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1. Introduction to L2-Betti
Numbers

Let G be a discrete group.

Definition 1.1 Denote by ZG, QG and CG

the integral, rational and complex group

ring. An element in CG is a (formal) sum∑
g∈G λg · g such that λg ∈ C and λg 6= 0 for

only finitely many elements g ∈ G.

Denote by l2(G) the Hilbert space of (for-

mal) sums
∑
g∈G λg ·g such that λg ∈ C and∑

g∈G |λg|2 < ∞. This is the Hilbert space

completion of CG with respect to the in-

ner product for which G is an orthonormal

basis.

Define the group von Neumann algebra

N (G) := B(l2(G))G

to be the algebra of bounded G-equivariant

operators l2(G)→ l2(G).



The von Neumann trace is defined by

trN (G) : N (G)→ C, f 7→ 〈f(e), e〉l2(G).

Example 1.2 If G is finite, then CG =
l2(G) = N (G). The trace trN (G) assigns
to

∑
g∈G λg · g the coefficient λe.

Example 1.3 Let G be Z
n. Let L2(Tn)

be the Hilbert space of L2-integrable func-
tions Tn → C. Let L∞(Tn) be the Banach
space of essentially bounded functions f :
Tn → C

∐
{∞}. An element (k1, . . . , kn) in

Z
n acts isometrically on L2(Tn) by point-

wise multiplication with the function Tn →
C which maps (z1, z2, . . . , zn) to z

k1
1 · . . . ·

zknn . Fourier transform yields an isomet-

ric Zn-equivariant isomorphism l2(Zn)
∼=−→

L2(Tn). We obtain an isomorphism

L∞(Tn)
∼=−→ N (Zn) = B(L2(Tn))Z

n

by sending f ∈ L∞(Tn) to the Zn-operator
Mf : L2(Tn)→ L2(Tn) g 7→ g ·f Under this
identification the trace becomes

trN (Zn) : L∞(Tn)→ C f 7→
∫
Tn
fdµ.



Definition 1.4 A Hilbert N (G)-module

V is a Hilbert space V together with a

linear isometric G-action such that there

exists a Hilbert space H and an isometric

linear G-embedding of V into the tensor

product of Hilbert spaces H ⊗ l2(G) with

the obvious G-action.

A map of Hilbert N (G)-modules f : V →
W is a bounded G-equivariant operator.

We call a Hilbert N (G)-module V finitely

generated if there is a non-negative inte-

ger n and a surjective map ⊕ni=1l
2(G)→ V

of Hilbert N (G)-modules.

Definition 1.5 Let V be a finitely gener-

ated Hilbert N (G)-module. Choose a G-

equivariant projection p : l2(G)n → l2(G)n

with im(p) ∼=N (G) V . Define the von Neu-

mann dimension of V by

dimN (G)(V ) := trN (G)(p)

:=
n∑
i=1

trN (G)(pi,i) ∈ [0,∞).



This notion extends to arbitrary Hilbert

N (G)-modules if we allow the value ∞.

Definition 1.6 We call a sequence of Hilbert

N (G)-modules U
i−→ V

p−→W weakly exact

at V if the kernel ker(p) of p and the clo-

sure clos(im(i)) of the image im(i) of i

agree.

A map of Hilbert N (G)-modules f : V →
W is a weak isomorphism if it is injective

and has dense image.

Example 1.7 The morphism of N (Z)-Hilbert

modules

Mz−1 : l2(Z)→ l2(Z), u 7→ (z − 1) · u

is a weak isomorphism but not an isomor-

phism.



Theorem 1.8 1. We have for a Hilbert

N (G)-module V

V = 0 ⇐⇒ dimN (G)(V ) = 0;

2. If 0→ U → V →W → 0 is a weakly ex-

act sequence of Hilbert N (G)-modules,

then

dimN (G)(U) + dimN (G)(W )

= dimN (G)(V );

3. Let {Vi | i ∈ I} be a directed system

of Hilbert N (G)- submodules of V , di-

rected by ⊂. Then

dimN (G)(clos(∪i∈IVi))

= sup{dimN (G)(Vi) | i ∈ I};

Example 1.9 If G is finite, then a finitely

generated Hilbert N (G)-module is the same

a unitary G-representation and

dimN (G)(V ) =
1

|G|
· dim

C
(V ).



