The Novikov Conjecture Oberwolfach-Seminar January 2004

Matthias Kreck and Wolfgang Lück

October 1, 2004

Contents

Introduction 9
0 A Motivating Problem (K.) 15
0.1 Dimensions ≤ 4 15
0.2 Dimension 6 16
0.3 Dimension 5 18
1 Introduction to the Novikov and the Borel Conjecture (L.) 19
1.1 The Original Formulation of the Novikov Conjecture 19
1.2 Invariance Properties of the L-Class 20
1.3 The Borel Conjecture 22
2 Normal Bordism Groups (K.) 25
2.1 Normal Bordism Groups 25
2.2 Rational Computation of Normal Bordism Groups 26
2.3 Rational Computation of Oriented Bordism Groups 28
3 The Signature (K.) 31
3.1 The Definition of the Signature 32
3.2 The Bordism Invariance of the Signature 32
3.3 Multiplicativity and other Properties of the Signature 34
3.4 Geometric Interpretation of Cohomology and the Intersection Form 35
4 The Signature Theorem and the Novikov Conjecture (K.) 39
4.1 The Signature Theorem 39
4.2 Higher Signatures 41
4.3 The Novikov Conjecture 42
4.4 The Pontrjagin classes are not homeomorphism invariants 43
5 The Projective Class Group and the Whitehead Group (L.) 47
5.1 The Projective Class Group 47
5.2 The First Algebraic K-Group 49
5.3 The Whitehead Group 53
5.4 The Bass-Heller-Swan Decomposition 54
6 Whitehead Torsion (L.) 57
6.1 Whitehead Torsion of a Chain Map 57
6.2 The Cellular Chain Complex of the Universal Covering 61
6.3 The Whitehead Torsion of a Cellular Map 63
6.4 Simple Homotopy Equivalences 66
7 The Statement and Consequences of the s-Cobordism Theorem (L.) 69
8 Sketch of the Proof of the s-Cobordism Theorem (L.) 73
8.1 Handlebody Decompositions 73
8.2 Handlebody Decompositions and $C W$-Structures 75
8.3 Reducing the Handlebody Decomposition 77
8.4 Handlebody Decompositions and Whitehead torsion 79
9 From the Novikov Conjecture to Surgery (K.) 83
9.1 The Structure Set 83
9.2 The Assembly Idea 84
10 Surgery Below the Middle Dimension I: An Example (K.) 91
10.1 Surgery and its Trace 91
10.2 The Effect on the Fundamental Group and Homology Groups 92
10.3 Application to Knottings 93
11 Surgery Below the Middle Dimension II: Systematically (K.) 95
11.1 The Effect of Surgery in Homology and Homotopy 95
11.2 Surgery below the Middle Dimension 97
11.3 Construction of Certain 6-Manifolds 100
12 Surgery in the Middle Dimension I (K.) 103
12.1 Motivation for the Surgery Obstruction Groups 103
12.2 Unimodular Hermitian Forms 104
12.3 The L-Groups in Dimensions $4 m$ 105
12.4 The L-Groups in Other Dimensions 106
13 Surgery in the Middle Dimension II (K.) 109
13.1 Equivariant Intersection Numbers 109
13.2 Stably Free Modules 110
13.3 The Quadratic Refinement 111
13.4 The Surgery Obstruction 113
14 Surgery in the Middle Dimension III (K.) 115
14.1 Stable Diffeomorphism Classification 115
14.2 The Surgery Obstruction is a Bordism Invariant 117
14.3 The Main Result 117
14.4 Proof of the Main Theorem 119
14.5 The Exact Surgery Sequence 122
14.6 Stable Classification of Certain 6-Manifolds 124
15 An Assembly Map (K.) 125
15.1 More on the Definition of the Assembly Map 125
15.2 The Surgery Version of the Novikov Conjecture 128
16 The Novikov Conjecture for \mathbb{Z}^{n} (K.) 129
16.1 The Idea of the Proof 129
16.2 Reduction to Mapping Tori 129
16.3 The Proof for Rank 1 131
16.4 The Generalization to Higher Rank 133
17 Poincaré Duality and Algebraic L-Groups (L. and Varisco) 135
17.1 Poincaré duality 135
17.2 Algebraic L-groups 141
