basis of @,c;Z and €D, ; Z. Then there is a set of integers {d;; [ i € I,j € J}

di,j e’

such that the set {j € J | d; ; # 0} is finite for every i € I and a(e;) =3, f
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holds. The canonical maps
(13.3) @WH(S",S) T \/ S™s);

iel il
(13.4) P (S, 5) \/ "

jeJ jeJ
are bijective by Proposition [11.12 Because of Theorem [3.4] there is a pointed
map f;: (S™,s) — (VjeJ S”,s) such that for every j € J its composite with the
projection pry,: \/jeJ S™ — S™ to the factor k belonging to k& € J has degree d; ;.

Define the pointed map
f=\Vr5r Vs -\ s
i€l i€l jed
Under the obvious identifications coming from the isomorphisms (|13.3]) and ({ -
the homomorphism « can be identified with

mn(f, s) Wn\/S —>7Tn\/5"

el JjeJ

1w

L

Hence the cokernel of the latter map is isomorphic to G and its kernel is trivial.
Let X be the reduced mapping cone of f with the preferred base point z € Xj.
The sequence

0—>7rn(\/ S",s M(f’s) \/S" — (X, 2) =0
el JjeJ

is exact by Theorem [2 Theorem and Theorem [T1.11] Hence X is a path
connected CW- complex Wthh is has precisely one zero cell, no cells e of dimension
1 < dim(e) < n—1,is (n — 1)-connected by Corollary satisfies m, (X, 2) 2 G
for the base point « € X, and hence for all base points in X by the diagram (2.6)),
and the homology groups H;(X) vanish for 1 < i < (n — 1). It remains to show
that H;(X) vanishes for ¢ > (n+1). As X is (n + 1)-dimensional, it suffices to do
this for ¢ = (n + 1). The following diagram commutes

Hyyo (VjGJ Sn) = {0}

Hypt1(k)
{0} Hn+1(X)
Ont1
hur,, (\/1 S",s)
7Tn(\/z‘el S, s) ;I H, (Vie] Sn)
ﬂ'n(.ﬂs) H"(f)
hur,, (\/] S ,s)
7Tn(\/jeJ S, 5) ;] H”(VjeJ Sn)
7 (k,) H, (k)
hur,,
(X, 7) i H,(X)

{0} {0}
where the column are exact and the horizontal arrows are bijective by Hurewicz

Theorem since X, \/,.; S”, and \/,.; S™ are (n—1)-connected by Corollary
Hence H,,11(X) vanishes.
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We start with the case n > 2. Recall that X is the reduced mapping cone of

a specific map
f=\fi: Vs =\ s

i€l iel jeJ

such that we have an exact sequence of abelian groups

0= m(\/ 57) 2w (\/ 57) 2 1 (X a) - 0

= JjeJ

for k: X,, = \/jeJ S™ — X the inclusion and that we have isomorphisms
and . Because of we can assume without loss of generality that the base
point of X is the standard base point s in X,, = \/jeJ S™ C X. For every j € J let
aj: (8", s) = (Y,y) be the pointed map whose class in 7, (Y, y) is the image of the

standard generator of 7, (S, s) under the composite

$) L @ma(sm5) S ma(\ 87 8) = m(X2) B m(Vy),
jed jed

where [; is the inclusion of the j-th summand. Define the pointed map

Uy, 1= \/ a;: (Xp,z) = \/ S™. s Y, y).

JjeJ jeJ

Then the composite of the homomorphism 7, (uy, s): W(\/jeJS”,s) — (Y, y)
with the homomorphism 7, (f,s): mn(V;c; S",8) — ﬂn(\/jeJ S™,s) is trivial. This
implies that the composite u,, o f is pointed nullhomotopic. Hence u,, extends to a
pointed map u: (X,z) — (Y,y). We get by construction 7, (u, z) = 1. O

Theorem 13.5 (Existence and uniqueness of Moore spaces). Consider n € Z>*
and two abelian groups G and G' Then:

(i) There exists a Moore space (X, $) of type (G,n) such that the X,_1 =
= {z} holds;
(i) If n > 2 and (X, ¢) and (X', ¢') are Moore spaces of type (G,n), then
there is a homotopy equivalence f: X — X' satisfying ¢' o Hy(f) = ¢.
Proof. This follows from Lemma
We can suppose without loss of generality that X is a CW-complex as it occurs
in Lemma Then we obtain from Lemma and Hurewicz Theo-
rem [12.5/a map f: X — X’ such that the following diagram with isomorphisms as
vertical maps commutes

P

T ( )—)ﬂ'n

X’
hur,, | & ZJrhurn
(X

Hy(x) — 9 g,
%m J
G o e2

This implies that H;(f): H;(X) — H;(X') is bijective for ¢ > 1. Since X and X' are
simply connected, f is a homotopy equivalence by Whitehead Theorem [12.13] [
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14. EILENBERG-MACLANE SPACES

Definition 14.1 (Eilenberg-MacLane space). Consider n > 1 and a group G which

is assumed to be abelian if n > 2 holds. An Filenberg MacLane space (X, x,v) of

type (G, n) consists of a path connected pointed CW-complex (X, z) and a group

isomorphism ¢ : m, (X, x) =, G such that (X, x) = {0} holds for 1 <4 with i # n.
Sometimes (X, z, ) is denoted by K(G,n).

Lemma 14.2. Let (A,a) be a path connected pointed CW -complex and n € Z=°.
Then there is a CW -pair (X, A) such that X is path connected and obtained from
A by attaching cells of dimension > (n + 2), the inclusion j: A — X induces an
isomorphism m;(A,a) = m(X,a) for 1 < i < n, and 7;(X,a) = {1} holds for
i>(n+1).

Proof. Consider the pair (cone(A), A). Apply Theorem to it for the natural
number (n 4+ 1). Then we obtain a CW-pair (X, A) and a map of pairs (f,ids) —
(cone(A), A) such that the pair (X, A) is (n+ 1)-connected and the homomorphism
mi(f,a): mi(X,a) — m;(cone(f),a) is injective for i = (n + 1) and bijective for
i > (n+ 2). Since cone(A) is contractible, this implies m;(X,a) = {1} for i >
(n+1). As (X,A) is (n + 1)-connected, the map m;(4,a) — m;(X,a) is bijective
for1 <i<n. O

Theorem 14.3 (Existence and uniqueness of Eilenberg-MacLane spaces). Con-
sider n € Z21 and two groups G and G’ which are assumed to be abelian if n > 2

holds. Then:

(i) There exists an Eilenberg-MacLane space (X, x, ) of type (G, n) such that
the X,—1 = Xo = {a} holds;
(i) Let (X, x) be a pointed n-connected CW -complexr and (X', z',¢") be an
FEilenberg-Maclane space of type (G',n).
We obtain a bijection

[(X,2), (X",2)]° = hom(m,, (X, 2),G"), [f] = ¢ o malf ).

Moreover, the forgetful map [(X,z),(X',2")]° — [X,X'] is bijective for
n>2;
(iti) Let (X, x,¢) be an Filenberg-Maclane space of type (G,n) and (X', x', ")
be an FEilenberg-Maclane space of type (G',n).
We obtain a bijection

[(X,2),(X",2")]° = hom(G,G"), [f] = ¢ omal(f.z) 0™

Moreover, the forgetful map [(X,z),(X',2")]° — [X,X'] is bijective for
n>2;
(iv) Let (X,z,¢) and (X', 2',¢") be two Eilenberg-MacLane spaces of type
(G,n). Then there exists a pointed homotopy equivalence f: (X,z) —
(X', 2") which is up to pointed homotopy equivalence uniquely determined
by the property that ¢’ o m1(f,x) = ¢ holds.
Proof. This follows from Lemma and Lemma m
The forgetful map [(X,z), (X', 2")]° — [X, X’] is bijective for n > 2 because
of , since X’ is simply connected.
We can find by Corollary a CW-pair (Y, y) together with a pointed homotopy
equivalence (Y, y) — (X, z) such that Y;,_1 = Yy = {y} holds. Hence we can assume
without generality that X,,_; = X = {2} holds. Then X,, looks like \/,_; S™ and
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we have canonical isomorphisms
@WH(S",S) N 7Tn(\/ S™ x);
i€l iel
Z T (S™, s).

Consider a homomorphism v: 7, (X,z) — G’. For every ¢ € I choose a pointed
map u;: (S™,s) — (X', 2’) such that the composite

1

(8™, 5) Lo @wn(sn,s) = (X, ) k), (X, z) 5 G LAN (X', 2)

iel
sends [idgn] to [u;], where j; is the inclusion of the i-th summand and k: X,, - X
is the inclusion. Define the map

fo=\ui: X, =\/ 5" = X".
iel iel
It sends the basepoint z of X, to the base points 2’ of X’. The map m,(fpn,x): 7p(Xn,z) —
T (X', ') agrees with the composite
n—1
o (X ) =8 (X, 2) B 6 s (X ).
We can define inductively maps f;: (X;,z) = (X', ') for j = n, (n+1),(n+2),...
satisfying fji1|x, = f; for j = n,(n +1),(n + 2),..., since the attaching map
q: S™ — X, of any (n+1)-cell of X lies in the kernel of 7, (k): mp(Xn, z) = mp(X)
and 7;(X’,z’) = 0 holds for j = (n+ 1), (n +2),.... Define the map

f = COliHlj_>oc fjl X = COliHlj_)oo Xj — X'
Then f(x) = 2’ holds and v agrees with the composite m, (X, x) LLICEIN T (X', 2") LN
G’. This proves surjectivity.

Injectivity is proved as follows. Consider two pointed maps fo, f1: (X,2) —
(X', 2") such that 7, (fo,z) = mn(f1,2) holds. We have to construct a pointed
homotopy equivalence h: (X,z) x I — (X', ') between fy and fi;. We construct
inductive maps h;: X; x IUX x {0,1} — X’ for j =0,1,2,... such that

ho: Xox TUX x{0,1} ={z} x TUX x {0,1} — X’

sends every element in {x} x I to x and is given on X x {k} by fi for k = 0,1 and
we have for j =0,1,2,...

hjilx, xruxx{o1}y = hy.
Since X X I is colim;_,oc X; X I U X x {0,1}, we can define the desired pointed
homotopy h by colim;_, h;.

It remains to construct the map h; for j = 0,1,2,.... We have constructed hg
already. Since X,,_1 = X holds, we have X,,_1 xTUX x{0,1} = Xy x IUX x{0, 1}
and can define h; = hg for 1 < j < (n — 1) Next we construct h,,. We have
X, = \/iel S™. We have to specify for each i € I a map h,, ;: S?_l x I — X'
such that h,,; sends an element in {s} x I to 2’ and its restriction to SP~* x {k}
is fi|gn-1 for k = 0,1, where S} is the i-th summand in \/,.; S", since then the
collection of the maps A, ;-s yields the desired map h,, by hn|x,x1uxx{0,13 = ho
and hy|snx1 = hyi. The existence of h,, ; follows from m,(fo, ) = 7, (f1,2) since
this implies that the pointed maps fo|gn-: and fi|gn-1 from (S;’*l,s) — (X', 2")
are pointed homotopic. This finishes the construction of hp.

Since X;41 x I U X x {0,1} is obtained from X; x I U X x {0,1} by attaching
cells of dimension (i 4+ 2) and m;1(X’,2’) vanishes, we can extend h; to h;y; for
i=mn,(n+1),(n+1),.... This finishes the proof of assertion |(ii)
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This follows from assertion
This follows from assertion O

Remark 14.4 (Eilenberg MacLane space of type (G, 1) and unpointed homotopy
classes). In Theorem we have treated unpointed homotopy classes only for
n > 2. We briefly discuss what happens in the case n = 1.

Consider the situation of assertion of Theorem m Then one obtains a
bijection from [X, X’] to the set [II(X),II(X’)] of natural equivalence classes of
functors from II(X) to II(X’) by sending [f] to [II(f)]. In terms of fundamental
groups one obtains a bijection for Inn(G’) the group of inner automorphisms of G’

[X, X'] S Inn(G’)\ hom(m (X, z),G")
defined as follows. For [f] we can choose a representative f with f(z) = 2’ and
associate to [f] the class of ¢’ o (f, z). These claims follow from Theorem
using the bijection (8.24)).
In the situation of assertion of Theorem we obtain a bijection
(X, X'] S Inn(G)\ hom(G, G').

Note that Inn(G’) is trivial if and only if G’ is abelian. So for abelian G’ we get
also for n = 1 that the forgetful map [(X,z), (X', 2")] — [X, X'] is bijective in

assertions and of Theorem [14.3]

Consider an abelian group G and n € Z=!. Let (X, z, ) be an Eilenberg-Maclane
space of type (G, n). Then the Hurewicz homomorphism hur, (X, z, ¢): 7, (X, x) =,
H, (X) is bijective by Theorem Moreover H;(X) is trivial for 1 < i < n by
Proposition and Ho(X) = Z. By the Universal Coefficient Theorem we
obtain an isomorphism a,: H"(X;G) N homy(H,(X),G). Hence the following
composite is an isomorphism

B: homy (G, G) 222 PMS), oy (mn (X, 2), G)
z(hur, (X,z 71,1 at
home @utn (08 196), homg(H, (X), G) s H™(X;G).
Let
(14.5) (X, z,0) € H'(X;G)

be the element which us uniquely determined by 3, (idg) = tn (X, z,¢). Let Y be
a CW-complex. Consider the map

(14.6) W(Y): Y, X] = H*(Y:G), [f] = H"(f;G) (X, z,9)).
We will later give the proof of the following theorem.

Theorem 14.7. Consider n € Z=*. Let G be an abelian group. Let (X, x,¢) be
an FEilenberg-MacLane space of type (G,n). Let Y be a CW -complez.
Then the map

w¥): Y, X] - H*(Y;G)
defined in (14.6)) is bijective.

Example 14.8 (Homotopy classes of maps to S1). We conclude from Remark
or from Theorem that we obtain for a CW-complex Y a bijection of groups

Y,S' = HY(Y;Z)

by sending [f] to the image of a fixed generator of the infinite cyclic group H*(S';Z)
under the homomorphism H'(f;Z): H*(S';Z) — HY(Y;Z).
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15. POSTNIKOV TOWERS

Let X be a connected CW-complex X. A Postnikov tower for X consists of
a sequence of spaces 7<;pX for k € 721, a sequence of maps ¢p: X — T<p X for
k € ZZ', and a sequence of fibrations py,: T<kx X = 7<p1 X for k € 722 with the
following properties:

mi(T<k) = {0} for i > k + 1;

The map ¢y, induces isomorphisms m;(pg): m;(X) =, i (T<xX) for 1 <
1 < k;

We have pjy1 0 @ry1 = @y for k € Z21,

Each space X,, has the homotopy type of a CW-complex.

The following diagram commutes

D5

TS4X

D4

T§3X

Pa p3

i T<2 X

2 po

X Z a1 X.

Note that 7<1X is necessarily a model for K(m(X),1) and each map ¢ is k-
connected and has K (7 (X), k) as fiber.

Remark 15.1 (The construction of a Postnikov tower). The details of the con-
struction of a Postnikov tower can be found for instance in [33, Chapter IX]. The
basic idea is the following.

For k € Z=° we can construct a CW-complex X 1. obtained from X by attaching
cells of dimension > (k4 2) such that inclusion ¢}, : X — X, induces isomorphisms
milpr): mi(X) = mi(X},) fori =0,1,2,..., k and m;(X},) = {0} holds for i > (k+1),
see Lemma The inclusion ¢}: X — Xj_1 extends to a map pj,: X} — X,
since X, is obtained from X by attaching cells of dimension > (k+2) and m;(Xj_1)
vanishes for ¢ > k.
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So we get a commutative diagram

ps
X
’
Py
X3
’
Pa ,
P3
‘Pl
3
X5
’
Pa ,
P2
Lp/
1
X X!,
such that

o m;(X;)={0} fori>k+1,
e The map ¢}, induces isomorphisms 7;(¢},): m;(X) = i (X}) for 1 < i <k.
Then by turning a map into a fibration starting with p}, and working inductively

upwards, we obtain the desired Postnikov tower.

There is a canoncial map from X to the inverse limit invlimy oo {7<x X, px}
which is a weak homotopy equivalence.

Recall that pi: 7<x X — 7<x_1X has a fiber K(m,(X), k). Suppose that X is
a simple space, i.e., the action of the fundamental group 71(X) is the homotopy
groups 7, (X) is trivial for n € ZZ!. (Note that this implies that m;(X) is abelian.)
Then one can actually extend p; to a fiber sequence

K(mp(X), k) = 7<x X 2% 7o 1 X — K(mp(X), k + 1).
It determines a class
(15.2) [pr] € [r<i X; K (mi(X), k4 1)] = H* (71 X5 mi(X),

called k-invariant of the Postnikov tower which determines p, up to strong fiber
homotopy equivalence.

Example 15.3. The first few terms of the Postnikov tower for the sphere S? can
be understood explicitly. The first homotopy groups of the sphere are given by

{0} n=0,1;
(8% =27 n=273;
Z/2 n=4.

Hence 7<25? is K(Z,2) for which CP* is a model. The fibration p3: 7<35% —
K(Z/2) is classified by the 3-invariant which is an element in H*(1<2X;m3(X)) =
H*(CP>;Z) = Z. This invariant is trivial if and only if 7<3X ~ K(Z/2,7Z) x
K(Z,3). Actually, it is known that the 3-invariant is non-trivial, see [33, Example
1 in IX.5 on page 437].

16. SPECTRA

16.1. Basics about spectra. Note that in the sequel we often omit the base
points from the notation. Moreover, pointed space means always well pointed
space. Recall that we are working in the category of compactly generated spaces.
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Definition 16.1 (Spectrum). A spectrum E = {(E(n),o(n)) | n € Z} is a sequence
of pointed spaces {E(n) | n € Z} together with pointed maps called structure maps

o(n): E(n) AS* — E(n+1)

for n € Z. A map of spectra f: E — E’ is a sequence of maps f(n): E(n) — E'(n)
which are compatible with the structure maps o(n), i.e., we have f(n+1)oo(n)
o’'(n) o (f(n) Aidg1) for all n € Z.

Maps of spectra are sometimes called functions in the literature, they should
not be confused with the notion of a map of spectra in the stable category, see [1]
IIL2.].

Note that we are not requiring that E(n) = {e} holds for n < —1.

Example 16.2 (Suspension spectrum of a pointed space). Given a pointed space
X, define its suspension spectrum %L°X by X*°X(n) = {e} for n < —1 and
%X (n) = X AS™ for n > 0. Note that 2°X(0) = X A SY can be identified
with X itself. Since S™*! can be identified with S™ A S!, we can define the n-
structure map to be

id(X/\S'n)/\31: ZOOX(’I’L) /\ Sl = (X /\ Sn) /\Sl
S (XASHASI=XA(S"ASYH =X AS™TE=%°X(n+1).

Example 16.3 (Sphere spectrum). If we take X = S? in Example [16.2] we obtain
the sphere spectrum S. Note that S(n) = {e} for n < —1 and S(n) = S™ for n > 0
hold and that the n-th structure map comes from the identification S* AS! = §7+1,

Example 16.4 (Eilenberg-MacLane spectrum). Given an abelian group G, we
define the associated Filenberg Mac-Lane spectrum K(G) as follows. We put
K(G)(n) = {e} for n < 0 and put K(G)(n) = K(G,n) for some model K(G,n)
of the Eilenberg MacLane space of type (G,n) for n > 1. In order to define
the n-th structure map for n > 0, it suffices to specify a map o(n): K(G,n) —
QK(G,(n + 1)) because of the adjunction (9.32). Recall that we have a pre-
ferred isomorphism 8y,41(K(G,n + 1)) muy1(K(G,n+ 1)) = 1, (QK (G, n + 1)),
see . We conclude from Theorem that there is a homotopy equiva-
lence o(n): K(G,n) — QK(G,n+1) which is uniquely determined by the property
that under the identifications 7, (K (G,n)) = G and mp41(K(G,n + 1)) = G the
map m,(o(n)): T (K(G,n)) = m,(QK(G, (n+1))) and the preferred isomorphism
On+1 are inverse to one another.

Definition 16.5 (Homotopy groups of a spectrum). For n € Z the nth homotopy
groups of a spectrum E is defined by

Tn(E) 1= colimg_s oo Tpak (E(K))
where the kth structure map of the system 7, (FE(k)) is given by the composite

onik(E(k
Tk EE), Tntk+1(ST A E(K))

ank(E): mnik(E(F))
T sk (B(R) A S")
T i (B(k 1)

of the suspension homomorphism ¢, (E(k)) of (11.15), the map induced by the
flip map flip: S* A E(k) =N E(k) A S, and the homomorphism induced by the
structure map o (k).
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A weak equivalence of spectra is a map f: E — F of spectra inducing an isomor-
phism on all homotopy groups.

A spectrum E is called an Q-spectrum if the adjoint o(n): E,, — QE, 41 of o(n)
under the adjunction induces for every n > 1 and every n € Z a bijection
Tn(o(n)): m(E(n)) = 7 (QE(n + 1)). The Eilenberg MacLane spectrum K(G) is
an ()-spectrum.

Note that it may happen that 7, (E) is non-trivial for some n € Z with n < —1.
Each of the groups 7, (E) is abelian.

Note that for k,n € Z with k + n > 1 there is a natural map

(16.6) Gion: Than(E(k)) = mn(E).

In general this map is not bijective. It is bijective if E is an Q-spectrum since in
view of the adjunction ((9.32]) one can compute 7, (E) of a spectrum as the colimit
of the sequence

7 (0(0)) 7 (Qo (1 7 (Qo (1)) o

(16.7)  ma(E(0) ™7 m, (QE(1)) Y (@2 B(2))

Note that our construction of the Eilenberg-Maclane spectrum K(G) of Ex-
ample depends on choices. In any case we get a preferred isomorphism
70(K(G)) = G and m,(K(G)) = {0} for n # 0. Moreover, for any two such
constructions with different choices of K(G), there is a weak homotopy equivalence
between the resulting spectra inducing the identity on 7y under the identification
of my with G above.

Note that for a pointed space X the n-stable homotopy group 75 (X ) of Defi-
nition agrees with 7% (3°°X) of Definition [16.5]

Given a spectrum E and a pointed space X, we can define their smash prod-
uct to be the spectrum X A E whose n-th spaces is (X AE)(n) :== X A E(n) and
whose n-th structure map is idx Ao(n): X A E(n) - X A E(n + 1). Next in-
troduce the associated mapping spectrum map(X; E)?. Tts n-th space is given by
map(X; E)?(n) = map(X, E(n))° for n € Z. Its n-th structure map for n € Z is
defined to be the composite

map (i o(n))° 7
map(X, E(n))° maplidx,o(m), map(X; QE(n +1))° 5 Qmap(X, E(n + 1))
having the adjunction [9.32 in mind, Here 4,, is the homeomorphism which assigns
to the pointed map f: X — QE(n) = map(S*, E(n))? the pointed map g: S' —
map(X, E(n)) sending s € S* to the map X — E(n), x — f(x)(s). It can be also
witten as the composite

map(X, QE(n))° = map(X, map(S", E(n))°)° = map(X A S, E(n))°
N map(S' A X, E(n))° =N map(S*, map(X, E(n))°)? = Qmap(X, E(n))°.

16.2. Homology and cohomology theories for pointed spaces and pairs.
Fix a commutative ring R.

Definition 16.8 (Homology theory for pointed spaces). A homology theory for
pointed spaces with values in R-modules H, = (ﬁ*,s*) consists of a covariant
functor H, from the category TopO of pointed spaces to the category of Z-graded
R-modules together with a natural transformation s, : H, (=) — Hys1(S'A—) such
that the following conditions are satisfied:
e Pointed homotopy invariance

Let f and g be pointed maps (X,z) — (Y,y) which are pointed homo-

topic. Then for every n € Z the R-homomorphisms H,(f) and H,(g)

from H, (X, ) to H,(Y,y) agree:
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o Ezactness
Let f: (X,z) — (Y,y) be a pointed map. Let i: Y — cone(f,z) be the
inclusion into the pointed mapping cone of f. Then for every n € Z the
sequence of R-modules

(X, ) 225 7, (v, ) 229 A, (cone(£), +)

is exact;
e Suspension isomorphism

For every pointed space (X, z) and every n € Z the map

S0 (X, 2): Ho(X,2) = Hpsr1 (ST A X, %)
is bijective.
We say that H, satisfies the one point union axiom if for any collection of pointed
spaces {(X;,z;) |« € I} and every n € Z the map
P Huli): P HA(Xi i) = Ha(\ (Xis 20))
icl il iel
is bijective for j;: (X;,z:) — \,;¢;(Xi, x;) the inclusion of the i-th summand.
We say that H, satisfies the dimension aziom if we have H,, (S°,5) =0 forn # 0.

Definition 16.9 (Cohomology theory for pointed spaces). A cohomology theory for
pointed spaces with values in R-modules H = (7—7*, s*) consists of a contravariant
functor H, from the category TopO of pointed spaces to the category of Z-graded
R-modules together with a natural transformation s*: H*(—) — H*+t1(S'A—) such
that the following conditions are satisfied:
e Pointed homotopy invariance
Let f and g be pointed maps (X,z) — (Y,y) which are pointed homo-
topic. Then for every n € Z the R-homomorphisms H"(f) and H"(g)
from H™(Y,y) to H™(X, z) agree;
e FExactness
Let f: (X,z) — (Y,y) be a pointed map. Let i: Y — cone(f,z) be the
inclusion into the pointed mapping cone of f. Then for every n € Z the
sequence of R-modules
’}jzn(cone(f, T), *) Mo,
is exact;
e Suspension isomorphism
For every pointed space (X, z) and every n € Z the map

(X, @) HMY (X, 2) = H"TH(S! A X)

) H' (), 57

ﬁ"(Y,y Hn(Xa ‘T)

is bijective.
We say that H* satisfies the one point union axiom if for any collection of pointed
spaces {(X;,x;) | i € I} and every n € Z the map

[T #HnGo): Ha(\ (X 20)) = [[H" (X, 21)
i€l i€l i€l
is bijective for j;: (X;, z:) — V,;c;(Xi, x;) the inclusion of the i-th summand.
We say that 7{* satisfies the dimension aziom if we have H"(S°,s) = 0 for n # 0.
A cohomology theory for pointed spaces is to be understood to be cohomology

theory for pointed spaces with values in Z-modules, and analogously for pairs and
homology theories.
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Remark 16.10 (Correspondence between (co-)homology theories for pointed space
and pairs). There is a one-to-one correspondence between homology theories for
pointed spaces with values in R-modules and homology theories for pairs with
values in R-modules. Let H, be a homology theory for pointed spaces with values
in R-modules. Then we can define a homology theory H, for pairs with values in
R-modules as follows. For a pair (X, A) define
Hn (X, A) :=H, (X4 Ua, cone(A, x)),

where X, = X IT {x} is the pointed space obtained from X by adjoining an extra
base point. If A is empty, we get H,(X) = Hy, (X4, #). Recall that we also have to
specify for a pair (X, A) a boundary operator 9, (X, A): H, (X, A) = H,_1(A) for
n € Z. It is defined by the composite

On(X, A): H(X, A) = H, (X Ux, cone(Ay, ), %)~ 30 (ST A Ay %)

1
2 (A %) = Haa (A)
for the projection pr: X, Uy, cone(A4,*) — SYA Ay. We leave the elementary
proof that (H., di) is a homology theory to the reader.

Given a homology theory for pairs with values in R-modules (H., 0,), we can
define a homology theory for pointed spaces with values in R-modules H, by
H.o(X,z) = H(X,{z}). We leave the construction of the natural transformation
5¢(X, 1) Hn(X, x) = Hni1(S* A X, %) and the proof that (., s.) is a homology
theory for pointed spaces with values in R-modules to the reader.

The analogous statements and construction yields a one-to-one-correspondence
between cohomology theories for pointed spaces with values in R-modules and
cohomology theories for pairs with values in R-modules.

More details can be found for instance in [3I, Section 7.6 on page 176-177].

Proposition 16.11. Let X be a (compactly generated) topological Hausdorff space
with a sequence of closed subspaces Xog C X1 C Xo C -+ C X such that X is the
union of the X;-s and carries the colimit topology. Then:

(i) Suppose that the homology theory with values in R-modules H. satisfies
the disjoint union axiom for countable index sets.
Then there is for every n € Z a natural R-isomorphism

colimk_mc Hn(Xk) i Hn (X),

(i) Suppose that the cohomology theory H* with values in R-modules satisfies
the disjoint union axiom for countable index sets. Then there is for every
n € Z a natural short exact sequence

0 — invlimy,_,  H" H(Xg) = H™(X) — invlimy 00 Hn (X5) — 0.

Proof. The proof can be found in [27, Proposition 7.53 on page 121 and Proposi-
tion 7.66 on page 127] in the special case that X is a CW-complex and X} is its
k-skeleton. The proof carries directly over to our more general setting. O

Proposition 16.12.

(i) Let ti: H. — Ky be a transformation of homology theories with values in
R-modules satisfying the disjoint union azxiom. Suppose that the homo-
morphism t, ({e}): H,({e}) — H,({e}) is bijective for all n € Z.

Then t,(X, A): Hp(X,A) = K, (X, A) is bijective for every CW -pair
(X,A) andn € Z;
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(ii) Let t*: H* — K* be a transformation of cohomology theories with val-
ues in R-modules satisfying the disjoint union azxiom. Suppose that the
homomorphism t™({e}): H"({e}) — K" ({e}) is bijective for all n € Z.

Then t"(X,A): H™"(X,A) — K"(X, A) is bijective for every CW -pair
(X,A) andn € Z.

Proof. By the long exact sequence of a pair and the Five-Lemma one can reduce
the claim to the case A = ). The claim follows for zero-dimensional CW-complexes
X from the disjoint union axiom. Inductively over the dimension one proves the
claim for finite-dimensional CW-complexes, where in the induction step the Mayer-
Vietoris sequence and homotopy invariance comes in. Using Proposition one
obtains the general case from the finite-dimensional case. O

16.3. The homology and cohomology theory assigned to a spectrum.

Lemma 16.13. For a spectrum E and n € 7Z there are equivalences
(16.14) Tn(B) ~ 7,41 (S'AE) and 7,(E) ~ m,_1(map(S*, E)°)
which are natural in E.

Proof. We claim that the maps

(16.15) (1) 04k (E(k)): Tsr(B(K)) = Toprrr (ST A B(k))
assemble to an equivalence
(16.16) 7 (E) = colimg_y o0 Tnik (E(k))

— COliHlk_ﬂX; 7Tn+k+1(81 A E(k)) = 7Tn+1(51 A E)

The following commutative diagram shows that the maps (—1)*o, 1 x(FE(k)) com-
mute with the structure maps of the respective colimits and induce the map ((16.16)):

_‘7n+k(E(k))

Tk (E(K)) Tnsni1(S' A B(R))
) M Jontria(s amo)
Tntht1(ST A E(K)) Tnth2(ST A (ST A E(K)))
(16.17) Trn+k+1(ﬂip)l lﬂn+k+2(ﬂip)
Tntk+1(E(k) A ST Tntk+2((ST A B(K)) A ST)
wnMH(o(k»l |Fnsatoti)
Toeht (Blk 4+ 1) O o (ST A E(R) A SY).

To prove commutativity of diagram|16.17] one starts with an element [f] € 7,41 (E(k))
represented by a pointed map f: S™T* — E(k). Its image under the composite of
the left vertical arrows is [g] € T4 x12(ST A E(k + 1)) for the pointed map

id id
g: SLA S gk Mst M A g1 g gy

idg1 Aflip idg1 Ao (k)
Ty STy

SY A (E(k) ASY)
However, the image of [f] € 7,1 (E(k)) under the composite of the right vertical
arrows is [g] € Tpyrt2(ST A E(k+ 1)) is g o (flip Aidgntx) (and not [g]). Since the
homomorphism flip Aidgn+r: ST A ST A S™HE — ST A ST A 8™ has degree —1,
Theorem [3.4] implies that [g o (flip Aidgn+x)] = —[g] holds.

It remains to show that the map is an equivalence. Recall the general

fact that for a directed system of abelian groups Ag Po, A LN A, LN every
element in the colimit can be written as ,,(a,,) for some m € ZZ° and some

S'ANE(k+1).
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am € Ay, for the structure map ¥, : A, — colimy_, o, A and the element ¥, (an,)
is zero in the colimit if and only if there exists n € 729 with n > m such that the
composite ¢,_1 0 Pp_90 0@y : Ay — A, sends a,, to zero. Now note that the
upper left triangle in diagram [16.17] with the dashed map commutes, which implies
injectivity of . Surjectivity is more difficult. We only show that the twofold
suspension 7, (E) = 7,11 (S*AE) — m,42(STASTAE) is surjective. As both maps
are injective this proves that they are equivalences. Consider f: S"*% — S2A E(k).
We will show that [f] € m,42(S* A St A E) is the image of [g] € m,(E) for the map

(16.18) g: 52 I 62 n gy B By A 52 D Bk 4 2).
Consider the the diagram
S2 A Sn+k+2 flip Sn+k+2 A S2
id /\fJ{ J{f/\id
(16.19) S2A(S2AE(k)) —=— (S2 A E(k)) A S2

idA ﬂipJ / id Ao?

S2AE(k)AS? —9AT 5 62 A B(k + 2).

The map a: S2AE(k)AS? — S?2 A E(k) AS? is the map swapping the first and last
factor. As this swap map of S? A S? has degree 1, we see that o ~ id. Similarly,
the flip map S2 A S?HE+2 5 §ntk+2 A G2 is homotopic to the identity. This is the
reason why we have to suspend twice! Now the upper square and middle triangle
in diagram [I6.19] obviously commute. The bottom right triangle commutes up to
homotopy using id ~ . The right vertical composite represents [f] € 7, 2(S?AE).
The bottom left composite is the image of [g] under m,(E) — m,12(S* A ST AE).
The proof of the equivalence 7, (E) ~ 7,1 (map(S!, E)?) is easy using the equiv-
alence 7, (2X) ~ m,4+1(X) for a pointed space X. O

Definition 16.20. Let E be a spectrum and X be a pointed space. Define the
reduced E-(co)homology of X by

H,(X:E)=m,(X AE) and H"(X;E)=r_,(map(X,E)°).

Theorem 16.21 (The homology and cohomology theory assigned to a spectrum).

Let E be a spectrum. Then:

(i) The reduced E-homology ﬁ*(—, E) is a homology theory of pointed spaces
with values in Z-modules. Its associated homology theory on pairs of spaces
satisfies the disjoint union axiom. For everyn € 7Z there is an isomorphism

on(E): Hy({o};E) = 7, (E);

(ii) The reduced E-cohomology H*(—;E) is a cohomology theory of pointed
spaces with values in Z-modules. Its associated cohomology theory on pairs
of spaces satisfies

o"(BE): H"({e};E) = 7_,,(E).

IfE is an Q-spectrum and we consider as input only pointed CW -complezes,
then H*(—; E) satisfies the disjoint union aziom.
Proof. Because of Remark [16.10|it suffices to construct a homology theory for

pointed spaces H..
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We begin by showing how H,(X;E) = m,(X A E) from definition is a
homology theory for pointed spaces. Is is obviously a functor from pointed spaces
to Z-graded abelian groups. Furthermore, it sends pointed homotopic maps to the
same map on f[n(—; E) As suspension isomorphism we use the isomorphism

$n(2): Hy(X;E) = 1(X AE) ~ 101 (S'AX AE) = Hyy1 (X E)

from lemma [16.13[ for the spectrum X A E, which is natural in X.
Next we prove exactness. Consider a pointed map f: X — Y. We have to prove
the exactness of the sequence

Tn (f/\ldE)

(X AE) VN, oy g gy TlNdR),

7 (cone(f) AE)
for i: Y — cone(f) the inclusion into the pointed mapping cone of f. Since the
composite o f is pointed nullhomotopic, we get im(m, (f Aidg)) C ker(m, (i Aldg)).
It remains to show ker(m, (i Aidg)) C im(m,(f Aidg)).

Consider an element z € ker(m,(i A idg)). Then we can find k& € Z=° and
a pointed map g: S"** — Y A E(k) such that [g] € 7,41 (Y A E(k)) represents
z € ker(m, (i Nidg)) and T4 (i Aidg@) ) 2 Tk (Y AE(K)) — Tpir(cone(f) A E(n))
sends [g] to zero. Let h: cone(f)AE(n)AI — cone(f)AE(n) be a pointed homotopy
with hg = i0 ¢ and hy the constant map. Next we construct the following diagram

(16.22) gtk J Y A E(n)
inidg(n
j iAidEN
cone(idgn+x) 7 cone(f Aidgm)) % cone(f) A E(n)
p(idsn) p(fAdEn))
etk 1 B 1 idx Ao (n)
STHEANS ————— S XANE(n)AS XANE(n+1)
idgntk gl fAdE @) ANidg1 Jf/\idE(vH»l)
Aid id a(n
gtk A gt NSy By A st STy B 1)

The left column is part of the cofibration sequence of the pointed map idgn, whereas
the middle column is part of the cofibration sequence of the pointed map fAidg(,),
see Theorem 840} The map H is given by the map g and the homotopy h and
makes the uppermost left square commutative. The map S is the map uniquely
determined by the property that the left middle square commutes. The map ¢ is
the canoncial homeomorphism and makes the corresponding triangle commutative.
The lowermost right square commutes. The left lowermost square does not commute
but it does commute up to pointed homotopy. The elementary verification of this
fact is left to the reader or can be extracted from [27, Lemma 8.31 on page 143].

