Lectures on L2-Betti

numbers

Wolfgang Luck*
Fachbereich Mathematik und Informatik
Westfalische Wilhelms-Universitat
Munster
Einsteinstr. 62
48149 Munster
Germany
lueck@math.uni-muenster.de
http://www.math.uni-
muenster.de/u/lueck

April 30, 2003



1. Introduction to L2-Betti
Numbers

Let G be a discrete group.

Definition 1.1 Denote by ZG, QG and CG
the integral, rational and complex group
ring. An element in CG is a (formal) sum
>.geG Ag-g such that \g € C and Ag # 0 for
only finitely many elements g € G.

Denote by 12(G) the Hilbert space of (for-
mal) sums 3, cq Ag-g such that Ay € C and
S geq |Ag|? < oo. This is the Hilbert space
completion of CG with respect to the in-
ner product for which G is an orthonormal
basis.

Define the group von Neumann algebra

N(G) = B@I*(a)¢

to be the algebra of bounded G-equivariant
operators 1?(GQ) — 12(Q).



The von Neumann trace is defined by

trN(G) N(G) — (C, f —> <f(e),e>l2(G).

Example 1.2 If G is finite, then CG =
I?(G) = N(G). The trace try, g assigns
to > seq Ag - g the coefficient Ae.

Example 1.3 Let G be Z". Let L2(T™)
be the Hilbert space of L2—integrable func-
tions T" — C. Let L°(T™) be the Banach
space of essentially bounded functions f :
T" — CJ[{occ}. An element (kqi,...,kn) in
Z™ acts isometrically on L2(T™) by point-
wise multiplication with the function T" —
C which maps (z1,29,...,2n) to zlfl-

zkn  Fourier transform yields an isomet-

ric Z™-equivariant isomorphism [2(Z") =,

L2(T™). We obtain an isomorphism
L¥(T™) =5 N(ZP) = B(L2(T™)Z"

by sending f € L°°(T"™) to the Z"-operator

My : L2(T™) — L2(T™) g+ g-f Under this

identification the trace becomes

trN(Zn) . LOO(Tn) — C f —> n fd,u



Definition 1.4 A Hilbert N(G)-module
V is a Hilbert space V together with a
linear isometric G-action such that there
exists a Hilbert space H and an isometric
linear G-embedding of V into the tensor
product of Hilbert spaces H ® I?(G) with
the obvious G-action.

A map of Hilbert N(G)-modules f:V —
W is a bounded G-equivariant operator.

We call a Hilbert N(G)-module V finitely
generated if there is a non-negative inte-
ger n and a surjective map ®"_{1%(G) — V
of Hilbert N(G)-modules.

Definition 1.5 Let V be a finitely gener-
ated Hilbert N (G)-module. Choose a G-
equivariant projection p : I2(G)" — I2(G)"
with im(p) =n(q) V- Define the von Neu-
mann dimension of V by

dimN(G)(V) — trN(G) (p)

= ) trae)@ii) € [0,00).
i=1



This notion extends to arbitrary Hilbert
N (G)-modules if we allow the value oo.

Definition 1.6 We call a sequence of Hilbert
N(G)-modules U - V £ W weakly exact
at V if the kernel ker(p) of p and the clo-
sure clos(im(i)) of the image im(i) of 1
agree.

A map of Hilbert N(G)-modules f :V —
W is a weak isomorphism if it is injective
and has dense image.

Example 1.7 The morphism of N (Z)-Hilbert
modules

M, 1:1%(Z2) - 1%(Z), u— (2—1) u

IS a weak isomorphism but not an isomor-
phism.



Theorem 1.8 1. We have for a Hilbert
N(G)-module V

V=0 <= dimN(G)(V):O;

2. If0-U—-V —-W — 0 is a weakly ex-
act sequence of Hilbert N'(G)-modules,
then

dimN(G)(U) + dimN(G)(W)
= dimN(G)(V);

3. Let {V; | i € I} be a directed system
of Hilbert N (G)- submodules of V', di-
rected by C. Then

dim s gy (clos(U;erVi))
= sup{dimy () (V;) | ¢ € I};

Example 1.9 If G is finite, then a finitely
generated Hilbert N(G)-module is the same
a unitary G-representation and

. 1
dImN(G)(V) = @ y dlm@(V).



Example 1.10 Let G be Z™. Let X CT"
be any measurable set with characteris-
tic function xx € L*(T™). Let My, :
L2(T™) — L2(T™) be the Z™-equivariant
unitary projection given by multiplication
with xy. Its image V is a Hilbert N (Z")-
module with

dimN(Zn)(V) = VO|(X).

Definition 1.11 A G-CW-complex X is
a G-space with a G-invariant filtration

=X 1CXogCX1C...CXn
C ...UnZOXn:X
such that X carries the colimit topology
and X, is obtained from X,,_1 by attaching

equivariant n-dimensional cells, i.e. there
exists a G-pushout

HiGIn qi\

icr, G/H; x S 1 Xn—1

l J

H-EInG/H-XDn Xn
Z ‘ HiEIn QZ




We call X finite if it is built by finitely
many equivariant cells. We call X of finite
type if each skeleton X, is finite.

o A G-CW-complex is finite if and only
if G\ X is compact;

e It is a proper G-space if and only if
each isotropy group is finite;

e Let X be asimplicial complex with sim-
plicial G-action. Then its barycentric
division X’ carries a G-CW-structure:

e If the smooth manifold M carries a
smooth proper cocompact group ac-
tion G, then it admits an equivariant
triangulation and hence a G-C'W-structure;

o If X — Y is a regular G-covering, then
a CW-structure on Y induces a G-CW-
structure on X and vice versa;



Definition 1.12 Let X be a free G-CW-
complex of finite type. Denote by Cx«(X)
its cellular Z-chain complex. Define its
cellular L2-chain complex C{?(X) to be
the Hilbert N'(G)-chain complex

P (X) = 1P(G) ®zg C«(X).

Define its p-th L?-homology to be the
finitely generated Hilbert N'(G)-module

H]gz)(X;J\/'(G)) = ker(C]gz))/im(czgi)l).

Define its p-th L?-Betti number

b2 (XN (@) = dimpye) (Hng)(X; N(G))) .

Notice that Cp(X) = @, ZG. Hence Cf(X) =

®1,1%(G). Each differential cz(92) is a mor-
phism of finitely generated Hilbert N (G)-
modules since each I is finite by assump-
tion.