18 Spectra (L.) 149
18.1 Basic Notions about Spectra 149
18.2 Homotopy Pushouts and Homotopy Pullbacks for spaces 151
18.3 Homotopy Pushouts and Homotopy Pullbacks for Spectra 154
18.4 (Co-)Homology Theories Associated to Spectra 155
18.5 K-Theory and L-Theory Spectra 157
18.6 The Chern Character for Homology Theories 159
18.7 The Bordism Group Associated to a Vector Bundle 160
18.8 The Thom Space of a Vector Bundle 161
18.9 The Pontrjagin Thom Construction 161
18.10 The Stable Version of the Pontrjagin Thom Construction 162
18.11 The Oriented Bordism Ring 164
18.12 Stable Homotopy 165
18.13 The Thom Isomorphism 166
18.14 The Rationalized Oriented Bordism Ring 166
18.15 The Integral Oriented Bordism Ring 167
19 Classifying Spaces of Families (L.) 169
19.1 Basics about G - $C W$-Complexes 169
19.2 The Classifying Space for a Family 172
19.3 Special Models 173
19.3.1 The Family of All Subgroups and the Trivial Family 173
19.3.2 Operator Theoretic Model 173
19.3.3 Discrete Subgroups of Almost Connected Lie Groups 173
19.3.4 Simply Connected Non-Positively Curved Manifolds 174
19.3.5 CAT(0)-Spaces 174
19.3.6 Trees with Finite Isotropy Groups 174
19.3.7 Amalgamated Products and HNN-Extensions 174
19.3.8 Arithmetic Groups 175
19.3.9 Outer Automorphism Groups of Free groups 176
19.3.10 Mapping Class groups 176
19.3.11 One-Relator Groups 176
19.3.12 Special Linear Groups of (2,2)-Matrices 177
20 Equivariant Homology Theories and the Meta-Conjecture (L.) 179
20.1 The Meta-Conjecture 179
20.2 Formulation of the Farrell-Jones and the Baum-Connes Conjecture 180
20.3 Equivariant Homology Theories 181
20.4 The Construction of Equivariant Homology Theories from Spectra 184
21 The Farrell-Jones Conjecture (L.) 189
21.1 The Bass-Heller Swan Decomposition in Arbitrary Dimensions 189
21.2 Decorations in L-Theory and the Shaneson Splitting 190
21.3 Changing the Family 192
21.4 The Farrell-Jones Conjecture for Torsionfree Groups 193
21.5 The Farrell-Jones Conjecture and the Borel Conjecture 196
21.6 The Passage from $\mathcal{F I N}$ to $\mathcal{X X X}$ 196
22 The Baum-Connes Conjecture (L.) 201
22.1 Index Theoretic Interpretation of the Baum-Connes Assembly Map 201
22.2 The Baum-Connes Conjecture for Torsionfree Groups 202
22.3 The Trace Conjecture in the Torsionfree Case 203
22.4 The Kadison Conjecture 203
22.5 The Stable Gromov-Lawson-Rosenberg Conjecture 204
22.6 The Choice of the Family $\mathcal{F I N}$ in the Baum-Connes Conjecture 205
23 Relating the Novikov, the Farrell-Jones and the Baum-Connes Conjectures
(L.)207
23.1 The Farrell-Jones Conjecture and the Novikov Conjecture 207
23.2 Relating Topological K-Theory and L-Theory 211
23.3 The Baum-Connes Conjecture and the Novikov Conjecture 213
24 Miscellaneous (L.) 217
24.1 Status of the Conjectures 217
24.2 Methods of Proof 222
24.3 Computations for Finite Groups 222
Contents 7
24.3.1 Topological K-Theory for Finite Groups 222
24.3.2 Algebraic K-Theory for Finite Groups 223
24.3.3 Algebraic L-Theory for Finite Groups 224
24.4 Rational Computations 224
24.4.1 Rationalized Topological K-Theory for Infinite Groups 225
24.4.2 Rationalized Algebraic K-Theory for Infinite Groups 226
24.4.3 Rationalized Algebraic L-Theory for Infinite Groups 227
24.5 Integral Computations 227
25 Exercises 231
26 Hints to the Solutions of the Exercises 241
References 254
Index 273
Notation 280
Schedule 282
List of participants 289

