Inheritance of Isomorphism Conjectures under colimits

Wolfgang Lück

Münster http://www.math.uni-muenster.de/u/lueck/

May 2007

- We define the notion of an equivariant homology theory.
- We explain the notion of a classifying *G*-space of a family of subgroups.
- We explain what an Isomorphism Conjecture is.
- We give some applications of the Farrell-Jones Conjecture.
- We prove inheritance properties under colimits.
- We explain consequences of these inheritance properties.
- Convention: group will always mean discrete group.

Definition (G-homology theory)

A *G*-homology theory \mathcal{H}_* is a covariant functor from the category of *G*-*CW*-pairs to the category of \mathbb{Z} -graded abelian groups together with natural transformations

$$\partial_n(X, A) \colon \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Definition (Equivariant homology theory)

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A) there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying:

Bijectivity

If ker(α) acts freely on X, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

Example (Equivariant homology theories)

 $\bullet\,$ Given a \mathcal{K}_* non-equivariant homology theory, put

$$egin{array}{lll} \mathcal{H}^G_*(X) &:= \mathcal{K}_*(X/G); \ \mathcal{H}^G_*(X) &:= \mathcal{K}_*(\mathit{EG} imes_G X) & ext{Borel homology}. \end{array}$$

- Equivariant bordism $\Omega^{?}_{*}(X)$;
- Equivariant topological *K*-homology $K_*^?(X)$ in the sense of Kasparov.

Definition (Spectrum)

A spectrum

$$\mathbf{E} = \{ (E(n), \sigma(n)) \mid n \in \mathbb{Z} \}$$

is a sequence of pointed spaces $\{E(n) \mid n \in \mathbb{Z}\}$ together with pointed maps called *structure maps*

$$\sigma(n) \colon E(n) \wedge S^1 \longrightarrow E(n+1).$$

A map of spectra

$$f \colon E \to E'$$

is a sequence of maps $f(n) \colon E(n) \to E'(n)$ which are compatible with the structure maps $\sigma(n)$, i.e., $f(n+1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge \operatorname{id}_{S^1})$ holds for all $n \in \mathbb{Z}$.

 Given a spectrum E, a classical construction in algebraic topology assigns to it a homology theory H_{*}(-, E) with the property

$$H_n(\text{pt}; \mathbf{E}) = \pi_n(\mathbf{E}).$$

Put

$$H_n(X; \mathbf{E}) := \pi_n(X_+ \wedge \mathbf{E}).$$

- The basic example of a spectrum is the sphere spectrum S. Its *n*-th space is Sⁿ and its *n*-th structure map is the standard homeomorphism Sⁿ ∧ S¹ [≃]→ Sⁿ⁺¹. Its associated homology theory is stable homotopy π^s_{*}(-) = H_{*}(-; S).
- This construction can be extended to the equivariant setting as follows.

Theorem (L.-Reich (2005))

Given a functor E: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}^{?}_{*}(-;E)$ satisfying

$$\mathcal{H}_n^H(pt) \cong \mathcal{H}_n^G(G/H) \cong \pi_n(\mathbf{E}(H)).$$

Theorem (Equivariant homology theories associated to *K* and *L*-theory, Davis-L. (1998))

Let R be a ring (with involution). There exist covariant functors

$$\mathbf{K}_{R}, \mathbf{L}_{R}^{\langle -\infty \rangle}, \mathbf{K}_{l^{1}}^{\mathsf{top}} : \text{Groupoids} \rightarrow \text{Spectra};$$

 $\mathbf{K}^{\mathsf{top}} : \text{Groupoids}^{\mathsf{inj}} \rightarrow \text{Spectra},$

with the following properties:

- They send equivalences to weak equivalences;
- For every group G and all $n \in \mathbb{Z}$ we have:

 $\pi_{n}(\mathbf{K}_{R}(G)) \cong K_{n}(RG);$ $\pi_{n}(\mathbf{L}_{R}^{\langle -\infty \rangle}(G)) \cong L_{n}^{\langle -\infty \rangle}(RG);$ $\pi_{n}(\mathbf{K}^{\mathrm{top}}(G)) \cong K_{n}(C_{r}^{*}(G));$ $\pi_{n}(\mathbf{K}_{1}^{\mathrm{top}}(G)) \cong K_{n}(l^{1}(G)).$

Example (Equivariant homology theories associated to *K* and *L*-theory)

We get equivariant homology theories:

 $\begin{array}{l} {\cal H}_{*}^{?}(-;{\bf K}_{R});\\ {\cal H}_{*}^{?}(-;{\bf L}_{R}^{\langle -\infty\rangle});\\ {\cal H}_{*}^{?}(-;{\bf K}^{\rm top});\\ {\cal H}_{*}^{?}(-;{\bf K}_{l^{1}}^{\rm top}), \end{array}$

satisfying for $H \subseteq G$:

Definition (G-CW-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\underbrace{\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} }_{\coprod_{i \in I_n} G/H_i \times D^n \xrightarrow{\coprod_{i \in I_n} Q_i^n} X_n }$$

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and the G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

If G acts properly and smoothly on a smooth manifold M, then M inherits the structure of G-CW-complex.