The p-th Laplace operator is defined by
Ap = cl(j_)l o (c](f'_)l)* + (61(92))* o cl(,Q) ;
o$? (x) — 2 (x).



Each ngz)(X;N(G)) carries the structure
of a finitely generated Hilbert N'(G)-module
since the natural map

ker(Ap) = ker(cz(f)) N ker(cl()i)l)
= P XGN@)

IS an isometric G-equivariant isomorphism
and ker(Ap) € C52(X) = @1,12(@).

Theorem 1.13 (Cellular L2-Betti num-
bers).

1. Homotopy invariance

Let f . X — Y be a G-map of free
G-CW-complexes of finite type. If f
is a weak homotopy equivalence (after
forgetting the G-action), then

bz(oz)(X ) = bz(az)(Y);



2. Euler-Poincaré formula (Atiyah)

Let X be free finite G-CW-complex.
Let x(G\X) be the Euler characteristic
of the finite CW-complex. Then

X(G\X) = S (=1)P- b5 (X);

p=>0

3. Poincaré duality

Let M be a cocompact free proper G-
manifold of dimension n which is ori-
entable. Then

b2 (M) = b2 (M, aM);

4. Kiinneth formula (Zucker)
Let X be a free G-CW-complex of fi-
nite type andyY be a free H-CW -complex
of finite type. Then X xY is a free
G x H-CW-complex of finite type and
we get for all n > 0

B (X xY) = 5 52 (x) -2 (v);
pt+q=n



5. Wedges
Let X1, Xo, ..., Xy be connected CW -
complexes of finite type and X = Vi_,X;
be their wedge. Then

b2 (X) — b$2 (X)

= r-14 Y (8P -2
j=1

and for 2 <p

b (X) = 3 65(X));
j=1

6. Morse inequalities (Novikov-Shubin)

Let X be a free G-CW-complex of fi-
nite type. Let 5,(G\X) be the number
of p-cells in G\X. Then we get for
n >0

3 (1) P 62 (X)
p=0
< 3 (LT By(G\X);
p=0



7. Zero-th L?-Betti number

Let X be a connected free G-CW -complex
of finite type. Then

1

G|’
where % IS to be understood as zero
if the order |G| of G is infinite,

B (X) =

8. Restriction

Let X be a free G-CW-complex of fi-
nite type and let H C GG be a subgroup
of finite index [G : H]. Then resf X
is a free H-CW-complex of finite type
and

(G H] - b5 (X N(G))
= bl(,z)(resg X, N(H));

9. Induction

Let H be a subgroup of G and let X
be a free H-CW -complex of finite type.
Then G xg X Iis a G-CW-complex of
finite type and

b5 (G x g X N(Q) = b5 (X N(H)).



Example 1.14 If (G is finite and X is a free
G-CW-complex of finite type, then b](,z)(X)
is the classical p-th Betti number of X mul-

tiplied with el

Lemma 1.15 Let X be a free Z"-CW -complex
of finite type. Then

2 .
bz(a )(X) = d'mC[Zn](O) (@[Zn](O) ®Z[Z”] Hp(X)) ;
where C[Z"](0) s the quotient field of C[Z™].
Example 1.16 Let X — Y be a finite cov-
ering with d-sheets of connected CW-complexes

of finite type. Then Theorem 1.13 () im-
plies

S (V) = d - b§2(X).

In particular we get for a connected CW-
complex X of finite type for which there
is a selfcovering X — X with d-sheets for
some integer d > 2 that b§2>(§<v) — 0 for
all p > 0. This implies for any finite CW-
complex X of finite type

i (S1x X) = o.



Theorem 1.17 (Long weakly exact L2-
homology sequence, Cheeger-Gromov).
LetO—>C*—>D*p—*>E*—>O be an exact
sequence of Hilbert N'(G)-chain complexes
whose chain modules have finite dimen-
sion. Then there is a long weakly exact
homology sequence

n ) (pe)
H$? (i H? (ps »
(is) 7§2)(D*) () éQ)(E*) 9

Theorem 1.18 (L2-Betti humbers and
Sl_actions).

Let X be a connected S1-CW-complex
of finite type, for instance a connected
compact manifold with Sl-action. Sup-
pose that for one orbit S1/H (and hence
for all orbits) the inclusion into X induces
a map on wy with infinite image. (In par-
ticular the Sl-action has no fixed points.)
Then we get for all p > 0

B\ (X) = o.



Theorem 1.19 (L2-Betti numbers and
aspherical Sl-manifolds).

Let M be an aspherical closed manifold
with non-trivial Sl-action. Then the ac-
tion has no fixed points and the inclusion
of any orbit into X induces an injection
on the fundamental groups. All L?-Betti
numbers b](,z)(ﬂ) are trivial and x(M) = 0.

Example 1.20 Let Fy; be the orientable
closed surface. Since Fy = S2 is simply-
connected, we get

b$?) (Fp) = bp(S2) = 1 ifp=0,2.

by (Fo) = bp(52) = 0 if p#0,2;
If g > 0, then w1 (Fy) is infinite and hence
b2 (F,) = 0. By Poincaré duality b2 (F,) =
0. Since dim(F,) = 2, we get b§?) (F,) =0
for p > 3. Using the Euler-Poincaré for-
mula we get

b (Fy) = —x(Fy) = 29—2;
61(92)(1:“6) = 0 for p#1.



Theorem 1.21 (L2-Betti numbers of 3-
manifolds, Lott-Luck).

Let M be the connected sum Mif...48M,
of (compact connected orientable) prime
3-manifolds M; which are non-exceptional.
Assume that w1 (M) is infinite. Then the
L2-Betti numbers of the universal covering
M are given by

b2 (M) = o0

T — (r_1)_ N 1

A0 = (=)= 3 sy xXOD
+[{C e mo(8M) | C = 52|

Q)T — (r1)_ S 1

AN =D 2 Gy
+[{C e mp(oM) | € 2 52};

b2 (M) = o.



Theorem 1.22 L?2-Hodge-de Rham The-
orem, Dodziuk).

Let M be a cocompact free proper G-
manifold with G-invariant Riemannian met-
ric and K an equivariant smooth triangula-
tion of M. Suppose that M has no bound-
ary. Let

Higy (M) = {w € QP(M) | Ap(M) = 0}
be the space of harmonic L?-forms on M.
Then integration defines an isomorphism
of finitely generated Hilbert N'(G)-modules

HY (M) = HE, (K).