Now the composite (idy Ad(n))o(gAidg): S"T*AS! — Y AE(n+1) is another
representative of z € ker(m, (i Aidg)). We conclude from the diagram that
the composite (idx Ao(n)) o B: S"tF A ST — X A E(n + 1) represents an element
in 7, (X A E) which sent by 7, (f Aidg) to z. This finishes the proof of exactness
and hence of the assertion that (H.(—; E), s,) defines homology theory for pointed
spaces in the sense of Defintion [16.9]

It remains to check that ﬁ*(—; E) satisfies the one point union axiom, i.e., that
the map

(16.23) P rn(Xi AE) = 7 (\/ Xi AE)
i€l el
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is an equivalence. Recall from exercise 47 on sheet 12 that for two spectra E; and
E, the canonical map E; V Es — E; x E is a weak homotopy equivalence. This
shows that the map is an equivalence if [ is finite. For general I, use the
equivalences

(16.24) m(\/ Xi A E) ~ colimpc; nite ™ (\/ Xi A E) and
i€l i€F
(16.25) @ Tn(Xi A E) = colimpc ginite @ 7 (Xi A E).
i€l i€F

The first equivalence follows from the following argument: Consider a compact
subset C' C \/,;(X;, z;). We want to show that there is a finite subset J C I with
C C I. Suppose that this is not the case. Then we can find a sequence of elements
J(1),4(2),5(3),... of pairwise distincts elements in I and a sequence of pairwise
distinct points s1, 52, 83, ... in C satisfying s; € CNXj;) \ {z;(;)}. Consider the set
S ={s1,52,83,..., }. Let T C S be any subset of S. Then T N X; is either empty
of consists of one point for ¢ € I. Since each X; is Hausdorff, T'N X, is closed in
X; for every i € I. This implies that 7" is a closed subset of \/,.; X;. Hence S is a
discrete subset of \/,.; X; and contained in a compact subset C of X. This implies
that S is finite, a contradiction.
The proof that the reduced E-cohomology

ﬁ"(X; E) = 7_,(map(X,E)°)

is a cohomology theory for pointed spaces is analogous to the one for homology
except that some care is necessary for the disjoint union axiom. The additional
difficulty is that we have a homeomorphism

map(\/ Xi; E(n))0 = H map(X;, E(n))°
iel i€l

and hence we get for k,n an isomorphism

0y =
Ttk (map(\/ X E(n)) ) — H T4k (map(Xi; E(n))o)
i€l iel
but colimits and products do not commute. Therefore we need the assumption that
E is an Q-spectrum, Namely, with this assumption, structure map of ([16.6]

Uk 7rn+k(map(Y7E(k))0) — 7, (map(Y, E)O)

is an isomorphism for every pointed space (Y,y) and we do not have to take the
colimit, since map(X;E)° is an Q-spectrum by Theorem and Theorem m
applied to the fibration map(X, E(n))? — map(X, E(n)) — E(n), as E is an Q-
spectrum and X is a CW-complex. O

Example 16.26 (Sphere spectrum and stable homotopy). Let S be the sphere
spectrum of Example Then the associated homology theory H.(—;S) agrees
with the stable homotopy theory 72(—) introduced in Defintion [11.20| and Theo-

rem |11.24] follows from Theorem [16.21

Example 16.27 (The Eilenberg-MacLane spectrum and singular homology). We
have introduced for an abelian group G the Eilenberg-Maclane spectrum K(G) in
Definition Theorem [16.21] mn we obtain a cohomology theory which satisfies
the dlSJOlIlt union axiom and the dimension axiom and H°({e}) = G. Singular
cohomology H*(—;G) with coefficients in G is also a cohomology theory which
satisfies the disjoint union axiom and the dimension axiom and H 0({0} G) = G.
We obtain from the maps v*(Y): [Y, K(G,n)] = H"(Y;G) a natural
transformation of cohomology theories v*: H*(— ;K(G) — H *( ) Wthh induces
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an isomorphism ~°({e}): H*({e}; K(G)) — H*({e};G). Proposition [16.12
implies that we get a natural equivalence of cohomology theories

7 H (= K(G) = HY (= G).
In particular we see that for every n € Z the map v"(X): [X, K(G,n)] = H"(Y; G)
of (14.6)) bijective for every CW-complex X, as predicted in Theorem [14.7]

We mention without proof that H.(—; K(A)) can be identified with singular
homology H.(—; A) with coefficients in A.

Example 16.28 (Hopf’s Theorem revisited). Let M be a closed smooth manifold
of dimension d. Let K(Z,d) be a model for the Eilenberg-MacLane space of type
(Z,d). Choose a map f: 5% — K(Z,d) inducing an isomorphism m4(f): m4(S%) =
mq(K(Z,d)). Since f is (d + 1)-connected and any smooth d-dimensional manifold
carries a d-dimensional CW-structure, we obtain a bijection [M, 5 = [M, K (Z, d)]
by sending [g] to [f o g] from the Whitehead Theorem Composing it with

the bijection 4™(Y): [Y, K(G,n)] =N HY(Y; Q) of (14.6)) yields a bijection
v [M, S = HYM), [f] = H'(F)([SY)
for the fundamental class [S9] € H4(S9).

Suppose that M is oriented. If we compose v with the bijective homomorphism
HY(M) = 7Z sending u to (u,[M]) for the fundamental class [M] € Hy(M), then
we obtain a bijection

(M, S = Z, [f] > deg(f).
Thus we rediscover Hopf’s Degree Theorem

Suppose that M is not orientable. We mention without giving the proof that
H(M;Z) is isomorphic to Z/2 and v: [M,S9] = Z/2 sends f: M — S? to
zero, if Hy(f,Z/2): Hy(M,Z/2) — Ha(S%7Z/2) is trivial, and to the generator
if Hy(f,Z/2): Hqy(M,Z/2) — Hy(S%7Z/2) is bijective.

16.4. Brown’s Representation Theorem. Let f: E — F be a map of spectra.

It induces in the obvious way a natural transformation of homology theories with
values in Z-modules

(16.29) tf: " (= E) = H.(—F)
such that the following diagram commutes
&({e})
Hn({e}; E) Hn({e}; F)
7 (E) -y T (E).

It also induces in the obvious way a natural transformation of cohomology theories
with values in Z-modules

(16.30) ty: H*(— E) - H*(—; F)
such that the following diagram commutes
ty ({o})
H"({o};E) —— H'({e}; F)
7—n(E) m_n(E).

ﬂ'n(f)
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A proof of the next theorem can be found in [27, Theorem 9.27 on page 164 and
Theorem 9.28 on page 165]

Theorem 16.31 (Brown’s Representation Theorem).

(i) Let K* be a cohomology theory with values in Z-modules defined on the
category of CW -pairs satisfying the disjoint union axiom. Then there is
an Q-spectrum E and a natural equivalence of cohomology theories

t*: H* (= E) =K
(ii) Consider two Q-spectra E and F. Let t*: H*(— E) — H*(—F) be a
natural transformation of cohomology theories.
Then there is a map of spectra £: E — F such that for every CW -pair
(X,A) and n € Z the maps t"(X,A) and H"(X, A;f) from H"(—; E) to
H"(—; F) agree.
If t*: H*(—;E) — H*(—;F) is a natural equivalence of cohomology
theories with values in Z-modules, then £ is a weak homotopy equivalence.

One knows for a homology theory H. with values in Z-modules satisfying the
disjoint union that it can be identified on CW-pairs with H.(—; E) for some spec-
trum E but in contrast to cohomology with values in Z-modules E is not uniquely
determined by this property up to weak homotopy equivalence.

16.5. Basics about vector bundles. Vector bundles are always to be understood
to be finite dimensional real or complex vector bundles. For a vector bundle £ we
denote by pe: £ — B its bundle projection. For a finite dimensional real or com-
plex vector space V and a C'W-complex B we denote by V g the trivial vector
bundle over B whose bundle projection B x V' — B is the canonical projection
onto B. If B is clear from the context, we simply write V. If V is oriented, then V'
inherits an orientation. We will equip R* always with the standard orientation and
C* considered as a real vector spaces with the preferred orientation coming from
{v1, 101, va,1Va, . .., Up, iV, } for any complex basis {v1,va,...,v,}. Given two bun-
dles ¢ and n with projections p¢: Ee — B¢ and p,,: B, — B,, a bundle morphism

(f, f) consists of two maps for which the following diagram is commutative

Ee—1-E,

Jpg f J

Bf‘)B77

and for each b € Bg the maps induced by f from the fiber pgl(b) of £ over b to the
fiber p; *(f (b)) of 1 over f(b) is a linear isomorphism. We call two bundles £ and
n over the same basis space B isomorphic over B, if there is a bundle map (f, f)
with f =idp.

The proof of the next result can be found for instance in [12], Theorem 4.7 on
page 30].

Proposition 16.32. Let X and Y be CW-complexes. Let n be a vector bundle
over the CW-complex Y. Let f,g: X — Y be maps which are homotopic.

Then the vector bundles f*n and g*n over X obtained from the pull back con-
struction applied to f and g are isomorphic over X. Moreover, if n is oriented,
then f*n and g*n inherits orientations and are oriented isomorphic over X.

Let X be a CW-complex and let VB, (X) be the set of isomorphism classes [¢]
of k-dimensional real vector bundles & over X. There is a universal k-dimensional
bundle 7% over a CW-complex BO(k) such that for any k-dimensional real vector
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bundle ¢ there is a map c¢¢: X — BO(k) uniquely determined up to homotopy
by the property that & is isomorphic over X to ¢fvyk. Moreover, the homotopy
class [c¢] depends only on the isomorphism class [¢]. Sometimes ¢, is called the
classifying map of . The space BO(k) is uniquely up to homotopy determined
by the property that there exists a principal O(k)-bundle EO(k) — BO(k) with
contractible total space EO(k). The k-dimensional vector bundle ~, is given by the
canoncial projection EO(k) x o) R¥ — BO(k).

All this has an analog for oriented k-dimensional real vector bundles. Namely,
let X be a CW-complex and let VB (X) be the set of oriented isomorphism classes
[€] of oriented k-dimensional real vector bundles £ over X. There is a universal
oriented k-dimensional real bundle 7, over a CW-complex BSO(k) such that for
any oriented k-dimensional real vector bundle £ there is a map ¢ : X — BSO(k)
uniquely determined up to homotopy by the property that £ is oriented isomorphic
over X to 5271« Moreover, the homotopy class [¢¢] depends only on the oriented
isomorphism class [¢]. The space BSO(k) is uniquely up to homotopy determined
by the property that there exists a principal SO(k)-bundle ESO(k) — BSO(k) with
contractible total space ESO(k). The oriented k-dimensional real vector bundle 7,
is given by the canoncial projection ESO(k) xso(r) R¥ — BSO(k) and inherits an
orientation from the standard orientation of R¥.

All this has an analog for k-dimensional complex vector bundles. Namely, let
X be a CW-complex and let VB (X) be the set of isomorphism classes [¢] of k-
dimensional complex vector bundles £ over X. There is a universal k-dimensional
complex bundle 75 over a CW-complex BU(k) such that for any k-dimensional
complex k-vector bundle £ there is a map cC' X — BU(k) uniquely determined up
to homotopy by the property that & is 1somorph1(3 over X to (cg) 'y}f Moreover,
the homotopy class [cg] depends only on the isomorphism class [¢]. The space
BU(k) is uniquely up to homotopy determined by the property that there exists a
principal U(k)-bundle EU(k) — BU(k) with contractible total space EU(k). The k-
dimensional vector bundle 'y,(g is given by the canoncial projection EU(k) XU(k)(Ck —
BU(k).

For the proof of the next theorem we refer, for instance, to [2I, Chapter 5]. It is a
prototype of a connection between a geometric classification problem to homotopy
theory.

Theorem 16.33 (Classification of vector bundles). If X is a CW-complez, then
the maps

VBi(X) — [X,BO(K)], [¢] = [ee];
VBi(X) — [X,BSO(K)], [¢] = [eel;
VBL(X) — [X,BUK), [¢]~ [c],
are bijective. Their inverses send [f] to [f*vx], [f* 7] and [f*75].

The spaces BO(k), BSO(k), and BU(k) are path connected and unique up to
homotopy.

For a real vector bundle £ : E — X with Riemannian metric define its disk bundle
ppr: DE — X by DE = {v € E | ||v|]| < 1} and its sphere bundle psg: SE — X
by SE = {v € E | ||v|| = 1}, where ppg and pgg are the restrictions of p. Its Thom
space Th(€) is defined by DE/SE. It has a preferred base point co := SE/SE. The
Thom space can be defined without a choice of a Riemannian metric as follows. Put
Th(¢) = EU{oo} for some extra point co. Equip Th() with the smallest topology
for which any open subset U of E is an open subset of Th({) and a basis of open
neighbourhoods for oo is given by the complements of closed subsets A C F for
which AN E, is compact for each fiber F,. If X is compact, E is locally compact
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and Th(¢) is the one-point-compactification of E. The advantage of this definition
is that any bundle map (f, f): & — & of vector bundles & and &; canonically
induces a pointed map Th(f, f): Th(&) — Th(&1). Denote by RF the trivial
vector bundle with fiber R¥. We mention that there are pointed homeomorphisms,

see for instance |28 Proposition 12.28].
(16.34) Th(¢ x ) = Th(g) ATh(y);
(16.35) Th(¢ ®R¥) = Th(¢) A S*.

[

16.6. Thom spaces and Thom spectra.

Definition 16.36 (Stable system of vector bundles bundles). Given [ € Z=°, an
I-dimensional stable system of vector bundles u = {(&k, (fr, fx)) | k € Z2°} is a
sequence of vector bundles {&;, | k € ZZ°} such that & is a (k-+1)-dimensional vector
bundle with projection p¢, : Ey — By, for a CW-complex Bj, as basis together with
a bundle maps

Ey, @KL) Eri1

ka Dpr Jf’&k+1

By, LI By 11
for k € Z=29.

We call the system oriented if each each vector bundle ¢ is oriented and each
bundle map (fx, fr) respects the orientations.

Given an [-dimensional vector bundle & over B, we can associated to it an -
dimensional stable vector bundle system £ by putting § r = £ ®RF for k € Z2° by

defining the structure maps (idg, fx) to be the obvious bundle isomorphism over B
from ¢ GRF O R = € @ RFHL

Definition 16.37 (Thom spectrum of a stable system of vector bundles bundles).
Consider an [-dimensional stable system of vector bundles yu = {(&, (fx, fx)) | k €
729}, Define the associated Thom spectrum Th(u) as follows. Its k-th space
Th(p)y is {e} for £ < 0 and Th(u)r = Th(&) for k > 0. The kth-structure map is
given by the composite

Th(fx,fr
DT, Th (1) = Th(p)esr.

Example 16.38 (Suspension spectrum). Let X be a CW-complex. Consider the
zero-dimensional vector bundle R®y over X. Let R®, be the associated stable

Th(), A S* = Th(g) A 8 T Th(g, o R)

system of bundles maps. We have introduced its Thom spectrum Th(R®y) in
Definition Note that its 0-th space is X ;. Then Th(R®y) agrees with the
suspension spectrum X of Example[16.2] If we take X = {o}, then ¥°°{e}, =
¥°(59, 5) is the sphere spectrum S of Example [16.3]

Example 16.39 (The spectra MO and MSO). Choose for any k a model for the
universal k-dimensional bundle ~; over BO(k). By the universal property of v441
we can choose a bundle map (fx, fx): V& ® Rpo(k) = Yk+1- We can arrange by the
construction of Subsection[8.8|that each map fi,: BO(k) — BO(k+1) is an inclusion
of CW-complexes and in particular a cofibration. We obtain a stable system - of
bundle maps by the collection of the bundles 7, and bundle maps (fx, fr). The
associated Thom spectrum of Definition is denoted by MO = Th(u).

Note that MO depends on some choices. But one can show for the result MO’ for
any other choices that there are homotopy equivalences of spectra MO — MO’ and
MO’ — MO which are homotopy inverse to one another. (Here it is crucial that the
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maps fi are cofibrations.) In particular MO — MO’ and MO’ — MO are weak
homotopy equivalences and we get from Proposition natural equivalences of
(co)homology theories H..(—MO) =N H.(—MOQ’) and H*(-MO) = #*(-MO)
which actually are inverse to one another. Moreover, there is actually a canonical
construction MO for which no additional choices are made. Therefore we ignore
this ambiguity about MO in the sequel.

There is an analog & and MSO = Th(z), where one replaces v, by 7, and
BO(k) by BSO(k).

Note that we have constructed the sphere spectrum S, the Eilenberg-MacLane
spectrum K(A) for an abelian group A, and the spectra MO and MSO so far.
Recall that associated to them are (co-)homology theories in Theorem For
S we have identified H.(—;S) with the stable homotopy groups 7(—), see Exam-
ple These will be identified with more geometric terms, namely with framed
bordism, in Theorem For K(A) we have identified H*(—; K(A)) with the
singular cohomology H*(—; A) with coefficients in A, see Example We will
identify H.(—; MO) and H.(—; MSO) with more geometric terms, namely with
unoriented and oriented bordism theory, see Theorem [I7.11] and Theorem [T7.14]

16.7. Topological K-theory. One can define topological groups

O = colimg_ e O(K);
SO = colimg_,e SO(K);
U = colimg_ o U(k),

for the inclusions O(k) — O(k + 1), SO(k) — SO(k + 1), and U(k) — U(k + 1)
given by taking the block sum with the (1,1) matrix (1).

There is a principal O-bundle EO — BO over a CW-complex BO for which EO
is contractible. Up to homotopy one can obtain BO also as colimy_, o BO(k) if one
chooses adequate models for BO(k) and arranges that each map BO(k) — BO(k +
1) is an inclusion of CW-complexes and in particular a cofibration. Analogously
one can construct spaces BSO and BU. The spaces BO, BSO, and BU are path
connected. We have m1(BO) = /IZ/2 and the spaces BSO and BU are actually
simply connected.

A deep theorem of Bott says that there are weak homotopy equivalences

g2 ZxBO = Q%Zx BO);

BC:ZxBU = Q2%Z x BU),
where Z is equipped with the discrete topology and the base point 0 € Z and we
choose some base point in the path connected spaces BO and BU.

For n € Z define k(n) € {0,1,2,3,4,5,6,7} to be the unique element satisfying
k(n) = n mod 8. Define an Q-spectrum KO by defining the n-th space KO]E to
be Q3~#()(Z x BO) if k(n) # 0 and to be Z x BO if k(n) = 0. The n-th structure
map is

id: Q5F") (7 x BO) — Q¥ ~*k(+1) (7 %« BO) = Q8+ (Z x BO)
if k(n) # 0 and B®: (Z x BO) — QQ7(Z x BO) = Q8(Z x BO). So the spectrum
KO is 8-periodic and looks in tte range from 0 to 8 like
Z x BO,Q"(Z x BO),Q%(Z x BO),...,QY(Z x BO),Z x BO.

Similarly we define the Q-spectrum K. Define K,, to be Z x BU if n is even, and
to be Q(Z x BU) if n is odd. The n-th structure map is the identity idgzxpu) if
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n is odd, and is BT if n is even. So the spectrum K is 2-periodic and looks in the
range 0 to 2 like

Z x BU,Q(Z x BU),Z x BU .

Associated to these -spectra are cohomology theories satisfying the disjoint
union axiom

KO*(X,A) = H*(X,A;KO):;
K*(X,A) = H'(X,4K),

called real and complex topological K -theory. Note that K O* is 8-periodic, i.e., there
are natural isomorphisms KO*(X, A) =N KO**t8(X, A), whereas K* is 2-periodic,
i.e., there are natural isomorphisms K*(X, A) N K*2(X, A).

Associated to these Q2-spectra are homology theories satisfying the disjoint union
axiom

KO.(X,A) = H.(X, A;KO);
K.(X,4) = H.(X,AKO),

called real and complex topological K-homology Note that KO, is 8-periodic, i.e.,
there are natural isomorphisms KO, (X, A) =N KO.18(X,A), whereas K, is 2-

periodic, i.e., there are natural isomorphisms K, (X, A) = KO,12(X, A).
The coefficients are given for the real case by

(16.40) KO, ({e}) = KO* "({e}) = Z,7./2,7,/2,{0},Z,,{0},{0},{0},Z,
forn=0,1,2...,7

and in the complex case by

Y/ if n is even;

(16.41) Kn({e}) = K"({e}) = {{0} if n is odd.

If X is a finite CW-complex, the abelian group KO°(X) can be identified with
the Grothendieck construction applied to the abelian semi-group of stable isomor-
phism classes of finite-dimensional real vector bundles over X, where two finite-
dimensional real vector bundles ¢ and n over X are called stably isomorphic if
£ ®RF and R’ are isomorphic for some natural numbers k and [ and the addition
comes from the Whitney sum. The analogous statement holds for the complex case.

Remark 16.42. Topological K-theory is a very valuable cohomology theory which
had many applications to problems in topology. It was later extended to C*-
algebras and plays a prominent role in the classification and the theory of C*-
algebras and in index theory.

16.8. Outlook. The approach to spectra presented above can be called “classical”
or “naive”. Moreover, we have not defined the notion of a smash product of two
spectra and of a ring spectrum.

One can define the smash product E A F of two spectra E and E in the setting
discussed in these notes but it depends on certain choices. Moreover associativity
or commutativity of this smash product make only sense up to homotopy. This
has led to the notions of highly structured spectra such as symmetric or orthogonal
spectra, where the smash product is strictly defined and also associativity and
commutativity of the smash product hold strictly.

Moreover, one works with spectra in the setting of higher category theory nowa-
days. An introduction to higher categories can be found for instance in [15].
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17. THE PONTRJAGIN-THOM CONSTRUCTION

17.1. ¢&-bordism. Let (M,i) be an embedding i: M™ — R"™* of a closed n-
dimensional manifold M into R™**. Note that TR™t* comes with an explicit
trivialisation R"* x R"* =, TR™* and the standard Euclidean inner product
induces a Riemannian metric on TR™**. Denote by v(i) the normal bundle, which
is the orthogonal complement of TM in i*TR"** or can be thought of as the quo-
tient bundle i*TR"** /T M. Sometimes we write v(M) instead of v(i) if i is clear
from the context.

M ¢ IR?

M)y

Next we apply this construction to bordism. Fix a space X together with a
k-dimensional vector bundle £ over X. We define the bordism set

(17.1) 2 (8)

of normal &-bordism classes of normal £-maps as follows.

Definition 17.2 (Normal £&-map).
A normal &-map (M, 1, f, f) is a quadruple consisting of:
e A closed manifold M of dimension n;
e An embedding i: M — R™tF:
e Amap f: M — X;

e A bundle map (f, f): v(i) — £ covering f, where v(3) is the normal bundle
of the embedding .

Definition 17.3 (Bordism of normal £&-maps).
A normal £-bordism from the normal &-map (Mo, ig, fo, fo) to the normal &-map
(My,iy, f1, f1) is a quadruple (W, I, F, F') consisting of:
e A compact manifold W of dimension (n 4 1) whose boundary W is the
disjoint union dyW II1 0, W;
e An embedding of manifolds with boundary I: W — R™** x [0, 1] sending
OmW to Rk x Im} for m =0, 1;
e Diffeomorphisms w,,: M,, — 0,W and U,,: R"** — R"** x {m} for
m = 0, 1 satisfying I o u,, = Uy, 0
e Amap F: W — X x [0,1] satisfying j,, o frn = F oy, for m = 0,1 where
Jm: X = X x [0,1] sends x to (x,m);
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e A bundle map (F, F): v(I) — & covering F such that F ov(um,,Up) = f,n,
holds for m = 0,1 where (um, V(Um,Unm)): V(im) — v(I) is the obvious
bundle map induced by T'u,, and TU,,.

Remark 17.4. Note that in the definition above the following implicit identifica-
tion
v(OW CR"F % {0,1}) = (W C R™"™ x [0,1])|ow
is used, which is based on the convention that at {0} we take the inward normal
field and at {1} the outward normal vector field to get identifications
TR" x [0,1]|gnxq01; = TR" x{0,1} ®R;
TWlow = TOW &R.

This convention guarantees that we can stack two cobordisms together to prove
transitivity of the bordism relation.

R §0) R 143

aw

17.2. The Pontrjagin-Thom construction of {-bordism. Consider a normal
&-map (M,i, f, f), see Definition Note that for any vector bundle n over a
manifold B with total space F there exists a canonical bundle isomorphism T B &

n = s*TFE over B, where s: B — E is the zero-section. So we get an identification
TB®n=TE|p. Let (N(M),0N(M)) be a tubular neighbourhood of M. Recall
that there is a diffeomorphism

u: (Dv(M),Sv(M)) = (N(M),0N(M))
with the property that its restriction to M is ¢ and under the canonical identification
T(Dv(M))|p = TM & v(i) the composite
v(t)={0t@v() > TM @ v(i) = T(Dv(M))|m
Tular, PRk _y TR TM = u(3)

is the identity. Such a tubular neighborhood is unique up to diffeotopy on R™**
relative M. See for instance [3| Theorem 21.11 on page 130 and Theorem 12.13 on
page 131].
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The Thom collapse map
(17.5) c: S"TF = R"F 11 {0} — Th(v(M))

is the pointed map that is given by the diffeomorphism «~! on the interior of N (M)
and sends the complement of the interior of N(M) to the preferred base point oco.

Counpsp
—> D n/Suin)

]

Thi{vm)
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The homology group H,,x(Th(v(M))) = Hp1,(N(M),0N(M)) is infinite cyclic
if M is connected, since N (M) is a connected compact orientable (n+k)-dimensional
manifold with boundary ON(M). The Hurewicz homomorphism

hurm_k: 7Tn+k(Th(V(i))) — Hn-‘rk(Th(V(i)))

sends the class [¢] of ¢ to a generator. This follows from the fact that any point
in the interior of N(M) is a regular value of ¢ and has precisely one point in its
preimage.

Theorem 17.6 (Pontrjagin-Thom Construction). Let&: E — X be a k-dimensional
vector bundle over a CW -complex X. Then the map

Pp(€): Qn(§) = mntr(Th()),

which sends the bordism class of (M, i, f, f) to the homotopy class of the composite
Stk 5 Th(v(M)) ThhA), Th(¢), is a well-defined bijection, natural in .

Proof. The details can be found in [4, Satz 3.1 on page 28, Satz 4.9 on page 35]
or [II, Section 7.2 on page 172]. The basic idea becomes clear after we have
explained the construction of the inverse for a finite C'W-complex X. Consider a
pointed map (S"** oco) — (Th(£),00). We can change f up to homotopy relative
{o0} so that f becomes transverse to X. Note that transversality makes sense
although X is not a manifold, one needs only the fact that X can identified with
the image of a zero-section of a vector bundle. Put M = f~1(X). The transversality
construction yields a bundle map (f|ar, f|ar): v(M) — & covering f|as. Leti: M —
R+ = §7+k _ {50} be the inclusion. Then the inverse of P, () sends the class of
f to the class of (M, i, f|ar, flar)-
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X< Th(§)
<?
o
-
$7(x)

17.3. The Pontrjagin-Thom construction and bordism for stable systems
of bundles. Consider an n-dimensional system p of vector bundles p given by
vector bundles ¢, and bundle morphisms (fx, f1.): & @ R — &y For n, k € Z2°
we next define a map

O

Qn(fkv?k): Qn(gk) — Qn(karl)o

Consider an element z in Q, (&) represented by normal &-map (M, i, u,@). Let
j: Rtk = Rtk 5 {0} — R"TF+L be the standard inclusion. Then there is a
natural identification of v(j o) with v(i) @ R. Consider the bundle map

_ . , foF)®(u,u TS
(0,9): v(j o) = (i) B Ry LPE, g o Ry, I 44
where (u,u) is the obvious bundle map induced by u and idg. Then we obtain a
normal &1-map (M, joi,v,7). Its bordism class in Q,(£x+1) is the image of z
under Q,,(fx, f5). We omit the proof that Q,,(fx, f) is well-defined. We define the
set

(17.7) Q, (1) = colimy_y00 2y (&k)

with respect to the structure maps Q,(fx, f1.)-

The set Q,(u) carries in contrast to each of the sets €, (&) the structure of an
abelian group. The unit is given by the class of the normal £;-map (M, 4, v,T) with
M = ) for any k € Z=. Consider two elements z and 2’ in Q,(u). We can find
representatives (M, 4,u,u) and (M’,i',u/,u') with k = k' and im(i) N im(i’) = 0
and define z; + 23 by the class of the disjoint union (M IT M’ i I1i', u Il v, a1 v/).
The inverse of a class represented by (M, i, u, @) is the class represented by (M, j o



110 LUCK, WOLFGANG

i, fx o u, fr ou), where j: R*** — Rn+k+1 ig the standard inclusion, we identify
v(j o) with v(z) ® R and (fxo, fr o u) is the composite

WO idy Ty

) — . ; ( —idg,
(Jou, frou,): v(joi) =v(i) ®Ry ———— & O Rp, Yelbd, g1

for —idg, the obvious bundle map induced by u and — idg.

Let Sy k: Tntk(Th(€k)) = Tnak+1(Th(Ek+1)) be the composite of the suspen-
sion homomorphism 7,4 %(Th(¢x)) — mTpiksr1(Th(€k) A S) and the homomor-
phism 7,111 (Th(&) A SY) — Tpki1(Th(€gs1)) induced by the kth structure
map Th(&;) A ST — Th(€ks1) of the Thom spectrum Th(u) of Definition
Then we get from the definitions

T (Th(p)) = colimp 00 T4 1 (Th(E))

with respect to the structure maps s, j.
One easily checks that we obtain a commutative diagram

Qn (f1,fx)
Q (&) — " 0 (€1

Pn(gk)J/: 3J7Pn(6k+1)

Ttk (Th(Ek)) <=2 Tnrkt1(Th(Ek+1))-

Therefore we obtain the following result.

Theorem 17.8 (Pontrjagin-Thom Construction for stable bundle systems).
Let p be a stable bundle system. Then we obtain an isomorphism of abelian
groups
Pu(p): @u(1) = m(Th(p))
by putting P, () = colimy o0 P (&k)-

17.4. Unoriented bordism. Consider a pair (X, A) and n € Z=° A singular
n-manifold over (X, A) is a map (u,0u): (M,0M) — (X, A) with target (X, A)
and a compact smooth manifold M with boundary 0M of dimension n as source.
Consider two singular n-maps (ug, Qux): (My,0My) — (X, A) for k = 0,1. A
singular (n + 1)-dimensional bordism between them consists of:
e A compact smooth manifold W of dimension (n + 1) with boundary OW;
e A decomposition AW = 9gW U W U W for smooth submanifolds 9y W,
O W, and 9oW of OW satisfying (9oW) N J(O1W) = 0 and 9(9.W) =
e AmapU: W — X;
e Diffeomorphisms (v, dvg): (M, 0My) — (0:W,0(0,W)) for k = 0,1
such that QU o vy, = duy holds for k =0, 1;
o We have U(0, W) C A.

If (uy,duy): (My,0M;) — (X, A) is given by M; = (), we call such a (n + 1)-
dimensional bordism a nullbordism for (ug, dug): (My, 0My) — (X, A).

If there exists a bordism between two singular n-manifolds over (X, A), we call
them bordant. This turns out to be an equivalence relation, for transitivity one has
to glue two bordisms together. So we can define the set A, (X, A) to be the set of
of bordism classes of singular n-manifolds over (X, A).

If A is empty, then for a singular bordism (u,0u): (M,0M) — (X, A) over
X = (X,0) we have 9M = () and hence M is just a closed manifold with a map
u: M — X. Also the notion of a bordism simplifies, since d2 W must be empty and
hence OW is just the disjoint union dyW 11 0, W.

The set N, (X, A) inherits the structure of an abelian group as follows. The unit
is given by the bordism class of the singular n-manifold (u,du): (M,0M) — (X, A)
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for which M = (). Given two singular n-manifolds (ux, Qug): (Mg, OMy) — (X, A)
for k£ = 0,1, define the sum of their bordism classes to be the bordism class of
the disjoint union (ug, Qug) IT (uy, duy): (Mo, 0My) IT (M;1,0M1) — (X, A). The
inverse of the bordism class of (u,du): (M,0M) — (X, A) is given by the bordism
class of (u,0u): (M,0M) — (X, A) again, since a nullbordism for their disjoint
union (u, Ou) I (u, Ou): (M,0M)I1(M,0M) — (X, A) can be constructed from the
cylinder M x I in the obvious way. Note that this implies that A, (X, A) is actually
an [Fo-vector space.

A map of pairs (F, f): (X, A) — (Y, B) induces a homomorphism of Fo-vector
spaces by sending the bordism class of (u,0u): (M,0M) — (X, A) to the bordism
class of (Fou,fodu): (M,0M) — (X,A). We omit the proof that we obtain a
covariant functor N, (—) from the category of topological pairs to the category of
Fa-vector spaces for n € Z=°. We define N,,(X, A) for n € Z=~! to be {0}. For a
pair (X, A) define the homomorphism

(17.9) O (X, A): Np(X, A) = Ny (A)

by sending the bordism class of (u,du): (M,0M) — (X, A) to the bordism class of
Ou: OM — A.

Theorem 17.10 (Singular bordism is a homology theory satisfying the disjoint
union axiom).

We obtain a homology theory with values in Fy-vector spaces satisfying the dis-
joint union aziom by N.(—) and 9.(—).

Sketch of the proof. We start with homotopy invariance. Consider for k£ = 0,1 the
maps (Fy, fr): (X, A) — (Y, B) and a homotopy h: (X, A) x I — (Y, B) between
them. We have to show N (Fy, fo) = N(F1, f1). Consider a singular n-manifold
(u,0u): (M,0M) — (X, A). We have to show that (Fy, fo) o (u,0u): (M,0M) —
(X, A) and (Fy, f1)o (u,0u): (M,0M) — (X, A) are bordant. The desired bordism

can easily be constructed from the composite M x [ LLILNG 'SV B

Consider a pair (X, A). We have to show that we obtain a long exact sequence
of Fo-vector spaces

On+2 N1 (i Nin+1(
22 N (A) 220 v (0 2 (X A)
2t L (A) 29 o) 29 v (x A) 2

where i: A — X and j: X = (X,0) — (X, A) are the inclusions. We only explain
exactness at N, +1(X, A). Consider an element in A, ;1(X) given by the bordism
class of u: M — X. Its image under the composite 9,11 0 N, 41(j) is represented
by the singular map with the empty set as domain and hence is zero. This shows
im(N,t1(4)) € ker(p+1). It remains to prove ker(d,+1) C im(N,41(j)). Con-
sider a singular (n + 1)-manifold (u,du): (M,0M) — (X, A) over (X, A) such
that its bordism class lies in ker(d,41). Hence we can find a nullbordism for
Ouy: OM — A, i.e., a compact manifold W with boundary OW, amap U: W — A
and a diffeomorphism v: M — OW with U o v = du. Then we obtain a sin-
gular m-manifold over X by uU, U: M U, W — X. We claim that its bor-
dism class is sent under N, +1(j): Npt1(X) = N1 (X, A) is the bordism class
of (u,0u): (M,0M) — (X, A) over (X, A). This follows from the fact that one can

construct from the composite M U, W x I WO U)XHAr, v o 1 PIYS Y for the pry the
canonical projection a bordism of singular (n 4 1)-manifolds over (X, A) between
uwl, U (MU, W,0) — (X, A) and (u,0u): (M,0M) — (X, A). This finishes the
proof of exactness at N,11(X,A). The proof of exactness at the other places is
similar.
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The disjoint union axiom follows from the fact that for a compact subset C of
the disjoint union [, ; X; of the collection of spaces {X; | i € I} there is a finite
subset J C I with C' C [[,.; Xi.

We omit the proof that excision holds, i.e., if X is a space with subspaces A C
B C X satisfying A C B°, then the inclusion i: (X \ 4,B\ 4) — (X, A) induces
for every n € Z a bijection N, (i): Np,(X \ A, B\ A) — N, (X, A). For a proof
of the Mayer-Vietoris sequence for space X with open subspaces Xy, X;, and X5
satisfying X = X; U X5 and Xy = X; N Xo, we refer to [31], Proposition 21.1.7 on
page 523|. The existence of such a Mayer-Vietoris sequence is essentially the same
as excision. U

Theorem 17.11 (Unoriented singular bordism and the spectrum MO).
There is a natural equivalence of homology theories

No(=) = H.(—; MO)

where H.(—; MO) is the homology theory associated in Theorem [16.21 to the
spectrum MO defined in Example|16.359,

Sketch of proof. We only construct for every space X and n € Z an isomorphism

of abelian groups N, (X) =, (X;MO). We leave it to the reader to show that
it can be extended to pairs (X, A), is natural in (X, A), and is compatible with the
boundary operators of (X, A) and hence defines the desired natural equivalence of
homology theories N, (—) — ., (—; MO).

Recall the stable system of vector bundles p of Example whose k-th vector
bundle v is the universal k-dimensional vector bundle over BO(k). For a space
X, define the stable system of vector bundles pr* u as follows. The k-th vector
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bundle is pr* v, over X x BO(k) which is obtained from the vector bundle v by
the pullback construction applied to the projection pr: X x BO(k) — BO(k). The
k-th bundle map is given by pr*(fx, fx) for the bundle map (fx, fx): 7% DR — Y11
using the obvious identification pr* Rgo sy = Ry xpo(k)- Then we can identify the
spectrum Th(pr* p) with the spectrum X; A Th(u) using . We get from
Theorem [I7.8] an isomorphism of abelian groups

Qn (pr* 1) — 7o (X4 A Th(p)) = H(X; MO).
Hence it suffices to construct a bijection
(17.12) an: Qp(pr* p) = Np(X).

One can define a, as a forgetful map. More precisely, a;, sends the class of a normal
pr-map (M, i, f, f) to the bordism class of the singular n-manifold pry of : M — X
for the projection pr: X x BO(k) — X. Obviously a, is a well-defined homomor-
phism of abelian groups, It remains to show that «, is bijective.

