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0. Introduction

The purpose of this paper is to introduce and study a new topological type invariant
for cocompact properly discontinous actions of discrete groups of isometries on Riemannian
manifolds. This work is inspired in part by the work of Carey and Mathai [4] and our invari-
ant is a generalization of theirs. It is however much more refined and has the advantage of
encompasing other powerful invariants such as the Alexander polynomial and the equivariant
Reidemeister torsions studied in Lott-Rothenberg [18] and Lück [20], which are themselves
useful generalizations of the classical notions.

Let M be a Riemannian manifold and Γ a discrete properly discontinuous group of
isometries with Γ\M compact. Properly discontinuous means that for each pair of points
(x, y) in M there are neighborhoods Ux and Uy such that {γ ∈ Γ | γUx ∩ Uy 6= ∅} is finite.
An important case to keep in mind is the following. Let p : M −→ N be a locally isometric
Galois covering over a compact Riemannian manifold N with group of deck transformations
π. One may choose Γ to be π. More generally, one can lift an action of a finite group G on
N by isometries to an action of a group Γ, such that Γ is an extension of π and G and the
Γ-action extends the π-action and covers the G-action.

Let A be a finite von Neumann algebra and V be a finitely generated Hilbert module
over A. Consider a unitary representation µ : Γ −→ IsoA(V )op. Let Kw

1 (A) be the K-theory
of weak automorphisms of finitely generated Hilbert A-modules with the involution given
by taking adjoints. We define the Reidemeister von Neumann torsion

ρ(M ;V ) ∈ Kw
1 (A)Z/2

in 5.7. Some of the main properties of this invariant and the relevant K-theory are listed
below :

• The Reidemeister von Neumann torsion ρ(M) is an invariant of the Γ-isometry class
of M . If the l2-homology H∗(M ;V ) vanishes, ρ(M ;V ) depends only on the simple
Γ-homotopy type of M (see theorem 3.11). We remark that in a lot of interesting cases
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H∗(M ;V ) indeed vanishes, e.g., the universal covering of a closed hyperbolic manifold
M , the universal covering of a compact manifold M admitting a fixed point free S1-
action such that the inclusion of one (and hence all orbits) induces an injection on the
fundamental groups and the universal covering of a prime Haken 3-manifold provided
in all cases that V is l2(π1(M)). The first example follows from Dodziuk [11] and [12],
the second statement is proved in theorem 3.20 and the last statement will appear in
a forthcoming preprint. Roughly speaking, the image of Whitehead torsion under a
change of rings homomorphism is the difference of Reidemeister von Neumann torsion
if H∗(M ;V ) vanishes.

• Let M ∪X N be obtained from M and N by glueing along a common union of compo-
nents of the boundary. Then ρ(M ∪XN ;V )−ρ(M ;V )−ρ(N ;V )+ρ(X;V ) is given by
the long Mayer Vietoris homology sequence, more precisely, by its torsion (see theorem
3.14) and is in particular zero if all l2-homology groups vanish.

• There is a product formula ρ(M × N ;V ⊗W ) = χA(M) · [V ] ⊗ ρ(N ;W ) + χB(N) ·
ρ(M ;V ) ⊗ [W ], where the integers χA(M) and χB(N) are Euler characteristic type
invariants (see theorem 3.16).

• The Reidemeister von Neumann torsion is compatible with restriction to subgroups of
finite index (see lemma 3.17).

• The Reidemeister von Neumann torsion ρ(M) satisfies Poincaré duality (see theorem
5.13). If Γ acts freely this means ρ(M ;V ) = (−1)1+dim(M) · ρ(M,∂M ;V ).

• Let N(Γ) be the von Neumann algebra of the group Γ. The K-group Kw
1 (N(Γ))Z/2

is the group of almost everywhere invertible functions from the r-dimensional torus
T r to R if Γ is Zr, and reduces to the ordinary K-group of the complex group ring
K1(C[Γ])Z/2, if Γ is finite (see theorem 2.5).

We illustrate these computational tools by proving the following corollary 3.21. Let G
be a connected compact Lie group and p : X −→ Y be a G-principal bundle of finite CW -
complexes such that the image of π1(G) −→ π1(X) is infinite. Then X̃ is l2(π1(X))-acyclic,
where X̃ denotes the universal covering of X. If G is S1, then ρ(X̃; l2(π1(X))) is given by
χ(Y ) · [[(w− 1) : l2(π1(X)) −→ l2(π1(X))]] in Kw

1 (N(π1(X)))Z/2 where N(π1(X)) is the von
Neumann algebra of the fundamental group and w ∈ π1(X) is given by an S1-orbit. If G is
not S1, then ρ(X; l2(π1(X))) vanishes. Our computations apply to Seifert 3-manifolds (see
remark 3.22).

For a finite-dimensional representation V the equivariant Reidemeister von Neumann
torsion reduces to the PL-torsion invariants defined in Lott-Rothenberg [18] and Lück [20].
In particular one obtains for free actions the PL-torsion of Ray and Singer [23]. If ∂M
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is empty, its logarithm is the analytic torsion as shown independently by Cheeger [5] and
Müller [22]. This result is extended to the equivariant case and the case with boundary in
Lott-Rothenberg [18] and Lück [20]. We will relate Reidemeister von Neumann torsion to
the Alexander polynomial of a link (see example 4.7) and to the Lefschetz zeta function of
an endomorphism of a finite CW -complex (see example 4.8).

The complex group ring C[Γ] of a group Γ is semisimple if and only if Γ is finite. The
semisimplicity is crucial for the definition of classical Reidemeister torsion. If one completes
C[Γ] to l2(Γ), one is lead to the theory of Hilbert N(Γ)-modules as established in Atiyah [1],
Cheeger and Gromov [6], [7], [8] and Dixmier [10]. The proof that C[Γ] is semisimple for
finite Γ is based on the existence of a Hilbert structure. Hence one obtains semisimplicity also
for infinite Γ for Hilbert N(Γ)-modules. Now our definition of Reidemeister von Neumann
torsion follows the standard pattern. The main technical difficulty comes from the fact that
one has to define homology as the quotient of the kernel and the closure of the image of the
relevant differentials, so that the vanishing of homology does not imply contractibility. In
particular one has to deal in the K-theory instead of isomorphisms with weak isomorphisms,
i.e. morphisms with trivial kernel and dense image. Therefore a lot of the material for
Hilbert A-modules of section 6 and 7 is essentially standard, but the proofs are different and
harder than in the case of modules over the complex numbers.

Here is a short survey of the construction of Reidemeister von Neumann torsion. The
relevant K-group Kw

1 (A) has weak automorphisms f : M −→M of finitely generated Hilbert
A-modules as generators [f ] and the relations are [g ◦ f ] = [g] + [f ] , [id] = 0 and [f ] +
[h] = [g], if there is a exact sequence 0 −→ (M, f) −→ (N, g) −→ (P, h) −→ 0. Let M
be a compact smooth manifold with fundamental group π and µ : π −→ IsoA(V )op be
a unitary representation. We give the definition of ρ(M ;V ) in the case that H∗(M ;V )
is trivial ( for all ∗ ≥ 0). Let C(M ;V ) be the Hilbert A-chain complex V ⊗Z[Γ] C(M) and
∆p : Cp(M ;V ) −→ Cp(M ;V ) be the associated Laplace operator dp+1 ◦d∗p+1 +d∗p ◦dp where d
is the differential of C(M ;V ). As Hp(M ;V ) vanishes, ∆p is a weak automorphism of finitely
generated Hilbert A-modules by the Hodge decomposition theorem. The Reidemeister von
Neumann torsion ρ(M ;V ) ∈ Kw

1 (A)Z/2 is given by
∑
p≥0(−1)p · p · [∆p]. We will introduce

another definition using weak chain contractions which has some advantages for technical
conceptual reasons and is closer to the classical definitions (see definition 7.10). Moreover,
it allows in the acyclic case the definition of a refined invariant, the acyclic Reidemeister von
Neumann torsion (see 3.24). Both definitions will be identified in lemma 7.12. If H(M ;V )
is not trivial, one needs a Riemannian metric on M . We remark that H∗(M ; l2(Γ)) has a
good chance to be trivial (for all ∗ ≥ 0), whereas H0(M ; C) never vanishes for non-empty
M .

In this article we develop the foundations of Reidemeister von Neumann torsion in the
sense that we give its definition, collect its main properties, give computational tools, relate
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it to known invariants and analyse some examples. The following problems seem to be the
natural continuation of these investigations and their relevance and meaning is evident from
the discussion above. We will deal with them in forthcoming papers where the results of this
article will be applied to these problems.

• Compute the K-groups Kw
1 (N(Γ)) also for non-abelian groups and find detecting ho-

momorphisms into known groups.

• What is the analytic interpretation of the Reidemeister von Neumann torsion in terms
of the spectral theory of the Laplace operator?

• Compute Reidemeister von Neumann torsion for certain classes of manifolds (crystal-
lographic manifolds, hyperbolic manifolds, 3-manifolds) and investigate how sharp it
is.

If one wants to get a quick survey about the results, one may skip the first two sections
and read sections 3 and 4. To get a sufficient impression from section 1 and 2 it suffices to
consider von Neumann algebras of a group as explained in example 1.9 and read in section 2
until Theorem 2.5 only assuming A = N(Zr) and X = T r. The material simplifies consider-
ably if one assumes that the action of Γ is free what is true in a lot of interesting examples.
Under this assumption one does not need the material about G-CW -complexes and permuta-
tion modules in the beginning of section 3 and may start with definition 3.6. In section 5 one
can skip the equivariant triangulation theorem as it follows from the non-equivariant one in
the case of a free action. Moreover, the definition of Poincaré von Neumann torsion becomes
irrelevant in view of theorem 5.13 and the upshot of the discussion about Poincaré duality
is that Reidemeister von Neumann torsion satisfies ρ(M ;V ) = (−1)1+dim(M) · ρ(M,∂M ;V ).

The paper is organized as follows :

1. Preliminaries about von Neumann algebras and Hilbert modules
2. Algebraic K-theory of von Neumann algebras
3. Torsion invariants for Γ-CW -complexes
4. Free abelian fundamental groups
5. Torsion invariants for Riemannian Γ-manifolds
6. Hilbert A-chain complexes
7. Torsion invariants for Hilbert A-chain complexes

references
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1. Preliminaries about von Neumann algebras and
Hilbert modules

In this section we collect the basic properties about von Neumann algebras and Hilbert
modules.

Let H be a Hilbert space with inner product 〈ξ, η〉 and induced norm |ξ | . A Hilbert
space is always to be understood as a seperable complex Hilbert space. Let B(H) be the
C∗-algebra of bounded linear operators H −→ H. Recall that the operator norm is given
by ‖f ‖ := sup{ |f(ξ) | | ξ ∈ H, |ξ | = 1} and the involution ∗ : B(H) −→ B(H) maps f to
its adjoint f ∗. The norm topology is the vector space topology induced by the norm ‖f ‖ .
The weak resp. strong topology on B(H) is the topology induced by the family of seminorms
{pξ,η | ξ, η ∈ H} resp. {pξ | ξ ∈ H} defined by pξ,η(f) := 〈f(ξ), η〉 resp. by pξ(f) := |f(ξ) | .
A subalgebra A of B(H) is a subset closed under addition, multiplication with scalars and
multiplication and contains the unit of B(H). It is called selfadjoint , if it is closed under
the involution.

Definition 1.1 A von Neumann algebra (in H) is a selfadjoint subalgebra A of B(H) which
is closed in the weak topology.

The commutant of a subset M of B(H) is M ′ := {f ∈ B(H) | fg = gf for all g ∈M}.
Obviously M ⊂M ′′ holds. The following theorem is due to von Neumann (see e.g. Sunder
[28] page 12 for a proof).

Theorem 1.2 (Double commutant theorem)
Let A be a selfadjoint subalgebra of B(H). Then the following assertions are equivalent :

1.) A = A′′

2.) A is weakly closed.

3.) A is strongly closed.

Given a von Neumann algebra A ⊂ B(H), let A+ be the cone of positive elements.
Recall that f : H −→ H is called positive, if f is selfadjoint and 〈f(ξ), ξ〉 ≥ 0 holds for all
ξ ∈ H. A map tr : A+ −→ [0,∞] is a trace , if for a, b ∈ A+ and λ ∈ [0,∞[ the following
holds :

tr(a) + tr(b) = tr(a) + tr(b) tr(λa) = λtr(a) tr(aa∗) = tr(a∗a)
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A trace tr is finite , if tr(a) <∞ holds for all a ∈ A+. It is faithful , if tr(a) = 0 implies
a = 0 for all a ∈ A+. We call tr normal if tr(a) = sup{tr(ai) | i ∈ I} holds for any monotone
increasing net {ai | i ∈ I} in A+ with a as supremum. Let M be the ideal in A given by
finite sums of products of elements a ∈ A satisfying tr(aa∗) <∞. Then tr extends uniquely
to a C-linear form also denoted tr :M−→ C satisfying tr(ab) = tr(ba) for all a, b ∈M. In
particular a finite trace extends uniquely to a C-linear form tr : A −→ C.

Definition 1.3 A von Neumann algebra A is called finite , if it possesses a finite, normal
and faithful trace.

In the sequel any von Neumann algebra A is assumed to be finite and comes with
a finite normal and faithful trace tr : A −→ C. Define a pre-Hilbert structure on A by
〈a, b〉 = tr(b∗a). Let l2(A) be the Hilbert completion of (A, 〈 , 〉). Denote by |a | the
induced norm on l2(A). Given a ∈ A, we obtain a linear operator l(a) : A −→ A sending b
to ab. This operator is bounded and has the operator norm ‖ l(a)‖ = |a | . Hence it extends
uniquely to a bounded operator l(a) : l2(A) −→ l2(A) satisfying ‖ l(a)‖ = |a | . Thus we
obtain a left A-module structure on l2(A). Analogously we get r(a) : A −→ A sending b
to ba and an induced operator r(a) : l2(A) −→ l2(A). Notice that l(a) and r(b) and hence
l(a) and r(b) commute for a, b ∈ A. In particular we obtain the right regular representation
νr : Aop −→ BA(l2(A)) from the opposite algebra Aop of A into the subalgebra BA(l2(A))
of linear bounded A-operators of B(l2(A)). Recall that the opposite algebra Aop is obtained
from A by reversing the multiplication, i.e. ab in Aop is given by ba in A. The following
result is fundamental for the theory of Hilbert modules over a finite von Neumann algebra
(see Dixmier [10], page 80 theorem 1, page 99 theorem 2).

Theorem 1.4 Let A be a finite von Neumann algebra. Then the right regular representation

ν = νr : Aop −→ BA(l2(A))

is a bijection

Next we introduce the category of Hilbert A-modules over a finite von Neumann al-
gebra A. A Hilbert A-module M is a Hilbert space M together with a continuous left
A-module structure such that there exists an isometric linear embedding onto a closed sub-
space of l2(A)⊗H for some Hilbert space H. The embedding is not part of the structure. A
morphism between Hilbert A-modules f : M −→ N is a bounded linear operator compatible
with the A-module structures. We get from the theorem 1.4 above a bijection of C-algebras.

1.5 Ω : homA(⊕ni=1l
2(A),⊕ni=1l

2(A)) −→M(n, n,A)op
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Hence we may think of ⊕ni=1l
2(A) as the free Hilbert A-module of rank n. A Hilbert

A-module M is called finitely generated, if there is an epimorphism of Hilbert A-modules
from ⊕ni=1l

2(A) onto M for some integer n ≥ 0.

Lemma 1.6 Any finitely generated Hilbert A-module M is projective in the following sense:
there is a finitely generated Hilbert A-module N such that there exists an isometric isomor-
phism of Hilbert A-modules from M ⊕N to ⊕ni=1l

2(A) for appropiate n.

Proof : By definition there is an epimorphism of Hilbert A-modules f from ⊕ni=1l
2(A) to

M for appropiate n. It induces a bijective morphism of Hilbert A-modules between ker(f)⊥

and M . This is an isomorphism of Hilbert A-modules by the open mapping theorem. The
unitary part in its polar decomposition is an isometric isomorphism of Hilbert A-modules
from ker(f)⊥ to M . Now the claim follows from the orthogonal decomposition of ⊕ni=1l

2(A)
into ker(f)⊕ ker(f)⊥.

This lemma 1.6 will enables us to carry over the notion of Reidemeister torsion invari-
ants for finite transformation groups to infinite transformation groups. The construction of
Reidemeister torsion for finite groups G is based on the algebraic fact that the group ring
C[G] is semi-simple if and only if G is finite. Hence the construction does not go through
in the infinite case. However, if one extends the group ring to its Hilbert completion and
hence deals with the von Neumann algebra of the group, one gets semi-simplicity again.
Recall that the proof of semisimplicity of C[G] for finite G is based on the fact that C[G] is
a Hilbert space for finite G.

Let f : M −→ N be a morphism of Hilbert A-modules . Its kernel in the categorial
sense in just the ordinary kernel ker(f), whereas the cokernel in the categorial sense is given
by N/clos(im(f)). We have to divide out the closure of the image and not the image itself,
since Hilbert A-modules are required to be complete. Finite coproducts and products are
given by finite direct sums. The zero object is given by {0}. However, the category of Hilbert
A-modules is not abelian, since it is neither true that any epimorphism is a cokernel nor
that any monomorphism is a kernel. This will force us to deal with two different K-theories
and to modify the usual definitions of torsion invariants.