Corollary 1.23
(2) — i / —tAp
by~ (M) tlLrQo }_tr@(e (z,z)) dvol.

where F is a fundamental domain for the
G-action and e t?r(z,y) is the heat kernel
on M.

Theorem 1.24 L[Let M be a hyperbolic closed
Riemannian manifold of dimensionn. Then:

() =0 ,if2p#mn
by~ (M) {>O , ifF2p=mn



Proof: A direct computation shows that
H]ZQ)(H") is not zero if and only if 2p = n.
Notice that M is hyperbolic if and only
if M is isometrically diffeomorphic to the
standard hyperbolic space H".

Theorem 1.25 Let M be a hyperbolic closed
manifold of dimension n. Then

1. If n =2m is even, then

(=1)™ - x(M) > 0;
2. M carries no non-trivial St-action.

Proof: (1) We get from the Euler-Poincaré
formula and Theorem

(—1)™ - x(M) = b$P (M) > 0.

(2) We give the proof only for n = 2m
even. Then bq(?%)(]\?) > 0. Since M = H" is
contractible, M is aspherical. Now apply
Theorem [M1.19.



Theorem 1.26 Vanishing of L2-Betti num-
bers of mapping tori).

Let f: X — X be a cellular selfhomotopy
equivalence of a connected CW-complex
X of finite type. Then we get for all p > 0

b$?(T;) = o.

Proof. Thereis a d-sheeted covering de —
Tf. Hence

by (T 1)

y :
If 6p(X) is the number of p-cells, then
there is up to homotopy equivalence a CW-
structure on Ty with B(de) = Gp(X) +
Bp—1(X). We have

b$2 (Ty) =

by (Tra) = dimprey(HS? (C5(Tha))
< dimye) (G2 (@) = BTy,
This implies for all d > 1

Bp(X) + Bp—1(X)
r .
Taking the limit for d — oo yields the claim.

b$2(T7) <




Example 1.27 The following examples show
that in general there are hardly any rela-
tions between the ordinary Betti numbers
bp(X) and the L2-Betti numbers 552 (X)
for a connected CW-complex X of finite
type.

Given a group G such that BG is of finite
type, define its p-th L2-Betti number and
its p-th Betti number by

b5 (G) = by (BG; N (G));
bp(G) bp(BG).
We get from Theorem [1.13 (M), (B) and

(8) for r > 2 and non-trivial groups G1q,
Go, ..., Gr whose classifying spaces BG,;




are of finite type

r 1
b (o1 G) = 14 (b&”(c;i) - @) ;
1=1 7
b (¥l Gy) = 0
D16 = S 682G for p>2;
1=1
bp(xj—1G;) = > bp(G;)  forp>1;
1=1
1
b(()2) (Z/n) — 5;
08 (Z/n) = 0  for p>1;
bp(Z/n) = 0  for p>1,;
p
by (G1x G2) = Y b2(G1) - 0$(Go);
1=0
p
bp(G1 X G2) = > bi(G1) - b,_i(G2).
1=0

From this one easily verifies for any inte-
gers m > 0, n > 1 and 2 > 1 that for the
group

1—1
Gi(m,n) = Z/nx (*iZiI_QZ/Q) X ( 11 Sl Z/Q)
=1

its classifying space BG;(m,n) is of finite



type and

2 m
b2 (Gi(m,n)) = =
b5 (Gi(m,n)) = 0  for p# i;

bp(Gi(m,n)) = O for p > 1.

Given an integer [ > 1 and a sequence rq,
ro, ..., rp Of non-negative rational num-
bers, we can construct a group G such that
BG is of finite type and

0@ = r, forl<p<l;
B$(G) = 0 fori+1<p;
bp(G) 0 for p > 1.

Namely, take

G = Z/n X *fZQGZ(mZ,nZ)

On the other hand we can construct for
any segquence ni, no, ... of non-negative
integers a CW-complex X of finite type
such that by(X) = n, and b](f)()?/) = 0
holds for p > 1, namely take

X = B(Z/2+7/2) x ViZy (Vi2,8P).



Theorem 1.28 Proportionality Principle
for L2-invariants

Let M be a simply connected Rieman-
nian manifold. Then there are constants
B§2>(M) for p > 0 depending only on the
Riemannian manifold M such that for any
discrete group G with a free proper co-
compact action on M by isometries the
following holds

S (M; N(G)) = BS? (M) - vol(G\M).



2. The Generalized Dimension
function

Remark 2.1 Recall that by definition

N(G) = BU*(G),12(G)“
= mor () (%(G),1°()).

This induces a bijection of C-vector spaces

M (m,n, N(G)) => mor y(cy (12(G)™, 12(G)™).

It is compatible with multiplication of ma-
trices and composition of morphisms. T his
extends to finitely generated Hilbert N (G)-
modules and finitely projective N (G)-modules.

Theorem 2.2 (Modules over N(G) and
Hilbert N (G)-modules).
We obtain an equivalence of C-categories

v: {fin. gen. proj. N(G)-mod.}
— {fin. gen. Hilb. N (G)-mod.}.



Definition 2.3 Let R be aring. Let M be
a R-submodule of N. Define the closure
of M in N to be the R-submodule of N

M = {zeN | f(x) =0 for all
f e N* with M C ker(f)}.

For a R-module M define the R-submodule
TM and the R-quotient module PM by:

TM = {xeM | f(x) =0
for all f € M*};
PM = M/TM.

We call a sequence of R-modules L KN
M L N weakly exact if im(i) = ker(q).

Notice that T M is the closure of the trivial
submodule in M. It can also be described
as the kernel of the canonical map

i(M) : M — (M*)*

which sends z € M to the map M* —
R f — f(x)*. Notice that TPM = 0 and
that PM = 0 is equivalent to M* = 0.



Example 2.4 et R = Z. Let M be a
finitely generated Z-module and K C M.
Then

K = {xeM|n-x€ K for somen € 7},
TM = tors(M);
PM = M/tors(M).

A sequence Mg — My — Mo of finitely
generated Z-modules is weakly exact if and
only if it is exact after applying Q Q5 —.

Definition 2.5 Let P be a finitely gener-
ated projective N(G)-module. Choose a
matrix A € Mp(N(G)) with A2 = A such
that the image of r4 : N(G)™" — N(G)" is
N(G)-isomorphic to P. Define

dimN(G)(P) L= trN(G)(A) [0,00).