Example 1.10 Let G be Zn. Let X ⊂ Tn

be any measurable set with characteris-

tic function χX ∈ L∞(Tn). Let MχX :

L2(Tn) → L2(Tn) be the Z
n-equivariant

unitary projection given by multiplication

with χX. Its image V is a Hilbert N (Zn)-

module with

dimN (Zn)(V ) = vol(X).

Definition 1.11 A G-CW -complex X is

a G-space with a G-invariant filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn
⊂ . . . ∪n≥0 Xn = X

such that X carries the colimit topology

and Xn is obtained from Xn−1 by attaching

equivariant n-dimensional cells, i.e. there

exists a G-pushout

∐
i∈InG/Hi × S

n−1

∐
i∈In qi−−−−−→ Xn−1y y∐

i∈InG/Hi ×D
n −−−−−−→∐

i∈InQi
Xn



We call X finite if it is built by finitely

many equivariant cells. We call X of finite

type if each skeleton Xn is finite.

• A G-CW -complex is finite if and only

if G\X is compact;

• It is a proper G-space if and only if

each isotropy group is finite;

• Let X be a simplicial complex with sim-

plicial G-action. Then its barycentric

division X ′ carries a G-CW -structure;

• If the smooth manifold M carries a

smooth proper cocompact group ac-

tion G, then it admits an equivariant

triangulation and hence a G-CW -structure;

• If X → Y is a regular G-covering, then

a CW -structure on Y induces a G-CW -

structure on X and vice versa;



Definition 1.12 Let X be a free G-CW -
complex of finite type. Denote by C∗(X)
its cellular Z-chain complex. Define its
cellular L2-chain complex C

(2)
∗ (X) to be

the Hilbert N (G)-chain complex

C
(2)
∗ (X) := l2(G)⊗

ZG C∗(X).

Define its p-th L2-homology to be the
finitely generated Hilbert N (G)-module

H
(2)
p (X;N (G)) := ker(C(2)

p )/im(c(2)
p+1).

Define its p-th L2-Betti number

b
(2)
p (X;N (G)) = dimN (G)

(
H

(2)
p (X;N (G))

)
.

Notice that Cp(X) = ⊕IpZG. Hence C(2)
p (X) =

⊕Ipl2(G). Each differential c(2)
p is a mor-

phism of finitely generated Hilbert N (G)-
modules since each Ip is finite by assump-
tion.

The p-th Laplace operator is defined by

∆p := c
(2)
p+1 ◦ (c(2)

p+1)∗+ (c(2)
p )∗ ◦ c(2)

p :

C
(2)
p (X)→ C

(2)
p (X).



Each H
(2)
p (X;N (G)) carries the structure

of a finitely generated Hilbert N (G)-module

since the natural map

ker(∆p) = ker(c(2)
p ) ∩ ker(c(2)

p+1)
∼=−→ H

(2)
p (X;N (G))

is an isometric G-equivariant isomorphism

and ker(∆p) ⊂ C(2)
p (X) = ⊕Ipl2(G).

Theorem 1.13 (Cellular L2-Betti num-

bers).

1. Homotopy invariance

Let f : X → Y be a G-map of free

G-CW -complexes of finite type. If f

is a weak homotopy equivalence (after

forgetting the G-action), then

b
(2)
p (X) = b

(2)
p (Y );



2. Euler-Poincaré formula (Atiyah)

Let X be free finite G-CW -complex.