We begin with surjectivity. Consider a singular n-manifold f: M — X repre-
senting an element z € N, (X). We can choose k € Z=°, actually k = n+ 1 suffices,
and an embedding i: M — R™**. Let (u,u) be a bundle map from v (i) to u. We
obtain a bundle map (f X u, f x @) from v (i) to pr* ;. Then (M,i, f X u, f X W)
is a normal pr* pi-map and hence defines an element y € Q. (pr* 1). The image of
y under o, is z. Hence «,, is surjective.

Next we show injectivity of «,. Consider an element z € Q,(pr* x) which is
sent to zero under «,,. Choose k € Z with k > 2n + 3 and a normal pr* pg-map
(Myi, f x u, f x@) for f: M - X and (u,@): v(i) = 7%, whose normal bordism
class is z. Then «,(z) is represented by the singular n-map f: M — X. Hence
we can find a compact (n + 1)-dimensional manifold W with boundary oW, a
diffeomorphism ¢: M — OW, and a map F': W — X satisfying F ot = f. Now we
have to find the right data to construct out of (W, F,w) a normal pr* g-nullbordism
for (M,i, f x u, f x ).

Since k > 2n 4+ 3 we can construct an embedding of manifolds with boundary

(J,5): (W, 0W) — (R™F % [0,1), R"* x {0}).

Then there is a natural identification v(J)|sw = v(j). The embedding jot: M —
R"™** and the given embedding i: M — R™** are related by a diffeotopy ®: R" % x

oy

R — R™** because of k > 2n+ 3. Hence we can find a diffeomorphism 7': R*t* =
R™*+* such that T oi = j ot holds. We get a bundle isomorphism (¢,%): v(i) =
v(J)|low = v(j) coming from the differentials of ¢+ and 7. Choose a bundle map
(v,9): v(J) = pg. Then the bundle maps (v,?) o (¢,t) and (u,w) from v (i) to v
are homotopic. By a cofibration argument we can change (v,7) up to homotopy
of bundle maps v(J) — ~ such that (v,7) o (t,) = (u,w) holds. These data
yield a normal pr* g-nullbordism (W, .J, F x v, F x ©) for (M, i, f, f). Hence z = 0.
This finishes the proof that the map a,, of is bijective and therefore of
Theorem [I7.111 O

17.5. The unoriented bordism ring. There is an external multiplicative struc-
ture on N, (—) coming from taking the cartesian product. In particular we get for
m,n € Z=° and every two pairs (X, A) and (Y, B) a natural bilinear pairing

Non(X, A) x Ny (Y, B) = N (X, A) x (Y, B)).

This induces on N, = N, ({e}) the structure of a commutative Z-graded Fy-algebra
whose unit is given by id: {e} — {e}. Thom [29] has shown that N, which is
called the unoriented bordism ring, is a polynomial ring over Fo in variables z; for
i # 2F — 1 and that for i even one can take the bordism class of RP? for z;. Dold [7]
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has constructed explicit closed manifolds representing x; for i odd. In particular
we get

(1713) Nn :FQ,{O}7F2,{O},F2@F2,F2, fOI‘TL:O71,2,4,5.

Moreover, two closed manifolds are cobordant, or, equivalently, determine the
same element in N, if and only if they have the same Stiefel-Whitney numbers. For
the definition of Stiefel-Whitney numbers were refer for instance to [2I, Chapter 4].

17.6. Conventions about orientations. Let us discuss our orientation conven-
tions for manifolds. For simplicity we will only consider a connected compact ori-
entable n-dimensional manifold M with (possibly empty or non-connected) bound-
ary OM, where orientable means that H,(M;9M) is infinite cyclic. Here is a list
of desired properties or standard conventions.

(i) On the vector space R™ for n > 1 we use the standard orientation given
by the ordered standard basis {ej, es,...,e,}, where e; is the vector

(0,0,...,0,1,0,...,0)

whose only non-zero entry is at position i. If n = 0, an orientation on R
is a choice of an element in {4, —};

(ii) For n > 1 an orientation on a T'M is a choice of orientation on every T, M
for x € M such that for every © € M there is an open neighbourhood U

together with an isomorphism 7'M |y =, R™ of vector bundles over U with

the property that for every z € U the isomorphism 7, M = Re respects
the given orientation on 7, M and the standard orientation of R".

For n = 0 a choice of an orientation on T'M is a choice of an element in
{+7 _}'

This makes actually sense for any vector bundle over M;

(iii) Since TD™ is TR"™|p» and we have the standard trivialisation R —» TR™,
the standard orientation on the vector space R™ induces a standard orien-
tation on TD". In particular on D' = [—1,1] we use the orientation on
TD! coming from moving from —1 to 1;

(iv) An orientation on M is a choice of a generator [M,dM] of the infinite
cyclic group H,,(M,0M);

(v) There is a preferred one-to-one-correspondence between the orientations
on T'M and the orientations on M which comes from the identification
H, (T, M, T,M\{0}) — H, (M, M\ {z}) induced by the exponential map
for x € M\ OM,

(vi) The boundary homomorphism H,,(M,0M) — H,_1(0M) sends [M,OM]
to a class [0M] which induces for every path component C € M a gen-
erator [C] € H,,_1(C). Thus an orientation on M induces an orientation
on C.

(vii) We use the outward normal vector field and the canonical isomorphism

n, ®Ti: R®TOM =N TM|spr in order to assign to an orientation on
T, M an orientation on T,0M for x € X. Thus an orientation on T'M
induces an orientation on T'C for every path component C' of OM;

(viii) On a product M x N of oriented connected closed smooth manifolds we
use the orientation coming from the isomorphism induced by the cross
product Hyim(nr)(M;2) ®z Haim(n) (N3 Z) — Haim(vxny(M x N;Z);

(ix) On a direct sum V & W of oriented vector spaces we use the orientation
coming from assigning to two ordered basis of V' and W the obvious ordered
basis of V @ W by stacking the basis together.



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 115

This yields also a preferred procedure to define a preferred orientation
on the Whitney sum £ ® 7 of two oriented vector bundles £ and #;
(x) All the items above are compatible with one another;
(xi) These conventions together with the standard orientation on the vector
space R” yield on S respectively T'S* the anticlockwise orientation and
n [—1,1] and T[—1,1] respectively the orientation corresponding from
moving from —1 to 1;
(xii) With these conventions the standard orientation on 7[—1,1] induces on
TOD' = Td[—1,1] = T{-1,1} the orientation which corresponds to — on
—1 and + on 1.

We leave it to the reader to check that this can be arranged if and only if we use
the outward normal field and the convention that in the identification n, ®Ti: R®
TOM =5 TM|sp we choose the order R @ TOM and not the order TOM & R.
Namely (xii)| forces us to use the outward normal field and the order is determined

by and |(xi)|

17.7. Oriented bordism. Now we can modify the definition of the unoriented
bordism group N, (X, A) to the oriented bordism group Q, (X, A). W call a com-
pact manifold M with (possibly empty) boundary OM oriented if for each path
component C of M the homology group H,(C;0C) is infinite cyclic and we have
chosen a generator [C,9C| € H,(C;9C). Given an oriented compact manifold M,
we denote by M~ the oriented compact manifold whose underlying manifold is M
but where we use the orientation, where we replace [C, 9C| by —[C, 0C].

The difference in the new definition of Q,, (X, A) and in the definition of NV,,(X, A)
appearing in Subsection [17.4] is that we additionally require for a singular n-
manifold (u,du): (M,0M) — (X, A) over (X, A) that M is an oriented manifold
and in the definition of the bordism relation we additionally require that W is an
oriented manifold and the diffeomorphism (vg, dvg): (M, M) — (OxW, (0 W)
preserve the orientions for £ = 0, 1. The addition and the unit is defined as before.
However, the inverse of the bordism class of (u, 0u): (M,0M) — (X, A) is given by
the bordism class of (v, du): (M ~,0M~) — (X, A) and not by (u,0u): (M,0M) —
(X, A); we have to reverse the orientations. This has the effect that Q,,(X, A) is an
abelian group but in general not a Fa-vector space which was the case for NV, (X, A).
The proof that we get a homology theory Q. (—) satisfying the disjoint union axiom
is analogous to the proof of Theorem [I7.10]

The proof of the next theorem is analogous to the proof of Theorem

Theorem 17.14 (Oriented singular bordism and the spectrum MSO).
There is a natural equivalence of homology theories

Q.(-) = H.(—;MSO)

where H.(—; MSO) is the homology theory associated in Theorem|16.21 to the
spectrum MSO defined in Ezample [16.39

17.8. The oriented bordism ring. There is an external multiplicative structure
on 2, (—) coming from taking the cartesian product. In particular we get for m,n €
729 and every two pairs (X, A) and (Y, B) a natural bilinear pairing

Qi (X, A) x (Y, B) = Qi (X, A) x (Y, B)).

This induces on Q, = Q.({e}) the structure of a commutative Z-graded ring whose
unit is given by id: {eé} — {e} with the standard orientation + on the domain.
Its structure was completely determined by Wall [32]. In particular Q. ®7 Q is a
polynomial Q-algebra whose generators as a polynomial Q-algebra can be taken to
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be the oriented bordism classes of CP?" for n > 1. Each 2, is a finitely generated
abelian group in which the order of any nontrivial torsion element is 2.

Moreover, two oriented closed manifolds are oriented cobordant, or, equivalently,
determine the same element in (2, if and only if they have the same Pontrjagin
and Stiefel-Whitney numbers. For the definition of Pontrjagin and Stiefel-Whitney
numbers were refer for instance to [21] Chapter 4 and 16].

Here is some information about 2, in low degrees n:

e There is an isomorphism of abelian groups
O =7

which sends the bordism class of a 0-dimensional oriented manifold which
is just a finite collection of points equipped with a sign + or — to the sum
of these signs;

e The signature defines an isomorphism of abelian groups

sign: 4 =N/

and the preimage of 1 € Z is the bordism class of CP?2.
o We have Q,, = {0} if and only if n € {1,2,3,6,7};

e We have
Z)2 n =b;
Q = YASY/ n=S=_;
" )z)207/2 n=29;
7/2 n = 10.

17.9. Framed bordism. Let £ be an n-dimensional vector bundle over the space
B. For | € Z2° an I-framing of ¢ is a bundle isomorphism (idp,u): R"**! = PR
over B. We call an lp-framing (idp,7o): R+l = ¢ ® RY and an [;-framing
(idp, ) : Rt = & @ R equivalent if there exists | € ZZ% with | > Iy, 11 such
that for ¢ = 0,1 the two bundle isomorphisms over B

RR—H _ Rn+li S Rl_li (idB7ﬁi)€Bide;li g @ R;l' ® Rl—li _ g o Kl

are homotopic through bundle isomorphisms over B.

For a compact manifold M a stable framing is a stable framing of its tangent
bundle TM. Of course not every compact manifold admits a framing. Every
compact manifold with a stable framing is orientable and inherits from the stable
framing an orientation. Let i: (M,0M) — (R™ x R=Z% R™ x {0}) be an embedding
of the compact manifold M (with possibly empty) boundary M. Then we will
tacitly use in the sequel the fact that there is a one-to-one correspondence between
the stable framings of M and the stable framings of the normal bundle v(3).

Now one can define for a pair (X, A) its framed bordism group Q' (X, A) anal-
ogously to how we modified the definition of unoriented bordism N, (—) to ori-
ented bordism Q.(—). The difference in the new definition of QI(X, A) and in
the definition of N, (X, A) appearing in Subsection is that we additionally
require for a singular n-manifold (u,du): (M,0M) — (X, A) over (X, A) that M
comes with a stable framing and in the definition of the bordism relation we ad-
ditionally require that W comes with a stable framing and the diffeomorphism
(vi, Ovg): (M, OMy) = (0xW,0(0xW)) is compatible with the stable framings.
The addition and the unit is defined as before. However, the inverse of the class
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represented is now defined by replacing a given stable framing by the new stable

framing obtained by precomposition with the bundle automorphism for [ € Z=!

! -1 Mgnti-1 & idg -1 !
R =Rl gR ———, Rl g R = R

The proof of the next theorem is a variation of the proof of Theorem [I7.11] in
view of Example [16.26] and Remark [16.37]

Theorem 17.15 (Framed bordism and the stable homotopy). There is a natural
equivalence of homology theories

Qf (=) S (o).

*

Remark 17.16. One can give rather elementary geometric proofs of the formula

which agrees with the values of the n-stem 77 for n = 0,1 by Theorem m

It is not hard to check that the forgetful map QF — q is bijective and we have
computed Qp already in Subsection

Any connected closed 1-dimensional manifold M is diffeomorphic to S*. Because
of Example we get [S1,S0] = Z/2 and hence there are precisely two stable
framings on S*. One of them extends to D? and the other does not. Then one can
show that Qff = 7/2 with the bordism class of S* equipped with the framing not
extending to D? as generator. From 7§ = Z/2, Theorem and the Freudenthal
Suspension Theorem [T1.20| we conclude

{0} n=1;
Tn41(S™) = Z n=2
Z/2 n>3.

Let us sketch the proof that Qf = Z/2 with the bordism class of S* with the
framing which does not extend to D? as generator. We first show that S with
the framing which does not extend to D? is not framed nullbordant. Suppose the
contrary, i.e., that there is a framed nullbordism W for it. We can assume without
loss of generality that W is path connected. In the sequel we identify S' = OW.
Then W Ug1 D? is a closed 2-dimensional manifold. Its first Stiefel-Whitney class
vanishes, since HY(W Ug1 D?;Fy) — HY(W;F5) is injective and sends it to the
Stiefel-Whitney class of W which is trivial. Hence W Ug: D? is orientable. We
can choose an embedding i: W — R3 such that i restricted to S' is given by the
inclusion S' € R? = R? x {0} € R3 and i maps D? to (R*)=0 and W to (R?)2°.
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D*

Since W and R3 are orientable, the normal bundle v(i) is orientable and hence
trivial. We choose an identification v (i) = R. Note that this yields a specific stable
framing on W. We get identifications v(i|g1) = R?, v(i|p2) = R, and v(ilw) = R.
So we get on S! the stable framing which extends to D? and comes from the specific
stable framing on W. The problem is that there are different stable framing on W.
They differ from the specific stable framing by an automorphism of R¥y;, for large
k € Z2°. We conclude from Proposition that the set of stable framing
of W can be identified with [W,SO]. Hence it suffices to show for the inclusion
k: S1 = OW — W that the map k*: [W,SO] — [S!,SO] sending [g] to [g o k] is
trivial, since then the induced stable framing on S is the same for all possible
stable framings on W and hence extends to D?. We have shown 72(SO) = {0}
and 71 (SO) = Z/2 in Example We conclude from Theorem that
there is a map f: SO — K(Z/2,1) which is 3-connected. Since W and S! are
CW -complexes of dimension < 2, we conclude from the Whitehead Theorem that
it suffices to show that k*: [W, K(Z/2,1)] — [S', K(Z/2,1)] is trivial. Because of
Theorem [14.7) it suffices to show that H'(k;Z/2): H'(W,Z/2) — H'(0W;Z/2) is
the trivial map. This follows from the part of the long exact cohomology sequence

of (W,0W)

HY (W, 2/2) ZZEZD, oW 7/2) — HAW,0W:2/2) — HA(W;Z,/2)

and from the computations H(OW;Z/2) = Z/2, H*(W,0W;Z/2) = Ho(W;Z/2) =
Z/2, and H?(W;Z/2) = Ho(W,0W;Z/2) = {0}. Thus we have shown that S! with
the framing which does not extend to D? is not framed nullbordant and hence de-
fines a non-trivial element in Nj.
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The framed bordism class of any framed 1-dimensional closed manifold is a Z-
linear combination of the elements in N represented by S' with the framing which
extends to D? and by S! with the framing that does not extend to D?. Obviously
the class of S with the stable framing which extends to D? represents zero in
N7. One easily checks that the cylinder over S* gives a framed nullbordism for the
disjoint union of two copies of S! equipped with the framing which does not extend
to D2. Hence the element represented in QI by S! equipped with the framing which
does not extend to D? has order precisely two and generates the abelian group A;.

18. THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR HOMOLOGY FOR
ARBITRARY FILTRATIONS

Fix a commutative ring R. Let H. be a homology theory with values in R-
modules satisfying the disjoint union axiom and the WHE-axiom, but not nec-
essarily the dimension axiom. Recall that the WHE-axiom says that any weak
homotopy equivalence f:Y — Z induces isomorphisms H,(f): Hy(Y) = Hp(2)
for every p € Z. Note that any homology theory which is defined only for pairs of
CW-complexes can be extended to a homology theory for all pairs satisfying the
WHE-axiom using cellular approximation. Moreover, stable homotopy and singu-
lar homology satisfy the WHE-axiom, see Theorem Let X be a space coming
with a filtration by subspaces

P=X1CXoCX1CXoC---CX
such that X = colimp_, o Xp.

Problem 18.1. How much can we say about #H,(X) for n € Z, if we know
H,y(Xy, Xg-1) for p € Z2° and q € Z. More precisely, is there a machine which
starts with the knowledge of H, (X, Xq—1) for p € 720 and ¢q € Z and gives some
information about H,,(X), which in favourable situation leads to actual computa-
tions?

As a warmup we consider the following examples.

Example 18.2 (Cellular homology). In this example we appeal to some facts from
the lecture course Topology I, see for instance [I7, Chapter 3].

Let H,. be a homology theory with values in R-modules satisfying the disjoint
union axiom and the dimension axiom. Let M be the R-module given by Ho({e}).
Let X be a CW-complex. Consider the R-chain complex C* whose n-the chain
module is H,, (X, X,,—1) and whose n-th differential is the boundary operator of
the triple (X,,, X—1, Xn—2). Then there is a canonical R-isomorphism

H, (CH (X)) = Ha(X).

So this is a recipe how to compute H,,(X) from the R-modules H,, (X, X,,—1). Of
course one needs to figure out the differentials of the R-chain complex C7t*. Recall
that we have assigned to X its cellular Z-chain complex C,(X) and that there is
an R-chain isomorphism

C(X) @z Ho({e}) = CT (X).

Hence we rediscover the fact that H,,(X) can be computed by the cellular homology
H, (Ci(X) @z Ho({®})) of X with coefficients in Ho({e}).

One may say that in the sequel we want to drop the condition that 7, satisfies
the dimension axiom. This is illustrated by the following example.
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Example 18.3 (Long exact sequence of a pair). Let H, be a homology theory
with values in R-modules satisfying the disjoint union axiom. Suppose that the
filtration of X has length 1, i.e., X = X;. Then we can look at the long exact
sequence of the pair (X, Xy)

s = Hp(Xo, X1) = Hp(X, X 1) = Hp(X, Xo) = He—1(Xo, X_1)
= Hp1(X, X_1) = Hp_1(X, Xo) —
If we define
Fpq =1im(Hp+q(Xp) = Hprq(X)),
we get a filtration of H,(X) by
{0} =F_ 1441 € Foq C Frg1 = Hq(X)-
Put
EOO = Fpq/Fp-1,4+1-

Then the computation of EJS, would give some information about Hptq(X), namely
we would obtain an extensmn

(18.4) 0— Egy, — He(X) = ET5_1 — 0.

Then we are left with this extension problem. In general there are several solutions.
In the favourable case that ET5,_; is free, we would even obtain an explicit answer,
namely,

H‘Z(X) = Elo’oqfl ® E(()),Oq'
Sometimes one does not want to compute H,(X) but only an invariant of it. For
instance suppose that R is a principle ideal domain and we want to figure out
rkr(H4(X)). In this situation one gets a complete answer, namely

(18.5) vk (Hq(X)) = tkp(ES,_) + tkp(EGS,).

Consider the chain complex C[g].

<= Clglp+1 = Hprgr1(Xpt1, Xp) = Clglp = Hpq(Xp, Xp-1)
= Clglp—1 = Hp—giq(Xp-1,Xp2) = -

whose p-th differential is the composite

817 q
Hprq(Xps Xp-1) R Hptq-1(Xp-1) = Hptg—1(Xp-1, Xp-2).
Next we show
(18.6) S, = H,(Clq).).

For p = 0 we have E§%, = Fg5, = im(Hq(Xo) — H¢(X)). The chain complex C[q].
in dimensions looks like

C[Q]OZHq(XO)_)C[ J-1 ((Z)v )2{0}—>{0}—>

Hence Hy(Clg]«) is the cokernel of Jyy1: Hor1(X, Xo) — Hq(Xo). This is by
the long exact sequence isomorphic to im( q(Xo) = Hq(X )) We have get from
the definitions EgS, = Fg5 = im(Hq(Xo) — H¢(X)). Moreover, Hy(C[ql.) is
the kernel of Oyt1: Hqt1(X, Xo) — Hq(Xo). This is by the long exact sequence
isomorphic to cok(Hg11(Xo) = Hq41(X)). We have get from the definitions £, =
COk(Hqul(Xo) — Hq+1(X))‘

So we have a recipe how to compute Hy,,(X) from the modules H,,4(Xp, X;—1)
which is a two stage process in view of and . But this requires that
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we can figure out the differentials of C[g]. and then the homology of it. In the
favourite case that H,1q(Xp, Xp—1) = {0} holds for odd ¢ and p € Z, we get

. 0 if ¢ is odd;
P\ My o(Xp Xpo) i qi
p+q(Xp, Xp—1) if g is even.

and hence
Hor(X) = Hn (X, Xo) ifnisodd;
" | Ha(X0) if n is even.

If we assume that R is a principle ideal domain, each R-module Hp44(Xp, Xp—1)
is finitely generated and there is a number d such that Hp44(X,, X,—1) vanishes
for |p 4 ¢| > d, then we can conclude that H,,(X) is finitely generated for every n
and vanishes for |n| > d, and get a computation of the Euler characteristic with
respect to H, of X by

X (X) =) (=)™ rkp(Ha (X))
= > (-D)" (kp(EFS, ) + rkr(ESS))
= Y (1) (ckr(E,) - tkr(E,))
= S ()" x(Clnl.)
= > (1) (tkg(C[n]o) — tkr(Clnl1))
= > (=1)" - tkr(Hn(Xo, X 1)) — kr(Hni1(X, X))
= (1) tkp(Ha(Xo, X +Z "tk (M (X, Xo))

Sty Xy

p,q

So we can compute the invariant 3, (X) directly from the numbers rk g (Hp+q(Xp, Xp—1)),
and we do not have to solve the extension problem ([18.4)) and to determine the
differentials and the homology of the chain complex C[q]..

Next we consider the general case. The extension of Example to the general
case is essentially a problem of a good book keeping.
We define for p € Z2°, g € Z, and r € Z=', where we put X,, = 0 for m < —1,

(18.7) Zpy = im(Hp+q(Xp7Xp—7') — Hp-&-q(Xp:Xp—l));

(18.8) Br, = im(Aprgrr: Hprgrt(Xpir 1, Xp) = Hpig(Xp Xp1));
(18.9) ZOO = im(Hpiqg(Xp) = Hprq(Xp, Xp-1));

(18.10) B = im(Apgr1t Hprgr1 (X, Xp) = Hprg(Xp, Xpo1)):
(18.11) Fpq = im(Hprq(Xp) = Hpiq(X)).

Here Ap1 441 is the boundary operator of the corresponding triple. Recall that for
a triple (Zs, Z1, Zy) given by Zy C Zy C Zs its n-th boundary operator is defined
to be the composite

9 Z2,Z1]n

ANy =A[Zs, Z1, Zo|n: Hn(Z2, Z1) Hn-1(Z1) = Hn-1(Z1, Zo),
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where 0[Z2, Z1], is the n-th boundary operator of the pair (Z2, Z1), and that we
have the long exact triple sequence

(18.12) ... 22 ZuZolni,

A[Z2,2Z1,Z0o]n
—enmo,

Hn(Z1, Zo) = Hn(Za, Zo) = Hn(Z2, Z1)

Mo 1 (21, Z0) — M (Za, Zo) — Hunr(Za, 2y) SZ220Z00n01,

Obviously we have the inclusions

_ nl 2 r r+1 0o
{0} - Bp,q < Bp7q - Bp7q < Bth C--C Bp,q
czx,c-cpittcz - CZ)
So we can define
(18.13) E;,q = / p 4
(18.14) EX, = p,q/ Dyq

Lemma 18.15. There are canonical isomorphisms

T r+1 r+1
Zpyq/Z B —7r,q+r— I/Bp r,q+r—1-

Proof. This follows from the following commutative diagram

Herq(va prrfl)

| T

Hptq(Xp—1, Xp—r) = Hp1g(Xp, Xp—r) ——— Hpig(Xp, Xp-1)

A[vaXIJfMprrfl]erq

Hpﬂzfl (prrv prrfl)
and the long exact sequence (18.12)) of the triple (X,, X,—1, X,—,) and the triple

(Xanp—Ta Xp—r—1)~ U
Because of Lemma [18.15| we can define a map
(18.16) dyot Epq = By gira

by the composite

roo.__ 7 r r r+1 = r+1
Epaq : Zp’q/Bp,q - Zpyq/Zp’q B —r,q+r— 1/ p—r,q+r—1

T s
_>Zp—nq+r—1/ —rq+r—1 = Ep r,q+r—1-

Note that the first map appearing in the composite above is the canoncial projec-
tion and hence surjective and the third map is the canoncial inclusion and hence
injective. So we get

ker(d;q) = Z;f;l Bp,q’
im(d;q) = BH_T(J-&-T /By p—r,q+r—1°

Hence we have im(dy,. , 1) C ker(d}, ) and we get canonical R-isomorphisms

ker(dy )/ im(d .. viq) = (2051 /B] )/ (ByEY /By ) = Z0 0 /Bt = EP L

Pq p.q P.q Pq
Hence we have shown the following lemma.

Lemma 18.17. We have d}, , o dy,, ,_..1 = 0 and therefore obtain an R-chain
complex C"[q]. if we define the lth chain module by B 1 pyr—p)(1—r)4q 0d the
lth-differential by dy, ,. Moreover, there are canonical R isomorphisms
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Lemma 18.18. We have the obvious inclusions
{0} = Ffl,p+q+1 - FO,erq c---C Fp,q c---C Herq(X)

satisfying

Hprq(X) = U Erprq—r

r=—1

Moreover, there are canonical isomorphisms
Fp,q/Fp—LqH — E;,Oq'

Proof. Since X = colim,_,, X, the canonical map

(18.19) colimy, o0 Hptq(Xr) = Hptq(X)

is bijective by Proposition[16.11[[(i)] This implies Hp4q(X) = U2 | Frpig—r, since
Fy ptq—r is by definition the image of Hpiq(X;) = Hptq(X).

This desired isomorphisms F), o/ Fp_1,4+1 =N Ep7, come from the following com-
mutative diagram

Hp+q+1(Xa Xp)

JV WPI]P‘H;

Hptq(Xp—1) —— Hp1q(Xp) —— Hp1q(Xp, Xp—1)
Hp-l—q(X)
and the long exact sequences of the triple(X, X,, X,_1). O

Finally we relate the £, to the modules Ej .

Lemma 18.20. We have

T _ oo . .
vaq - vaq Zfr > p;
o r
prq - U BP»(I'
r>1

y y T o0
Therefore we have for v > p epimorphism E] , — E>, and we get
oo : r
Ep’q = colim, o Ep,q

Proof. Since X,,_, = 0 holds for p > r, we get Zy =2y ifr>p.
Since X = colim, _, o, X, the canonical map

(18.21) colimy .00 Hp g1 (Xptr—1, Xp) = Hptq(X, Xp)
is bijective by Proposition [16.11 We have the obvious map
colimy o0 A[Xerrfla Xps prl]p+q+1 tcolimy—s o0 Hptgt1 (Xprr—1, Xp)
= Hpq(Xp, Xp-1).

It factorizes as the composite

o

colimr_mC Hp+q+1(Xp+r_1,Xp) — Hp+q(X, Xp) — Hp+q(Xp,Xp_1).

where the first map is the isomorphism (18.21). This implies By, = UT21 By .-
Now the other claims are obviously true.



124 LUCK, WOLFGANG

Remark 18.22 (General strategy). Let X be a space coming with a filtration by
subspaces

=X 1CXoCX;CXoC---CX

such that X = colimp_,., X,. Let H, be a homology theory H, with values in R-
modules satisfying the disjoint union axiom and the WHE-axiom. Let us summarize
how we can use the construction above to compute H,,(X) for an element n € Z
by trying to carry out the following program, where p € Z=° and ¢ € Z.

(i) Identify E}W =Hprq(Xp, Xp—1);
) Identify the differentials d} ;
) Compute the homology E7 , = H,(C"[g].) of the R-chain complexes C*[q].;
) Identify the differentials d? ;
(v) Compute the homology E3 , = H,(C?[g].) of the R-chain complexes C?[g].;
) Repeat this process thus identifying E} , for all r > 1;
) Compute EpS, = colim, o B} ;
) Put Fy,, = E{)’On Solve the extension problems 0 — Fp_jn_py1 —
n—p — _, — 0, thus determining n—g for all p € 4=7;
Fpn—p — EpS,_, — 0, thus d ining Fj, 4 for all /s
(ix) Then H,(X) = UpZO Fp n—p for the filtration Fy,, C F1 1 C Fop—o C
F3p 3C---.

Of course in this generality one cannot carry out this program completely, but
we will see that in many interesting cases one gets very useful information about

H,(X).

19. BASIC NOTIONS AND FACTS ABOUT HOMOLOGICAL SPECTRAL SEQUENCES

Next we describe the abstract setting underlying the homological Atiyah-Hirzebruch
spectral sequence.

Definition 19.1 (Homological spectral sequence with values in R-modules). A
homological spectral sequence with values in R-modules starting at d for d € Z=1
E% . consists of the following data:

e A family of R-modules {E} } for r € Z=%, p,q € Z such that E}, , = {0}

for p < —1;
e Maps d, ,: By , — E,_, ., called differentials for r € 72 p,q € 7
such that the composite dj, ,ody_, ... vanishes for r € 724, p,q € 7.

In particular we get R- chain complexes C"[q], for r € ZZ% and p € Z
whose ¢-th differential is dj, ,, in other words it is given by the lines of
slope —7=1;

e R-isomorphisms

oz;’q: H,(C"[ql«) = E;;l

for r € 229, p,q € 7.

We call the data given by {E} . d} | p,q € Z} for r € Z2% the r-th page of the
spectral sequence. Note that the r-th page determines the underlying modules of
the (r 4+ 1)-th page but not the differentials appearing on the (r 4+ 1)th page.
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Here is a picture of the first page:

(19.2)
d; d; dy dj
1 1,2 1 2,2 1 3,2 1 4,2 1
Eg o Ep, E;» Es3 Ey
di d; d3 dj
1 1,1 1 2,1 1 3,1 1 4,1 1
Eq, Ery Es 4 Es, Eiq
di d3 d; dj
1 1,0 1 2,0 1 3,0 1 4,0 1
Eq o Eio Es, E3, Eio
d; d3 d3 dy
1 1,—1 1 2,—1 1 3,—1 1 4,—1 1
Ey 1 —E7 E;5 Es Ey 1
di dy di di
1 1,—-2 1 1,—2 1 1,—-2 1 1,—-2 1
Ey _o——E; E; Es Ey
Here is a picture of the second page:
(19.3)

2 2 2 2 2
Eg o Ef, E3, E3, Eis
2 2 2 2 2
Egq Ef, Es, E3, Eiq

dg,o dg,o x
2 2 2
E3, E3o Eio
i
2
Ei

125
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Here is a picture of the third page:
(19.4)

E§ o E7 o E5 o Es E;

So the differential dj , starts at (p,q) and points to the place which is r steps
to the left and (r — 1) steps upwards. The relevant chain complexes C"[p]. appear
in the picture in the obvious way by the corresponding lines of slope —’";1. Note
that all entries at (p,q) for p < 0 are {0}.

Note that for given (p, q) we have

Ey,={0} = E/*'=0 = E, ={0}.

We say that the spectral sequence collapses if all differentials are trivial. Note
that this implies B¢ = E7 = E for all r € Z=%, p,q € Z.

We call the spectral sequence a first quadrant spectral sequence if Eg,q = 0 holds
for ¢ < —1.

A morphism f;,: B, — E' :* of homological spectra sequences is a family of
R-homomorphism {f; ,: E} . — E'} } for r € Z=%, p,q € Z which is compatible
with the differentials d ,: Ey , — E} . ., jand dy : E')  — E', . .. and

with the isomorphisms oy, : Hy(C"[q].) =N Erttand o - Hy(C'[g].) =N E’;;l.

The next lemma is a direct consequence of the Five-Lemma.

Lemma 19.5. Let f,: EI, — E’Iy* be a morphism of homological spectral se-
quences starting at d € Z=Z'. Suppose that fqu: Eg,q — E’qu is bijective for all

p,qE€Z. Then f, .- E) , — E’;,q is bijective for all v € Z2¢, p,q € Z.

So in the favourite case one hopes for instance that many of the entries EJ ,
are zero so that all differentials starting or ending at such a place must be trivial.
Sometimes one knows that a differential dj, , is trivial, since its source is a finite
abelian group and its target is a free abelian group. Computing the differentials in
general is difficult. Often one needs to know some clever tricks or some previous

knowledge about the groups £} .
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Note that we obtain for every p, ¢ € Z a sequence of epimorphisms of R-modules
T r+1 r+2
Epg = Epg = Epg =
for r € ZZP*!, since the differential dj, ,: E} , — E7_, . has {0} as target and

P,q
hence vanishes for r > p 4+ 1. Therefore we can define

oo __ . r
EJ, = colim, o E,, .

Consider a Z-graded R-module module H, = {H,, | n € Z}. Tt is called filtered if
for every n € Z there is a preferred ascending filtration

{0} =F1ni1 CFonCFln1CFy2C---CHy

with H, = UpZO F,_pp. We say that a homological spectral sequences converges
to the filtered Z-graded R-module module {H,, | n € Z} if there is for every p,q € Z
a preferred R-isomorphism

Bpat Fpa/Fp-1,441 — Ezioq'

We say that there are no extension problems for the homological spectral sequence
E% , converging to the filtered Z-graded R-module module H, if we have

*, %
Hp = @Fn—pm/Fn—p—l,p—&-L
p=0
We say that the homological spectral sequence EY , converging to the filtered Z-
graded R-module module H, strongly collapses if it collapses and there are no
extension problems. In this rare and favourite cases we get

H.=PEL,,

p=>0
20. THE ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE FOR HOMOLOGY

There is the following favourite case, namely, where X is a C'W-complex and
0 =X_1CXgC X; CXyC---C X is the skeletal filtration. Then we get an
identification
(20.1) Eﬁ,q = Hp(X;H,({e})),

where H, is a homology theory with values in R-module satisfying the disjoint
union axiom. Next we sketch the proof of (20.1). Choose for every p a pushout

L €1, c
p71 P P
Hipelp S » Xp-1
i, er, €7
Hiejp D Xp

Then we get isomorphisms
Pp- EB Ho({o}) = Hptq(Xp, Xp-1)-
ip€l,
Given two indices ¢, € I, and 7,1 € I,_1, we define the following endomorphism
of §P~1
p—1 ngp pr (75;317*1)71 p—1 p—2 Hp-1 p—1

S — XP — XP/(Xp)ip—l D /S > S )
where (X,)
with ¢ # ip, the homeomorphism éfp_,;%l . pr=l/gr=2 =, Xp/(Xp)i,_, is induced
by the characteristic map C’Z_l, and p,_1: DP~1/SP=2 — GP=1 ig the standard

ip_, is the union of X, ; and all the closed cells associated to i € I,
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homeomorphism. Let dj,;,_, € Z be the degree of this map. Then the following
diagram commutes

@, e, Ha{o) —2— @, o1, Hal{e})

‘PpJ% WlerE
dl

Herq(Xp» prl) — /Hp+q71 (prlv prZ)

where D, is given by the collection of integers d;, ;,_,. The latter definition makes
sense, since for fixed i, there are only finitely many i, 1 € Z with d;,;,_, # 0.
Hence the chain complex C?[1], can be identified with C.(X) @z H,({e}) for the
cellular chain complex C,(X). This finishes the proof of (20.1).

Notation 20.2. Let R be a commutative ring and H, be a homology theory
taking values in R-modules satisfying the disjoint union axiom. If we use the
skeletal filtration, we call the spectral sequence constructed in Section[I9|the Atiyah-
Hirzebruch spectral sequence for homology converging to H..

Note that the Atiyah-Hirzebruch spectral sequence converges to the filtered Z-
graded R-module H. (X ), where the filtration is described in (I8.11]), namely F), , is
the image of Hpyq(X,) = Hp+q(X). It starts at 2. If we abbreviate H, = Hq({0}),
its second page looks like

Ho(X5H2)  Hi(X;H2)  Ha(X;Ha)  H3(X;Ha)  Ha(X;Ho)

Ho(X5H1)  Hi(X5H1)  Ha(X5Hi)  Ha(X5Hi)  Ha(X5Ha)

Ho(X;Mo)  Hi(X;Ho)  Ha(X;Ho)  Hi(X;Ho)  Ha(X;Ho)

Ho(X;H-_1) Hi(X3H-1) Ho(X5H-1) H3(X5H-o1) Ha(X5H-1)

HO(X;Hfz) Hl(X;'H72) HQ(X;H—z) Hs(X;H—2) H4(X;7‘Lz)

Example 20.3 (Homology satisfying the dimension axiom.). Let H. be a homology
theory taking values in R-modules satisfying the disjoint union axion, the WHE-
axiom, and the dimension axiom. Then the E?-terms of the Atiyah-Hirzebruch
spectral sequence satisfies

2 {HP(X;Ho({-})) peZ,q=0;

P {0} otherwise.
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So the second page looks like

0 0 0 0
0 0 0 0
0 0 0 0

Ho(X;Ho({e})) Hi(X;Ho({e})) Ha(X;Ho({e})) Hs(X;Ho({e}))
Hence it strongly collapses and yields for n € Z the well-know isomorphism
Hpn(X;Ho({e})) = Hn(X).

