Isomorphism Conjectures in *K*- and *L*-theory Joint UMI/DMV-meeting

Wolfgang Lück Münster Germany email: lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Perugia, June 2007

Wolfgang Lück (Münster, Germany)

Isomorphism Conjectures

Perugia, June 2007 1 / 20

- Explain the *K*-theoretic and *L*-theoretic Farrell-Jones Conjecture and Baum-Connes Conjecture at least for torsionfree groups
- Discuss applications and the potential of these conjectures.
- State our main theorems.

- Explain the *K*-theoretic and *L*-theoretic Farrell-Jones Conjecture and Baum-Connes Conjecture at least for torsionfree groups
- Discuss applications and the potential of these conjectures.
- State our main theorems.

- Explain the *K*-theoretic and *L*-theoretic Farrell-Jones Conjecture and Baum-Connes Conjecture at least for torsionfree groups
- Discuss applications and the potential of these conjectures.
- State our main theorems.

- Explain the *K*-theoretic and *L*-theoretic Farrell-Jones Conjecture and Baum-Connes Conjecture at least for torsionfree groups
- Discuss applications and the potential of these conjectures.
- State our main theorems.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \rightarrow K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \rightarrow K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \to K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \to K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \rightarrow K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \to K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

 $H_n(BG; \mathbf{K}_R) \to K_n(RG)$

- $K_n(RG)$ is the algebraic K-theory of the group ring RG;
- K_R is the (non-connective) algebraic K-theory spectrum of the ring R.
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R).$
- BG is the classifying space of the group G.
- Example $G = \mathbb{Z}$: $K_n(R[\mathbb{Z}]) \cong K_n(R) \oplus K_{n-1}(R)$.

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring R_F(G) is the same as K₀(FG).
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $\widetilde{K}_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $Wh(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $\widetilde{K}_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $Wh(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $\widetilde{K}_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $K_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $K_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $Wh(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring R_F(G) is the same as K₀(FG).
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $K_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

 $\mathsf{Wh}(\mathsf{\textit{G}})=\mathsf{\textit{K}}_1(\mathbb{Z}\mathsf{\textit{G}})/\{\pm g\mid g\in \mathsf{\textit{G}}\}.$

- $K_0(R)$ is the Grothendieck construction applied to the abelian semigroup of finitely generated projective *R*-modules.
- Let G be a finite group and F be a field of characteristic zero. Then the representation ring R_F(G) is the same as K₀(FG).
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective R-modules.
- $K_1(R)$ is the abelianization GL(R)/[GL(R), GL(R)] of $GL(R) = \bigcup_{n \ge 1} GL_n(R)$.
- The assignment A → [A] ∈ K₁(R) for A ∈ GL_n(R) is the universal determinant for R.
- $\widetilde{K}_n(R)$ is the cokernel of $K_n(\mathbb{Z}) \to K_n(R)$.
- The Whitehead group of a group G is defined to be

$$\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$$

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

- The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.
- It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

- The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.
- It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

< □ > < 同 > < 三 > < 三

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

- The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.
- It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

< □ > < 同 > < 三 > < 三

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

- The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.
- It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

< □ > < 同 > < 三 > < 三

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

 The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.

• It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem (Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed manifold of dimension $n \ge 5$ with fundamental group $G = \pi_1(M_0)$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is trivial over M_0 if and only if its Whitehead torsion $\tau(W, M_0) \in Wh(G)$ vanishes.

- The s-Cobordism Theorem implies the Poincaré Conjecture in dimension ≥ 5.
- It is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_K(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{K}(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_K(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{K}(R)$. Then

- $K_n(RG) = 0$ for $n \le -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\widetilde{K}_0(RG)$ is trivial if and only if $\widetilde{K}_0(R)$ is trivial.

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{K}(R)$. Then

- $K_n(RG) = 0$ for $n \le -1$;
- The change of rings map $K_0(R) \to K_0(RG)$ is bijective. In particular $\widetilde{K}_0(RG)$ is trivial if and only if $\widetilde{K}_0(R)$ is trivial.