Let χ(G\X) be the Euler characteristic

of the finite CW -complex. Then

χ(G\X) =
∑
p≥0

(−1)p · b(2)
p (X);

3. Poincaré duality

Let M be a cocompact free proper G-

manifold of dimension n which is ori-

entable. Then

b
(2)
p (M) = b

(2)
n−p(M,∂M);

4. Künneth formula (Zucker)

Let X be a free G-CW -complex of fi-

nite type and Y be a free H-CW -complex

of finite type. Then X × Y is a free

G ×H-CW -complex of finite type and

we get for all n ≥ 0

b
(2)
n (X × Y ) =

∑
p+q=n

b
(2)
p (X) · b(2)

q (Y );



5. Wedges

Let X1, X2, . . . , Xr be connected CW -

complexes of finite type and X = ∨ri=1Xi
be their wedge. Then

b
(2)
1 (X̃)− b(2)

0 (X̃)

= r − 1 +
r∑

j=1

(
b
(2)
1 (X̃j)− b

(2)
0 (X̃j)

)
;

and for 2 ≤ p

b
(2)
p (X̃) =

r∑
j=1

b
(2)
p (X̃j);

6. Morse inequalities (Novikov-Shubin)

Let X be a free G-CW -complex of fi-

nite type. Let βp(G\X) be the number

of p-cells in G\X. Then we get for

n ≥ 0

n∑
p=0

(−1)n−p · b(2)
p (X)

≤
n∑

p=0

(−1)n−p · βp(G\X);



7. Zero-th L2-Betti number

Let X be a connected free G-CW -complex
of finite type. Then

b
(2)
0 (X) =

1

|G|
,

where 1
|G| is to be understood as zero

if the order |G| of G is infinite;

8. Restriction

Let X be a free G-CW -complex of fi-
nite type and let H ⊂ G be a subgroup
of finite index [G : H]. Then resHG X
is a free H-CW -complex of finite type
and

[G : H] · b(2)
p (X;N (G))

= b
(2)
p (resHG X;N (H));

9. Induction

Let H be a subgroup of G and let X

be a free H-CW -complex of finite type.
Then G ×H X is a G-CW -complex of
finite type and

b
(2)
p (G×H X;N (G)) = b

(2)
p (X;N (H)).



Example 1.14 If G is finite and X is a free

G-CW -complex of finite type, then b(2)
p (X)

is the classical p-th Betti number of X mul-

tiplied with 1
|G|.

Lemma 1.15 Let X be a free Zn-CW -complex

of finite type. Then

b
(2)
p (X) = dim

C[Zn](0)

(
C[Zn](0) ⊗

Z[Zn] Hp(X)
)
,

where C[Zn](0) is the quotient field of C[Zn].

Example 1.16 Let X → Y be a finite cov-

ering with d-sheets of connected CW -complexes

of finite type. Then Theorem 1.13 (8) im-

plies

b
(2)
p (Ỹ ) = d · b(2)

p (X̃).

In particular we get for a connected CW -

complex X of finite type for which there

is a selfcovering X → X with d-sheets for

some integer d ≥ 2 that b
(2)
p (X̃) = 0 for

all p ≥ 0. This implies for any finite CW -

complex X of finite type

b
(2)
p ( ˜S1 ×X) = 0.



Theorem 1.17 (Long weakly exact L2-

homology sequence, Cheeger-Gromov).

Let 0→ C∗
i∗−→ D∗

p∗−→ E∗ → 0 be an exact

sequence of Hilbert N (G)-chain complexes

whose chain modules have finite dimen-

sion. Then there is a long weakly exact

homology sequence

. . .
H

(2)
n+1(p∗)
−−−−−−−→ H

(2)
n+1(E∗)

∂n+1−−−→ H
(2)
n (C∗)

H
(2)
n (i∗)−−−−−−→ H

(2)
n (D∗)

H
(2)
n (p∗)−−−−−−→ H

(2)
n (E∗)

∂n−→ . . .

Theorem 1.18 (L2-Betti numbers and

S1-actions).

Let X be a connected S1-CW -complex

of finite type, for instance a connected

compact manifold with S1-action. Sup-

pose that for one orbit S1/H (and hence

for all orbits) the inclusion into X induces

a map on π1 with infinite image. (In par-

ticular the S1-action has no fixed points.)

Then we get for all p ≥ 0

b
(2)
p (X̃) = 0.



Theorem 1.19 (L2-Betti numbers and

aspherical S1-manifolds).