A Hilbert A-chain complex C = (C∗, c∗) is a sequence of Hilbert A-modules

. . .
cn+1−→ Cn

cn−→ Cn−1
cn−1−→ . . .

such that cn+1 ◦ cn = 0 holds for n ∈ Z. We call C bounded if there is N ∈ Z such that
Cn is zero for | n |> N . If C is bounded and Cn is finitely generated for all n ∈ Z, we say
that C is finite. The homology of C is the Z-graded Hilbert A-module H(C) given by
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Hn(C) = ker(cn)/clos(im(cn+1)). We call C weakly acyclic if Hn(C) is zero for all n ∈ Z.
Notice that weakly acyclic does not imply acyclic. We call 0 −→M −→ N −→ P −→ 0
weakly exact, if it is weakly acyclic as a Hilbert A-chain complex . A morphism f : M −→ N
is a weak isomorphism if its kernel is trivial and its image is dense, or, equivalently, if

0 −→M
f−→ N −→ 0 −→ 0 is weakly exact. This is equivalent to the condition that f and

its adjoint f ∗ are injective because of ker(f ∗)⊥ = clos(im(f)). The following lemma is a
direct consequence of the polar decomposition theorem.

Lemma 1.7 Given a weak isomorphism f : M −→ N of Hilbert A-modules , there are a
positive selfadjoint weak automorphism of Hilbert A-modules h : M −→M and an isometric
isomorphism of Hilbert A-modules g : M −→ N satisfying f = g ◦ h.

Lemma 1.8 An endomorphism f : M −→M of a finitely generated Hilbert A-module is a
weak isomorphism, if and only if f is injective.

Proof : This follows from dimension theory of von Neumann algebras (see Cheeger-Gromov
[8] section 1). Namely, for any morphism g : M −→ N of finitely generated Hilbert A-
modules we have :

dim(M) + dim(clos(im(g))⊥) = dim(N) + dim(ker(g))

and dim(M) is zero if and only if M is zero. We will give a direct proof of this fact in the
abelian case later.

Example 1.9 Our main example will be the finite von Neumann algebra N(Γ) of a count-
able discrete group Γ. Let C[Γ] be the complex group ring. It becomes a pre-Hilbert space
by the inner product

〈
∑
γ∈Γ

λγ · γ,
∑
γ∈Γ

µγ · γ〉 =
∑
γ∈Γ

λγ · µγ

The Hilbert completion of C[Γ] is denoted by l2(Γ) and consists of square-summable sums∑
γ∈Γ λγ · g. An element γ ∈ Γ determines an operator l(γ) : l2(Γ) −→ l2(Γ) whose restric-

tion to the group ring is given by left multiplication with γ. We obtain the left regular
representation

νl : C[Γ] −→ B(l2(Γ), l2(Γ))

and the von Neumann algebra N(Γ) is the closure of its image in the weak topology. The
trace tr : C[Γ] −→ C sending

∑
γ∈Γ λγ · γ to λe extends to the so called natural trace on

N(Γ). Notice that with respect to this trace l2(N(Γ)) can be identified with l2(Γ). One can
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view N(Γ) as the von Neumann algebra associated to the Hilbert algebra C[Γ] (see Dixmier
[10] III.7.6.)

In particular we get using Fourier transforms for Γ = Zr that l2(Zr) is the Hilbert space
L2(T r) of square-integrable functions on the r-dimensional torus T r with values in C ∪ {∞}
and N(Zr) is the space L∞(T r) of almost everywhere bounded measurable functions on T r

with values in C ∪ {∞} and the regular representation is given by the pointwise multiplica-
tion of functions. An example of a weak N(Z)-automorphism which is not an automorphism
is l2(Z) −→ l2(Z) given by multiplication with (z − 1) for z ∈ Z a generator.

We will deal with finite von Neumann algebras only and do not try to give the most
general version of our constructions, as in the applications we will use von Neumann algebras
of groups and these are always finite.
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2. Algebraic K-theory of von Neumann algebras

In this section we define the algebraic K-groups of a finite von Neumann algebra A
which will be the value groups for our torsion invariants. If A is an abelian von Neumann al-
gebra, we compute them by a determinant. This computation will be crucial for applications
in topology.

Let A be a finite von Neumann algebra. Define K0(A) to be the abelian group gener-
ated by isomorphism classes of finitely generated Hilbert A-modules satisfying the relation
[M ⊕N ] = [M ] + [N ]. This can be identified with the Grothendieck group of the abelian
semi-group of isomorphism classes of finitely generated Hilbert A-modules with the addition
given by ⊕. Let K1(A) resp. Kw

1 (A) be the abelian group generated by conjugation classes
of automorphisms, resp. weak automorphisms of finitely generated Hilbert A-modules sat-
isfying the following relations

• [f ] + [g] = [h] , if there is an exact sequence of automorphisms

0 −→ (M, f)
i−→ (N, g)

p−→ (P, h) −→ 0

• [g ◦ f ] = [f ] + [g] , if f and g are automorphisms resp. weak automorphisms
of the same finitely generated Hilbert A-module

• [id : M −→M ] = 0

Remark 2.1 The group K1(A) is the abelianization of the general linear group GL(A). If
one wants to define also higher K-groups, one can use Waldhausen’s construction (see [30] )
applied to the following category with weak isomorphisms and cofibrations. The underlying
category is the category of finitely generated Hilbert A-modules. Cofibrations are split
injections of finitely generated Hilbert A-modules and weak isomorphisms are isomorphisms
resp. weak isomorphisms of finitely generated Hilbert A-modules. The resulting K-groups
in dimension 1 can be identified with the groups defined above.

Remark 2.2 The first relation still holds, if we substitute exact sequence by weak exact
sequence. The following relations are sometimes useful. We get [f ◦ g] = [g ◦ f ] for weak iso-
morphisms f : M −→ N and g : N −→ P and [f ] = [g] for weak isomorphisms u : M −→ N ,
f : M −→M and g : N −→ N satisfying u ◦ f = g ◦ u.

Taking the adjoint induces involutions ∗ on K1(A) and Kw
1 (A). The forgetful functor

induces a homomorphism
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2.3 F : K1(A) −→ Kw
1 (A)

compatible with the involutions. We will be interested in the fixed point sets K1(A)Z/2 and
Kw

1 (A)Z/2.

We want to compute these K-groups for abelian von Neumann algebras. Let X be a
compact second-countable space together with a positive finite measure ν. Let L∞(X; ν) be
the set of almost everywhere bounded measurable functions from X to C ∪ {∞}. In the
sequel we abbreviate {x ∈ X | |f(x) | ≤ K} by { |f | ≤ K}. A measurable function is almost
everywhere bounded, if there is a real number K such that X − { |f | ≤ K} is contained in
a zero set. Define ‖f ‖∞ to be the infimum over such numbers K. Denote by L2(X; ν) the
(seperable complex) Hilbert space of square integrable functions on X. Given f ∈ L∞(X; ν),
we define an operator mf : L2(X; ν) −→ L2(X; ν) sending g to f · g. Let A be the subset of
B(L2(X; ν)) consisting of all operators mf for f ∈ L∞(X; ν). Then A is an abelian finite von
Neumann algebra and m : L∞(X; ν) −→ A is an isometric isomorphism of normed algebras.
It is compatible with the involutions ∗ on L∞(X; ν) given by complex conjugation and the
involution ∗ given onA by taking the adjoint. The abelian von Neumann algebra L∞(X; ν) is
finite, namely, a finite faithful and normal trace is given by tr : L∞(X; ν)+ −→ R≥0 sending
f to

∫
X fdν. In the sequel we will use this trace. Notice that then l2(A) can be identified

with L2(X; ν). Any abelian von Neumann algebra A ⊂ B(H) for H a seperable complex
Hilbert space is of this type (see Dixmier [10], I.7.3).

Consider the finite abelian von Neumann algebra A = L∞(X; ν). Let Inv(X; ν) be
the multiplicative group of almost everywhere invertible measurable functions from X to
C ∪ {∞}. Almost everywhere invertible means that the preimage of 0 and the preimage of∞
are zero-sets. Any element h ∈ Inv(X; ν) can be written as a quotient of almost everywhere
bounded invertible functions h = h0

h1
. E.g., put h1(x) = 1, if h(x) = 0, h1(x) = h(x)/ |h(x) | ,

if 0 < | h(x) | ≤ 1 and h1(x) = h(x)−1 otherwise, and define h0 = h · h1. Let f be a al-
most everywhere bounded function. If f is almost everywhere invertible, then the associ-
ated operators mf and (mf )

∗ = mf∗ are injective and hence weak isomorphisms because of
clos(im(mf )) = ker((mf )

∗)⊥. Hence mf is a weak isomorphism if and only if f is almost
everywhere invertible. Therefore we can define homomorphisms :

2.4 i : L∞(X; ν)× −→ K1(A) f 7→ [mf ]

i : Inv(X; ν) −→ Kw
1 (A) h0

h1
7→ [mh0 ]− [mh1 ]

where L∞(X; ν)× denotes the abelian group of units, i.e. function which are almost every-
where bounded from above and below.
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Consider an endomorphism f : M −→M of a finitely generated Hilbert A-module.
Because of lemma 1.6 there is a finitely generated Hilbert A-module N , a non-negative
integer n and an isomorphism of Hilbert A-modules φ : M ⊕N −→ ⊕ni=1l

2(A). Define the
endomorphism g : ⊕ni=1l

2(A) −→ ⊕ni=1l
2(A) to be φ ◦ (f ⊕ idN) ◦ φ−1. Let Ω(g) be the (n, n)-

matrix over A defined for g in 1.5. Define the determinant det(f) ∈ A to be the ordinary
determinant det(Ω(g)) of a quadratic matrix over a commutative ring such as A. We leave
it to the reader to check that this is independent of the choices of N , n and φ. We will see
that this determinant inherits from the ordinary determinant for commutative rings all the
expected properties. The main result of this section is:

Theorem 2.5 Let A = L∞(X; ν) be a finite abelian von Neumann algebra. Then the deter-
minant induces isomorphisms :

det : K1(A) −→ L∞(X; ν)×

det : Kw
1 (A) −→ Inv(X; ν)

These maps are compatible with the involutions given on the K-groups by taking the adjoint
and on the targets by complex conjugation. The inverse maps of these isomorphisms are
given by the maps of 2.4.

The following Lemma 2.6 and lemma 2.7 imply the main theorem 2.5 of this section.
One may say in view of lemma 2.6 that its proof is based on a kind of Euclidean algorithm
based on the support of functions in L∞(X; ν). A block matrix G is a matrix whose first
row or first column consists of zero entries except the (1, 1)-entry.

Lemma 2.6 Let G be a (n, n)-matrix over A such that the associated homomorphism of
Hilbert A-modules is an isomorphism resp. weak isomorphism. Then there are block (n, n)-
matrices S0, S1, . . .Sn with the following properties :

1.) Si is an isomorphism for 2 ≤ i ≤ n− 1.

2.) S0 and S1 are isomorphisms resp. weak isomorphisms.

3.) S0 = S1 · S2 · . . . Sn ·G.

Proof : Denote by ‖G ‖∞ the supremum of all ‖ gi,j ‖∞ . Recall that ‖ gi,j ‖∞ is the
infimum over all real numbers K for which { |gi,j | > K} is a zero-set. We have :

‖G ·G′ ‖∞ ≤ n· ‖G‖∞ · ‖G′ ‖∞
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Now fix ε ≥ 0. Given 2 ≤ i ≤ n, denote by Y the set { |g1,1 | ≤ ε} ∩ { |gi,1 | > ε}.
Denote by χY the characteristic function of Y . Let Si be the matrix having 1 as entries
on the diagonal, 2 · χY as (1,i)-entry and zero as other entries. Put G′ = Si ·G. Since the
sum of a number of norm ≥ 2 · ε and a number of norm ≤ ε has norm ≥ ε by the triangle
inequality, we have by construction :

{ |g′1,1 | ≤ ε} ⊂ { |g′i,1 | ≤ ε}
{ |g′1,1 | ≤ ε} ⊂ { |g1,1 | ≤ ε}
{ |g′j,1 | ≤ ε} = { |gj,1 | ≤ ε} for j 6= 1

ffi ‖G′ ‖∞ ≤ ‖S ‖∞ · ‖G‖∞ ·n ≤ max{1, 2· ‖G‖∞ } · ‖G‖∞ ·n

By iterating this process for i = n, n− 1, . . . 2 we obtain a matrix G̃ and block matrices Si
with the following properties :

Si is an isomorphism

G̃ = S2 · S3 . . . Sn ·G
{ | g̃1,1 | ≤ ε} ⊂ { | g̃i,1 | ≤ ε} for 1 ≤ i ≤ n

‖G̃‖∞ ≤ max{1, ‖G‖∞}2·n · (2n)2·n−1

Next we finish the proof in the case, where G is a weak isomorphism. Then G̃ is also
a weak isomorphism. Choose ε to be zero. Notice that G̃ maps (χ{ | g̃1,1| ≤0}, 0, . . . 0) to zero.
Hence { | g̃1,1 | ≤ 0} is a zero set. This shows that g̃1,1 is a weak isomorphism. Let S1

be the block matrix having g̃1,1 as (i, i)-entry and −g̃i,1 as (i, 1)-entry for 2 ≤ i ≤ n, 1 as
(1, 1)-entry and zero as other entries. Then S0 := S1 · G̃ is a block matrix and S0 and S1 are
weak isomorphisms by the implication b.) ⇒ a.) in claim 5.) of lemma 2.7.

Finally, we deal with the case where G and hence G̃ are isomorphisms. Then there are
elements hi ∈ A such that

∑n
i=1 hi · gi,1 = 1 holds. Choose ε > 0 such that ε ·∑n

i=1 ‖hi ‖∞
is smaller than 1. Then { | g̃1,1 | ≤ ε} must be a zero-set. Therefore g1,1 is a unit. Let S1 be
the block matrix having 1 on each diagonal entry, −gi,1 · g−1

1,1 as (i, 1)-entry for 2 ≤ i ≤ n and
zero as other entries. Then S0 = S1 ·G is a block matrix and S0 and S1 are isomorphisms
by the implication b.) ⇒ a.) in claim 4.) of lemma 2.7.

Lemma 2.7 1.) Given to endomorphisms f and g of the same finitely generated Hilbert
A-module, we get :

det(f ◦ g) = det(f) · det(g)

2.) Let f : M −→M and g : N −→ N be endomorphisms of finitely generated Hilbert A-
modules and u : M −→ N be a weak isomorphism such that u ◦ f = g ◦ u holds. Then
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we have :
det(f) = det(g)

3.) If 0 −→ (M, f)
i−→ (N, g)

p−→ (P, h) −→ 0 is a weakly exact sequence of endomor-
phisms of finitely generated Hilbert A-modules, we have :

det(f) · det(h) = det(g)

4.) The following assertions are equivalent for an endomorphism f : M −→M of a finitely
generated Hilbert A-module M :

a.) f is an isomorphism.

b.) det(f) : l2(A) −→ l2(A) is an isomorphism.

c.) det(f) ∈ A is a unit.

5.) The following assertions are equivalent for an endomorphism f : M −→M of a finitely
generated Hilbert A-module M :

a.) f is a weak isomorphism.

b.) mdet(f) : l2(A) −→ l2(A) is a weak isomorphism.

c.) det(f) ∈ A = L∞(X; ν) is almost everywhere invertible.

d.) f is injective.

e.) f has dense image

Proof : 1.) follows directly from the corresponding property of the determinant for com-
mutative rings.

4.) Obviously det(f1 ⊕ f2) = det(f1) · det(f2) holds. Hence we may suppose that f is
an endomorphisms of ⊕ni=1l

2(A) = ⊕ni=1L
2(X; ν). Choose a matrix

G =


g1,1 g1,2 . . . g1,n

g2,1 g2,2 . . . g2,n
...

...
. . .

...
gnΥ,1 gn,2 . . . gn,n


with entries in A = L∞(X; ν) such that f and G correspond to one another under Ω (see
1.5). By Cramer’s rule there exists a n-n-matrix G′ with entries in A = L∞(X; ν) satisfying
G′ ·G = G ·G′ = det(g) · id. Now assertion 4.) follows.

5.) We have shown c.) ⇔ b.) already before 2.4. We derive b.) ⇒ a.) from Cramer’s
rule. Obviously a.) implies d.) and e.).
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Next we prove a.) ⇒ c.), by induction over the size of the matrix G associated to f .
The induction begin n = 1 is trivial, the induction step from n− 1 to n ≥ 2 done as follows.
Let f be a weak isomorphism. Because of lemma 2.6 we can assume without of loss of
generality that G is given by a block matrix of the following shape

G =


g1,1 g1,2 . . . g1,n

0
... Ĝ
0


where Ĝ is a (n− 1)-(n− 1)-matrix. Then we get:

det(G) = det(Ĝ) · g1,1

As G defines a weak isomorphism, the morphism given by g1,1 is injective and the one given
by Ĝ has dense image. By induction hypothesis det(Ĝ) and g1,1 are almost everywhere
invertible and hence the same is true for det(G). This shows a.) ⇒ c.).

