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Abstract: We introduce for a finite CW -complex whose L2-Betti numbers are all trivial
and whose Novikov-Shubin invariants are all positive a positive real number called combinatorial
L2-torsion. It behaves like a “multiplicative Euler characteristic”. Tools for the computations
of L2-Betti numbers, Novikov-Shubin invariants, Fuglede-Kadison determinant and combinatorial
L2-torsion are given. For example combinatorial L2-torsion can be computed for an irreducible
Haken 3-manifold from a presentation of the fundamental group without using further topological
information. There are the conjectures that combinatorial L2-torsion agrees with analytic L2-
torsion for closed manifolds and with Gromov’s simplicial volume up to a constant for prime
3-manifolds whose boundary is empty or a disjoint union of incompressible tori.

0. Introduction

In this article we assign to a pair of finite CW -complexes (X, A) a positive real number called
combinatorial L2-torsion provided that (X, A) is admissible, i.e., all its L2-Betti numbers
vanish and all its Novikov-Shubin invariants are positive. Examples are compact irreducible
Haken 3-manifolds whose boundary is empty or a disjoint union of incompressible tori,
compact manifolds with fixed point free S1-action such that the inclusion of an orbit induces
an injection on the fundamental group and closed odd-dimensional hyperbolic manifolds. The
combinatorial L2-torsion behaves like a “multiplicative Euler characteristic”, it is a simple
homotopy invariant, satisfies sum, fibration and product formulas and is multiplicative under
finite coverings.

One motivation for the study of this invariant are the following conjectures. Combina-
torial L2-torsion is designed to be the topological counterpart of analytic L2-torsion defined
by Lott [21] and Matthai citeMathai (1991) and there is the conjecture that combinatorial
and analytic L2-torsion agree for a closed manifold. In particular this would imply that the
combinatorial L2-torsion of a closed odd-dimensional hyperbolic manifold is its volume up
to a dimension constant. For a closed orientable aspherical manifold we conjecture that the
combinatorial L2-torsion is one if Gromov’s simplicial volume vanishes. Moreover, we con-
jecture that the logarithm of the combinatorial L2-torsion agrees with Gromov’s simplicial
volume up to a constant for prime 3-manifolds whose boundary is empty or a disjoint union
of incompressible tori.

One of the main items of this article is to give tools for the computation of combinatorial
L2-torsion. Computations of analytic L2-torsion or simplicial volume are very hard in general
whereas combinatorial L2-torsion much easier to handle.
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Combinatorial L2-torsion is a generalization of the classical notion of Reidemeister
torsion and is a special case of Reidemeister-von Neumann torsion introduced in Lück-
Rothenberg [26] In Section 1 we give a quick definition of combinatorial L2-torsion. We list
its main properties. Roughly speaking, it behaves like a “multiplicative Euler characteristic”.

In Section 2 we consider a compact connected orientable irreducible Haken 3-manifold
M whose boundary is empty or a disjoint union of incompressible tori. We show that its
combinatorial L2-torsion is the product of the invariants of the hyperbolic pieces of finite
volume in the JSJT-decomposition, i.e., in the decomposition into Seifert pieces and hyper-
bolic pieces along incompressible tori. We explain the conjecture that the logarithm of the
combinatorial L2-torsion of the hyperbolic pieces of finite volume is just the volume up to a
constant. This would imply that the combinatorial L2-torsion measures the size of the hyper-
bolic pieces of finite volume in the JSJT-decomposition and is Gromov’s simplicial volume
up to a constant. We show how to compute the combinatorial torsion from a presentation
of the fundamental group of M without using further information on M .

In Section 3 we give a survey about the combinatorial L2-torsion and its relations to
Reidemeister von Neumann torsion, analytic L2-torsion and simplicial volume. We explain
L2-Betti number and Novikov-Shubin invariant and the role of the condition admissible.

In Section 4 we study L2-invariants like L2-Betti number, Novikov-Shubin invariant and
Fuglede-Kadison determinant of bounded π-equivariant operators ⊕n

i=1l
2(π) −→ ⊕m

j=1l
2(π).

We define them from the operator point of view. These definitions are suitable for theoretical
considerations, but hard to deal with for concrete calculations. The point is that they require
the knowledge of the spectral density function of the operator i n question. It measures the
distribution of the spectrum over the non-negative numbers and is very hard to determine.
However, the situation simplifies if the operator comes from a matrix A over the complex
group ring Cπ of a group π. This is the case in the definition of combinatorial L2-torsion
where the operator comes from the differentials in the cellular chain complex of the universal
covering. We assign to A and any positive real number K which is greater or equal to the
operator norm a monotone decreasing sequence of non-negative real numbers c(A, K)p, called
characteristic sequence. It is given by the formula

c(A, K)p = trCπ

((
1−K−2 · AA∗)p)

where the Cπ-trace trCπ of an element
∑

g∈π λg · g is defined to be λe for e ∈ π the unit
element. Notice that these traces can be computed by a computer program if one has an
algorithm to solve the word problem in π. If π is the fundamental group of an appropriate
manifold like a 3-manifold or a hyperbolic manifold, this can be done. Let α(A) be the
Novikov-Shubin invariant of A. In the case where A comes from the cellular chain complex
of the universal covering of an appropriate manifold M it can be computed from the topology
of M and is a homotopy invariant of M . Let b(A) and det(A) be the L2-Betti number and
the Fuglede-Kadison determinant of the operator given by A. Then there is for any real
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number 0 < α < α(A) a constant C such that we have for all positive integers L:

0 ≤ c(A, K)L − b(A) ≤ C

Lα

and

0 ≤ −2 · ln(det(A)) + 2 · (n− b(A)) · ln(K)−
L∑

p=1

1

p
· (c(A, K)p − b(A)) ≤ C

Lα

In particular b(A) and det(A) can be computed as limits of monotone decreasing sequences of
real numbers and the speed of convergence can e read off from the Novikov-Shubin invariants.
At any rate one gets estimates from above for the L2-Betti numbers and the Fuglede-Kadison
determinant if one can compute the first L elements of the characteristic sequence.

The paper is organized as follows:

1. L2-torsion
2. 3-manifolds
3. Relation to other L2-torsion invariants and Gromov’s simplicial volume
4. L2-invariants for operators

References

The first two sections are of topological nature and the third one is a kind of survey
on L2-invariants. Section 4 contains the operator theoretic part and is independent of the
other sections.

The author wishes to thank Michel Boileau, John Lott and Mikael Rørdam for helpful
comments and fruitful discussions.

1. L2-torsion

We want to assign to a pair of finite CW -complexes (X,A) a positive real number
called (combinatorial) L2-torsion:

ρ(X,A) ∈ R>0

provided that (X, A) is admissible, i.e., all its L2-Betti numbers vanish and all its Novikov-
Shubin invariants are positive. We give examples of admissible pairs and list the basic
properties of the L2-torsion which behaves like a “multiplicative Euler characteristic”.

In order to define the invariant we need the notion of L2-Betti number and Fuglede-
Kadison determinant. The following definitions are not the original ones and will be identified
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with them later in Theorem 4.4. Define the Cπ-trace of an element
∑

g∈π λg · g ∈ Cπ to be
the complex number:

trCπ(
∑
g∈π

λg · g) = λe

where e is the unit element in π. Let B = (bi,j) be a (n, m)-matrix with entries in Cπ. If
n = m, define its Cπ-trace by:

trCπ(B) =
n∑

i=1

trCπ(bi,i).

Let the adjoint B∗ be given by (bj,i) where
∑

g∈π λg · g is defined to be
∑

g∈π λg · g−1. The

operator norm of the bounded π-equivariant operator RB : ⊕n
i=1l

2(π) −→ ⊕m
i=1l

2(π) induced
by right multiplication with B is denoted by ‖RB ‖∞. In the sequel K is any positive number
satisfying K ≥ ‖ RB ‖∞. For u =

∑
w∈π λw · w ∈ Cπ define ‖ u ‖1 by

∑
w∈π |λw|. Then a

possible choice for K is given by:

K = m ·
n∑

j=1

max {‖ bi,j ‖1| 1 ≤ i ≤ m} .

The sequence trCπ

(
(1−K−2 ·BB∗)

p)
is a monotone decreasing sequence of non-negative

real numbers and we define the L2-Betti number of B to be the non-negative real number:

b(B) = lim
p→∞

trCπ

((
1−K−2 ·BB∗)p) .

Define the Fuglede-Kadison determinant of B to be the positive real number:

det(B) = K(n−b(B)) · exp

(
−1

2
·
∞∑

p=1

1

p
·
(
trCπ

((
1−K−2 ·BB∗)p)− b(B)

))

if the infinite sum of non-negative real numbers
∑∞

p=1
1
p
·
(
trCπ

(
(1−K−2 ·BB∗)

p)− b(B)
)

converges to a real number and to be zero otherwise. The L2-Betti number b(B) and the
Fuglede-Kadison determinant det(B) These invariants are infinite-dimensional generaliza-
tions of classical notions. Namely, suppose that π is finite. Then |π| · b(B) is the complex
dimension of the kernel of the C-linear map RB : ⊕n

i=1Cπ −→ ⊕m
j=1Cπ and det(B)2·|π| is the

ordinary determinant of BB∗ provided b(B) is zero.