Introduction

Manifolds are the central geometric objects in modern mathematics. An attempt to understand the nature of manifolds leads to many interesting questions. One of the most obvious questions is the following.

Let M and N be manifolds: how can we decide whether M and N are homotopy equivalent or homeomorphic or diffeomorphic (if the manifolds are smooth)?

The prototype of a beautiful answer is given by the Poincaré Conjecture. If N is S^{n}, the n-dimensional sphere, and M is an arbitrary closed manifold, then it is easy to decide whether M is homotopy equivalent to S^{n}. This is the case if and only if M is simply connected (assuming $n>1$, the case $n=1$ is trivial since every closed connected 1-dimensional manifold is diffeomorphic to S^{1}) and has the homology of S^{n}. The Poincaré Conjecture states that this is also sufficient for the existence of a homeomorphism from M to S^{n}. For $n=2$ this follows from the well-known classification of surfaces. For $n>4$ this was proved by Smale and Newman in the sixties of the last century, Freedman solved the case in $n=4$ in 1982 and recently Perelman announced a proof for $n=3$, but this proof has still to be checked thoroughly by the experts. In the smooth category it is not true that manifolds homotopy equivalent to S^{n} are diffeomorphic. The first examples were published by Milnor in 1956 and together with Kervaire he analyzed the situation systematically in the sixties.

For spheres one only needs very little information to determine the homeomorphism type: the vanishing of the fundamental group and control of the homology groups. Another natural class of manifolds is given by aspherical manifolds. A $C W$-complex is called aspherical if the homotopy groups vanish in dimension >1, or, equivalently, if its universal covering is contractible. The Borel Conjecture, which is closely related to the Novikov Conjecture, implies that the fundamental group determines the homeomorphism type of an aspherical closed manifold.

For more general manifolds with prescribed fundamental group the classification is in general unknown even if the fundamental group is trivial. In this situation it is natural to construct as many invariants as possible hoping that at least for certain particularly important classes of manifolds one can classify them in terms of theses invariants. The most important invariants after homotopy and (co)homology groups are certainly characteristic classes which were defined and systematically treated in the fifties. There are two types of characteristic classes
for smooth manifolds: the Stiefel-Whitney classes $w_{k}(M)$ in $H^{k}(M ; \mathbb{Z} / 2)$ and the Pontrjagin classes $p_{k}(M) \in H^{4 k}(M ; \mathbb{Z})$. The nature of these classes is rather different. The Stiefel-Whitney classes of a closed manifold can be expressed in terms of cohomology operations and so are homotopy invariants, the Pontrjagin classes are diffeomorphism invariants (for smooth manifolds, and only for those they are a priori defined), but not homeomorphism or even homotopy invariants in general. Only very special linear combinations of the Pontrjagin classes are actually homotopy invariants.

For example, the first Pontrjagin class of a closed oriented 4-manifold $p_{1}(M)$ is a homotopy invariant. The reason is that $\left\langle p_{1}(M),[M]\right\rangle=3 \cdot \operatorname{sign}(M)$, where $\operatorname{sign}(M)$ is the signature of the intersection form on $H^{2}(M ; \mathbb{Q})$. The signature is by construction a homotopy invariant. More generally, Hirzebruch has defined a certain rational polynomial in the Pontrjagin classes (for a definition of Pontrjagin classes see [171]), the L-class

$$
\mathcal{L}(M)=\mathcal{L}\left(p_{1}(M), p_{2}(M), \ldots\right) \in \bigoplus_{i \geq 0} H^{4 i}(M ; \mathbb{Q}) .
$$

Its i-th component is denoted by

$$
\mathcal{L}_{i}(M)=\mathcal{L}_{i}\left(p_{1}(M), p_{2}(M), \ldots, p_{i}(M)\right) \in H^{4 i}(M ; \mathbb{Q})
$$

The famous Signature Theorem of Hirzebruch says that the evaluation of $\mathcal{L}_{k}(M)$ on the fundamental class $[\mathrm{M}]$ gives the signature of a $4 k$-dimensional manifold M :

$$
\operatorname{sign}(M)=\left\langle\mathcal{L}_{k}\left(p_{1}(M), \ldots, p_{k}(M)\right),[M]\right\rangle
$$

One can show that a polynomial in the Pontrjagin classes gives a homotopy invariant if and only if it is a multiple of the k-th L-class.

