Introduction to L^2 -invariants

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Madrid, February 2018

Theorem

Let G be a group with finite classifying space BG. Suppose that G contains a normal infinite solvable subgroup. Then

 $\chi(BG)=0.$

Theorem

Let M be a closed hyperbolic manifold of even dimension n = 2k. Then

$$(-1)^k \cdot \chi(M) > 0,$$

and every S¹-action on M is trivial.

Theorem

Let $1 \to H \xrightarrow{i} G \xrightarrow{q} K \to 1$ be an exact sequence of infinite groups. Suppose that G is finitely presented and H is finitely generated. Then:

- defi(G) \leq 1;
- Let M be a closed oriented 4-manifold with G as fundamental group. Then

 $\operatorname{sign}(M) | \leq \chi(M).$

Conjecture (Zero-divisor Conjecture)

Let F be a field of characteristic zero and G be a torsionfree group. Then the group ring FG has no non-trivial zero-divisors.

Theorem

Let M be a closed Kähler manifold. Suppose that it admits some Riemannian metric with negative sectional curvature. Then M is a projective algebraic variety.

• The point is that the statements of these theorems have nothing to do with *L*²-invariants, but their proofs have. This list can be extended considerably.

Basic motivation

 Given an invariant for finite CW-complexes, one can get much more sophisticated versions by passing to the universal covering and defining an analogue taking the action of the fundamental group π into account.

• Examples:

Classical notion

Homology with coefficients in \mathbb{Z} Euler characteristic $\in \mathbb{Z}$

Signature $\in \mathbb{Z}$

Generalized version

Homology with coefficients in representations of π Walls finiteness obstruction in $K_0(\mathbb{Z}\pi)$ Surgery invariants in $L_*(\mathbb{Z}\pi)$ torsion invariants We want to apply this principle to (classical) Betti numbers

 $b_n(X) := \dim_{\mathbb{C}}(H_n(X;\mathbb{C})).$

- Here are two naive attempts which fail:
 - dim_{\mathbb{C}}($H_n(\widetilde{X};\mathbb{C})$)
 - dim_{Cπ}(H_n(X̃; C)), where dim_{Cπ}(M) for a Cπ-module could be chosen for instance as dim_C(C ⊗_{Cπ} M).
- The problem is that Cπ is in general not Noetherian and dim_{Cπ}(M) is in general not additive under exact sequences.
- We will use the following successful approach which is essentially due to Atiyah and motivated by L²-index theory.

- Given a ring *R* and a group *G*, denote by *RG* the group ring.
- Elements are formal sums $\sum_{g \in G} r_g \cdot g$, where $r_g \in R$ and only finitely many of the coefficients r_g are non-zero.
- Addition is given by adding the coefficients.
- Multiplication is given by the expression *g* ⋅ *h* := *g* ⋅ *h* for *g*, *h* ∈ *G* (with two different meanings of ·).
- In general *RG* is a very complicated ring.

Denote by L²(G) the Hilbert space of (formal) sums ∑_{g∈G} λ_g ⋅ g such that λ_g ∈ C and ∑_{g∈G} |λ_g|² < ∞.

Definition

Define the group von Neumann algebra

$$\mathcal{N}(G) := \mathcal{B}(L^2(G), L^2(G))^G = \overline{\mathbb{C}G}^{\mathsf{weak}}$$

to be the algebra of bounded *G*-equivariant operators $L^2(G) \rightarrow L^2(G)$. The von Neumann trace is defined by

$$\operatorname{tr}_{\mathcal{N}(G)} \colon \mathcal{N}(G) \to \mathbb{C}, \quad f \mapsto \langle f(e), e \rangle_{L^2(G)}.$$

Example (Finite G)

If *G* is finite, then $\mathbb{C}G = L^2(G) = \mathcal{N}(G)$. The trace tr_{$\mathcal{N}(G)$} assigns to $\sum_{g \in G} \lambda_g \cdot g$ the coefficient λ_e .

Example ($G = \mathbb{Z}^n$)

Let *G* be \mathbb{Z}^n . Let $L^2(T^n)$ be the Hilbert space of L^2 -integrable functions $T^n \to \mathbb{C}$. Fourier transform yields an isometric \mathbb{Z}^n -equivariant isomorphism

$$L^2(\mathbb{Z}^n) \xrightarrow{\cong} L^2(T^n).$$

Let $L^{\infty}(T^n)$ be the Banach space of essentially bounded measurable functions $f: T^n \to \mathbb{C}$. We obtain an isomorphism

$$L^{\infty}(T^n) \xrightarrow{\cong} \mathcal{N}(\mathbb{Z}^n), \quad f \mapsto M_f$$

where $M_f \colon L^2(T^n) \to L^2(T^n)$ is the bounded \mathbb{Z}^n -operator $g \mapsto g \cdot f$.