In order to be able to define the invariant and to ensure that it is an invariant of the
simple homotopy type we need the following condition:

Definition 1.1 An admissible pair (X, A) is a pair of finite CW -complexes (X, A) such
that for each path component C of X all L2-Betti numbers bp(C, C ∩ A) vanish and all
Novikov-Shubin invariants αp(C, C ∩ A) are positive.
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We will explain L2-Betti numbers and Novikov-Shubin invariants and discuss the con-
dition being admissible later. At the moment it suffices to know the following examples (see
[11], [21, Proposition 4.6], [22, Theorem 4.8, Theorem 7.1]):

Theorem 1.2 A compact connected orientable manifold M is admissible if it satisfies one
of the following conditions:

1.) The dimension of M is three and M satisfies:

(a) π1(M) is infinite.

(b) M is homotopy equivalent to an irreducible 3-manifold or S1 × S2 or RP3]RP3.

(c) If the boundary of M is non-empty, it consists of tori.

(d) If the boundary of M is empty, M is finitely covered by a 3-manifold which is
homotopy equivalent to a hyperbolic, Seifert or Haken 3-manifold.

2.) There is a fixed point free S1-action on M such that for one (and hence all) orbits
S1/H in M the inclusion induces an injection on the fundamental groups.

3.) M is a closed hyperbolic manifold of odd-dimension.

Notice that the conditions a.) to c.) in item 1.) are necessary for a connected compact
orientable 3-manifold M to have vanishing L2-Betti numbers [22, Corollary 7.7] and the
condition d.) would always be true if Waldhausen’s conjecture or Thurston’s geometrization
conjecture holds. Moreover, there is the conjecture that the Novikov-Shubin invariants of
all connected compact manifolds are positive rational numbers [22, Conjecture 9.1].

Let (X, A) be an admissible pair. Assume that X is connected. Denote the universal

covering of X by p : X̃ −→ X and define Ã to be p−1(A). Let C(X̃, Ã) be the celullar Zπ-
chain complex where π is the fundamental group of X. Let cp be the p-th differential of

C(X̃, Ã). We define for each p the combinatorial Zπ-Laplace operator

∆p : Cp(X̃, Ã) −→ Cp(X̃, Ã)

by ∆p = cp+1 ◦ c∗p+1 + c∗p ◦ cp. We mention already here that we will show in Theorem 4.4
that the p-th L2-Betti number of (X,A) can be computed by:

bp(X, A) = b(∆p)

and the Novikov-Shubin invariants αp(X,A) of (X, A) satisfy:

2 ·min{αp−1(X, A), αp(X, A)} = α(∆p) ≤
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sup
{
β ∈ R≥0

∣∣ limp→∞ pβ ·
(
trZπ

((
1−K−2 ·∆∗

p∆p

)p)− b(∆p)
)

= 0
}

and we conjecture that the inequality above is an equality. Hence the condition admissible
ensures that b(∆p) = 0 and the supremum above is positive for all p. We will prove in
Theorem 4.4.5 for admissible (X, A) that det(∆p) is a positive real number for all p. Hence
we can define:

Definition 1.3 The combinatorial L2-torsion of an admissible pair (X, A) is defined to be
the positive real number

ρ(X, A) =
∞∏

n=0

det(∆p)
(−1)(n+1)·n.

For non-connected X define ρ(X, A) by the product of the L2-torsions ρ(C, C ∩ A)
where C runs over the path components of X.

One may think of combinatorial L2-torsion as a generalization of classical Reidemeister
torsion. In the classical case one has to pick a finite-dimensional unitary representation. Here
we use the regular representation l2(π). In the classical case the homology with coefficients
in this representation has to be trivial. The condition admissible resembles this assumption.

Next we state the basic properties of this invariant. It behaves like a “multiplicative
Euler characteristic”. We make comments on the proofs later when we will put this invariant
into context with other torsion invariants in Section 3.

Theorem 1.4 (Homotopy invariance) Let f : (X,A) −→ (Y,B) be a homotopy equiva-
lence of pairs of finite CW -complexes. Suppose one of them is admissible. Then both are
admissible and there is a natural homomorphism:

Φ = Φ(π1(Y )) : Wh(π1(Y )) −→ R>0 [B] 7→ det(B)

such that
ρ(Y,B)

ρ(X, A)
= Φ(τ(f))

where Wh(π1(Y )) is the Whitehead group of π1(Y ) and τ(f) is the Whitehead torsion of f .

Theorem 1.4 shows that ρ(X, A) is a simple homotopy invariant for admissible pairs.
This enables us to define L2-torsion ρ(M, ∂0M) also for a compact manifold M whose
boundary ∂M is the union of two codimension zero submanifolds ∂0M and ∂1M satisfy-
ing ∂(∂0M) = ∂0M ∩ ∂1M = ∂(∂M1). Namely, define it by the L2-torsion of (K, K0) for any
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triangulation (K; K0, K1) −→ (M ; ∂0M, ∂1M). This makes sense because two such triangu-
lations differ by a simple homotopy equivalence, i.e., a homotopy equivalence with trivial
Whitehead torsion. In connection with Theorem 1.4 the following conjecture is interesting:

Conjecture 1.5 1.) The map Φ : Wh(π) −→ R>0 is trivial for finitely presented π.

2.) The L2-torsion ρ(X,A) is a homotopy invariant for admissible pairs.

The assertions 1.) and 2.) of the conjecture above are equivalent. Namely, Theorem
1.4 shows that 1.) implies 2.). The other implication is proven as follows. Choose a finite
CW -complex Y with fundamental group π. Then Y × S1 is admissible by Theorem 1.2.
If i∗ : Wh(π) −→ Wh(π × Z) is the injection induced by the inclusion, the composition of
Φ(π×Z) with i∗ is Φ(π). Hence it suffices to prove the claim for Φ(π×Z). As any element in
Wh(π×Z) is the Whitehead torsion of a homotopy equivalence f : X −→ Y × S1, assertion
1.) follows from Theorem 1.4. For residually finite π conjecture 1.5 is proven in [24].

Theorem 1.6 (Sum formula) Consider the push out of finite CW -complexes such that j1

is an inclusion of CW -complexes and j2 is cellular:

X0

j1

−→ X1

j2 ↓ ↓ i1

X2

i2
−→ X

Assume that X0, X1 and X2 are admissible and that for i = 0, 1, 2 the map π1(Xi) −→ π1(X)
induced by the inclusion is injective for all base points in Xi. Then X is admissible and we
get:

ρ(X) = ρ(X1) · ρ(X2) · (ρ(X0))
−1 .

Theorem 1.7 (Pair formula) Let (X, A) be a pair of finite CW -complexes such that the
map induced by the inclusion π1(A) −→ π1(X) is injective for all base points in A. Suppose
that two of the three pairs A = (A, ∅), X = (X, ∅) and (X, A) are admissible. Then all three
pairs are admissible and we get:

ρ(X) = ρ(A) · ρ(X, A).

Theorem 1.8 (Fibration formula) Let F −→ (E, E0) −→ (B, B0) be a fibration of pairs
of finite CW -complexes (E, E0) and (B, B0) with a connected finite CW -complex F as fiber.
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Suppose that F is admissible and the inclusion induces an injection π1(F ) −→ E. Then
(E, E0) is admissible and we get:

ρ(E, E0) = ρ(F )χ(B,B0)

where χ(B, B0) is the Euler characteristic of (B, B0).

Theorem 1.9 (Product formula) Let (X, A) and (Y,B) be pairs of finite CW -complexes.
Suppose that (X, A) is admissible. Then (X,A)× (Y,B) is admissible and we get:

ρ ((X, A)× (Y, B)) = ρ(X, A)χ(Y,B).

Theorem 1.10 (Multiplicativity under finite coverings) Let p : X −→ Y be a finite
d-sheeted covering of finite CW -complexes. Suppose that X or Y is admissible. Then both
X and Y are admissible and we get:

ρ(X) = ρ(Y )d.

Theorem 1.11 (Poincaré duality) Let M be a connected compact orientable manifold.
Then M is admissible if and only if (M, ∂M) is admissible. Suppose M is admissible. Then
we get:

ρ(M) = ρ(M, ∂M)(−1)m+1

.

In particular we get for an admissible closed manifold of even dimension ρ(M) = 1.

Theorem 1.12 (S1-actions) Let M be a connected compact manifold. Suppose that there
is a fixed point free smooth S1-action on M such that for one (and hence all) orbits S1/H
in M the inclusion induces an injection on the fundamental groups. Then M is admissible
and

ρ(M) = 1.

2. 3-manifolds

Let M be a compact orientable connected irreducible 3-manifold with infinite funda-
mental group and incompressible boundary. Jaco and Shalen [19] and Johannson [20] have
shown for such a manifold that there is a finite family of disjoint, incompressible 2-sided tori
in M which splits M into pieces which are either Seifert 3-manifolds or admit no embedded
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incompressible torus except possibly parallel to the boundary. A minimal such family of tori
is unique up to isotopy. If all pieces of the second kind admit a hyperbolic structure, i.e., a
complete Riemannian metric on its interior with sectional curvature which is constant −1,
then we call such a decomposition the JSJT-decomposition of M .