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and taking subgroups.

Examples for \mathcal{F} are:

- $T\mathcal{R} = {\text{trivial subgroup}};$
- $\mathcal{FIN} = \{ \text{finite subgroups} \};$
- $\mathcal{VCYC} = \{ virtually cyclic subgroups \}; \}$
- $\mathcal{ALL} = \{ all subgroups \}.$

Definition (Classifying G-space for a family of subgroups, tom Dieck(1974))

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G*-space for the family \mathcal{F} is a *G*-*CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-space for* proper *G-actions*.

We also write $EG = E_{TR}(G)$.

If *F* ⊆ *G* are families of subgroups of *G*, there is up to *G*-homotopy precisely one *G*-map *E_F(G)* → *E_G(G)*.

Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for E_F(G) if and only if all its isotropy groups belong to F and for each H ∈ F the H-fixed point set X^H is contractible.
- If *F* ⊆ *G* are families of subgroups of *G*, then *E_F(G)* × *E_G(G)* is a model for *E_F(G)*.

The spaces $\underline{E}G$ are interesting in their own right and have often very nice geometric models which are rather small. For instance

- Rips complex for word hyperbolic groups;
- Teichmüller space for mapping class groups;
- Outer space for the group of outer automorphisms of free groups;
- L/K for an almost connected Lie group *L*, a maximal compact subgroup $K \subseteq L$ and $G \subseteq L$ a discrete subgroup;
- CAT(0)-spaces with proper isometric G-actions, e.g., simply connected Riemannian manifolds with non-positive sectional curvature or trees.

Conjecture (Isomorphism Conjecture)

Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. It satisfies the Isomorphism Conjecture for the group G and the family \mathcal{F} if the projection $E_{\mathcal{F}}(G) \rightarrow pt$ induces for all $n \in \mathbb{Z}$ a bijection

 $\mathcal{H}_n^G(E_{\mathcal{F}}(G)) \to \mathcal{H}_n^G(pt).$

- The point is to find an as small as possible family \mathcal{F} .
- The Isomorphism Conjecture is always true for \$\mathcal{F} = \mathcal{A} \mathcal{L} \mathcal{L}\$ since it becomes a trivial statement because of \$E_{\mathcal{L} \mathcal{L} \mathcal{L}}(G) = pt\$.
- The philosophy is to be able to compute the functor of interest for *G* by knowing it on the values of elements in *F*.

Example (Farrell-Jones Conjecture)

The Farrell-Jones Conjecture for *K*-theory or *L*-theory respectively with coefficients in *R* is the Isomorphism Conjecture for $\mathcal{H}_*^? = H_*(-; \mathbf{K}_R)$ or $\mathcal{H}_*^? = H_*(-; \mathbf{L}_R^{\langle -\infty \rangle})$ respectively and $\mathcal{F} = \mathcal{VCYC}$. In other words, it predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G),\mathbf{K}_R) \to H_n^G(\mathrm{pt},\mathbf{K}_R) = K_n(RG)$$

or

$$\mathcal{H}_n^G(\mathcal{E}_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty
angle}) o \mathcal{H}_n^G(\mathsf{pt}, \mathbf{L}_R^{\langle -\infty
angle}) = L_n^{\langle -\infty
angle}(RG)$$

respectively is bijective for all $n \in \mathbb{Z}$.