Next we show d.) ⇒ c.). If f is injective, f ∗f is injective because of the following
calculation for x ∈ ker(f ∗f)

0 = 〈f ∗f(x), x〉 = 〈f(x), f(x)〉 = |f(x) |2 ⇒ f(x) = 0 ⇒ x = 0

As f ∗f is selfadjoint, f ∗f is a weak isomorphism so that det(f ∗f) = |det(f) |2 and hence
det(f) are almost everywhere invertible by a.) ⇒ c.). This finishes the proof of d.) ⇒ c.).
If f has dense image, f ∗ is injective and hence det(f) = det(f ∗)∗ is almost everywhere
invertible. This shows e.) ⇒ c.) and hence 5.) is true.

2.) follows from 1. and 5. Namely, because det(u) is almost everywhere invertible,
det(f) · det(u) = det(u) · det(g) implies det(g) = det(f).

3.) Let 0 −→ (ker(p), g1) −→ N −→ (ker(p)⊥, g2) −→ 0 be the exact sequence of endo-
morphisms induced from the given weakly exact sequence. We derive from the corresponding
statement for determinants of commutative rings that det(g1) · det(g2) = det(g) holds. We
conclude det(f) = det(g1) and det(h) = det(g2) from assertion 2.).

Next we give the proof of theorem 2.5. Obviously det is a well-defined homomorphism
and det ◦ i = id if i is the map defined in 2.4. It remains to show surjectivity of i. We
prove inductively over the size of a quadratic matrix G representing an element [G] in the
K1-group that [G] is given by a sum of elements represented by (1, 1)-matrices. Because of
lemma 2.6 we may assume that G is a block matrix. But then [G] is the sum of elements
given by matrices of smaller size.
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We now drop the assumption that A is abelian. There is a well-defined notion of
a tensor product A ⊗ B of von Neumann algebras. Let A and B be finite von Neu-
mann algebras with given finite normal faithful traces. Then A ⊗ B is a finite von Neu-
mann algebra and inherits a finite normal faithful trace. There is a natural isomorphism
l2(A)⊗ l2(B) −→ l2(A⊗ B). If M resp. N is a Hilbert A resp. B- module, then the tensor
product of Hilbert spaces M ⊗ N comes with a canonical Hilbert A ⊗ B-structure. If M
and N are finitely generated, then also M ⊗N . This tensor product of Hilbert modules
over finite von Neumann algebras is functorial. If A = N(A) and B = N(B) for countable
discrete groups A and B, then A⊗B can be identified with N(A×B). We obtain a pairings

2.8 ⊗ : K0(A)⊗K1(B) −→ K1(A⊗ B)
⊗ : K0(A)⊗Kw

1 (B) −→ Kw
1 (A⊗ B)

⊗ : K0(A)⊗K1(B)Z/2 −→ K1(A⊗ B)Z/2

⊗ : K0(A)⊗Kw
1 (B)Z/2 −→ Kw

1 (A⊗ B)Z/2

sending [M ]⊗ [f : N −→ N ] to [idM ⊗ f : M ⊗N −→M ⊗N ].

Proposition 2.9 Let G be a finite group. Then K0(N(G)) is the complex representation
ring RepC(G) and the pairing 2.8 induces isomorphisms

RepC(G)⊗K1(A) −→ K1(C[G]⊗A)

RepC(G)⊗Kw
1 (A) −→ Kw

1 (C[G]⊗A)

Proof : We construct the inverse isomorphism. Let f : M −→M be a (weak) automor-
phism of a finitely generated Hilbert C[G] ⊗ A- module. Let I be a complete set of rep-
resentatives of the isomorphism classes of irreducible unitary G-representations. Let V̄ be
the dual unitary G-representation of V . Equip (V̄ ⊗M)G with the induced Hilbert A-
structure. The inverse map sends [f ] to the sum

∑
V ∈I [V ]⊗ [(idV̄ ⊗ f)G]. This is an inverse

as there is a natural isometric C[G] ⊗ A-isomorphism from
∑
V ∈I V ⊗ (V̄ ⊗M)G to M

sending v ⊗ w ⊗m ∈ V ⊗ (V̄ ⊗M)G to 〈v, w〉 ·m.

Corollary 2.10 Let G be finite group and r be a non-negative integer. Then there are
isomorphisms :

K1(N(G× Zr)) −→ RepC(G)⊗ L∞(T r,C ∪ {∞})×
K1(N(G× Zr))Z/2 −→ RepC(G)⊗ L∞(T r,R ∪ {∞})×
Kw

1 (N(G× Zr)) −→ RepC(G)⊗ Inv(T r,C ∪ {∞})
Kw

1 (N(G× Zr))Z/2 −→ RepC(G)⊗ Inv(T r,R ∪ {∞})
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3. Torsion invariants for Γ-CW -complexes

In this section we want to introduce Reidemeister von Neumann torsion for finite
proper Γ-CW -complexes for a discrete group Γ. We state basic properties like sum and
product formulas and relate Reidemeister von Neumann torsion to Whitehead torsion. As an
illlustration we compute the Reidemeister von Neumann torsion of spaces carrying appropiate
torus actions. Most of the technical proofs are deferred to sections 6 and 7. The definition of
Reidemeister von Neumann torsion in this section has the advantage that it is easy to state.
For technical purposes, however, we will introduce a different definition in section 7 which
will be shown to be equivalent to the one in this section. If one is only interested in the case
where Γ acts freely, one may skip the first part and start directly with definition 3.6.

Let Γ be a discrete group. A Γ-CW -complex X is a Γ-space X together with a filtration
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X such that X has the weak topology with respect
to the filtration {Xn | n ≥ −1} and for each n ≥ 0 there exists a Γ-push out

3.1
∐
i∈In Γ/Γi × Sn−1 Xn−1

-

∐
i∈In q

n
i

? ?

∐
i∈In Γ/Γi ×Dn Xn

-

∐
i∈In Q

n
i

A Γ-CW -complex X is finite , if the set
∐
n≥0 In is finite and X is proper, if the map

Γ×X −→ X ×X sending (γ, x) to (x, γ · x) is proper. Since we are working in the category
of compactly generated spaces, a map is proper if and only if preimages of compact sets are
compact. A Γ-CW -complex X is finite if and only if Γ\X is compact. It is proper if and only
if the isotropy subgroup Γx = {γ ∈ Γ | γx = x} is finite for all x ∈ X (see Lück [19], theorem
1.23). Since Γ is discrete, the Γ-action is proper if and only it is properly discontinuos in the
sense of the introduction. Notice that the Γ-push outs appearing in the definition of a Γ-CW -
complex are not part of the structure. The universal covering of a compact CW -complex X
is a proper free π1(X)-CW -complex. More generally we have the following examples.

Example 3.2 Let G be a finite group and X a compact G-CW -complex. Denote by
p : X̃ −→ X the universal covering of X and identify π = π1(X, x) with the group of deck
transformations. Let Γ be the discrete group
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3.3 Γ := {(f̃ , g) | f : X̃ → X̃, g ∈ G, p ◦ f̃ = l(g) ◦ p}

where l(g) : X → X denotes multiplication with g. There is an obvious exact sequence

0 −→ π
i−→ Γ

q−→ G −→ 0 and an operation of Γ on X̃ making the following diagram com-
mute

π × X̃ - X̃

?

i× id
?

id

Γ × X̃ - X̃

?

q × p
?

p

G × X - X

The G-CW -structure on X induces a finite proper Γ-CW -structure on X̃.

Next we prepare the definition of the cellular Hilbert A-chain complex. Let P be a
finitely generated projective C[Γ]-module. Consider left Γ-sets T and S. We call two C[Γ]-
isomorphisms α : P −→ C[T ] and β : P −→ C[S] equivalent, if there is a bijective Γ-map
f : S −→ T and a Γ-invariant map ε : S −→ {±1} such that β ◦ α−1 : C[T ] −→ C[S] sends∑
t∈T λt · t to

∑
s∈S ε(s) · λf(s) · s. A permutation C[Γ]- module is a C[Γ]-module together

with a choice of equivalence classes of C[Γ]-isomorphisms α : P −→ C[T ] for some Γ-set T .
Notice for a Γ-set T that the C[Γ]-module C[T ] is finitely generated and projective if and
only if Γ\T is finite and the isotropy groups of elements in T under the Γ-action are all finite.

Let X be a finite proper Γ-CW -complex. Then the cellular C[Γ]-chain complex
C∗(X̃) inherits from the Γ-CW -structure the structure of a finite permutation C[Γ]-chain
complex for all n ≥ 0. Namely, an explicit choice of Γ-push outs 3.1 together with a
choice of generators of the homology groups Hn(Dn, Sn−1; Z) determine a C[Γ]-isomorphism
Cn(X̃) −→ C[

∐
i∈In Γ/Hi]. The associated structure of a permutation C[Γ]-module depends

only on the Γ-CW -structure of X (see Lück [19] lemma 13.2).

Let A be a finite von Neumann algebra with a finite normal faithful trace. Let V be a
finitely generated Hilbert A-module. A unitary representation of Γ in IsoA(V )op
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3.4 µ : Γ −→ IsoA(V )op

is a group homomorphism from Γ into the opposite group of the group of isometric A-auto-
morphisms of V . The associated algebra homomorphism is denoted in the same way by
µ : C[Γ] −→ EndA(V )op. Notice that Γ acts from the left on C[T ] and from the right on V .
Hence the tensor product V ⊗C[Γ] C[T ] is defined. If we consider HomC[Γ](C[T ], V ) we use
on V the induced left module structure given by γ · v := v · g−1 for γ ∈ Γ and v ∈ V .

Lemma 3.5 Let P and Q be a finitely generated projective permutation C[Γ]-modules and
f : P −→ Q a C[Γ]-homomorphism. Then :

1.) There are preferred structures of a finitely generated Hilbert A-module on V ⊗C[Γ] P
and HomC[Γ](P, V ).

2.) The induced maps idV ⊗C[Γ] f and HomC[Γ](f, idV ) are homomorphisms of Hilbert A-
modules.

3.) There is an isometric isomorphism D(P ) : V ⊗C[Γ] P −→ HomC[Γ](P, V ). It is natu-
ral, i.e., HomC[Γ](f, idV ) ◦D(Q) and D(P ) ◦ (idV ⊗C[Γ] f)∗ agree.

Proof : Consider a Γ-set T such that Γ\T is finite and the isotropy group Γt of any
t ∈ T under the Γ-action is finite. Now V ⊗C[Γ] C[T ] and HomC[Γ](C[T ], V ) inherit A-
module structures from V . As V is a unitary representation, there is a Hilbert structure on
V ⊗C[Γ] C[T ] given by

〈m⊗C[Γ] t, n⊗C[Γ] s〉 :=
1

|Γt |
·

∑
{γ∈Γ|γ·t=s}

〈γ ·m,n〉

and on HomC[Γ](C[T ], V ) given by

〈φ, ψ〉 =
∑

Γt∈Γ\T
〈φ(t), ψ(t)〉

These data determine the preferred structure of a finitely generated Hilbert A-module. One
easily checks that the maps induced by f are continuous.

The isometric Hilbert A-isomorphism D(C[T ]) : V ⊗C[Γ] C[T ] −→ HomC[Γ](C[T ], V )
sends v ⊗C[Γ] t to the C[Γ]-map from C[T ] to V which assigns | Γt |−1 ·∑{γ∈Γ|γ·t=s} v · γ−1

to s ∈ T .
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Notation 3.6 Given a pair (X,X1) of proper Γ-CW -complexes, let C∗(X,X1;V ) be the
Hilbert A-chain complex V ⊗C[Γ] C∗(X,X1). Denote by H∗(X,X1;V ) its homology. De-
fine the Hilbert A-cochain complex C∗(X,X1;V ) by HomC[Γ](C∗(X,X1), V ). Denote its
cohomology by H∗(X,X1;V ).

For the definition of Reidemeister von Neumann torsion we need the following result.
Let C be a finite Hilbert A-chain complex. Its Laplace operator ∆n : Cn −→ Cn in dimension
n is given by cn+1 ◦ c∗n+1 + c∗n ◦ cn. Let Hn(C) be the kernel of ∆n.

Theorem 3.7 (Hodge decomposition theorem) Let C be a finite Hilbert A- chain com-
plex. Then:

1.) Cn = Hn(C)⊕ clos(im(c∗n))⊕ clos(im(cn+1))

2.) We have Hharm
n (C) ⊂ ker(cn). The natural projection induces an isometric isomor-

phism :
Hn(C) −→ Hn(C)

Proof : As ∆n is selfadjoint, we have :

Hn(C)⊕ clos(im(∆n)) = Cn

Since 〈c∗n(x), cn+1(y)〉 = 〈x, cncn+1(y)〉 holds, the spaces clos(im(c∗n)) and clos(im(cn+1))
are orthogonal. For x ∈ Hn(C) we compute :

0 = 〈x,∆n(x)〉 = 〈cn(x), cn(x)〉 + 〈c∗n+1(x), c∗n+1(x)〉

As x lies in ker(cn) = clos(im(c∗n))⊥ and in ker(c∗n+1) = clos(im(cn+1))⊥, we get

clos(im(c∗n))⊥ ∩ clos(im(cn+1))⊥ = Hharm
n (C)

This implies :

clos(im(c∗n))⊕ clos(im(cn+1)) = Hn(C)⊥ = clos(im(∆n))

Let C be a finite Hilbert A-chain complex. Let C ′ be the orthogonal complement of
H(C) in C. We have ∆′ ⊕ 0 = ∆ if ∆′ resp. ∆ are the Laplace operators of C ′ and C.
Then the morphism ∆′ is a selfadjoint weak automorphism and defines an element [∆′n] in
Kw

1 (A)Z/2.
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Definition 3.8 Define the Reidemister torsion of C by:

ρ(C) = −
∑
n

(−1)n · n · [∆′n] ∈ Kw
1 (A)Z/2

Definition 3.9 Let (X,X1) be a pair of finite proper Γ-CW -complexes. Consider a finite
von Neumann algebra A with finite normal and faithful trace. Let V be a finitely generated
Hilbert A-module and µ : Γ −→ IsoA(V )op be a unitary representation of Γ. Define Reide-
meister-von Neumann torsion of X

ρ(X,X1;V ) ∈ Kw
1 (A)Z/2

by the Reidemeister von Neumann torsion ρ(C∗(X,X1;V )) of C∗(X,X1;V ) (see definition
7.10).

As it stands, the definition above makes only sense for connected X, but can easily
be generalized to arbitrary X. For a component C of X let ΓC be its isotropy group
under the Γ-action on π0(X). Suppose we have assigned to any component a representation
µC : ΓC −→ IsoA(VC)op such that VC and VγC agree for any γ ∈ Γ and µγC ◦ cγ = µC holds
for the homomorphism cγ : ΓC −→ ΓγC sending δ to γδγ−1. We define ρ(X,X1;V ) to be the
sum

∑
ΓC∈Γ\π0(X) ρ(C,C ∩X1;VC).

We prefer chain complexes instead of cochain complexes in this definition, although
later we have to deal with deRham cohomology and hence with cochain complexes. In many
cases of interest the spaces are acyclic, so that no cohomology is involved, and it is more
convenient to deal with the cellular chain complex instead of the cochain complex since this is
done in related classical cases like Whitehead and Reidemeister torsion. In principal there is
no difference because of the following lemma. Recall that the dual cochain complex (C∗)

∗ of
a Hilbert A-chain complex C∗ has the same underlying chain modules and the codifferentials
are the adjoint of the differentials.

Lemma 3.10 There are a natural isometric Hilbert A-isomorphisms

(C∗(X,X1;V ))∗ −→ C∗(X,X1;V ) and (H∗(X,X1;V ))∗ −→ H∗(X,X1;V )

Proof : The first identification comes from lemma 3.5. Let C be a finite Hilbert A-
chain complex.We obtain from the Hodge decomposition theorem 3.7 a natural identification
H(C∗) = H(C∗) = H(C) = H(C) and thus the second identification from the first.
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If (f, f1) : (X,X1) −→ (Y, Y1) is a Γ-homotopy equivalence of pairs of finite proper
Γ-CW -complexes, its equivariant Whitehead torsion

τΓ(f, f1) ∈ Wh(ZΠ/(Γ, Y ))

is defined in Lück [19], page 68, page 284 (see also Illman [15] and Dovermann-Rothenberg
[13] in the case of a finite group Γ). This is an important invariant, e.g. for the classification
of smooth G-manifolds. The following result reflects the general idea that Whitehead torsion
is the difference of Reidemeister torsion. The map (f, f1) induces a weak isomorphism on
homology

Hn(f, f1;V ) : Hn(X,X1;V ) −→ Hn(Y, Y1;V )

It defines an element [[Hn(f, f1;V )]] in Kw
1 (A)Z/2 by the class of the weak automorphism

Hn(f, f1;V )∗ ◦ Hn(f, f1;V ) of the finitely generated Hilbert A-module Hn(X,X1;V ) (see
notation 7.2).

Theorem 3.11 There is a natural homomorphism

Φ = Φ(Y, V ) : Wh(ZΠ/(Γ, Y )) −→ Kw
1 (A)Z/2

such that

Φ(τΓ(f, f1))−
∑
n

(−1)n · [[Hn(f, f1;V )]] = ρ(Y, Y1;V )− ρ(X,X1;V )

We do not give the precise definition of Φ here, its construction is obvious, if one is
familar with the language of modules over the fundamental category as developed in Lück
[19]. In the case, where Γ acts freely, Wh(ZΠ/(Γ, Y )) reduces to the ordinary Whitehead
group Wh(Γ) and Φ sends an element in Wh(Γ) represented by the automorphism g of
⊕mZ[π] to [[idV ⊗Z[Γ] g]]. The following conclusion is of particular interest:

Corollary 3.12 If (X,X1) is V -acyclic, i.e. H(X,X1;V ) is trivial, then ρ(X,X1;V ) de-
pends only the simple Γ-homotopy type of (X,X1).