Let N be a piece of the second kind. If N is Haken, i.e., ∂N is non-empty o r N
contains an embedded incompressible orientable surface different from S2, the torus theorem
says that N is atoroidal, i.e any subgroup of π1(N) which is isomorphic to Z×Z is conjugate
into the fundamental group of a boundary component. Now Thurston has proven that any
such manifold has a hyperbolic structure. (For more information about 3-manifolds we refer
to the survey article of Scott [33].) Hence M has a JSJT-decomposition if M is Haken.
Thurston’s geometrization conjecture says that M always has a JSJT-decomposition.

Notice that ρ(T 2) is 1 by Theorem 1.11 or Theorem 1.12. Since any connected Seifert
3-manifold is finitely covered by a compact orientable connected 3-manifold admitting a free
S1-action such that the map on the fundamental groups induced by the inclusion of an orbit
into the manifold is injective, we conclude from Theorem 1.10 and Theorem 1.12 that ρ(Mi)
is 1 for any Seifert piece Mi in the JSJT-decomposition of M . Notice that the volume of a
compact connected orientable irreducible hyperbolic 3-manifold is finite, if and only if ∂M
is empty or is a disjoint union of incompressible tori and M is not T 2× I. (see Morgan [29],
Theorem B on page 52). We derive from Theorem 1.2 (or more precisely from the proof of
[22, Theorem 7.1]) and Theorem 1.6:

Theorem 2.1 Let M be a compact connected orientable irreducible 3-manifold with infinite
fundamental group such that ∂M is empty or a disjoint union of incompressible tori. Suppose
that M has a JSJT-decomposition. Then M is admissible and we get:

ρ(M) =
r∏

i=1

ρ(Mi)

where M1, . . . Mr are the hyperbolic pieces of finite volume in the JSJT-decomposition of
M .

For the hyperbolic pieces of finite volume we expect the following answer:

Conjecture 2.2 Let M be a compact connected orientable hyperbolic manifold of dimension
m. Assume that either m is odd and ∂M is empty or that m equals 3, the boundary ∂M is a
disjoint union of incompressible tori and M is not T 2×I. There is a constant Cm depending
only on m satisfying:

ln(ρ(M)) = Cm · Vol(M)

if V ol(M) is the volume. The constant Cm is zero if and only if m is even.
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Notice that this conjecture is true for even m because then Cm = 0 follows from
Theorem 1.11. Hence the only interesting case is the case where m is odd. We will later give
evidence for this conjecture when we explain the relationship of L2-torsion and its analytic
counterpart in Section 3. The constant C3 is expected to be − 1

3π
.

Given a compact orientable manifold M , let ‖M ‖ be its simplicial volume as defined
by Gromov [15].

Conjecture 2.3 Let M be a compact connected orientable irreducible 3-manifold with in-
finite fundamental group possessing a JSJT-decomposition such that the boundary of M is
empty or a disjoint union of incompressible tori. Then M is admissable and there are con-
stants C3 and D3 different from zero satisfying:

ln(ρ(M)) = C3 ·
r∑

i=1

Vol(Mi) = D3 ·‖M ‖

where M1, . . . Mr are the hyperbolic pieces of finite volume in the JSJT-decomposition of
M . In particular ρ(M) is 1 if and only if there are no hyperbolic pieces of finite volume in
the JSJT-decomposition.

Notice that the Conjecture 2.2 together with Theorem 2.1 implies

ln(ρ(M)) = C3 ·
r∑

i=1

Vol(Mi).

It is already known [34] that there is a constant D′
3 different from zero satisfying:

‖M ‖= D′
3 ·

r∑
i=1

Vol(Mi).

Hence Conjecture 2.2 for m = 3 and Conjecture 2.3 are equivalent. We will generalize them
in Section 3 .

In general analytic L2-torsion and the simplicial volume are very hard to compute.
In comparision with them one can get good information on the combinatorial L2-torsion as
illustrated by the results of Section 1. Next we want to explain how one can read off the
combinatorial L2-torsion in terms of a presentation π = 〈s1, s2, . . . sg | R1, R2, . . . Rr〉 of the
fundamental group π of M . We begin with recalling Fox derivatives.

Let ∗gZ be the free group of rank g with standard generators s1, s2, . . . sg. Denote by
φ : ∗gZ −→ π the epimorphism sending si to si. The i-th partial Fox derivative is the map

∂

∂si

: Z[∗gZ] −→ Zπ

which is uniquely determined by the following properties for u, v ∈ Z[∗gZ]
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1.) ∂
∂si

(u + v) = ∂
∂si

(u) + ∂
∂si

(v)

2.) ∂
∂si

(u · v) = ∂
∂si

(u) · ε(v) + φ(u) · ∂
∂si

(v)

3.) ∂
∂si

(si) = δi,j

where ε : Z[∗gZ] −→ Z is the augmentation sending
∑

g λg · g to
∑

g λg, the ring homomor-
phism induced by φ from Z[∗gZ] to Zπ is denoted by φ again and the Kronecker symbol δi,j

is 0 for i 6= j and 1 otherwise. Here are further properties useful for concrete calculations
where m,n ∈ Z, n ≥ 1 and w ∈ ∗gZ:

4.) ∂
∂si

(m) = 0

5.) ∂
∂si

(w−1) = −w−1 · ∂
∂si

(w)

6.) ∂
∂si

(wn) = (1 + w + . . . + wn−1) · ∂
∂si

(w)

7.) ∂
∂si

(w−n) = −(w−1 + . . . w−n) · ∂
∂si

(w)

The Fox matrix of the given presentation is the (r, g)-matrix with entries in Zπ

F =


∂R1

∂s1
. . . ∂R1

∂sg

...
. . .

...
∂Rr

∂s1
. . . ∂Rr

∂sg



Theorem 2.4 Let M be a compact connected orientable irreducible 3-manifold with infinite
fundamental group π. Let π = 〈s1, s2, . . . sg | R1, R2, . . . Rr〉 be a presentation of π. Denote
by α2(M) the second Novikov-Shubin invariant of M . Now there are two cases:

1.) Suppose ∂M is non-empty. We make the assumption that ∂M

2.) Suppose ∂M is empty. We make the assumption that a finite covering of M is homotopy
equivalent to a hyperbolic, Seifert or Haken 3-manifold and that the given presentation
comes from a Heegaard decomposition. Then M

Let K be any positive real number satisfying K ≥‖RA ‖∞ where ‖RA ‖∞ is the operator
norm of the bounded π-equivariant Ri whose Fox derivatives appear in A.
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Then the sum of non-negative rational numbers
∑L

p=1
1
p
· trZπ

(
(1−K−2 · AA∗)

p)
con-

verges to the real number ln(ρ(M)) + 2(g − 1) · ln(K). More precisely, there is a constant C
such that we get for all L ≥ 1:

0 ≤ ln(ρ(M)) + 2(g − 1) · ln(K)−
L∑

p=1

1

p
· trZπ

((
1−K−2 · AA∗)p) ≤ C

Lα

Proof : 1.) We deal first with the case where ∂M is non-empty. As M is irreducible and
has infinite fundamental group, M is aspherical by the Sphere

Theorem [18, page 40]. Since M is 3-dimensional and has boundary there is a homo-
topy equivalence g : Y −→ M for a finite 2-dimensional aspherical CW -complex Y . Let
X be the 2-dimensional CW -complex with fundamental group π and 1 cell of dimension
zero, g cells of dimension one and r cells of dimension two associated to the given pre-
sentation. Let f : X −→ Y be a map inducing the identity on the fundamental groups.
Let C(f̃) : C(X̃) −→ C(Ỹ ) be the induced Zπ-chain map. We have H1(C(X̃)) = {0} and

Hp(C(Ỹ )) = {0} for p = 1, 2 and C(f̃) induces an isomorphism on H0. We derive from the

long exact homology sequence that the algebraic mapping cone of C(f̃) is a finitely generated
free 3-dimensional Zπ-chain complex whose homology is trivial except in dimension 3 where
it is H2(C(X̃)). Hence there is an isomorphism of Zπ-modules

H2(C(X̃))⊕ (⊕a
i=1Zπ) −→ ⊕b

i=1Zπ

where a = g + dimZπ(C2(Ỹ )) + 1 and b = r + 1 + dimZπ(C1(Ỹ )). Since the Euler character-
istic of Y satisfies χ(Y ) = χ(M) = χ(∂M)/2 = 0 and g = r + 1 holds, we conclude a = b.

This implies by Kaplansky’s theorem that H2(C(X̃)) = {0}.

We give a short proof of this fact using dimension theory over the von Neumann algebra
of π as explained in Section 4. Namely, let P : ⊕a

i=1Zπ −→ ⊕a
i=1Zπ be any projection whose

kernel is Zπ-isomorphic to H2(C(X̃)) and whose image is Zπ-isomorphic to ⊕a
i=1Zπ. Let

P (2) : ⊕a
i=1l

2(π) −→ ⊕a
i=1l

2(π) be the induced bounded π-equivariant operator. Then we get:

dim(ker(P (2))) + dim(im(P (2))) = a

dim(im(P (2))) = a

We conclude dim(ker(P (2))) = 0 so that the kernel of P (2) is trivial. Hence the kernel of P

which is H2(C(X̃)) is trivial.