Example (Baum-Connes Conjecture)

The Baum-Connes Conjecture is the Isomorphism Conjecture for $\mathcal{H}^{?}_{*} = \mathcal{K}^{?}_{*} = \mathcal{H}^{?}_{*}(-; \mathbf{K}^{top})$ and $\mathcal{F} = \mathcal{FIN}$. In other words it predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) o \mathcal{H}_n^G(\mathrm{pt}, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

Example (Bost Conjecture)

The Bost Conjecture is the Isomorphisms Conjecture for $\mathcal{H}^{?}_{*} = \mathcal{K}^{?}_{*} = \mathcal{H}^{?}_{*}(-; \mathbf{K}^{top}_{l^{1}})$ and $\mathcal{F} = \mathcal{FIN}$. In other words it predicts that the assembly map

$$\mathcal{K}_{n}^{G}(\underline{E}G) = \mathcal{H}_{n}^{G}(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}_{l^{1}}^{\mathsf{top}}) \to \mathcal{H}_{n}^{G}(\mathsf{pt}, \mathbf{K}_{l^{1}}^{\mathsf{top}}) = \mathcal{K}_{n}(l^{1}(G))$$

is bijective for all $n \in \mathbb{Z}$.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$\mathsf{Wh}(G) = \mathsf{K}_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$$

Definition (*h*-cobordism)

An *h-cobordism* over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed (smooth) manifold of dimension $n \ge 5$. Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is homeomorphic (diffeomorpic) to $M_0 \times [0, 1]$ relative M_0 if and only if its Whitehead torsion

 $\tau(W, M_0) \in Wh(\pi_1(M_0))$

vanishes.

- The s-cobordism theorem is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.
- If Wh(*G*) vanishes, every *h*-cobordism (*W*; M_0, M_1) of dimension ≥ 6 with $G \cong \pi_1(W)$ is trivial and in particular $M_0 \cong M_1$.
- The *K*-theoretic Farrell-Jones Conjecture implies for a torsionfree group *G* that Wh(*G*) is trivial.
- The Poincaré Conjecture in dimension ≥ 5 is a consequence of the s-cobordism theorem since Wh({1}) vanishes.

Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

If the torsionfree group G satisfies the Baum-Connes Conjecture, then the Kaplansky Conjecture is true for $C_r^*(G)$ and hence for $\mathbb{C}G$.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich (2007))

] Let F be a skew-field and let G be a group satisfying the K-theoretic Farrell-Jones Conjecture with coefficients in F. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree.
- G is torsionfree and sofic, e.g., residually amenable.
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topological rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).

Theorem (The Farrell-Jones Conjecture and the Borel Conjecture)

If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $R = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston's Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

 $\operatorname{sign}_{X}(M, f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

 $\operatorname{sign}_{X}(M_{0},f_{0})=\operatorname{sign}_{X}(M_{1},f_{1}).$

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

Suppose that one of the following assembly maps

$$\begin{aligned} & H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G), \mathbf{L}_R^{-\infty}) & \to & H_n^G(\rho t, \mathbf{L}_R^{-\infty}) = L_n^{-\infty}(RG); \\ & \mathcal{K}_n^G(\underline{E}G) = H_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) & \to & H_n^G(\rho t, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G)), \end{aligned}$$

is rationally injective. Then the Novikov Conjecture holds for the group G. • Fix an equivariant homology theory $\mathcal{H}^?_*$.

Theorem (Transitivity Principle)

Suppose $\mathcal{F} \subseteq \mathcal{G}$ are two families of subgroups of G. Assume that for every element $H \in \mathcal{G}$ the group H satisfies the Isomorphism Conjecture for $\mathcal{F}|_H = \{K \subseteq H \mid K \in \mathcal{F}\}$. Then the map

$$\mathcal{H}^G_n(E_\mathcal{F}(G)) \to \mathcal{H}^G_n(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$. Moreover, (G, \mathcal{G}) satisfies the Isomorphism Conjecture if and only if (G, \mathcal{F}) satisfies the Isomorphism Conjecture.

Sketch of proof.

 For a G-CW-complex X with isotropy group in G consider the natural map induced by the projection

$$s^G_*(X) \colon \mathcal{H}^G_*(X imes E_\mathcal{F}(G)) o \mathcal{H}^G_*(X).$$

- This a natural transformation of *G*-homology theories defined for *G*-*CW*-complexes with isotropy groups in *G*.
- In order to show that it is a natural equivalence it suffices to show that s^G_n(G/H) is an isomorphism for all H ∈ G and n ∈ Z.

Sketch of proof (continued).

- The G-space G/H × E_F(G) is G-homeomorphic to G×_H res^H_G E_F(G) and res^H_G E_F(G) is a model for E_{F|H}(H).
- Hence by the induction structure $s_n^G(G/H)$ can be identified with the assembly map

$$\mathcal{H}^H_*(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}^H_*(\mathsf{pt}),$$

which is bijective by assumption.

 Now apply this to X = E_G(G) and observe that E_G(G) × E_F(G) is a model for E_F(G).