The next two results are the basic tools for computations. Consider the cellular Γ-
push out of finite proper Γ-CW -complexes, where i1 is an inclusion of finite proper Γ-CW -
complexes.
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3.13 X0 X2
-

i2

?

i1
Z
Z
Z
Z
ZZ~

j0

?

j2

X1 X-
j1

We get an exact sequence of finite Hilbert A-chain complexes

{0} −→ C(X0; j∗0V )
i1∗⊕i2∗−→ C(X1; j∗1V )⊕ C∗(X2; j∗2V )

j1∗−j2∗−→ C∗(X;V ) −→ {0}

Denote by LHS(X;X1, X2, X0;V ) the long weakly exact homology sequence of the sequence
above (see 6.1). If k : Y1 −→ Y is the inclusion of a pair of proper finite G-CW -complexes,
let LHS(Y, Y1;V ) be the weakly exact long homology sequence of the pair. We derive from
theorem 7.16.

Theorem 3.14 (Sum formula ) We have :

ρ(X;V ) = ρ(X1; j∗1V ) + ρ(X2, j
∗
2V )− ρ(X0; j∗0V ) + ρ(LHS(X;X1, X2, X0;V ))

ρ(Y, Y1;V ) = ρ(Y ;V )− ρ(Y1; k∗V ) + ρ(LHS(Y, Y1;V ))

Let Γ1 and Γ2 be discrete groups. Let (X,X1) resp. (Y, Y1) be pairs of a finite proper
Γ1- resp. Γ2-CW -complexes. Then the product space (X,X1)×(Y, Y1) inherits the structure
of a finite proper Γ1×Γ2-CW -complex. Consider finite von Neumann algebras A and B with
finite normal and faithful traces. Let Γ1 −→ IsoA(V )op and Γ2 −→ IsoB(W )op be unitary
representations. Define

3.15 χA(X,X1;V ) ∈ K0(A)

by χA(C(X,X1;V )) =
∑
n(−1)n · [Cn(X,X1;V )] =

∑
n(−1)n · [Hn(X,X1;V )] (see 7.14). If

Γ1 acts freely on X, then χA(X;V ) reduces to χ(Γ1\X,Γ1\X1) · [V ], where the integer
χ(Γ1\X,Γ1\X1) is the ordinary Euler characteristic. Because there is an isometric A ⊗ B-
isomorphism from C∗(X,X1;V )⊗ C∗(Y, Y1;W ) to C∗((X;X1)× (Y, Y1);V ⊗W ), we derive
from lemma 7.13 and lemma 7.15.
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Theorem 3.16 (Product formula) We get under the assumptions above:

1.) ρ((X,X1)×(Y, Y1);V ⊗W ) = χA(X,X1;V )⊗ρ(Y, Y1;W )+ρ(X,X1;V )⊗χB(Y, Y1;W )

2.) H∗(X,X1;V )⊗H∗(Y, Y1;W ) and H∗((X;X1)×(Y, Y1);V ⊗W ) are isometrically A⊗B-
isomorphic.

Let i : Γ0 −→ Γ be the canonical inclusion of a subgroup Γ0 of Γ of finite index. Let
(X,X1) be a pair of finite Γ-CW -complexes. The restriction (res(X), res(X1)) to Γ0 inherits
the strucure of a pair of finite Γ0-CW -complexes. Let µ : Γ0 −→ IsoA(V )op be a unitary
representation and i∗µ : Γ −→ IsoA(V ⊗C[Γ0] C[Γ]) be the induced one.

Lemma 3.17 (Restriction formula) We obtain under the conditions above :

1.) H∗(res(X), res(X1);V ) = H∗(X,X1; i∗V ) and

ρ(res(X), res(X1);V ) = ρ(X,X1; i∗V )

2.) There is a natural restriction homomorphism res : Kw
1 (N(Γ)) −→ Kw

1 (N(Γ0)) which
sends ρ(X,X1; l2(Γ)) to ρ(res(X), res(X1); l2(Γ0)).

Proof : The first assertion follows from the existence of an isometric Hilbert A-chain iso-
morphism C(res(X), res(X1);V ) −→ C(X,X1; i∗V ). Any finitely generated Hilbert N(Γ)-
module V can be viewed by restriction as a finitely generated Hilbert N(Γ0)-module de-
noted by res(V ) and similar for morphisms. This induces the restriction homomorphism
res : Kw

1 (N(Γ)) −→ Kw
1 (N(Γ0)) Obviously it sends ρ(X,X1; l2(Γ)) to ρ(X,X1; res(l2(Γ))).

One easily checks that the representations of Γ given by res(l2(Γ)) and i∗l
2(Γ0) are conju-

gate by an isometric isomorphism of Hilbert N(Γ0)-modules. Hence ρ(X,X1; res(l2(Γ))) and
ρ(X,X1; i∗l

2(Γ0)) agree and the second assertion follows from the first.

For the remainder of the section we use

Notation 3.18 If X is a finite CW -complex and µ : π1(X) −→ IsoA(V )op is a unitary
representation of its fundamental group, we write ρ(X;V ) instead of ρ(X̃;V ) and C∗(X;V )
for C∗(X̃;V )

We want to illustrate these computational tools by determing the torsion for spaces
carrying a torus action. As a preliminary we need the following lemma.
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Lemma 3.19 Let T be the n-dimensional torus for n ≥ 1 and µ : π1(T ) −→ IsoA(V )
a unitary representation. Suppose the existence of w ∈ π1(T ) such that w 6= 0 and the
endomorphism (µ(w)− 1) : V −→ V is a weak isomorphism. Then:

1.) T is weakly V -acyclic, i.e. H∗(T ;V ) = {0}.

2.) ρ(T ;V ) = 0 for n ≥ 2.

3.) If n = 1 and w1 ∈ π1(T ) is a generator we get:

ρ(T ;V ) = [[(µ(w1)− 1) : V −→ V ]]

Proof : Choose a decomposition T = S1 × T ′ where T ′ is the n− 1-dimensional torus such
that w = wm1 for somem and w1 given by S1×{∗}. Since (µ(w)− 1) is a weak isomorphism by

assumption and (µ(w1)− 1) ◦
(∑m−1

j=0 µ(wj1)
)

=
(∑m−1

j=0 µ(wj1)
)
◦ (µ(w1)− 1) = (µ(w)− 1) is

true, (µ(w1)− 1) is a weak isomorphism. Because C(T̃ ) = C(S̃1)⊗Z C(T̃ ′) is the mapping
cone of id⊗ (w1 − 1) : Z[Z]⊗Z C(T̃ ′) −→ Z[Z]⊗Z C(T̃ ′). Therefore C(T ;V ) is the mapping
cone of

idV ⊗Z[π1(T )] (id⊗ (w1 − 1)) : V ⊗Z[π1(T )]

(
Z[Z]⊗Z C(T̃ ′)

)
−→ V ⊗Z[π1(T )]

(
Z[Z]⊗Z C(T̃ ′)

)
In dimension r this chain map is up to conjugation with an isometric isomorphism of Hilbert
A-modules given by the weak automorphism (µ(w1)− 1) : ⊕b(r)V −→ ⊕b(r)V , where b(r)

is the rank of Cr(T̃ ′) over Z[π1(T ′)]. We conclude from the long weakly exact homology
sequence (see theorem 6.1 and corollary 6.2) that C(T ;V ) is weakly V -acyclic. We derive
from the sum formula for Reidemeister von Neumann torsion in theorem 7.16:

ρ(T ;V ) =
∑
r≥0

(−1)r · b(r) · [[(µ(w1)− 1) : V −→ V ]] = χ(T ′) · [[(µ(w1)− 1) : V −→ V ]]

Now the claim follows since χ(T ′) is zero for n ≥ 2 and one for n = 1.

Let X be a finite T -CW -complex for T the n-dimensional torus. (The definition of
Γ-CW -complex above carries over to Γ a Lie group). Consider a unitary representation
µ : π1(X) −→ IsoA(V )op. The space X itself does not carry a canonical CW -complex struc-
ture, but has a well-defined simple structure in the sense of Lück [19], page 74 and section 7.
Hence ρ(X;V ) is well-defined, provided that X is V -acyclic (compare corollary 3.12). De-
note by r the rank of the abelian group im(π1(T ) −→ π1(X)). Let XH be {x ∈ X | H ⊂ Tx}
and define X>H by {x ∈ X | H ⊂ Tx, H 6= Tx}, where Tx ⊂ T denotes the isotropy group
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at x ∈ X. Let I be the set of subgroups H of T of dimension n − 1. Consider H ∈ I
and a component C of XH . Given a base point in C, the orbit through X is a circle and
thus defines after choosing an orientation w(H,C) ∈ π1(X). Make the assumption that the
endomorphism µ(w(H,C)− 1) : V −→ V is a weak isomorphism. Hence it defines a class
[[(µ(w(H,C)− 1) : V −→ V ]] in Kw

1 (A)Z/2. Notice that the assumption as well as the class
[[(µ(w(H,C)− 1)]] are independent of the choice of base point and choice of orientation of
the orbit. Namely, given a weak automorphism f and an isomorphism g with the same source
then [[f ]] = [[f ∗]] = [[g ◦ f ◦ g−1]] and changing the base point corresponds to conjugating
with g and changing the orientation corresponds to taking the adjoint of f .

Theorem 3.20 Let T be the n-dimensional torus for n ≥ 1 and µ : π1(T ) −→ IsoA(V )op

be a unitary representation. Let X be a finite T -CW -complex. Assume that there is an
element w in im(π1(T ) −→ π1(X)) such that w 6= 0 and (µ(w)− 1) : V −→ V is a weak
isomorphism. (This assumption is fullfilled for A = N(π1(X)) and V the right regular
representation l2(π1(X)), provided that w has infinite order). Then :

1.) X is weakly V -acyclic.

2.) If r ≥ 2, then ρ(X;V ) vanishes.

3.) ρ(X;V ) =
∑
H∈I

∑
C∈π0(XH) χ((C,C ∩X>H)/T ) · [[(µ(w(H,C)− 1) : V −→ V ]]

Proof : We show for any T -CW -subcomplex k : Y −→ X

ρ(Y ; k∗V ) =
∑
H∈I

∑
C∈π0(XH)

χ((k−1(C), k−1(C) ∩X>H)/T ) · [[(µ(w(H,C)− 1) : V −→ V ]]

The induction begin Y = ∅ is trivial. In the induction step we assume that Y is ob-
tained from Z be attaching an equivariant cell T/H ×Dk. Let j1 : T/H ×Dk −→ X,
j0 : T/H × Sk−1 −→ X and j : Z −→ X be the obvious maps induced by k and denote
by l : T/H −→ T/H ×Dk the inclusion. We have j∗1V ' l∗j∗1V ⊗C and j∗0V ' l∗j∗0V ⊗C
where C denotes the trivial representation. We derive from the product formula 3.16:

H∗(T/H ×Dk; j∗1V ) = Hk(T/H; l∗j∗1V )⊗Hk(D
k; C)

H∗(T/H × Sk−1; j∗1V ) = Hk(T/H; l∗j∗1V )⊗Hk(S
k−1; C)

ρ(T/H ×Dk; j∗1V ) = ρ(T/H; l∗j∗1V )
ρ(T/H × Sk−1; j∗0V ) = (1 + (−1)k) · ρ(T/H, l∗j∗1V )

We obtain from lemma 3.19 that Hk(T/H; l∗j∗1V ) vanishes and ρ(T/H; l∗j∗1V ) is zero, if H
does not belong to I and is [[(µ(w(H,C)− 1) : V −→ V ]] otherwise where C is a component
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of XH which meets the new cell T/H ×Dk. Since Z is j∗V acyclic by induction hypothesis,
we get from the long weakly exact Mayer Vietoris sequence 6.1 that Y is k∗V -acyclic. One
checks directly that the difference∑
H∈I

∑
C∈π0(XH) χ((k−1(C), k−1(C) ∩X>H)/T ) · [[(µ(w(H,C)− 1) : V −→ V ]]−∑

H∈I
∑
C∈π0(XH) χ((j−1(C), j−1(C) ∩X>H)/T ) · [[(µ(w(H,C)− 1) : V −→ V ]]

is (−1)k · [[(µ(w(H,C) − 1) : V −→ V ]], if H is in I and C is a component of XH which
meets the new cell G/H × T , and is zero if H is not in I. Now the claim follows from the
sum formula 3.14.

Corollary 3.21 Let p : X −→ Y be a G-principal bundle over a finite CW -complex Y for
G a connected compact Lie group such that the image of π1(G) −→ π1(X) is not finite. Then
we have :

1.) X is l2(π1(X))-acyclic.

2.) ρ(X; l2(π1(X))) vanishes, if G is not S1.

3.) Let G be S1 and w ∈ π1(X) the image of the generator of π1(S1). Then :

ρ(X; l2(π1(X))) = χ(Y ) · [[(w − 1) : l2(π1(X)) −→ l2(π1(X))]]

Proof : We restrict the G-action to the action of the maximal torus T and apply
theorem 3.20. Notice that SO(3) and SU(2) are the only Lie groups of dimension bigger
than one whose maximal torus has dimension one (see Bröcker-tom Dieck [2], page 185) and
these Lie groups have finite fundamental groups.

Remark 3.22 The computations above apply in particular to orientable compact 3-manifolds
admitting a fixed point free S1-action since for such manifolds π1(S1) −→ π1(M) is injective.
Any Seifert fibre 3-manifold is covered by such a manifold. Hence any Seifert fibre 3-manifold
is L2-acyclic by corollary 3.20 and lemma 3.17.

Let (X,X1) be a pair of finite CW -complexes and µ : π1(X) −→ IsoopA be a unitary
representation. Under the assumption that H∗(X,X1;V ) vanishes, we can improve our
invariant, namely, we can drop the symmetrization process.

The Hilbert dimension as defined in Cheeger-Gromov [8], section 1 induces a homo-
morphism
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3.23 dim : K0(A) −→ R

Then the Euler characteristic χ(X,X1) ∈ Z is trivial, since χA(X,X1;V ) = χ(X,X1) · [V ] ∈
K0(A) vanishes and dim(V ) = 0 implies V = {0}. Choose a cellular bases for the finite free
vZ[π]-chain complex C(X̃, X̃1). As χ(X,X1) vanishes, the bases yield an Z[π]- isomorphism
Φ : C(X̃, X̃1)ev −→ C(X̃, X̃1)odd. It induces an isomorphism of finitely generated Hilbert A-
modules ΦV : C(X,X1;V )ev −→ C(X,X1;V )odd. As H∗(X,X1;V ) is trivial, we can choose
a weak chain contraction (γ, u) for C(X,X1;V ) (see definition 6.4). Let UV ⊂ Kw

1 (A) be
the subgroup of trivial units, element of the shape [±µ(w) : V −→ V ] for w ∈ π1(X). Define
the acyclic Reidemeister von Neumann torsion

3.24 ρa(X,X1;V ) ∈ Kw
1 (A)/UV

by ρa(X,X1;V ) = [ΦV ◦ (uc+ γ)odd]− [uodd]. We have to divide out UV , as the cellular bases
is not quite unique. One easily checks

3.25 ρ(X,X1;V ) = ρa(X,X1;V ) + ∗ρa(X,X1;V )

If we have a push out of finite CW -complexes as indicated in 3.13 and Xi is j∗i V -acyclic
for i = 0, 1, 2, then X is V -acyclic and we get :

3.26 ρa(X;V ) = ρa(X1; j∗1V ) + ρa(X2; j∗2V )− ρa(X0; j∗0V )

Let (Y, Y1) be a pair of finite CW -complexes and ν : π1(Y ) −→ IsoB(W ) be a unitary
representation. Then (X,X1)× (Y, Y1) is V ⊗W acyclic and we get using the pairing 2.8

3.27 ρa((X,X1)× (Y, Y1), V ⊗W ) = χ(Y, Y1) · (ρa(X,X1;V )⊗ [W ])

Theorem 3.11, lemma 3.17, theorem 3.20 and corollary 3.21 have obvious analogues for
acyclic Reidemeister von Neumann torsion.
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4. Free abelian fundamental groups

In this section we investigate the case of a free abelian fundamental group which is
completely understood. Then our torsion invariant is related to the Alexander torsion.