We conclude that f : X −→ Y and hence g ◦ f : X −→ M are homotopy equiv-
alences. If M −→ M is a finite d-sheeted covering of M , the composition of the map
φ(π1(M)) : Wh(π1(M)) −→ R>0 of Theorem 1.4 with p∗ : Wh(π1(M)) −→ Wh(π1(M)) in-
duced by restriction is the same as the composition of φ(π1(M)) : Wh(π1(M)) −→ R>0 with
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the map R>0 −→ R>0 sending r to rd. From our assumptions on M and [35, Theorem
19.4 on page 249 and Theorem 19.5 on page 250] and [13] we conclude for an appropriate
finite covering M of M that the Whitehead group Wh(π1(M)) vanishes. Hence the map
φ(π1(M)) : Wh(π1(M)) −→ R>0 is trivial. We derive from Theorem 1.4

ρ(M) = ρ(X).

The cellular chain complex C(X̃) looks like

. . . {0} −→ ⊕r
i=1Zπ

F
−→ ⊕g

i=1 Zπ
⊕g

j=1Rsj−1

−→ Zπ

where Rsj−1 : Zπ −→ Zπ is given by right multiplication with sj−1 and F is the Fox matrix
of the given presentation. Consider the Zπ-chain complex C concentrated in dimensions 1
and 0

Zπ
Rsg−1

−→ Zπ

and the Zπ-chain complex D concentrated in dimensions 2 and 1

⊕r
i=1Zπ

A−→ ⊕g−1
j=1Zπ

where A is obtained from F by deleting the g-th column. There is an obvious exact sequence
of Zπ-chain complexes 0 −→ C −→ C(X̃) −→ D −→ 0. It induces an exact sequence of
Hilbert N (π)-chain complexes by tensoring with l2(π). Since D is obtained from the cellular
Z[Z]-chain complex of the universal covering of S1 by induction with respect to the injective
homomorphism Z −→ π sending the generator in Z to sg, we conclude from [22, Lemma 4.6,
Example 4.11] and Theorem 1.12: (Notice that the Novikov-Shubin invariants defined here
are two times the one defined in [22].)

bp(S
1) = 0

α1(D) = α1(S
1) = 2.

ρ(D) = ρ(S1) = 1

We derive from the long weakly exact L2-homology sequence [6, Theorem 2.1], the additivity
inequalities for the Novikov-Shubin invariants [22, Theorem 2.2] and the chain complex
analogue of Theorem 1.6:

bp(C) = bp+1(D)

1

α2(C)
≤ 1

α2(C(X̃))
+

1

α1(D)

ρ(X) = ρ(C) · ρ(D)

This implies:
bp(C) = 0

13



α(RA) ≥ 2 · α2(M)

α2(M) + 2

ρ(M) = ρ(X) = ρ(C) = det(R∗
ARA)−2 · det(RAR∗

A)+1

We conclude from Lemma 4.2.1:

ln(ρ(M) = −2 · ln(det(RA)).

Now the claim for non-empty ∂M follows from Theorem 4.4.5.

2.) Suppose M is closed and the presentation comes from a Heegard decomposition. Then

the cellular Zπ-chain complex of M̃ looks like:

. . . Zπ

(Rs−1
i −1)i=1,... ,r

−→ ⊕r
i=1 Zπ

F
−→ ⊕g

i=1 Zπ
⊕g

i=1Rsj−1

−→ Zπ

Now one shows as above by constructing appropriate exact sequences of Zπ-chain complexes
that α(RA) ≤ α2(M)

α2(M)+1
and ln(ρ(M)) = −2 · ln(det(RA)) holds. This finishes the proof of

Theorem 2.4.

Remark 2.5 The main problem in orientable surface as fiber. Then there is an exact
sequence of groups

{1} −→ π1(F ) −→ π1(M) −→ Z −→ {1}
In order to check whether a word represents the unit element in π1(M), one maps it to Z
first and checks whether it represents the unit element there. If it does, it can be rewritten
as a word in standard generators of π1(F ) and one has to solve the word problem in π1(F ).
This is always possible and in particular easy if ∂F is non-empty since in this case π1(F ) is
a free group. In this context Conjecture 2.2 is interesting. Namely, it would give together
with Theorem 2.4 a way of computing the volume of a hyperbolic 3-manifold which is the
mapping torus of a .

Remark 2.6 Notice that the complement M(K) of a knot in S3 is admissible by Theorem
1.2. Hence one obtains a new nvariant for knots in S3 by

ρ(K) := ρ(M(K))

If the knot is trivial, then ρ(K) = 1. Otherwise M(K) does satisfies the hypothesis of
Theorem 2.4 and one can compute the invariant from a presentation of the knot group.
The invariant is 1 for torus knots by Theorem 2.1. It should give up to a constant the
volume for hyperbolic knots because of Conjecture 2.2. One can heck that this invariant
is multiplicative under the connected sum of knots in S3. The invariant for a knot and its
mirror image are the ame. In a certain sense this invariant is the Alexander polynomial, but
not for the maximal abelian covering but for the universal covering of the knot complement
[26, Example 4.7].
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Example 2.7 Let K8 be the figure eight knot. Its complement is a hyperbolic 3-manifold.
It fibers over S1 and the fiber is a surface whose fundamental group is the free group F2 in
two generators s1 and s2. The monodromy is up to homotopy determined by the induced
automorphism of F2 up to inner automorphisms of F2. Two automorphisms of F2 differ by
an inner automorphism if and only if they induces the same map on the abelianization Z⊕Z
[27, Proposition I.4.5]. The automorphism of F2 belonging to the figure eight knot induces
on Z⊕ Z the automorphism given by the matrix [2, page 73](

0 −1
1 3

)
Hence the automorphism of F2 given by mboxs1 7→ s2 and s2 7→ s3

2s
−1
1 is appropriate for the

computation of the knot group π of the figure eight knot. We get the presentation:

π = 〈s1, s2, t | ts1t
−1s−1

2 = ts2t
−1s1s

−3
2 = 1〉

If we delete from the Fox matrix the column belonging to s2, we obtain the matrix

A =

(
t 1− s2

s3
2s
−1
1 1− s3

2s
−1
1

)
The number K = 4 is greater or equal to the operator norm of the bounded π-equivariant
operator induced by A. Define:

B =

(
13 + s2 + s−1

2 −1 + s2 + s1s
3
2 − s2s1s

−3
2 − ts1s

−3
2

−1 + s−1
2 + s3

2s
−1
1 − s3

2s
−1
1 s−1

2 − s3
2s
−1
1 t−1 13 + s3

2s
−1
1 + s1s

−3
2

)
Since B = 16− AA∗, we get:

tr
((

1−K−2 · AA∗)p) = 16−p · trZπ(Bp)

and

ln(ρ(K8)) = −8 ln(2) +
∞∑

p=1

1

p · 16p
· trZπ(Bp)

As mentioned before we have not yet implemented a computer programm to compute the
numbers trZπ(Bp). We get 26 for p = 1 and 352 for p = 2 by a direct calculation. Since the
volume of the complement of the figure eight knot is known, this is a good test for Conjecture
2.3. The second Novikov-Shubin invariant of the knot complement of an hyperbolic knot
such as K8 is bounded from below by 4

3
[22, Theorem 6.17] and probably is equal to 2.

(Notice that the Novikov-Shubin invariants defined here are two times the one defined in
[22].)
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3. Relation to other L2-torsion invariants and Gromov’s simplicial
volume

In this section we relate the combinatorial L2-torsion to Reidemeister-von Neumann
torsion and explain the proofs of the results of Section 1 and the condition “admissible”.
Then we discuss the connection to analytic L2-torsion and simplicial volume and state some
interesting conjectures.

The combinatorial L2-torsion may be viewed as a special case of the Reidemeister-von
Neumann torsion of [26, Definition 3.9]. It assigns to a pair of finite CW -complexes (X, A)
and a unitary representation µ : π1(X) −→ IsoA(V ) into a finitely generated Hilbert module
V over a finite von Neumann algebra A an element in the weak K1-group of A:

ρRN(X, A; V ) ∈ Kw
1 (A)

To keep the discussion simple we assume from now on that A is the von Neumann algebra
N (π) of the fundamental group π = π1(X) and µ is the regular representation l2(π) and
we abbreviate ρRN(X,A) := ρRN(X, A; l2(π)). The K1-group Kw

1 (N (π)) is the K1-group of
weak endomorphisms of finitely generated Hilbert N (π)-modules where an operator is called
weak isomorphism if its kernel is trivial and its image is dense [26, page 221]. We remark
that an endomorphism T is a weak isomorphism if and only if its L2-Betti number b(T )
(which we will define for an operator in Section 4) is zero. Define Kw,α

1 (N(π)) to be the
K1-group of weak endomorphisms of finitely generated Hilbert N (π)-modules which have
positive Novikov-Shubin invariant (which we will define for an operator in Section 4). Now
Lemma 4.2 shows that the Fuglede-Kadison determinant induces a split epimorphism

det : Kw,α
1 (N (π)) −→ R>0

The Reidemeister-von Neumann torsion ρRN(X, A) takes values in Kw,α
1 (N (π)) if and only

if all Novikov-Shubin invariants of (X, A) are positive. Hence the construction in [26] yields
a well-defined element