Theorem 2.6 1. The functorsv and v—1
preserve exact sequences and weakly
exact sequences;

2. If P is a finitely generated projective
N(G)-module, then

Remark 2.7 N(G) is Noetherian if and only
if G is finite. It contains zero-divisors if G
IS non-trivial.

Definition 2.8 A ring R is called semi-
hereditary if any finitely generated sub-
module of a projective module is projec-
tive.

Lemma 2.9 N(G) is semihereditary.



Proof: It suffices to prove for a finitely
generated N(G)-submodule M C N(G)"
that it is projective. Choose a N (G)-map
f: N(G)™ — N(G)™ whose image is M.
Let v(f) : I2(G)™ — [2(G)" be the mor-
phism corresponding to f under v. Choose
a projection pr: I2(G)™ — [2(G)™ with im-
age ker(v(f)). Then

-1
2(G)m 25 12eym LY, 2 gy
IS exact. Hence

1
N@)™ XD arveym L arayn

is exact and v~ 1(pr)2 = v~1(pr). Hence
ker(f) c N(G)™ is a direct summand and
M = im(f) is projective.

Remark 2.10 The following results and
definitions can be understood by the slo-
gan that N (G) behaves like Z if one for-
gets that Z is Noetherian and has no-zero-
divisors. In this sense all properties of Z
carry over to N(G).



Lemma 2.11 Let M be a finitely gener-
ated N(G)-module. Then

1. Let K C M be a submodule. Then
K C M is a direct summand and M/K
is finitely generated projective;

2. PM is a finitely generated projective
N (G)-module and we get a splitting

M =TMePM:;

3. If M is finitely presented, then there is
an exact sequence

0 —->N(G)" > N(G)"—-TM — 0.



Theorem 2.12 (Dimension function for
arbitrary N (G)-modules).
There is precisely one dimension function

dim : {N(G) — modules} — [0, 0]

which has the following properties;

1. Extension Property

If M is a finitely generated projective
R-module, then dim(M) agrees with
the previously defined notion;

2. Additivity

IFO — My % My 2 Mo — 0 is an exact
sequence of R-modules, then

dim(My1) = dim(Mg) + dim(M>);

3. Cofinality

Let {M; | ¢« € I} be a cofinal system
of submodules of M, i.e. M = U;c1M;



and for two indices v and j there is an
index k in I satisfying M;, M; C Mjy.
T hen

dim(M) = sup{dim(M;)|ic I};

4. Continuity

If K C M is a submodule of the finitely
generated R-module M, then

dim(K) = dim(K);

5. If M is a finitely generated R-module,
then

dim(M)
dim(TM)

dim(PM);
0;

Proof: We give the proof of uniqueness
which leads to the definition of dim. Any
N(G)-module M is the colimit over the di-
rected system of its finitely generated sub-
modules {M; |+ € I}. Hence by Cofinality

dim(M) = sup{dim(M;) |i € I}.



We get for each M; from Additivity
Hence we get

dim(M) = sup{dim(P)|P C M
finitely generated projective}.

T he hard part is now to show that with this
definition all the properties are satisfied.

Theorem 2.13 Let {M; | i € I} be a di-
rect system of R-modules over the directed
set I. Foriv < j let ¢;; : M; — M; be the
associated morphism of R-modules. Sup-
pose for each v € I that there isig € I with
i < ig such that dim(im(¢; ;,)) < oo holds.
T hen

dim (colim;cr M;)
= sup {inf {dim(im(¢;; : M; — M;)) |
jeli<j}liel}.



Remark 2.14 The results above are mo-
tivated by the following observations for
R = Z. If M is a finitely generated Z-
module, then M/tors(M) is finitely gener-
ated free and

M = tors(M) & M/ tors(M).

We get a dimension function for all Z-
modules by

dim(M) = dimg(Q ®z M).

The difference between Z and N (G) is that
for a projective Z-module P we have dim(P) <
oo if and only if P is finitely generated.
This is not true for N(G).

Definition 2.15 Let X be a (left) G-space.
Its homology with coefficients in N (G)
is

HZ (X, N(@) = Hyp (N(G) @z¢ C2M(X)) .

Define the p-th L2-Betti number of X
by

b2 (X N(G)) = dimp ey (HF (X N(G)))
e [0, oa].



Lemma 2.16 Let X be a G-CW-complex
of finite type. Then Definition [2.15 of L2-
Betti numbers b](gQ)(X;N(G)) agrees with
the previous one.

Definition 2.17 The p-th L?-Betti num-
ber of a group G is

52 (@) = b (EG,N(G)).

Remark 2.18 Notice that we work with
homology. This is very convenient since
homology transforms colimits into colim-
its in general whereas cohomology tran-
forms colimits into exact sequences involv-
ing inverse limits and higher inverse limits.
Moreover, the dimension function behaves
well under colimits but its behaviour under
inverse limits is much more complicated.



Theorem 2.19 L2-Betti numbers for ar-
bitrary spaces).

1. Homotopy invariance

Let f: X — Y be a G-map. Suppose
such that for each subgroup H C G
the induced map ¥ : XH — YH jsaC-
homology equivalence, i.e. Hy"9(f;C) :
HEI”Q(XH; C) — HSmg(YH; C) is bijec-
tive for p > 0. Then for all p > 0
the induced map fx 1 HS (X; N(G)) —
HS(Y; N(G)) is bijective and we get

B8 (x) = b2 (Y)  forp>0;

2. Comparison with the Borel construc-
tion
Let X be a G-CW-complex. Suppose
that for all x € X the isotropy group
Gz is finite or satisfies bz(jQ)(Gx) = 0 for
all p>0. Then forp >0

b (XGN(@) = b52(BG x X; N(Q));



3. Independence of equivariant cells with
infinite isotropy
Let X be a G-CW-complex. Let X[oo]
be the G-CW -subcomplex consisting of
those points whose isotropy subgroups
are infinite. Then we get for all p > 0

bz(oQ)(X:N(G)) = b;(gQ)(X,X[oo];N(G));

4. Kunneth formula

Let X be a G-space and Y be a H-
space. Then X xY is a G x H-space
and we get for all n > 0

BI(X xY) = 3 b5 b2 (),
pt+qg=n

where we use the convention that O -

coc =20, 7r-00 =00 for r € (0,00] and

r 4+ oo = oo forr € [0, oo];

5. Induction

Let:: H— G be an inclusion of groups
and let X be a H-space. Leti: N(H) —



N(G) be the induced ring homomor-
phism. Then

HS(G xpg X; N(®) = &HE(X; N(H));
b$2(G x g X;N(G)) = b5 (X N(HD);

. Restriction

Let H C G be a subgroup of finite index
|G : H]. Let X be a G-space and let
res(X) be the H-space obtained from
X by restriction. Then

b (res(X); N'(H))
= [G: H] - 552 (X, N(G));

. Zero-th homology and L?-Betti num-
ber

Let X be a path-connected (G-space.
T hen

b (X N (G)) = |G|

Moreover H§ (X; N'(G)) is trivial if and
only if G is non-amenable.