Let M be an aspherical closed manifold

with non-trivial S1-action. Then the ac-

tion has no fixed points and the inclusion

of any orbit into X induces an injection

on the fundamental groups. All L2-Betti

numbers b(2)
p (M̃) are trivial and χ(M) = 0.

Example 1.20 Let Fg be the orientable

closed surface. Since F0 = S2 is simply-

connected, we get

b
(2)
p (F̃0) = bp(S

2) = 1 if p = 0,2.

b
(2)
p (F̃0) = bp(S

2) = 0 if p 6= 0,2;

If g ≥ 0, then π1(Fg) is infinite and hence

b
(2)
0 (F̃g) = 0. By Poincaré duality b(2)

2 (F̃g) =

0. Since dim(Fg) = 2, we get b(2)
p (F̃g) = 0

for p ≥ 3. Using the Euler-Poincaré for-

mula we get

b
(2)
1 (F̃g) = −χ(Fg) = 2g − 2;

b
(2)
p (F̃0) = 0 for p 6= 1.



Theorem 1.21 (L2-Betti numbers of 3-

manifolds, Lott-Lück).

Let M be the connected sum M1] . . . ]Mr

of (compact connected orientable) prime

3-manifolds Mj which are non-exceptional.

Assume that π1(M) is infinite. Then the

L2-Betti numbers of the universal covering

M̃ are given by

b
(2)
0 (M̃) = 0;

b
(2)
1 (M̃) = (r − 1)−

r∑
j=1

1

| π1(Mj) |
− χ(M)

+
∣∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣∣ ;
b
(2)
2 (M̃) = (r − 1)−

r∑
j=1

1

| π1(Mj) |

+
∣∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣∣ ;
b
(2)
3 (M̃) = 0.



Theorem 1.22 L2-Hodge-de Rham The-
orem, Dodziuk).

Let M be a cocompact free proper G-
manifold with G-invariant Riemannian met-
ric and K an equivariant smooth triangula-
tion of M . Suppose that M has no bound-
ary. Let

Hp(2)(M) = {ω ∈ Ωp(M̃) |∆p(M) = 0}

be the space of harmonic L2-forms on M̃ .
Then integration defines an isomorphism
of finitely generated Hilbert N (G)-modules

Hp(2)(M)
∼=−→ H

p
(2)(K).

Corollary 1.23

b
(2)
p (M) = lim

t→∞

∫
F

tr
C

(e−t∆p(x, x)) dvol.

where F is a fundamental domain for the
G-action and e−t∆p(x, y) is the heat kernel
on M̃ .

Theorem 1.24 Let M be a hyperbolic closed
Riemannian manifold of dimension n. Then:

b
(2)
p (M̃)

{
= 0 , if 2p 6= n
> 0 , if 2p = n

.



Proof: A direct computation shows that

Hp(2)(Hn) is not zero if and only if 2p = n.

Notice that M is hyperbolic if and only

if M̃ is isometrically diffeomorphic to the

standard hyperbolic space Hn.

Theorem 1.25 Let M be a hyperbolic closed

manifold of dimension n. Then

1. If n = 2m is even, then

(−1)m · χ(M) > 0;

2. M carries no non-trivial S1-action.

Proof: (1) We get from the Euler-Poincaré

formula and Theorem 1.24

(−1)m · χ(M) = b
(2)
m (M̃) > 0.

(2) We give the proof only for n = 2m

even. Then b
(2)
m (M̃) > 0. Since M̃ = Hn is

contractible, M is aspherical. Now apply

Theorem 1.19.



Theorem 1.26 Vanishing of L2-Betti num-

bers of mapping tori).

Let f : X → X be a cellular selfhomotopy

equivalence of a connected CW -complex

X of finite type. Then we get for all p ≥ 0

b
(2)
p (T̃f) = 0.

Proof: There is a d-sheeted covering Tfd →
Tf . Hence

b
(2)
p (T̃f) =

b
(2)
p (T̃fd)

d
.

