Introduction to L^{2}-invariants

Wolfgang Lück Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Madrid, February 2018

Some appetizers

Theorem

Let G be a group with finite classifying space BG. Suppose that G contains a normal infinite solvable subgroup. Then

$$
\chi(B G)=0
$$

Theorem

Let M be a closed hyperbolic manifold of even dimension $n=2 k$. Then

$$
(-1)^{k} \cdot \chi(M)>0
$$

and every S^{1}-action on M is trivial.

Theorem

Let $1 \rightarrow H \xrightarrow{i} G \xrightarrow{q} K \rightarrow 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented and H is finitely generated. Then:
(1) defi $(G) \leq 1$;
(2) Let M be a closed oriented 4 -manifold with G as fundamental group. Then

$$
|\operatorname{sign}(M)| \leq \chi(M) .
$$

Conjecture (Zero-divisor Conjecture)

Let F be a field of characteristic zero and G be a torsionfree group. Then the group ring FG has no non-trivial zero-divisors.

Theorem

Let M be a closed Kähler manifold. Suppose that it admits some Riemannian metric with negative sectional curvature.
Then M is a projective algebraic variety.

- The point is that the statements of these theorems have nothing to do with L^{2}-invariants, but their proofs have. This list can be extended considerably.

Basic motivation

- Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group π into account.
- Examples:

Classical notion
Homology with coefficients in \mathbb{Z}
Euler characteristic $\in \mathbb{Z}$

Signature $\in \mathbb{Z}$

Generalized version Homology with coefficients in representations of π
Walls finiteness obstruction in $K_{0}(\mathbb{Z} \pi)$
Surgery invariants in $L_{*}(\mathbb{Z} \pi)$ torsion invariants

- We want to apply this principle to (classical) Betti numbers

$$
b_{n}(X):=\operatorname{dim}_{\mathbb{C}}\left(H_{n}(X ; \mathbb{C})\right)
$$

- Here are two naive attempts which fail:
- $\operatorname{dim}_{\mathbb{C}}\left(H_{n}(\widetilde{X} ; \mathbb{C})\right)$
- $\operatorname{dim}_{\mathbb{C} \pi}\left(H_{n}(\widetilde{X} ; \mathbb{C})\right)$, where $\operatorname{dim}_{\mathbb{C} \pi}(M)$ for a $\mathbb{C} \pi$-module could be chosen for instance as $\operatorname{dim}_{\mathbb{C}}\left(\mathbb{C} \otimes_{\mathbb{C} \pi} M\right)$.
- The problem is that $\mathbb{C} \pi$ is in general not Noetherian and $\operatorname{dim}_{\mathbb{C} \pi}(M)$ is in general not additive under exact sequences.
- We will use the following successful approach which is essentially due to Atiyah and motivated by L^{2}-index theory.

Group von Neumann algebras

- Given a ring R and a group G, denote by $R G$ the group ring.
- Elements are formal sums $\sum_{g \in G} r_{g} \cdot g$, where $r_{g} \in R$ and only finitely many of the coefficients r_{g} are non-zero.
- Addition is given by adding the coefficients.
- Multiplication is given by the expression $g \cdot h:=g \cdot h$ for $g, h \in G$ (with two different meanings of •).
- In general $R G$ is a very complicated ring.
- Denote by $L^{2}(G)$ the Hilbert space of (formal) sums $\sum_{g \in G} \lambda_{g} \cdot g$ such that $\lambda_{g} \in \mathbb{C}$ and $\sum_{g \in G}\left|\lambda_{g}\right|^{2}<\infty$.

Definition

Define the group von Neumann algebra

$$
\mathcal{N}(G):=\mathcal{B}\left(L^{2}(G), L^{2}(G)\right)^{G}=\overline{\mathbb{C}}^{\text {weak }}
$$

to be the algebra of bounded G-equivariant operators $L^{2}(G) \rightarrow L^{2}(G)$. The von Neumann trace is defined by

$$
\operatorname{tr}_{\mathcal{N}(G)}: \mathcal{N}(G) \rightarrow \mathbb{C}, \quad f \mapsto\langle f(e), e\rangle_{L^{2}(G)}
$$

Example (Finite G)

If G is finite, then $\mathbb{C} G=L^{2}(G)=\mathcal{N}(G)$. The trace $\operatorname{tr}_{\mathcal{N}(G)}$ assigns to $\sum_{g \in G} \lambda_{g} \cdot g$ the coefficient λ_{e}.