Definition 2.20 A group G is called amenable
if there is a (left) G-invariant linear oper-
ator p : I°°(G,R) —- R with u(1) = 1 which
satisfies

inf{f(g) | g € G} < u(f) <sup{f(g)|ge€ G}
for all f € I°°(G,R).

T he class of elementary amenable groups
is defined as the smallest class of groups
which has the following properties:

1. It contains all finite and all abelian groups;

2. It is closed under taking subgroups;

3. It is closed under taking quotient groups;

4. It is closed under extensions;

5. It is closed under directed unions,



Remark 2.21 The class of amenable groups
IS closed under the operations above. Hence
it contains the class of elementary amenable
groups. A group which contains ZxZ is not
amenable.

Corollary 2.22 (Brooks).
Let M be a closed Riemannian manifold.
Then the Laplace operator acting on func-
tions on M has zero in its spectrum if and
only if m1 (M) is amenable.

Theorem 2.23 (Dimension-flatness of N (G)
over CG for amenable G).

Let G be amenable and M be a CG-
module. Then forp>1

dimy(y (Tory “(W(G), M)) = o.

Theorem 2.24 et G be an amenable group
and X be a G-space. Then

by (X N (G)) |
dimN(G) (N(G) RQca Hgmg(X; C)) :



Corollary 2.25 (Cheeger-Gromov).

Let G be a group which contains an infinite
normal amenable subgroup. Then for p >
0

b$2 (G N(G)) = o.

If there is a finite model for BG, then

x(G) ;= x(BG) = O.

Proof: If G is amenable, this follows from
H,(EG,C) = 0 for p > 1. In the general
case one uses a spectral sequence argu-
ment.

Definition 2.26 Let R be an (associative)

ring (with unit). Define its projective class
group Kg(R) to be the abelian group whose
generators are isomorphism classes [P] of
finitely generated projective R-modules P

and whose relations are [Py + [P>] = [P4]

for any exact sequence 0 — Py — P —

P> — O of finitely generated projective R-

modules. Define Go(R) analogously but

replacing finitely generated projective by

finitely generated.



Theorem 2.27 LetG be an amenable group.
Then we get a well-defined map

dim : Go(CG) — R,
[M] — dImN(G)(N(G) Rca M).

In particular [CG] generates an infinite cyclic
subgroup in Go(CQG).

Lemma 2.28 If G contains 7 x 7, as sub-
group, then

[CG]=0 € Go(Cq).

Conjecture 2.29 G isamenable if and only
it
[CG] #0 € Go(Ca).



Theorem 2.30 (L2-Betti humbers and

Sl_actions).

Let X be a connected S'-CW-complex.

Suppose that for one orbit Sl/H (and hence
for all orbits) the inclusion into X induces

a map on w1 with infinite image. (In par-

ticular the Sl-action has no fixed points.)

Let X be the universal covering of X with

the canonical m1(X)-action. Then we get

for all p > 0

B\ (X) = o.

Theorem 2.31 [2-Betti numbers and fi-
brations

Let F % E % B be a fibration of con-
nected CW-complexes. Suppose that n1(F') —
w1 (FE) is injective. Suppose for a given
integer d > 1 that b](f)(ﬁ) = 0 for p <
d—1 and béQ)(F) < oo holds. Suppose that
w1 (B) contains an element of infinite order
or finite subgroups of arbitrary large order.
Then b2 (E) = 0 for p < d.



Definition 2.32 Let G be a finitely pre-
sented group. Define its deficiency def(G)
to be the maximum g(P) — r(P), where P
runs over all presentations P of G and g(P)
is the number of generators and r(P) is the
number of relations of a presentation P.

Lemma 2.33 Let G be a finitely presented
group. Then

def(G) < 1-b2(@) + b2 (@) - b$2(6).

Proof We have to show for any presenta-
tion P that

g(P)—r(P) < 1-b8 (@) +b2(G)-b8(@).
Let X bea CW-complex realizing P. Then

x(X) = 1—g(P)+r(P)
= b{2(X) + {2 (X) — b8P (X).
Since the classifying map X — BG is 2-
connected, we get
bz(f)()?/) = bz(jQ)(G) for p =10, 1;
(X)) > v82(6).



Example 2.34 The free group Fy has the
obvious presentation (si,s2,...s4 | ®) and
its deficiency is realized by this presenta-
tion, namely def(Fy) = g.

If G is a finite group, def(G) < 0 by Lemma
2.33 because of b82>(G) = |G|~ ! and bgz)(G) =
0.

The deficiency of a cyclic group Z/n is 0O,
the obvious presentation (s | s™) realizes
the deficiency.

The deficiency of Z/nxZ/n is —1, the ob-
vious presentation (s, t | s, t", [s, t]) realizes
the deficiency.



Example 2.35 One may expect that the
deficiency is additive under free products.
This is not true by the following exam-
ple due to Hog, Lustig and Metzler(1985).
The group (Z/2 x 7Z/2) % (Z/3 x Z/3) has
the obvious presentation

2
(s0,t0,51,t1 | 83 = t3 = [s0, to] = s3

=13 = [s1,t1] = 1)

and one may think that its deficiency is
—2. However, it turns out that its defi-
ciency is —1. For instance, there is the
following presentation, which looks on the
first glance to be the presentation above
with one relation missing

> 2

(s0,t0,51,t1 | 5 = 1, [s0,to] = 3,53 = 1,
>

[s1,t1] = 13,5 = t3).

T he following calculation shows that, from
the five relations appearing in the presen-
tation above, the relation 2 = 1 follows
which shows that the presentation above
indeed one of of (Z/2 x Z/2) x (Z./3 x Z./3).