If βp(X) is the number of p-cells, then

there is up to homotopy equivalence a CW -

structure on Tfd with β(Tfd) = βp(X) +

βp−1(X). We have

b
(2)
p (T̃fd) = dimN (G)(H(2)

p (C(2)
p (T̃fd))

≤ dimN (G)

(
C

(2)
p (T̃fd)

)
= βp(Tfd).

This implies for all d ≥ 1

b
(2)
p (T̃f) ≤

βp(X) + βp−1(X)

d
.

Taking the limit for d→∞ yields the claim.



Example 1.27 The following examples show

that in general there are hardly any rela-

tions between the ordinary Betti numbers

bp(X) and the L2-Betti numbers b
(2)
p (X̃)

for a connected CW -complex X of finite

type.

Given a group G such that BG is of finite

type, define its p-th L2-Betti number and

its p-th Betti number by

b
(2)
p (G) := b

(2)
p (EG;N (G));

bp(G) := bp(BG).

We get from Theorem 1.13 (4), (5) and

(8) for r ≥ 2 and non-trivial groups G1,

G2, . . ., Gr whose classifying spaces BGi



are of finite type

b
(2)
1 (∗ri=1Gi) = r − 1 +

r∑
i=1

(
b
(2)
1 (Gi)−

1

|Gi|

)
;

b
(2)
0 (∗ri=1Gi) = 0;

b
(2)
p (∗ri=1Gi) =

r∑
i=1

b
(2)
p (Gi) for p ≥ 2;

bp(∗ri=1Gi) =
r∑

i=1

bp(Gi) for p ≥ 1;

b
(2)
0 (Z/n) =

1

n
;

b
(2)
p (Z/n) = 0 for p ≥ 1;

bp(Z/n) = 0 for p ≥ 1;

b
(2)
p (G1 ×G2) =

p∑
i=0

b
(2)
i (G1) · b(2)

p−i(G2);

bp(G1 ×G2) =
p∑

i=0

bi(G1) · bp−i(G2).

From this one easily verifies for any inte-

gers m ≥ 0, n ≥ 1 and i ≥ 1 that for the

group

Gi(m,n) = Z/n×
(
∗2m+2
k=1 Z/2

)
×

 i−1∏
j=1

∗4l=1Z/2


its classifying space BGi(m,n) is of finite



type and

b
(2)
i (Gi(m,n)) =

m

n
;

b
(2)
p (Gi(m,n)) = 0 for p 6= i;

bp(Gi(m,n)) = 0 for p ≥ 1.

Given an integer l ≥ 1 and a sequence r1,

r2, . . ., rl of non-negative rational num-

bers, we can construct a group G such that

BG is of finite type and

b
(2)
p (G) = rp for 1 ≤ p ≤ l;

b
(2)
p (G) = 0 for l + 1 ≤ p;

bp(G) = 0 for p ≥ 1.

Namely, take

G = Z/n× ∗ki=2Gi(mi, ni).

On the other hand we can construct for

any sequence n1, n2, . . . of non-negative

integers a CW -complex X of finite type

such that bp(X) = np and b
(2)
p (X̃) = 0

holds for p ≥ 1, namely take

X = B(Z/2 ∗ Z/2)× ∨∞p=1

(
∨npi=1S

p
)
.



Theorem 1.28 Proportionality Principle

for L2-invariants

Let M be a simply connected Rieman-

nian manifold. Then there are constants

B
(2)
p (M) for p ≥ 0 depending only on the

Riemannian manifold M such that for any

discrete group G with a free proper co-

compact action on M by isometries the

following holds

b
(2)
p (M ;N (G)) = B

(2)
p (M) · vol(G\M).



2. The Generalized Dimension
function

Remark 2.1 Recall that by definition

N (G) := B(l2(G), l2(G))G

= morN (G)(l2(G), l2(G)).

This induces a bijection of C-vector spaces

M(m,n,N (G))
∼=−→ morN (G)(l2(G)m, l2(G)n).

It is compatible with multiplication of ma-

trices and composition of morphisms. This

extends to finitely generated Hilbert N (G)-

modules and finitely projective N (G)-modules.