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{K}(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{\mathcal{K}}(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

- In order to illustrate the depth of the Farrell-Jones Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ be the class of groups which satisfy the K-theoretic Farrell-Jones Conjecture for the coefficient ring R.

Let R be a regular ring, for instance \mathbb{Z} , a field or a principal ideal domain. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{\mathcal{K}}(R)$. Then

•
$$K_n(RG) = 0$$
 for $n \le -1$;

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≅ G is trivial.
- If G belongs to $\mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$, then it is of type FF if and only if it is of type FP. (Serre's problem)

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≅ G is trivial.
- If G belongs to 𝓕𝔅𝑘𝔅(ℤ), then it is of type FF if and only if it is of type FP. (Serre's problem)

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≃ G is trivial.
- If G belongs to $\mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$, then it is of type FF if and only if it is of type FP. (Serre's problem)

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≅ G is trivial.
- If G belongs to $\mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$, then it is of type FF if and only if it is of type FP. (Serre's problem)

We get for a torsionfree group $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≃ G is trivial.
- If G belongs to 𝓕𝔅𝑘𝔅(ℤ), then it is of type FF if and only if it is of type FP. (Serre's problem)

We get for a torsionfree group $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \leq -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every compact *h*-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≃ G is trivial.
- If G belongs to 𝓕𝑘𝑘𝑘𝔅(ℤ), then it is of type FF if and only if it is of type FP. (Serre's problem)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_K(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

- N

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{K}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

∃ ▶ ∢

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{K}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- G is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

3 🕨 🖌 🖻

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{K}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

(日) (同) (三) (三)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{K}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

3 🕨 🖌 3

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (Bartels-L.-Reich (2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{K}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

3 🕨 🖌 3

Conjecture (Farrell-Jones)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

 $H_n^G(E_{\mathcal{VCyc}}(G), \mathbf{K}_R) \to H_n^G(pt, \mathbf{K}_R) = K_n(RG)$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (Farrell-Jones)

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(E_{\mathcal{VCyc}}(G),\mathbf{K}_R)
ightarrow H_n^G(pt,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_K(R)$. Then the map given by induction from finite subgroups of G

 $\operatorname{colim}_{\operatorname{Dr}_{\operatorname{Fin}}(G)} K_0(RH) \to K_0(RG)$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_K(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\operatorname{{\mathcal F}in}}(G)} K_0(\operatorname{{\mathcal F}H})[1/p] \to K_0(\operatorname{{\mathcal F}G})[1/p]$

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_{\mathcal{K}}(R)$. Then the map given by induction from finite subgroups of G

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{F}in}(G)} K_0(RH) \to K_0(RG)$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_K(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\operatorname{{\mathcal F}in}}(G)} K_0(\operatorname{{\mathcal F}H})[1/p] \to K_0(\operatorname{{\mathcal F}G})[1/p]$

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_{K}(R)$. Then the map given by induction from finite subgroups of G

 $\operatorname{colim}_{\operatorname{Or}_{\operatorname{{\mathcal F}in}}(G)} K_0(RH) \to K_0(RG)$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_K(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{F}in}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_{K}(R)$. Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Cr}_{\operatorname{Fin}}(G)} K_0(RH) \to K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{\mathcal{K}}(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{F}in}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_{K}(R)$. Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Cr}_{\operatorname{Fin}}(G)} K_0(RH) \to K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{Fin}}(G)} K_0(\operatorname{FH})[1/p] \to K_0(\operatorname{FG})[1/p]$$

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It predicts that for a closed Riemannian manifold M with torsionfree fundamental group the *p*-th L^2 -Betti number of its universal covering

$$b^{(2)}_{
ho}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}\left(e^{-t\widetilde{\Delta_{
ho}}}(\widetilde{x},\widetilde{x})
ight) d\operatorname{vol}_{\widetilde{M}}$$

is an integer.