We start by proving inductively for k =
k
k

1,2,... the relation skt;ss% = t.* for i



0,1 where o = 3 and ;1 = 4. 'The be-
ginning of the induction is obvious, the in-
duction step follows from the calculation

sl 8_(k+ ) — = S; skt s_k —1

z Z 7 z'

ok k—|—1
T o—1 __
= st s, T = (sitis > ( )
This implies, for kK = 2, d k=3
=1
2
to t3
3
tp = tT .

Since t3 = t3, we conclude
&t = 1;
@2 = 1

As 4 and 21 are prime, we get t3 = 1 and
the claim follows.



Theorem 2.36 Let1 - H -G L K1
be an exact sequence of infinite groups.
Suppose that G is finitely presented and
one of the following conditions is satisfied.

1. 8§ (H) < oo;

2. The ordinary first Betti number of H
satisfies b1 (H) < oo and bgz)(K) = 0;

T hen:
(i) def(G) < 1;
(ii) Let M be a closed oriented 4-manifold

with G as fundamental group. Then

|sign(M)| < x(M);



Remark 2.37 Next we compare our ap-
proach with the one of Cheeger and Gro-
mov. We only consider the case of a count-
able simplicial complex X with free sim-
plicial G-action. Then for any exhaustion
XoC X1 C Xo C...CX by G-equivariant
simplicial subcomplexes for which G\ X is
compact, the p-th L2-Betti number in the
sense and notation of Cheeger-Gromov is
given by

bSPN(X 1 @) = lim lim dimyg

71—00 k—00

(im( foy(Xp 1 G) =5 gl HY 5y (X; : G)))

where ;5 @ X; — X} is the inclusion for
7 < k. There is an identification

Hfgz)(xj Q) = H@)(Xj;/\f (@)).

Notice that for a G-map f .Y — Z of G-
CW-complexes of finite type HS? (V; N(G))
can be identified with H?Q)(Y;J\/'(G)) and
analogously for Z and that under these

identifications H?Q)(f) = (ngz)(f))*. We



conclude from Additivity

dim (o (im (Hfz)(f)))
= dimy (g (im (Hé”(f))) .

This implies

= dimy (e (im (H (Xj;N(G))
Sk, g (s N(@D)).

Hence we conclude from Theorem 2. 13
that the definitions in Cheeger-Gromov(1986)
and in Definition for a countable free
simplicial complex X with free simplicial
GG-action agree.



3. Survey on Further Results
and Conjectures

Theorem 3.1 (Approximation Theorem)
Let X be a free G-CW-complex of finite
type. Suppose that G is residually finite,
i.e. there is a nested sequence

G=GgDG1 DGy D...

of normal subgroups of finite index. Then
Gn\X is a CW-complex of finite type and
for any such sequence (Gn)p>1

. bp(Gp\X
AN = Jim, ).

Remark 3.2 We have already seen in the
first lecture that there are no relations be-
tween b](gz)(X;J\/'(G)) and b,(G\X) for a fi-
nite G-CW-complex X except for the Euler-
Poincaré formula

Y(G\X) = S (=1)P-b52(X; N(G))

p=>0

> (1P bp(G\X).

p=>0



One decisive difference between the ordi-
nary Betti numbers and L2-Betti numbers
is that the ordinary ones are not multiplica-
tive under finite coverings, whereas the I.2-
Betti numbers are, i.e. for a d-sheeted cov-
ering p: X — Y we get

B (X N (r1(X)) = d- b5 (V; N (1 (Y)).

With the expression limy, s % we try

to force the Betti numbers to be multi-
plicative by a limit process.

Theorem [(B.1 says that L2-Betti numbers
are asymptotic Betti numbers. It was con-
jectured by Gromov.

Example 3.3 Consider S! and the nested
sequence

m(SHY=2Z>2'.2>22.2>2%3.2>....
Then

by (SLN(Z) = lim [ijl(((él)zgisz?]
lim bp(57)
n—oo 2N

0.




Theorem 3.4 (Schick-Luck)

Let (X,A) be a pair of finite free G-CW -
complexes. Suppose that G\(X,A) is a
Poincaré pair of dimension 4m. Suppose
that G is residually finite, i.e. there is a
nested sequence

G=GgDG1DGyD...

of normal subgroups of finite index. Then
G;\(X,A) is a finite Poincaré pair of di-
mension 4m and for any such sequence
(Gn)n21

- sign(G\ (X, A)).

- (2) . T
sign* (X, A;N(G)) = Iim (G G]

Remark 3.5 In the case that Y = 0 and
G\X = M for a closed orientable manifold
M, Theorem (3.4 follows from the index
theorem of Atiyah which says

sign(Gp\ (X, A))

(G : Gr] .
In particular the signature is multiplicative
under finite coverings.

sign@ (X, A; N (G)) =



If G\(X,Y) = (M,0M) for a compact man-
ifold with non-empty boundary or if Y = ()
and X is a Poincaré complex (which is not
necessarily a closed orientable manifold),
then the equation above is not true and
the signature is not multiplicative under
finite coverings.

Given a group G, let FIN(G) be the set
of finite subgroups of G. Denote by

1
| FIN(G)|
the additive subgroup of R generated by

the set of rational numbers {ﬁ | H €
FIN(G)Y.

Z C Q

Conjecture 3.6 (Strong Atiyah Conjec-
ture)

A group G satisfies the strong Ativah
Conjecture if for any matrix A € M(m,n, QG)
the von Neumann dimension of the ker-
nel of the G-equivariant bounded operator
73(42) 2™ — 12(Q)", © — xA satisfies

dimp(a) (ker <r§12) 2™ — ZQ(G)"))
1
Z.
© IFING)




Remark 3.7 If G is torsionfree, then

1

7 ="1.
[ FIN(G)]

Lemma 3.8 Let G be a group. Then the
following statements are equivalent:

1. For any cocompact free proper G-manifold
M without boundary we have

1

b2 (M N(G)) € G

2. For any cocompact free proper G-C'W -
complex X we have

1

b$2 (X N(G)) € FINGE

3. The Atiyah Conjecture (3.6 is true for
G.



Remark 3.9 Atiyah asked originally the fol-
lowing question. Let G — M — M be a G-
covering of a closed Riemannian manifold
M. Is then

b2 (M) = Jim /}_trC(e_tAP(:c,x)) dvol

a rational number?