ρRN(X, A) ∈ Kw,α
1 (N (π))

provided all Novikov-Shubin invariants of (X, A) are positive. Moreover, all the results of [26]
remain true when interpreted in Kw,α

1 (N (π)) provided that all Novikov-Shubin invariants of
(X, A) are positive. The combinatorial L2-torsion ρ(X, A) ∈ R>0 Hence the results of Section
1, namely homotopy invariance 1.4, sum formula 1.6, pair formula 1.7, product formula
refproduct formula, multiplicativity under finite coverings 1.10, Poincaré duality 1.11 and
the result on S1-actions 1.12 follow from the analogous statements for Reidemeister-von
Neumann torsion [26, Theorem 3.11, Theorem 3.14, Lemma 3.17, Theorem 3.16, Theorem
5.13, Corollary 3.21] except for the statements about the positivity of the Novikov-Shubin
invariants which are not at all treated in [26]. The homotopy invariance of L2-Betti numbers
and Novikov-Shubin invariants follows from [10], [17], [22]. The statements on them in the
sum formula 1.6, the pair formula 1.7 and the product formula 1.9 come from the long
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weakly exact L2-homology sequence [6, Theorem 2.1] and the additivity inequalities for the
Novikov-Shubin invariants [22, Theorem 2.2]. Poincaré duality 1.11 is a consequence of [22,
Proposition 4.2]. The fibration formula 1.8 follows from the sum formula 1.6 by induction
over the cells of B. These remarks give the proofs of the results of Section 1.

At this point we mention the article [3] of Carey and Mathai where a construction using
the Fuglede-Kadison determinant is described in order to generalize classical Reidemeister
torsion to the L2-setting. There is an error in the definition which was corrected in the
preprint [4] and the corrected version is the square root of the combinatorial L2-torsion
defined here. Some of the results of Section 1 are also proven in [4].

Lott introduces in [21, Definition 2] analytic torsion for a closed Riemannian manifold
which is the L2-analogue of the analytic torsion defined by Ray and Singer [32] (see also [28]).
The definition makes only sense if all Novikov-Shubin invariants of the closed Riemannian
manifold are positive. This condition is necessary to control the large time behaviour of the
heat kernel of the universal covering. Combinatorial L2-torsion is the L2-analogue of the R-
torsion defined in [32] using Milnor’s version of Reidemeister torsion. Cheeger [5] and Müller
[30] have shown independently that the difference of analytic torsion and the logarithm of
R-torsion of a compact Riemannian manifold M is zero provided M has no boundary. This
difference has been identified with ln(2)

2
· χ(∂M) for a compact Riemannian manifold M in

[23]. This leads to the obvious conjecture:

Conjecture 3.1 Let M be a compact Riemannian manifold whose boundary is the disjoint
union ∂M = ∂0M

∐
∂1M where ∂0M and ∂1M are disjoint unions of components of ∂M .

Then we get for combinatorial and analytic L2-torsion:

ln(ρ(M, ∂0M)) = ρan(M, ∂0M) +
ln(2)

2
· χ(∂M).

The analytic L2-torsion of a closed hyperbolic 3-manifold M is computed in [21, Proposition
16] by

ρan(M) = − 1

3π
· V ol(M).

Hence the equivalent Conjectures 2.2 and 2.3 would follow from Conjecture 3.1. Notice that
Reidemeister-von Neumann torsion takes values in Kw,α

1 (N (π)). We have not carried out
the details of defining analytic L2-torsion taking values in these K-groups but it can be done
using the center valued trace of the von Neumann algebra N (π) and by extending the calcu-
lations of [25] to Kw,α

1 (N (π)). Notice that the invariants taking values in K1-groups i nstead
of the positive real numbers are much more refined. For example Reidemeister-von Neu-
mann torsion gives the Alexander polynomial ∆K(t) of a knot K ⊂ S3 when applied to the
infinite cyclic covering of the knot complement [26, Example 4.7] whereas the combinatorial
L2-torsion gives just the real number

∫
S1 ln (∆K(z) ·∆K(z)) dvol.
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Before we discuss the condition admissible, we give an overview over the notions of L2-
Betti number, Novikov-Shubin invariant and analytic L2-torsion. Let M be a compact Rie-
mannian manifold and assume for simplicity that it has no boundary. Let ∆̃p be the Laplace

operator on the universal covering acting on smooth p-forms. Denote by e−t e∆p(x, y) the

kernel of the operator e−t e∆p . Then e−t e∆p(x, x) is an endomorphism of the finite-dimensional

vector space ΛpT ∗
xM and hence its trace tr

(
e−t e∆p(x, x)

)
is a well-defined real number. If

F is a fundamental domain for the π = π1(M)-action on the universal covering, define the
π-trace by:

Trπ

(
e−t e∆p

)
=F tr

(
e−t e∆p(x, x)

)
dvol.

The L2-Betti number is defined by Atiyah [1] as

bp(M) = lim
t→∞

Trπ

(
e−t∆p

)
.

The p-th Novikov-Shubin invariant is (up to a factor 4) defined by Novikov and Shubin [31]
as

α̃p(M) = sup
{

βp | Trπ

(
e−t f∆p

)
− bp(M) is O(t−βp/4) as t →∞

}
∈ [0,∞].

Given a pair (X, A) of finite CW -complexes, the combinatorial analogues are defined as

follows. Let C(X̃, Ã) be the cellular Zπ-chain complex of the universal covering for π =
π1(X) as explained in Section 1. Tensoring with l2(π) yields the cellular L2-chain com-
plex C(X, A; l2(π)) whose Hilbert N (π)-structure is defined using a cellular basis and is
independent of this choice. The p-th differential

cp : Cp(X, A; l2(π)) −→ Cp−1(X, A; l2(π))

and the combinatorial L2-Laplace operator

∆p = c∗p ◦ cp + cp+1 ◦ c∗p+1 : Cp(X, A; l2(π)) −→ Cp(X, A; l2(π))

are bounded π-equivariant operators and we define the combinatorial analogues by applying
the definitions of Section 4 to ∆p and cp:

bp(X, A) = b(∆p)

αp(X, A) = α(cp)

α̃p(M) = min {αp(M), αp−1(M)} .

Of course the combinatorial and analytic versions of bp(M) and α̃p(M) agree (see [10], [12]
and [17]) and we have [22, Lemma 2.3.1]:

2 · α̃p(M) = α(∆p)
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Analytic L2-torsion is defined by Lott [21, Definition 2] using a regularization process for
the first integral by setting:

ρan(M) =
∑
p≥0

(−1)p · p ·
(

d

ds

∣∣∣∣
s=0

1

Γ(s)
·
∫ ε

0

ts−1 ·
(
Trπ

(
e−t e∆p

)
− bp(M)

)
dt

+

∫ ∞

ε

t−1 ·
(
Trπ

(
e−t e∆p

)
− bp(M)

)
dt

)
where Γ(s) is the Γ-function and ε is a positive real number. The condition that the Novikov-
Shubin invariants are positive ensures that the second integral converges to a real number.

Recall that the construction of analytic L2-torsion of a compact Riemannian manifold
M is only well-defined if all the Novikov-Shubin invariants of M are positive. Reidemeister-
von Neumann as defined in [26] does not need this assumption. However, the computations
of Kw

1 (N (π)) in [25] show that these groups vanish if and only if N (π) is a von Neumann
algebra of type II. Hence the condition that all Novikov-Shubin invariants are all positive
appears also on the topological side, it is needed to ensure that the K1-groups where the
invariant takes values in is always non-trivial. We mention without proof that the von Neu-
mann algebra of a finitely generated group π is of type I if π is a crystallographic group, i.e.,
contains a finitely generated free abelian group of finite index, and is of type II otherwise.
If the fundamental group π is crystallographic, no conditions are needed on the topological
side. However, in this case the conjecture that all the Novikov-Shubin invariants of a com-
pact manifold are positive [22, Conjecture 9.1] follows from [21, Proposition 39] and the fact
that the Novikov-Shubin nvariants do not change under finite coverings. Moreover, in this
case Conjecture 3.1 follows from the corresponding result for analytic and R-torsion of [5],
[23] and [30] since for finitely generated free abelian π one can express the L2-invariants in
terms of the original invariants for all 1-dimensional complex representations π −→ S1 and
the L2-invariants are We have explained above the condition that all the Novikov-Shubin
invariants are positive. Next we discuss the condition that the L2-Betti numbers are ll zero.
This assumption is not needed for the definition of Reidemeister-von Neumann torsion, com-
binatorial L2-torsion or analytic L2-torsion if one considers a compact Riemannian manifold.
However, in general these invariants depend on the Riemannian metric and it turns out that
they are independent of the Riemannian metric if and only if all L2-Betti numbers are trivial.
Since we want to deal with the topological aspect of L2-torsion, we always assume that the
L2-Betti numbers are trivial in order to get a simple homotopy invariant (see Theorem 1.4).