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $L^{2}\left(T^{n}\right)$ be the Hilbert space of L^{2}-integrable functions $T^{n} \rightarrow \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^{n}-equivariant isomorphism

$$
L^{2}\left(\mathbb{Z}^{n}\right) \xlongequal{\cong} L^{2}\left(T^{n}\right) .
$$

Let $L^{\infty}\left(T^{n}\right)$ be the Banach space of essentially bounded measurable functions $f: T^{n} \rightarrow \mathbb{C}$. We obtain an isomorphism

$$
L^{\infty}\left(T^{n}\right) \xlongequal{\rightrightarrows} \mathcal{N}\left(\mathbb{Z}^{n}\right), \quad f \mapsto M_{f}
$$

where $M_{f}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ is the bounded \mathbb{Z}^{n}-operator $g \mapsto g \cdot f$.
Under this identification the trace becomes

$$
\operatorname{tr}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}: L^{\infty}\left(T^{n}\right) \rightarrow \mathbb{C}, \quad f \mapsto \int_{T^{n}} f d \mu
$$

von Neumann dimension

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$-module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^{2}(G)^{n}$ for some $n \geq 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$-modules $f: V \rightarrow W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let V be a finitely generated Hilbert $\mathcal{N}(G)$-module. Choose a G-equivariant projection $p: L^{2}(G)^{n} \rightarrow L^{2}(G)^{n}$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of V by

$$
\operatorname{dim}_{\mathcal{N}(G)}(V):=\operatorname{tr}_{\mathcal{N}(G)}(p):=\sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}\left(p_{i, i}\right) \quad \in \mathbb{R}^{\geq 0}
$$

Example (Finite G)

For finite G a finitely generated Hilbert $\mathcal{N}(G)$-module V is the same as a unitary finite dimensional G-representation and

$$
\operatorname{dim}_{\mathcal{N}(G)}(V)=\frac{1}{|G|} \cdot \operatorname{dim}_{\mathbb{C}}(V)
$$

Example $\left(G=\mathbb{Z}^{n}\right)$

Let G be \mathbb{Z}^{n}. Let $X \subset T^{n}$ be any measurable set with characteristic function $\chi_{x} \in L^{\infty}\left(T^{n}\right)$. Let $M_{\chi x}: L^{2}\left(T^{n}\right) \rightarrow L^{2}\left(T^{n}\right)$ be the \mathbb{Z}^{n}-equivariant unitary projection given by multiplication with χ_{x}. Its image V is a Hilbert $\mathcal{N}\left(\mathbb{Z}^{n}\right)$-module with

$$
\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)=\operatorname{vol}(X)
$$

In particular each $r \in \mathbb{R}^{\geq 0}$ occurs as $r=\operatorname{dim}_{\mathcal{N}\left(\mathbb{Z}^{n}\right)}(V)$.

Theorem (Main properties of the von Neumann dimension)

- Faithfulness

We have for a finitely generated Hilbert $\mathcal{N}(G)$-module V

$$
V=0 \Longleftrightarrow \operatorname{dim}_{\mathcal{N}(G)}(V)=0 ;
$$

(2) Additivity

If $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ is a weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$-modules, then

$$
\operatorname{dim}_{\mathcal{N}(G)}(U)+\operatorname{dim}_{\mathcal{N}(G)}(W)=\operatorname{dim}_{\mathcal{N}(G)}(V) ;
$$

(0) Cofinality

Let $\left\{V_{i} \mid i \in I\right\}$ be a directed system of Hilbert $\mathcal{N}(G)$ - submodules of V, directed by inclusion. Then

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\overline{\bigcup_{i \in I} V_{i}}\right)=\sup \left\{\operatorname{dim}_{\mathcal{N}(G)}\left(V_{i}\right) \mid i \in l\right\} .
$$

L^{2}-homology and L^{2}-Betti numbers

Definition (L^{2}-homology and L^{2}-Betti numbers)

Let X be a connected $C W$-complex of finite type. Let \widetilde{X} be its universal covering and $\pi=\pi_{1}(M)$. Denote by $C_{*}(\widetilde{X})$ its cellular $\mathbb{Z} \pi$-chain complex.
Define its cellular L^{2}-chain complex to be the Hilbert $\mathcal{N}(\pi)$-chain complex

$$
C_{*}^{(2)}(\widetilde{X}):=L^{2}(\pi) \otimes_{\mathbb{Z} \pi} C_{*}(\widetilde{X})=\overline{C_{*}(\widetilde{X})} .
$$