This sheds light on the homotopy properties of the polynomial $\mathcal{L}_{k}(M)$ of a $4 k$-dimensional manifold M. But what can one say about the other polynomials $\mathcal{L}_{1}(M), \mathcal{L}_{2}(M), \mathcal{L}_{3}(M), \ldots$? Understanding $\mathcal{L}_{i}(M)$ is - by Poincaré duality equivalent to understanding the numerical invariants

$$
\begin{equation*}
\left\langle x \cup \mathcal{L}_{i}(M),[M]\right\rangle \in \mathbb{Q} \tag{0.1}
\end{equation*}
$$

for all $x \in H^{n-4 i}(M)$, where $n=\operatorname{dim}(M)$. One may ask whether these numerical invariants are homotopy invariant in the following sense: If $g: N \rightarrow M$ is an orientation preserving homotopy equivalence, then

$$
\begin{equation*}
\left\langle x \cup \mathcal{L}_{i}(M),[M]\right\rangle=\left\langle g^{*}(x) \cup \mathcal{L}_{i}(N),[N]\right\rangle . \tag{0.2}
\end{equation*}
$$

In general, these numerical invariants are not homotopy invariants. The Signature Theorem implies that the expression 0.1 is homotopy invariant for all $x \in H^{0}(M ; \mathbb{Q})$. Novikov proved the remarkable result in the sixties that for $\operatorname{dim}(M)=4 k+1$ and $x \in H^{1}(M)$ the expression 0.1 is homotopy invariant. This motivated Novikov to state the following conjecture.

Let G be a group. Denote by $B G$ its classifying space which is up to homotopy uniquely determined by the property that it is an aspherical $C W$-complex with G as fundamental group. Novikov conjectured that the numerical expression

$$
\begin{equation*}
\left\langle f^{*}(x) \cup \mathcal{L}_{i}(M),[M]\right\rangle \in \mathbb{Q} \tag{0.3}
\end{equation*}
$$

is homotopy invariant for every map $f: M \rightarrow B G$ from a closed oriented n dimensional manifold M to $B G$ and every class $x \in H^{n-4 i}(M ; \mathbb{Q})$. More precisely, the famous Novikov Conjecture says that if $f^{\prime}: M^{\prime} \rightarrow K$ is another map and $g: M \rightarrow M^{\prime}$ is an orientation preserving homotopy equivalence such that $f^{\prime} \circ g$ is homotopic to f, then

$$
\left.\left\langle f^{*}(x) \cup \mathcal{L}_{i}(M),[M]\right\rangle=\left\langle\left(f^{\prime}\right)^{*}(x) \cup \mathcal{L}_{i}\left(M^{\prime}\right),\left[M^{\prime}\right]\right)\right\rangle
$$

Notice that Novikov's result that 0.2 holds in the case $\operatorname{dim}(M)=4 k+1$ and $x \in H^{1}(M)$ is a special case of the Novikov Conjecture above since S^{1} is a model for $B \mathbb{Z}$ and a cohomology class $x \in H^{1}(M)$ is the same as a homotopy class of maps $f: M \rightarrow S^{1}$, the correspondence is given by associating to the homotopy class of $f: M \rightarrow S^{1}$ the pullback $f^{*}(x)$, where x is a generator of $H^{1}\left(S^{1}\right)$.

Looking at this conjecture in a naive way one does not see a philosophical reason why it should be true. Even in the case of the polynomial \mathcal{L}_{k}, where $4 k$ is the dimension of a manifold, the proof cannot be understood without the signature theorem translating the L-class to a cohomological invariant, the signature. In this situation it is natural to ask for other homotopy invariants (instead of the signature) hoping that one can interpret the expressions 0.3 occurring in the Novikov Conjecture in terms of these invariants. These expressions 0.3 are called higher signatures. One can actually express them as signature of certain submanifolds. But this point of view does not give homotopy invariants.

It is natural to collect all higher signatures and form from them a single invariant. This can be done, namely, one considers

$$
\operatorname{sign}^{G}(M, f):=f_{*}(\mathcal{L}(M) \cap[M]) \in \bigoplus_{i \in \mathbb{Z}, i \geq 0} H_{m-4 i}(B G ; \mathbb{Q})
$$

the image of the Poincare dual of the L-class under the map induced from f. An approach to proving the Novikov Conjecture could be to construct a homomorphism

$$
A^{G}: \bigoplus_{i \in \mathbb{Z}, i \geq 0} H_{m-4 i}(B G ; \mathbb{Q}) \rightarrow L(G)
$$

where $L(G)$ is some Abelian group, such that $A^{G}\left(\operatorname{sign}_{G}(M)\right)$ is a homotopy invariant. Then the Novikov Conjecture would follow if the map A^{G} is injective. Such maps will be given by so called assembly maps.