Example (Baum-Connes Conjecture and \mathcal{VCYC})

- Consider the Baum-Connes setting, i.e., take $\mathcal{H}_*^? = \mathcal{K}_*^?$.
- Consider the families $\mathcal{FIN} \subseteq \mathcal{VCYC}$.
- For every virtually cyclic group V the Baum-Connes Conjecture is true, i.e.,

$$K_n^V(E_{\mathcal{FIN}}(V)) \to K_n(C_r^*(V))$$

is bijective for $n \in \mathbb{Z}$.

 Hence by the Transitivity principle the following map is bijective for all groups *G* and all *n* ∈ Z

$${\mathcal K}^G_n({\overline {E}} G) = {\mathcal K}^G_n({\mathcal E}_{{\mathcal {FIN}}}(G)) o {\mathcal K}^G_n({\mathcal E}_{{\mathcal {VCYC}}}(G)).$$

- This explains why in the Baum-Connes setting it is enough to deal with *FIN* instead of *VCYC*.
- This is not true in the Farrell-Jones setting and causes many extra difficulties there (NIL and UNIL-phenomena).
- This difference is illustrated by the following isomorphisms due to Pimsner-Voiculescu and Bass-Heller-Swan:

$$\begin{array}{lll} \mathcal{K}_n(\mathcal{C}_r^*(\mathbb{Z})) &\cong & \mathcal{K}_n(\mathbb{C}) \oplus \mathcal{K}_{n-1}(\mathbb{C}); \\ \mathcal{K}_n(R[\mathbb{Z}]) &\cong & \mathcal{K}_n(R) \oplus \mathcal{K}_{n-1}(R) \oplus \mathcal{N}\mathcal{K}_n(R) \oplus \mathcal{N}\mathcal{K}_n(R). \end{array}$$

- Consider a directed system of groups {G_i | i ∈ I} with structure maps ψ_i: G_i → G for i ∈ I. Put G = colim_{i∈I} G_i.
- Let X be a G-CW-complex.
- We have the canonical G-map

ad:
$$(\psi_i)_*\psi_i^*X = G \times_{G_i} X \to X$$
, $(g, x) \mapsto gx$.

Define a homomorphism

$$t_n^G(X): \operatorname{colim}_{i \in I} \mathcal{H}_n^{G_i}(\psi_i^*X) \xrightarrow{\cong} \mathcal{H}_n^G(X)$$

by the colimit of the system of maps indexed by $i \in I$

$$\mathcal{H}_{n}^{G_{i}}(\psi_{i}^{*}X) \xrightarrow{\operatorname{ind}_{\psi_{i}}} \mathcal{H}_{n}^{G}((\psi_{i})_{*}\psi_{i}^{*}X) \xrightarrow{\mathcal{H}_{n}^{G}(\mathit{ad})} \mathcal{H}_{n}^{G}(X).$$

Definition (Strongly continuous equivariant homology theory)

An equivariant homology theory $\mathcal{H}^{?}_{*}$ is called *strongly continuous* if for every group *G* and every directed system of groups $\{G_i \mid i \in I\}$ with $G = \operatorname{colim}_{i \in I} G_i$ the map

$$t_n^G(\mathsf{pt}): \operatorname{colim}_{i\in I} \mathcal{H}_n^{G_i}(\mathsf{pt}) \to \mathcal{H}_n^G(\mathsf{pt})$$

is an isomorphism for every $n \in \mathbb{Z}$.

Lemma

Consider a directed system of groups $\{G_i \mid i \in I\}$ with $G = \operatorname{colim}_{i \in I} G_i$. Let X be a G-CW-complex. Suppose that $\mathcal{H}^?_*$ is strongly continuous. Then the homomorphism

$$t_n^G(X) \colon \operatorname{colim}_{i \in I} \mathcal{H}_n^{G_i}(\psi_i^*X) \xrightarrow{\cong} \mathcal{H}_n^G(X)$$

is bijective for every $n \in \mathbb{Z}$.

Idea of proof.

- Show that t_*^G is a transformation of *G*-homology theories.
- Prove that the strong continuity implies that t^G_n(G/H) is bijective for all n ∈ Z and H ⊆ G.
- Then a general comparison theorem gives the result.

Let φ: K → G be a group homomorphism and let F be a family of subgroups of G.
 Define the family φ*F of subgroups of K by

$$\phi^*\mathcal{F} := \{L \subseteq K \mid \phi(L) \in \mathcal{F}\}.$$

• Basic property: $\phi^* E_{\mathcal{F}}(G) = E_{\phi*\mathcal{F}}(K)$.