Under this identification the trace becomes

$$\operatorname{tr}_{\mathcal{N}(\mathbb{Z}^n)} \colon L^{\infty}(T^n) \to \mathbb{C}, \quad f \mapsto \int_{T^n} f d\mu.$$

Definition (Finitely generated Hilbert module)

A finitely generated Hilbert $\mathcal{N}(G)$ -module V is a Hilbert space V together with a linear isometric G-action such that there exists an isometric linear G-embedding of V into $L^2(G)^n$ for some $n \ge 0$. A map of finitely generated Hilbert $\mathcal{N}(G)$ -modules $f: V \to W$ is a bounded G-equivariant operator.

Definition (von Neumann dimension)

Let *V* be a finitely generated Hilbert $\mathcal{N}(G)$ -module. Choose a *G*-equivariant projection $p: L^2(G)^n \to L^2(G)^n$ with $\operatorname{im}(p) \cong_{\mathcal{N}(G)} V$. Define the von Neumann dimension of *V* by

$$\dim_{\mathcal{N}(G)}(V) := \operatorname{tr}_{\mathcal{N}(G)}(\rho) := \sum_{i=1}^{n} \operatorname{tr}_{\mathcal{N}(G)}(\rho_{i,i}) \quad \in \mathbb{R}^{\geq 0}.$$

Example (Finite G)

For finite *G* a finitely generated Hilbert $\mathcal{N}(G)$ -module *V* is the same as a unitary finite dimensional *G*-representation and

$$\dim_{\mathcal{N}(G)}(V) = rac{1}{|G|} \cdot \dim_{\mathbb{C}}(V).$$

Example ($G = \mathbb{Z}^n$)

Let *G* be \mathbb{Z}^n . Let $X \subset T^n$ be any measurable set with characteristic function $\chi_X \in L^{\infty}(T^n)$. Let $M_{\chi_X} \colon L^2(T^n) \to L^2(T^n)$ be the \mathbb{Z}^n -equivariant unitary projection given by multiplication with χ_X . Its image *V* is a Hilbert $\mathcal{N}(\mathbb{Z}^n)$ -module with

$$\dim_{\mathcal{N}(\mathbb{Z}^n)}(V) = \operatorname{vol}(X).$$

In particular each $r \in \mathbb{R}^{\geq 0}$ occurs as $r = \dim_{\mathcal{N}(\mathbb{Z}^n)}(V)$.

Theorem (Main properties of the von Neumann dimension)

Faithfulness

We have for a finitely generated Hilbert $\mathcal{N}(G)$ -module V

$$V = 0 \iff \dim_{\mathcal{N}(G)}(V) = 0;$$

2 Additivity

If $0 \to U \to V \to W \to 0$ is a weakly exact sequence of finitely generated Hilbert $\mathcal{N}(G)$ -modules, then

$$\dim_{\mathcal{N}(G)}(U) + \dim_{\mathcal{N}(G)}(W) = \dim_{\mathcal{N}(G)}(V);$$

Cofinality

Let $\{V_i \mid i \in I\}$ be a directed system of Hilbert $\mathcal{N}(G)$ - submodules of V, directed by inclusion. Then

$$\dim_{\mathcal{N}(G)}\left(\overline{\bigcup_{i\in I}V_i}\right) = \sup\{\dim_{\mathcal{N}(G)}(V_i) \mid i \in I\}.$$

Definition (L^2 -homology and L^2 -Betti numbers)

Let X be a connected *CW*-complex of finite type. Let \widetilde{X} be its universal covering and $\pi = \pi_1(M)$. Denote by $C_*(\widetilde{X})$ its cellular $\mathbb{Z}\pi$ -chain complex.

Define its cellular L^2 -chain complex to be the Hilbert $\mathcal{N}(\pi)$ -chain complex

$$\mathcal{C}^{(2)}_{*}(\widetilde{X}) := L^{2}(\pi) \otimes_{\mathbb{Z}\pi} \mathcal{C}_{*}(\widetilde{X}) = \overline{\mathcal{C}_{*}(\widetilde{X})}.$$

Define its *n*-th L^2 -homology to be the finitely generated Hilbert $\mathcal{N}(G)$ -module

$$H_n^{(2)}(\widetilde{X}) := \ker(c_n^{(2)}) / \overline{\operatorname{im}(c_{n+1}^{(2)})}.$$

Define its *n*-th *L*²-Betti number

$$b^{(2)}_n(\widetilde{X}):=\dim_{\mathcal{N}(\pi)}ig(H^{(2)}_n(\widetilde{X})ig) \in \mathbb{R}^{\geq 0}.$$

Theorem (Main properties of L^2 -Betti numbers)

Let X and Y be connected CW-complexes of finite type.