We recall the definition of simplicial volume of an m-dimensional oriented closed mani-
fold M [15, Section 0.2]. Let Csing

∗ (M, R) be the singular chain complex of M with coefficients
in the real numbers R. An element c in Csing

p (M, R) is given by a finite R-linear combination
c =

∑s
i=1 ri · σi of singular p-simplices σi in M . Define the l1-norm of c by setting

‖c‖1=
s∑

i=1

|ri|
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The simplicial volume of M is defined to be:

‖M ‖ = inf
{
‖c‖1 | c ∈ Csing

m (M ; R) is a cocycle representing [M ]
}

where [M ] is the image of the fundamental class of M under the change of ring homomor-
phism on singular homology Hm(M ; Z) −→ Hm(M ; R). We mention the following extension
of a conjecture of Gromov [16, page 154]:

Conjecture 3.2 Let M be a closed aspherical orientable manifold with vanishing simplicial
volume. Then M is admissible and its combinatorial L2-torsion is one.

This conjecture is based on a variety of calculations and similiarities of the properties
of combinatorial L2-torsion and simplicial volume. For example, suppose M is a closed
aspherical orientable manifold with non-trivial S1-action. Then its simplicial volume vanishes
[15, Section 3.1]. The map induced by evaluation π1(S

1) −→ π1(M) is injective [8]. Hence M
is admissible and ρ(M) = 1 by Theorem 1.12. Conjecture 3.2 follows from Theorem 2.1 for a
compact connected irreducible 3-manifold with infinite fundamental group whose boundary
is empty or a disjoint union of incompressible tori, provided M has a JSJT-decomposition.

4. L2-invariants for operators

In this section we introduce L2-invariants for bounded π-equivariant operators between
finitely generated Hilbert N (π)-modules, namely, L2-Betti numbers, Novikov-Shubin invari-
ants and Fuglede-Kadison determinants. We investigate their basic properties. We show
how their computations simplify if the operator comes from a matrix over the group ring Cπ
with complex coefficients.

Let π be a countable group. Denote by l2(π) the complex Hilbert space of formal sums∑
g∈π λg · g which are square summable, i.e.,

∑
g∈π ‖λg ‖2 converges to a real number. This

is the Hilbert completion of the pre-Hilbert space Cπ with respect to the inner product:

〈
∑
w∈π

λw · w,
∑
w∈π

µw · w〉 =
∑
w∈π

λw · µw

The von Neumann algebra N (π) is the algebra B(l2(π), l2(π))π of all bounded π-equivariant
operators l2(π) −→ l2(π). The standard trace on N (π) for T ∈ N (π) is given by

tr(T ) = 〈T (e), e〉l2(π)
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where e ∈ π is the unit element. A Hilbert N (π)-module is a separable Hilbert space M
together with a left π-action by unitary operators such that there exists an isometric π-
equivariant embedding (which is not part of the structure) into H ⊗ l2(π) for a separable
Hilbert space H. We call M finitely generated if H can be choosen to be Cn for some positive
integer n. Consider a bounded π-equivariant operator T : ⊕n

i=1l
2(π) −→ ⊕n

i=1l
2(π). Define

its von Neumann trace by:

tr(T ) =
n∑

i=1

tr(Ti,i)

The von Neumann dimension
dim(M) ∈ R≥0

of a finitely generated Hilbert N (π)-module M is the non-negative eal number tr(pr) for
any projection in M(n, n,N (π)) = B(⊕n

i=1l
2(π),⊕n

i=1l
2(π))π whose image is isometrically

π-isomorphic to M . Consider a bounded π-equivariant operator T : M −→ N of finitely gen-
erated Hilbert N (π)-modules. The operator T ∗T : M −→ M is a positive operator. Denote
by {ET ∗T

λ | 0 ≤ λ < ∞} its right continuous spectral family. The spectral density function
associated to T is the right continuous monotone increasing function

F (T ) : R −→ R≥0 λ 7→ tr(ET ∗T
λ )

The Betti number of T is:

b(T ) = dim(ker(T )) = dim(ker(T ∗T )) = F (0)

which is zero if and only if T is injective. The Novikov-Shubin invariant of T

α(T ) ∈ R≥0 ∪ {∞}

is defined to be

α(T ) = lim inf
λ→0+

ln(F (λ)− F (0))

ln(λ)

provided F (λ) > b(T ) holds for λ > 0. Otherwise put α(T ) = ∞. Roughly speaking,
the L2-Betti number measures the size of the kernel of T and the Novikov-Shubin invariant
measures how fast the spectral density function appoaches for λ → 0+ ts limit F (0) and thus
how concentrated the spectrum of T ∗T near 0 is. (Notice that the Novikov-Shubin invariants
defined here are two times the one defined in [22].) The Fuglede-Kadison determinant

det(T ) ∈ R≥0

is defined to be the positive real number

det(T ) = exp

(
1

2
·
∫ ∞

0+

ln(λ) dF

)
if the Lebesgue integral

∫∞
0+

ln(λ) dF converges and to be 0 otherwise. Here dF is the measure
satisfying for a < b:

dF (]a, b]) = F (b)− F (a)
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and we use here and in the sequel the convention that
∫ b

a
,
∫ b

a+
,
∫∞

a
respectively

∫∞
a+

means
integration over the interval [a, b], ]a, b], [a,∞[ respectively ]a,∞[. Notice that there is only
a problem of convergence near zero where ln(λ) goes to −∞ but not at ∞ because we have
F (λ) = F (‖RA ‖2

∞) for all λ ≥‖RA ‖2
∞. The next lemma explains why the definition above

extends the well-known definition of the Fuglede-Kadison determinant for invertible T [14]
and gives a criterion for the convergence of the Lebegues-Stieltjes integral.

Lemma 4.1 Let T : M −→ N be a bounded π-equivariant operator of finitely generated
Hilbert N (π)-modules.

1.) We have for 0 < ε ≤ a:∫ a

ε

ln(λ) dF =

∫ a

ε

1

λ
· (F (λ)−F (0)) ·dλ + ln(a) · (F (a)−F (0))− ln(ε) · (F (ε)−F (0))

∫ a

0+

ln(λ) dF = lim
ε→0+

∫ a

ε

ln(λ) dF

and ∫ a

0+

1

λ
· (F (λ)− F (0)) · dλ = lim

ε→0+

∫ a

ε

1

λ
· (F (λ)− F (0)) · dλ

2.) If α(T ) > 0 and a ≥‖T ‖, the integrals∫ ∞

0+

ln(λ) dF

and

ln(a) · (F (a)− F (0))−
∫ a

0+

1

λ
· (F (λ)− F (0)) · dλ

do converge to the same real number and we have det(T ) > 0.

3.) If T is invertible, we get:

exp

(
1

2
· tr(ln(T ∗T ))

)
= det(T ).

4.) Let T ′ : ker(T )⊥ −→ N be the injective bounded π-equivariant operator induced by T .
Then we get:

α(T ) = α(T ′)

and
det(T ) = det(T ′).
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Proof : 1.) The second and third equations follow from Levi’s theorem of monotone
convergence. The first one is a special case of the equality for f a continuously differentiable
function on R>0 and 0 < ε ≤ a:∫ a

ε

f(λ) dF = −
∫ a

ε

f ′(λ) · F (λ) · dλ + f(a) · F (a)− f(ε) · F (ε)

We give the elementary proof of this certainly known equation because we lack a good
reference for its proof. Let δ be any positive real number. Since f , f ′, F and hence f ′ · F
are Riemannian integrable, we can find a positive integer n such that for the partition
ε = λ0 < λ1 < . . . λn = a satisfying λi − λi−1 = 1

n
the following holds.∣∣∣∣∣

∫ a

ε

f ′(λ) · F (λ) · dλ−
n∑

i=1

f ′(λi−1) · F (λi−1) · (λi − λi−1)

∣∣∣∣∣ ≤ δ∣∣∣∣∣
∫ a

ε

f(λ) · dF −
n∑

i=1

f(λi) · (F (λi)− F (λi−1)

∣∣∣∣∣ ≤ δ

| f ′(λi−1)− f ′(ξi) | ≤ δ

where here and in the sequel ξi is an element in [λi−1, λi]. Now we estimate:∣∣∣∣∫ a

ε

f(λ) dF +

∫ a

ε

f ′(λ) · F (λ) · dλ − f(a) · F (a) + f(ε) · F (ε)

∣∣∣∣
≤ 2δ +

∣∣∣∣∣
n∑

i=1

f ′(λi−1) · F (λi−1) · (λi − λi−1) +
n∑

i=1

f(λi) · (F (λi)− F (λi−1))

− f(a) · F (a) + f(ε) · F (ε)|

= 2δ +

∣∣∣∣∣
n∑

i=1

f ′(λi−1) · F (λi−1) · (λi − λi−1)−
n∑

i=1

(f(λi)− f(λi−1)) · F (λi−1)

∣∣∣∣∣
= 2δ +

∣∣∣∣∣
n∑

i=1

(
f ′(λi−1)−

f(λi)− f(λi−1)

λi − λi−1

)
· F (λi−1) · (λi − λi−1)

∣∣∣∣∣
= 2δ +

∣∣∣∣∣
n∑

i=1

(f ′(λi−1)− f ′(ξi)) · F (λi−1) · (λi − λi−1)

∣∣∣∣∣
≤ 2δ +

n∑
i=1

δ · F (a) · 1

n

≤ (2 + F (a)) · δ

Since δ > 0 was arbitrary, assertion 1.) follows.