Theorem 2.2 (Modules over N (G) and

Hilbert N (G)-modules).

We obtain an equivalence of C-categories

ν : {fin. gen. proj. N (G)-mod.}
→ {fin. gen. Hilb. N (G)-mod.}.



Definition 2.3 Let R be a ring. Let M be

a R-submodule of N . Define the closure

of M in N to be the R-submodule of N

M = {x ∈ N | f(x) = 0 for all

f ∈ N∗ with M ⊂ ker(f)}.

For a R-module M define the R-submodule

TM and the R-quotient module PM by:

TM := {x ∈M | f(x) = 0

for all f ∈M∗};
PM := M/TM.

We call a sequence of R-modules L
i−→

M
q−→ N weakly exact if im(i) = ker(q).

Notice that TM is the closure of the trivial

submodule in M . It can also be described

as the kernel of the canonical map

i(M) : M → (M∗)∗

which sends x ∈ M to the map M∗ →
R f 7→ f(x)∗. Notice that TPM = 0 and

that PM = 0 is equivalent to M∗ = 0.



Example 2.4 Let R = Z. Let M be a

finitely generated Z-module and K ⊂ M .

Then

K = {x ∈M | n · x ∈ K for some n ∈ Z};
TM := tors(M);

PM = M/ tors(M).

A sequence M0 → M1 → M2 of finitely

generated Z-modules is weakly exact if and

only if it is exact after applying Q⊗
Z
−.

Definition 2.5 Let P be a finitely gener-

ated projective N (G)-module. Choose a

matrix A ∈ Mn(N (G)) with A2 = A such

that the image of rA : N (G)n → N (G)n is

N (G)-isomorphic to P . Define

dimN (G)(P ) := trN (G)(A) [0,∞).



Theorem 2.6 1. The functors ν and ν−1

preserve exact sequences and weakly

exact sequences;

2. If P is a finitely generated projective

N (G)-module, then

dimN (G)(P ) = dimN (G)(ν(P )).

Remark 2.7 N (G) is Noetherian if and only

if G is finite. It contains zero-divisors if G

is non-trivial.

Definition 2.8 A ring R is called semi-

hereditary if any finitely generated sub-

module of a projective module is projec-

tive.

Lemma 2.9 N (G) is semihereditary.



Proof: It suffices to prove for a finitely

generated N (G)-submodule M ⊂ N (G)n

that it is projective. Choose a N (G)-map

f : N (G)m → N (G)n whose image is M .

Let ν(f) : l2(G)m → l2(G)n be the mor-

phism corresponding to f under ν. Choose

a projection pr : l2(G)m → l2(G)m with im-

age ker(ν(f)). Then

l2(G)m
pr−→ l2(G)m

ν−1(f)−−−−−→ l2(G)n

is exact. Hence

N (G)m
ν−1(pr)−−−−−→ N (G)m

f−→ N (G)n

is exact and ν−1(pr)2 = ν−1(pr). Hence

ker(f) ⊂ N (G)m is a direct summand and

M = im(f) is projective.

Remark 2.10 The following results and

definitions can be understood by the slo-

gan that N (G) behaves like Z if one for-

gets that Z is Noetherian and has no-zero-

divisors. In this sense all properties of Z

carry over to N (G).



Lemma 2.11 Let M be a finitely gener-

ated N (G)-module. Then

1. Let K ⊂ M be a submodule. Then

K ⊂M is a direct summand and M/K

is finitely generated projective;

2. PM is a finitely generated projective

N (G)-module and we get a splitting

M ∼= TM ⊕PM ;

3. If M is finitely presented, then there is

an exact sequence

0→ N (G)n → N (G)n → TM → 0.



Theorem 2.12 (Dimension function for

arbitrary N (G)-modules).