Homotopy invariance

If X and Y are homotopy equivalent, then

$$b_n^{(2)}(\widetilde{X}) = b_n^{(2)}(\widetilde{Y});$$

• Euler-Poincaré formula We have

$$\chi(X) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{X});$$

Poincaré duality

Let M be a closed manifold of dimension d. Then

$$b_n^{(2)}(\widetilde{M}) = b_{d-n}^{(2)}(\widetilde{M});$$

Theorem (Continued)

• Künneth formula

$$b_n^{(2)}(\widetilde{X \times Y}) = \sum_{p+q=n} b_p^{(2)}(\widetilde{X}) \cdot b_q^{(2)}(\widetilde{Y});$$

$$b_0^{(2)}(\widetilde{X})=\frac{1}{|\pi|};$$

• Finite coverings
If
$$X \to Y$$
 is a finite covering with d sheets, then
 $b_n^{(2)}(\widetilde{X}) = d \cdot b_n^{(2)}(\widetilde{Y}).$

Example (Finite π)

If π is finite then

$$b_n^{(2)}(\widetilde{X}) = rac{b_n(\widetilde{X})}{|\pi|}$$

Example $(\pi = \mathbb{Z}^d)$

Let *X* be a connected *CW*-complex of finite type with fundamental group \mathbb{Z}^d . Let $\mathbb{C}[\mathbb{Z}^d]^{(0)}$ be the quotient field of the commutative integral domain $\mathbb{C}[\mathbb{Z}^d]$. Then

$$b_n^{(2)}(\widetilde{X}) = \dim_{\mathbb{C}[\mathbb{Z}^d]^{(0)}} \left(\mathbb{C}[\mathbb{Z}^d]^{(0)} \otimes_{\mathbb{Z}[\mathbb{Z}^d]} H_n(\widetilde{X}) \right)$$

Obviously this implies

$$b_n^{(2)}(\widetilde{X}) \in \mathbb{Z}.$$

Theorem (S^1 -actions on aspherical manifolds, Lück)

Let M be an aspherical closed manifold with non-trivial S¹-action. Then we get for $n \ge 0$

$$p_n^{(2)}(\widetilde{M}) = 0;$$

$$\chi(M) = 0.$$

Theorem (mapping tori, Lück)

Let $f: X \to X$ be a cellular selfhomotopy equivalence of a connected CW-complex X of finite type. Let T_f be the mapping torus. Then

$$b_n^{(2)}(\widetilde{T}_f)=0$$
 for $n\geq 0$.

Theorem (L²-Hodge - de Rham Theorem, Dodziuk)

Let M be a closed Riemannian manifold. Put

$$\mathcal{H}^n_{(2)}(\widetilde{M}) = \{ \widetilde{\omega} \in \Omega^n(\widetilde{M}) \mid \widetilde{\Delta}_n(\widetilde{\omega}) = \mathbf{0}, \; ||\widetilde{\omega}||_{L^2} < \infty \}$$

Then integration defines an isomorphism of finitely generated Hilbert $\mathcal{N}(\pi)$ -modules

$$\mathcal{H}^{n}_{(2)}(\widetilde{M}) \xrightarrow{\cong} \mathcal{H}^{n}_{(2)}(\widetilde{M}).$$

Corollary (*L*²-Betti numbers and heat kernels)

$$b_n^{(2)}(\widetilde{M}) = \lim_{t \to \infty} \int_{\mathcal{F}} \operatorname{tr}_{\mathbb{R}}(e^{-t\widetilde{\Delta}_n}(\widetilde{x},\widetilde{x})) d\operatorname{vol}.$$

where $e^{-t\Delta_n}(\tilde{x}, \tilde{y})$ is the heat kernel on \widetilde{M} and \mathcal{F} is a fundamental domain for the π -action.