Example 20.4. Let p be an odd prime. Consider a homology theory H, with values
in F,-modules satisfying the disjoint union axiom. Let M be any [F,-module. Then
an easy calculation using the cellular Z-chain complex chain complex of RP*° and
the fact that 2 € F, is a unit shows that H,(RP>°; M) vanishes for p € Z=! and
is M if p = 0. Hence the second page of the Atiyah-Hirzebruch spectral sequence
looks like

Ez,q = Hp(RPOO§Hq({°})) = {;?f)q}({.}) ioftIiI:V?S;e.

So the second page is concentrated in the Oth column and looks like

Hz({e}) 0 0 0
Ha({e}) 0 0 0
Hi({e}) 0 0 0
Ho({e}) 0 0 0

Hence it collapses strongly and we get for n € Z=°
Hp(RP™) = H, ({o}).

Example 20.5 (Topological K-homology of complex projective spaces). Let K,
be the homology theory satisfying the disjoint union axiom given by complex K-
homology, see Subsection [16.7} For the purpose here we only need to know that
K, ({e}) is Z for n even and {0} for n odd. Let CP? be the complex projective
space of dimension d for d € Z=° I co Recall that it carries the structure of a
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CW -complex which has precisely one cell of dimension 2n for n € Z with n < d
and no cells in any other dimension. Hence we get for the E?-page

Z if p and ¢ are even and p < 2d;

B2, = Hy(CP% K, ({o})) = { (0} otherwise

So the second page looks like:

il
hdh

This implies that for every r > 2 we have £ , = 0 if p or ¢ is odd. Since the
differential dj, , has as source E , and as target E,_, ., _, either its source or its
target is trivial and hence the differential itself is trivial. This implies for all » > 2

2 _ vt _ oo ~v
Ep»q_Epyq_E

{Z if p and ¢ are even and p < 2d;
Pa

{0} otherwise.
Fix n € Z. Then we have the filtration
{0} =F 111 CFon CFipno1 CFypo CF3p3C---C K, (CP%)

satisfying
Kn(((j]}bd) = UFp,n*p
p20
Foao = K,(CP%) ifd< oo

/ if pand n — p are even and p < 2d;
Fp7n—p/Fp—1,n—p+1 {

{0} otherwise.

Hence we get

ZHT if n is even and d < oo;
Kn(CPY) = ¢ @, Z ifnis even and d = oo;
{0} if n is odd.

So in this case the Atiyah-Hirzebruch spectral sequence strongly collapses.
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Example 20.6 (Topological K-homology of RP*). We get for the E2-page

Z if p=0and g is even;
thq = H,(RP*; K, ({8})) = { Z/2 ifp=1,3and qis even;
{0} otherwise.

So the second page looks like:

Hence all the second differentials are trivial. So the third page looks like:

Z Z/Q 0 Z/Q 0
z /2 0 /2 0

/2 0 7)2 0
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Hence all the third differentials are trivial. So the fourth page looks like:

Hence we get inductively over r

Z if p= 0 and ¢ is even;
E),=7Z/2 ifp=1,3and qis even;
{0} otherwise.
This implies
Ko(RP*Y) = 7
and that there is a short exact sequence
0—7Z/2 — K (RP*) - Z/2 — 0.

Hence we know that K (RP*) is isomorphic to either Z/2®7Z/2 or Z/4 but we cannot
decide whether it is Z/2@®Z/2 or Z/4 from the spectral sequence alone. Actually, it
is Z/4. So in this case the Atiyah-Hirzebruch spectral sequence collapses but does
not collaps strongly.

20.1. Chern characters. Fix a commutative ring R with Q C R.
For every pointed pair (Z, B, z) we have the Hurewicz homomorphism

hur,(Z, B, z): m,(Z, B, z) — H,(Z; B),
see (12.9). It induces for any pair (Z, B) a homomorphism of abelian groups
hur} (Z, B): 7. (Z,B) — H,(Z, B).

It is not hard to check that this defines a transformation of homology theories
with values in Z-modules. Note that hur] ({e}): 73 ({e}) — H,({e}) is bijective
for p = 0 and obviously surjective for all p > 1 but is not injective in general for
p > 1, since H,({o}) vanishes for p > 1. We will later show that 75 ({e}) is a finite
group for all p > 1, see Theorem [32.4] and we will use this fact for the remainder
of this subsection. Hence the R-homomorphism hur;, ({e})®zidg: 75 ({e}) Rz R —
H,({#})®zR is bijective for n € Z=°. Since R is flat over Z, we get by 75 (Z, B)®zR
a homology theory with values in R-modules satisfying the disjoint union axiom
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and the WHE-axiom. This is also true for for H,(Z, B) ®z R = H,(X, B; R). We
conclude from Theorem
Lemma 20.7. For every pair (Z, B) the map
hur} (Z, B) ®z idg: 75 (Z,B) ®z R — H,(Z,B) ®z R
1s bijective.
Next we describe a construction due to Dold [§]. Consider a homology theory

H, with values in R-modules. Then the Chern character for a C'W-complex X is
given by the following composite

ch, (X): @ Hy(X;Ho({0})) == @ H,(X;R) ®r Hq({o})

ptg=n p+q=n

@p q:nhur‘;(X)_l(X)id s
- P m5(X) @z Ror Hy({o})

ptg=n

®p+q:n Dyp,q Hn(X)
Here the canonical map «,, is bijective by the Universal Coefficient Theorem, since
any R-module is flat over Z because of the assumption Q C R. The second bijective
map comes from the Hurewicz isomorphisms of Lemma The map D, 4 is
defined as follows. For an element a ® b € 7, (X) ®z Hq(*) choose a representative

f: 8Ptk 5 SEAX, of a. Define D, 4(a®b) to be the image of b under the composite

Ha({o}) = Hq(S%,4) T Hprqra(S7H,4)

Hp q (f) ot

I Hp+q+k(sk ANXy, %) — Herq(X)
where ¢’ and o denote iterated suspension isomorphism. We leave it to the reader to
check that this homomorphism D, 4 is well-defined. It is not hard to show that the
definition of the map ch,, (X) extends to pairs (X, A). and we thus get a transforma-
tion x. of homology theories with values in R-modules from @, ,_, H,(;H,({e}))
to H.. which induces an isomorphism for X = {e}. Hence the following theorem

follows from Theorem [16.12

Theorem 20.8. Let R be a commutative ring with Q C R and H. be a homology
theory with values in R-modules satisfying the disjoint union axiom and the WHE-
azxiom.

We get by ch, an equivalence of homology theories with values in R-modules.
In particular we get for every pair (X, A) and n € Z an isomorphism, natural in
(X, 4)

cha(X,A): P Hy(X, AHy({0}) = Ha(X, A).
ptg=n
Corollary 20.9.

(i) Let R be a commutative ring with Q C R and H. be a homology theory
with values in R-modules satisfying the disjoint union axiom. Then the
Atiyah-Hirzebruch spectral sequence converging to H. collapses strongly,

(i) Let H. be a homology theory with values in Z-modules satisfying the dis-
joint union aziom. Then every differential dj, , vanishes rationally, i.e.,
idg ®zd,, , vanishes, or, equivalently, its image consists only of torsion
elements.

Proof. Since the Chern character is a transformation of homology theories, it
induced an isomorphism of the Atiyah-Hirzebruch spectral sequence converging to
homology theory €, .. Hp(—;Hq({®})) to H. and the one converging to H... The
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one for P, . Hp(—;Hy({e})) strongly collapses, since the Atiyah-Hirzebruch
spectral sequence is compatible with direct sums of homology theories and obvious
strongly collapses for singular homology, see Example

If ‘H. is a homology theory with values in Z-modules satisfying the disjoint union
axiom, then H, ®z Q is a homology theory with values in Q-modules satisfying
the disjoint union axiom. Since Q is flat over Z, the Atiyah-Hirzebruch spectral
sequence converging to H, ®z Q is obtained from the Atiyah-Hirzebruch spectral
sequence converging to H, by applying the functor —®7Q. Now apply assertion

O

21. (CO)HOMOLOGY WITH LOCAL COEFFICIENTS

21.1. Modules over a category. Let C be a small category. Our main example
for C will be the fundamental groupoid II(X) of a space X. Let R be a commuta-
tive ring. A covariant or contravariant RC-module is a covariant or contravariant
functor M from C to the category R-Mod of R-modules. A morphism between
a covariant or contravariant RC-module is a natural transformation of such func-
tors. Let RC-Mod and Mod-RC respectively be the category of covariant and con-
travariant respectively RC-modules. One easily checks that RC-Mod and Mod-RC
inherits from R-Mod the structure of an abelian category. For instance a sequence
of RC-modules L - M ¥ N is exact at M if for any object € C the sequence
of R-modules L(z) A=), M (x) LGN N(z) is exact at M (z). The kernel of a mor-
phisms f: M — N of RC-modules is defined to be the RC-module whose value at
an object x € C is the kernel of the R-homomorphism f(x): M(z) — N(x).

Given a contravariant RC-module M and a covariant RC-module N, their tensor
product M ®@pge N is defined to be the following R-module. Consider the R-module
@D.cobcy M(z) @ N(z). Let T be the R-submodule of M generated by the subset
{mfe@n—m® fn|z,y€ob(C),f € more(zr,y),m e M(y),n € N(x)}, where mf
stands for M (f)(m) and fn for N(f)(n). Define

(21.1) M ®pe N = ( D M) ®N(x)>/T.
xz€ob(C)
Given two contravariant RC-modules M and N, define the R-module hompge (M, N)
to be the R-module whose underlying set is morge (M, N), i.e., the set of transfor-
mations from M — N. The R-module structure comes from
(r1- fi+ra- fo)(@) =71 fi(z) + 72 fa(2)
for ri,ro € R, fl,fg S mOch(M, N), and x € Ob(C)

Let C and D be two small categories. An RC-RD-bimodule B is a covariant
R(C x D°P)-module. Let M be a contravariant RC-module. Then for any object
d € D we obtain a covariant RC-module B(?,d) by freezing the variable in D and
hence an R-module M ® ge B(?,d). This becomes in the obvious way a contravariant
RD-module by assigning to a morphism u: d — d’ the R-homomorphism M ® ¢
B(?,u): M ®pe B(?,d") - M ®prc B(?,d). We denote this contravariant RD-
module by M ®ge B. Let N be a contravariant RD-module. For any object ¢ € C
we obtain a contravariant RD-module B(c,?7) and can consider the R-module
hompp(B(c, ?7?7), N). Using functoriality in ¢ we obtain a contravariant RC-module
which we will denote by homgp (B, N). Define a R-homomorphism

(212) ad: homRD(M R Rrc B,N) — hOch(M, hOmRD(B,N))

by sending the homomorphism of contravariant RD-modules ¢: M ®gre B — N
to the homomorphism of contravariant RC-modules ad(f): M — hompp(B,N)
which assigs to m € M (z) for z € ob(C) the RD-homomorphism B(z,??) — N(77)
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sending b € B(x,7?) to ¢(??)(m ®b), where m ®b is the element in (M Qg B)(?7)
represented by m®b € M(z) @g B(x,7?). The elementary proof of the next lemma
is left to the reader.

Lemma 21.3. The R-homomorphism ad of (21.2)) is bijective and natural in M,
N, and B.

Let C. = (Cy,c.) be a contravariant RC-chain complex. If M is a covariant
RC-module, we have the R-chain complex C, ®re M. If N is a contravariant
RC-module, we have the R-cochain complex hompe(Cy, N).

Given an object ¢ in C, we define a covariant or contravariant RC-module respec-
tively by Rmore(c,?) and Rmorc(?, ¢), where here and in the sequel we denote for
a set S by RS the free R-module with R-basis, i.e., the R-module of all maps
u: S — Z for which {s € S | u(s) # 0} is finite.

Lemma 21.4 (Yoneda Lemma). Let ¢ be an object, M be a contravariant, and N
be covariant RC-module. Then the R-homomorphisms

hompe(Rmore(?,¢), M) — M(c), ¢ — ¢(c)(id.)

and
Rmorc(?,¢) ®pe N = N(c¢), u®n+— ¢(u)(n)

are bijective. The analogous statement holds for Rmorc(c,?).

A systematic study of RC-modules can be found in [16] Section 9 and 10]. We
will only be interested in the special and easy case where C is a groupoid G, i.e., a
small category in which every morphism is an isomorphism.

Example 21.5. Let H and G be groups and R a commutative ring. Denote by
Z(G) the groupoid having precisely one object whose automorphism group is G.
Then the category of covariant RZ(G)-modules is the category of left RG-modules,
whereas the category of contravariant RZ(G)-modules is the category of right RG-
modules. Given a contravariant RZ(G)-module M and a covariant RZ(G)-module
N, the R-module M ®pz(gy N and M ®@rg N agree. Given contravariant RZ(G)-
modules M and N, the R-modules hompzg)(M,N) and homgrg(M,N) agree.
Given a contravariant RZ(G)-module M, a contravariant RZ(H)-module N, and a
RZI(G)-RI(H)-bimodule B, then the adjunction isomorphism ad of reduces
to the well-known adjunction isomorphism

hompy (M ®re B, N) = hompge (M, hompy (B, N)).

Remark 21.6. Let G be a connected groupoid, where connected means that be-
tween any two objects there exists a morphism. The fundamental groupoid II(X)
is connected if and only if X is path connected. Consider an object z in G. Let
autg(z) be the group of automorphisms of z in G. We denote the group ring
Rlautg(x)] by R[z]. Let C, be a contravariant RG-chain complex. Let M be a
covariant RG-module and let N be a be a contravariant RG-module. Then C,(z)
is a chain complex of right R[z]-modules, M (x) is a left R[x]-module, and N (x) is
a right R[z]-module and we obtain obvious isomorphisms of R-chain complexes

Co(@) @p M(z) = C. @rg M;
hom gy, (C (), N(2)) —  hompg(Cy, N).
21.2. (Co)homology for local coefficient systems coming from a fibration.
Let X be a connected CW-complex. Recall that its fundamental groupoid II(X) has
as objects elements in X and a morphism from z to y is a homotopy class relative
endpoints [w] of a path w: [0,1] — X with w(0) = 2 and w(1) = y. Composition



136 LUCK, WOLFGANG

comes from concatenation of paths. Next we define for a connected C'W-complex
X a contravariant functor

(21.7) X:TI(X) — CW-compl.

to the category of CW-complexes. Define X((E) to be the set of morphisms in IT(X)
with z as source and arbitrary target. The constant path ¢, at x defines a preferred
base point Z € X (x). Let ev,: (X(z),Z) — (X,x) be the pointed map sending a
morphism [w]:  — y to y. Now there is precisely one topology on X (z) for which
evy: X — X is a model for the universal covering of X. A CW-structure on X is
given by defining the n-th skeleton to be the preimage of the n-skeleton of X under
evy. Given a morphism [v]:  — y in II(X), we obtain a cellular map X (y) — X (x)
by precomposition in II(X), i.e., by sending [w]: y — 2 in X (y) to [w]o[v]: z — .

Now we can compose this functor with the functor from CW-compl. to the
category of R-chain complexes given by taking the cellular chain complex with R-
coefficients and obtain a contravariant RII(X )-chain complex called cellular RII(X)-
chain complex

(21.8) C(X;R): TI(X) — R-Ch. Compl.,, z— C.(X(z)).
For n € Z=° consider a pushout

Hie[n a;’

(21.9) e, 5" —— s Xy

J ier, @7 J

[lie;, D" ———— X

Recall that the existence of such a pushout is required for a CW-structure on
X but a choice of it is not part of the CW-structure on X. Note that I, can
be identified with the set of open n-cells of X. Put z = Q7(0) for the ori-
gin 0 € D™. There is precisely one map ;];77 D" — X(xf) such that ;1;5 sends
the origin 0 € D" to z7 and satisfies ev,, oq” = ¢". Let o,: Ho({e}; R) =
H, (D™, 8" 1, R) be the suspension isomorphism. Then the image of the element
in Ho({e}; R) represented by the singular 0-simplex given by the homeomorphism
Ag — {e} under o, is denoted by [D",S""!] € H,(D",S"';R) and is called
the standard generator. The map @ yields maps of pairs @? (D™, 8" 1) —
X(2™)n, X(27)p_1. Define the element a® € CY(X;R)(z") to be the image of
[D™,5"1] under the induced homomorphisms H,(Q"; R): H,(D",S" % R) —

Ho(X(27), X (2")p—1: R) = CX(X;R)(z"). Because of Lemma there is

precisely one RII(X)-homomorphism af: Rmorpx)(?, z}') — CY(X;R) sending
id,» € Rmory(x)(?,2}) to a. We leave the elementary proof of the next lemma
to the reader.

Lemma 21.10. The RII(X)-homomorphism
@ Rmorpx(?,2}") — CL(X; R)
iel,

is bijective for all n € Z29.

Definition 21.11. Let X be a CW-complex and M be a covariant RII(X )-module
and N be a contravariant RII(X)-module. Then we define the (co)homology of X
with coefficients in M or N to be

HYX;M) = H,(C™(X;R) @rmx) M);
HE(X;N) = H"(hompgmnx)(CL(X;R),N)).
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Lemma 21.12. Let M be an R-module. Let Cpr: TI(X) — R-Mod be the constant
functor with value M. We can view Cyp; as a covariant and as a contravariant
RII(X)-module. Then we get isomorphism of R-(co)chain complezes

CM(X;R) ®pux) Cr - —  Cu(X;R) @g M;

hompr(x)(CY(X; R),Cy) —  homp(Cy(X; R), M),
where Cy(X; R) is the cellular R-chain complex of the CW -complex X .

Proof. The desired isomorphisms are induced by the cellular maps ev,: X(z) —
X. O

Example 21.13 (Coefficient system of a fibration). Let p: E — B be a fibration
over a connected C'W-complex B. We have assigned to it a covariant functor called
fiber transport

7:T(B) = h-Top, b— F, =p *(b)
in (9.14)). Let H., be a homology theory with values in R-modules. Then we get for
every q € Z a covariant RII(B)-module

(21.14) HIX)(F): TI(B) — R-Mod, b — Hy(7(b)).

Hence we can consider the R-chain complex C{'(B) ®pr(s) HqH(X)(F). We define
(21.15) HI(B;H,(F)) = Hy(C(B) ) HI ().

This notion will be relevant for us as it appears as the E?-term in the Leray-Serre
spectral sequence.

We conclude directly from Remark

Remark 21.16. Consider the situation of Example RT.13] Choose a base point
b€ B. Let m = m(B,b) and consider any model for the universal covering B — B
of B. Recall that the cellular chain complex C’jj(]?) is a free Rm-chain complex.
We get a Rr-module Hq(Fp) from the R-module H,(F},) and the m-action coming
from the fiber transport. We conclude directly from Remark that we obtain
an isomorphism of R-modules

Hy (B Ho(F)) = Hy(C2(B) @prr Hy(Fy))
So we can compute H)'(B; Hq(F)) in terms of the group ring Rr.

The situation simplifies considerably in the following favourite cases, where we
just have to look at classical singular homology with coefficients in an R-module
and do not have to pass to group rings and the universal covering.

Lemma 21.17. Let p: E — B be a fibration over a connected CW -complex B.
Let ‘H, be a homology theory with values in R-modules. Suppose that one of the
following conditions is satisfied:

(i) For one (and hence all) b € B the following is true: For every loop w in

B at b the map Hq(T([w])): Hq(Fy) — Hq(Fy) is the identity;

(ii) The fibration is orientable, i.e., for one (and hence all) b € B the following
is true: The fiber transport satisfies T([w]) = [idg,] for every loop w in B
at b;

(iti) p: E — B is a principal G-bundle for a path connected topological group
G.

(iv) The space B is simply connected.
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Then there is an isomorphism
Hy (X3 Hy(F)) = Hy(X3 Hy(F))

where Hy(X;Hq(F)) is the singular homology of X with coefficients in the R-module
Hq(Fy) for some b € B.

Proof. If condition [(i)| holds, this follows from Lemma @ One easily checks the
implications = = and = O
21.3. Poincaré duality for non-orientable closed manifolds. Before we turn
to the Leray-Serre spectral sequence, we revisite Poincaré duality. Let M be a
connected closed manifold of dimension d. Let TM — M be its tangent bundle.
Then we get a 1-dimensional real vector bundle AYTM — M. Tt defines Z/2-
principal bundle o5;: M — M called orientation covering, if we define M to be
the quotient of AYTM \ {0} under the equivalence relation v ~ w generated by
identifying v,w € T, M for x € M if there exists r € R”% with v = r - w. If we
choose a Riemannian metric on T'M, we can consider the associated sphere bundle
STM — M. The choice of the Riemannian metric will not matter in the sequel,
since the isomorphism type of the locally trivial bundle pgpas: STM — M with
typical fiber S~ is independent of it. Since pgrar: STM — M is in particular a
fibration, we have the fiber transport

7: (M) — h-Top, b — pgp(b)
In particular we get a ZII(M)-module O, : II(M) — Z-Mod by sending 2 € M to
Hy1(p~* (D).
Definition 21.18 (First Stiefel-Whitney class). A covariant or contravariant ZIT(M)-
module O is called infinite cyclic if O(z) is an infinite cyclic group for all z € M.

Define the Stiefel-Whitney class of an infinite cyclic ZIL(M )-module O to be the
element

w1 (0) € HY(M;Z/2)
coming after a choice of an element € X from the group homomorphism m; (X, z) —
Z/2 which sends a loop to zero, if O(w): O(z) = O(z) is the identity, and to the
non-trivial element otherwise, the isomorphism H'(M;Z/2) =N homy (H,(M;7Z),7./2),
and the Hurewicz homomorphism m (X, z) — Hy(M;Z).
Define the first Stiefel- Whitney class of M to be
wy (M) = wy(0p) € HY(M;Z)2).

We leave it to the reader figure out the elementary proofs of the following three
lemmas.

Lemma 21.19. Two infinite cyclic (covariant or contravariant) ZI1(X)-modules O
and O’ are isomorphic as ZII(X)-modules if and only if w1 (O) = w1 (0'). Given an
infinite cyclic (covariant or contravariant) ZII(X)-modules O, there are precisely
two automorphisms of it, namely +1id.

Consider the orientation covering opr: M — M. Then there is up to homotopy
precisely one map ¢,,,: M — RP> such that oy is isomorphic as principal Z/2-
bundle to the pullback with cj; with the universal covering S*° — TP*°. Recall
that HY(RP>°;Z/2) = 7/2.

Lemma 21.20. Then wy (M) is the image of the generator of H'(RP>°;Z/2) under
the homomorphism H'(c,,,;7/2): HY(RP>;Z/2) — H'(M;Z/2).

Lemma 21.21. The following assertions are equivalent:
(i) M is Z-orientable in the sense of [I7, Definition 8.2 on page 129];
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(i1) Hq(M;Z) is infinite cyclic;
(iti) Hqy(M;Z) is non-trivial;
(iv) The Zn(X)-module Oy is isomorphic to the constant ZII(M)-module Cy,
with value Z;
(v) The first Stiefel-Whitney class w1 (M) € H*(M;F3) vanishes;
(vi) The tangent bundle TM is orientable as a real vector bundle;
(vii) The 1-dimensional real vector bundle AT M — M is orientable;
(viii) The 1-dimensional real vector bundle AT M — M has a nowhere vanish-
g section;
(iz) The 1-dimensional real vector bundle AT M — M is trivial;
(z) The orientation covering oy is trivial as principal 7./2-bundle;
(zi) M is not connected.

Next we explain that there is a notion of Poincaré duality for non-orientable man-
ifolds. Let M be a connected closed manifold of dimension d. We have the R-chain
complex CII (M)®zm(a)On - Define the R-chain complex homgr(ar) (CEL _(M),On)
by defining its n-th differential to be

(=11 homgzr(arn (i, _1), Oar) s homgzran (CE,, (M), Onr)

— hOHlZH(]V[) (Ctli_lf(nfl) (M), OM)

for Cdnf(nq): Cgf(nq)(M) — CIL (M) the d — (n — 1)-differential of the RII(M)-
chain complex C! (M ). Define
HY(M;Onp) = H, (CY(M) @z Om);
Hp(M;On) := Hy—p(homgragy (Ca—x (M), Onr)).
An element u € HY(M;Oy;) defines R-chain maps unique up to R-chain homo-
topy
homgzn) (CF. (M), On) = CE(M)
homg(C§_,(M),Z) —  CH(M) ®zn(ary O

where C¢(M) is the cellular Z-chain complex of M and hence for every n € Z
R-homomorphisms

(21.22) —Nu: HE™(M;0y) —  Hy(M;7Z);
(21.23) —Nu: H™"(M;Z) — HX(M;0u).
Theorem 21.24 (Poincaré duality). Let M be a connected closed manifold of

dimension d. Then HY(M;Oyy) is infinite cyclic. Let [M] € HY(M;On) be a
generator. Then the Z-homomorphisms (21.22)) and (21.23) for u = [M]

—Nu: HE™(M;0y) —  H,(M;Z);
—Nu: H"(M;Z) — HY(M;0u),
are bijective for n € Z.

Remark 21.25. If M is orientable, then H}(M;Oy) reduces to Hq(M,Z) and
[M] € Hy(M;Z) is the classical fundamental class class. Moreover the Z-homo-

morphisms (21.22) and (21.23|) reduce by Lemma [21.12] to the classical Poincaré

duality isomorphisms

— N [M]: H*™(M;7) = H,(M;Z).

The proof of Theorem [21.24]is a variation of the proof in the oriented case.
So Theorem [21.24]essentially says that Poincaré duality holds for (not necessarily
Z-oriented) connected closed manifolds, one has just to replace [M] € Hy(M;Z) by
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[M] € H'(M;Oys) and the cohomology or the homology by the versions twisted
by the infinite cyclic ZII(M)-module Oyy.

Example 21.26 (Real projective spaces). Consider the d-dimensional real projec-
tive space RP? for d € Z=1. Recall that its fundamental group is Z/2. Its universal
covering is the principal Z/2-bundle p: S™ — RP"™, where Z/2 acts on S™ by the
antipodal map a,: S" — S" coming from —idgn+1: R — R™*1. The cellular
Z|Z/2)-chain complex C,(RP4) = C,(S?) is d-dimensional. Its n-th chain module
is Z[Z/2] for 0 < n < d and trivial otherwise. Let t € Z/2 be the generator.
The n-th differential is ¢t — 1: Z[Z/2] — Z[Z/2] for 1 < n < d and odd n and is
t+1: Z[Z/2) — Z|Z /2] for 1 <n < d and even n. Hence C,(S%) looks like

...%{O}QZ@/Q]ﬂ)z[z/z]ﬂ)..._)...
2 7172 5 7[7)2) = {0} = - -

Denote by Z and Z~ respectively the Z[Z/2]-module whose underlying abelian
group is Z and on which the generator of Z/2 acts by idz and —idy respectively.
Then C,(S9) ®zz,/2) Z looks like

14(-1)¢ 1-(-1)¢

Z

= {0}>2Z -3>Z3>Z—>{0}—>~-~,
C, (5% ®zyz/2) Z~ looks like

14+(—1)¢ —1—(-1)¢

o= {0} = Z — 7 s Y7 2750

homyz 91 (Ca—+«(S?), Z) looks like

_(_1\d _1\d
--~—>{0}—>Z£>Z_—2>---—>-~-1(1) z Y Z— {0} — -,
and homgz/2)(Cq—+(5%), Z™) looks like
Sl (=1
~~%{O}%Z;2+ZQ>~~%~~ LEDT, g D Z—{0}—---.

Let T be the constant infinite cyclic ZII(RP™)-module with value Z and let T~
be the infinite cyclic ZII(RP™)-module which is not isomorphic to 7. We get from
Lemma [21.6| and Lemma [21.12] isomorphism of Z-chain complexes

CE(@) Qznweey T = C.(RPY);
CT(RPY) @zpyqrpa) T~ Cu(S?) ®ziz/9) L~
homZH(RPd)(Cd—*(@i)» T) homZ[Z/Q](Cdf*(Sd)v Z);
homgrygeey(Ca_v (RPE), T7) 2 homy(Cy_.(RPY), Z7).

1

I

Hence we get
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Z if n = 0;

/ if n = d and d is odd;

7/2 ifl1<n<d-1andnisodd;
{0} otherwise.

Z/2 if0<n<dandnis even;
Hn(CP(I@I;&) @zneedy @T~) = (Z if n = d and d is even;
{0} otherwise.
Z  ifn=d
Y/ if n = 0 and d is odd;
zZ/2 if1<n<d-1andd—nisodd;
{0} otherwise.

Il

Hy(C}(RP?) @zrygpay ®T)

H" (homgg(gpa)(Ca—v (RP9), T)) =

Z if n = 0 and d is even;
Z/2 if0<n<dandd—nisodd;
{0} otherwise.

H" (homygpa)(Ca—s (RPY), T7))

17

The following facts are essentially consequences of Lemma Since Hy(RP?; Z)
is Z if d is even, and is {0} if d is even, RP? is Z-orientable if and only if d is odd.
This is consistent with the fact that the antipodal map a: S — S has degree 1 if
d is odd and degree —1 if d is even. The orientation covering of RP? is the universal
covering S — RP? if d is even, and the trivial covering Z/2 x RP? — RP? if d is
odd. The first Stiefel-Whitney class w; (RP?) € HY(RP?7Z/2) = Z/2 is trivial if
and only if d is odd. The infinite cyclic Zz(RP™)-module Ogpa is isomorphic to T
if d is odd, and to T~ if d is even.

One easily checks that the computations above are compatible with Theorem [21.24
which predicts for n € Z

HE(RPY Ogpa) = H,(RP?;7Z) if d is even;
HI"(RP%Z) = HI(RPY Ogpa) ifdis even;
H"(RP%Z) = H,(RP%Z) if d is odd.

22. (CO)HOMOLOGY THEORIES OVER A SPACE

22.1. Homology theories over a space. Next we describe the category Top | B
of spaces over B. An object is a pair (X,u) consisting of a space X and a map
u: X — B. A morphism or map of spaces over B f: (X,u) — (Y,v) is a map
f: X — Y satisfying v o f = u, i.e., the following diagram commutes

X % Y
B.
Given two maps fo, f1: (X,u) — (Y, v) of spaces over B, we call them homotopic if
there is a map h: X x I — Y such that we have hy = f for k =0,1 and voh; =u
for t € I. A map i: (X,u) — (Y,v) of spaces over B is called a cofibration if the

underlying map ¢: X — Y is a cofibration. A CW -complex over B is a space (X, u)
over B such that X is a CW-complex. One easily checks that a diagram of spaces
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over B

(Xo,u0) —— (X1, u1)

(XQ, ’LL2) T) (X, u)

is a pushout in Top | B if and only if the underlying diagram of spaces

X0L>X1

XQ 4)X
J2

is a pushout in Top. A pair of spaces (X, A,u) over B is a pair (X, A) together
with a reference map u: X — B. Note that we can assign to it the spaces over B
given by (X,u) and (A,u|4). Thus we get the category Top® | B.

Let R be a commutative ring. The definition of a homology theory H. for
pairs over B with values in R-modules is the following variation of the notion
of a homology for pairs with values in R-modules. It is a covariant functor from
Top2 J B to the category of Z-graded R-modules together with a natural trans-
formation 0.(X,A,u): H.(X,A,u) — H._1(A,ula) such that the obvious ver-
sions of the long exact sequence of a pair and of excision hold and we have ho-
motopy invariance in the following sense: Given a map f: (X,u) — (Y,v) of
spaces over B such that the underlying map of spaces f: X — Y is a homo-
topy equivalence, then H,(f): H,(X,u) — H,(Y,v) is bijective for all n € Z.
Note that by the long exact sequence of a pair and the Five Lemma this im-
plies that for a map f: (X, A,u) — (Y,B,v) of pairs over B such that the un-
derlying map f: (X,A) — (Y,B) is a homotopy equivalence of maps of pairs,
Ho(f): Ho(X, A u) = H,(Y, B,v) is bijective for all n € Z.

Note that this is a stronger condition than the following version which the reader
may have expected, namely, that for two homotopic maps fo, f1: (X,u) — (Y,v) of
pairs over B we have H,(fo) = Hn(f1) for n € Z. This latter version follows from
the homotopy invariance defined above as follows. Choose a homotopy h: f ~ g of
maps of pairs over B. Recall that h is given by a map h: X x I — Y of spaces such
that h:(A) C B and v o h; = u holds for ¢ € [0, 1] and we have hy, = f, for k =0, 1.
Now we have the inclusion ji: (X, A,u) = (X xI, AxI,uopry) for k = 0,1, where
pry: X xI — X is the projection and the map jr: X — X x[0,1] sends z to (z, k).
We also get a map of pairs over B by pry: (X x I[,Ax I,uopry) — (X, A,u). As
we have pryc ojs = id(x 4 We get Hu(pry) o Ha(jx) = idsy, (x..0) for k =0,1.
Since pry: (X x I, A x I) — (X, A) is a homotopy equivalence of pairs, the map
H,.(pry) is by assumption bijective for n € Z. This implies H, (jo) = Hn(j1). We
have the map h: (X X I, Ax I[,uopry) — (Y,v) of pairs over B. Since ho ji = f
holds for £ = 0,1, we get

Hn(fO) = Hn(hojO) = Hn(h) OH(jO) = Hn(h) OH(jl) = Hn(hojl) = Hn(fl)

The notion of the disjoint union axiom and the WHE-axiom for homology theories
for pairs over B with values in R-modules is obvious.

It is now interesting to figure out what the coefficients of a homology theory for
pairs over B with values in R-modules are, since instead of the one point space {e}
we have to consider all maps u: {} — B. The answer is given by the construction
of the following covariant functor

(22.1) Hy({e};?): II(B) - R-Mod
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called the g-th coefficient system of H. for q € Z

It sends an element b € B to H,({e},¢) for the map c,: {o} — B given by
b. Now consider a morphism [w]: by — by in II(X). It is represented by path
w: I — B from by = w(0) to by = w(1). It defines an object (I,w) in Top |
B. Let ji: ({8}, c,) — (I,w) be the morphism in Top | B given by the map
Jr: {#} = I with image {k} for kK = 0,1. Since jj is a homotopy equivalence, we
get isomorphisms H,, (ji): Hq({e}, cs,.) =N Hq(I, w). We want to define

Hy({o}: 7 ([w]): Ho({oh,ery) 2290 20, (1, w) 2290705 9y, ({0}, cn,).

. -\ —1
We have to show that H,({e}, cs,) Hnlio), Ho(I,w) o) Hq({®}, cp, ) depends
only on the homotopy class of w relative endpoints. Consider two paths wy: I — B
from by to b; for £k = 0,1 and a homotopy H: I x I — B of such paths relative
endpoints from wy to wy Let {i: I — I x I be the map sending ¢ to (¢, k). Then
Holyoj, = Holyoj = by holds for £ = 0, 1 Hence the following diagram commutes
for k=0,1

Hq (k)
HQ(X7 Cby.) gk Hq(L wo)

Hq(jk)JN NLH(IUO)

Ho(I,wy) —————— Hy(I x I, H).
Hq(ll)

We conclude that the following diagram commutes

Hq(],’wo)
[ T
Hfl({.}vcbo) HQ(I X1, H) Hq({.}7cb1)
o o) | = o
M ( ﬁ e
HQ(Lwl)

. N
This implies that Hq({e}, cs,) Hnldo), Ho(I, w) Hnldn) Hq({o}, cp, ) is indepen-

dent of k. Hence H,({®};?)([w]) is well-defined. We leave it to the reader to check
that we indeed get a covariant functor H,({e};?) as announced in (22.1]).

22.2. Cohomology theories over a space. We leave it to the reader to figure
out the obvious notion of a cohomology theory with values in R-modules over a
space B and the associated contravariant coefficient system

(22.2) H({e};?): TI(B) — R-Mod.

Let H* be a cohomology theory with values in R-modules. Recall that multi-
plicative structure assigns to a CW-complex X with CW-subcomplexes A, B C X
natural R-homomorphisms

(22.3) Ut HM(X, A) @r H" (X, B) — H"™ (X, AUB).

This product is required to be compatible with the boundary homomorphism of
the long exact sequence of a pair, to be graded commutative, to be associative, and
to have a unit 1 € H°({e}). The cup product on singular cohomology H*(—; R) is
an example.

The definition of a multiplicative structure has an obvious analog for cohomology
theory with values in R-modules over a space B.
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22.3. The Leray-Hirsch Theorem.

Theorem 22.4 (Leray-Hirsch Theorem). Let H* be a cohomology theory with val-
ues in R-modules satisfying the disjoint union axiom which comes with a multi-
plicative structure. Let B be a connected CW -complex with a base point b € B. Let
(p,po): (E, Ey) — B be a pair of fibrations over B with (F, Fy) = (p~(b), py * (bo))
as fiber over b. Suppose that {e1,ea,...e.} is a subset of H*(E, Ey) such that
H*(F, Fo) is a free graded H*({o})-module with basis {i*e1,i*es,...,i%e,} for the
inclusioni: (F, Fy) — (E, Ey). Consider H*(E, Ey) as a graded H*(B)-module with
respect to the action given by b-e = p*(b)Ue for b € H*(B) and e € H*(FE, Eyp).
Then H*(E, Ep) is a free graded H*(B)-module with basis {e1,ea,...,e.}.