2.) Because of assertion 1.) it suffices to show:

lim
ε→0+

∫ a

ε

1

λ
· (F (λ)− F (0)) · dλ < ∞
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and
lim

ε→0+
ln(ε) · (F (ε)− F (0)) = 0

Since α(T ) is assumed to be positive, there is 0 < δ and 0 < α < α(T ) such that

F (λ)− F (0) ≤ λα

holds for 0 ≤ λ ≤ δ. We get from l’Hospital’s rule:

lim
ε→0+

ln(ε) · εα = 0

We have

lim
ε→0+

∫ a

ε

λα−1cdotdλ = lim
ε→0+

1

α
· (aα − εα) =

1

α
· aα

and assertion 2.) follows.

3.) Since the trace is linear and ultra-weakly continuous, we get:

tr(ln(T ∗T )) = tr

(∫ ∞

0+

ln(λ) dEλ

)
=

∫ ∞

0+

ln(λ) d (tr(Eλ)) =

∫ ∞

0+

ln(λ) dF

4.) If F ′ is the spectral density function of T ′, then we have:

F (λ) = F ′(λ) + b(F )

and the claim follows. This finishes the proof of Lemma 4.1.

Lemma 4.1.3 shows that the L2-Betti numbers and the Fuglede-Kadison determinant
are infinite-dimensional analogues of classical notions. Namely, suppose that π is trivial.
Let T : M −→ N be a C-linear map of finite-dimensional complex vector spaces. Then b(T )
is just the complex dimension of the kernel of T . Provided that T is injective, det(T ) is
the ordinary determinant of T ∗T . The Novikov-Shubin invariant of T is ∞ in this case
and is only relevant in the infinite-dimensional setting. The next lemma contains the basic
properties of the Fuglede-Kadison determinant.

Lemma 4.2 Let M be a finitely generated Hilbert N (π)-module. Let S, T and R be bounded
π-equivariant operators M −→ M . Suppose that S and T have trivial kernel. Then we get:

1.) det(S) = det(S∗) =
√

det(S∗S) =
√

det(SS∗).

2.) If 0 ≤ S (i.e., S is a positive operator), then:

lim
ε→0+

det(S + ε) = det(S).
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3.) If 0 ≤ S ≤ T , then:
det(S) ≤ det(T ).

4.) det(ST ) = det(S) · det(T ).

5.) det

(
S R
0 T

)
= det(S) · det(T ).

Proof : 1.) One easily checks for spectral density functions [22, Lemma 1.12.5]:

F S(λ) = F S∗(λ) = F S∗S(
√

λ) = F SS∗(
√

λ)

and the claim follows.

2.) We have:

F
√

S+ε(λ) = F
√

S(λ− ε)

Since F
√

S(0) = 0, we get:∫ ∞

0+

ln(λ)dF
√

S+ε =

∫ ∞

(−ε)+

ln(λ + ε)dF
√

S

=

∫ 0

−ε+

ln(λ + ε)dF
√

S +

∫ ∞

0+

ln(λ + ε)dF
√

S

= ln(ε) · F
√

S(0) +

∫ ∞

0+

ln(λ + ε)dF
√

S =

∫ ∞

0+

ln(λ + ε)dF
√

S

We conclude from Levi’s theorem of monotone convergence for small b > 0:

lim
ε→0+

∫ b

0+

ln(λ + ε)dF
√

S =

∫ b

0+

ln(λ)dF
√

S

and from Lebesgues’ theorem of majorized convergence:

lim
ε→0+

∫ ∞

b+

ln(λ + ε)dF
√

S =

∫ ∞

b+

ln(λ)dF
√

S

We conclude:

lim
ε→0+

∫ ∞

0+

ln(λ + ε)dF
√

S =

∫ ∞

0+

ln(λ)dF
√

S

This shows:
lim

ε→0+
det(

√
S + ε) = det(

√
S)

Since we have det(S) = det(
√

S)2 by assertion 1), assertion 2.) follows.
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3.) As S + ε is invertible for positive ε, we can assume by assertion 2.) without loss
of generality that S and T are invertible. Since det(ST ) = det(S) · det(T ) holds for for
invertible T and S. Next we want to prove for positive S and positive T the claim:

det(ST 2S) = det(S)2 · det(T )2.

There is a positive constant C satisfying for small ε > 0:

ST 2S ≤ S(T + ε)2S ≤ ST 2S + C · ε

We conclude from assertion 2.) and 3.)

det(ST 2S) = lim
ε→0

(det(S(T + ε)2S)

Suppose S is invertible. Since then S and T + ε are invertible, we have:

det(S(T + ε)2S) = det(S)2 det(T + ε)2

and the claim follows from assertion 2.) We get from assertion 1.) that det(ST 2S) =
det(TS2T ) holds. Hence we have shown the claim provided S and T are positive and one of
the operators S and T is invertible. Now suppose that S and T are positive. Since (T + ε)
is invertible, we conclude

det(ST 2S) = lim
ε→0+

det(S(T + ε)2S) = lim
ε→0+

det(S)2 det(T + ε)2 = det(S) · det(T )

and the claim follows for positive S and T .

To prove assertion 4.) we use the polar decomposition S = UA and T = BV where
U and V are unitary and A and B are positive. Since det(V −1S2V ) = det(S2) holds for
unitary V and invertible positive S, it is true for unitary V and positive S n general because
of assertion 2.) We get using the assertions 1.) to 3.) proved above:

det(ST ) = det(UABV ) =
√

det((UABV )∗(UABV )) =
√

det(V −1BA2BV )

=
√

det(BA2B) =
√

det(A)2 ·
√

det(B)2 =
√

det(S∗S) · det(TT ∗) = det(S) · det(T )

5.) The claim is obvious if R is trivial. Because of assertion 4.) and the equation:(
S R
0 T

)
=

(
1 0
0 T

)
·
(

1 R
0 1

)
·
(

S 0
0 1

)
it suffices to prove:

det

 1 R 0
0 1 0
0 0 1

 = 1

Since this matrix is a commutator, the claim follows. This finishes the proof of Lemma 4.2.
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In general it is very hard to compute these invariants. However, the operators appearing
in geometry come from the cellular chain complexes of certain coverings and live therefore
over the integral group ring. This simplifies the computations as explained below.

Let A ∈ M(n,m, Cπ) be a (n, m)-matrix over Cπ. It induces by right multiplication a
Cπ-homomorphism of left Cπ-modules

RA : ⊕n
i=1Cπ −→ ⊕m

i=1Cπ x 7→ xA

and by completion a bounded π-equivariant operator

RA : ⊕n
i=1l

2(π) −→ ⊕m
i=1l

2(π)

both denoted by RA. Notice for the sequel that RAB = RB ◦ RA holds. We define an
involution of rings on Cπ by ∑

w∈π

λw · w =
∑
w∈π

λw · w−1

Denote by A∗ the (m, n)-matrix obtained from A by transposing and applying the involution
above to each entry. As the notation suggests, the bounded π-equivariant operator RA∗ is
the adjoint of the bounded π-equivariant operator RA. Define the Cπ-trace of an element
u =

∑
w∈π λw · w ∈ Cπ by

trCπ(u) = λe ∈ C

for e the unit element in π. This extends to a square (n, n)-matrix A over Cπ by

trCπ(A) :=
n∑

i=1

trCπ(ai,i)

It follows directly from the definitions that the Cπ-trace trCπ(A) agrees with the von Neu-
mann trace tr(RA) of the bounded π-equivariant operator RA.

Let A ∈ M(n, m, Cπ) be a (n, m)-matrix over Cπ. In the sequel let K be any positive
real number satisfying

K ≥ ‖ RA ‖∞
where ‖ RA ‖∞ is the operator norm of the bounded π-equivariant operator RA. For u =∑

w∈π λw · w ∈ Cπ define ‖ u ‖1 by
∑

w∈π ‖ λw ‖. Then a possible choice for K is given by:

K =
√

m ·max {‖ ai,j ‖1| 1 ≤ i ≤ n, 1 ≤ j ≤ m}

The bounded π-equivariant operator 1−K−2 ·R∗
ARA : ⊕n

i=1l
2(π) −→ ⊕n

i=1l
2(π) is positive.

Let (1−K−2 · A∗A)
p

be the p-fold product of matrices and (1−K−2 ·R∗
ARA)

p
the p-fold

composition of operators.
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Definition 4.3 The characteristic sequence of a matrix A ∈ M(n, m, Cπ) and a non-
negative real number K satisfying K ≥ ‖ RA ‖∞ is the sequence of real numbers

c(A, K)p := trCπ

((
1−K−2 · AA∗)p) = tr

((
1−K−2 ·R∗

ARA

)p)
.

Next we want to prove:

Theorem 4.4 Let A ∈ M(n, m, Cπ) be a (n, m)-matrix over Cπ. Denote by F the spectral
density function of RA. Let K be a positive real number satisfying K ≥ ‖ RA ‖∞. Then:

1.) The characteristic sequence c(A, K)p is a monotone decreasing sequence of non-negative
real numbers.

2.) We have:
b(RA) = lim

p→∞
c(A, K)p.

3.) Define β(A) ∈ R≥0 ∪ {∞} by

β(A) := sup

{
β ∈ R≥0 | lim

p→∞
pβ · (c(A, K)p − b(RA)) = 0

}
Then we have:

α(RA) ≤ β(A).