Lemma

Let \mathcal{F} be a family of subgroups of G. Let $\{G_i \mid i \in I\}$ be a directed system of groups with $G = \operatorname{colim}_{i \in I} G_i$ and structure maps $\psi_i \colon G_i \to G$. Suppose that $\mathcal{H}^?_*$ is strongly continuous and for every $i \in I$ the Isomorphism Conjecture holds for G_i and $\psi_i^* \mathcal{F}$. Then the Isomorphism Conjecture holds for G and \mathcal{F} .

Proof.

This follows from the following commutative square, whose horizontal arrows are bijective because of the last lemma, and the identification $\psi_i^* E_{\mathcal{F}}(G) = E_{\psi_i^* \mathcal{F}}(G_i)$

- Fix a class of groups *C* closed under isomorphisms, taking subgroups and taking quotients, e.g., the class of finite groups or the class of virtually cyclic groups.
- For a group *G* let C(G) be the family of subgroups of *G* which belong to C.

Theorem (Inheritance under colimits for Isomorphism Conjectures)

Let $\{G_i \mid i \in I\}$ be a directed system of groups with $G = \operatorname{colim}_{i \in I} G_i$. Suppose that $\mathcal{H}^{?}_{*}$ is strongly continuous and that the Isomorphism Conjecture is true for (H, C(H)) for every $i \in I$ and every subgroup $H \subseteq G_i$. Then for every subgroup $K \subset G$ the Isomorphism Conjecture is true for

K and C(K).

Proof.

- If G is the colimit of the directed system {G_i | i ∈ I}, then the subgroup K ⊆ G is the colimit of the directed system {ψ_i⁻¹(K) | i ∈ I}. Hence we can assume G = K without loss of generality.
- Since C is closed under quotients by assumption, we have $C(G_i) \subseteq \psi_i^* C(G)$ for every $i \in I$. Hence we can consider for any $i \in I$ the composition

$$H_n^{G_i}(E_{\mathcal{C}(G_i)}(G_i)) \to H_n^{G_i}(E_{\psi_i^*\mathcal{C}(G)}(G_i)) \to H_n^{G_i}(\mathsf{pt}).$$

- By the last lemma it suffices to show that the second map is bijective.
- By assumption the composition of the two maps is bijective. Hence it remains to show that the first map is bijective.

Proof (continued).

 By the Transitivity Principle this follows from the assumption that the Isomorphism Conjecture holds for every subgroup H ⊆ G_i and in particular for any H ∈ ψ^{*}_iC(G) for C(G_i)|_H = C(H).

• Notice that it is very convenient for the proof to allow arbitrary families of subgroups and to have the definition of $\mathcal{H}^G_*(X)$ at hand for arbitrary (not necessarily proper) *G-CW*-complexes *X*.

Lemma

The homology theories

$$egin{aligned} & H^{?}_{*}(-;\mathbf{K}_{R}); \ & \mathcal{H}^{?}_{*}(-;\mathbf{L}^{\langle -\infty
angle}_{R}); \ & H^{?}_{*}(-;\mathbf{K}^{ ext{top}}_{l^{1}}), \end{aligned}$$

are strongly continuous.

 For instance one has to show that the canonical map induced by the various structure maps G_i → G induces an isomorphism

$$\operatorname{colim}_{i\in I} K_n(I^1(G_i)) \xrightarrow{\cong} K_n(I^1(\operatorname{colim}_{i\in I} G_i)).$$

- This statement does not make sense for the reduced group *C**-algebra since it is not functorial under arbitrary group homomorphisms.
- For instance, C^{*}_r(ℤ * ℤ) is a simple C^{*}-algebra and hence no epimorphism C^{*}_r(ℤ * ℤ) → C^{*}_r({1}) exists.

- Let {G_i | i ∈ I} be a directed system of groups with (not necessarily injective) structure maps φ_{i,j}: G_i → G_j. Let G = colim_{i∈I} G_i be its colimit.
- Next we pass to twisted coefficients: Let *R* be a ring (with involution) and let *A* be a *C**-algebra, both with structure preserving *G*-action.
- Given *i* ∈ *I* and a subgroup *H* ⊆ *G_i*, we let *H* act on *R* and *A* by restriction with the group homomorphism (ψ_i)|_{*H*}: *H* → *G*.
- The following result follows for untwisted coefficients from the previous result. In the twisted case one has to modify the setting by considering everything over a fixed reference group.