Define its n-th L^{2}-homology to be the finitely generated Hilbert $\mathcal{N}(G)$-module

$$
H_{n}^{(2)}(\widetilde{X}):=\operatorname{ker}\left(c_{n}^{(2)}\right) / \overline{\operatorname{im}\left(c_{n+1}^{(2)}\right)} .
$$

Define its n-th L^{2}-Betti number

$$
b_{n}^{(2)}(\widetilde{X}):=\operatorname{dim}_{\mathcal{N}(\pi)}\left(H_{n}^{(2)}(\widetilde{X})\right) \quad \in \mathbb{R}^{\geq 0} .
$$

Theorem (Main properties of L^{2}-Betti numbers)

Let X and Y be connected CW-complexes of finite type.

- Homotopy invariance

If X and Y are homotopy equivalent, then

$$
b_{n}^{(2)}(\widetilde{X})=b_{n}^{(2)}(\widetilde{Y}) ;
$$

- Euler-Poincaré formula

We have

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{X}) ;
$$

- Poincaré duality

Let M be a closed manifold of dimension d. Then

$$
b_{n}^{(2)}(\widetilde{M})=b_{d-n}^{(2)}(\widetilde{M}) ;
$$

Theorem (Continued)

- Künneth formula

$$
b_{n}^{(2)}(\widetilde{X \times Y})=\sum_{p+q=n} b_{p}^{(2)}(\widetilde{X}) \cdot b_{q}^{(2)}(\widetilde{Y}) ;
$$

- Zero-th L²-Betti number

We have

$$
b_{0}^{(2)}(\tilde{X})=\frac{1}{|\pi|} ;
$$

- Finite coverings

If $X \rightarrow Y$ is a finite covering with d sheets, then

$$
b_{n}^{(2)}(\tilde{X})=d \cdot b_{n}^{(2)}(\tilde{Y}) .
$$

Example (Finite π)

If π is finite then

$$
b_{n}^{(2)}(\widetilde{X})=\frac{b_{n}(\widetilde{X})}{|\pi|}
$$

Example ($\pi=\mathbb{Z}^{d}$)

Let X be a connected $C W$-complex of finite type with fundamental group \mathbb{Z}^{d}. Let $\mathbb{C}\left[\mathbb{Z}^{d}\right]^{(0)}$ be the quotient field of the commutative integral domain $\mathbb{C}\left[\mathbb{Z}^{d}\right]$. Then

$$
b_{n}^{(2)}(\widetilde{X})=\operatorname{dim}_{\left.\mathbb{C}\left[\mathbb{Z}^{d}\right]^{0}\right)}\left(\mathbb{C}\left[\mathbb{Z}^{d}\right]^{(0)} \otimes_{\mathbb{Z}\left[\mathbb{Z}^{d}\right]} H_{n}(\widetilde{X})\right)
$$

Obviously this implies

$$
b_{n}^{(2)}(\widetilde{X}) \in \mathbb{Z} .
$$

Some computations and results

Theorem (S^{1}-actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S^{1}-action. Then we get for $n \geq 0$

$$
\begin{aligned}
b_{n}^{(2)}(\tilde{M}) & =0 \\
\chi(M) & =0
\end{aligned}
$$

Theorem (mapping tori, Lück)

Let $f: X \rightarrow X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_{f} be the mapping torus. Then

$$
b_{n}^{(2)}\left(\widetilde{T}_{f}\right)=0 \quad \text { for } n \geq 0
$$

Theorem (L^{2}-Hodge - de Rham Theorem, Dodziuk)

Let M be a closed Riemannian manifold. Put

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M})=\left\{\widetilde{\omega} \in \Omega^{n}(\widetilde{M}) \mid \widetilde{\Delta}_{n}(\widetilde{\omega})=0,\|\widetilde{\omega}\|_{L^{2}}<\infty\right\}
$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$-modules

$$
\mathcal{H}_{(2)}^{n}(\widetilde{M}) \stackrel{\cong}{\Rightarrow} H_{(2)}^{n}(\widetilde{M}) .
$$

Corollary (L^{2}-Betti numbers and heat kernels)

$$
b_{n}^{(2)}(\widetilde{M})=\lim _{t \rightarrow \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}\left(e^{-t \widetilde{\Delta}_{n}}(\tilde{x}, \tilde{x})\right) d \mathrm{vol} .
$$

where $e^{-t \tilde{\Delta}_{n}}(\tilde{X}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π-action.