The construction of such a map is rather complicated. A large part of these lecture notes treats the background needed to construct such a map. In particular, one needs the full machinery of surgery theory. We will give an introduction to
this important theory. Roughly speaking, surgery deals with the following problem. Let W be a compact m-dimensional manifold whose boundary is either empty or consists of two components M_{0} and M_{1} and $f: W \rightarrow X$ a map to a finite $C W$ complex. If the boundary of W is not empty, we assume that f restricted to M_{0} and M_{1} is a homotopy equivalence. Then X is a so called Poincaré complex, something we also require if the boundary of W is empty. The question is whether we can replace W and f by W^{\prime} and f^{\prime} (bordant to (W, f)) such that f^{\prime} is a homotopy equivalence. If the boundary of W is not empty, then W^{\prime} is an h-cobordism between M_{0} and M_{1}. In general it is not possible to replace (W, f) by $\left(W^{\prime}, f^{\prime}\right)$ with f^{\prime} a homotopy equivalence. Wall has defined abelian groups $L_{m}^{h}\left(\pi_{1}(X)\right)$ and an obstruction $\theta(W, f) \in L_{m}^{h}\left(\pi_{1}(X)\right)$ whose vanishing is a necessary and sufficient condition for replacing (W, f) by $\left(W^{\prime}, f^{\prime}\right)$ with f^{\prime} a homotopy equivalence, if $m>4$. One actually needs some more control, namely a so-called normal structure on W. All this is explained in Chapters 2, 10-14 and Chapter 17.

Why is it so interesting to obtain an h-cobordism? If X is simply-connected, and the dimension of W is greater than five, the celebrated h-cobordism theorem of Smale says that an h-cobordism W is diffeomorphic to the cylinder over M_{0}. In particular, M_{0} and M_{1} are diffeomorphic. There is a corresponding result for topological manifolds. In the situation which is relevant for the Novikov Conjecture, X is not simply-connected and then the h-cobordism theorem does not hold. There is an obstruction, the Whitehead torsion, sitting in the Whitehead group which is closely related to the algebraic K_{1}-group. If the dimension of the h-cobordism W is larger than five, then the vanishing of this obstruction is necessary and sufficient for W to be diffeomorphic to the cylinder. This is called the s-cobordism theorem. The Whitehead group, the obstruction and the idea of the proof of the s-cobordism theorem are treated in Chapters 5-8.

In Chapters 15-16 we define the assembly map and apply it to prove the Novikov Conjecture for finitely-generated free Abelian Groups.

What we have presented so far summarizes and explains information which was known around 1970. To get a feeling for how useful the Novikov Conjecture is, we apply it to some classification problems in low dimensions (see Chapter 0).

In the rest of the lecture notes we present some of the most important concepts and results concerning the Novikov Conjecture and other closely related conjectures dating from after 1970. This starts with an introduction to spectra (see Chapter 18) and continues with classifying spaces of families, a generalization of aspherical spaces (see Chapter 19). With this we have prepared a frame in which not only the Novikov Conjecture but other similar and very important conjectures can be formulated: the Farrell-Jones and the Baum-Connes Conjectures. After introducing equivariant homology theories in Chapter 20, these conjectures and their relation to the Novikov Conjecture are discussed in Chapters 21-23. Finally, these lecture notes are finished by Chapter 24 called "Miscellaneous" in which the status of the conjectures is summarized and methods and proofs are presented.

It is interesting to speculate whether the Novikov Conjecture holds for all groups. No counterexamples are known to the authors. An interesting article ex-
pressing doubts was published by Gromov [102].
We have added a collection of exercises and hints for their solutions.
From the amount of material presented in these Lecture Notes it is obvious, that we cannot present all of the details. We have tried to explain those things which are realistic for the very young participants of the seminar to master and we have only said a few words (if anything at all) at other places. People who want to understand the details of this fascinating theory will have to consult other books and often the original literature. We hope that they will find our Lecture Notes useful, since we explain some of the central ideas and give a guide for learning the beautiful mathematics related to the Novikov Conjecture and other closely related conjectures and results.

We would like to thank the participants of this seminar for their interest and many stimulating discussions and Mathematisches Forschungsinstitut Oberwolfach for providing excellent conditions for such a seminar. We also would like to thank Andrew Ranicki for carefully reading a draft of this notes and many useful comments.