Let (X,X1) be a pair of finite CW -complexes and φ : π1(X) −→ Zr be an epimorphism
into the free abelian group of rank r. Denote by X̂ −→ X the corresponding covering.
As Z[Zr] is an integral domain, we may consider its quotient field Z[Zr](0). We assume

(X,X1) is φ-acyclic,i.e., C(X̂, X̂1)(0) = C(X̂, X̂1)⊗Z[Zr] Z[Zr](0) is Z[Zr](0)-acyclic. We can

choose a Z[Zr](0)-chain contraction γ of C(X̂, X̂1)(0),i.e. a map γ of degree 1 satisfying
c ◦ γ + γ ◦ c = id where c is the differential. We get an isomorphism of finitely generated
free Z[Zr](0)-modules (c(0) + γ)odd : C(X̂, X̂1)(0)odd −→ C(X̂, X̂1)(0)ev. Fix a Z[Zr]-bases of

C(X̂, X̂1) . Let A be the invertible Z[Zr](0)-matrix of (c(0) + γ)odd with respect to the induced
Z[Zr](0)-bases. Define the Alexander torsion

4.1 a(X,X1;φ) ∈ Z[Zr]∗(0)/Z[Zr]∗

by the determinant of A. Since we have divided out the units of Z[Zr], this is well-
defined and we get for a homotopy equivalence of pairs of connected finite CW -complexes
f : (X ′, X ′1) −→ (X,X1) :

4.2 a(X ′, X ′1;φ ◦ f∗) = a(X,X1;φ)

Suppose we have a push out of finite CW -complexes as indicated in 3.13 and Xi is
φ ◦ ji∗-acyclic for i = 0, 1, 2, then X is φ-acyclic and we obtain :

4.3 a(X;φ) = a(X1, φ ◦ j1) + a(X2, φ ◦ j2)− a(X0, φ ◦ j0)

Let (X,X1) and (Y, Y1) be pairs of finite CW -complexes and φ : π1(X) −→ Zr and
ψ : π1(Y ) −→ Zs be epimorphisms such that (X,X1) is φ-acyclic. Then (X,X1)× (Y, Y1) is
φ× ψ-acyclic. Let i : Z[Zr]∗(0)/Z[Zr]∗ −→ Z[Zr+s]∗(0)/Z[Zr+s]∗ be the inclusion. The product
formula for Alexander torsion is given by:

4.4 a((X,X1)× (Y, Y1);φ× ψ) = χ(Y, Y1) · i(a(X,X1;φ))
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Let ν : Zr −→ L2(T r) be the right regular representation of Zr where L2(T r) is the
Hilbert space of L2-integrable functions from the r-dimensional torus into C ∪ {∞}. Recall
that N(Zr) is L∞(T r) and L2(T r) can be identified with l2(N(Zr)) = l2(Zr). We get from φ
a unitary representation φ : π1(X) −→ IsoN(Zr)(L

2(T r)). Suppose that (X,X1) is φ-acyclic.
Then the acyclic Reidemeister von Neumann torsion is defined (see 3.24). By theorem 2.5
it takes values in :

ρa(X,X1;φ) ∈ Inv(T r)/U ′

where U ′ is the subgroup of elements of the form

T r −→ C (z1, z2 . . . zr) 7→ ±za1
1 · za2

2 · . . . · zarr
for integers a1, a2, . . . ar. There is an obvious injection

4.5 i : Z[Zr]∗(0)/Z[Zr]∗ −→ Inv(T r)/U ′

Theorem 4.6 We get under the conditions above :

1.) (X,X1) is φ-acyclic if and only if (X,X1) is φ-acyclic.

2.) Suppose that (X,X1) is φ-acyclic. Then :

i(a(X,X1;φ)) = ρa(X,X1; Φ)

Proof : Suppose that (X,X1) is φ-acyclic. Let γ be a chain contraction of the Z[Zr](0)-

chain complex C(X̂, X̂1)(0). Choose an element u ∈ Z[Z]r with u 6= 0 and and a Z[Zr]-chain

homotopy γ̂ : C(X̂, X̂1)∗ −→ C(X̂, X̂1)∗+1 satisfying u · id ◦ γ = γ̂(0). Then we have:

a(X,X1;φ) = det
(
(c(0) + γ)odd

)
= det

(
uodd ◦ (c(0) + γ)odd

)
/det(uodd) =

det((uc+ γ̂)odd)/det(uodd)

Tensoring γ̂ and u · id with the regular representation yields a weak chain contraction of
C(X,X1;φ) because of u · id is a weak isomorphism by lemma 2.7. Therefore (X,X1)
is φ-acyclic and i(a(X,X1;φ)) is ρa(X,X1;φ). It remains to show that φ-acyclic implies
φ-acyclic. For n ≥ 0 choose a finitely generated free Z[Zr]-module Cn together with a Z[Zr]-
map jn : Cn −→ Hn(C(X̂, X̂1;φ)) such that (jn)(0) is an isomorphism. Lift jn to a Z[Zr]-
homomorphism in : Cn −→ ker(dn). We have construced a finite free Z[Zr]-chain complex
C with trivial differentials and a chain map i : C −→ C(X̂) such that H(i)(0) is an isomor-
phism. Then Cone(i) is Z[Zr](0)-acyclic. By the argument above and the long weakly exact
homology sequence 6.1 the induced N(Zr)-chain map from C ⊗Z[Zr] L

2(T r) to C(X,φ) is
a weak homology equivalence. But C is Z[Zr](0)-acyclic, if and only if C ⊗Z[Zr] L

2(T r) is
weakly acyclic, as C has trivial differentials. Thus φ-acyclic implies φ-acyclic.
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Example 4.7 (Alexander polynomial) Let L be an oriented link in an oriented homol-
ogy 3-sphere M . Denote by M(L) the complement of a tubular neighbourhood of the link.
If r is the number of components, the Hopf homomorphism

φ : π1(M(L)) −→ Zr

maps a loop w to the r-tuple of integers given by the linking numbers of w and the various
components of the link in M . Then the Alexander torsion of M(K) defined in 4.1 is just
the Alexander polynomial of the link L provided that M(L) is φ-acyclic. Notice that the
Alexander polynomial is defined to be zero if M(L) is not φ-acyclic (see Burde-Zieschang [3]
or Turaev [29]). Hence we see by theorem 4.6 that the acyclic Reidemeister von Neumann
torsion of the link complement contains the same information as the Alexander polynomial.
This identification is very similar to the one in Milnor [21].

The acyclic Reidemeister von Neumann torsion provides the possibility of extending the
definition of Alexander polynomial to other coverings of the link complement than abelian
coverings. We will investigate this at a different place.

Example 4.8 (Lefschetz zeta function of selfmaps)
Given a selfmap f : X −→ X of a space of the homotopy type of a finite CW -complex, define
the Lefschetz zeta function of f by the formal power series with leading coefficient zero

4.9 L(f) =
∑
n≥1

λ(fn)
n
tn

where λ(fn) is the Lefschetz index of the self map fn of X. Denote by Tf the mapping torus
of f . This space is obtained from X × [0, 1] by the identification (x, 1) ∼ (f(x), 0). There is
a natural map Tf −→ S1 inducing a homomorphism φ : π1(Tf ) −→ Z. The mapping torus
is φ-acyclic and the Alexander torsion a(Tf ;φ) can be computed by

a(Tf ;φ) =
∏
n≥0

det(z −Hn(f))(−1)n

Given an endomorphism g : Cr −→ Cr of C-modules, we obtain :

det(id− t · g) = exp(
∑
n≥1

tr(gn)

n
· tn)−1

Hence exp(L(f)) is a rational function p(t)
q(t)

in t and q(z−1)
p(z−1)

· zχ(X) represents a(Tf , φ). This

observation is due to Milnor [21]. Theorem 4.6 says that the acyclic Reidemeister von Neu-
mann torsion of the mapping torus and the Lefschetz Zeta function determine one another.
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5. Torsion invariants for Riemannian Γ-manifolds

In this section we define Reidemeister von Neumann torsion for Riemannian mani-
folds with a cocompact properly discontinuous action of a dicrete group Γ by isometries.
We investigate Poincaré duality and relate Reidemeister von Neumann torsion to classical
Reidemeister torsion and to analytic torsion.

The definition of Reidemeister von Neumann torsion for Riemannian manifolds needs
some preparation. We need two ingredients, an equivariant triangulation theorem and a
deRham isomorphism. Before we establish these and give the final definition, we investigate
an example to illustrate why the Riemannian metric comes in if the manifold is not weakly
acyclic. The naive approach to choose a triangulation and to define the Reidemeister von
Neumann torsion of a manifold by the Reidemeister von Neumann torsion of the triangu-
lation does only work if the manifold is weakly acyclic. The reason is the appearance of
the term depending on the map induced on homology in the formula in theorem 3.11 where
Whitehead torsion and Reidemeister von Neumann torsion are compared. If one has two
triangulations, they differ by a simple Γ-homotopy equivalence f . Simple means that its
equivaraint Whitehead torsion τΓ(f) is zero. However, the map induced on homology rep-
resents in general a non-trivial class in the K-theory unless there is no homology. This will
force us to “fix” the homology or cohomology of the given triangulation by comparing it
with the space of harmonic l2-forms by the deRham isomorphism.

Example 5.1 Consider the 1-dimensional manifold D1 given by the unit intervall. In this
example Γ is trivial. Consider for n ≥ 1 the triangulation of D1 with {{ k

n
} | 0 ≤ k ≤ n} as

set of 0-simplices and {[ k
n
, k+1

n
] | 0 ≤ k < n} as set of 1-simplices. Let D1(n) be the CW -

complex given by this explicit triangulation. We want to compute its Reidemeister von
Neumann torsion introduced in 3.9 for A = C and V = C.

The cellular C-chain complex C = C(D1(n)) looks like :

A =



1 0 0 . . . 0
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . −1

 : ⊕nC −→ ⊕n+1C

Let N be the element (1, 1, . . . , 1) ∈ C0. Its norm with respect to the standard Hilbert
structure is (n+ 1)1/2 and it is orthogonal to the image of the differential. Hence we obtain
an identification of Hilbert spaces by :

C −→ H0(C) λ 7→ λ · (n+ 1)−1/2 ·N
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Let i0 : C −→ C0 be the C-map sending λ to λ · (n+ 1)−1/2 ·N . We get with the
identification above a C-chain map i : H(C) −→ C satisfying H(i) = id. The Reidemeister
von Neumann torsion of D1(n)

ρ(D1(n)) ∈ (C∗)Z/2

is given by ρ(D1(n)) = det(B(n+ 1, (n+ 1)−1/2)) · det(B(n+ 1, (n+ 1)−1/2)), if we denote
by B(n+ 1, λ) the following (n+ 1)-(n+ 1)-matrix :

B(n+ 1, λ) =



1 0 0 . . . 0 λ
−1 1 0 . . . 0 λ
0 −1 1 . . . 0 λ
...

...
...

. . .
...

...
0 0 0 . . . −1 λ


Developing the determinant after the first row gives :

det(B(n+ 1, λ)) = 1 · det(B(n, λ)) + (−1)n · λ · (−1)n = det(B(n, λ)) + λ

By induction over n we get det(B(n+ 1, λ)) = (n+ 1) · λ. This shows :

ρ(D1(n)) = (n+ 1)

In particular we see that ρ(D1(n)) does depend on the triangulation.

Next we deal with the equivariant triangulation theorem. Let Γ be a discrete group
acting cocompact and properly discontinuosly on a smooth manifold M . Recall that prop-
erly discontinuous means that for each pair of points (x, y) in M there are neighborhoods
Ux and Uy such that {γ ∈ Γ | γUx ∩ Uy 6= ∅} is finite, and the action is cocompact if the
quotient Γ\M is compact. Our assumptions imply that each point x in int(M) resp. ∂M
has a neighborhood Ux such that Ux is Γx-invariant and Γx-diffeomorphic to the unit disk of
an orthogonal Γx-representation resp. half unit disk in the direct sum of an orthogonal Γ-
representation and the trivial representation R and {γ ∈ Γ | γUx ∩ Ux 6= ∅} = Γx where Γx is
the isotropy subgroup of the point x. Such a neighborhood will be called a nice smooth neigh-
borhood. If we are working in the PL-category, it will be called an nice PL-neighborhood.
Because Γ\M is compact, there is a finite set of points {x1, x2, . . . xm} in M with smooth nice
neighborhoods {Ux1 , Ux2 , . . . Uxm} such that M = Γ (Ux1 ∪ Ux2 ∪ . . . ∪ Uxm). Such a family
will be called an Γ-equivariant covering basis for M . A nice simplicial Γ-complex is a locally
finite simplicial complex on which Γ acts simplicially, cocompact and properly discontinu-
ously such that the regular neighborhood of each point is a nice PL-neighborhood.

Definition 5.2 A smooth Γ-equivariant triangulation of M is a pair of nice simplicial Γ-
complexes (K, ∂K) and a Γ-equivariant homeomorphism (f, ∂f) : (K, ∂K) −→ (M,∂M) of
pairs such that h is smooth on each simplex.
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Theorem 5.3 There is a smooth Γ-equivariant triangulation of M . Given two such smooth
Γ-equivariant triangulations (fi, ∂fi) : (Ki, ∂Ki) −→ (M,∂M) for i = 1, 2, the composition
(h−1

2 ◦ h1, ∂h
−1
2 ◦ ∂h1) is Γ-isotopic to a Γ-equivariant PL-homeomorphism of pairs. In par-

ticular its equivariant Whitehead torsion vanishes.

Illman [16] gives a proof for finite Γ and it generalizes easily to our situation. Notice
that the theorem follows from Illman’s provided that Γ contains a normal subgroup π of
finite index acting freely. Namely, one applies Illman’s result to the action of Γ/π on π\M
and lifts the triangulation to M .

Here is the basic idea. For simplicity assume ∂M = ∅. Choose a Γ-equivariant covering
basis for M . Then K1 = Γ×Γx2

Ux2 has a structure of a nice simplicial Γ-complex. Using the
basic affine approximation method of Whitehead move Ux2 slightly such that the intersection
Ux2 ∩ Γ×Γx1

K1 is a Γ-subcomplex of both. Then K2 = K1 ∪ Γ×Γx1
Ux1 has a structure of

a nice simplicial Γ-complex. Continueing in this way yields eventually K = Km. The
uniqueness result follows in a similar way directly from Whitehead’s argument.

Next we need a generalized deRham isomorphism. To state this we need some prepara-
tion. Let M be a Riemannian manifold of dimension m whose boundary ∂M is the disjoint
union ∂0M

∐
∂1M . Let Γ be a discrete group acting by isometries and cocompact, properly

discontinuous on M . Let A be a finite von Neumann algebra and V be a finitely gener-
ated Hilbert module over A. Consider a unitary representation µ : Γ −→ IsoA(V )op. We
will assume that our manifold M is orientable. We can do this without loss of generality
since otherwise one can pass to the orientation covering of M . We define the orientation
homomorphism

5.4 w = Γ −→ {±1}

by sending γ ∈ Γ to +1 resp. ±1 if γ acts orientation preserving resp. reversing.

The fibre over x ∈ M of the Hilbert bundle Altp(TM, V ) consists of alterating p-
forms on TxM with coefficients in V . The Hilbert structure on the fibres comes from the
one on V and the Riemannian metric. Recall that the space Λp(M ;V ) of p-forms on M
with coefficients in V is the space of smooth sections in Altp(TM, V ). Since Γ acts on M
by isometries, Γ acts by isomorphisms of Hilbert bundles on Altp(TM, V ). This induces a
action of Γ on Λp(M ;V ). Let Λp

Γ(M ;V ) be the Γ-fixed point set of Λp(M ;V ).

Denote by wV the w-twisted representation given by w(γ) · vγ for γ ∈ Γ and v ∈ V .
Let ∗Λp(M ;V ) −→ Λm−p(M ;w V ) be the Hodge star operator, d : Λp(M ;V ) −→ Λp+1(M ;V )
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be the differential. We have the product ∧ : Λp(M ;V )⊗ Λq(M ;V )⊗ Λp+q(M ;w C) and the
volume form dM ∈ Λn(M ;w C). The standard definitions for forms with coefficients in C
carry directly over to the case of coefficients in V . Notice that d is compatible with the
Γ-action as well as ∗ and dM is Γ-invariant.

We obtain for ω and η in Λp(TM, V ) a function 〈ω, η〉x on M from the Hilbert bundles
structure on Altp(TM, V ). One easily checks from the definitions ω ∧ (∗η) =< ω, η >x ·dM .
Let F be a fundamental domain for the Γ-action on M . Given ω and η in Λp

Γ(M ;V ), define
their inner product

〈ω, η〉 =
∫
F
〈ω, η〉xdM =

∫
F
ω ∧ (∗η)

This is independent of the choice of fundamental domain, since ω and η are Γ-invariant. The
adjoint δp : Λp(M ;V ) −→ Λp−1(M ;V ) of the differential dp−1 is (−1)mp+p+1 ∗ dm−p∗. Define
the Laplace operator ∆p : Λp(M ;V ) −→ Λp(M ;V ) by dp−1δp + δp+1dp.

Given a p-form ω ∈ Λp(M ;V ), let ωtan be the p-form on ∂M coming from restriction
with Ti : T∂M −→ TM for the inclusion i. Let ωnor be the (p − 1)-form ∗∂M(∗Mω)tan.
We say ω satisfies Dirichlet boundary conditions on ∂0M if ωtan = 0 and (δω)tan = 0 on
∂0M holds, and Neumann boundary conditions on ∂1M , if ωnor = 0 and (dω)nor = 0 on M2

holds. Let Λp(M,∂0M ;V ) be the subspace of Λp(M ;V ) consisting of p-forms satisfying
Dirichlet boundary conditions on ∂0M and Neumann boundary conditions on ∂1M . The
space of harmonic p-forms Hp(M,∂0M ;V ) is the subspace of Λp(M,∂0M ;V ) given by p-
forms in the kernel of the Laplace operator. Define the space of invariant harmonic p-
forms Hp

Γ(M,∂0M ;V ) to be the fixed point set (Hp(M,∂0M ;V ))Γ. It inherits a pre Hilbert
structure from Λp

Γ(M ;V )

Let (f ; f0, f1) : (K;K0, K1) −→ (M ; ∂0M,∂1M) be a smooth Γ-equivariant triangula-
tion. Consider a Γ-invariant harmonic p-form ω in Hp

Γ(M,∂0M ;V ). Let σ ⊂ K be a p-
simplex. The integral

∫
σ f
∗ω is an element in V . Define the de Rham homomorphism

Ap(f, f0;V ) : Hp
Γ(M,∂0M ;V ) −→ Hp(K,K0; f ∗V )

by sending ω to the class represented by σ̃ 7→
∫
σ f
∗ω.