There is precisely one dimension function

dim : {N (G)−modules} → [0,∞]

which has the following properties;

1. Extension Property

If M is a finitely generated projective

R-module, then dim(M) agrees with

the previously defined notion;

2. Additivity

If 0→M0
i−→M1

p−→M2 → 0 is an exact

sequence of R-modules, then

dim(M1) = dim(M0) + dim(M2);

3. Cofinality

Let {Mi | i ∈ I} be a cofinal system

of submodules of M , i.e. M = ∪i∈IMi



and for two indices i and j there is an

index k in I satisfying Mi,Mj ⊂ Mk.

Then

dim(M) = sup{dim(Mi) | i ∈ I};

4. Continuity

If K ⊂M is a submodule of the finitely

generated R-module M , then

dim(K) = dim(K);

5. If M is a finitely generated R-module,

then

dim(M) = dim(PM);

dim(TM) = 0;

Proof: We give the proof of uniqueness

which leads to the definition of dim. Any

N (G)-module M is the colimit over the di-

rected system of its finitely generated sub-

modules {Mi | i ∈ I}. Hence by Cofinality

dim(M) = sup{dim(Mi) | i ∈ I}.



We get for each Mi from Additivity

dim(Mi) = dim(PMi).

Hence we get

dim(M) = sup{dim(P ) | P ⊂M
finitely generated projective}.

The hard part is now to show that with this

definition all the properties are satisfied.

Theorem 2.13 Let {Mi | i ∈ I} be a di-

rect system of R-modules over the directed

set I. For i ≤ j let φi,j : Mi → Mj be the

associated morphism of R-modules. Sup-

pose for each i ∈ I that there is i0 ∈ I with

i ≤ i0 such that dim(im(φi,i0)) < ∞ holds.

Then

dim (colimi∈IMi)

= sup
{

inf
{

dim(im(φi,j : Mi →Mj)) |
j ∈ I, i ≤ j} | i ∈ I} .



Remark 2.14 The results above are mo-

tivated by the following observations for

R = Z. If M is a finitely generated Z-

module, then M/ tors(M) is finitely gener-

ated free and

M = tors(M)⊕M/ tors(M).

We get a dimension function for all Z-

modules by

dim(M) := dim
Q

(Q⊗
Z
M).

The difference between Z and N (G) is that

for a projective Z-module P we have dim(P ) <

∞ if and only if P is finitely generated.

This is not true for N (G).

Definition 2.15 Let X be a (left) G-space.

Its homology with coefficients in N (G)

is

HG
p (X;N (G)) = Hp

(
N (G)⊗

ZG C
sing
∗ (X)

)
.

Define the p-th L2-Betti number of X

by

b
(2)
p (X;N (G)) := dimN (G)(HG

p (X;N (G)))

∈ [0,∞].



Lemma 2.16 Let X be a G-CW -complex

of finite type. Then Definition 2.15 of L2-

Betti numbers b
(2)
p (X;N (G)) agrees with

the previous one.

Definition 2.17 The p-th L2-Betti num-

ber of a group G is

b
(2)
p (G) := b

(2)
p (EG,N (G)).

Remark 2.18 Notice that we work with

homology. This is very convenient since

homology transforms colimits into colim-

its in general whereas cohomology tran-

forms colimits into exact sequences involv-

ing inverse limits and higher inverse limits.

Moreover, the dimension function behaves

well under colimits but its behaviour under

inverse limits is much more complicated.



Theorem 2.19 L2-Betti numbers for ar-

bitrary spaces).

1. Homotopy invariance

Let f : X → Y be a G-map. Suppose

such that for each subgroup H ⊂ G

the induced map fH : XH → Y H is a C-

homology equivalence, i.e. Hsing
p (fH;C) :

Hsing
p (XH;C) → Hsing

p (Y H;C) is bijec-

tive for p ≥ 0. Then for all p ≥ 0

the induced map f∗ : HG
p (X;N (G)) →

HG
p (Y ;N (G)) is bijective and we get

b
(2)
p (X) = b

(2)
p (Y ) for p ≥ 0;

2. Comparison with the Borel construc-

tion

Let X be a G-CW -complex. Suppose

that for all x ∈ X the isotropy group

Gx is finite or satisfies b(2)
p (Gx) = 0 for

all p ≥ 0. Then for p ≥ 0

b
(2)
p (X;N (G)) = b

(2)
p (EG×X;N (G));



