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17 Poincaré Duality and Algebraic L-Groups (L. and Varisco) 135
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Introduction

Manifolds are the central geometric objects in modern mathematics. An attempt
to understand the nature of manifolds leads to many interesting questions. One of
the most obvious questions is the following.

Let M and N be manifolds: how can we decide whether M and N are homo-
topy equivalent or homeomorphic or diffeomorphic (if the manifolds are smooth)?

The prototype of a beautiful answer is given by the Poincaré Conjecture. If
N is Sn, the n-dimensional sphere, and M is an arbitrary closed manifold, then
it is easy to decide whether M is homotopy equivalent to Sn. This is the case
if and only if M is simply connected (assuming n > 1, the case n = 1 is trivial
since every closed connected 1-dimensional manifold is diffeomorphic to S1) and
has the homology of Sn. The Poincaré Conjecture states that this is also sufficient
for the existence of a homeomorphism from M to Sn. For n = 2 this follows from
the well-known classification of surfaces. For n > 4 this was proved by Smale and
Newman in the sixties of the last century, Freedman solved the case in n = 4 in
1982 and recently Perelman announced a proof for n = 3, but this proof has still
to be checked thoroughly by the experts. In the smooth category it is not true that
manifolds homotopy equivalent to Sn are diffeomorphic. The first examples were
published by Milnor in 1956 and together with Kervaire he analyzed the situation
systematically in the sixties.

For spheres one only needs very little information to determine the homeo-
morphism type: the vanishing of the fundamental group and control of the homol-
ogy groups. Another natural class of manifolds is given by aspherical manifolds.
A CW -complex is called aspherical if the homotopy groups vanish in dimension
> 1, or, equivalently, if its universal covering is contractible. The Borel Conjecture,
which is closely related to the Novikov Conjecture, implies that the fundamental
group determines the homeomorphism type of an aspherical closed manifold.

For more general manifolds with prescribed fundamental group the classi-
fication is in general unknown even if the fundamental group is trivial. In this
situation it is natural to construct as many invariants as possible hoping that at
least for certain particularly important classes of manifolds one can classify them
in terms of theses invariants. The most important invariants after homotopy and
(co)homology groups are certainly characteristic classes which were defined and
systematically treated in the fifties. There are two types of characteristic classes
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for smooth manifolds: the Stiefel-Whitney classes wk(M) in Hk(M ; Z/2) and the
Pontrjagin classes pk(M) ∈ H4k(M ; Z). The nature of these classes is rather dif-
ferent. The Stiefel-Whitney classes of a closed manifold can be expressed in terms
of cohomology operations and so are homotopy invariants, the Pontrjagin classes
are diffeomorphism invariants (for smooth manifolds, and only for those they are
a priori defined), but not homeomorphism or even homotopy invariants in gen-
eral. Only very special linear combinations of the Pontrjagin classes are actually
homotopy invariants.

For example, the first Pontrjagin class of a closed oriented 4-manifold p1(M)
is a homotopy invariant. The reason is that 〈p1(M), [M ]〉 = 3 · sign(M), where
sign(M) is the signature of the intersection form on H2(M ; Q). The signature is
by construction a homotopy invariant. More generally, Hirzebruch has defined a
certain rational polynomial in the Pontrjagin classes (for a definition of Pontrjagin
classes see [171]) , the L-class

L(M) = L(p1(M), p2(M), . . .) ∈
⊕
i≥0

H4i(M ; Q).

Its i-th component is denoted by

Li(M) = Li(p1(M), p2(M), . . . , pi(M)) ∈ H4i(M ; Q).

The famous Signature Theorem of Hirzebruch says that the evaluation of Lk(M)
on the fundamental class [M] gives the signature of a 4k-dimensional manifold M :

sign(M) = 〈Lk(p1(M), . . . , pk(M)), [M ]〉.

One can show that a polynomial in the Pontrjagin classes gives a homotopy in-
variant if and only if it is a multiple of the k-th L-class.