4.) Let K be any positive real number satisfying K ≥ ‖ RA ‖. Then the sum of positive
real numbers

∞∑
p=1

1

p
· (c(A, K)p − b(RA))

converges if and only if the integral ∫ ∞

0+

ln(λ) dF

does converge. If both converge then:

2 · ln(det(RA)) = 2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
· (c(A, K)p − b(RA)) .

5.) Suppose α(RA) > 0. Then det(RA) is a positive real number. Given a real number α
satisfying 0 < α < α(A), there is a real number C such that we have for all L ≥ 1:

0 ≤ c(A, K)L − b(RA) ≤ C

Lα
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and

0 ≤ −2 · ln(det(RA)) + 2 · (n− b(RA)) · ln(K)−
L∑

p=1

1

p
· (c(A, K)p − b(RA)) ≤ C

Lα

Proof : 1.) The bounded π-equivariant operator

1−K−2 ·R∗
ARA : ⊕n

i=1l
2(π) −→ ⊕n

i=1l
2(π)

is positive and satisfies:
0 ≤ 1−K−2 ·R∗

ARA ≤ 1

This implies for 0 ≤ p ≤ q:

0 ≤
(
1−K−2 ·R∗

ARA

)q ≤ (1−K−2 ·R∗
ARA

)p ≤ 1

and the first assertion follows as the trace is monotone.

Before we can continue with the proof we need the following lemma.

Lemma 4.5 If F (λ) is the spectral density function of RA or A ∈ M(n, m, Cπ) and K
satisfies K ≥ ‖ RA ‖∞, then we get for all λ ∈ [0, 1]:

(1−λ)p ·
(
F (K2 · λ)− F (0)

)
≤ c(A, K)p−b(RA) ≤ F (K2 ·λ)−F (0)+(1−λ)p · (n−F (0))

Proof : We have for µ ∈ [0, ‖RA ‖2
∞]:

(1− λ)p · χ[0,λ](K
−2 · µ) ≤ (1− K−2 · µ)p ≤ χ[0,λ](K

−2 · µ) + (1− λ)p

Hence we get by integrating over µ:∫ ‖RA‖2∞

0

(1− λ)p · χ[0,λ](K
−2 · µ) dF ≤

∫ ‖RA‖2∞

0

(1−K−2 · µ)p dF

≤
∫ ‖RA‖2∞

0

χ[0,λ](K
−2 · µ) + (1− λ)p dF

Now we have:∫ ‖RA‖2∞

0

(1− λ)p · χ[0,λ](K
−2 · µ) dF = (1− λ)p ·

(
F (K2 · λ)− F (0)

)
∫ ‖RA‖2∞

0

(1−K−2 · µ)p dF = tr
((

1−K−2 ·R∗
ARA

)p)− dim(ker(R∗
ARA))∫ ‖RA‖2∞

0

χ[0,λ](K
−2 · µ) + (1− λ)p dF = F (K2 · λ)− F (0)

+(1− λ)p · (F (‖RA ‖2
∞)− F (0))
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This finishes the proof of Lemma 4.5.

2.) If we apply Lemma 4.5 to the value λ = 1− p

√
1
p

we obtain for all positive integers
p:

0 ≤ c(A, K)p − b(RA) ≤ F

(
K2 ·

(
1− p

√
1

p

))
− F (0) +

n− F (0)

p

We get limx→0+ x · ln(x) = 0 from l’Hospital’s rule. This implies:

lim
p→∞

1− p

√
1

p
= 0

Since the spectral density function is right continuous assertion 2.) of Theorem 4.4 follows.

3.) Let β and α be any real number satisfying

0 < β < α < α(RA).

Choose a real number γ satisfying
β

α
< γ < 1.

We conclude from Lemma 4.5 for λ = p−γ

0 ≤ c(A, K)p − b(RA) ≤ F (K2 · p−γ)− F (0) + (1− p−γ)p · (n− F (0))

By the definition of α(RA) there is δ > 0 such that we have for 0 < λ < δ:

F (λ)− F (0) ≤ λα

The last two inequalities imply for p satisfying p−γ < δ:

0 ≤ pβ · (c(A, K)p − b(RA)) ≤ pβ ·
(
(K2 · p−γ)α + (1− p−γ)p · (n− F (0))

)
We get using l’Hospital’s rule:

lim
x→∞

x · ln(1− x−γ) = −∞

lim
x→∞

ln(x)

x ln(1− x−γ)
= 0

lim
x→∞

(
β ln(x)

x ln(1− x−γ)
+ 1

)
= 1

lim
x→∞

β ln(x) + x ln(1− x−γ) = −∞

lim
x→∞

xβ(1− x−γ)x = 0

Since β − γα < 0 holds we have:

lim
x→∞

(K2 · x)β−γα = 0
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Hence we get:
lim
p→∞

pβ ·
(
(K2 · p−γ)α + (1− p−γ)p · (n− F (0))

)
= 0

This implies using the inequality above:

lim
p→∞

pβ · (c(A, K)p − b(RA)) = 0

We have shown β ≤ β(A). Since β was an arbitrary number satisfying 0 < β < α(RA),
assertion 3.) of Theorem 4.4 follows.

4.) We get the following chain of equations where a sum or integral is put to be −∞ if and
only if it does not converge.

2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
· (c(A, K)p − b(RA))

= 2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
·
(
trCπ

((
1−K−2 · AA∗)p)− b(RA)

)
= 2 · (n− b(RA)) · ln(K)−

∞∑
p=1

1

p
·
(
tr
((

1−K−2 ·R∗
ARA

)p)− b(RA)
)

= 2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
· tr

(∫ ‖RA‖2∞

0

(
1−K−2 · λ

)p
dEλ

)

Since the trace is linear, monotone and ultra-weakly continuous, we get further:

= 2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
·
∫ ‖RA‖2∞

0

(
1−K−2 · λ

)p
dtr(Eλ)

= 2 · (n− b(RA)) · ln(K)−
∞∑

p=1

1

p
·
∫ ‖RA‖2∞

0+

(
1−K−2 · λ

)p
dF

We can put the sum under the integral sign because of Levi’s theorem of monotone conver-
gence since (1−K−2 · λ)

p
is non-negative for 0 < λ ≤‖ RA ‖2

∞≤ K2:

= 2 · (n− b(RA)) · ln(K)−
∫ ‖RA‖2∞

0+

∞∑
p=1

1

p
·
(
1−K−2 · λ

)p
dF
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The Taylor series −
∑∞

p=1
1
p
· (1− µ)p of ln(µ) about 1 converges for |1− µ| < 1.

= 2 · (n− b(RA)) · ln(K) +
‖RA‖2∞
0+ ln(K−2 · λ) dF

= 2 · (n− b(RA)) · ln(K) +

∫ ‖RA‖2∞

0+

ln(λ) dF −
∫ ‖A‖2∞

0+

ln(K2) dF

= 2 · (n− b(RA)) · ln(K) +

∫ ‖RA‖2∞

0+

ln(λ) dF − ln(K2) · (F (‖A‖2
∞)− F (0))

= 2 · (n− b(RA)) · ln(K) +

∫ ‖RA‖2∞

0+

ln(λ) dF − ln(K2) · (n− b(RA))

=

∫ ‖RA‖2∞

0+

ln(λ) dF

=

∫ ∞

0+

ln(λ) dF

5.) Let α be any number satisfying α < α(RA). Then we conclude from assertion 3.)

lim
p→∞

pα (c(A, K)p − b(RA)) = 0.

Let C be any positive number such that for all p:

pα (c(A, K)p − b(RA)) ≤ C

We conclude:

0 ≤ c(A, K)p − b(RA) ≤ C

pα

Next we estimate

0 ≤ −2 · ln(det(A)) + 2(n− b(RA)) · ln(K)−
L∑

p=1

1

p
· (c(A, K)p − b(RA)) =

∞∑
p=L+1

1

p
· (c(A, K)p − b(RA)) =

∞∑
p=L+1

p−1−α · (pα · (c(A, K)p − b(RA))) ≤

C ·
∞∑

p=L+1

p−1−α ≤

C ·
∫ ∞

L

x−1−αdx =
C

α
· L−α

This finishes the proof of Theorem 4.4.
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Remark 4.6 We conjecture that the inequality α(RA) ≤ β(A) of Theorem 4.4.3 is a equal-
ity. Define a number

β(A) := inf

{
β ∈ R≥0 | lim

p→∞
pβ · (c(A, K)p − b(RA)) = ∞

}
If F denotes the spectral density function of RA, define the number α(RA) to be

α(RA) = lim sup
λ→0+

ln(F (λ)− F (0))

ln(λ)

provided F (λ) > b(RA) holds for λ > 0. Otherwise put α(RA) = ∞. Then one can check
analogously as in the proof of Theorem 4.4.3 that

α(RA) ≤ β(A) ≤ β(A) ≤ α(RA)

holds. We conjecture that all these four numbers are the same for a (n,m)-matrix A over
Cπ. Notice hat there are no known counterexamples to the equality of α and α if one
considers the large time behaviour of the heat kernel of the universal covering of a compact
Riemannian manifold (see [17]). em
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