Lemma 3.10 A group GG satisfies the strong
Atiyah Conjecture if and only if for any
finitely presented QG-module M

€ = 7
FIN(G)

dimN(G) (N(G) ®Qa M)

Proof: Given a matrix A € M(m,n,QG),
let

ra: QG™M — QG"
resp.
DN @™ - NE)”

be the associated QG- resp. N(G)-map
given by right multiplication with A. Since
the tensor product N(G) ®qg — is right



exact, coker (ri\{(G) is N (G)-isomorphic

to N(G)®ggcoker(ry). We conclude from
Additivity

dImN(G) (ker <T%(G)>>
— m—n—l—dimN(G) (N(G) ®Qa COKGI’(TA)) :

As N(G) is semihereditary, ker (rﬁ((G)> is
finitely generated projective. We have

dimy(a) (ker (rﬁ“m))
2)

= dim (o) (ker (73(4 )) :

Therefore

- ?)) ¢ vt
dim o) (ker(rA S FIN(G)]

if and only if

1
Z..
[ FIN(G)

dimy(g) (N(G) ®gq coker(ry)) €



Conjecture 3.11 (Kaplanski Conjecture)
The Kaplanski Conjecture for a torsionfree
group GG and a field F' says that the group
ring FFG has no non-trivial zero-divisors.

Lemma 3.12 The Kaplanski Conjecture holds
for G and the field Q if the strong Atiyah
Conjecture 3.6 holds for G.

Proof: Let £ € QG be a zero-divisor. Let
r$2)12(G) — 12(@) be given by right mul-
tiplication with . We get

0 < dlmN(G) <ker(r§;2))) <1

Since by assumption dimN(G) (ker(réz))> S
Z,, we conclude dimy (@) (ker(rz(f))) = 1.

Since ker(r$?) is closed in 12(GQ), we con-
clude ker(r$?)) = 12(G) and hence z = 0.

Definition 3.13 LetC be the smallest class
of groups which contains all free groups
and is closed under directed union and ex-
tensions with elementary amenable quo-
tients.



Theorem 3.14 (Linnell) Let G be a group
such that there is an upper bound on the
orders of finite subgroups and G belongs
to C. Then the strong Atiyah Conjecture
3.8 holds for G.

Definition 3.15 Let G be the smallest class
of groups which contains the trivial group
and is closed under the following opera-
tions:

1. Amenable quotient
Let H C G be a normal subgroup. Sup-
pose that H € G and the quotient G/H
is amenable. Then G € G;

2. Colimits
If G = colim,c; G; is the colimit of the
directed system {G; | i € I} of groups
indexed by the directed set I and each
G; belongs to G, then G belongs to G;



3. Inverse limits
If G = lim;c; G; is the limit of the in-
verse system {G; | i € I} of groups in-
dexed by the directed set I and each
G; belongs to G, then G belongs to G;

4. Subgroups
If H is isomorphic to a subgroup of the
group G with G € G, then H € G;

5. Quotients with finite kernel
Letl - K — G — Q — 1 be an exact
sequence of groups. If K is finite and
G belongs to G, then (Q belongs to G.

Theorem 3.16 (Schick)

Let {G; | i € I} be a directed system of
groups such that each G; belongs to the
class G and satisfies the strong Atiyah Con-
jecture [3.6. Then both its colimit and its
inverse limit satisfy the strong Atiyah Con-

jecture [3.6.



The lamplighter group L is defined by
the semidirect product

L = @nezz/Q X 7,

with respect to the shift automorphism of
Dnezl/2, which sends (xn),c7 10 (Tn—1)nez-
Let eg € B,,czZ/2 be the element whose
entries are all zero except the entry at
0. Denote by t € Z the standard gener-
ator of Z.Then {eqgt,t} is a set of gener-
ators for L. The associate Markov op-
erator M : 12(GQ) — I2(G) is given by right
multiplication with % - (egt + t + (egt) ™! +
t_l). It is related to the Laplace operator
Ag: 12(R) — I2(@) of the Cayley graph of
G by Ag=4-id—4- M.

Theorem 3.17 (Grigorchuk-Zuk)

The von Neumann dimension of the kernel
of the Markov operator M of the lamp-
lighter group L associated to the set of
generators {egt,t} is 1/3. In particular L
does not satisfy the strong Atiyah Conjec-
ture 3.6.



Remark 3.18 No counterexample to the
strong Atiyah Conjecture 3.6 is known if
one replaces |ij\1f(G)|Z by Q or if one as-
sumes that there is a bound on the orders
of finite subgroups of G.

Conjecture 3.19 (Singer Conjecture)
If M is an aspherical closed manifold, then

B\ (M) = 0 if 2p # dim(M).

If M is a closed connected Riemannian
manifold with negative sectional curvature,
then

(2), 5 =0 if2p#dim(M);
by~ (M) {>o if 2p = dim(M).

Because of the Euler-Poincaré formula

(M) = S (1) b$2) (A1)
p=>0

the Singer Conjecture 3.19 implies the fol-
lowing conjecture in the cases where M is
aspherical or has negative sectional curva-
ture.



Conjecture 3.20 (Hopf Conjecture) If M
is an aspherical closed manifold of even di-
mension, then

(—1)dmM)/2 (M) > 0.

If M is a closed Riemannian manifold of
even dimension with sectional curvature
sec(M), then for e = (—1)dim(M)/2

e-x(M) > O if sec(M) < O0;
e-x(M) > O if sec(M) < O0;
x(M) = 0 if sec(M) = O;
x(M) > 0 if sec(M) > O;
x(M) > O if sec(M) > O.

Theorem 3.21 (Jost-Xin)

Let M be a closed connected Riemannian
manifold of dimension dim(M) > 3. Sup-
pose that there are real numbers a > 0
and b > 0 such that the sectional curva-
ture satisfies —a? < sec(M) < 0 and the
Ricci curvature is bounded from above by
—b2. If the non-negative integer p satisfies
2p = dim(M) and 2pa < b, then

b\ (M) = o.



Theorem 3.22 (Ballmann-Bruning)
Let M be a closed connected Rieman-
nian manifold. Suppose that there are real
numbers a > 0 and b > 0 such that the sec-
tional curvature satisfies —a? < sec(M) <
—b2. If the non-negative integer p satisfies

2p < dim(M) —1;
p-a < (dm(M)—1-—p)-b,
then

S (M) = o.

Remark 3.23 Direct computations show
that the Singer Conjecture 3.19 holds for a
closed Riemannian manifold M if dim(M) <
3 (assuming Thurston’'s Geometrization)
or if M is a locally symmetric space or if
M carries an Sl-action.