Theorem (hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$
b_{n}^{(2)}(\widetilde{M})= \begin{cases}=0 & , \text { if } 2 n \neq d ; \\ >0 & \text {, if } 2 n=d .\end{cases}
$$

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then
(1) If $d=2 m$ is even, then

$$
(-1)^{m} \cdot \chi(M)>0
$$

(2) Every S^{1}-action on M is trivial S^{1}.

Theorem (3-manifolds, Lott-Lück)

Let the 3-manifold M be the connected sum $M_{1} \sharp \ldots \sharp M_{r}$ of (compact connected orientable) prime 3-manifolds M_{j}. Assume that $\pi_{1}(M)$ is infinite. Then

$$
\begin{aligned}
b_{1}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|}-\chi(M) \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{2}^{(2)}(\widetilde{M})= & (r-1)-\sum_{j=1}^{r} \frac{1}{\left|\pi_{1}\left(M_{j}\right)\right|} \\
& \quad+\left|\left\{C \in \pi_{0}(\partial M) \mid C \cong S^{2}\right\}\right| ; \\
b_{n}^{(2)}(\widetilde{M})= & 0 \text { for } n \neq 1,2 .
\end{aligned}
$$

The fundamental square and the Atiyah Conjecture

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_{1}(M) \cong G$ we have for every $n \geq 0$

$$
b_{n}^{(2)}(\widetilde{M}) \in \mathbb{Z} .
$$

- All computations presented above support the Atiyah Conjecture.
- The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- $\mathcal{D}(G)$ is the division closure of $\mathbb{Z} G$ in $\mathcal{U}(G)$, i.e., the smallest subring of $\mathcal{U}(G)$ containing $\mathbb{Z} G$ such that every element in $\mathcal{D}(G)$, which is a unit in $\mathcal{U}(G)$, is already a unit in $\mathcal{D}(G)$ itself.
- If G is finite, its is given by

- If $G=\mathbb{Z}$, it is given by

- If G is elementary amenable torsionfree, then $\mathcal{D}(G)$ can be identified with the Ore localization of $\mathbb{Z} G$ with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases $\mathcal{D}(G)$ is the right replacement.
- This aspect has recently played an important role in the construction of new invariants for 3-manifolds such as the universal L^{2}-torsion or the L^{2}-polytope by Friedl-Lück.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

- A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix $A \in M_{m, n}(\mathbb{Q} G)$ the von Neumann dimension

$$
\operatorname{dim}_{\mathcal{N}(G)}\left(\operatorname{ker}\left(r_{A}: L^{2}(G)^{m} \rightarrow L(G)^{n}\right)\right)
$$

is an integer. In this case this dimension agrees with

$$
\operatorname{dim}_{\mathcal{D}(G)}\left(r_{A}: \mathcal{D}(G)^{m} \rightarrow \mathcal{D}(G)^{n}\right) .
$$

- The general version above is equivalent to the one stated before if G is finitely presented.
- An even stronger version allows $A \in M_{m, n}(\mathbb{C} G)$.
- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero F the group ring $F G$ has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an L^{2}-Betti number which is irrational, see Austin, Grabowski.

Theorem (Linnell)

Let \mathcal{C} be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions.

Then every torsionfree group G which belongs to \mathcal{C} satisfies the Atiyah Conjecture (over \mathbb{C}).

- Strategy to prove the Atiyah Conjecture:
(1) Show that $K_{0}(\mathbb{C}) \rightarrow K_{0}(\mathbb{C} G)$ is surjective.
(2) Show that $K_{0}(\mathbb{C} G) \rightarrow K_{0}(\mathcal{D}(G))$ is surjective.
(3) Show that $\mathcal{D}(G)$ is semisimple.
- Notice that the Atiyah Conjecture originally was statement about an invariant extracted from the heat kernel of the universal covering, namely about the the analytic L^{2}-Betti number.
- However, the strategy described above is based on and requires K-theoretic and ring theoretic input.