Proof. Consider w € m = m(B,b) and let f: (F, Fy) — (F, Fy) be a representative
of the fiber transport 7(w). Then the following diagram commutes up to homotopy

(F7 FO)
f (E, Ey)
(F7 FO)
Hence f* oi*(er) = i*(ey) for k =1,2,...,r. Since {i*e1,i*eqa,...,i"e,} is a basis

for the graded H*({e})-module H*(F, Fy), the map f*: H*(F, Fy) — H*(F, Fp) is
the identity. Hence we conclude for two paths wp, wq : [0,1] — B from by to by that
the maps 7([wo])* = 7([w1])*: H*(p~"(bo), 5y (o)) — H* (o~ (b1),p5 " (br)) agree
for the element 7([w]) € [(p~(b1),py* (b1)), (P~ (bo), py * (bo))] given by the fiber
transport. Hence we can define for two points by, b; a homomorphism of graded
H*({e})-modules

1(bo, b1) € H*(p~"(bo), pg * (b0)) = H*(p~" (b1), 25 ' (1))

by n(bo, b1) = 7([w])* for any path w: [0,1] — B from by to by. We get n(b1,b2) o
n(bo, bl) = 77([)0, b2) and ’17([)0, bo) = idH*(p_l(bo),po_l(bo)) for bo,b1,by € B.

Define a cohomology theory K* with values in R-modules satisfying the disjoint
union axiom

IC*(X, A) = H*(X, A) Q#x({o}) H*(F, Fo).

Since H*(F, Fy) is a free graded H*({e})-module with finite basis, the functor
— @+ ({o}) H*(F, Fp) is exact and compatible with direct sums over arbitrary index
sets. Hence the axioms of a cohomology theory with values in R-modules satisfying
the disjoint union axiom are satisfied. We can consider it as a cohomology theory
K* with values in R-modules over B satisfying the disjoint union axiom by ignoring
the reference maps u to B.

We have the pullbacks

and
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We get another cohomology theory £* with values in R-modules over B satisfying
the disjoint union axiom for pairs by defining

LX(X, A,u) = H* (P, (X), Py, (A) Ua, ' (X)).

We define a transformation of cohomology theories with values in R-modules over
B satisfying the disjoint union axiom

T™: K" = L"
by assigning to a pair (X, A, u) over B the homomorphism

T*(X, Ayu): HY (X, A) @y ((oy) H* (F, Fo) = H* (5, 1(X), P, 1 (A) U, (X)),
(¥ ® 2) = Pu(y) U duay © n(bo, u())"(2)

for any @ € X and jug: (0~ Hu(@)), 55 (u(@))) = (57(X), 521 (A) U Bz (X))
the inclusion. It is not hard to check that this is independent of the choice of
x € X using the assumption that the space B is path connected. The homomor-
phism T*({e},u): H*({8}) @u=(fo}) H*(F, Fo) — H* (D, ({#})) can be identified
with 7(b, u({e})): H*(F, Fy) — H*(p~ (u({e})),py " (u({e}))) and hence is bijec-
tive for any space over B of the shape ({e},u). There is an obvious version of
Proposition for cohomology theories with values in R-modules satisfying
the disjoint union axiom over B, whose proof is analogous to the one of Proposi-
tion Hence T*: L* — K* is an equivalence of cohomology theories with
values in R-modules satisfying the disjoint union axiom over B. If we apply this to
the space (B,idg) over B, we obtain an isomorphism of H*(B)-moduls

HY(B) @3- ((oy) H'(F, Fo) = H'(E, Eo),  (y @ 2) = p*(y) Uit (2),
Hence H*(E, Ey) is a free graded H*(B)-module with basis {e1,ea,...,e,} O

22.4. The Thom Isomorphism. Let p: E — B be a (k — 1)-spherical fibra-
tion, i.e., a fibration with fiber S*~!. The associated disk fibration is defined by
Dp: DE := cyl(p) — B, where cyl(p) is the mapping cylinder of p and Dp is
the obvious map. A simple application of [6l Proposition 1.3] shows that Dp is a
fibration.

Define the Thom space Th(p) of p to be the pointed space cone(p), where cone(p)
is the mapping cone of p with its canonical base point, or, equivalently, put Th(p) =
DE/E. It k =0, then DE = B and Th(p) = By. If pe: E — B is the projection
of a k-dimensional vector bundle £ over B with sphere bundle psg: SE — B, then
we can identify the disk bundle of ¢ with the mapping cylinder of psg, so that
DE = cyl(psg). Note that the canonical inclusion of B in cyl(psg) is a homotopy
equivalence, which is analogous to the fact that the inclusion defined by the zero-
section of £ is a homotopy equivalence. The canonical inclusion of E into cyl(p)
corresponds to the inclusion of SE C DE. Hence the definition Th(p) = DE/E =
cone(p) for a (k — 1)-spherical fibration p corresponds to Th({) = DE/SE for the
k-dimensional vector bundle &.

Put F, := p~!(z). It comes with a preferred infinite cyclic local coefficient
system
(22.5) O,: II(B) — Z-MOD., b~ Hy(cone(Fy), Fy; Z).

It sends a morphism [w]: by — by to the isomorphism of infinite cyclic groups
Hy,(cone(tpy]), tpw); Z): Hy(cone(Fy,), Fyy; Z) — Hy(cone(Fy,), Fy,;7Z) induced by
the homotopy class 7([w]) of maps F,, — Fp, coming from the fibre transport

along w, see ((9.14)).
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For b € B let i(b): {b} — B be the inclusion. Recall that ppr: DE — X is the
canonical projection. Hence we get an infinite local coefficient system p}, ;O,. We
get from ¢(b) an isomorphism

HY(DE, E;pjpp0y) = H* (cone(Fy), Fizi(x) phOp)-
The elementary proof that it is bijective can be found in [19, Lemma 4.2 (iii) on
page 156]. Since i(x)*p}, O, is the constant infinite cyclic local coefficient system
on cone(E,) with value O,(b), we get a canonical isomorphism
H*(cone(Fy), Fy;i(b)* plygOp) — H* (cone(Fy), Fy; O, (b)).
The universal coefficient theorem yields a natural isomorphism

o~

H*(cone(Fy), Fy; O,(b)) — homg(Hy(cone(Fy), Fy), O, (b))
= homg (0, (b), O, (b)).

Putting these isomorphisms together yields a isomorphism
(22.6) ap(b): H*(DE, E;ppr0yp) =N homz (O, (b), Op(b)).

Suppose from now on that B is a connected C'W-complex. Then the map «
of (22.6) turns out to be an isomorphism and for path w: I — B with w(0) = b
and w(1) = by the following diagram commutes

homgz (O, (bo), Op(bo))

ap(bo)

)

H*(DE, E; p}50,) = | hom (O ([w]) ™, Oy ([w])

ap(b1)
homz (O (b1), Op(b1)).

This is proved for instance in [19, Lemma 6.42 (iii) on page 156]. If we compose

a,(b) with the inverse of the isomorphism Z N homz (O, (b), Op(b)) sending n to

n-ido, ), we get an isomorphism

(22.7) By: H*(DE, E;php0,) — Z

which is, by the observations above, indeed independent of the choice of b € B.

Definition 22.8. Let p: E — X be a (k — 1)-spherical fibration. Its Thom class
Up € Hk(DEaEW}(JEOp)

is defined to be the preimage of 1 € Z under the isomorphism £, of (22.7).

Theorem 22.9 (Thom Isomorphism Theorem). Let p: E — B be a (k — 1)-
spherical fibration of connected finite CW -complexes with first Stiefel- Whitney class
w: m=m(B) = {1} for k € Z=1.

Then the composites

(ppE)

_ HT
H,(DE, E:2) 22" g (DE;z*) —25PPE) g (B 7v);
H™(DE,E;Zz%) "~ H,_,(DE; Z) Hn ko), (B 7

Hl(ppE)

(
o (B;7) 228, g pp, 7y —2 H"*’“(DE E;Z%);
HMB;zw) L2, g ppyzey 2 grth(DE, B 7),
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are bijective for n € Z=2°. (These maps are called Thom isomorphisms. )

Proof. The proof can be found in [19, Theorem 6.45 on page 160]. We indi-
cate its proof for cohomology in the special case where w is trivial. Choose
bp € B and fix a generator [F3] of the infinite cyclic group Hy(cone(Fy,), Fy,; 7).
This yields an isomorphism of infinite local coefficient systems between p},p0O)
and the constant system with values Z which in turn induces an identification
H*(DE, E; pp0,) = H*(DE, E;Z). Hence the Thom class U,, of Definition m
is an element in H*(DE, E;Z) such that for any element b € B the homomorphism
i(b)*: H*(DE, E) — H"(cone(F}), Fy; Z) induced by the inclusion i(b): F, — W
sends U, to a generator of the infinite cyclic group H*(cone(F;), Fy; Z). Now we
conclude from the Leray-Hirsch Theorem applied to p and to H* = H*(—;Z)
that the composite

HY(ppE)
P,

H™(B:Z) HP(DE;Z) —22 gt (DE, B 7)

is bijective. O

Example 22.10 (Singular Cohomology ring of RP>°). Counsider the (1—1)-spherical
fibration SO — §°° & RP>®. Let U € H'(DS™,5%; pt ¢ Op) be its Thom class.
We obtain from Theorem [22.9] isomorphisms

H™(RP™; Z) 228 pn(pgee; z) Z HIt (DS, 5% 7).

As S is contractible, the map HPT1(DS> S Z¥) — H (DS, ZY) is bijec-
tive for n > 1. Since ppg is a homotopy equivalence, it induces an isomorphism
HMHL(RP>®, Zw) = H?+1(DS>, 7). Therefore we obtain an isomorphism for
n>1

H™(RP>;Z) = H" W (RP>®; Z").
Analogously one obtains an isomorphism

o

H" Y RP™;Z") = H" T (RP™; Z).
So we get for n > 1 an isomorphism
H™(RP>:7) = H'"2(RP>; Z),
which turns out to be the cup product with an element u € H?(RP*>;Z). Since
H2(RP>;Z) = 7/2, H'(RP*) = Z, and H'(RP>) = {0} hold, we conclude that
for i > 1 we have H*(RP>;Z) = Z/2 with u’ as generator and H?'~}(RP>;Z) =
{0}

We leave it to the reader to figure out using the Bockstein sequence associated
to 0 = Z — Z — Z/2 that H*(RP*>;Fy) = Fy[x] for |x| = 1 holds.

23. THE CONSTRUCTION OF THE LERAY-SERRE SPECTRAL SEQUENCE

Theorem 23.1. Let p: E — B be a fibration over a CW -complex B. Consider
a commutative ring R. Let H. be a homology theory with values in R-modules
satisfying the disjoint union axiom and the WHE-axiom. Then there exists the
Leray-Serre spectral sequence converging to H,(E) whose E?-page satisfies

E} = H(B;H(F))
where H)'(B; Hy(F)) has been defined in (21.15).

We at least sketch the construction of this spectral sequence. This needs some
preparations.

Now the construction of the Atiyah-Hirzebruch spectral sequence of Sections
and carries over to the homology theory H, for pairs over B with values in
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R-modules. So we get for any CW-complex (X,u) over B a spectral sequence
converging to H,, (X, u) whose El-term is given by

E;;,q = Hp(Xquq—lvu|Xq)

whose differential dll)’q are given by the composite

9
dy gt Hp(Xg, Xg-1,ulx,) = Hp(Xg—1,ulXg1) = Hp(Xg-1, Xg-2,ulx, ),
and whose filtration of H,44(X, u) is given by
F,q =1im(He(Xp, ulx,) = Hptq(X, u)).

Lemma 23.2. There is a canoncial R-isomorphism

2 ~ II . u .

Ep,q = Hp (Xv Hq ({.}v ?))

where the covariant RII(X)-module H; ({e};?) is obtained from the covariant RII(B)-

module Hy({®};7) of (22.1) by precomposition with (u): II(X) — II(B) and the
R-module H'(X;HY({8};7)) has been introduced in Definition |21.11]

Proof. Consider n > Z=°.

Consider a cellular pushout as described in , where we here replace n € Z=°
by p € ZZ° in and consider any q € Z.

Then we obtain by excision and the disjoint union axiom for every ¢ € Z an
isomorphism

@ Hp+q(Dp, Sp_l, Uu o Q:L) i} Hp+q(Xp7 Xp—17 ulxp).

icl,
Put 27 = Q7(0) and y;* = uo Q}(0) for the origin 0 € DP. We denote by c,» and
Cu(zr) the constant maps {e} — X and {e} — B with image {z}'} and {u(z})}.
Then there is an suspension isomorphism

oir Hy({e},car) = Hq({’},cu(x?)) = Hpq(DP, 5P uo QF).
Thus we obtain an isomorphism
Upyg: @HZ({°}aCz?) — Hptq(Xp, Xp—1,ulx,).
icl,

We obtain from Lemma and Lemma [21.10] isomorphisms

Vot EDHE{o}, car) = CHIN(X:R) @pnrx) Hi({0}:7).
i€l,

Thus we obtain an isomorphism of R-modules
Whg = Vpqo U;z;;: Hp+q(Xanp—1vu|Xp) i) O;I}(X)(X§ R) QRII(X) HZ({'}? 7).

Note that both U, 4 and V, 4 depend on the choice of the cellular pushout .

Recall that such a choice is not part of the structure of a CW-complex on X.

However, one can show that W, , does not depend on the choice of the cellular

pushout and hence depends only on the CW-structure on X as follows.
Suppose we have made another choice of a cellular pushout

ey, @
(23.3) [ie;, S" 7 —— X,

J Mies, Q7 J

[ie;, D" —————— X
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resulting in isomorphism U, , and V,, ,. Choose for every i € I,, a path w;: [ — X
from 27 = Q7(0) to T¥ = Q; (0). Then there is for every i € I, an element
€; € {£1} such that for the isomorphism

Thoy= @ e Hy{ohi[wil): D Hy({o},con) = Hy({o}, czn)
i€l, i€,
we have
Up,qup,q = Upg;
Vpaodpq = Vpg

This implies
—1 54 -1
VoaoUpg =VpaoUy,
Moreover, one can show that the collection of the maps W, 4 is compatible with

the differentials and hence we obtain for every ¢ € Z an isomorphisms of R-chain
complexes

Thqt Hurg(Xe, Xao1,ulx.) = CIX) @ prrox) HE ({0} 7).
Now the desired isomorphism
By, — H (X Hi({e1: 7))
is given by applying H,(—) to T 4. d

Obviously a homology theory for pairs over B with values in R-modules is the
same as a homology theory of pairs with values in R-modules if B = {e}. Moreover,
given a homology theory of pairs with values in R-modules, we obtain a homology
theory of pairs over B with values in R-modules by forgetting the reference maps
to B, i.e., by assigning to (X, A, u) the Z-graded R-module H,(X, A). Here is our
main example of a homology theory for pairs over B with values in R-modules.

Example 23.4. Let R be a commutative ring and H, be a homology theory for
pairs over B with values in R-modules satisfying the WHE-axiom. Let p: £ — B
be a fibration. Then we obtain a homology theory H% for pairs over B with values
in R-modules by defining for a pair (X, A, u) over B

HP (X, A, u) = Hy (W' E, (u|a)*E)
where u* E is defined by the pullback

WwE-" S E

||

X——B

and analogously for (u|4)*E. We omit the proof that HY is a homology theory for
pairs over B with values in R-modules which is essentially a direct consequence of
Proposition and Theorem
Obviously HY satisfies the disjoint union axiom or the WHE- axiom if H, does.
One easily checks that the covariant ZII(X)-module HP({e};?) of - is iso-
morphic to the covariant ZII(X)-module H,(F') of (21.14) and hence we get an
identification of H['(B;H,({e};?)) and H}! (B; Hq(F)) introduced in (21.15)).

Now Theorem follows from the Atiyah-Hirzebruch spectral sequence for
spaces over B applied to X = B and the situation of Example
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24. SOME APPLICATIONS OF THE LERAY-SERRE SPECTRAL SEQUENCE
As preliminary we mention the following result due to Maschke and Wedderburn.

Theorem 24.1. Let F be a field and G be a finite group such that |G| is invertible
in F. Then:

(i) The group ring FG is semisimple, i.e., every FG-module is projective;
(ii) Every irreducible FG-module is isomorphic to an ideal in FG and every
FG-module is a direct sum of simple modules, where simple means that
the only submodules are {0} and the module itself;
(iti) There are only finitely many pairwise non-isomorphic simple ideals Iy, I,
.., In in FG;
(iv) Let D; be Endra(I;) for j =1,2,...,n. Then each D; is a skewfield and
there are elements d; € Z2' such that we get an identification of rings

FG =[] M, 4,(Ds).
j=1
Example 24.2. Let p be an odd prime. Consider a homology theory H,. with
values in IF,,-modules satisfying the disjoint union axiom. Let F 5 E L RP>™ be a
fibration.

Let M be any [, [Z/2]-module. Let F,, or F respectively be the F,[Z/2]-module
whose underlying F,-module is F,, and on which the generator of Z/2-acts trivially
or by —idp, respectively. We conclude from Theorem that any F'G-module is
a direct sum of copies of ), and F;. An easy calculation using the cellular Z[Z/2]-
chain complex of RP> and the fact that 2 € F,, is a unit shows that HJ (RP>; M)
vanishes for k € ZZ! and is Fp ®r,z/2) M if k = 0. So the second page is concen-
trated in the Oth column and looks like

Fp @r, (2/2) Hs(F) 0 0
Fp ®r, (2/2) Ha(F) 0 0
F, ®r, (/2 H1(F) 0 0
Fp ®r, (2/2) Ho(F) 0 0

where the 71 (RP>) = Z/2-action on H,(F') comes from the fiber transport. Hence
it strongly collapses and yields for n € Z the isomorphism

Fp @, (z/2) Hn(F) = Hu(E).

It comes from the map H, (i): Hn(F) — H,(E) induced by the inclusion i: F — E
which factorizes through the projection H,,(F) — F), @, z/2) Hn(F), since for the
automorphism induced by the fiber transport 7: FF — F we have i o 7 ~ 4. This
claim follows from the naturality of the Leray-Serre spectral sequence by inspecting
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the map of fibrations

Example 24.3 (Fibrations over S! for [ > 2). Let F — E I, S be a fibration
over the sphere S for I € Z22. Then S’ is simply connected. We conclude

H, (8" Hy({0})) = {W{'” p=0.;

{0} otherwise,

from Lemma 21,171 So the E2-term and hence each E"-term and the E>-term of
the Leray Serre spectral sequence associated to f has non-trivial entries only in the
columns for ¢ = 0 and ¢ = [. So we get E g = Ep g forr <land Ej = E, for
r>14+1, and the only non-trivial differentials occur on the Ith page, Where they

look like dé’q. g E! So for [ = 3 the [-th page looks like

p—l,g+l—1°
Hy(F) 0 0 Hy(F) 0
H,(F) 0 0 H,(F) 0
Ho(F) 0 0 Ho(F) 0
H_1(F) 0 0 H_1(F) 0
H_s(F) 0 0 H_o(F)

So we get exact sequences

dl
0= EfS = Ho(F) =5 Ho1(F) = EgS 1 — 0
and filtrations

{0} c FO,n c Fl,nfl = Hn(E)
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satisfying Fy, = EgS, and H,,(E)/Fon = Ep;, ;- These data can be spliced to-
gether to a long exact sequence

H71+1(i)

dl On
S Hn—l+2(F) —2, Hn—Fl(F) Hn+1(E) —

Hn ('L)

di 1
Hppr-1(F) "5 H, (F) 22 H,(B) 2% Mg (F) 210

where 7: F — FE is the inclusion.

Example 24.4 (Fibrations over S'). Since m1(S?) infinite cyclic, the fiber trans-
port is given by a selfhomotopy equivalence 7: F — F. So HE(Sl; Hq(F)) fits into
the exact sequence

g (r) —He(T)
— 5

0 — HY' (" Ho(F)) — Ho(F) Hq(F) = Hy (S5 Hq(F)) — 0.

Each E"-term and the E°°-term of the Leray Serre spectral sequence associated to
p has non-trivial entries only in the columns for ¢ = 0 and ¢ = 1 and hence

g _ g - JHIESSH(F) p=0.1;
Pq Pq {o}. otherwise.

Hence we obtain a long exact sequence

id —Hn (T n(t
(24.5) ... 2 g () Lo O gy gy HeOg (B
idg, —Hn-1(f) n1(i
Dy o (F) DT gy, () e,
Consider the pushout
{0,1} —— {o}

0,1] — S

We conclude from Proposition and Theorem that the pullback con-
struction yields a pushout

FHFLF

J l

Fx[01l]——— F

Hence E is homotopy equivalent to the mapping torus and the sequence is the
so called Wang sequence which can be obtained from the pushout above by the
Mayer-Vietoris sequence.

Example 24.6 (Fibrations with S as fiber). Consider a fibration S! — E 4B
over a connected C'W-complex B with fiber S! for I > 1. Let H.(—;G) be singular
homology with coefficients in the abelian group G. Then H, (8, Q) is G for ¢ = 0,1
and trivial otherwise. The G-action of m = 7 (B) on Hy(S% G) is trivial and hence
H}Y(B; Ho(S%@G)) = Hy(B,G). We get H}Y(B; H(S5@G)) = HJ(B;G,) for the
m-action on G given by w-g = p(w) - g for w € 7 and g € G for the homomorphism
p: ™ — {+£} sending w € 7 to the degree of the map S’ — S' given by the fiber
transport applied to w. Then the E2-term and hence the E"-term for r € Z=211{co}
of Leray-Serre spectral sequence for f and H,(—; G) has non-trivial entries only in
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the O-th row and in the [th row. The only non-trivial differentials appear on the
(I + 1)-th page and are given

Ao BNy = HY(B;G) = EY) ) = Hy 1 1(B; Gy).
So for I = 2 the (I + 1)-th page looks like
0 0 0 0 0

H§(B;G,) H{(B;G,) H3(B;G, Hi(B;G, H(B;G,)

3
dB,U

Ho(B;G)  Hi(B;G)  Hy(B;G)  Hy(B;G)  Ha(B;G)
We obtain for every n € Z=° a filtration
{0} C F,_1y C F 0= H,(E;G)
and an exact sequence
0— E . — Ho(E;G) = B — 0.
These data can be spliced together to a long exact sequence

dij;ll 0 On—1
Hy1(B;G) —— Hy_(B;G,) —

. dlJrl ]
H,(B;G) VD g (B Gy = HE (B G,)

On—141 n+1(f;
.éHnH(E;G)HJf—(JCG))

Let R be a principal ideal domain. We call a space X R-homological finite if
H,,(X;R) is a finitely generated R-module for every m € ZZ° and is non-trivial
for only finitely many elements m € ZZ. In this case we define its R-homological
Euler characteristic by

(24.7) X(X:R):=> (=)™ - tkp(Hn(X;R)) € Z
m>0

If X is a finite CW-complex then it is R-homological finite and xg(X; R) agrees
with ch(M) := 3> ~o(=1)"™ - [Imm| for L, the set of m-cells of X.

Theorem 24.8 (Multiplicativity of the Euler characteristic). Let R be a principal
ideal domain. Let F — E L5 B be a fibration such that F' and B are R-homological

finite and the action of m1(B) on H,,(F; R) induced by the fiber transport is trivial.
Then E is R-homological finite and we get

X(E; R) = x(F; R) - x(B; R).

Proof. Consider the Leray-Serre spectral sequence for the fibration f and singu-
lar homology H.(—; R) with R-coefficients. Then there exists a number d such
that E2 = H,(B,Hy(F;R)) # 0 = p,q < d. The Universal Coefficient
Theorem yields an exact sequence of R-modules 0 — H,(B;R) ®r H,(F;R) —
H,(B; H,(F;R)) — Torf(H, (B;R), H,(F;R) — 0. By assumption H,(B;R)
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and H,(F;R) are finitely generated for p,q € Z=°. This implies that the R-
module Torf(H,_;(B;R), H,(F; R)) is a finitely generated R-module of rank zero
and H,(B; R) ®g H,(F; R) is a finitely generated R-module satisfying

tkr(H,(B; R) ®r Hy(F; R)) = rkr(Hp(B; R)) - tkr(H,(F; R)).
We conclude that H,(B; H,(F'; R)) is a finitely generated R-module satisfying
(24.9) rkr(Hy(B; Hy(F; R))) = tkr(Hp(B; R)) - tkr(Hy(F; R)).

Hence we conclude for every r € Z=1 11 {oo} that E} , is a finitely generated R-
module for p,q € Z=% and that Equ = H,(B,Hy(F;R)) # 0 = p,q < d holds.
Hence we can define for r € Z=2 11 {oo}

X'= Y (—1)PHakg(Ey )= > (=1)PTrkg(E) ) € Z.

P,qEZL P,q€EZ
0<p,g<d
We compute
BB X(FiR) = (3= rkn(Hy(F; ) - (Do (-1)7 - rkr(H(B: B)))
PEZ q€EL
= > (-1)P rkp(Hy(F;R)) - (1) - tkp(H,(B; R))
D,qEZ
= ) (=1)P*xkp(Hy(F; R)) - tkp(Hy(B; R))
p,qEZ
= NT (“1)PH - rkp(H,(B; Hy(F; R)))
p,q€EZ
= Z(—l)“quR(E;q)
p,q€EZ
= X2.

If C, is a chain complex of finitely generated R-module which is bounded, i.e.,
Cp # {0} only for finitely many m € Z. Then H,,(C.) is finitely generated for
m € Z and non-trivial only for finitely many m € Z and we get

(24.10) > (=)™ 1kp(Cr) = Y (=)™ - tkp(Hm(CL)).

meZ mEZ
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We compute for r € Z=2.

Xr-i—l _ Z (_1)p+q . l"kR(E;:Zl)
P,q€EL
r—2 4
= Z Z Z(_l)p—l~s+z+(l—1)'s . rkR(E;irll-s,iJr(lfl)s)
pEZ i=0 seZ
r—2 '
= Z Z Z(_l)pﬂﬁ ’ rkR(HS(E;fl-*,iJr(lfl)-*a d;fz.*,w(zfl)-*))
pEeZ i=0 seZ
r—2
= Z Z<_1)p+i : (Z(_l)s : rkR((HS(ngl-*,if(lfl)*’ dzfz-*,w(lq)-*)))
peZ i=0 SEL
r—2
24510 — Z Z(—l)p""l . (Z(—l)s . rkR(ch‘*lnS,?}i»(lfl)-s))
peZ =0 SEZL
r—2 '
= ZZZ(—:{)YH‘?-’-S 'rkR(E;)’fl-s,’Fi»(lfl)»s)
peZ 1=0 seZ
r—2 '
= Z Z Z _qyplsti-)s, k(B0 i (m1)s)
pEZ 1=0 s€Z
= Y (-1 rkn(By,)
P,qEZ
== XT.

Since E%, = E2t! holds, we get
X(B; R) - x(F; R) = x* = x*°.
From the filtration
{0} C Fon CF1no1 C Fon_9 C -Fo, = Hy(E; R)

with filtration quotients F}, ;/F,—1 441 = EJ%, we conclude

X(E;R) = %(—U"-rkR(Hn(E;R))
= 2:2<—1>“~(t§;rkR<Eft,t>)
_ E (~1)P+a .ErkR(E;;fq>

X(B; R) - x(F; R).

25. NATURALITY PROPERTIES OF SPECTRAL SEQUENCES

Let f: X — Y be a cellular map of CW-complexes. Let H. be a homology
theory with values in R-modules satisfying the disjoint union axiom. Then we get
a morphism from the Atiyah-Hirzebruch spectral sequences for X to the one for Y.
Hence Lemma implies the next result.

Theorem 25.1. Suppose that H,(f; R): Hp,(X; R) — H,(Y; R) is bijective for all
alln € 729,
Then the map Hp(f): Hn(X) = Hn(Y) is bijective for all n € Z.
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Consider a pullback of fibrations with CW-complexes as base space

EOL)E]A

BO T) Bl~

Theorem 25.2. Suppose that for any n € Z=°, any by € By, and any loop w in
By at by the automorphism H,(py (b)) — Ha(py*(br)) induced by the element
mi(w1) € [py(b),py (D)) given by the fiber transport is the identity. Assume that
H,(f;R): H,(Bo; R) — H,(B1; R) is bijective for all n € Z=°.

Then the map Hn (f): Hn(Eo) = Hn(E1) is bijective for every n € Z.

Proof. This follows from the Universal Coefficient Theorem and Lemma [19.5{ using
the Leray-Serre spectral sequence. O

We also mention that one can feed in pairs into the Atiyah-Hirzebruch spectral
sequence and pairs of fibrations over the same base space into the Leray-Serre
spectral sequence.

26. BASIC NOTIONS AND FACTS ABOUT COHOMOLOGICAL SPECTRAL SEQUENCES

Next we discuss what can be said if one considers cohomology. The basic setup
concerning pages and differentials yielding finally the terms EZ:? is essentially the
same, if one takes into account that the differentials now have the opposite slope
and the E"-term is given by cohomology of the r-terms and the computations of
the E'- or E?-terms will now be in cohomological terms. However, the convergence
issue is much more complicated. Fortunately, there are some favourite situations,
where the convergence is as good as in the homological case, but now with re-
spect to descending filtrations. Cohomology theories often come with a valuable
multiplicative structure and the cohomological spectral sequences do respect these.

Next we describe the abstract setting of a cohomological spectral sequence.

Definition 26.1 (Cohomological spectral sequence with values in R-modules). A
cohomological spectral sequence with values in R-modules starting at d for d € Z=1
E** consists of the following data:

e A family of R-modules {EP4} for r € ZZ¢ p,q € Z such that EP? = {0}
for p < —1;

e Maps d?9: BP9 — EP+ra—r+l called differentials for r» € Z2%, p,q € 7Z
such that the composite dj, ,od_, ... vanishes for r € 72% p,q € 7.

In particular we get R- chain complexes C,[q]* for r € ZZ¢ and p € Z

whose p-th differential is dP9, in other words it is given by the lines of
slope ~ 7';1;

e R-isomorphism

ol HP(Cylq)") = B2,
for r € Z2¢, p,q € Z.

We call the data given by {EP9, dP4 | p,q € Z} for r € Z=* the r-th page of the
spectral sequence. Note that the r-th pages determines the underlying modules of
the (r 4+ 1)th page but not the differentials appearing on the (r + 1)th page.
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Here is a picture of the first page:

(26.2)
402 b2 422 432
0,2 1 1,2 1 2,2 1 3.2 1 4,2
E; E, E; Ey Ey
dO,l dl,l d2,1 dS,l
0,1 1 1,1 1 2,1 1 3,1 1 4,1
E, E, E; Ey E,
d(l),o g0 420 330
1 1 2 1 1 4
E)? E° E}? B} E}?
d0—1 a1 g1 31
0,—1 % -1 % 2,1 % 3,—1 4,—1
E L E] E Ioh
d10_2 d},72 di,72 _ d},72 _
F02 Bl E12 2 32 Ei;, 2
Here is a picture of the second page:
(26.3)
0,2 1,2 3,2 4,2
E, E, E, E,
0,2 2,2
d2 \ d2
0,1 1,1 2,1 3,1 4,1
E; E, E; E,
dg 1 l 1 dg 1

1 2 4
EO,O E ,0 ,0 E3’O E 0

157
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Here is a picture of the third page:
(26.4)

4,2
Eq

4,1
3

4,0
E3

4,—1
Ey

4,-2
E;

So the differential dP-? starts at (p,q) and points to the place which is r steps
to the right and (r — 1) steps downwards. The relevant cochain complexes C,.[p]*
appear in the picture in the obvious way by the corresponding lines of slope —%1.

Note that all entries at (p, q) for p < 0 are {0}. So differentials beginning in the
region (p,q) with p < 0 are automatically trivial. This implies that all differentials
of the r-th page ending at (p,q) are trivial for p < r. Hence we get for r > p an

inclusion EF:f, — EP. Hence we can define

EPY = invlim, o EPY = ﬂ EP,

r>p

Note that for given (p, ¢q) we have
EP1={0} = E}}, =0 = E%7={0}.

We say that the spectral sequence collapses if all differentials are trivial. Note
that this implies EL'? = EP? = ER: for all r € Z=4, p,q € Z.

We call the spectral sequence a first quadrant spectral sequence if EP*? = 0 holds
for ¢ < —1 holds for r > 1.

A morphism fi": EX" — E'7 of cohomological spectra sequences is a family of
R-homomorphism {fP»4: EP4 — E'®} for r € Z2%, p,q € 7Z which is compatible
with the differentials dP7: EP9 — Eptra—r+l and (d)pd: /P9 - pre=matrol
and with the isomorphisms a?¢: Hy(C,[p]*) =N EPf and ()2 Hy((C")r[p]*) =N
B

The next lemma is a direct consequence of the Five-Lemma.

Lemma 26.5. Let fi"": Ei™ — E'2" be a morphism of cohomological spectral

sequences starting at d € Z='. Suppose that f19: ED'? — E'0'7 is bijective for all
p,q € Z. Then fP9: EP4 — E'P? js bijective for all v € ZZ4 1 {0}, p,q € Z.
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Consider a Z-graded R-module module H* = {H" | n € Z}. Tt is called descend-
ingly filtered if for every n € Z there is a preferred descending filtration

Hn — F—l,n+1 2 FO,TL 2 Fl,n—l 2 F2,n—2 2 .

with {0} = (1) 5o F"~7P. We say that a cohomological spectral sequence converges
to the descendingly filtered Z-graded R-module {H™ | i € Z} if there are for every
p,q € Z preferred R-isomorphisms

.q . , —1l,q+1 = ,
ﬂpq.FPQ/FP q _)Elgoq

We say that there are no extension problems for the homological spectral sequence
E% . converging to the descendingly filtered Z-graded R-module module H. if we
have
Y o H anp,p/Fn7p+1,q71.
p=>0

We say that the cohomological spectral sequence EY , converging to the filtered

Z-graded R-module module H, strongly collapses if it collapses and there are no
extension problems. In this rare and favourite cases we get

n=1[ei,,

p2>0

26.1. The convergence problem cohomology. Recall that the homological ver-
sions of the Atiyah-Hirzebruch spectral sequence converges to H,44(X) and the ho-
mological versions of the Leray-Serre spectral sequence converges to Hp44(E). The
main technical reason for this is Proposition which essentially says that
homology commutes with colimits indexed by N. Recall that this is not true for co-
homology, a correction term given by lim'-terms comes in, see Proposition
Therefore one needs extra assumptions to guarantee converges. The easiest way to
circumvent this problem is to arrange that the descending filtration reaches already
after finitely many steps {0}, or, equivalently, for every n € Z there exists a number
d(n) such that Fj, ,_, = {0} holds for p > d(n). This leads to the following result.

Theorem 26.6. Let H* be a cohomology theory with values in R-modules satisfying
the disjoint union axiom. Let X be a CW -complex and let p: E — B be a fibration
over a CW -complex B.

Then cohomological Atiyah-Hirzebruch spectral sequence converges to HPTI(X)
and the cohomological Leray-Serre spectral sequence converges to HPTI(E) if one
of the following conditions is satisfied:

(i) The CW -complex X respectively B is finite-dimensional;
(ii) The cohomology theory H* is bounded from below, i.e, there is an integer
d such that H9({e}) vanishes for ¢ < d;

(iii) The spectral sequence is bounded in the sense that for any n € Z the set
{pez="|E2, , +#0} is finite.

Remark 26.7. Recall from Proposition [16.11][(ii)] that there is an exact sequence
(26.8) 0 — invlim;,_, H" 1 (X3) = H"(X) — invlimy_, oo H"(X3) — 0.

In the general case one can only expect that the Atiyah-Hirzebruch spectral se-
quence converges in some sense to invlim, ,.H"(X,) and that it gives no in-
formation about invlimllj SooM™M(Xp). Actually, there exists a descending filtra-
tion FP"~P invlim,, o HZ (X, E) for p=10,1,2,... of invlim,, o, H3(X,; E) and
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the following exact sequence, see [33 Theorem XII1.3.4 on page 615 and Theo-
rem XII1.3.5 and Theorem XII1.3.6 on page 616],

0 — FP%invlim, o HETY(X,,)/FP T4 invlim, o HE (X)) — BL4

HE (X ppom, Xp) — invlim,, o HE (X iy Xpo1).-

— invlimin_>O<> oo
Recall that the Mittag-Leffler condition is a good criterion to guarantee that invlim®-
terms are is trivial.

If none of the conditions appearing in Lemma [26.6| are satisfies the general strat-
egy is to compute by the Atiyah-Hirzebruch spectral sequence H™(X,) for each
p € Z=° including the obvious map H"(X,) — H"(X,_1) and then to apply the
exact sequence (26.8). In good situations each map H"(X,) — H"(X,_1) is surjec-
tive, or, more generally, the Mittag-Leffler condition is satisfied, which implies that

the canonical map H"(X) =N invlim, . H"(X,) for n € Z. is an isomorphism.

Example 26.9 (Topological K-theory of RP*). Let us describe what happens
for the topological K-theory of RP>. So first one tries to compute K*(RPY) for
d € ZZ'. The E?-term of the Atiyah-Hirzebruch spectral sequence looks like

Z if p=0 and q even;

Z if p=d and d is odd and :
EDY = HP(RPY; K7({o})) Lo raneanocame e
7/2 if2<p<dandpis even and ¢ even;

{0} otherwise.

Hence all the second differentials are obviously trivial except the differentials
starting at the place (p,0) for p even. These are also trivial by the following
argument. Consider the map pr: RP? — {e}. It induces maps of cohomological
spectral sequences from the Atyiah-Hirzebruch spectral sequence of {e} to the one
of RP?. Hence the following diagram commutes

0,q

HO({o}, K({0})) — 2 H?({o}; K11 ({o})) = {0}

Ho(pr;K"({O}))Jﬁ JHZ'(pr;qu({-}))
0,9

HO(RP?, K({#})) —————— H*(RP; K~'({})).

This implies that the map dy'?: HO(RP%; K9({e})) — H?({e}; K9~ '({e})) is trivial,
Using induction over r one can show by a similar argument that all differentials
dy, , vanish. In other words the cohomological Atiyah-Hirzebruch spectral collapses.
This implies
Z if p=0 and g even;
B — HP(RPd; K({e})) / ?fp =dand d is od..d and q even;

Z/2 if2<p<dandpis even and g even;
{0} otherwise.