Definition 3.24 A Kahler hyperbolic man-
ifold /s a closed connected Kahler manifold
M whose fundamental form w is d(bounded),
i.e. its lift & € QP(M) to the universal cov-
ering can be written as d(n) holds for some
bounded (p — 1)-form n € QP~1(M).



Example 3.25 The closed manifold M is
Kahler hyperbolic if it satisfies one of the
following conditions:

1. M is a closed Kahler manifold which
iIs homotopy equivalent to a Rieman-
nian manifold with negative sectional
curvature;

2. M is a closed Kahler manifold such
that w1 (M) is word-hyperbolic and 7w (M)
IS trivial;

3. M is a symmetric Hermitian space of
non-compact type;

4. M is a complex submanifold of a Kahler
hyperbolic manifold;

5. M is a product of two Kahler hyper-
bolic manifolds.



Theorem 3.26 (Gromov)

et M be a closed Kahler hyperbolic man-
ifold of complex dimension m and real di-
mension n = 2m. Then

b$P (M) =
b2 (M) >
(=™ -x(M) >

O if p = m,;
0;
O;

Theorem 3.27 Let M be a closed Kahler
hyperbolic manifold of complex dimension
m and real dimension n = 2m.

1. The canonical line bundle L, = N™T*M
iIs quasiample, i.e. its Kodaira dimen-
sion is m;

2. M satisfies all of the following four as-
sertions (which are equivalent for closed
Kahler manifolds):

(a) M is Moishezon, i.e. the transcen-
dental degree of the field M(X) of



meromorphic functions is equal to

m,

(b) M is Hodge, i.e. the Kahler form
represents a class in H 2(M . C) which
lies in the image of H2(M;Z) —
H?(M;C);

(c) M can be holomorphically embed-
ded into CPN for some N

(d) M is a projective algebraic variety;
3. The fundamental group is an infinite

non-amenable group of deficiency < 1.
It cannot be a non-trivial free product.



Let X be a topological space and let C3"9(X; R)
be its singular chain complex with real co-
efficients. Let Sp(X) be the set of all sin-
gular p-simplices. Then Cp(X;R) is the

real vector space with S,(X) as basis. De-

fine the L1-norm of an element z € Cp(X),
which is given by the (finite) sum > cq (x) Ao
o, by

lzll1 == D[l

o

Define the Ll-seminorm of an element y
in the p-th singular homology H,'"9(X; R) :=
Hp(C"9(X; R)) by

Iyl == inf{l]z|]1 | = € C;"9(X I R),

Op(z) = 0,y = [z]}.
Notice that ||y||1 defines only a semi-norm
on Hy"9(X;R), it is possible that ||y||; = O
but y #= 0. The next definition is due to
Gromov and T hurston.



Definition 3.28 Let M be a closed con-
nected orientable manifold of dimension n.
Define its simplicial volume to be the
non-negative real number

[|M]] = [l7((MDIlx € [0,00)

for any choice of fundamental class [M] €
"M, Z) and j : HS"9(M:Z) — HI"I(M: R)
the change of coefficients map associated

to the inclusion 7. — R.

Theorem 3.29 (Simplical volume of hy-
perbolic manifolds)

Let M be a closed hyperbolic orientable
manifold of dimension n. Let v, be the
volume of the regular ideal simplex in H™.
Then

vol(M)
|M|] = ——.
Un
Example 3.30 We have ||S?|| = ||T?|| =

0. Let F; be the closed connected ori-
entable surface of genus g > 1. Then

gl = 2-[x(Fg)| = 49— 4.



Definition 3.31 Let M be a smooth man-
ifold. Define its minimal volume minvol(M)
to be the infimum over all volumes vol(M, g),
where g runs though all complete Rieman-
nian metrics on M, for which the sectional
curvature satisfies |sec(M, g)| < 1.

Example 3.32 Obviously any closed flat
Riemannian manifold has vanshing mini-
mal volume. Hence we get

minvol(T") = ||T"|| = 0.

Let Iy be the closed orientable surface of
genus g, then

minvol(Fy) = 27 |x(Fy)| = 27|12 —2g|
= 7 [|Fyl

by the following argument. The Gauss-
Bonnet formula implies for any Rieman-
nian metric on F; whose sectional curva-
ture satisfies |sec| <1

VOI(Fy) > / | sec |dvol > /secdvol
Fg Fg

= 27 x(Fg)l.



If g #1 and we take the Riemannian met-
ric whose sectional curvature is constant

1 or —1, then the Gauss-Bonnet Theorem
shows

27 - x(Fy)| = = VoI(Fy).

/ sec dvol
Fg

Now the claim follows.

Notice that ||S?|| = 0 and minvol(S?) # 0.

We have
minvol(R?) = 27(1 4+ V?2);
minvol(R") = 0  for n > 3.

Theorem 3.33 (Gromov-Thurston)
Let M be a closed connected orientable
Riemannian manifold of dimensionn. Then

|M]|| < (n—1)"-n!-minvol(M).



Conjecture 3.34 (Simplical volume and
L2-invariants)

Let M be an aspherical closed oriented
manifold of dimension > 1. Suppose that
its simplicial volume ||M|| vanishes. Then

b\ (M) = 0 forp>o0.

Example 3.35 Let M be an aspherical closed
orientable manifold. Then Conjecture 3.34
is true in following cases:

1. Suppose that M carries an Sl-action.
Then minvol(M) = 0, ||[M]|| = 0 and
b2 (M) = 0 for all p > 0;

2. Let H C m1(M) be a normal infinite
subgroup. If H is amenable, then ||M|| =
0. If H is elementary amenable sub-
group, then b](f)(]\?) = 0 for all p > 0;

3. If there is a selffmap f: M — M of de-
gree deg(f) different from —1, 0, and
1, then ||M|| = 0.



If any normal subgroup of finite index
of w1 (M) is Hopfian and there is a self-
map f : M — M of degree deg(f) dif-
ferent from —1, 0, and 1, then b](,Q)(Z\A]) —
O for all p > 0O;

4. Supose that M has dimension 3 (and
satisfies T hurston’'s Geometrization Con-
jecture). Then |[M]|| = 0 implies that
bl(jz)(]\?) = 0 for all p > 0;

5. If the minimal volume minvol(M) of M
is zero, then ||M|| = 0 and b$%) (M) = 0
for all p > 0.