This sheds light on the homotopy properties of the polynomial Lk(M) of a
4k-dimensional manifold M . But what can one say about the other polynomials
L1(M),L2(M),L3(M), . . .? Understanding Li(M) is — by Poincaré duality —
equivalent to understanding the numerical invariants

〈x ∪ Li(M), [M ]〉 ∈ Q (0.1)

for all x ∈ Hn−4i(M), where n = dim(M). One may ask whether these numerical
invariants are homotopy invariant in the following sense: If g : N → M is an
orientation preserving homotopy equivalence, then

〈x ∪ Li(M), [M ]〉 = 〈g∗(x) ∪ Li(N), [N ]〉. (0.2)

In general, these numerical invariants are not homotopy invariants. The Sig-
nature Theorem implies that the expression 0.1 is homotopy invariant for all
x ∈ H0(M ; Q). Novikov proved the remarkable result in the sixties that for
dim(M) = 4k + 1 and x ∈ H1(M) the expression 0.1 is homotopy invariant.
This motivated Novikov to state the following conjecture.
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LetG be a group. Denote by BG its classifying space which is up to homotopy
uniquely determined by the property that it is an aspherical CW -complex with G
as fundamental group. Novikov conjectured that the numerical expression

〈f∗(x) ∪ Li(M), [M ]〉 ∈ Q (0.3)

is homotopy invariant for every map f : M → BG from a closed oriented n-
dimensional manifold M to BG and every class x ∈ Hn−4i(M ; Q). More precisely,
the famous Novikov Conjecture says that if f ′ : M ′ → K is another map and
g : M →M ′ is an orientation preserving homotopy equivalence such that f ′ ◦ g is
homotopic to f , then

〈f∗(x) ∪ Li(M), [M ]〉 = 〈(f ′)∗(x) ∪ Li(M ′), [M ′])〉.

Notice that Novikov’s result that 0.2 holds in the case dim(M) = 4k + 1 and
x ∈ H1(M) is a special case of the Novikov Conjecture above since S1 is a model
for BZ and a cohomology class x ∈ H1(M) is the same as a homotopy class of
maps f : M → S1, the correspondence is given by associating to the homotopy
class of f : M → S1 the pullback f∗(x), where x is a generator of H1(S1).

Looking at this conjecture in a naive way one does not see a philosophical
reason why it should be true. Even in the case of the polynomial Lk, where 4k is
the dimension of a manifold, the proof cannot be understood without the signature
theorem translating the L-class to a cohomological invariant, the signature. In this
situation it is natural to ask for other homotopy invariants (instead of the signa-
ture) hoping that one can interpret the expressions 0.3 occurring in the Novikov
Conjecture in terms of these invariants. These expressions 0.3 are called higher
signatures. One can actually express them as signature of certain submanifolds.
But this point of view does not give homotopy invariants.

It is natural to collect all higher signatures and form from them a single
invariant. This can be done, namely, one considers

signG(M,f) := f∗(L(M) ∩ [M ]) ∈
⊕

i∈Z,i≥0

Hm−4i(BG; Q),

the image of the Poincaré dual of the L-class under the map induced from f . An
approach to proving the Novikov Conjecture could be to construct a homomor-
phism

AG :
⊕

i∈Z,i≥0

Hm−4i(BG; Q)→ L(G)

where L(G) is some Abelian group, such that AG(signG(M)) is a homotopy invari-
ant. Then the Novikov Conjecture would follow if the map AG is injective. Such
maps will be given by so called assembly maps.