Theorem 5.5 The deRham homomorphism

Ap(f, f0;V ) : Hp
Γ(M,∂0M ;V ) −→ Hp(K,K1; f ∗V )

is a well-defined isomorphism of finitely generated Hilbert A-modules. Given another equiv-
ariant triangulation (g; g0, g1) : (L;L0, L1) −→ (M ; ∂0M,∂1M), we get :

Hp((g, g0)−1 ◦ (f, f0); g∗V ) ◦ Ap(g, g0;V ) = Ap(f, f0;V )
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If A is the field of complex numbers C and Γ acts freely, the proof of the theorem above
can be found in Ray and Singer [23]. Suppose Γ acts freely, M has no boundary, A = N(Γ)
and V is the regular right representation l2(Γ). Let L2Λp

c(M) be the Hilbert completion of
the space Λp

c(M) of smooth p-forms on M with compact support. Let L2Λp
Γ(M ; l2(Γ)) be

the Hilbert space completion of Λp
Γ(M ; l2(Γ)). There is a canonical isometric isomorphism

of Hilbert N(Γ)-modules

5.6 β : L2Λp(M) −→ L2Λp
Γ(M ; l2(Γ))

Given ω in Λp(M), β(ω) assigns to the p-tuple of tangent vectors (v1, v2, . . . , vp) of M at
x the element in l2(Γ) given by

∑
γ∈Γ ωγ−1x (Txγ

−1(v1), Txγ
−1(v2), . . . , Txγ

−1(vp)) · γ, where
Txγ is the differential of the map given by multiplication with γ. In particular we obtain
an identification of the Hilbert space Hp

Γ(M,∂0M ;V ) of invariant harmonic p-forms with
coefficients in l2(Γ) with the Hilbert space of smooth harmonic L2-integrable harmonic forms
on M . Under the assumptions and identifications the theorem above reduces to the result of
Dodzuik [11] applied to Γ\M . The proof of the theorem above is an extension of Dodzuik’s
argument combined with the technique or Ray and Singer [23] to handle the boundary.

Now we can define Reidemeister von Neumann torsion for (M,∂0M) with coefficients
in V . Choose a Γ-equivariant tringulation (f ; f0, f1) : (K;K0, K1) −→ (M,∂0M,∂1M).

Definition 5.7 Define the Reidemeister von Neumann torsion

ρ(M,∂0M ;V ) ∈ Kw
1 (A)Z/2

by ρ(K,K1; f ∗V ) − ∑
p≥0 (−1)p · [[Ap(f, f0;V ) : Hp

Γ(M,∂0M ;V ) −→ Hp(K,K0; f ∗V )]].

We have to show that this is independent of the choice of equivariant triangulation. If
(g; g0, g1) : (L;L0, L1) −→ (M,∂0M,∂1M) is a second equivariant triangulation, the White-
head torsion of (g, g0)−1 ◦ (f, f0) vanishes. We drive from theorem 3.11

ρ(L,L0; g∗V )− ρ(K,K0; f ∗V ) = −t(H((g, g0)−1 ◦ (f, f0); g∗V ))

Because of lemma 3.10 we have

t(Hp((g, g0)−1 ◦ (f, f0); g∗V )) = t(Hp((g, g0)−1 ◦ (f, f0); g∗V ))

We derive from theorem 5.5 and lemma 7.8

t(Hp((g, g0)−1 ◦ (f, f0); g∗V )) = t(A(f, f0;V ))− t(A(g, g1;V ))
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This implies :

ρ(K,K0; f ∗V )− t(A(f, f0;V )) = ρ(L,L0; g∗V )− t(A(g, g0;V ))

Now the claim follows as we have

t(A(f, f0;V )) =
∑
p≥0

(−1)p · [[Ap(f, f0; ) : Hp
Γ(M,∂0M ;V ) −→ Hp(K,K0; f ∗V )]]

Example 5.8 Equip D1 with a Riemannian metric. Then the constant function on D1 with
value vol(D1)−1/2 has norm one in the space of harmonic 0-forms. Hence ρ(D1) is vol(D1)
(compare with example 5.1).

Example 5.9 Reidemeister von Neumann-torsion is sensitive to A and V . Consider S1 with
any Riemannian metric. If we use A = N(Z) and V = l2(Z), the Reidemeister von Neumann
torsion is independent of the Riemannian metric and represented in Kw

1 (N(Z)) = Inv(S1)
by the function (z− 1)(z−1− 1) (see lemma 3.19 and theorem 2.5). If we choose A = C and
V = C the Reidemeister von Neumann torsion is real number in Kw

1 (C)Z/2 = R given by
the square of the volume of S1 and does depend on the Riemannian metric.

Remark 5.10 The results of section 3 for CW -complexes also apply to manifolds. In the
sum formula 3.14 the extra term coming from long homology sequences is to be understood
with respect to the harmonic forms. The product formula 3.16 and restriction formula 3.17
hold as they stand. In theorem 3.20 and corollary 3.21 one has to substitute finite T -CW -
complex by compact smooth manifold with smooth T -action. In the Lie group one has to be
more careful with the triangulation theorem. However, we obtain at least a simple structure
on M compatible with restriction by Lück [19], lemma 7.4.5, what suffices for theorem 3.20
as the spaces under consideration are V -acyclic.

Finally we examine Poincaré duality following Lück [20] page 26ff. In view of theorem
5.3 we can identify (M,∂0M) with a triangulation. Let m be dimension of M . Let σ1, σ2,
. . .σr be the m-simplices of Γ\M . Choose for any 1 ≤ i ≤ r a lift σ̃i in M . Then we obtain a
cycle in Cm(M,∂M,w C) by

∑r
i=1 σ̃i ⊗ZΓ

wC. Its class in Hm(M,∂M ;w C) is independent of
the choice of the lifts and called the fundamental class [M ]. We have a cellular Γ-equivariant
approximation of the diagonal map M −→M ×M by an equivariant version of the cellular
approximation theorem. Hence the standard definitions for cup and cap products go through
and we obtain a chain map of Hilbert chain complexes well defined up to homotopy:

5.11 ∩[M ] : Cm−p(M,∂1M,w V ) −→ Cp(M,∂0M,V )
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This map turns out to be a chain homotopy equivalence and we refer to it as the
Poincaré chain homotopy equivalence. One proof of Poincaré duality for a compact manifold
uses handlebody decompositions and a Mayer-Vietoris argument to reduce the claim to a
handle body itself. In our case one can use an equivariant handlebody decomposition. Since
all isotropy groups are finite, this reduces the claim to an equivariant handle for a finite
group and in that case Poincaré duality is well-known. Now we can define:

Definition 5.12 Define the Hilbert Poincaré torsion or briefly Poincaré torsion

ρpd(M,∂0M ;V ) ∈ Kw
1 (A)Z/2

by the torsion of ∩[M ] : Cm−∗(M,∂1M ;w V ) −→ C∗(M,∂0M ;V ) introduced in 7.4.

If Γ acts freely, then there is another proof of Poincaré duality using dual cells. This
does not go through if the action is non-free, because the dual cell of an equivariant cell
is not an equivariant cell in general anymore. The Hilbert Poincaré torsion measures this
failure. In particular it vanishes if Γ acts freely. Analogously to Lück [20] proposition 5.24
there is a local formula for Hilbert Poincaré torsion in terms of the Euler characteristics of
the components of the H-fixed points sets and their normal slices for finite subgroups H of
Γ. As in Lück [20] p.26ff one shows:

Theorem 5.13 (Poincaré Duality)

1.) ρ(M,∂0M ;V ) + (−1)m · ρ(M,∂1;w V ) = ρpd(M,∂0M ;V )

2.) ρpd(M,∂0M ;V ) = (−1)m · ρpd(M,∂1M ;V )

3.) χA(M,∂0M ;V ) = (−1)m · χA(M,∂1M ;V )

4.) If Γ acts freely, ρpd(M,∂0M ;V ) vanishes.

Suppose M is closed and orientable and Γ acts orientation preserving. Then we obtain
2 · ρ(M ;V ) = ρpd(M ;V ), if M has even dimension, and 2 · ρpd(M ;V ) = 0, if M has odd
dimension. In particular 2 · ρ(M ;V ) vanishes, if Γ acts freely and orientation preserving and
M is an orientable closed Riemannian manifold of even dimension.

Next we want to relate the Reidemeister von Neumann torsion to other well-known
invariants
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Example 5.14 Let X be a finite CW -complex with finite fundamental group π. Consider
a finite-dimensional complex representation µ : π −→ IsoC(V ). This means that we have
choosen A to be C. Suppose that X is V -acyclic. The acyclic Reidemeister von Neumann
torsion ρa(X;V ) defined in3.24 is essentially a complex number, more precisely, it is an
element in C∗/U , where U is given by {det(±µ(g) : V −→ V ) | g ∈ π}. This is just the
classical Reidemeister torsion which was used to classify Lens spaces (see Cohen [9] and
Reidemeister [24]).

Example 5.15 Let M be a compact smooth Riemannian manifold with fundamental group
π and µ : π −→ IsoR(V ) be an orthogonal finite-dimensional representation. Then V ⊗R C
is a unitary representation of π over the von Numann algebra A = C. The Reidemeister
von Neumann torsion ρ(M ;V ) defined in 5.7 reduces to a positive real number, because
Kw

1 (C) is R∗. This is the square of the PL-torsion ρpl(M ;V ) introduced by Ray and Singer
[23]. Ray and Singer [23] defined also the analytic counterpart ρan(M ;V ) based on the zeta
function of the Laplace operator. Cheeger [5] and Müller [22] proved independently that
ln(ρpl(M ;V )) = ρan(M ;V ), provided that M is closed. If M has a boundary, a correction
term proportional to the Euler characteristic of the boundary comes in (see Lück [20]).

Example 5.16 The notions of Ray and Singer and the results of Cheeger and Müller were
extended to compact Riemannian G-manifolds by Lott and Rothenberg [18] and Lück[20] for
a finite group G. Analytic proofs of deRham’s theorem are established that the unit spheres
of two orthogonal representations are G diffeomorphic if and only if the representations
themselves are isomorphic (cf. deRham [25]). The notion of Reidemeister von Neumann
torsion reduces to the notions in Lott and Rothenberg [18] and Lück [20] if Gamma is finite.
The meaning of equivariant Reidemeister torsion for finite transformation groups is worked
out in Rothenberg [26] and Lück [19].

Remark 5.17 In view of the results above one should try to give an analytic interpretation
of the Reidemeister von Neumann torsion. In this context the definition of a real number,
the analytic L2- torsion by Lott [17] is very interesting. His invariant should be up to a
constant the Fuglede Kadison determinant (see Fuglede and Kadison [14]) applied to the
Reidemeister von Neumann torsion. The analytic L2-torsion of Lott is only defined if all
the Novikov-Shubin invariants of the manifold are positive whereas the Reidemeister von
Neumann torsion is always defined. However, the vanishing of all Novikov-Shubin invariants
is needed to apply the Fuglede Kadison determinant to the Reidemeister von Neumann
torsion. In a forthcoming preprint the first author and Lott will prove that the Novikov-
Shubin invariants are positive for a manifold satisfying the condition of theorem 3.20 and for a
compact Haken 3-manifold whose boundary is empty or is a disjoint union of incompressible
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tori. In particlular under the conditions of theorem 3.20 the Reidemeister von Neumann
torsion vanishes so that one would expect that also the analytic L2-torsion vanishes.

We also refer in this context to Carey-Mathai [4], where a real number based on the
Kadison-Fuglede determinant is assigned to a smooth closed L2-acyclic manifold whose
Novikov-Shubin invariants are positive. Their invariant when defined is just the Fuglede
Kadison determinant of the Reidemeister von Neumann torsion. In the original version
which appeared in Contemporary Math., vol 105 (1989) there is an error in the definition of
their invariant. This has been corrected in the version we refer to.
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6. Hilbert A-chain complexes

In this section we generalize basic facts about long homology sequences and chain
contractions for chain complexes over a ring to chain complexes over a finite von Neumann
algebra A with a finite normal and faithful trace.

The main difficulty lies in the definition of homology as H(C) = ker(c)/clos(im(c))
which does not coincide with the ordinary definition as ker(c)/im(c). Recall that we have
to divide out the closure of the image to ensure that the homology consists again of Hilbert
A-modules. In the classical situation the constrution of torsion invariants for acyclic chain
complexes is based on the existence of a chain contraction γ, i.e., a chain homotopy γ : id ∼ 0.
We must look for a weaker notion of chain contraction in the case of Hilbert A-chain com-
plexes which are weakly acyclic. Before we deal with this question, we need some prelim-
inaries. In the sequel module resp. chain complex means Hilbert A-module resp. Hilbert
A-chain complex unless explicitly stated differently. Recall that a chain complex is finite if
Cn is finitely generated for all n ∈ Z and there is a number N such that Cn = 0 for |n | ≥ N .

Theorem 6.1 (Cheeger-Gromov [6])

Let 0 −→ C
i−→ D

p−→ E −→ 0 be an exact sequence of finite chain complexes. Then there
is a weakly exact long natural homology sequence :

−→ Hn+1
∂−→ Hn(C)

Hn(i)−→ Hn(D)
Hn(p)−→ Hn(E)

∂−→ . . .

Proof : We firstly define ∂. Since the differential dn of Dn maps ker(pn) to ker(pn−1), we
may write dn : Dn −→ Dn−1 as :(

d1
n d2

n

0 d3
n

)
: ker(pn)⊕ ker(pn)⊥ −→ ker(pn−1)⊕ ker(pn−1)⊥

The induced morphisms in : Cn −→ ker(pn) and pn |: ker(pn)⊥ −→ En are isomorphisms by
the open mapping theorem. Consider the composition

∂′ = i−1
n−1 ◦ d2

n ◦ (pn |)−1 : En −→ Cn−1

We claim ∂′n(ker(en)) ⊂ ker(cn−1). Namely, regard x ∈ ker(en), y ∈ ker(pn)⊥ and z ∈ Cn−1

such that pn(y) = z and d2
n(y) = in(z) holds. We have by definition ∂′(x) = z so that we

have to check cn−1(z) = 0. Since in−2 is injective, it suffices to show in−2 ◦ cn−1(z) is zero.
This element is just dn−1 ◦ d2

n(y). Now (pn−1 |) ◦ d3
n(y) is en ◦ pn(0, y) = en(x) and hence

vanishes. Therefore d3
n(y) is zero. This implies dn−1 ◦ d2

n(y) = dn−1 ◦ dn(0, y) = 0. We have
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shown ∂′n(ker(en)) ⊂ ker(cn−1). Analogously one proves ∂′(im(en+1)) ⊂ im(cn). Hence we
can define ∂ to be the map induced by ∂′.

Although the definition of the long homology sequence reduces in the case, where A
is C[G] for a finite group G to the classical situation, the verification of weak exactness is
much harder and not just a diagram chase. We refer to Cheeger - Gromov [6] theorem 2.1.

For a chain map f : C −→ D, denote by Cone(f) its mapping cone given by

cn =

(
−cn−1 0
fn−1 dn

)
: Cn−1 ⊕Dn −→ Cn−2 ⊕Dn−1

Recall that weak homology equivalence is a chain map inducing a weak isomorphism on the
homology. A weak chain isomorphism is a chain map f such that fn is a weak isomorphism
for each n ∈ Z.

Corollary 6.2

1.) Regard the following commutative diagram of finite chain complexes with weakly exact
rows.

0 - C -

i

D -

p

E - 0

? ? ?

f g h

0 - C ′ -

i′

D′ -

p′

E ′ - 0

If two of the vertical arrows are weak homology equivalences, then also the third.

2.) Let f : C −→ D and g : D −→ E be chain maps of finite chain complexes. If two of
the chain maps f , g and g ◦ f are weak homology equivalences, then also the third.

3.) A weak chain isomorphism of finite chain complexes is a weak homology equivalence.

4.) A chain map of finite chain complexs is a weak homology equivalence if and only if its
mapping cone Cone(f) is weakly acyclic.
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Proof : Assertion 4.) follows from the weakly exact long homology sequence of

0 −→ D −→ Cone(f) −→ ΣC −→ 0

introduced in theorem 6.1, where the suspension ΣC is Cone(C −→ {0} .

Next we prove assertion 1.) under the additional assumption that the rows are exact
and not only weakly exact. Then we obtain an exact sequence :

0 −→ Cone(f) −→ Cone(g) −→ Cone(h) −→ 0

Now the claim follows from assertion 4.) and the weakly exact long homology sequence of
theorem 6.1.

The assertion 3.) follows by induction over the dimension n = dim(C). Notice that we
can assume without loss of generality that Cn is zero for negative n. The induction begin
n = 0 is trivial. The induction step follows from 1.) applied to :

0 −→ C |n−→ C −→ (n+ 1)(C) −→ 0

where C |n is C restricted to dimension n and (n+ 1)(C) is concentrated in dimension n+ 1
and given in this dimension by Cn+1.