Theorem (hyperbolic manifolds, Dodziuk)

Let M be a hyperbolic closed Riemannian manifold of dimension d. Then:

$$b_n^{(2)}(\widetilde{M}) = \begin{cases} = 0 & \text{, if } 2n \neq d; \\ > 0 & \text{, if } 2n = d. \end{cases}$$

Corollary

Let M be a hyperbolic closed manifold of dimension d. Then

• If d = 2m is even, then

$$(-1)^m \cdot \chi(M) > 0;$$

Every S¹-action on M is trivial S¹.

Theorem (3-manifolds, Lott-Lück)

Let the 3-manifold M be the connected sum $M_1 \sharp \dots \sharp M_r$ of (compact connected orientable) prime 3-manifolds M_j . Assume that $\pi_1(M)$ is infinite. Then

$$b_{1}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} - \chi(M) \\ + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|; \\ b_{2}^{(2)}(\widetilde{M}) = (r-1) - \sum_{j=1}^{r} \frac{1}{|\pi_{1}(M_{j})|} \\ + \left| \{ C \in \pi_{0}(\partial M) \mid C \cong S^{2} \} \right|; \\ b_{n}^{(2)}(\widetilde{M}) = 0 \quad \text{for } n \neq 1, 2.$$

Conjecture (Atiyah Conjecture for torsionfree finitely presented groups)

Let G be a torsionfree finitely presented group. We say that G satisfies the Atiyah Conjecture if for any closed Riemannian manifold M with $\pi_1(M) \cong G$ we have for every $n \ge 0$

 $b_n^{(2)}(\widetilde{M}) \in \mathbb{Z}.$

• All computations presented above support the Atiyah Conjecture.

 The fundamental square is given by the following inclusions of rings

- $\mathcal{U}(G)$ is the algebra of affiliated operators. Algebraically it is just the Ore localization of $\mathcal{N}(G)$ with respect to the multiplicatively closed subset of non-zero divisors.
- D(G) is the division closure of ZG in U(G), i.e., the smallest subring of U(G) containing ZG such that every element in D(G), which is a unit in U(G), is already a unit in D(G) itself.

• If *G* is finite, its is given by

• If $G = \mathbb{Z}$, it is given by

- If G is elementary amenable torsionfree, then D(G) can be identified with the Ore localization of ZG with respect to the multiplicatively closed subset of non-zero elements.
- In general the Ore localization does not exist and in these cases
 D(G) is the right replacement.
- This aspect has recently played an important role in the construction of new invariants for 3-manifolds such as the universal L²-torsion or the L²-polytope by Friedl-Lück.

Conjecture (Atiyah Conjecture for torsionfree groups)

Let G be a torsionfree group. It satisfies the Atiyah Conjecture if $\mathcal{D}(G)$ is a skew-field.

 A torsionfree group G satisfies the Atiyah Conjecture if and only if for any matrix A ∈ M_{m,n}(QG) the von Neumann dimension

$$\dim_{\mathcal{N}(G)}\left(\ker\bigl(\mathit{r_{A}}\colon \mathit{L^{2}(G)^{m}}\to \mathit{L}(G)^{n}\bigr)\right)$$

is an integer. In this case this dimension agrees with

$$\dim_{\mathcal{D}(G)}(r_{A}:\mathcal{D}(G)^{m}\to\mathcal{D}(G)^{n}).$$

- The general version above is equivalent to the one stated before if *G* is finitely presented.
- An even stronger version allows $A \in M_{m,n}(\mathbb{C}G)$.

- The Atiyah Conjecture implies the Zero-divisor Conjecture due to Kaplansky saying that for any torsionfree group and field of characteristic zero *F* the group ring *FG* has no non-trivial zero-divisors.
- There is also a version of the Atiyah Conjecture for groups with a bound on the order of its finite subgroups.
- However, there exist closed Riemannian manifolds whose universal coverings have an *L*²-Betti number which is irrational, see Austin, Grabowski.

Theorem (Linnell)

Let C be the smallest class of groups which contains all free groups, is closed under extensions with elementary amenable groups as quotients and directed unions.

Then every torsionfree group G which belongs to C satisfies the Atiyah Conjecture (over \mathbb{C}).

• Strategy to prove the Atiyah Conjecture:

- **()** Show that $K_0(\mathbb{C}) \to K_0(\mathbb{C}G)$ is surjective.
- Show that $K_0(\mathbb{C}G) \to K_0(\mathcal{D}(G))$ is surjective.
- Show that $\mathcal{D}(G)$ is semisimple.
- Notice that the Atiyah Conjecture originally was statement about an invariant extracted from the heat kernel of the universal covering, namely about the the analytic L²-Betti number.
- However, the strategy described above is based on and requires *K*-theoretic and ring theoretic input.