The construction of such a map is rather complicated. A large part of these
lecture notes treats the background needed to construct such a map. In particular,
one needs the full machinery of surgery theory. We will give an introduction to
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this important theory. Roughly speaking, surgery deals with the following prob-
lem. Let W be a compact m-dimensional manifold whose boundary is either empty
or consists of two components M0 and M1 and f : W → X a map to a finite CW -
complex. If the boundary of W is not empty, we assume that f restricted to M0

and M1 is a homotopy equivalence. Then X is a so called Poincaré complex, some-
thing we also require if the boundary of W is empty. The question is whether we
can replace W and f by W ′ and f ′ (bordant to (W, f)) such that f ′ is a homo-
topy equivalence. If the boundary of W is not empty, then W ′ is an h-cobordism
between M0 and M1. In general it is not possible to replace (W, f) by (W ′, f ′)
with f ′ a homotopy equivalence. Wall has defined abelian groups Lhm(π1(X)) and
an obstruction θ(W, f) ∈ Lhm(π1(X)) whose vanishing is a necessary and suffi-
cient condition for replacing (W, f) by (W ′, f ′) with f ′ a homotopy equivalence, if
m > 4. One actually needs some more control, namely a so-called normal structure
on W . All this is explained in Chapters 2, 10 - 14 and Chapter 17.

Why is it so interesting to obtain an h-cobordism? If X is simply-connected,
and the dimension of W is greater than five, the celebrated h-cobordism theorem
of Smale says that an h-cobordism W is diffeomorphic to the cylinder over M0. In
particular, M0 and M1 are diffeomorphic. There is a corresponding result for topo-
logical manifolds. In the situation which is relevant for the Novikov Conjecture, X
is not simply-connected and then the h-cobordism theorem does not hold. There
is an obstruction, the Whitehead torsion, sitting in the Whitehead group which
is closely related to the algebraic K1-group. If the dimension of the h-cobordism
W is larger than five, then the vanishing of this obstruction is necessary and suf-
ficient for W to be diffeomorphic to the cylinder. This is called the s-cobordism
theorem. The Whitehead group, the obstruction and the idea of the proof of the
s-cobordism theorem are treated in Chapters 5 - 8.

In Chapters 15 - 16 we define the assembly map and apply it to prove the
Novikov Conjecture for finitely-generated free Abelian Groups.

What we have presented so far summarizes and explains information which
was known around 1970. To get a feeling for how useful the Novikov Conjecture
is, we apply it to some classification problems in low dimensions (see Chapter 0).

In the rest of the lecture notes we present some of the most important con-
cepts and results concerning the Novikov Conjecture and other closely related
conjectures dating from after 1970. This starts with an introduction to spectra
(see Chapter 18) and continues with classifying spaces of families, a generalization
of aspherical spaces (see Chapter 19). With this we have prepared a frame in which
not only the Novikov Conjecture but other similar and very important conjectures
can be formulated: the Farrell-Jones and the Baum-Connes Conjectures. After
introducing equivariant homology theories in Chapter 20, these conjectures and
their relation to the Novikov Conjecture are discussed in Chapters 21 - 23. Finally,
these lecture notes are finished by Chapter 24 called “Miscellaneous” in which the
status of the conjectures is summarized and methods and proofs are presented.

It is interesting to speculate whether the Novikov Conjecture holds for all
groups. No counterexamples are known to the authors. An interesting article ex-
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pressing doubts was published by Gromov [102].
We have added a collection of exercises and hints for their solutions.
From the amount of material presented in these Lecture Notes it is obvious,

that we cannot present all of the details. We have tried to explain those things
which are realistic for the very young participants of the seminar to master and we
have only said a few words (if anything at all) at other places. People who want to
understand the details of this fascinating theory will have to consult other books
and often the original literature. We hope that they will find our Lecture Notes
useful, since we explain some of the central ideas and give a guide for learning the
beautiful mathematics related to the Novikov Conjecture and other closely related
conjectures and results.

We would like to thank the participants of this seminar for their interest
and many stimulating discussions and Mathematisches Forschungsinstitut Ober-
wolfach for providing excellent conditions for such a seminar. We also would like to
thank Andrew Ranicki for carefully reading a draft of this notes and many useful
comments.
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