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It predicts that for a closed Riemannian manifold M with torsionfree fundamental group the *p*-th L^2 -Betti number of its universal covering

$$b^{(2)}_{
ho}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}\left(e^{-t\widetilde{\Delta_{
ho}}}(\widetilde{x},\widetilde{x})\right) d\operatorname{vol}_{\widetilde{M}}$$

is an integer.

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It predicts that for a closed Riemannian manifold M with torsionfree fundamental group the *p*-th L^2 -Betti number of its universal covering

$$b^{(2)}_{
ho}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}\left(e^{-t\widetilde{\Delta_{
ho}}}(\widetilde{x},\widetilde{x})\right) d\operatorname{vol}_{\widetilde{M}}$$

is an integer.

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It predicts that for a closed Riemannian manifold M with torsionfree fundamental group the *p*-th L^2 -Betti number of its universal covering

$$b^{(2)}_{
ho}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}\left(e^{-t\widetilde{\Delta_{
ho}}}(\widetilde{x},\widetilde{x})
ight) d\operatorname{vol}_{\widetilde{M}}$$

is an integer.

$$\operatorname{colim}_{\operatorname{Or}_{\operatorname{\mathcal{F}in}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It predicts that for a closed Riemannian manifold M with torsionfree fundamental group the *p*-th L^2 -Betti number of its universal covering

$$b^{(2)}_{
ho}(\widetilde{M}) = \lim_{t o \infty} \int_{\mathcal{F}} \operatorname{tr}\left(e^{-t\widetilde{\Delta_{
ho}}}(\widetilde{x},\widetilde{x})
ight) d\operatorname{vol}_{\widetilde{M}}$$

is an integer.

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_K(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_K(R)$;
- If H is a subgroup of G and $G \in \mathcal{FJ}_K(R)$, then $H \in \mathcal{FJ}_K(R)$.

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_{\mathcal{K}}(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If H is a subgroup of G and $G \in \mathcal{FJ}_K(R)$, then $H \in \mathcal{FJ}_K(R)$.

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_K(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_K(R)$;
- If H is a subgroup of G and $G \in \mathcal{FJ}_K(R)$, then $H \in \mathcal{FJ}_K(R)$.

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_K(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_K(R)$;
- If H is a subgroup of G and $G \in \mathcal{FJ}_K(R)$, then $H \in \mathcal{FJ}_K(R)$.

3 K K 3 K

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_K(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_K(R)$;

• If H is a subgroup of G and $G \in \mathcal{FJ}_K(R)$, then $H \in \mathcal{FJ}_K(R)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Bartels-L.-Reich (2007))

- Every hyperbolic group and every virtually nilpotent group belongs to $\mathcal{FJ}_{\mathcal{K}}(R)$;
- If G_1 and G_2 belong to $\mathcal{FJ}_K(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}_K(R)$;
- Let $\{G_i \mid i \in I\}$ be a directed system of groups (with not necessarily injective structure maps) such that $G_i \in \mathcal{FJ}_K(R)$ for $i \in I$. Then $\operatorname{colim}_{i \in I} G_i$ belongs to $\mathcal{FJ}_K(R)$;
- If H is a subgroup of G and $G \in \mathcal{FJ}_{K}(R)$, then $H \in \mathcal{FJ}_{K}(R)$.

イロト イポト イヨト イヨト

• We emphasize that this result holds for all rings *R*.

- The groups above are certainly wild in Bridson's universe.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.
- Bartels and L. have a program to prove G ∈ FJ_K(R) if G acts properly and cocompact on a CAT(0)-space.
 This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- We emphasize that this result holds for all rings *R*.
- The groups above are certainly wild in Bridson's universe.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.
- Bartels and L. have a program to prove G ∈ FJ_K(R) if G acts properly and cocompact on a CAT(0)-space.
 This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- We emphasize that this result holds for all rings *R*.
- The groups above are certainly wild in Bridson's universe.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.
- Bartels and L. have a program to prove G ∈ FJ_K(R) if G acts properly and cocompact on a CAT(0)-space.
 This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- We emphasize that this result holds for all rings *R*.
- The groups above are certainly wild in Bridson's universe.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.
- Bartels and L. have a program to prove $G \in \mathcal{FT}_{\mathcal{K}}(R)$ if G acts properly and cocompact on a CAT(0)-space.