Approximation

- In general there are no relations between the Betti numbers $b_{n}(X)$ and the L^{2}-Betti numbers $b_{n}^{(2)}(\widetilde{X})$ for a connected $C W$-complex X of finite type except for the Euler Poincaré formula

$$
\chi(X)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{X})=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}(X)
$$

Theorem (Approximation Theorem, Lück)

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$
\pi=G_{0} \supset G_{1} \supset G_{2} \supset \ldots
$$

of normal subgroups of finite index with $\cap_{i \geq 1} G_{i}=\{1\}$. Let X_{i} be the finite $\left[\pi: G_{i}\right]$-sheeted covering of X associated to G_{i}.

Then for any such sequence $\left(G_{i}\right)_{i \geq 1}$

$$
b_{n}^{(2)}(\widetilde{X})=\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]}
$$

- Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L^{2}-Betti numbers are. With the expression

$$
\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i}\right)}{\left[G: G_{i}\right]},
$$

we try to force the Betti numbers to be multiplicative by a limit process.

- The theorem above says that L^{2}-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.
- Let p be a prime and \mathbb{F}_{p} be the field with p elements.

Conjecture (Approximation Conjecture in characteristic p)

Let X be a connected aspherical CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$
\pi=G_{0} \supset G_{1} \supset G_{2} \supset \ldots
$$

of normal subgroups of finite index with $\cap_{i \geq 1} G_{i}=\{1\}$. Let X_{i} be the finite $\left[\pi: G_{i}\right]$-sheeted covering of X associated to G_{i}.

Then for any such sequence $\left(G_{i}\right)_{i \geq 1}$

$$
b_{n}^{(2)}(\widetilde{X})=\lim _{i \rightarrow \infty} \frac{b_{n}\left(X_{i} ; \mathbb{F}_{p}\right)}{\left[G: G_{i}\right]}
$$

- Schick used approximation techniques to prove the Atiyah Conjecture for matrices over $\mathbb{Q} G$ for a large class of groups.
- A lot of work has been done by Jaikin-Zapirain to extend this from $\mathbb{Q} G$ to $\mathbb{C} G$ using ring theoretic methods.

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$
b_{n}^{(2)}(\widetilde{M})=0 \quad \text { if } 2 n \neq \operatorname{dim}(M)
$$

If M is a closed Riemannian manifold with negative sectional curvature, then

$$
b_{n}^{(2)}(\tilde{M}) \begin{cases}=0 & \text { if } 2 n \neq \operatorname{dim}(M) \\ >0 & \text { if } 2 n=\operatorname{dim}(M)\end{cases}
$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.
- Because of the Euler-Poincaré formula

$$
\chi(M)=\sum_{n \geq 0}(-1)^{n} \cdot b_{n}^{(2)}(\widetilde{M})
$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature $\sec (M)$, then

$$
\begin{array}{rlll}
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & >0 & \text { if } \sec (M) & <0 ; \\
(-1)^{\operatorname{dim}(M) / 2} \cdot \chi(M) & \geq 0 & \text { if } \sec (M) \leq 0 ; \\
\chi(M) & =0 & \text { if } \sec (M)=0 ; \\
\chi(M) & \geq 0 & \text { if } \sec (M) \geq 0 ; \\
\chi(M) & >0 & \text { if } \sec (M)>0 .
\end{array}
$$

Theorem (Gromov)

Let M be a closed Kähler manifold of complex dimension c. Suppose that it admits some Riemannian metric with negative sectional curvature. Then

$$
\begin{aligned}
b_{n}^{(2)}(\widetilde{M}) & =0 \quad \text { if } n \neq c \\
b_{n}^{(2)}(\widetilde{M}) & >\text { if } n=c \\
(-1)^{m} \cdot \chi(M) & >0
\end{aligned}
$$

Moreover, M is a projective algebraic variety.

Further important problems or connections

- Conjecture about the equality of the first L^{2}-Betti number, cost, and rank gradients of groups, e.g., the Fixed Prize Conjecture.
- L2-invariants and measured and geometric group theory
- Zero-in-the-spectum Conjecture.
- Determinant Conjecture.
- The Conjecture of Bergeron-Venkatesh for the growth of the torsion part of the homology and L^{2}-torsion.
- Conjecture about the vanishing of all L^{2}-invariants for closed aspherical manifolds with vanishing simplical volume.
- L2-invariants and K-theory.
- L2-invariants and entropy.
- L^{2}-invariants and graph theory.
- Twisted L^{2}-invariants and 3-manifolds.
- Applications to von Neumann algebras.
- and so on.