This implies
Y/ if d is odd;

K'(RPY) =
(RP) {{O} if d is even;

and there is descending filtration

KO(RPd) _ F—l,d+1 ) FO,d ) Fl,d—l ) F2,d—2 2...D FO,d > F—l,d-‘rl _ {O}
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such that

Z/2 if pis even and satisfies 2 < p < d;
Fp,d*P/F;DJrl,d*P*l ~!7 ifp=0;
{0} otherwise.

Now one has to solve the extension problems and that requires additional input
going beyond the spectral sequence which we will not explain here. At least we
state what the result is. Namely, one gets

K'RPY) =7 @ 7/2" ford=2kord=2k+1

and that the maps K°(RP4!) — KO(RP9) are given under these identification by
the identity if d = 2k is even and by idz @ pr for the projection Z/2F+1 — 7 /2k
if d = 2k + 1. Hence these maps are always surjective and the Mittag-Leffler
condition is satisfied. This implies invlimj_, . H"~'(RP*) = {0}. We get from the
exact sequence an isomorphism

K°(RP>) 2 invlimy,_,o0 (Z @ Z/2%) = Z @ 75,
where Z5 = invlimy_,o, Z/2" is the ring of the 2-adic integers. Moreover, we get
K'(RP>) = {0}.

26.2. Outlook: The Completion Theorem of Atiyah and Segal. Let G be
a finite group. We denote by R¢(G) the complex representation ring of G. The
underlying abelian group is the Grothendieck construction applied to the abelian
semigroup of isomorphism classes of finite dimensional complex G-representations
under direct sum. The ring structure comes from the tensor product of complex
vector spaces and the diagonal G-action. The unit element is given by C with
the trivial G-action. Consider the ring homomorphism dim¢: R(G) — Z sending
a finite-dimensional complex G-representation to the dimension of the underlying
complex vector space. The augmentation ideal I = I(G) of R(C) is its kernel.
Taking the k-th fold product I*¥ of I yields a descending filtration

R(G)D2IDIEDFP D,
The I-adic completion of Rc(G) is defined to be the ring
Re(G)T = invlimy o Re(G)/TF.
The Atiyah-Segal Completion Theorem, see [2], says:

Rc(G)I n even;

K™(BG) = {{0} n odd.

This yields to the following explicite calculation of K°(BG), see [18, Theorem 0.3].
If G, C G is a p-Sylow subgroup, restriction defines a map I(G) — I(Gp). Let
I,(G) be the quotient of I(G) by the kernel of this map. This is independent of the
choice of the p-Sylow subgroup since two p-Sylow subgroups of G are conjugate.
There is an obvious isomorphism I,,(G) =N im(I(G) — I(G,)). For a prime p denote
by 7(p) = | con,(G)| the number of conjugacy classes (g) of elements g € G whose
order |g| is p? for some integer d > 1. Then there are isomorphisms of abelian
groups

K'BG) = Zx |] LG ewZy=Zx [] (Zp)™;
p prime p prime

K'(BG)

1%

0.
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The isomorphism K°(BG) = 7 x I, prime In(G) ®z Z,, is compatible with the
standard ring structure on the source and the ring structure on the target given by

(m,up @ay) - (n,vp, @by) = (mn, m-vp @by +n-up @ ap + (upvy) @ (apbp))

for m,n € Z, up,v, € I,(G) and ayp,b, € Z, and the obvious multiplication in Z,
I,(G), and Z,.

This computation is remarkable since one does not have such a formula for the
singular cohomology H*(BG;Z). If G = Z/2, then BZ/2 is PP and we rediscover
the computation above based on the Atiyah-Hirzebruch spectral sequence.

Example 26.10 (G = Z/2). Note that Rz(Z/2) is as abelian group isomorphic to
72 with the class [C] of the trivial Z/2-representation C and the class [C~] of the
Z/2-representation C~ given by —idc: C — C as basis. The augmentation ideal is
I={n-([C7]—[C)])|n € Z}. Sincewe have ([C~]—[C])? =2 (]C"]—-[C]), we
see that IF = 2% . I. We get an isomorphism of abelian group Z x I =N Rc(Z)2)
sending (n,x) — n - [C] + 2. Using this isomorphism the quotient R¢(Z/2)/IF?
can be identified with Z x Z/2* and the projection Rc(Z/2)/1¥*t — Rc(Z/2)/1*
becomes idz x pr;, for the projection pry,: Z/2F — Z/2%~1. Hence we get

Rc(Z/Q)/H\% 7 X Zs.

This confirms all the computations and statements above in the special case G =
Z)2.

26.3. Multiplicative structures. The Atiyah-Hirzebruch spectral sequence in-
herits the following multiplicative structure if we apply it to a cohomology theory
with values in R-modules coming with a multiplicative structure. For every r € Z=2
the page E** becomes a bi-graded ring, i.e., for pg,p1,€ Z=° and qo,q1 € Z we
have a R-bilinear maps

Efo,qo x Eflv‘]l — EfoJrPMIoJrql, Y= T-y

and an element 1 € E%° such that the following holds for x; € EP#:49 for i = 0,1,2:

(CE0'$1)‘$2 = 300'(%1 '$2);
To- Tl = (_1)(P0+q0)'(P1+Q1)x1 - o;
1 o = Xg-

The differentials satisfy
dPOTPLAOTA (g ) = dPO D (1) -y + (—1)POFDO L g - dPD ().
The identification of the E?-term
EYY S HP (X H,)

is compatible the products up to a sign (71)(’)0*‘1“)1’1. The descending filtration
FP9 of HPT4 is compatible with the multiplicative structure of H* in the sense
that for g € FP>% and z; € FP18 we have xg U zy € FPotPudotdi  and the
identification

D,q p—1,q+1 ~ 17p,q
is compalible with the induced products.

All the analogous statements hold for the Leray-Serre spectral sequence, see [33]
Theorem XII1.8.10 on page 668].
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27. EDGE HOMOMORPHISMS

Consider a homological spectral sequence E , starting at d € Z=22 and converg-
ing to the ascendingly filtered Z-graded module H*. Then each differential dp.q
starting at (0,q) has zero as target and hence is trivial. Therefore E”Jr1 is a quo-
tient of Ef ,. Hence we get a surjective homomorphism Ed’q — Eg5, Recall that
we have an identification EQ:¢ = F%9 since F~19+t1 = {0}. As F% C H,, we
obtain a canonical homomorphism, called gth edge homomorphism at (0,q),

edgeq ,: Eg’q — Hg

which is the composite Eg,q — Ego, = FO1 C H,.

Consider a cohomological spectral sequence E;* starting at d € ZZ? converging
to the descendingly filtered Z-graded module H*. Then each differential d_™+"~1
ending at (0, ¢) has zero as source and hence is trivial. Hence ET 1 is a submodule
of E%4. Therefore we get an injective homomorphism E%¢ — Ed 7, Recall that
we have an identification E%4 = H49/F%49. Hence we obtain a canonical homomor-
phism, called edge homomorphism at (0,q),

edge®?: HI — Eg’q

which is the composite H9 — H9/F%4 = E%4 C B9,

Consider a homological spectral sequence Ej , starting at de 722 converging
to the ascendingly filtered Z-graded module H,, which is a first quadrant spectral
sequence. Then each differential dj,, _, ., ending at E} ; is trivial. Hence ETJr1 i
a submodule of E , for 7 > d. This implies that E}% is a submodule of £, 0 Recall
that we have an 1dent1ﬁcat10n Hp/Fpo = EJ%- Hence we get a homomorphlﬁm

edgep70: H, — Eg,o

called edge homomorphism at (p,0).

Consider a cohomological spectral sequence E;" starting at d€ Z=? converging
to the descendingly filtered Z-graded module H™ which is a first quadrant spectral
sequence. Then each differential d, , starting at (p,0) has zero target and hence
is trivial. Hence Effl is a quotient module of EPC. Therefore we get a surjective
homomorphism Eg’o — EP0. Recall that we have an identification E2.0 = FP:0 C
‘HP. Hence we obtain a canonical homomorphism

edge??: ES’O — HP

called edge homomorphism at (0,q).
For the homological Atiyah-Hirzebruch spectral sequence edge, , can be identi-
fied with the canonical map

@ Hq(ic): Ho(X;Hq({e})) @ Hq({o}) = Hq(X).
Cemp(X) Cemo(X)
where ic: {8} — X is any map with image in C'.

For the cohomological Atiyah-Hirzebruch spectral sequence edgeo’q can be iden-
tified with the canonical map

II #Go): HIX) = HOX:HI{e}) =[] H'({e})
Cem(X) Cemo(X)
The edge homomorphism edge,, o: H,(X) — Hy(X;Ho({e})) does not have in
general an explicite description but can be very interesting in special cases, see
Example The same comment applies to the cohomological edge? 0
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For the homological Leray-Serre spectral sequence for the fibration F — E 2 B
with a connected CW-complex B as base space edge, , can be identified with the
canonical map

Ho(B;Ho(F)) = Z ®zx He(Fy) — He(E)
where b is any point in B, Fy, = p~1(b) is the fiber over b, the 7 = m(B,b)
action on H,(F,) comes from the fiber transport, and the map is induced by
Hq(jo): He(Fy) = Hq(E) for the inclusion jy: Fy, — E.
For the cohomological version edge™? can be identified with the map
HU(E) — HY(B;HU(F)) = HU(Fy)"
induced by H%(jp): HU(E) — HI(Fp).

For the homological Leray-Serre spectral sequence for the fibration F — E 2> B
with a connected CW-complex B and a path connected F' and singular homology
H,.(—; R), the edge homomorphism edge, o can be identified with the canonical

o Hy(p; R): Hy(E; R) — H,(B, Ho(F, R)) = H,(B; R)

For the cohomological Leray-Serre sequence for the fibration F — E %5 B with
a connected C'W-complex B and a path connected F and singular cohomology
H*(—;R), the edge homomorphism edge”” can be identified with the canonical
map

HP(p; R): HE(B, H°(F,R)) = H?(B; R) — HP(E; R)

These identifications of the edge homomorphisms at (0, ¢) follow for the Atiyah-
Hirzebruch spectral sequence by naturality applied to the inclusions {e} — X.
For the Leray Serre spectral sequence one uses naturality applied to the map of
fibrations from p: E — B to idg: B — B induced by p and idg and from pr: F' —
{e} to p: E — B induced by ¢ and the inclusion {e} — F.

Example 27.1. Consider the homological Atiyah-Serre spectral sequence and as-
sume (for simplicity) that the CW-complex X is connected. Let i: {o} — X be
the inclusion and pr: X — {e} be the projection. Then the following diagram
commutes

Ho({o}: Hy({s}) Ha({o)
Ho(i;Hq({'}))J% J?-lq(i)
Ho(X:Hy ({#))) Hy(X)

edge({®})o,q

edge(X)o,q
The right vertical arrow is injective as it has the retraction H,(pr). The left vertical
and the upper horizontal arrows are obviously bijective, Hence the lower horizontal
arrow is injective. This implies for the homological Atiyah-Serre spectral sequence
for X that Ej , = Eg°, holds and all differentials dj. , .., ending at (0, ¢) are trivial.

Analogously one can show for the cohomological Atiyah-Hirzebruch spectral se-
quence that Eg " = E%:9 holds and all differentials starting at (0, q) are trivial.

Now suppose that the CW-complex X is d-dimensional. Then the same consid-
erations yield for the Atiyah-Hirzebruch spectral sequence edge homomorphism

edged’q: Hq+d(X) — Hd(X;Hq({°}))§
edge®™@: HY(X;HT) — HIT(X).

Now suppose that the CW-complex B is d-dimensional. Then the same consid-

erations yield for the Leray-Serre spectral sequence edge homomorphism
edge, 4: Hyra(E) — H(?+d(B§ Hq(F));
edge®®: HL(B;HI(F)) — HITYE).
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Next we suppose that H,({e}) = {0} for ¢ < 0. Then we obtain for the Atiyah-
Hirzebruch spectral sequence edge homomorphisms
edgep,05 Hp(X) — Hp(X;Ho({e}));
edge”?: HP(X;H°({e})) — HP(X).
and for the Leray-Serre spectral sequences edge homomorphisms
edge,o: Hp(E) — H'(B;Ho(F));
edge”’: HE(B;HY(F)) — HP(E).
Example 27.2 (Edge homomorphisms for bordism theory). Consider the homol-
ogy theory oriented bordism Q.. It satisfies Qq({o}) = {0} for ¢ < —1. We obtain
an isomorphism Qo({e}) — Z by sending a point {8} with the orientation + to
+1. Hence we obtain an edge homomorphism
edge, o1 p(X) — Hp(X;Q0({e})) = Hy(X;Z).

It sends the class of a closed oriented manifold M with reference map f: M —
X to the image of its fundamental class [M] under the induced homomorphism
Hy(f,Z): Hy(M;Z) — Hy(X; Z).

Consider the homology theory unoriented bordism N,. It satisfies NV, ({e}) = {0}
for ¢ < —1. We obtain an isomorphism Np({e}) = Z/2 by sending a closed
manifold M to the image of its cardinality under the projection Z — Z/2. Hence
we obtain an edge homomorphism

edgey 0 Ny(X) = Hy(X; No({o})) = Hy(X;Z/2).

It sends the class of a closed manifold M of dimension p with reference map f: M —
X to the image of the element in H,(M;Z/2) = H°(M;Z/2) = map(mo(M),Z/2)
given by the constant function with value 1 under the induced homomorphism
Hy(f,Z/2): Hy(M;Z/2) — Hp(X;Z/2).
Example 27.3 (£2,(X) for n < 4). We have already explained that Qy({e}) = Z
in Example We have Q,({e}) = {0} for ¢ = 1,2,3. The signature defines an
isomorphism sign: Q4({e}) = Z.

Consider a connected CW-complex. We conclude from the Atiyah-Hirzebruch
spectral sequence and Example 27.2] that we obtain an isomorphism

sign x edgey ot Qu(X) = Z x Hy(X;Z)
sending the class of a closed oriented manifold M with reference map f: M — X
to (sign(M), Hy(f;Z)([M])), that we obtain for n = 1,2, 3 isomorphisms
edgeyo: U(X) = Hy(X:Z), (M. f) = Ha(f5Z)([M])
and that the projection pr: X — {e} induces an isomorphism

Qo(pr): Qo(X) = Qo({e}) = Z.

Proposition 27.4 (Serre sequence). Let F S EXL Bbea fibration over a con-
nected CW -complex B with path connected fiber F'. Suppose the following conditions
for k,l € Z=1:

(i) The action of m1(B) on Hy(F') induced by the fiber transport is trivial for
qez2%;
(i) H;(B) vanishes for 0 < i < k;
(11i) H;(F) vanishes for 0 < i <I.
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Then there exists an exact sequence

1 . Anti—
Hy 1 (F) M) Hyi1-1(E) M Hy1-1(B) ==5% Hyyy_o(F)

Mi2@ 2 gy 20, g gy B0, gy g,

Proof. We apply the Leray-Serre spectral sequence. We have the exact sequence
0 — H,(B) ®z Hy(F) — Eiq = H,(B; Hy(F)) — Tori(Hp—1(B), Hy(F)) — 0.
Hence Eg 4 vanishes if one of the following conditions are satisfied

e 0<p<kandgq>0;
ep>0and0<qg<l.

So for k =1 = 3 the second page looks in the range 0 < p < 5 and 0 < ¢ < 5 like

Hs(F) 0 0 E3 5 Efs Eg s
H,(F) 0 0 E3, EY 4 EZy
Hy(F) 0 0 Bz, By, B,

0 0 0 0 0 0

0 0 0 0 0 0

Z 0 0 H3(B) Hy(B) H;(B)

Hence the differential dj o: E} o — E,_, .y vanishes for 2 <7 <p < k+1 and
the differential dy ., ,.: B 4, — Eg, is trivial for 2 <r <g+1<k+1-1
This implies £}, = E721,0 = H,(B) and Ef, ; = Eg’nfl = H,_1(F) for n <
k+1—1. We conclude E}%, = ker(d}, o) and EF5,_; = cok(dy, ) for the differential
dpot Eg = Ho(B) = Eg,,y = Hy1(F) if n < k+1—1 holds. Now we get
from the construction and the identification of the edge homomorphism an exact
sequence

Hy 1 (F) M) Hii-1(E) M Hiii—1(B) M) Hy_o(F)
Hy 1 2(4) 8—2>H1(F) Hiq(7) Hl(E) Hiy(p) Hl(B) S0
if we put 9, = dj, ;.
O

28. APPLICATIONS OF THE COHOMOLOGICAL LERAY-SERRE SPECTRAL
SEQUENCE

28.1. The Gysin sequence. Consider a fibration S' — E 7, B over a connected
CW-complex B with fiber S! for [ > 1. Let H*(—;G) be singular cohomology
with coefficients in the abelian group G. Then H?(S';G) is G for ¢ = 0,1 and
trivial otherwise. The G-action of m = 7;(B) on H°(S%; @) is trivial and hence
HE(B; H(S; G)) = HP(B,G). We get HE(B; H°(S';G)) = HE(B;G,,) for the
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m-action on G given by w-g = p(w) - g for w € 7w and g € G for the homomorphism
p: ™ — {£} sending w € 7 to the degree of the map S — S! given by the fiber
transport applied to w. Then the Es-term and hence the E,-term for r € ZZ211{cc}
of Leray-Serre spectral sequence for f and H*(—; G) has non-trivial entries only in
the 0-th row and in the I-th row. The only non-trivial differentials appear on the
(I + 1)-th page and are given by

N 1
diyy: Eff = H(B;Gp) — E;f?t%—&-l,o = Hp1111(B; G).

So for I = 2 the (I + 1)-th page looks like

HQ(B;GP) H;(B5Gp) H?r(B?Gp) Hg(B3Gp) Hﬁ(B5Gp)

1,3
d3

H°(B;G) HY(B;G) H?*(B;G) H3(B;G) HY(B;G)

So we get exact sequences

dr:!
0 — EX! — H?(B;G,) — HPT'Y(B;G) — E2HFL0 5 {0},
We have the ascending filtration
Hn(E,G) — Fn—l,l ) Fn,O D {0}

with filtration quotients H™(E,G)/F™° = E%"b and F™0 = E%0. We can splice
these data together to a long exact sequence

n—1—1,1

n— d 1 n;
(281) - 2 B G) s (856 D

H"(E;G)
g+l

dar—bt HH(f.¢
(f;G) H"'H(E;G) 1+1

2 BB G) < HEPU(B:G)
So far this is just dual as the in the homological case. But now one can use
the multiplicative structure on singular cohomology and the induced multiplicative
structure on the Leray-Serre spectral sequence to get a better understanding of the
differentials d?_;ll*l’l in the case, where p is trivial and G is actually a commutative
ring R. Let 1 € H°(B; R) = R be the generator given by the constant function from
the set of singular zero-simplices in B to R with value 1 € R. Let ey € H'*1(B; R)
be the image of 1 under the differential d?ﬁl: HY(B;R) — H"(B; R), where we
consider 1 an clement in E%',. Then we compute for z € H"*~!(B; G) which we

I+1-
can think of as an element in both EZL+_11_Z’I and in Eln+—11—l,0.

n—1-1,1 n—1-1,1 N n— n—1—1,
din @) =dig T vy =d ) U+ ()" 1udr T (@)

=epUx+ (-1)" 1 1U0=epUn.
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Hence the long exact sequence ([28.1) becomes

(28.2) --- UL g R) Y5 mr(B; R) Y, go(gs R)
& n—l1 efU— n+1 Hn+1(f§R) n+1 17,1:11_“1’]'
3 gU(B; R) s gty (B R) LU, ey gy

Consider the universal principal S*-bundle f: ES* 1, BS1. An explicite model
is given by S! — S — CP*. Recall that CP> is a model for K(Z,2) and we get
for any C'W-complex B an isomorphism

[B,CP®] = H*(B;Z), 9]~ H*(g;Z)(cy).

Note that f is orientable, i.e., has trivial fiber transport. Since ES! is contractible,
we get from the Gysin sequence (28.1) isomorphisms for n € Z=0.

ef U—: H"(CP®;Z) = H"t2(CP™; 7).

Since CP* is simply connected H!(CP>;Z) vanishes. Hence we obtain the follow-
ing theorem.

Theorem 28.3. The cohomology ring H*(CP>°;Z) is isomorphic to the free poly-
nomial Z[x] for a generator x in degree 2 which is given by ey € H*(CP*>;Z).

28.2. The first Chern class of a principal S'-bundle. Let p: E — B be a
principal S'-bundle. Recall that up to homotopy there is a map c,: B — CP>®
which is up to homotopy uniquely determined by the property that the pullback
of the universal principal S'-bundle f: ES' — BS! with ¢, is isomorphic as a
principal S'-bundle is isomorphic to p. Denote by

(28.4) ci(p) € HA(B;Z)

the preimage of e; € H2(CP*°;Z/2). This element is called the first Chern class
of p. It has the following properties.

Theorem 28.5. (i) Consider a map f: A — B between CW -complexes. Let
p: E — B be a principal S*-bundle over a CW -complex B. Let the prin-
cipal S*-bundle f*p over A be the pullback of p with f. Then we get

c(f*p) = f*(ei(p));

(ii) Let p1: By — B and py: Eo — B be principal S*-bundles over the CW -
complex B. Then they are isomorphic as principal S*-bundles if and only

c1(p1) = ca(p2) holds;
(iii) Consider a CW -complex B and an element y € H?(B;Z). Then there
exists a principal S1-bundle p: E — B with

c1(p) = .

28.3. A variation of the Leray-Hirsch Theorem. We mention the following
variation of the Leray-Hirsch Theorem.

Theorem 28.6 (Leray-Hirsch Theorem for singular cohomology with field coeffi-

cients). Let k be a field and F LS EL Bbea fibration over a connected CW -
complex B. Suppose that the following conditions are satisfied:

(i) The m1(B)-action on the singular cohomology H* (F'; k) with coefficients in
k coming from the fiber transport is trivial;
(ii) The k-module HP(B;k) is finitely generated for p € Z=°;
(i1i) The map i*: H*(E; k) — H*(F; k) is surjective.
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Then we obtain an isomorphism of graded H*(B;k)-modules
H*(B; k) ®x H*(F; k) = H*(E; k)

where we equip H*(E; k) with the H*(B; k)-module structure coming from the cup
product on H*(E; k) and the homomorphism of graded k-algebras p*: H*(B; k) —
H*(E; k) and we equip H*(B; k) @, H*(F; k) with the obvious H*(B;k)-module
structure given by u @ (v @ w) = uwv @ w for u,v € H*(B; k) and w € H*(F; k).

If we furthermore assume that H*(F; k) is a free graded commutative k-algebra,
then we obtain an isomorphism of graded commutative k-algebras

H*(B; k) @x H*(F; k) = H*(E; k)

Proof. Since HP(B;k) is finitely generated as k-module and k is a field, we can
identify the second page of the Leray-Serre spectral sequence using the Universal
Coefficient Theorem to be

Ey? = HP(B; HY(F; k)) = homy (H,(B; k), HI(F k)
= homy (H?(B; k), k) @y HY(F; K)) = HP(B; k) @5 HY(F; k).

This identification is compatible with the multiplicative structure coming from
the cup product on singular cohomology and is natural in B and F'.
Consider p, g € ZZ°. We conclude that the multiplication map

,0 0, )
EP° @), B9 — B4

is bijective for p,q € Z=°. Since i*: HI(F; k) — H(FE;k) is by assumption surjec-
tive, the differential d3? is trivial. Since the differential d5'? is a derivation, we get
for a € E2° and b € EQ

B a-b)=d2°a)-b+ (=1)?-a-dy'(b)=0-b+ (=1)"-a-0=0.

Hence all second differentials are trivial and we have EY? = EF9. This argument
can be repeated and yields the equality E}? = EPY for all p,q € Z=° and r € Z=3.
Hence we get an identification

ERS = HP(B; k) @ HY(F; k).

Fix a section s*: H*(F; k) — H*(E; k) of the surjective map of graded k-modules
i*: H*(E;k) — H*(F;k). By inspecting the filtrations of H*(FE; k) appearing in
the Leray-Serre spectral sequence and the Five Lemma, one easily checks the map

o*: H*(B; k)@ H*(F; k) — H*(E; k), a®bw— p*(a)Us*(b)

is bijective. Obviously it is a map of graded H*(B;k)-modules.

Now suppose additionally that H*(F;k) is a free graded k-algebra. Then we
can choose s* such that it becomes an map of k-algebras and hence ®* is a map of
graded k-algebras. O

If we replace in Theorem 28.6]the condition that the k-module H (B; k) is finitely
generated for p € ZZ° by the condition that there exists an element d € Z=!
such that the k-module HY(F';k) is finitely generated for 0 < p < d and vanishes
for p > (d + 1), then Theorem follows from Theorem [22.4f The proof of
Theorem in general is an obvious variation of the one for Theorem
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28.4. An example concerning the Leray-Hirsch Theorem One may
ask whether one can replace in Theoremthe condition that H*(i; k) is surjective
by the condition that H*(p;k): H*(B;k) — H*(E;k) is injective. This is not
the case, as we will show by constructing a fibration $3 x §2 — E % $2 for
which H*(p): H*(B) — H*(F) is injective but the Leray-Serre spectral sequence
has a non trivial differential and hence does not strongly collapses as predicted
by Theorem [28.6] Figuring out this example is a good exercise for working with
spectral sequence and fibrations.

Let S3 — S7 % §% be the quaternionic Hopf-fibration for H? using the iden-
tification S* = HP'. Note that S® inherits from its embedding into the skewfield
of quaternions H the structure of a topological group and the quaternionic Hopf-
fibration is actually a principal S3-bundle. Let c: S? x S2 — S* be the map
obtained by collapsing the 2-skeleton of S? x S? to a point. This is a map of closed
oriented smooth 4-manifolds of degree 1. Consider the pull back

Then §: E — S? x S? is a fibration. Define

p: BL 5% x 8% P g2

where pr; is the projection onto the first coordinate. This is a fibration as g and
pr; are fibrations. Let s € S? be the standard base point. Put F = p~1(s) =
7 '({s} x S?). We have the pullback

F—— 57

L)

5;2 5;4

cOoig

for the inclusion iy: S? = {s} x §% — 5% x §2. Since coiy is the constant map and
q is a fibration with fiber S3, we get a homotopy equivalence F ~ $2? x S3. This
finishes the construction of the fibration S x 2 — F % 52 Since S? is simply
connected, its fiber transport is trivial. The Leary-Serre spectral sequence of it has
the following second page and there is at most one differential, namely dg,o, which
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may be nontrivial:

HO(S% HP(S% x §2)) = 7 0 H2(S2%; H5(58 x §2)) = 7
HO(S2% HA(S3 x 52)) =0 0 H2(S2% HA(S3 x §2)) 20
HO(S% H3(S® x $2)) = 7 0 H2(S2% H3(S° x §2)) = Z

030
HO(S% H2(S® x 52)) ;\o H2(S2%; H2(S3 x §2)) = Z
HO(S2% HY(S3 x §2)) 20 0 H2(S2% HY(S3 x 52)) =0
HO(S% HO(S® x $2)) = 7 0 H2(S2% HO(S8 x §2)) = 7

We obtain from the Leray-Serre spectral sequence that H*(p): H*(S?) — H*(E)
is injective and we have the exact sequence

3,0

{0} —» H3(E) — H°(S% H3(S® x §%)) =~ Z N H?(S% H?*(S% x §%)) =7

Hence d5° is non-trivial if and only if 3(FE) vanishes. Now the Gysin sequences

of 3 5 E % 52 x 52 and S% — S7 % S4 fit together to a commutative diagram
with exact rows

H3(S? x §%) = {0} —— H3(E) —— H°(S? x §%) —— H*(S%)

\HS(C) \HS(C) Z\HO(C) 2JH“(C)

H3(S*) = {0} ——— H*(S") = {0} ——— H(S*) ——— H*(S?)

The Five Lemma implies that H?(E) vanishes and hence dy° is non-trivial. We get

Z n=0,7;
72 =2,5;

Hn(E)%’ n_ s Yy . .
{0} n=13,6,;orn > 8§;

cok(da?) n = 4.
for a finite cyclic group cok(dg’o). So we get by the Universal Coefficient Theorem

Q n=0,7
H"(E;Q)={Q* n=25;
{0} n=1,3,4,6,;0rn > 8,

whereas

Q n=0,3,47;
(H*(S*Q) ®g H*(S* x §%,Q))" =2{Q* n=25;
{0} n=1,6,orn>8.
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28.5. Computation of the singular cohomology ring with rational coeffi-
cients of U(n).

Theorem 28.7. The singular cohomology ring H*(U(n); Q) with rational coeffi-
cients of the Lie group U(n) is the exterior algebra Ag(x1,za,...,xy,), where the
degree |x;| of i is 2i — 1.

Proof. We use induction over n.

In the induction beginning we have U(1) = S* and we know already the equality
H*(S?"71:Q) = Ag(wy,) for |z, =2n — 1.

In the induction step from (n—1) to n for n > 2 we use the fibration U(n—1) —
U(n) — S?"~! coming from the obvious U(n)-action on S?"~1. Since S?"71! is
(2n — 2)-connected, the map U(n — 1) — U(n) is (2n — 2)-connected. The relative
Hurewicz Theorem [12.11] implies that Hy(U(n — 1);Z) — H(U(n);Z) is bijective
for k < 2n — 3 and surjective for k = 2n — 2.

We conclude from Universal Coefficient Theorem that the map i*: H*(U(n); Q) —
H*(U(n—1);Q) is surjective, since H*(U(n —1); Q) vanishes for k > (2n—1). Now
Theorem yields an isomorphism of graded k-algebras

H*(U(n);Q) = H*(U(n — 1);Q) @5 H*(5*" 71 Q)

= AQ(l‘l, To, ... ,xn_l) (290 AQ(xn) = AQ(l‘l, To, ... ,xn).
O
28.6. Singular Cohomology of Q93. Recall that we have H*(S®) = Ayz(z) =
Z[x]/(x?) for |z| = 3. We apply the Leray-Serre spectral sequence to the fibration

053 — P(S3) — S3. Then the third page agrees with the second page and looks
like

H5(Q.53) HS(053) 0
H(Q.53) H5(053) 0
HA(QS3) H4(QS?) 0
H3(Q.S3) H3(053) 0
H2(Q53)

H2(QS?) 0

HY(QS?) HY(QS?) 0

HO(Q53) HO(Q53) 0
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The fourth page agrees with the rth page for r € ZZ%*. Since the Leray-Serre
spectral sequences converges to P(S3) which is contractible and hence satisfies
H"(P(S®)) = {0} for n > 1, all the differentials d3¢ for ¢ > 3 are isomorphisms
and we have H'(Q93) = {0}. Hence H"(2S%) = {0} for odd n and H"(QS?) = Z
for even n. Therefore the E3-page reduces to

H5(QS3) =7 0 0 HS(QS%) =7 0
0 0 0
H4(QS3) =7 0 0 H*(QS3) =7 0

0 0
H?(QS%) 0
0 0 0
HO(QS3) =7 0 0 HO(QS3) =7 0

The obvious identification

R = B} = HP(S% HY(Q'S®)) = HY(S%) © H(QS?)

is compatible with the obvious product structure on H?(S®)® H?(QS53). Hence the
pairing

p,0 0,9 D,q
E3 ®E3 —>E3

. . . 0,2
is an isomorphism and we can choose generators z, € F3*? for ¢ € Z=° such that

2g-dY%(21) = dy* ™) (2,41) holds for ¢ € ZZ° and z-u = u holds for all u € EL*.
Then we denote the E3-page as follows indicating generators
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Z{z) 0 0 Z 0

Next we we show by induction over n € ZZ! that 2z} = n!- z, holds. The
induction begin n = 1 is trivial. The induction step from n to n + 1 for n € Z=!
follows from the following calculation, since dg’Q(nH) is bijective.

V) = G )
dy®(21) 2 + 20 - dg™" (41)
dg’Q(zl) nlz, + 21 - dg’%(n! “Zn)
= nlz,-dy?(z) +nl -z - dy? (z0)

AP ) ol 2y - dS2(21) - 2

= nl

= - dy* Y () Az (n— D) 2o dY(2)
= o dg? " () ez 2T dS ()

= nl-d)* " (zgn) 2 dy2 (1)

= - dy?" T () Fnenl oz, - dS2 (2)

= - d?" T ) Fnenl - dYP T (24)

= (n+ 1) (2 4)

dg,Q(n+1)((n + 1) zpg).

Hence the graded ring H*(23S%) agrees with the so called divided power algebra
which is denoted by
vy oyt
Z|:yaa7"':| .
217 31" 4l
where y has degree two and corresponds to z; in the notation above. Explicitly the
underlying graded Z-module has Z as entry in degree n if n € ZZ° and n is even,
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and {0} otherwise. If z, is the standard generator of the 2nth module, then the
multiplication is given by the formula

(m+n)!

Zm * "n = | 1

* Zm4n-
Note that the divided power algebra is isomorphic to Z[y] for |y| = 2 as graded
abelian group, but not as graded commutative ring.

Note that in this argument we have computed the cohomology of the fiber of the
fibration Q5% — P(S3) — S3 from the knowledge of the cohomology of the total
space and the base base, whereas before we have always computed the cohomology
of the total space from the one of the fiber and the base space.

28.7. Computation of 7§. We give another proof that 7§ = Z/2 holds. Because
of the Freudenthal Suspension Theorem it suffices to prove m4(S%) = Z/2.

Choose a map f: S* — K(Z,3) which induces an isomorphism 73(f). We can
turn it into fibration f: E — K(Z,3). Let F be its fiber. We conclude from the long
homotopy sequence of f that F is 3-connected and 74(F) 2 74(S%). By the Hurwicz
Theoremwe get Hy(F) = 74(S3). So it remains to prove Hy(F) = Z/2.

We have the fibration QK (Z,3) — F — E. Since E is homotopy equivalent to
S$3 and CP* is homotopy equivalent to QK (Z,3), there exists a fibration CP> —
F £ S3 Recall that the cohomology ring H*(CP*) is Z[c] for |¢| = 2 and the
cohomology ring of H*(S3) is Z[z]/(«?) for |z| = 3.

Next we apply the Leray-Serre spectral sequence to the fibration p and singular
cohomology with Z-coefficients. The second page is concentrated in the two columns
over 0 and 3. Hence it agrees with the the third page:

Z{c%) 0 0 Z{x) 0

Here we also indicate the generators of the infinite cyclic groups Z. The differential
dg’Q is an isomorphism as H?(F) vanishes. Without loss of generality we can assume
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dy?(c) = z. We claim
dg’%(ck) =k-F o
The induction begin k£ = 1 has already been taken care of. The induction step

from k > 1 to (k+ 1) follows from the following computation using the fact that
differentials are derivations.

AP (A1) = g9 (o k) = d92(c) - ¢ + - dSPF(cF)

—z-F e k-dFlr=k+1)- &

This implies

Z/k ifi=2k+12>5;
H(F)={z i=0;
{0} otherwise.
An easy application of the homological Leray-Serre spectral sequence to the fibra-
tion CP* — F — S® shows that the singular homology H;(F) of F is finitely

generated for all i € ZZ°. We obtain from the Universal Coefficient Theorem the
exact sequence

0 — Bxty(H;_1(F),Z) — H'(F) — homgy(H;(F);Z) — 0.

Since H;(F) is finitely generated, homy(H;(F');Z) is a finitely generated free abelian
group. Since H'(F) is a finite abelian group for i > 1, we conclude for i > 1 that
tors(H;—1(F)) = H;_1(F) holds and we get

HY(F) = Ext}(H;_1(F),7) = Ext}, (tors(H;_1 (F)),Z) = tors(H;_1(F)) = H;_,(F).

This implies
Z)k ifi=2k>4;
H(F)={Z  i=0;
{0} otherwise.

This finishes the proof that 75 = Z/2 holds.

28.8. The rational singular cohomology of K(Z,n). Next want to show the
following result.

Theorem 28.8. We get isomorphisms of graded Q-algebras

N o ) QL] ifn is even;
H*(K(Z,n);Q) = {AQ(%) ifn is odd,

where |z,| = n.

Proof. We have already taken care of the cases n = 1,2. Next we handle the case
n = 3. We want to apply the Leray-Serre spectral sequence to the path fibration
K(z,2) - P(K(Z,3)) - K(Z,3). Since K(Z,3) is 2 connected, the first and
second column of the second page are trivial. Since H3(K (Z,3); Q) = Q the third
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page looks in the region 0 < p < 3 and 0 < g < 6 as follows

As H2(P(K(Z,3)); Q) vanishes, the differential d3? is bijective. Since the differ-
entials dg’2n are derivations and the pairings £%%¢ @ E3° — E34 are isomorphism
for ¢ € ZZ! and r = 2,3, we compute for a € E%?? and m € Z and ¢q € Z=!

dY* Y (0 (m-25)) = dS%a) - (m-as) +a-d30(m - as) =m - dY*(a) - 23

Since the map qu,o = Ei(q“)’o sending b to b-x3 is bijective for ¢ € Z=1, dgg(qﬂ)

is bijective if and only if dg’Qq is bijective. This implies that the differentials dg,zq
are bijective for ¢ € Z=2°. Hence the fourth page looks in the region 0 < p < 4 and
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0 < ¢ <6 like
0 0 0 0 E°
0 0 0 0 0
0 0 0 0 Bt
0 0 0 0 0
0 0 0 0 E}?
0 0 0 0 0
Q 0 0 0 E°

Note that E;° = Ey° = HY(K(Z,3); HO(CP>)) =~ H*(K(Z,3)) holds, since
no differentials of the previous pages can hit the entry at (4,0). Obviously we
have Ey° = EX0. Since H*(P(K(Z,3))) = {0}, we must have {0} = E%0 =~
H*(K(Z,3)). We conclude

Ey? = HY(K(Z,3); HI(CP*®)) =~ HY(K(Z,3); Q) = {0}.