This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- We emphasize that this result holds for all rings *R*.
- The groups above are certainly wild in Bridson's universe.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.
- Bartels and L. have a program to prove G ∈ FJ_K(R) if G acts properly and cocompact on a CAT(0)-space.
 This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

Conjecture (Farrell-Jones)

The L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R for the torsionfree group G predicts that the assembly map

$$H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) \to L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

 This is the Farrell-Jones Conjecture for K-theory if one replaces K-theory by L-theory with decoration (−∞).

Conjecture (Farrell-Jones)

The L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R for the torsionfree group G predicts that the assembly map

$$H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) \to L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

 This is the Farrell-Jones Conjecture for K-theory if one replaces K-theory by L-theory with decoration ⟨-∞⟩.

Conjecture (Novikov)

The Novikov Conjecture predicts the homotopy invariance of higher signatures

Conjecture (Borel)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

Conjecture (Novikov)

The Novikov Conjecture predicts the homotopy invariance of higher signatures

Conjecture (Borel)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

Conjecture (Novikov)

The Novikov Conjecture predicts the homotopy invariance of higher signatures

Conjecture (Borel)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

Conjecture (Novikov)

The Novikov Conjecture predicts the homotopy invariance of higher signatures

Conjecture (Borel)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ FJ_L(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

Image: Image:

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ FJ_L(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

Image: Image:

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ 𝔅𝔅𝔅𝔅(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ 𝔅𝔅𝔅𝔅(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ 𝔅𝔅𝔅𝔅(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ FJ_L(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

- The *L*-theoretic Farrell-Jones Conjecture for a group *G* in the case $R = \mathbb{Z}$ implies the Novikov Conjecture in dimension ≥ 5 .
- If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case R = Z, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.
- As in the case of algebraic *K*-theory there is also an analogous version of the *L*-theoretic Farrell-Jones Conjecture for arbitrary groups *G*.
- Bartels and L. have a program to extend our result for the *K*-theoretic Farrell-Jones Conjecture also to the *L*-theoretic version. This would imply the Novikov and the Borel Conjecture for such groups.
- Bartels and L. have a program to prove G ∈ FJ_L(R) if G acts properly and cocompact on a CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

 $K_n(BG) \to K_n(C_r^*(G))$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(BG)$ is the topological K-homology of BG.
- K_n(C^{*}_r(G)) is the topological K-theory of the reduced complex group C*-algebra C^{*}_r(G) of G;

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

 $K_n(BG) \rightarrow K_n(C_r^*(G))$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(BG)$ is the topological K-homology of BG.
- K_n(C^{*}_r(G)) is the topological K-theory of the reduced complex group C*-algebra C^{*}_r(G) of G;

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

$$K_n(BG) \to K_n(C_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

• $K_n(BG)$ is the topological K-homology of BG.

 K_n(C^{*}_r(G)) is the topological K-theory of the reduced complex group C*-algebra C^{*}_r(G) of G;

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

$$K_n(BG) \to K_n(C_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

- $K_n(BG)$ is the topological K-homology of BG.
- K_n(C^{*}_r(G)) is the topological K-theory of the reduced complex group C*-algebra C^{*}_r(G) of G;

$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(C_r^*(G)).$

• The Bost Conjecture is the analogue for $I^1(G)$, i.e., it concerns the assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(l^1(G)).$$

Its composition with the canonical map $K_n(l^1(G)) \to K_n(C_r^*(G))$ is the Baum-Connes assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(C_r^*(G)).$$

• The Bost Conjecture is the analogue for $l^1(G)$, i.e., it concerns the assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(I^1(G)).$$

Its composition with the canonical map $K_n(l^1(G)) \to K_n(C_r^*(G))$ is the Baum-Connes assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(C_r^*(G)).$$

• The Bost Conjecture is the analogue for $l^1(G)$, i.e., it concerns the assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(I^1(G)).$$

Its composition with the canonical map $K_n(I^1(G)) \to K_n(C_r^*(G))$ is the Baum-Connes assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(C_r^*(G)).$$

• The Bost Conjecture is the analogue for $l^1(G)$, i.e., it concerns the assembly map.

$$K_n^G(E_{\mathcal{F}in}(G)) \to K_n(I^1(G)).$$

Its composition with the canonical map $K_n(I^1(G)) \to K_n(C_r^*(G))$ is the Baum-Connes assembly map.