In general there are no relations between the Betti numbers b_n(X) and the L²-Betti numbers b_n⁽²⁾(X) for a connected CW-complex X of finite type except for the Euler Poincaré formula

$$\chi(X) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{X}) = \sum_{n \ge 0} (-1)^n \cdot b_n(X).$$

Theorem (Approximation Theorem, Lück)

Let X be a connected CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

$$\pi = G_0 \supset G_1 \supset G_2 \supset \ldots$$

of normal subgroups of finite index with $\cap_{i\geq 1}G_i = \{1\}$. Let X_i be the finite $[\pi : G_i]$ -sheeted covering of X associated to G_i .

Then for any such sequence $(G_i)_{i\geq 1}$

$$b_n^{(2)}(\widetilde{X}) = \lim_{i \to \infty} \frac{b_n(X_i)}{[G:G_i]}.$$

 Ordinary Betti numbers are not multiplicative under finite coverings, whereas the L²-Betti numbers are. With the expression

$$\lim_{i\to\infty}\frac{b_n(X_i)}{[G:G_i]},$$

we try to force the Betti numbers to be multiplicative by a limit process.

• The theorem above says that *L*²-Betti numbers are asymptotic Betti numbers. It was conjectured by Gromov.

• Let *p* be a prime and \mathbb{F}_p be the field with *p* elements.

Conjecture (Approximation Conjecture in characteristic *p*)

Let X be a connected aspherical CW-complex of finite type. Suppose that π is residually finite, i.e., there is a nested sequence

 $\pi = G_0 \supset G_1 \supset G_2 \supset \ldots$

of normal subgroups of finite index with $\cap_{i\geq 1}G_i = \{1\}$. Let X_i be the finite $[\pi : G_i]$ -sheeted covering of X associated to G_i .

Then for any such sequence $(G_i)_{i\geq 1}$

$$b_n^{(2)}(\widetilde{X}) = \lim_{i \to \infty} \frac{b_n(X_i; \mathbb{F}_p)}{[G:G_i]}.$$

- Schick used approximation techniques to prove the Atiyah Conjecture for matrices over QG for a large class of groups.
- A lot of work has been done by Jaikin-Zapirain to extend this from *QG* to *CG* using ring theoretic methods.

The Singer Conjecture

Conjecture (Singer Conjecture)

If M is an aspherical closed manifold, then

$$b_n^{(2)}(\widetilde{M}) = 0$$
 if $2n \neq \dim(M)$.

If M is a closed Riemannian manifold with negative sectional curvature, then

$$b_n^{(2)}(\widetilde{M}) \begin{cases} = 0 & \text{if } 2n \neq \dim(M); \\ > 0 & \text{if } 2n = \dim(M). \end{cases}$$

- The computations presented above do support the Singer Conjecture.
- Under certain negative pinching conditions the Singer Conjecture has been proved by Ballmann-Brüning, Donnelly-Xavier, Jost-Xin.

Because of the Euler-Poincaré formula

$$\chi(M) = \sum_{n \ge 0} (-1)^n \cdot b_n^{(2)}(\widetilde{M})$$

the Singer Conjecture implies the following conjecture provided that M has non-positive sectional curvature.

Conjecture (Hopf Conjecture)

If M is a closed Riemannian manifold of even dimension with sectional curvature sec(M), then

Theorem (Gromov)

Let M be a closed Kähler manifold of complex dimension c. Suppose that it admits some Riemannian metric with negative sectional curvature. Then

$$egin{array}{rcl} b_n^{(2)}(\widetilde{M})&=&0& ext{if }n
eq c\ b_n^{(2)}(\widetilde{M})&>& ext{if }n=c;\ (-1)^m\cdot\chi(M)&>&0; \end{array}$$

Moreover, M is a projective algebraic variety.

Further important problems or connections

- Conjecture about the equality of the first *L*²-Betti number, cost, and rank gradients of groups, e.g., the Fixed Prize Conjecture.
- L²-invariants and measured and geometric group theory
- Zero-in-the-spectum Conjecture.
- Determinant Conjecture.
- The Conjecture of Bergeron-Venkatesh for the growth of the torsion part of the homology and *L*²-torsion.
- Conjecture about the vanishing of all *L*²-invariants for closed aspherical manifolds with vanishing simplical volume.
- L^2 -invariants and *K*-theory.
- L^2 -invariants and entropy.
- *L*²-invariants and graph theory.
- Twisted *L*²-invariants and 3-manifolds.
- Applications to von Neumann algebras.
- and so on.