This implies E;'? = {0} for ¢ € Z2°. Hence we have shown that H*(K(Z,3);Q)
vanishes for i = 1,2,4 and that the fifth page looks in the range 0 < p < 5 and
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0 < ¢ <6 like
0 0 0 0 0 EY°
0 0 0 0 0 0
0 0 0 0 0 B
0 0 0 0 0 0
0 0 0 0 0 E?
0 0 0 0 0 0
Q 0 0 0 0 E2°

Now one repeats the argument over and over again and concludes that H'(K (Z, 3); Q)
vanishes for ¢ # 0,3 and is Q for ¢ = 0,3. This implies H*(K(Z,3); Q) = Ag(xs)
for |x3| = 3.

Next we explain why H*(K(Z,4); Q) = Q[z4] for |z4] = 4 holds. Since the
argument is similar to the one, where we computed H*(K(Z,2);Q), we will give
only a sketch. The fourth page of the Leray Serre spectral sequence for the path
fibration K(Z,3) — P(K(Z,4)) — K(Z,4) has only non-trivial entries in the Oth
and 3rd row and looks in the range 0 < p < 8 and 0 < ¢q < 3 like

Q(z3) 0 0 0 Q(z3xy) 0 0 0 Q(x3z?)

0 0
0 0
Q(=§) 0 0 0 Q(z4) 0 0 0 Q(=3)

As the Leray-Serre spectral sequence converges to H*(P(K(Z,4)); Q) = H*({e};Q),
the differential djp 3 is an isomorphism for p € ZZ° and we can define 24 € E}° =
H*(K(Z,4);Q) by x4 = dy*(x3). Since the differentials are derivations and each

pairing B ©g EfP° = E3™® is an isomorphism, we get dy?®(x328) = 241" for
p € Z2° and that z52% generates E;” and 2% generates EjP° for p € Z2°. This
implies H*(K(Z,4);Q) = Q[xz4] for |z4| = 4.

Now one repeats the argument again to conclude H*(K(Z/5); Q) = Ag(xs) for
|zs| =5, H*(K(Z,6); Q) = Q[xg] for |z¢| = 6, and so on. O
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29. SERRE CLASSES

29.1. Basics about Serre classes. Let R be a principal ideal domain, e.g., Z or
a field.

Definition 29.1 (Serre class). A non-empty full subcategory C of the category of
R-modules R-Mod is called a Serre class if for any exact sequence 0 - A — B —
C — 0 we have

A, CelC<«= BeC.

Remark 29.2. A non-empty full subcategory C of the category of R-modules
R-Mod is a Serre class, if it is closed under extensions, taking quotient modules,
and taking submodules. A Serre class C contains {0} and satisfies M, N € C =
M@ N eC.

Example 29.3 (Examples of Serre classes). Let R be a principal ideal domain.

Then the following full subcategories of R-Mod are Serre classes:

(i) C = R-Mod;

(ii) The full subcategory R-Triv consisting of the trivial R-module {0};

(ii) The full subcategory R-Mody, of finitely generated R-modules;

(iv) The full subcategory R-Tors of torsion R-modules, i.e., R-modules M such
that for every m € M there exists » € R with r # 0 and rm = 0;

(v) Let R =7 and P be a collection of prime numbers. Then

R-Torsp = {M € Z-Mod | M is a P-primary torsion module}

is a Serre class in Z-Mod, where an R-module M is called P-primary if
for every m € M there exists r € ZZ!, a finite subset {p1,p2,...,p,} C P
and elements ny,ng,...n, € Z=" such that (pf~*-pi2 - p)-m =0
holds.

If P consists of one element p only, i.e., P = {p}, then we write R-Tors,
instead of R-Torsp and P-primary means that for every m € M there
exists n € Z=! satisfying p™ - m = 0;

If P consists of all primes different from a given prime p, then we write
R-Tors(,) instead of R-Torsp. A module in R-Tors, is sometimes called
p-coprimary.

(vi) The full subcategory R-Modg, of R-Mod of R-modules whose underlying
set is finite is a Serre class;
(vii) The intersection of two Serre classes of R-Mod is again a Serre class.

Example 29.4 (Non-examples of Serre classes). Let R be a principal ideal domain.
Then the following full subcategories of R-Mod given by projective R-modules,
finitely generated projective R-module, free R-modules, and finitely generated free
R-modules are in general not Serre classes in R-Mod. They are Serre classes if R
is a field.

Lemma 29.5. Let R be a principal ideal domain and C C R-Mod a Serre class.
Then:
(i) If L Ly M % N is an ezact sequence of R-modules and L and N belong
to C, then M belongs to C;
(i) Let Cy be an R-chain compler. Consider n € Z with the property Cp
belongs to C. Then H,(C.) belongs to C;
(i) Consider a finite filtration of the R-module M

(0} =FRMCFMCFRMC--CFM=M

for k € Z=1. Then the quotient R-module F;M/F;_1M lies in C for i =
1,2,...,k if and only if M lies in C.
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Proof. This follows from Remark the factorization of f = i o f for the
inclusion i: im(f) — M and the epimorphism f: L — im(f) induced by f, the
factorization of g as j o g for the inclusion j: im(g) — N and the epimorphism
g: M — im(g) induced by g, and the fact that we obtain an exact sequence 0 —

im(f) LM im(g) — 0.
This follows from Remark since H,(C,) is a subquotient of C,,.

Suppose that the quotient R-module F;M/F;_1M lies in C for i = 1,2,... k.
We want to prove that M lies in C. This is done by induction over £ = 1,2,....
The induction beginning k¥ = 1 is obvious. The induction step from (k — 1) to
k > 2 follows from the observation that by the induction hypothesis Fj;_1 M belongs
to C, by assumption M/Fy_1M belongs to C, and we have the exact sequence
0— Fy1M —>M— M/F,_ 1M — 0.

Suppose that M lies in C. Consider ¢ € {1,2,...,k}. Since F;M/F;_1M is a
subquotient of M, it belongs to C by Remark O

29.2. Some applications using spectral sequences.

Lemma 29.6.

(i) Let (E",dy™) be a homological first quadrant spectral sequence starting
at d for d € ZZ" which converges to the graded R-module H,. Consider
any r € Z2%. Then:

(a) If E} , belongs to C for every p,q € 720, then E;fgl belongs to C for
every p,q € Z2°;

(b) The R-module EJ5, belongs to C for every p,q € 720 if Ey , belongs
to C for every p,q € Z=°.

(¢) The R-module H, belongs to C for every n € Z if and only if EJS,
belongs to C for every p,q € Z2°.

(ii) The analogous statements hold for cohomological first quadrant spectral
sequence.

Proof. We give only the proof of assertion[(i)] the one for assertion [(ii)]is completely
analogous.

(i)a Since E;:Zl is computed as the homology modules of an appropriate R-chain
complex whose chain modules are given by the modules E¢, and hence belong to

C, each E;:Zl belongs to C by Lemma

Consider p, ¢ € Z=°. Since the sequence is assumed to be first quadrant spectral
sequence, there exists s € Z=" such that E; , = E;7, holds. By assertion we
get E, , € C and hence E;5, € C.

Since the spectral sequence is a first quadrant spectral sequence, the ascending
filtration

{0}=F 1,41 CFon CFipn1CFpnoC---CH,

is finite, since F, o = H, holds. Recall that F, ,/F,_1 4+1 = E7, holds for p,q €

7=°. Now the claim follows from Lemma (]

The next corollary is a direct consequence of the Leray-Serre spectral sequence
and Lemma [29.6]

Corollary 29.7. Let F — EE — B be a fibration over a path connected C'W -
complex. Let C be a Serre class in R-Mod. Suppose that H}!(B; Hy(F; R)) belongs
to C for p,q € Z=°.

Then H,(E; R) belongs to C for every n € Z2°.
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Example 29.8. Let F — EF — E — B be a fibration over a path connected
CW-complex. Suppose that R is a field and that C is the Serre class of finitely
generated R-modules. Assume that the m;(B)-action on H,(F;R) is trivial and
R is a field. Then H)'(B; Hy(F;R)) is R-isomorphic to Hy(B;R) ®p Hy(F;R).
Hence Corollary implies that H, (F;R) is finitely generated for every n € Z,
provided that H,(B;R) for every p € Z=° and H,(F;R) for every q € Z= are
finitely generated.

Next we will prove a stronger version of Corollary For this purpose we need
the following additional assumption.

Definition 29.9 (Property (TT)). We say that a Serre class C in R-Mod has
property (TT) if for two objects A and B of C the objects A®g B and Tor(A, B)
lie in C.

Proposition 29.10. Let F — E — E — B be a fibration over a path connected
CW -complex such that F' has only finitely many path components. Assume that the
m1(B)-action on Hy(F; R) is trivial. Let C be a Serre class in R-Mod satisfying
property (TT). For n € ZZ' consider the following assertions:
(Bn) Hik(B;R) €C for1 <k <n;
(Fn) Hy(F;R) €C for1 <k <n;
(En) Hi(E;R) €C for1 <k <n.
Then we have the following implications:
(i) If (F,) and (By,) hold, then so does (E,);
(i) If (Fn—1) and (E,) hold, then so does (B,);
(iii) If (Ep) and (B,41) and hold, then so does (F,,).
Proof. Since the m(B)-action on Hy(F;R) is trivial, the R-module E? =
H]Y(B; Hy(F; R)) is isomorphic to H,(B; Hy(F;R)). The Universal Coefficient
Theorem yields an exact sequence

0 — Hy(B; R) ®p Hy(F; R) — E2 , = Hy(B; Hy(F; R))
— Tor(H,_1(B; R), Hy(F; R)) — 0.

The term H,(B; R) ®g Hy(F; R) belongs to C for p =1 and 1 < ¢ < n because of
property (TT). Moreover, the term Tor{*(H,_; (B; R), H,(F; R)) vanishes for p = 1
and 1 < ¢ < n, as Hy(B; R) = R. Hence E?  belongs to C for p=1and 1 < ¢ <n.
Analogously one can show that E; 4 belongs to Cif 1 < p < n and ¢ = 0 holds, since
Hy(F;R) is a finitely generated free R-module. For 2 < p < n and 1 < ¢ < n the
first and the third term belong to C because of (TT) and hence EZ  is in C. Thus
we have shown that E;q belongs to C for (p,q) € Z? if (p,q) # 0 and 0 < p,q < n
hold. Given p,q € Z2°, we have E} , = E;5, for large enough r and E;,'Zl is a
subquotient of Ef for r € Z=?. Hence Remark implies that EPS belongs to

C for p,q € Z2° with 1 < p+ ¢ < n. For 1 < k < n we have the finite filtration
0C For CFip-1<---CFro=Hi(E;R)

with Ep, ¢/ Fp—1,q+1 = B>, Lemma implies Hiy(E;R)eCfor 1 <k<n.
Since Hy(F; R) lies in C for 1 < k < n, we conclude from Lemma that
Ep<, belongs to C for p,q € 720 with 1 < p+q < n.

Next we show by induction for k = 1,2,...,n that H;(B;R) belongs to C for
1 <1 < k. The induction beginning k = 1 follows from Hy(B;R) = Ef ; = Ef%,.
The induction step from (k — 1) to k for 2 < k < n is done as follows.

By the induction hypothesis we know that H;(B; R) belongstoC for 1 <1 < k—1.

Next we show by induction that E} ; lies in C for all r € 7>2. We have Epo=E5
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and hence Ey ; € C for r > k+1. Hence it remains to show by downward induction
that £ ; € C holds for 7 = (k+1), k, (k—1),...,2. The induction step from (r+1)
to 2 < r < k is done as follows. By the induction hypothesis E,’:Bl belongs to C.
There is a short exact sequence

0— Ejbt = Efg—im(djo: By o — Ef_,.,_1) = 0.

~

Obviously im(d’,;o) is a submodule of Bl 1 which is a subquotient of E,%_m_l =
Hy_(B;H,_1(F;R)). Wehave 0 < k—r <k <nandl <r—-1<k<n
and Ho(B; H,—1(F;R)) = H,_1(F;R). As we assume conditions (F,_1), (E,),
and (TT) and (B,,—1) holds by the induction hypothesis, the Universal Coefficient
implies that Hy_,(B; H,—1(F; R)) and hence im(dj, ;) lie in C. Therefore EY  lies
in C. This finishes the proof that El%,o lies in C. Since Ef , = Hy(B, Ho(F; R)) holds
and Ho(F; R) is a finitely generated free R-module, Hy(B; R) is a direct summand
in E,%)O and hence belongs to C. This finishes the proof of assertion |(ii)

This proof is omitted, since it is completely analogous to the one of assertio
O

Remark 29.11. Obviously Proposition [29.10| holds also for n = oo if we interprete
oo+ 1=o0.

Example 29.12. Let C be a Serre class in R-Mod satisfying property (TT). Let
X be a simply connected C'W-complex. Then we can apply Proposition 29.10] to
the path fibration QX — P(X) — X. Since P(X) is contractible, H,(P(X); R)
lies in C for n € Z=1.

Hence H,(Q2X; R) lies in C for every n € Z=! if and only if H,(X;R) lies in C
for every n € Z21.

Definition 29.13 (Properties (K) and (TTK)). A Serre class C in R-Mod has
property (K) if for every A € C and n € Z=! the R-module H,,(K(A,1); R) lies in
C.

A Serre class in R-Mod has property (TTK) if it has property both (TT) and
property (K).

The next corollary follows directly from Example [29.12 and the path fibration
K(A,n—1) — P(K(A,n)) — K(A,n) for n € Z=2.

Corollary 29.14. Suppose that C is a Serre class in R-Mod having property
(TTK). Consider A € C.
Then for n,k € Z=" we have Hy(K(A,n); R) € C.

Lemma 29.15. The Serre classes in Z-Mod given by Z-Mod, Z-Triv, Z-Mods,,
Z-Modgy,, Z-Tors, and Z-Torsp for any set of primes P satisfy the condition
(TTK).

Proof. Obviously Z-Mod and Z-Triv satisfy (TTK), since K ({0}, 1) is contractible.

The classes Z-Tors and Z-Torsp are closed under tensor products since for two Z-
modules M and N,z € M,y € N and n € Z we have n-(z®y) = (nx)®y = 2Q(ny).
The category Z-Mody, is closed under tensor products since Z™ ®gz Z" = Z™™"
holds and for two epimorphisms of Z-modules f: Z™ — M and g: N — Z™ the
Z-homomorphism f ®z g: Z™ ®z Z" — M ®z N is surjective. Since Z-Modg, =
Z-Modgs N Z-Tors, also Z-Modg, is closed under tensor products.

If M belongs to Z-Modg,, we can find a 1-dimensional resolution by finitely
generated free Z-modules 0 — Fy — Fy — M — 0. Hence we get for M € Z-Mody,
and any N € Z-Mod an exact sequence

0 — Tors?(M,N) — Fy ®z N — F; ®z N.
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If N belongs to the Serre class C of Z-Mod, then we conclude Tors’ (M, N) € C for
every M € Z-Mods, by Remark Hence the classes Z-Mod¢, and Z-Moday
are closed under the passage to Tory(—,—). Since Torsy(—, N) commutes with
directed colimits, every Z-module is the directed union of its finitely generated Z-
submodules and Z-Tors and Z-Torsp are closed under directed colimits, also Z-Tors
and Z-Torsp are closed under the passage to Tor% (—,—). Hence the Serre classes
Z-Modysg, Z-Modsgy, Z-Tors, and Z-Torsp for any set of primes P satisfy condition
(TT).

A model for K(Z,1) is S'. A model for K(Z/m,1) is given by the quotient
S /Z/m where the free Z/m-action on S° is given by restricting the canonical
Sl-action to the subgroup Z/m C Z. Let t € Z/m be the generator and put N =
Z?Z)l ti. Denote by e: Z[Z/m] — Z the augmentation homomorphism sending
221—01 n; - t; to Z?Z)l n;. One easily checks that

L zizm) Y zizim) L zizm) & z(z)m) S Ziz/m) S 70— 0

is a free Z[Z/m]-resolution F, of the trivial Z[Z/m]-module Z. (Actually this is the
Z-chain complex of S°° for an appropriate CW-structure on S°° coming from one
on S*°/Z/m.) By the Fundamental Lemma of Homological algebra we get for any
CW-structure on S*°/Z/m that H,(K(Z/m,1);Z) = H,(Z ®z(z/m) F«) holds for
n € Z=°. Since Z ®z(z,/m)] Fx looks like

N AN/ Ny N/ N/
we get
Z n = 0;
H,(K(Z/m,1);Z) =< Z/m mn >1andnis odd;
{0}  otherwise.

If A is a finitely generated Z-module, we get an isomorphism

A=7" o PL/n;
i=1
for appropriate elements r,s € Z=2° and n; € Z=%. Hence we obtain a model for
K(A,1) by [1;_, K(Z,1) x [[;_, K(Z/n;,1). Now the Kiinneth Theorem implies
that H,(K(A,1);Z) is finitely generated for n € Z=°. Hence the class Z-Mody,
satisfies (TTK).

If A is finite, we get 7 = 0 in the decomposition above, and again by the Kiinneth
Theorem we conclude that H,,(K(A,1);7Z) is finite for n € ZZ!. Hence the class
Z-Modsgy, satisfies (TTK).

Let P be a set of primes and A be an element in Z-Modg N Z-Torsp. Then
in the decomposition above we get r = 0 and each number n; can be written as
]_[2:1 pp* for some | € Z=1, p; € P, and n; € Z='. Again by the Kiinneth Theorem
we conclude that H, (K (A,1);Z) belongs to Z-Modg, N Z-Torsp for n € Z=1.

Next consider A in Z-Torsp. Let I be the set of finitely generated Z-submodules
of A, directed by inclusion. Then A is the directed union | J,.; A;. One can show
for every n € Z=°

el

Hn(K(A7 1)7 Z) = COhmiEI Hn(K(A17 1)7 Z)
Since H,, (K (A, 1);Z) belongs to Z-Torsp for i € I, the same is true for H,, (K (A,1);Z).
Hence Z-Torsp satisfies the condition (TTK).

Since Z-Tors is Z-Torsp if P consist of all prime numbers, the proof of Lemma|29.15
is finished. O
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30. THE HUREWICZ THEOREM MODULO A SERRE CLASS

Definition 30.1. Let C be a Serre class in R-Mod. Consider a morphism of R-
modules f: M — N.

(i) We call f a C-monomorphism if ker(f) belongs to C;
(ii) We call f a C-epimorphism if cok(f) belongs to C;
(iii) We call f a C-isomorphism if ker(f) and cok(f) belongs to C.

Theorem 30.2 (Hurewicz Theorem modulo a Serre class). Let X be a simply
connected space. Considern € Z=2% and a Serre class of Z-Mod satisfying condition
(TTK).
Then the following statements are equivalent:
(i) m(X) lies in C for 2 <k <(n-—1);
(ii) Hyp(X) lies in C for 2 <k < (n—1).
If one of the conditions above is satisfied, then the Hurewicz homomorphism
hur, (X): 7, (X) = H,(X)
is a C-isomorphism.

Proof. We begin with the implication == We choose a Postnikov tower
{m<kX, pi, pr} for X in the sense of Section Since X is simply connected, we
have 7<2X ~ K(m3(X),2). The fiber of pi: 7<p X — 7<1 X is K(mp(X), k) for
k > 3. Corollary implies that H;(K (m,(X),k)) belongs to C for 2 < k <
(n—1) and i € ZZ!. We conclude from Proposition and Remark that
H;(T<n—1X) belongs to C for i € Z=1.

Since ¢p—1: X — T<n—1X is an n-connected map of simply connected spaces,
the induced map Hy(X) — Hp(7<n—1X) is bijective for 1 < k < (n — 1) by the
classical Hurewicz Theorem, see Proposition Hence H(X) belong to C
for1<k<(n-1).

Next we show that, if the condition is satisfied, the condition holds
and hur,(X): m,(X) — Hp(X) is a C-isomorphism. It suffices to show that
hur, (X): mx(X) — Hi(X) is a C-isomorphism for 2 < k < n. This will be done
by induction over k = 2,3,...,n. The induction beginning follows from the classi-
cal Hurewicz Theorem, see Proposition In the induction step from k to
k+1 < n we can assume by the induction hypothesis that hur;(X): m;(X) — H;(X)
a C-isomorphism for 2 < ¢ < k < n—1. From the arguments appearing in the proof
of the the implication = we conclude that H;(7<;xX) and H;(7<g4+1X)
belong to C for i € Z=. We have Hi(7<;X) = Hy(T<p11X) = {0} since 7<xX
and 7<p4+1X are simply connected. From the Hurwicz Theorem we conclude
H;(K(mp41(X),k+ 1)) = {0} for 1 <i < k. Now the Serre sequence, see Proposi-
tion [27.4] yields the exact sequence

Hk+2(T§kX) — Hk+1(K(7Tk+1(X), k+ 1))
D Hyp1 (t<p1X) = Hpar (r<pn X) — {0}

Since Hyyo(m<xX) and Hyy1(7<k41X) belong to C, the R-homomorphism j is a
C-isomorphism. The following diagram commutes and all maps marked with = are
C-isomorphisms

m 1( ¢ )
Tt (K (o1 (X), b + 1)) —— M1 (T<p1 X) e Th1(X)

:\hurk+1(K(7rk+1(X),k+1)) J/hurk+1(7'<k+1X) Jhurk_Fl(X)

Hypi1(X).

o

Hy1 (K (mp11(X), k + 1)) ——— Hi1 (T<p1 X)
J Hiq1(prt1)
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As j is a C-isomorphism, hury41(X) is a C-isomorphism. This finishes the proof of
Theorem [30.2] O

Corollary 30.3. Let X be a simply connected CW -complex such that H,(X) is
finitely generated for every n > 7Z. Then m,(X) is finitely generated for every
n > 7.

Proof. This follows from Theorem applied to the Serre class R-Modg,. (|

31. THE WHITEHEAD THEOREM MODULO A SERRE IDEAL

Definition 31.1 (Serre ideal). A Serre class C in R-Mod is called an ideal if for
any object M in C and any R-module N both M ®r N and Tors? (M, N) lie in C.

Obviously a Serre ideal has property (TT) and is closed under direct sums over
arbitrary index sets.

Theorem 31.2 (Whitehead Theorem modulo a Serre ideal). Let f: X — Y be
a map of simply connected spaces such that mo(f): ma(X) — m(Y) is surjective.
Consider n € Z22 and a Serre ideal C in Z-Mod satisfying property (K). Then:

(i) The following assertions are equivalent:
(a) The homomorphism m(f): m(X) — m(Y) is a C-isomorphism for
2 <k <n and a C-epimorphism for k = n;
(b) The homomorphism Hy(f): Hi(X) — m(Y) is a C-isomorphism for
2 <k <n and a C-epimorphism for k = n.
(i) The following assertions are equivalent:
(a) The homomorphism my(f): m(X) = 7 (Y) is a C-isomorphism for
every k € Z22;
(b) The homomorphism Hy(f): Hi(X) — m(Y) is a C-isomorphism for
every k € 722,

Proof. Obviously assertion follows from assertion |(i)| which is proved as follows.

Since we can turn f into a fibration, we can assume without loss of generality
that f itself is a fibration. Let F' be its fiber. The long exact homotopy sequence
associated to f and the assumption that mo(f) is surjective imply that F' is simply
connected.

We start with the implication ==
The long exact homotopy sequence of f and Lemma imply that 7y (F)

belongs to C for k < n. Hence Hy(F) belongs to C for 2 < k < n by the Hurewicz
Theorem modulo a Serre class, see Theorem [30.2

Next we consider the Leray-Serre spectral sequence of the fibration F - X i> Y
for singular homology. Note that this is a first quadrant spectral sequence.

We get from the Universal Coefficient Theorem a short exact sequence

{0} = Hy(Y) @z Hy(F) — Hp(Y; Hy(F)) — Torst (Hy—1(Y), Hy(F)) — {0}.
Since C is a Serre ideal, Equ = H,(Y; Hy(F)) belongs to C for p,q € Z=°if0 < g <n
holds. This implies that E) =~ = H,(Y; H,(F)) belongs to C for p,q € 720 and
r € ZZ2 1 {oo} if 0 < ¢ < n holds.

Recall that we have the filtration

{0} =F 1441 € For CFip—1C - CFr_11 C Fro=Hp(X)

such that F; p—i/Fi—1 p—it1 = EZ-O,‘,’%Z- holds for ¢ = 0,1,2...,k. Hence F; j_; be-
longs to C fori =0,1,2,...,(k—1) by Lemma if k < n holds. In particular
Fj—1,1 belongs to C if k£ < n holds.
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Moreover, we have the filtration
{0y CEX, 2B CEF g C By, Co CER = Hy(Y, Ho(F)) = Hy(Y).

The filtration quotients are given by ES), im(d?o), im(d’,z;)l), ce im(d%o). In par-
ticular we obtain a filtration of Hy(Y')/ES, whose filtration quotients are im(dﬁ’o),
im(d’,jjol), e im(d%o). Since im(dj, ;) is a submodule of Ej ., which lies for
2 <r <k<mninC, each of these filteration quotients lie in C. Hence Hk(Y)/E;Z’O

lies in C for kK < n by Lemma

We get from the edge homomorphism edgey, ; the exact sequence

{0} = P11 — Hu(X) 229 b1 (v) = By (V) B, — {0}
Since Fj_1,1 belongs to C if k¥ < n holds and Hk(Y)/E,‘;fO belong to C for k < n,

the homomorphism Hy(X) RLIEIN Hy(Y) is a C-isomorphism for k& < n and a

C-epimorphism for k£ = n. Hence assertion |(i)b| holds.

Next we prove the implication = |(i)al Thanks to the long homotopy
sequence of f it suffices to show that 7 (F') belongs to C for k < n. Assume that
contrary. So we can choose k € {2,3,...,n—1} such that 74 (F) does not belong to
C but 7;(F) belongs to C for i € {2,3,...,k —1}. The Hurewicz Theorem modulo
a Serre class, see Theorem implies that Eg,k = Ho(Y; Hi(F)) = Hy(F) does
not belong to C.

The same argument as the first step shows that £}  belong to C for p,q € 7=9
and r € Z22 if 0 < ¢ < r holds.

Next we show that Eg;l does not belong to C. The induction beginning r = 2
as already been taken care of. The induction step from r for 2 <r < k to (r+ 1)
is done as follows. We have the exact sequence
) okorin, By, — EgH — {0}

T

The middle term Ef , does not belong to C by the induction hypothesis. Since
2 <r < kimplies0 < k—r+1 <k, we know already that E, , ., belongs to
C. This implies that ngrkl does not belong to C. This finishes the proof that Egjgl
does not belong to C.

In the next step we show Egjf = Eg, does not belong to C. Consider the exact

sequence
k+1

k+1 k41,0 k+1 k+2
By — Egp — Egy — {0}

The differential dﬁi;o factorizes as the composite of a monomorphism and epimor-
phism by
k+1 k+1 k-+1 k+2
Eyiio— Eor /ker(dk+1,o) — By
Since ker(d’,ﬁﬂ’o) = E’iiio = ERS10 = im(Hg11(f)) holds, we get an injection

Byt ker(dft ) = Hiea(Y)/ im(Hip1(f)) 22 cok(Hig1(f)).

Since k < n and hence Hy41(f) is a C-epimorphism, Eg;l/ker(dﬁﬁ,o) belongs to

C. Since Eg;gl does not belong to C, Eg:}f = Eg, does not belong to C.

On the other hand Eg, is contained in Fj_11 C H (X) and Fj_1 1 is the kernel
of Hi(f). As k < n holds, Hi(f) is a C-isomorphism by assumption. This implies
that the kernel of Hy(f) and hence also EgS, lies in C, a contradiction. Hence we
have shown that 74 (F') belongs to C for k& < n which implies assertion This
finishes the proof of Theorem [31.2 O
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Remark 31.3. One can generalize Theorem [30.2] and Theorem [31.2] as follows.
One can drop in Theorem [30.2] the assumption that X is simply connected by
the assumption that X is a nilpotent space, i.e, the m(X)-action on the higher
homotopy groups is nilpotent. (This is a weaker condition than being a simple
space). In Theorem one can replace the assumptions that X and Y are simply
connected and s (f) is surjective by the assumption that X and Y are nilpotent
spaces.

32. (STABLE) HOMOTOPY GROUPS OF SPHERES

Definition 32.1. Let P be a set of primes. Let Z[1/P] C Q be the subring
containing Z and p~! for every p € P.

If p is a prime and P = {p}, then we write Z[1/p] instead of Z[1/P]. If p is a
prime and P consists of all primes different from p, then we write Z,) instead of
Z[1/P].

If P is empty, then Z[1/P] agrees with Z. f P is consists of all primes, then

Z[1/P] agrees with Q.
The proof of the next result is left to the reader.

Lemma 32.2. Consider the functor I: Z-Mod — Z[1/P]-Mod sending M to
M ®z Z[1/P].
(i) The functor I has a right adjoint given by restriction with the inclusion
7 — Z[1/P];
(ii) The functor I commutes with colimits over directed systems of Z-modules;
(iii) The functor I is exact;
(iv) Let f: M — N be a Z-homomorphism of Z-modules. Then

iz /P ®@zf: Z[1/P] @z M — Z[1/P] @z N
1s trivial if and only if f is a Z-Torsp-isomorphism.
32.1. Finite generation and rational computations.
Theorem 32.3. Consider k,n € Z=*. Ifn is odd and k > n, then m,(S™) is finite.

Proof. For n =1 we know already m(S*) = {0} for k > n. So we can assume with-
out loss of generality that n > 3 holds. Choose a map f: S™ — K(Z,n) inducing
an isomorphism 7, (f): m,(S™) =N Tn(K(Z,n)). We conclude from Theorem
that H*(f;Q): H*(S"; Q) = H*(K(Z,n); Q) is bijective for all k € ZZ°. The Uni-
versal Coefficient Theorem implies that Hy(f;Q): H(S™;Q) = Hy(K(Z,n);Q)
is bijective for all & € ZZ°. The Whitehead Theorem modulo a Serre ideal, see

Theorem and Lemma imply that idg ®zmk(f): Q ®z mx(S™) —
Q @z 7, (K(Z,n)) is an isomorphism for k € Z=°. Therefore Q ®z 71(S™) van-
ishes for k > n. Hence m(S™) belongs to the Serre class Z-Tors. Since Hy(S™)
is finitely generated for k € Z=°, we conclude from Corollary that 7 (S™) is
finitely generated for k > n. We conclude that 7 (S™) is finite for k > n. g

Corollary 32.4. The abelian group w3 ({e}) is finite for k > 1.

Proof. We conclude from the Freudenthal Suspension Theorem|11.16|that 75 ({e}) =
T+n(S™) holds for n > k + 2. Now apply Theorem O

Theorem 32.5. Consider k,n € Z=' such that n is even. Then m(S™) is finite
for k ¢ {n,(2n — 1)} and we have 7,(S™) = Z and m,(S*"*~1) 2 Z & F for some
finite abelian group F'.
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Proof. We get H*(K(Z,n); Q) = Q[z,] with |z, | = n from Theorem Choose
amap f: K(Z,n) — K(Q,2n) representing 22 € H"(K(Z,n); Q) under the iden-
tification [K(Z,n), K(Q,2n)] = H"(K(Z,n); Q) appearing in Example We
can turn f into a fibration. Let F' be its fiber. Then we obtain a fibration

K(Q,2n—1)=QK(Q,2n) — F & K(Z,n).

Next we compute H*(F;Q) using the Leray-Serre spectral sequence applied to
the fibration above. We have shown H*(K(Z;2n — 1);Q) = Ag(y2n—1) with
lyan—1| = 2n—1 in Theorem 28.8] Let g: K(Z,2n —1) — K(Q,2n — 1) be the map
representing the generator ya,, 1 of H>"~1(K(Z,2n —1); Q). It induces an isomor-
phism idg ®z7k(g): Q ®z 7, (K(Z,2n — 1)) N 1 (K(Q,2n —1)) for k € Z21.
The Whitehead Theorem modulo the Serre ideal R-Tors, see Theorem [31.2)together
with Lemma[32.2)imply that Hy(g; Q): Hy(K(Z,2n—1); Q) — Hyx(K(Q,2n—1); Q)
is bijective for every k € Z=!. We conclude from the Universal Coefficient Theorem
that we obtain for every k € ZZ' an isomorphism

H*(g;Q): H*(K(Q,2n —1);Q) = H*(K(Z,2n — 1); Q).

The (2n)th page of the cohomological Leray-Serre spectral sequence for the fibration
p: F — K(Z,n) is the only page with possible non-trivial differentials. We have

Byl =Ey? = HY(K(Z,n); H1(K(Q,2n — 1); Q)
= H"(K(Z,n); Q) ® HY(K(Q,2n — 1); Q) = Q[zn] ® Ag(y2n-1)-
and the only possible non-trivial differentials are da,pn, 2n — 1: EE™?"~1 Eéffm"’()

for p € Q=°.
For n = 3 it looks in the range 0 < p <9 and 0 < g < 5 like

Q(ys) 0 0  Qxsys) O 0  Qa3ys) 0 0 Q(z3ys)

0 0
0 0
0 0
0 0

Q 0 0 Qzs) 0 0 Q@3 0 0 Qi)
The composite

" H?"(£;Q n H2" (p;Q n
HK(Q,2n);Q) T, g2n (g (7, n);Q) 229, gn(pr Q)

is trivial, since f o p is null homotopic. The map H?"(f;Q) sends the canonical
generator of H*"(K(Q,2n);Q) = Q to 22. Hence H"(p;Q): H"(K(Z,n); Q) —
H"(F;Q) sends 22 to zero and therefore is the trivial map. Recall from the
discussions about the edge homomorphism edge2”’O and the fact that E%2n~1 =
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2n—1 .
Eg;l_fl holds that we obtain an exact sequence
0.2n—1 422" " om0 21,0 21,0
2n— 2n n, n,0 n,
By, ——— By, = Eypy = BT — {0}

and the equality
E20 =im(H?*"(p;Q): H**(K(Z,n); Q) — H*"(F;Q)).
Since H™(p; Q) is trivial, we conclude that the differential
dgy™ ™ Byt ™t = Qlyan—1) = Eay” = Qfa})

is surjective and hence bijective, as its source and its domain have the same dimen-
sion. Choose 7 € Q with 7 # 0 and dy>" " (yan_1) = 7 - 22.
Next we show for k€ 0,1,2,...

A5 (ahyg,q) = (—1)F g2,

The induction beginning k¥ = 0 is obvious. The induction step from k to (k + 1)
follows from the computation

1)n,2n—1 1)n,2n—1
dg:j_ n,2n (xlfl+1 d(k-‘r )n,2n

y2n—1) = 2n (xn(xﬁyzfm—l))
5y (@) (@hyan—1) + (1) - @ - don > (2Fynn—1)
= O (1) (<1 Tk ?) = () gl
Hence for k € Z=2° the differential

_ _ k s
A5 BRIl kg, ) — ESFITO Z aht?)

. 2n
is bijective. Let z be the image of z,, under the map H"(p; Q): H*(K(Z,n); Q) —
H"(F;Q). So we get
Q p=q=0;
E%? =4 Q@) p=n,q=0;
{0} otherwise.
This implies
H*(F;Q) = Aglz] for |z] =n.
Let s: S® — K(Z,n) be a map representing a generator of m,(K(Z,n)) = Z.
Since its composite with the map f: K(Z,n) — K(Q,2n) is nullhomotopic, we
can find a map t: S — F whose composite with p: F — K(Z,n) is homotopic
to s. Then Hy(t;Q): Hp(S™ Q) — Hy(F;Q) is bijective for all k € Z=°. The
Whitehead Theorem modulo the Serre ideal Z-Tors, see Theorem together
with Lemma imply that idg ®z7k(t): Q ®z m(S™) — Q @z 7k (F) is bijective
for all £k € Z=. The long exact homotopy sequence associated to the fibration

F— K(Z,n) ER K(Q,2n) implies

Z k=mn;
(F)2Q k=2n-1;
{0} otherwise.
Hence we get
Q ke{n2n-1};
{0} otherwise.
We know already that m,(S™) = Z holds and that m;(S™) is finitely generated

for all k € Z2', see Theorem and Corollary This finishes the proof of
Theorem B2.5 O

Q @z m(S™) = {
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32.2. p-coprimary computations. Note that Corollary implies that for fixed
n € Z2 we get

m(SM =2 o @ P/

p prime i=1

for s, € Z=° and l; , € Z='. We have figured out the value of r; in Theorem
and Theorem [32.5 namely

1 ifk=nmn;
r=4q1 ifk=2n—1andnis even;
0 otherwise.

In general the values of s, and I; , are not known. In order to get some information,
it is useful to attack this problem for each prime separately. The key idea is the
formula

Z(p) ® Fk(sn) = pr) fan) @Z/plw.
i=1

Proposition 32.6. Let p be a prime. Then we get

Z(p) k = 3;
ﬂ'k(S?’)(p) = {0} k<2pk#3,;
Z/p k=2p.

o

Proof. Consider a mp s: S® — K(Z,3) such that m3(s): m3(S®) — m3(K(Z,3))
is bijective. We can turn it into a fibration. Let F' be the fiber. The long exact
homotopy sequence implies 73 (F) = 7,(S3) for k € Z2*. In Subsection we
have proved

Z)l ifk=2>4;

Hy(F)={Z k=0

{0} otherwise.
Hence Hy(F) belong to the Serre class Z-Tors(, for k& < 2p, or, equivalently
Zpy @z Hy(F') vanishes for k < 2p. The Hurewicz Theorem modulo Z-Tors ),
see Theorem implies that 7 (F') belongs to Z-Tors(,) for k& < 2p and that

the Hurewicz homomorphism o, (F') — Hap(F) is a Z-Tors,-isomorphism. This
finishes the proof of Proposition [32.6 O

One interesting aspect of Proposition is that 74 (S5?) is non trivial for infinite
many values of k. It also implies 74(S3) 2 Z/2 and 7§ = Z/2.