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.
 So the failure of the Baum-Connes Conjecture with coefficients says that the map K_n(A ⋊_l G) → K_n(A ⋊_{C^{*}_r} G) is not bijective.
 The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C*-algebra.

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.
 So the failure of the Baum-Connes Conjecture with coefficients says that the map K_n(A ⋊_l G) → K_n(A ⋊_{C^{*}} G) is not bijective. The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C*-algebra.

Image: A matrix and a matrix

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.
 So the failure of the Baum-Connes Conjecture with coefficients says that the map K_n(A ⋊_{I¹} G) → K_n(A ⋊_{C^{*}_r} G) is not bijective.
 The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C*-algebra.

A D F A B F A B F A

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.
 So the failure of the Baum-Connes Conjecture with coefficients says that the map K_n(A ⋊_l G) → K_n(A ⋊_{C^{*}} G) is not bijective.
 The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C*-algebra.

A D F A B F A B F A

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.

So the failure of the Baum-Connes Conjecture with coefficients says that the map $K_n(A \rtimes_{l^1} G) \to K_n(A \rtimes_{C_r^*} G)$ is not bijective. The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C^* -algebra.

< 口 > < 同 > < 三 > < 三

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients.
 So the failure of the Baum-Connes Conjecture with coefficients says that the map K_n(A ⋊_I G) → K_n(A ⋊_{C^{*}} G) is not bijective.
 The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C^{*} algobra

Let G be the colimit of the directed system $\{G_i \mid i \in I\}$ of hyperbolic groups G_i (with not necessarily injective structure maps). Then G satisfies the Farrell-Jones Conjecture with coefficients and the Bost Conjecture with coefficients.

- The proof uses the deep result of Lafforgue that the Bost Conjecture with coefficients is true for every hyperbolic group.
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis, do satisfy the Bost Conjecture with coefficients. So the failure of the Baum-Connes Conjecture with coefficients says that the map $K_n(A \rtimes_{l^1} G) \to K_n(A \rtimes_{C_r^*} G)$ is not bijective. The underlying problem with the Baum-Connes Conjecture is the lack of functoriality of the reduced group C^* -algebra.

- It is not known whether there are counterexamples to the Farrell-Jones Conjecture or the Baum-Connes Conjecture.
- The Baum-Connes Conjecture and the Farrell-Jones Conjecture are not known for SL_n(ℤ) for n ≥ 3, mapping class groups and Out(F_n);
- There seems to be no promising candidate of a group *G* which is a potential counterexample to the *K* or *L*-theoretic Farrell-Jones Conjecture or the Bost Conjecture.

- It is not known whether there are counterexamples to the Farrell-Jones Conjecture or the Baum-Connes Conjecture.
- The Baum-Connes Conjecture and the Farrell-Jones Conjecture are not known for SL_n(ℤ) for n ≥ 3, mapping class groups and Out(F_n);
- There seems to be no promising candidate of a group *G* which is a potential counterexample to the *K* or *L*-theoretic Farrell-Jones Conjecture or the Bost Conjecture.

- It is not known whether there are counterexamples to the Farrell-Jones Conjecture or the Baum-Connes Conjecture.
- The Baum-Connes Conjecture and the Farrell-Jones Conjecture are not known for SL_n(ℤ) for n ≥ 3, mapping class groups and Out(F_n);
- There seems to be no promising candidate of a group *G* which is a potential counterexample to the *K* or *L*-theoretic Farrell-Jones Conjecture or the Bost Conjecture.