Theorem (Inheritance under colimits for the Farrell-Jones and the Bost Conjecture, Bartels-Echterhoff-Lück (2007))

In the situation above we get:

• Suppose that the assembly map

$$H_n^H(E_{\mathcal{VCYC}}(H);\mathbf{K}_R) \to H_n^H(pt;\mathbf{K}_R) = K_n(R \rtimes H)$$

is bijective for all $n \in \mathbb{Z}$, all $i \in I$ and all subgroups $H \subseteq G_i$. Then for every subgroup K of G the assembly map

$$H_n^K(E_{\mathcal{VCYC}}(K);\mathbf{K}_R) \to H_n^K(pt;\mathbf{K}_R) = K_n(R \rtimes K)$$

is bijective for all $n \in \mathbb{Z}$.

• The corresponding version is true for the assembly maps in the *L*-theory setting and for the Bost Conjecture.

Theorem (Bartels-L.-Reich (2007))

Let G be a subgroup of a finite product of hyperbolic groups. Let R be a ring with structure preserving G-action. Then the K-theoretic Farrell-Jones Conjecture holds for G and R, i.e., the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(K);\mathbf{K}_R)
ightarrow H_n^G(pt;\mathbf{K}_R) = K_n(R
times G)$$

is bijective for all $n \in \mathbb{Z}$.

Theorem (Lafforgue (2002))

Let G be a subgroup of a hyperbolic group. Let A be a C*-algebra with structure preserving G-action.

Then the Bost Conjecture holds for G and A, i.e., the assembly map

$$H_n^G(\underline{E}G; \mathbf{K}_{A,l^1}^{\mathrm{top}}) \to H_n^G(pt; \mathbf{K}_{A,l^1}^{\mathrm{top}}) = K_n(A \rtimes_{l^1} G)$$

is bijective for all $n \in \mathbb{Z}$.

Theorem (The Farrell-Jones and the Bost Conjecture with coefficients for colimits of hyperbolic groups, Bartels-Echterhoff-Lück (2007))

Both the K-theoretic Farrell-Jones Conjecture and the Bost Conjecture with twisted coefficients hold for a group G if G is a subgroup of a colimit of directed system of hyperbolic groups (with not necessarily injective structure maps).

- The theorem above is not true for the Baum-Connes Conjecture because of the lack of functoriality of the reduced group *C**-algebra.
- One needs for the Baum-Connes setting that all structure maps have amenable kernels.

- The groups above are certainly wild in Bridson's universe of groups.
- Many recent constructions of groups with exotic properties are given by colimits of directed systems of hyperbolic groups. Examples are.
 - groups with expanders;
 - Lacunary hyperbolic groups in the sense of Olshanskii-Osin-Sapir;
 - Tarski monsters, i.e., groups which are not virtually cyclic and whose proper subgroups are all cyclic;
 - certain infinite torsion groups.

- The Baum-Connes Conjecture and the Farrell-Jones Conjecture do not seem to be known for SL_n(ℤ) for n ≥ 3, mapping class groups and Out(F_n);
- Certain groups with expanders yield counterexamples to the Baum-Connes Conjecture with coefficients by a construction due to Higson-Lafforgue-Skandalis (2002).
- The *K*-theoretic Farrell-Jones conjecture and the Bost Conjecture are true for these groups as shown above.
- So the counterexample of Higson-Lafforgue-Skandalis (2002) shows that the map $K_n(A \rtimes_{l^1} G) \to K_n(A \rtimes_r G)$ is not bijective in general.

- It is not known whether there are counterexamples to the Farrell-Jones Conjecture or the Baum-Connes Conjecture.
- There seems to be no promising candidate of a group *G* which is a potential counterexample to the *K* or *L*-theoretic Farrell-Jones Conjecture or the Bost Conjecture.
- The Baum-Connes Conjecture is the one for which it is most likely that there may exist a counterexample.
 One reason is the existence of counterexamples to the version with coefficients and that K_n(C^{*}_r(G)) has certain failures concerning functoriality which do not exists for K^G_n(<u>E</u>G). These failures are not present for K_n(RG), L^(-∞)(RG) and K_n(l¹(G)).

- Bartels and L. have a program to prove the *L*-theoretic Farrell-Jones Conjecture for all coefficient rings and the same class of groups for which the *K*-theoretic versions have been proved.
- Bartels and L. have a program to prove the Farrell-Jones Conjecture for G and all twisted coefficients if G acts properly and cocompactly on a simply connected CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.