Proposition 32.7. Let | be a prime. Consider n € Z> which is odd. Then the
double suspension homomorphism

02(S™): mp(S™) = o (ST
is a Z-Torsy-isomorphism for k < I(n + 1) — 3 and a Z-Torsy-epimorphism for
kE=Iln+1)-3.

Proof. Let w: S™ — Q25"*2 be the adjoint of idgn+2: S2 A S = §n+2 5 gn+2,
Since we have the commutative diagram

7k (w)

wk(S”) Wk(QQSn+2)

o2(S™) J_

Tr2(S™T)
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it suffices consider mj(w) instead of o7(S™), Because of the Whitehead Theo-
rem modulo the Serre ideal Z-Tors(;), see Theorem @ it suffices to show that
Hy(w): Hy(S™) — H(Q22S""2) is a Z-Tors(-isomorphism for k < [(n+1) —3 and
a Z-Tors(;)-epimorphism for k& = I(n + 1) — 3.

We have already proved that mj,(Q28"+2) = 7, (S*) is finitely generated for
all k € Z=1, see Corollary The Hurewicz Theorem modulo the Serre class
Z-Modg,, see Theorem implies that H(Q2S"*2) is finitely generated for
k € Z=1. Hence the kernel and the cokernel of Hy(w) are finitely generated abelian
groups. Hence it suffices to show that F; @z ker(Hy(w)) is trivial for k < I(n+1)—3
and F; ®z cok(Hy(w)) is trivial for &k <I(n+1) — 3.

Since the homology of S™ is concentrated in dimension n and H,(w): H,(S™) —
H,(9257%2) is an isomorphism by the Hurewicz Theorem, see Proposition
we get ker(Hy(w)) = {0} for k € Z=1 and cok(Hy(w)) = {0} for k = n. Hence it
remains to show that F; ®z cok(H(w)) is trivial for k <I(n+1) — 3,k # n.

Consider the commutative diagram

F ®z Hk(S") ; Hk(Sn;Fl)
idr, ®zH(w) id g, (wiFp)

F; ®z Hk(925n+2) — Hk(QQSn+2;Fl)

F; ®z cok(Hy(w)) —— cok(Hg (w; Fy))

{0} {0}

whose rows are exact and whose top arrow and second top vertical arrow come from
the Universal Coefficient Theorem. An easy diagram chase shows that it suffices to
prove that that cok(Hy(w;F;)) is trivial for k <I(n+1) — 3,k # n.

Next we compute H*(Q2S5"2;F;) in a range. We apply the Leray-Serre spectral
sequence to the path fibration QS"+2 — P(S") — S™. The only nontrivial differ-
entials occur on the (n + 2)th page. For n = 3 it looks in the range 0 < p < 5 and
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0< q <8 like

H3(QS5;F,) 0 0 0 0 H3(QS% )

HO(QS5; ) 0 0 0 0 HO(QS%;Fy)

Recall that P(S™) is contractible and hence H™(P(S™);F;) vanishes for m > 1.
Hence all the differentials df;f:2 must be isomorphisms. Pick a generator x of
EOntl = grtl(QS™:Fy) = F; and y of 20 = HO(QS"*2,F;) = I, such that
d" 29 maps y to x. Hence for n = 3 the nth page it looks in the range 0 < p <5
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and 0 < g < 6 like
Iy

F, 0 0 0 0 F, (z)

A computation similar to the one in Subsection using the fact that the
differentials are derivations shows that

(32.8) d?L’ﬁH)k(yk) = k!'- ug holds for some generator uy € F,
For k < [, the number k! a unit in F;. Hence the map
Fily] — H*(QS"%F)

is an isomorphism in degrees < I(n + 1).

Next we consider the path fibration Q252 — P(QS"+2) — QS"*2 and we
apply the Leray-Serre spectral sequence to it. We conclude from the Kiinneth
Theorem

B9 = HP(QS™2 H1(Q2S" 2, ) = HP(QS"T%, ) @, HL(Q2S" T2 F)).
Recall that P(25™2) is contractible and hence H™(P(Q25"*2);F;) = {0} holds for
m € Z='. This implies that EZ? must be trivial if (p,q) # (0,0) holds. We have
EY? = HP(QS"2F)) @p, H1(Q2S"T2;F,) = {0} Hence EPY vanishes for every
r € Z22 11 {oo}, unless ¢ = m - (n + 1) holds for some m € Z=.

Let us consider the (n+ 1)th page which does agree with the second page. Every
differential d2°° for 0 < p < n—1 and r € ZZ211{co} has {0} as target and hence is
trivial. This implies that EZ* = HP(QS™2; ;) vanishes for 0 < p < n — 1. Hence
EP = ( for every r € Z=2 11 {co}, unless ¢ = m - (n + 1) holds for some m € Z=
and p > n holds. The differential

£y B0, = YOS > B = 1 @5

must be an isomorphism, since E%:" vanishes and each differential d%’fl for r > n+2

has trivial target and hence vanishes. This implies that H"(Q2S"*% ) = F,



SCRIPT FOR ALGEBRAIC TOPOLOGY I + II (WS 24/25 AND SS 25) 195

holds and that we can choose a generator z € H"(Q25""2;F;) which is sent under
d%’rl to the generator y € H"T1(QS"+2:F;). Recall the map HP(QS" % F;) —
HPnHL(QSn+2: ) given by multiplication with y is bijective for p < (I—1)(n+1)
and the zero map for p = (I—1)(n+1). Hence the map E5? = EP7, — Ey"+h0 =
EPTH s for all ¢ € Z2° an isomorphism for p < (I —1)(n+1) and the zero map
forp=(1—-1)(n+1).

So the (n + 1)th page looks schematically in the range 0 < p < I(n + 1) and
0<g<n

Fi(z) Fi(zy) a Fi(zy' =)  Filzy'2)  Filzy'™?)

n,0 nonl n,(1—3) (n41 n,(1—2) (n41 n,(1—1)(n+1)
\CITJrl \dyr'»l Nfl Nﬂ \nﬂ)
& & o o 0

F, Fiy) Fi(y?) “e Fi(y'=2)  Fiy'™)

where we have listet the intersection of the 0-th and n-row and the columns over 0,
(n+1), ..., p(n+2), all other entries are trivial. Since dZﬁ" is an isomorphism

and dZE” o d%’i’f = 0, the differential d?l’_?ll is trivial. Obviously the differentials

d?f;l vanish for n < p < 2n, since their targets are trivial. This implies that all
differentials starting at (p,0) for n < p < 2n, are trivial. Hence HP(Q2S"2; ;)
vanishes for 1 < p < 2n,p # n. Note that this implies that E'!, for ¢ < 2n
vanishes unless (p, q) is of the form (0, m(n+1)) or (n,m(n+1)) for some m € Z=°
and that EP9 for ¢ < 2n and r € ZZ(*2) vanishes unless (p, q) = (0,0). Now one

easily shows inductively for ¢ = 2n,2n+1,2n+2...,l(n+1) — 3
e All differentials starting at (p,0) for n < p < i have {0} as target and
hence are trivial;
o HP(Q28™+2: ) vanishes for 1 < p <i,p # n;
o EP1, for ¢ < ivanishes unless (p, q) is of the form (0, m(n+1)) or (n, m(n+
1)) for some m € Z=°
e EP for ¢ < 2i and r € ZZ("+2) vanishes unless (p,q) = (0,0).
If we take i = I(n + 1) — 3, we conclude that H¥(Q2S"*+1 ) is trivial for k <
I(n+1) — 3,k # n. The Universal Coefficient Theorem implies that Hy(Q5%;F;)
and hence cok(Hy(w;F,;)) is trivial for £ < I(n+ 1) — 3,k # n. This finishes the
proof of Proposition [32.7]
As an addendum we mention that the fact that
that the differential

0,l(n+1)—2  0,l(n+1)—2 (I=1)(n+1),n A,
da-1ynr1) ' Ba-nynrr) = Ea-rjmrny T H

dﬁf;ll)("ﬂ)’n is trivial implies

is surjective and hence Hl(n+1)_2(Q2S”+2; F;) is non-trivial. O
Theorem 32.9. Let p be a prime. We have

0 n<2p-—3;
Lip) @z Ty = 0 '
Z/p n=2p-3.

Proof. Consider the sequence of double suspension maps
7Tn+3(53) — 7Tn+5(S5) — ’/Tn+7(S7) —

We conclude that the first map 7,43(5%) = m,45(5%) is a Z-Tors,)-isomorphism
for n + 3 < 4p — 3, or, equivalently, for n < 4p — 6. The other maps are Z-Tors,)-
isomorphism in even larger ranges for n. We conclude from Proposition that
Zpy Rz Tn13(S3) vanishes for 3 < n + 3 < 2p, or, equivalently, for 0 < n < 2p — 3
and is Z/p for n = 2p — 3. Since the double suspensions map above are Z-Tors ;-
isomorphism for n < 2p — 3, Theorem follows. U

?

?
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An interesting aspect of Theorem is that for any prime p there is an n € Z=1
such that m; contains p-torsion. The reader should check that the first 19 explicit
values of the stable stems from the table (11.28) are consistent with Theorem

33. EXERCISES PART I

Exercise 1. Let M be a connected closed 3-manifold whose fundamental group G
is perfect, i.e., G agrees with its commutator subgroup [G, G], and non-trivial.

Prove or disprove that there is a map f: M — S which is not a homotopy
equivalence and induces an isomorphism H,(f;A): H,(M;A) — H,(S3; A) for
any abelian group A and any n > 0.

Exercise 2. Let f: X — Y be a homotopy equivalence. Show that for any x € X
and n > 1 the induced map m,(f,x): 7, (X, z) = 7, (Y, f(x)) is an isomorphism.

Exercise 3. Compute ﬂn(Tk x R, x) for all k,I,n > 1, where T* is the k-torus.

Exercise 4. Consider a path connected space X with base point z € X and n > 1.

(i) Let [S,] € H,(S™) be a generator. Show that we get a well-defined group
homomorphism

hur,,: m, (X, 2) = H,(X)

by sending [f] represented by the pointed map f: (S™,s) = (X, z) to the
image of the fundamental class [S™] under the map H,(f): H,(S™) —
H,(X).

(ii) Give for every n > 2 examples of closed connected orientable manifolds
M, N of dimension n such that hur,: m,(M,z) — H,(M) is surjective
and hur,,: 7,(N,z) — H,(N) is trivial.

Exercise 5. Let W be the Warsaw circle, i.e., the union of subsets of R? given by
the union of {(x,sin(27/z)) | z € (0,1]}, {(1,v) | y € [-2,0]}, {(z,—2) | = € [0,1]}
and {(0,1) | y € [-2. 1]}

Show that the projection p: W — {e} is a weak homotopy equivalence but not
a homotopy equivalence.

Exercise 6. Let X C R™*! be the union Uzo:o Yy, where Y}, is the sphere around
(1/k,0,0,...,0) of radius 1/k.

Prove or disprove that there is a surjective homomorphism 7, (X, z) — H;’io A
and hence 7, (X, z) is uncountable for any base point « € X.

Exercise 7. Compute the set of homotopy classes [X,Y] of maps X — Y for the
following cases:
(i) X=Y =8"for1 <m;
(i) X =5"and Y = 5" for 0 <m < n;
(iii) X =S"and Y =T" for n > 2;
(iv) X =CP" and Y = S?" for n > 1;
(v) X =CP" and Y = S* for n > 1.

Exercise 8. Let (X, A) be a topological pair such that A is (n — 1)-connected
and X is n-connected for n € {1,2,...} IT {oc}. Prove or disprove that (X, A) is
n-connected.

Exercise 9. Prove or disprove for n > 0 that an n-connected C'W-complex of
dimension n is contractible.

Exercise 10. Let X be a CW-complex such that for every natural number m
there is a natural number n with m < n such that the inclusion X,, — X,, is
nullhomotopic. Prove or disprove that X is contractible.
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Exercise 11. Let G be a finitely generated abelian group G and n € Z=Z'. Con-

struct a compact (n+1)-dimensional path connected CW-complex X with 7, (X) =
G.

Exercise 12. Let N be a path connected oriented closed smooth n-manifold which
has the following property: For any path connected oriented closed smooth n-
manifold M the degree defines a bijection deg: [M, N] — Z.

Prove or disprove that N is oriented homotopy equivalent to S™.

Exercise 13. Let X be a topological space which is dominated by a CW-complex
Y, i.e., there exists a CW-complex Y with maps i: X — Y and r: ¥ — X with
rog ldX

Prove or disprove that X has the homotopy type of a CW-complex.

Exercise 14. Prove or disprove that a compact metric space Y has a CW-approximation
f+ X — Y with compact X.

Exercise 15. Let X be a m-connected and Y be a n-connected C'W-complex
coming with base points. Prove or disprove that X AY is (m + n + 1)-connected.

Exercise 16. Let X be the space obtained from S' C R? by identifying the open
subsets {(z,y) € S* | y > 0} and {(z,y) € S* | y < 0}. Let p: S' — X be the
projection.Then the set X has four points, namely, the images of (0,1), (0,—1),
(1,0), and (0, —1) under p.

(i) Describe the open subsets of X and show that X is not a Hausdorff space,
is path connected, and is pre-compact, i.e., every open covering has a finite
subcovering;

(ii) Prove or disprove that X has a universal covering p: XX ;
(iii) Prove or disprove that p: S — X is a CW-approximation;
(iv) Prove or disprove that S! and X are homotopy equivalent.

Exercise 17. Show that any metric space and any locally compact Hausdorff space
is compactly generated.

Exercise 18. Prove or disprove:
(i) The composite of two cofibrations is again a cofibration;
(ii) The product of two cofibrations is again a cofibration (i.e., if f1: A; — X3
and fo: Ay — X5 are cofibrations, then fi1 X fo: A1 X Ay = X1 x Xs is a
cofibration);
(iii) A cofibration with non-empty domain is surjective if and only if it is a
homeomorphism.

Exercise 19. Let (X, A) be a NDR. Prove or disprove that the canonical projection
p: X — X/A is a homotopy equivalence if A is contractible.

Exercise 20. Consider closed subspaces A and B of X. Suppose that the inclusions
A— X, B— X,and AN B — X are cofibrations.
Prove or disprove that the inclusion A U B — X is a cofibration.

Exercise 21. Consider the pushout
f

A——B
XTY.

Suppose that 7 is the inclusion of a strong neighborhood deformation retraction
(X, A).
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Prove or disprove that 4 is the inclusion of a strong neighborhood deformation
retraction (Y, B).

Exercise 22. Let i: A — X be a cofibration. Let f: (X, A) — (Y, B) be a map
which is as a map of pairs homotopic to a map g: (X,A) — (Y, B) satisfying
9(X) C A

Prove or disprove that f is homotopic relative A to a map g: (X, A) — (Y, B)
satisfying g(X) C A.

Exercise 23. Let X and Y be well-pointed spaces. Prove or disprove that their
smash product X AY is well-pointed.

Exercise 24. Consider the commutative diagram

i2

Xo—25 X1 —2 5 X,

N

YO Jo Yl Ji YQ

J2

Suppose that each horizontal arrow is a cofibration and each vertical arrow is a
homotopy equivalence.
Prove or disprove that the induced map

colimy, oo fr: colimy, . X, — colim, . Y,
is a homotopy equivalence.

Exercise 25. Consider the subspace X = I x {0} U {0} x I of R%. Let f: X — I
be the map sending (z,y) to .
Prove or disprove that f is a fibration.

Exercise 26. Let F' be a finite set equipped with the discrete topology. Put
X = [1,,ez F with respect to the classical product topology. Let X4 be the set X
equipped with the discrete topology and let p: X4y — X be the map given by the
identity. Prove:

(i) X is a compact Hausdorff space;
(ii) X is a compactly generated space;
(iii) X is totally disconnected, i.e., each of its components contains only one
point;
(iv) Each path components of X contains only one point;
(v) p is continuous and bijective;
(vi) p is a not homeomorphism;
(vii) p is a fibration.

Exercise 27. Prove or disprove:
(i) The composite of two fibrations is again a fibration;
(ii) The product of two fibrations is again a fibration;
(iii) A fibration with non-empty domain and locally contractible codomain is
injective if and only if it is a homeomorphism.

Exercise 28. Let p: E — S* be a fibration. Let Fy = p~1(s) be the fiber of s. Let
the homotopy equivalence f: Fs — F, be a representative of the fiber transport
associated to a generator of m(S?, s).

Prove that E is homotopy equivalent to the mapping torus T of f.

Exercise 29. Let G be a path connected topological group and p: £ — B be
a principal G-bundle. Prove or disprove that the fiber transport associated to p
regarded as a fibration is trivial.
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Exercise 30. Let H: Z — m3(S?) be the isomorphism sending 1 € Z to the class
[p] of the Hopf fibration p: $3 — S2. Let f: S3 — S and g: S? — S? be maps.
Prove: H(deg(f)) = [po f] and H(deg(9)*) = lg o 7).

Exercise 31. Decide for which d € ZZ! any principal G-bundle over any d-
dimensional CW-complex is trivial, where G is Z with the discrete topology, S!,
or $3 with the multiplication coming from the embedding S C H into the field of
quaternions.

Exercise 32. Let p: E — B be a fibration over a path connected space B. Let
F = p~1(b) for some b € B. Recall that a space X is called aspherical if it is path
connected and 7, (X, z) vanishes for all base points z € X and n > 2. Prove or
disprove:
(i) If F and B are aspherical, then F is aspherical;
(ii) If F and E are aspherical, then B is aspherical;
(iii) If £ and B are aspherical, then F' is aspherical.

Exercise 33. Compute for n > 2 and k > 1:
(i) (St x SO(n) x RP™ x CP");
(i) (T x RP= x CP>);
(iii) mo(S™V CP™).
Exercise 34. Prove or disprove that the obvious map 73(D?, S1) — m3(D?/S%) is
surjective.

Exercise 35. Consider m,n € ZZ~'. Let X and Y be spaces such that X is
m connected and Y is n-connected, where (—1)-connected means that there is no
condition. The join X xY of X and Y is defined by the pushout

X XY —— X x cone(Y)

J |

cone(X) XY — X xY.
Prove that the join X Y is (m 4 n + 2)-connected.

Exercise 36. Prove or disprove:
(i) For every simply connected topological group G we have m (QBG) = {1};
(ii) If G is a topological group, then 71 (G) is abelian;
(iii) If G is a compact connected Lie group and the universal principal G-bundle
p: EG — BG has a section s: BG — EG, then G is the trivial group.

Exercise 37. Let £ be an n-dimensional vector bundle over the space B. For [l €
729 an I-framing of ¢ is a bundle isomorphism (idp,u): R+ =N EDR! over B. We
call an lo-framing (idp, 7o) : R**+lo = ¢®RY and an [;-framing (idp, u; ) : R =
€ @RI equivalent if there exists | € Z=2° with [ > Iy, [; such that for i = 0,1 the
two bundle isomorphisms over B

RrH — ot gy R (idp,w:)®idg—1; toR R =¢a R

are homotopic through bundle isomorphisms over B. A stable framing on £ is an
equivalences class of [-framings.

(i) Prove that the group [B,SO] acts transitively and freely on the set of
stable framing of £ if there exists a stable framing on &;
(i) Show that the tangent bundle 7.S? has precisely one stable framing;
(iii) Show that the tangent bundle 7'S! has precisely two stable framings;
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(iv) Construct explicite representatives for these stable framings on 7.2 and
TS!.

Exercise 38. Prove that 7 = Z and that there is a surjection Z — 7.
Exercise 39. Construct a natural isomorphism

T (X) @2 Q = Hn(X;Q)
for any space X using the fact that 72 is finite for every n € Z=°.

Exercise 40. Consider n > 2 and X = S' Vv $™. Show that the Z[m; (X )]-module
mn(X) is free of rank 1.

Exercise 41. Decide which of the following spaces are Eilenberg-MacLane spaces
of type (G,n). If the answer is yes, specify the values for G and n:
(i) S9 for d € Z=° 1 {o0};
(ii) RP? for d € Z=° 11 {oo};
(iii) CP? for d € Z=° I {co};
(iv) Stv St
(v) T for d € Z21.
(vi) A simply connected 4-manifold.

Exercise 42. Let X be an Eilenberg-Mac-Lane space of type (G,n) for n > 2.
Prove or disprove that there is a CW-approximation K (G, (n — 1)) = Q(X, z) for
every x € X.

Exercise 43. (i) Find simply connected pointed spaces X and Y such that
the inclusion X VY — X X Y is not a weak homotopy equivalence;
(ii) Let E and F be spectra. Show that we get well-defined spectra EV F and
E x F satisfying (EVF),, = E(n)V F(n) and (E xF),, = E(n) x F(n) for
n € Z, and that there is an obvious map of spectrai: EVF — E x F.
Prove or disprove that i is a weak homotopy equivalence of spectra.

Exercise 44. Define the nth homology of a spectrum E for n € Z by
H,(E) := colimy oo Hpn11(E(k))
where the k-th structure map is the composite

ontk (E(K))

Hp 1 (E(K)) Hyir41(ST A E(R))

H, ai H, o(k
Hnvionr (Blip), Hy o1 (BE(k) ASY) 0@, Hy i (E(k +1)).

of the homological suspension isomorphism o, (F(k)), the map induced by the
flip map flip and the homomorphism induced by the structure map o (k).

Decide whether for any abelian group G there is a spectrum M(G) such that
Ho(M(G)) = G holds and H,,(M(G)) vanishes for n # 0.

34. EXERCISES PART II

Exercise 1. Let M be a simply connected closed 4-manifold whose Euler charac-
teristic x(M) is 2. Prove or disprove that M is homotopy equivalent to S*.

Exercise 2. Let X and Y be CW-complexes and £ and 7 vector bundles over X
and Y. Prove that there are pointed homeomorphisms
Th(§ xn) — Th(§) A Th(n);

Th(¢ ®R*) — S¥ ATh(¢).

Exercise 3. Compute 7§(X) for a connected CW-complex X.
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Exercise 4. Prove:

(i) There exists a self-homotopy equivalence f: CP>* — CP* which is not
homotopy to the identity.
(i) There exists a fibration CP>* — E — S! such that E is homotopy equiv-
alent to the mapping torus of f;
(iii) We have

7 ifn=1,2
T (Ty) = o
{0} otherwise;

(iv) The mapping torus Ty is not homotopy equivalent to a product of Eilenberg-
MacLane spaces.

Exercise 5. Show that we obtain a transformation of homology theories with values
in Fo-modules Ty : N, — H,(—;Fs) by assigning to an element [f: (M,0M) —
(X, A)] € N,(X, A) the image of the fundamental class [M,0M] € H,,(M,dM;Fs)
under the homomorphism H,(M,0M;F;) — H,(X, A;F3) induced by f. Show
that T, (X) is bijective for any 2-dimensional CW-complex X and any n € {0, 1, 2}.

Exercise 6. Show that we obtain for n € Z2° a surjective homomorphism N>, —
Z/2 by sending an element [M] to its Euler characteristic x(M) modulo 2 and a
surjective homomorphism €4, — Z by sending an element [M] to its signature
sign(M).

Exercise 7. Compute the topological K-theory K*(CP?) for d € Z=!.

Exercise 8. Let M be a connected closed (n — 1)-dimensional smooth submanifold
of R" for n € Z='. Prove or disprove that its normal bundle v(M C R") is not
trivial if and only if H,,(M;Z) vanishes.

Exercise 9. Let (P) be a property of Z-modules. We say that a connected CW-
complex X has property (P) if H,(X) has (P) for n € Z='. We call property (P)
compatible with products if for two connected finite CTW-complexes X and Y all
three spaces X, Y, and X x Y have property (P) if two of them have property (P).
Decide which of the following properties (P) is compatible with products:

(i) The Z-module is trivial;
(ii) The Z-module is finite;

(iii) The Z-module is finitely generated;

(iv) The Z-module is finitely generated free.

Exercise 10. Let M be a closed smooth manifold of dimension d. Let {Uy,Us,...,U,}
be a finite set of open subsets U; of M such that every U; is diffeomorphic to R<.
Construct an injective smooth map

f: M —R™
whose differential T}, f is injective for every x € M.

Exercise 11. Let u be an n-dimensional system of vector bundles over the CW-
complex X. Let y/ be the n + 1-dimensional system of vector bundles over X
obtained from p whose vector bundle in degree k is £ ® R if £ is the vector bundle
in degree k of u, and whose structure maps are the obvious ones.

Give and prove a formula how to compute Q. (u') from Q. (p).

Exercise 12. Is there a fibration F — S* — B for which F and B are closed
connected orientable manifolds of dimension > 17
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Exercise 13. Let X be a CW-complex which is of finite type, i.e., each i-skeleton
is finite. Suppose that H,. is a homology theory with values in Z-modules which
satisfies the disjoint union axiom and H,,({e}) = 0 for m < 0. Suppose that
H,({@}) is finitely generated for all m € Z=°.

Prove or disprove that #,,(X) is finitely generated for every n € Z and vanishes
for n < 0.

Exercise 14. Let f: X — Y be a weak homotopy equivalence of compactly gen-
erated Hausdorff spaces.

Prove or disprove that the induced map Q,,(f): Q,(X) — Q,(Y) is bijective for
all n € Z.

Exercise 15. Prove or disprove:
(i) Let H. be homology theory with values in R-modules. Let f: S' —
S be the map sending z to z% for d € Z. Then the induced map
Ho(f): Ha (S {1}) = H,o (S, {1}) can be identified with the map H,,_1({e}) —
H,—1({e}) given by multiplication with d;
(ii) We have:
No(RP?) 225, Ny ({0}) @ N1 ({0}) ® Niu—z({e}).

Exercise 16. Let G be a compact Lie group. Show that its tangent bundle is
trivial. Describe an (interesting) construction which assigns to G an element in the
stable stem 7 for n = dim(G).

Exercise 17. Let H, be a homology theory with values in R-modules satisfying
the disjoint union axiom. Let X be a 2-dimensional CW-complex.
Prove or disprove that for every n € Z there is a filtration

{0} CAC BCH,(X)
satisfying
A =g Ho(X;Hn-1({e}));
B/A =g Hi(X;Hp-1({e}));
Ha(X)/B =g Hz(X;Hn-2({e}))

Exercise 18. Let X be a connected finite CW-complex with 7 (X) = Z/3 whose
universal covering is homeomorphic to S3.
(i) Compute H,(X,Z) and H,(X;Fs) for n € Z=%

(ii) Compute K, (X) for n € Z;

(iii) Compute Q,(X) for n € {0,1,2,3,4,5}.
Exercise 19. Consider a homology theory #, such that H,({e}) is finitely gener-
ated free for ¢ € Z and and a finite CW-complex X with H,(X) finitely generated
free for every p > 0

Prove or disprove that the Atiyah-Hirzebruch spectral sequence strongly col-

lapses and yields isomorphisms

Ho(X)= D Hp(X) @z Hy({o}).
ptg=n
Exercise 20. Let X be a CW-complex such that H,,(X;F,) vanishes for n € Z=>1.
Prove or disprove that A,,(X) and H,(X;F3) are isomorphic Fo-modules.

Exercise 21. Let Z x Z be the semidirect product with respect to the group
homomorphism Z — aut(Z) sending m € Z to the automorphism (—1)™ - idz.
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(Note that Z x Z has the presentation (t,s | sts~t = t71).) Let K be the Klein
bottle K which is the quotient of R? by the free Z x Z-action for which ¢ and s act
by sending (r1,r2) to (r1 + 1) and (—r1,7r2 + 1) respectively.
(i) Show that K is a closed 2-dimensional manifold;
(ii) Compute m(K), H,(K;Z), H*(K;Z), H,(K;Fs), and H"(K;F3) for n >
0;
(iii) Compute the first Stiefel Whitney class w1 (M) € H*(K;Fy);
(iv) Decide whether K is orientable and determine its orientation covering.

Exercise 22. Prove Lemma 2.13 of the script saying that the adjunction homo-
morphism

ad: homRD(M ®rc B, N) — }101111.3(3(]\47 homRD(B, N))
is bijective and natural.

Exercise 23. Let X be a CW-complex such that H, (X;Z) =z H,({e};Z) holds
for n € Z2°. Prove or disprove that for any homology theory ., with values in
R-modules satisfying the disjoint union axiom the R-modules H,,(X) and H,,({e})
are isomorphic for n € Z.

Exercise 24. Consider d € ZZ°11{oo}. Compute Q ®z K,,(RP?) for n € Z for the
complex topological K-homology K,.

Exercise 25. Let A be a Z-module. Let A9 C A; C A; C --- be a nested sequence
of Z-submodules of A such that A = {J,;.; 4; holds.

Prove or disprove that for every n € Z=% we get
H,(K(A,1);Z) = colim; oo H, (K(4;,1);7Z).

Exercise 26. Let f: X — Y be a map of CW-complexes. Consider d € ZZ! and a
homology theory H, with values in R-modules satisfying the disjoint union axiom
such that H;({e}) = {0} holds for i« < —1. Suppose that H;(f;Z): H;(X;Z) —
H,(Y;Z) is bijective for ¢ < d and surjective for i = d.

Prove or disprove that H;(f;Z): H;(X;Z) — H;(Y;Z) is bijective for i < d and
surjective for ¢ = d.

Exercise 27. Let X be a finite CW-complex. Let H, homology theory with values
in Q-modules satisfying the disjoint union axiom such that #;({e}) # {0} holds
only for finitely many i € Z and H;({e}) is finitely generated for every i € Z.

Prove or disprove that H,(X) is finitely generated for all i € Z and we get for
the Euler characteristic

V(X) = S (= 1)" - dimg(Ha(X)).
neEZ
Exercise 28. Let H. be any homology theory with values in Z-modules satisfying
the disjoint union axiom such that #;({e}) = {0} holds for i < —1. Let f: X =Y
be a map of connected finite CW-complexes. Suppose that H;(f): Hi(X) — H;(Y)

is bijective for all i € Z.
Prove or disprove that H;(f;Z): H;(X;Z) — H;(Y;Z) is bijective for all i € Z=°.

Exercise 29. Consider k,1,n € Z=Z° for which there exists a fibration S¥ — S™ —
S!. Prove or disprove that then [ = k + 1 and n = k + [ holds.

Exercise 30. Consider fibration of closed connected smooth manifolds FF — E —
B. Prove or disprove:
(i) We have dim(F) = dim(F') + dim(B);
(ii) If F is orientable, then B and F are orientable;
(iii) If B and F are orientable, then F is orientable;



204 LUCK, WOLFGANG

(iv) If E is the total space of principal S*-bundle S' — E — X, then x(B) or
X(F) vanishes.

Exercise 31. Let H, be a homology theory satisfying the disjoint union axiom.
Consider a pullback of fibrations with CW-complexes as base space

EOL)El

BO T’ Bl.

Suppose that for any n € Z2° any b € B, and any loop w in B; at b; the
map Hn (p7 ' (b)) — Hn(py (b)) induced by the element 7 (w1) € [p7*(b), py (b))
given by the fiber transport is the identity and that H,(f): H,(Bo) — Hn(B1) is
bijective.

Prove or disprove that the map H,,(f): Hn(Eo) — Hn(E1) is bijective for every
n € Z.

Exercise 32. Let F': E — B be a fibration such that the fiber transport is trivial.
Let R be a principal ideal domain. Suppose H;(F; R) and H;(B;R) are finitely
generated for all i € ZZ and non-trivial only for finitely many values of 1.
(i) Show that H;(E; R) is finitely generated for all i € ZZ and non-trivial only
for finitely many values of ;
(ii) Show for the Betti numbers, which are define by b;(X; R) := rkr(H;(X; R)),
S bER) < (Y n(FiR)) - (Do (BiR));
i<0 §>0 k>0
(iii) Suppose that the inequality above is an equality and R is a field. Prove or
disprove
H,(E;R) = @ Hi(F; R) ®r H,_i(B; R).
i>0
Exercise 33. Let F be a field and G be a finite group. Prove or disprove that the
following assertions are equivalent:
(i) FG is semisimple;
(ii) The FG-module F' whose underlying F-module is F' and on which G acts
trivial is projective;
(iii) The order |G| of G is invertible in F.

Exercise 34. Let p: E — B be a principal G-bundle for the discrete finite group
G. Prove or disprove that H"(FE;Q)¢ is isomorphic to H"(B; Q) for n € Z=°.

Exercise 35. Let FF — E — B be a fibration where F' and B are path connected
closed nonorientable 2-manifolds. Suppose that the fiber transport is trivial. Prove
or disprove:

H3(E) =, Torst(H,(B), H,(F)).

Exercise 36. Let X be a space. We call a class a € H,(X,Z) realisable if there
exists a map f: M — X with M a closed oriented n-manifold such that a = f.[M].
Prove:

(i) The homomorphisms

extend to a transformation of homology theories;
(ii) Every class in degrees n < 5 is realisable;
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(iii) For every n, every class a € H, (X) is rationally realisable, i.e., there exists
N > 0 such that Na is realisable.

Exercise 37. Compute the first Chern class of the principal S'-bundle over S?
given by the Hopf fibration.

Exercise 38. The infinite dihedral group D is defined by the presentation (s, |
sts=t"1 2 =1).

(i) Show that there is a fibration S — BD., — RP>;

(ii) Compute H,,(BDx;Z) for n € Z=°.

Exercise 39. Let M be a closed connected 3-manifold whose fundamental group
is perfect, i.e. ™ = [, w]. Consider a prime p. Let f: M — S be a map of a degree
which is prime to p. Consider a pullback

where ¢ is a fibration. Let H, be a homology theory with values in F,-modules
satisfying the disjoint union axiom.
Prove or disprove that H,,(f): Hn(E) — Hn(E) is an isomorphism for all n € Z.

Exercise 40. Let F 5 E 2 B be a fibration of path connected spaces with a
CW-complex B as basis. Suppose that the action of m1(B) on H,(F) given by the
fiber transport is trivial. Denote by EP*¢ be the Leray-Serre spectral sequence for
the fibration p. Prove or disprove:

«@

(i) The map H"(i): H"(E) — H"(F) factorizes as the composite H"(E) —
E%n £> H"(F) for an epimorphism « and a monomorphism f3;
(ii) The map H"(p): H"(B) — H"(E) factorizes as the composite H"(B)

En0 LN H"™(FE) for an epimorphism « and a monomorphism S;

Exercise 41. Let R be a torsionfree commutative ring. Prove or disprove that the

divided power R-algebra R [y, %—?, %, Z—? . } and the R-algebra Rx] for |z| and |y|

even are isomorphic as graded R-algebras if and only if |z| = |y| and Q C R hold.

Exercise 42. Let R be a commutative ring. Prove or disprove:

(i) The full subcategory of R-Mod given by finitely generated R-modules is

a Serre class, if and only if R is Noetherian;

(ii) The full subcategory of R-Mod given by R-modules whose underlying set
is finite is a Serre class;

(iii) The full subcategory of R-Mod given projective R-modules is a Serre class
if and only if R is a semisimple, i.e., every R-module is projective.

(iv) The full subcategory of R-Mod given by free R-modules is a Serre class if
and only if R is a field.

Exercise 43. (i) Prove that there is an isomorphism H*(BU (n), Z) ~ Zcy, . . -

of graded rings with generators in degrees |¢;| = 2i. Hint: You may use
the fibration S*"~! — BU(n — 1) — BU(n) without proof.

(ii) Cousider a complex rank n vector bundle ¢(: E — B over a CW-complex
B and denote its classifying map by f: B — BU(n). We can define its
kth Chern class by ci(¢) = f*cx € H**(B,Z) for k < n and cx(¢) = 0 for
k > n. Prove the following:

, Cn]



206 LUCK, WOLFGANG

) co(¢) =1.

) ¢cx(¢) =0 for k > 1if ¢ is trivial.

(¢) Compute ci () where v, is the universal rank n bundle over BU(n).
) Show that this definition of ¢;({) agrees with the one from the lecture

for n =1.

(e) Explain how ¢, (¢) can be identified with the Thom class of the asso-

ciated sphere bundle S(¢), sometimes also called its Euler class.

Exercise 44. (i) Show that the map
edge,, o(S™) X Qn(pr): 2n(5") = Qn({e}) x Hn (5™ Z)

is bijective, where pr: S™ — {e} is the projection;

(ii) Show that edge,, o(X) sends the bordism class of f: M — X to the im-
age of the fundamental class [M] under the map H,(f;Z): H,(M;Z) —
H,(X;Z), provided this claim holds for X = S™, without using exercise
36.

Exercise 45. Let X be a connected finite CW-complex with finite fundamental
group. Prove or disprove that m,(X) is finitely generated for all n > 1.

Exercise 46. Let A be a finitely generated abelian group and n € ZZ!. Prove or
disprove:
(i) Suppose that A has an element of infinite order. Then there exists d € Z=?
such that H;(K(A,n); Q) = {0} holds for every for ¢ > d if and only if n
is odd;
(ii) Suppose that A contains an element of order 2. Then H,.(K(A,n);Z) #
{0} in arbitrary high degrees;
(iii) We have H;(K(A,n); Q) = {0} for every ¢ > 1 if and only if A is finite;
(iv) We have H;(K(A,n);Z) = {0} for every ¢ > 1 if and only if A is trivial;
(v) H;(K(A,n)) is finitely generated for all i € Z=°.

Exercise 47. Decide which of the following Serre classes in Z-Mod are Serre ideals:
Z-Torsy, Z-Tors, Z-Modgs, R-Modap.

Exercise 48. State all the results which are presented in the script about T, (S*)
and the stable stems 75 for n € Z=° and k € Z=1.
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