We obtain assertion 2.) from assertions 1.) and 4.) by constructing a chain map
k : Σ−1Cone(g) −→ Cone(f) given by(

0 0
−1 0

)
: Dn ⊕ En+1 −→ Cn−1 ⊕Dn

and exact sequences as done in Lück [19] page 245 :

0 −→ Cone(f) −→ Cone(h) −→ Cone(g) −→ 0

0 −→ Cone(g ◦ f) −→ Cone(h) −→ Cone(D) −→ 0

Finally we prove assertion 1.) in full generality. It suffices to show for a weakly exact

sequence 0 −→ C
i−→ D

p−→ E −→ 0 that C, D and E are weakly acyclic, if two of them
are. Consider the induced exact sequence 0 −→ ker(p) −→ D −→ ker(p)⊥ −→ 0 for which
assertion 1.) applies by the argument above. There are weak isomorphisms C −→ ker(p)
and ker(p)⊥ −→ E. Now apply assertion 2.) and 3.)

The following example shows that these results are non-trivial and that the finite
Hilbert A-module structure is essential.
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Example 6.3 Let l2 be the Hilbert space {(an ∈ C)n∈N |
∑ |an | 2 <∞} with the inner

product 〈(an), (bn)〉 =
∑
an · bn. Define a linear bounded operator f : l2 −→ l2 by sending

(an) to (1/n · an). Obviously f is injective and has dense image. But f is not surjective
because u := (1/n)n ∈ l2 cannot have a preimage. Let pr : l2 −→ spanC(u)⊥ be the projec-
tion. Then pr ◦ f is injective with dense image. Hence f and pr ◦ f are weak isomorphisms
of Hilbert spaces but pr is not. Compare this example with corollary 6.2 assertion 2.). One
easily constructs out of it counterexamples to the other claims in corollary 6.2. Since any
Hilbert space may be viewed as a Hilbert A-module for the von Neumann algebra C, the
example shows that the finiteness conditions are necessary.

Next we introduce an appropiate notion of weak chain contraction.

Definition 6.4 A weak chain contraction for a chain complex C is a pair (γ, u) consist-
ing of a weak chain isomorphism u : C −→ C and a chain homotopy γ : u ∼ 0 satisfying
γ ◦ u = u ◦ γ.

Lemma 6.5 The following assertions are equivalent for a finite chain complex C :

1.) C is weakly acyclic.

2.) There is a weak chain contraction (γ, u).

3.) There is a weak chain contraction (γ, u) satisfying γ ◦ γ = 0.

4.) There is a weak chain isomorphism u : C −→ C and a chain homotopy γ : u ∼ 0.

Proof : 1.) ⇒ 3.) As C is weakly acyclic, cn : Cn −→ Cn−1 induces a weak isomorphism
cn |: ker(cn)⊥ −→ ker(cn−1). There is an isomorphism ψn : ker(cn) −→ ker(cn+1)⊥ because
of lemma 1.7. Define γn : Cn −→ Cn+1 by :(

0 0
ψn 0

)
: ker(cn)⊕ ker(cn)⊥ −→ ker(cn+1)⊕ ker(cn+1)⊥

Put un = cn+1 ◦ γn + γn−1 ◦ cn. One easily checks that u is a chain map and γ ◦ γ = 0. As
un is the direct sum of weak isomorphisms, un itself is a weak isomorphism.

3.) ⇒ 2.) ⇒ 4.) are trivial

4.) ⇒ 1.) As u is nullhomotopic, we have H(u) = 0. Since u is a weak chain isomorphism,
u is a weak homology equivalence by lemma 6.2. Hence C is weakly acyclic.
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Next we prove some results we will need in the construction of torsion invariants in the
following section. The technical condition γ ◦ u = u ◦ γ in the definition 6.4 of a weak chain
contraction is needed for the verification of the next lemma. Its proof is a straightforward
computation and is left to the reader. In the sequel we write :

6.6 Codd = ⊕n∈Z C2n+1 Cev = ⊕n∈Z C2n

Lemma 6.7 Let (γ, u) and (δ, v) be weak chain contractions for the finite chain complex C.
Define Θ : Cev −→ Cev by :

Θ := (v ◦ u+ δ ◦ γ) =



. . .
...

...
...

. . .

. . . vu 0 0 . . .

. . . δγ vu 0 . . .

. . . 0 δγ vu . . .

. . .
...

...
...

. . .


Then the composition :

Θ′ : Codd
(uc+γ)−→ Cev

Θ−→ Cev
(vc+δ)−→ Codd

is given by the triangle matrix

. . .
...

...
...

. . .

. . . (v2u2)2n−1 0 0 . . .

. . . ∗ (v2u2)2n+1 0 . . .

. . . ∗ ∗ (v2u2)2n+3 . . .

. . .
...

...
...

. . .



Lemma 6.8 Let C be a finite chain complex. Consider H(C) as a finite chain complex
using the trivial differential.

1.) There is a chain map i : H(C) −→ C satisfying H(i) = id.

2.) Let i and j be chain maps H(C) −→ C satisfying H(i) = H(j). Then there is a weak
chain isomorphism f : C −→ C such that f ◦ i and f ◦ j are chain homotopic.

Proof : 1.) Let sn : H(C)n −→ ker(cn) be a section of the projection ker(cn) −→ H(Cn).
Define in : H(C)n −→ Cn by the composition of sn and the inclusion. Then i : H(C) −→ C
is a chain map satisfying H(i) = id.
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2.) We may suppose j = 0, otherwise substitute i, j by i − j, 0. Because the
map cn |: ker(cn)⊥ −→ clos(im(cn)) is a weak isomorphism, we can choose an isomorphism
ψn−1 : clos(im(cn)) −→ ker(cn)⊥ by lemma 1.7. Define fn : Cn −→ Cn to be the orthogonal
sum of

cn+1 | ◦ψn : clos(im(cn+1)) −→ clos(im(cn+1))

ψn−1 ◦ cn | : ker(cn)⊥ −→ ker(cn)⊥

id : ker(cn) ∩ clos(im(cn+1))⊥ −→ ker(cn) ∩ clos(im(cn+1))⊥

Let γn : H(C)n −→ Cn+1 be given by ψn ◦ in. One easily checks that f is a weak chain
isomorphism with H(f) = id and γ a chain homotopy f ∼ 0 ◦ i.

Lemma 6.9 Let f : C −→ D be a weak chain isomorphism of finite chain complexes. Then
there is weak chain isomorphism g : D −→ C.

Proof : As f and the restriction f |n: C |n−→ D |n to dimension n are weak chain isomor-
phism, corollary 6.2 implies that fn induces weak isomorphisms

ker(cn) −→ ker(dn)

ker(cn)⊥ −→ ker(dn)⊥

ker(cn) ∩ clos(im(cn+1))⊥ −→ ker(dn) ∩ clos(im(dn+1))⊥

The differential dn induces a weak isomorphism dn | : ker(dn)⊥ −→ clos(im(dn)). By lemma
1.7 we can choose isomorphisms :

αn : ker(dn)⊥ −→ ker(cn)⊥

βn : clos(im(dn)) −→ ker(dn)⊥

Define weak isomorphisms :

un : ker(dn)⊥ −→ ker(cn)⊥

v′n−1 : clos(im(dn)) −→ clos(im(cn))

by un = αn ◦ βn ◦ dn | and v′n−1 = cn ◦ αn ◦ βn−1. Then cn ◦ un = v′n−1 ◦ dn is valid. Extend
v′n−1 to a weak isomorphism vn−1 : ker(dn−1) −→ ker(cn−1). Then cn ◦ un = vn−1 ◦ dn re-
mains true. Now we obtain a weak chain isomorphism g : D −→ C by :

gn = un ⊕ vn : ker(dn)⊥ ⊕ ker(dn) −→ ker(cn)⊥ ⊕ ker(cn)
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Lemma 6.10 Let 0 −→ C
i−→ D

p−→ E −→ 0 be a weakly exact sequence of finite chain
complexes such that E is weakly acyclic. Then there is a chain map s : E −→ D such that
p ◦ s : E −→ E is a weak chain isomorphism.

Proof : Suppose that 0 −→ C
i−→ D

p−→ E −→ 0 is exact. Choose for n ∈ Z a homomor-
phism σn : En −→ Dn satisfying pn ◦ sn = id. Choose a weak chain contraction (ε, w) for E.
Define sn : En −→ Dn by dn+1 ◦ σn+1 ◦ εn + σn ◦ εn−1 ◦ en. Then s : E −→ D is a chain map
and p ◦ s = w.

In the general case, where 0 −→ C
i−→ D

p−→ E −→ 0 is only weakly exact, one ap-
plies the argument above to 0 −→ ker(p) −→ D −→ ker(p)⊥ −→ 0 and uses lemma 6.9 to
get a weak chain isomorphism E −→ ker(p)⊥ from the canonical weak chain isomorphism
ker(p)⊥ −→ E.
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7. Torsion invariants for Hilbert A-chain complexes

Recall that A is a finite von Neumann algebra together with a finite faithful normal
trace and all modules and chain complexes are understood to be Hilbert A-modules and
Hilbert A-chain complexes. We introduce Reidemeister von Neumann torsion for chain
complexes and torsion for weak homology equivalences. We verify the basic properties like
sum formula, product formula, composition formula and compare these invariants.

Let C be a weakly acyclic chain complex. Because of lemma 6.5 we can choose a
weak chain contraction (γ, u) of C. Recall that (γ, u) consists of a weak chain isomorphism
u : C −→ C and a chain homotopy γ : u ∼ 0 satisfying u ◦ γ = γ ◦ u. Let (δ, v) be a second
weak chain contraction for C. We have introduced in section 2 the K-groups K1(A) resp.
Kw

1 (A) of automorphisms resp. weak automorphisms of finitely generated HilbertA-modules
and the involution on them given by taking the adjoint.

If c denotes the differential of C, we derive (gc + δ)ev ◦ Θ ◦ (fc + γ)odd = Θ′ from
lemma 6.7 in the notation used there, where Θ and Θ′ are triangular matrices. We also have
(uc+ γ)odd ◦ uodd = uev ◦ (uc+ γ)odd. Hence corollary 6.2 and the relations in the K1-groups
imply that the maps

(uc+ γ)odd : Codd −→ Cev
(vc+ δ)ev : Cev −→ Codd

are weak isomorphism and satisfy :

7.1 [[(uc+ γ)odd)]]− [[uodd]] = −[[(vc+ δ)ev]] + [[vodd]]
[uodd] = [uev]

where we use the following notation:

Notation 7.2 Given a weak automorphism g : M −→M of a finitely generated Hilbert A-
module, we denote its class in Kw

1 (A) by [g]. If g : M −→ N is a weak isomorphism of
finitely generated Hilbert A-modules, let [[g]] ∈ Kw

1 (A)Z/2 be [g∗ ◦ g]

Hence the following definition is independent of the choice of (u, γ).

Definition 7.3 Let C be a finite weakly acyclic chain complex. Define the Reidemeister von
Neumann torsion of C

ρ(C) ∈ Kw
1 (A)Z/2
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by ρ(C) = [[(uc+ γ)odd]]− [[uodd]].

We will later generalize this definition to finite chain complexes, dropping the assump-
tion about weak acyclicity and identify it with the definition 3.8 we have used earlier. Recall
from corollary 6.2 that the mapping cone Cone(f) of a weak homology equivalence f is
weakly acyclic.

Definition 7.4 Define the torsion of a weak homology equivalence f : C −→ D of finite
chain complexes

t(f) ∈ Kw
1 (A)Z/2

by t(f) = ρ(Cone(f)).

Notation 7.5 Let 0 −→M
i−→ N

p−→ P −→ 0 be a weakly exact sequence of finitely gen-
erated modules. Define

ρ(M,N,P ) ∈ Kw
1 (A)Z/2

by the Reidemeister von Neumann torsion of the corresponding weakly acyclic finite chain
complex having P in dimension 0. Explicitely we get for any map s : P −→ N such that
p ◦ s is a weak isomorphism :

ρ(M,N,P ) = −[[i⊕ s : M ⊕ P −→ N ]] + [[p ◦ s : P −→ P ]]

Let 0 −→ C
i−→ D

p−→ E −→ 0 be a weakly exact sequence of finite chain complexes.
Define :

ρ(C,D,E) =
∑
n

(−1)n · ρ(Cn, Dn, En)

Lemma 7.6 Let f : C −→ D be a weak chain isomorphism of finite weakly acyclic chain
complexes. Then

ρ(D)− ρ(C) =
∑
n

(−1)n · [[fn]]

Proof : We use induction over the dimension n of C. The induction begin n = 0 is trivial,
since in this case C and D are the trivial chain complexes. The case n = 1 is trivial as well,
since f0 ◦ c1 = d1 ◦ f1 implies:

[[f0]] + ρ(C) = [[f0]] + [[c1]] = [[d1]] + [[f1]] = ρ(D) + [[f1]]
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The induction step from n− 1 ≥ 1 to n is done as follows.

Let C ′ be the chain subcomplex of C concentrated in dimension n and n − 1 satisfy-
ing C ′n = Cn and C ′n−1 = clos(im(cn)). Let C ′′ be the quotient complex so that we have

a canonical exact sequence 0 −→ C ′
iC−→ C

qC−→ C ′′ −→ 0. Construct an exact sequence

0 −→ D′
iD−→ D

qD−→ D′′ −→ 0 for D similiarly. Then f restricts to a weak chain isomor-
phism f ′ : C ′ −→ D′ and f and f ′ induce a weak chain isomorphism f ′′ : C ′′ −→ D′′. Now
one easily checks for i ≥ 0:

[[f ′i ]]− [[fi]] + [[f ′′i ]] = 0

Let γ be a weak chain contraction for C. One easily constructs weak chain contractions γ′

and γ′′ for C ′ and C ′′ compatible with γ and the chain maps iC and qC . This implies:

ρ(C ′)− ρ(C) + ρ(C ′′)

Since a similiar equation holds for D, D′ and D′′ and the induction hypothesis applies to f ′

and f ′′, the lemma follows.

Lemma 7.7 (Sum formula) Consider the commutative diagram of finite chain complexes
with weakly exact rows and weak homology equivalences as vertical arrows.

0 - C -

i

D -

p

E - 0

? ? ?

f g h

0 - C ′ -

i′

D′ -

q′

E ′ - 0

Then we get :

t(f)− t(g) + t(h) = ρ(C ′, D′, E ′)− ρ(C,D,E)

Proof : The diagram above induces a weakly exact sequence of weakly acyclic finite chain
complexes by corollary 6.2.

0 −→ Cone(f)
j−→ Cone(g)

q−→ Cone(h) −→ 0
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By lemma 6.10 there is a chain map s : Cone(h) −→ Cone(g) such that we obtain a weak
chain equivalence i⊕ s : Cone(f)⊕ Cone(h) −→ Cone(g). We get from lemma 7.6:

ρ(Cone(f)⊕ Cone(h))− ρ(Cone(g)) = [[(i⊕ s)odd]]− [[(i⊕ s)ev]]

We derive from the definitions

ρ(Cone(f)⊕ ρ(Cone(h)) = t(f) + t(h)

ρ(Cone(g)) = t(g)

ρ(C ′, D′, E ′)− ρ(C,D,E) = [[(i⊕ s)odd]]− [[(i⊕ s)ev]]

This finishes the proof of lemma 7.7

Lemma 7.8 (Composition formula) If f : C −→ D and g : D −→ E are weak homology
equivalences of finite chain complexes, then :

t(g ◦ f) = t(g) + t(f)

Proof : We first prove by induction over the dimension of D that ρ(Cone(D)) is zero. The
induction begin dim(D) ≤ 0 is trivial. In the induction step let D |n be the restriction of D
to dimension n and D′ be the quotient of D and D |n. There is an obvious exact sequence

0 −→ Cone(D |n) −→ Cone(D) −→ Cone(D′) −→ 0

Now the claim follows from the induction hypothesis applied to Cone(D |n) and Cone(D′)
and lemma 7.7.

Consider the chain map h : Σ−1Cone(g) −→ Cone(f) given by(
0 0
−1 0

)
: Dn ⊕ En+1 −→ Cn−1 ⊕Dn

There are exact sequences (see Lück [19] page 245 :

0 −→ Cone(f) −→ Cone(h) −→ Cone(g) −→ 0

0 −→ Cone(g ◦ f) −→ Cone(h) −→ Cone(D) −→ 0

Since ρ(Cone(D)) vanishes, the claim follows from lemma 7.7 applied to these two exact
sequences.
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Lemma 7.9 (weak homotopy invariance) Let f, g : C −→ D be weak homology equiva-
lences of finite chain complexes. Suppose the existence of weak homology equivalences of
finite chain complexes u : C ′ −→ C and v : D −→ D′ such that v ◦ f ◦ u and v ◦ g ◦ u are
chain homotopic. Then :

t(f) = t(g)

Proof : Because of lemma 7.8 we have

t(f)− t(g) = t(v ◦ f ◦ u)− t(v ◦ g ◦ u)

Hence we may suppose that there is a chain homotopy h : f ∼ g. Consider the chain iso-
morphism I : Cone(f) −→ Cone(g) given by :(

id o
hn−1 id

)
: Cn−1 ⊕Dn −→ Cn−1 ⊕Dn

We derive from the composition formula 7.8 and sum formula 7.7 :

t(g)− t(f) = t(0 −→ Cone(g))− t(0 −→ Cone(f)) = t(I) =
∑
n

(−1)n · [[In]] = 0

Next we define Reidemeister von Neumann torsion for finite not necessarily weakly
acyclic chain complexes. We get from lemma 6.8 the existence of a chain map i : H(C) −→ C
satisfying H(i) = id. Recall that we view H(C) as a chain complex using the trivial differ-
ential. The following definition makes sense because of lemma 6.8 and lemma 7.9.

Definition 7.10 Let C be a finite chain complex. Define its Reidemeister von Neumann
torsion

ρ(C) ∈ Kw
1 (A)Z/2

by ρ(C) := t(i) for any chain map i : H(C) −→ C satisfying H(i) = id.

Lemma 7.11 (Comparision formula) Let f : C −→ D be a weak homology equivalence
of finite chain complexes. Then :

t(f)− t(H(f)) = ρ(D)− ρ(C)

Proof : Choose chain maps iC : H(C) −→ C and iD : H(D) −→ D satisfying H(iC) = id
and H(iD) = id. There is a weak chain isomorphism g : H(D) −→ H(C) because of lemma
1.7. Then H(f ◦ iC ◦ g ◦ f) is the same as H(iD ◦ f ◦ g ◦ f). Hence by lemma 6.8 there is a
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weak chain isomorphism h : D −→ D such that h ◦ iD ◦H(f) ◦ g ◦H(f) is chain homotopic
to h ◦ f ◦ iC ◦ g ◦H(f). We get from the composition formula 7.8 and weak homotopy
invariance 7.9 :

t(f) + ρ(C) = t(f) + t(iC) = t(f ◦ iC) = t(iD ◦H(f)) = t(H(f)) + t(iD) = t(H(f)) + ρ(D)

Next we show that the definitions of Reidemeister von Neumann torsion 7.10 and 3.8
agree. The first one is more appropiate for technical purposes, whereas the second one is
easier to state. Recall that Hp(C) is the kernel of the Laplace operator ∆p.

Lemma 7.12 Let C be a finite chain complex. Let C ′ be the orthogonal complement of
H(C) in C. We have ∆′ ⊕ 0 = ∆ if ∆′ resp. ∆ are the Laplace operators of C ′ and C. Then
the morphism ∆′ is a selfadjoint weak automorphism and we get :

ρ(C) = −
∑
n

(−1)n · n · [∆′n] ∈ Kw
1 (A)Z/2

Proof : Since ρ(C) = ρ(C ′ ⊕H(C)) = ρ(C ′) + ρ(H(C)) holds and ρ(H(C)) vanishes, we
may suppose C = C ′, or, equivalently, that C is weakly acyclic. By the Hodge decomposition
theorem 3.7 ∆n : Cn −→ Cn is a selfadjoint weak automorphism. Let fn : Cn −→ Cn be the
n-fold composition (∆n)n = ∆n ◦ . . . ◦∆n. Then the following square commutes :

Codd Cev
-

(∆c+ c∗)odd

?

fodd

?

fev

Codd Cev
-

(c+ ∆c∗)odd

This shows :

[[(∆c+ c∗)odd]]

= [(∆c+ c∗)∗odd ◦ (∆c+ c∗)odd]

= [(∆c+ c∗)∗odd ◦ fev ◦ (∆c+ c∗)odd]− [fev]

= [(∆c+ c∗)∗odd ◦ (c+ ∆c∗) ◦ fodd]− [fev]

= [(c+ ∆c∗)ev ◦ (c+ ∆c∗)odd] + [fodd]− [fev]
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As (c∗,∆) is a weak chain contraction of C, we obtain :

ρ(C) = [[(∆c+ c∗)odd]]− [[∆odd]]

= [fodd]− [fev] + [(c+ ∆c∗)ev ◦ (c+ ∆c∗)odd]− 2 · [∆odd]

= −∑n (−1)n · n · [∆n] + [(c+ ∆c∗)ev ◦ (c+ ∆c∗)odd]− 2 · [∆odd]

Hence it remains to show :

[(c+ ∆c∗)ev ◦ (c+ ∆c∗)odd] = 2 · [∆odd]

Consider the dual chain complex C∗ given by :

. . . −→ C∗−1

c∗0−→ C∗0
c∗1−→ C∗1 . . .

It has the weak chain contraction (c,∆). Now the claim follows from lemma 6.7 and the fact
that [∆odd] = [∆ev] holds (see 7.1).

Let A resp. B a be finite von Neumann algebra and C resp. D a finite Hilbert A- resp.
B-chain complex.

Lemma 7.13 There is a natural isometric isomorphism of graded A⊗ B modules

H∗(C)⊗H∗(D) −→ H∗(C ⊗D)

Proof : Because of the Hodge decomposition theorem 3.7 it suffices to prove that H∗(C)⊗
H∗(D) is H∗(C ⊗ D). This follows from the fact that the Laplace operator on C ⊗ D is
(∆C ⊗ idD)⊕ (idC ⊗∆D)

Define the Euler characteristic

7.14 χA(C) :=
∑
n≥0(−1)n · [Cn] =

∑
n≥0(−1)n · [Hn(C)] ∈ K0(A)

Lemma 7.15 (Product formula) Let f : C ′ −→ C resp. g : D′ −→ D be weak chain ho-
mology equivalence of finite A- resp. B-chain complexes. Then we get using the pairing
2.8

1.) t(f ⊗ g) = χA(C)⊗ t(g) + t(f)⊗ χB(D)
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2.) ρ(C ⊗D) = χA(C)⊗ ρ(D) + ρ(C)⊗ χB(D)

Proof : Since f ⊗ g = (f ⊗ id) ◦ (id ⊗ g) holds, the composition formula 7.8 reduces the
claim 1.) to the case g = id. Now the claim 1.) follows from the sum formula 7.7 and claim
2.) is a consequence of claim 1.) and the Künneth formula 7.13.

The next result is the main theorem of this section. The remainder of the section is
devoted to its proof.

Theorem 7.16 (Sum formula) Let 0 −→ C
i−→ D

p−→ E −→ 0 be an exact sequence of
finite chain complexes. Let LHS(C,D,E) be the weakly acyclic finite chain complex given
by the long homology sequence 6.1. The we have :

ρ(C)− ρ(D) + ρ(E) = ρ(C,D,E)− ρ(LHS(C,D,E))

We have defined ρ(C,D,E) in 7.5. Notice that in theorem 7.16 we demand the exactness and

not only the weak exactness of 0 −→ C
i−→ D

p−→ E −→ 0. This is needed to ensure that
the long weakly exact homology sequence is defined (see theorem 6.1). The proof of theorem
7.16 is broken into a sequence of lemmas. We start with analysing a special case where
the sequence of chain complexes is only weakly exact but nevertheless the long homology
sequence exists and is weakly exact.

Lemma 7.17 Let 0 −→ C
i−→ D

p−→ E −→ 0 be a weakly exact sequence of finite chain
complexes. Then :

1.) The sequence H(C)
H(i)−→ H(D)

H(p)−→ H(E) is weakly exact at H(D).

2.) Suppose that H(i) : H(C) −→ H(D) is injective. Define ∂n : Hn(E) −→ Hn−1(C) to
be zero. Then we obtain a weakly exact long homology sequence

−→ Hn+1
∂−→ Hn(C)

Hn(i)−→ Hn(D)
Hn(p)−→ Hn(E)

∂−→ . . .

Proof : The sequence of finite chain complexes 0 −→ ker(p)
j−→ D

q−→ ker(p)⊥ −→ 0
is exact. The chain maps i and p induce weak chain isomorphisms ī : C −→ ker(p) and
p̄ : ker(p)⊥ −→ D. Because of the weakly exact homology sequence 6.1 and corollary 6.2 we
get a commutative diagram with weakly exact lower row and weak isomorphism as vertical
maps.
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H(C) -

H(i)
H(D) -

H(p)
H(E) H(C) -

H(i)
H(D)

?

H (̄i)

6

id

6

H(p̄)

?

H (̄i)

6

id

H(ker(p)) -

H(j)

H(D) -

H(q)

H(ker(p)⊥ -

∂

H(ker(p)) -

H(j)

H(D)

One easily checks weak exactness of the upper row at H(D). Suppose that H(i) is injective.
Then

H(j) ◦H (̄i) = H(i) : H(C) −→ clos(im(H(i)))

is a weak isomorphism. Hence H(j) : H(ker(p)) −→ clos(im(H(i)) is a weak isomorphism
by corollary 6.2 and in particular H(j) : H(ker(p)) −→ H(D) is injective. By the weak
exactness of the lower sequence H(q) has dense image in H(ker(p)⊥). Hence also H(p) has
dense image in H(E). This finishes the proof of lemma 7.17.

Lemma 7.18 Let 0 −→ C
i−→ D

p−→ E −→ 0 be a weakly exact sequence of chain com-
plexes. Equip ker(H(i))⊥, H(D) and clos(im(H(p))) with the trivial differential. Then
there is a commutative diagram of chain complexes

0 - ker(H(i))⊥ -

H(i)

H(D) -

H(p)

clos(im(H(p))) - 0

? ? ?

iC iD iE

0 - C -

i

D -

p

E - 0

such that the rows are weakly exact and the maps iC, iD and iE induce weak isomorphisms

H(iC) : ker(H(i))⊥ −→ ker(H(i))⊥

H(iE) : clos(im(H(p))) −→ clos(im(H(p)))
H(iD) : H(D) −→ H(D)

Proof : Choose chain maps
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r : H(D) −→ ker(H(i))⊥

s : clos(im(H(p)))⊥ −→ H(D)

such that r ◦H(i) and H(p) ◦ s are weak chain isomorphisms. By lemma 6.8 there are chain
maps

îC : H(C) −→ C

îE : H(E) −→ E

which induce the identity on homology. Define :

iC = îC ◦ r ◦H(i)

iD = i ◦ îC ◦ r + îD ◦ s ◦H(p)

iE = p ◦ îD ◦ s

We compute :

iD ◦H(i) = i ◦ îC ◦ r ◦H(i) + îD ◦ s ◦H(p) ◦H(i) = i ◦ iC
p ◦ iD = p ◦ i ◦ îC ◦ r + p ◦ îD ◦ s ◦H(p) = iE ◦H(p)

Since H(iC) = r ◦H(i) and H(iE) = H(p) ◦ s is valid, iC and iD induce weak isomorphisms
ker(H(i))⊥ −→ ker(H(i))⊥ and clos(im(H(p))) −→ clos(im(H(p))) by corollary 6.2. The
sequence

0 −→ ker(H(i))⊥
H(i)−→ H(D) −→ clos(im(H(p))) −→ 0

is weakly exact by lemma 7.17. By corollary 6.2 also H(iD) : H(D) −→ H(D) is a weak
isomorphism. This finishes the proof of lemma 7.18.

Next we verify the sum formula in a special case where the sequence of chain complexes
is only required to be weakly exact.

Lemma 7.19 Let 0 −→ C
i−→ D

p−→ E −→ 0 be a weakly exact sequence of finite chain
complexes such that H(i) is injective. Then we get a weakly exact long homology sequence
LHS(C,D,E) if we put the boundary operator ∂ to be zero, and get :

ρ(C)− ρ(D) + ρ(E) = ρ(C,D,E)− ρ(LHS(C,D,E))

Proof : Because of lemma 7.17 and lemma 7.18 there is a commutative diagram of chain
complexes with weakly exact rows and weak homology equivalences as vertical maps
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0 - H(C) -

H(i)

H(D) -

H(p)

H(E) - 0

? ? ?

iC iD iE

0 - C -

i

D -

p

E - 0

We get from the sum formula for torsion 7.7 :

t(iC)− t(iD) + t(iE) = ρ(C,D,E)− ρ(H(C), H(D), H(E))

The comparision formula 7.11 shows:

ρ(C)− ρ(D) + ρ(E) =

t(iC)− t(iD) + t(iE)− (t(H(iC))− t(H(iD)) + t(H(iE)))

+ ρ(H(C))− ρ(H(D)) + ρ(H(E))

Obviously ρ(H(C)), ρ(H(D)) and ρ(H(E)) are zero. One easily checks :

ρ(H(C), H(D), H(E)) = ρ(LHS(C,D,E))

Hence it remains to verify :

t(H(iC))− t(H(iD)) + t(H(iE)) = 0

But this follows from the sum formula of torsion applied to

0 - H(C) -

H(i)

H(D) -

H(p)

H(E) - 0

? ? ?

H(iC) H(iD) H(iE)

0 - H(C) -

H(i)

H(D) -

H(p)

H(E) - 0

This finishes the proof of lemma 7.19
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Lemma 7.20 Theorem 7.16 is true if D is weakly acyclic.

Proof : Consider the canonical exact sequences of finite chain complexes, where Cyl is the
mapping cylinder.

0 −→ E
j−→ Cyl(p) −→ Cone(D) −→ 0

0 −→ ΣC
k−→ Cone(p) −→ Cone(E) −→ 0

0 −→ D −→ Cyl(p)
pr−→ Cone(p) −→ 0

As Cone(D), Cone(E) and D are weakly acyclic, we get from theorem 6.1 and lemma 7.19

ρ(E)− ρ(Cyl(p)) + ρ(Cone(D)) = t(H(j))

− ρ(C)− ρ(Cone(p)) + ρ(Cone(E)) = t(H(k))− ρ(C,D,E)

ρ(D)− ρ(Cyl(p)) + ρ(Cone(p)) = −t(H(pr))

One checks directly ρ(Cone(D)) = ρ(Cone(E)) = 0. We obtain

ρ(C)− ρ(D) + ρ(E) = ρ(C,D,E) + t(H(pr)) + t(H(j))− t(H(k))

Since t(∂ : H(E) −→ ΣH(C)) is −ρ(H(C,D,E)), it suffices to show

t(∂) + t(H(k)) = t(H(pr)) + t(H(j))

We conclude from the definitions

H(k) ◦ ∂ = H(pr) ◦H(j)

Now an application of the composition formula 7.8 finishes the proof of lemma 7.20.

Now we are ready to prove theorem 7.16. Consider the commutative diagram ap-
pearing in lemma 7.18. Let D′ be clos(im(iD))⊥ and pD : D −→ D′ be the projection.
Let C ′ ⊂ D′ be clos(im(pD ◦ i)) and i′ : C ′ −→ D′ be the inclusion. Put E ′ = (C ′)⊥. Let
p′ : D′ −→ E ′ be the projection. Then we obtain an exact sequence of finite chain com-

plexes 0 −→ C ′ −→ D′ −→ E ′ −→ 0. As the sequence 0 −→ C
i−→ D

p−→ E −→ 0 is exact,
p′ ◦ pD : D −→ E ′ factorizes over p : D −→ E into a map pE : E −→ E ′ and pD induces
pC ;C −→ C ′. Thus we have constructed a commutative diagram of finite chain complexes
with weakly exact middle column, exact lower two rows and weakly exact top row.
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0 0 0

? ? ?

0 - ker(H(i))⊥ -

H(i)

H(D) -

H(p)

clos(im(H(p))) - 0

? ? ?

iC iD iE

0 - C -

i

D -

p

E - 0

? ? ?

pC pD pE

0 - C ′ -

i′

D′ -

p′

E ′ - 0

? ? ?

0 0 0

We claim that also the outer columns are weakly exact. We substitute in the diagram above
for the upper row

{0} −→ ker(H(p)) −→ H(D) −→ ker(H(p))⊥ −→ {0}

in the obvious way. It suffices to consider this new diagram whose rows are exact. We
may interprete it as a short exact sequence of two-dimensional chain complexes given by the
columns. Since the middle row is weakly exact, image pC is dense in C ′, and iE is injective,
the claim follows from the weakly exact long homology sequence of theorem 6.1.
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We can apply lemma 7.19 to the columns and obtain :

ρ(C ′)− ρ(C) = ρ(ker(H(i))⊥, C, C ′)− ρ(LHS(ker(H(i))⊥, C, C ′))

ρ(D′)− ρ(D) = ρ(H(D), D,D′)− ρ(LHS(H(D), D,D′))

ρ(E ′)− ρ(E) = ρ(clos(im(H(p))), E, E ′)− ρ(LHS(clos(im(p))), E, E ′)

Moreover, D′ is weakly acyclic. Therefore we can apply lemma 7.20 to the bottom exact row
and obtain :

ρ(C ′)− ρ(D′) + ρ(E ′) = ρ(C ′, D′, E ′)− ρ(LHS(C ′, D′, E ′))

We derive from lemma 7.19 applied to the short weakly exact sequence of weakly acyclic
chain complexes given by the long homology sequences of the rows

ρ(LHS(ker(H(i))⊥, H(D), clos(im(H(p)))))− ρ(LHS(C,D,E)) + ρ(LHS(C ′, D′, E ′)) =

ρ(ker(H(i))⊥;C,C ′)− ρ(H(D), D,D′) + ρ(clos(im(H(p))), E, E ′)

Interpreting the diagram above as a short weakly exact sequence of two-dimensional weakly
acyclic chain complexes given by the rows, we derive from lemma 7.19

ρ(ker(H(i))⊥, C, C ′)− ρ(H(D), D,D′) + ρ(clos(im(H(p))), E, E ′) =

ρ(ker(H(i))⊥, H(D), clos(im(H(p))))− ρ(C,D,E) + ρ(C ′, D′, E ′)

Obviously we have :

ρ(ker(H(i))⊥, H(D), clos(im(H(p)))) = ρ(LHS(ker(H(i))⊥, H(D), clos(im(H(p)))))

Now theorem 7.16 follows from the equations above.
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