3. Independence of equivariant cells with

infinite isotropy

Let X be a G-CW -complex. Let X[∞]

be the G-CW -subcomplex consisting of

those points whose isotropy subgroups

are infinite. Then we get for all p ≥ 0

b
(2)
p (X;N (G)) = b

(2)
p (X,X[∞];N (G));

4. Künneth formula

Let X be a G-space and Y be a H-

space. Then X × Y is a G × H-space

and we get for all n ≥ 0

b
(2)
n (X × Y ) =

∑
p+q=n

b
(2)
p (X) · b(2)

q (Y ),

where we use the convention that 0 ·
∞ = 0, r · ∞ = ∞ for r ∈ (0,∞] and

r +∞ =∞ for r ∈ [0,∞];

5. Induction

Let i : H → G be an inclusion of groups

and let X be a H-space. Let i : N (H)→



N (G) be the induced ring homomor-

phism. Then

HG
p (G×H X;N (G)) = i∗HH

p (X;N (H));

b
(2)
p (G×H X;N (G)) = b

(2)
p (X;N (H));

6. Restriction

Let H ⊂ G be a subgroup of finite index

[G : H]. Let X be a G-space and let

res(X) be the H-space obtained from

X by restriction. Then

b
(2)
p (res(X);N (H))

= [G : H] · b(2)
p (X;N (G));

7. Zero-th homology and L2-Betti num-

ber

Let X be a path-connected G-space.

Then

b
(2)
0 (X;N (G)) = |G|−1.

Moreover HG
0 (X;N (G)) is trivial if and

only if G is non-amenable.



Definition 2.20 A group G is called amenable

if there is a (left) G-invariant linear oper-

ator µ : l∞(G,R)→ R with µ(1) = 1 which

satisfies

inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G}
for all f ∈ l∞(G,R).

The class of elementary amenable groups

is defined as the smallest class of groups

which has the following properties:

1. It contains all finite and all abelian groups;

2. It is closed under taking subgroups;

3. It is closed under taking quotient groups;

4. It is closed under extensions;

5. It is closed under directed unions,



Remark 2.21 The class of amenable groups

is closed under the operations above. Hence

it contains the class of elementary amenable

groups. A group which contains Z∗Z is not

amenable.

Corollary 2.22 (Brooks).

Let M be a closed Riemannian manifold.

Then the Laplace operator acting on func-

tions on M̃ has zero in its spectrum if and

only if π1(M) is amenable.

Theorem 2.23 (Dimension-flatness of N (G)

over CG for amenable G).

Let G be amenable and M be a CG-

module. Then for p ≥ 1

dimN (G)

(
TorCGp (N (G),M)

)
= 0.

Theorem 2.24 Let G be an amenable group

and X be a G-space. Then

b
(2)
p (X;N (G))

= dimN (G)

(
N (G)⊗

CGH
sing
p (X;C)

)
.



Corollary 2.25 (Cheeger-Gromov).

Let G be a group which contains an infinite

normal amenable subgroup. Then for p ≥
0

b
(2)
p (G;N (G)) = 0.

If there is a finite model for BG, then

χ(G) := χ(BG) = 0.

Proof: If G is amenable, this follows from

Hp(EG;C) = 0 for p ≥ 1. In the general

case one uses a spectral sequence argu-

ment.

Definition 2.26 Let R be an (associative)

ring (with unit). Define its projective class

group K0(R) to be the abelian group whose

generators are isomorphism classes [P ] of

finitely generated projective R-modules P

and whose relations are [P0] + [P2] = [P1]

for any exact sequence 0 → P0 → P1 →
P2 → 0 of finitely generated projective R-

modules. Define G0(R) analogously but

replacing finitely generated projective by

finitely generated.



Theorem 2.27 Let G be an amenable group.

Then we get a well-defined map

dim : G0(CG)→ R,

[M ] 7→ dimN (G)(N (G)⊗
CGM).

In particular [CG] generates an infinite cyclic

subgroup in G0(CG).

Lemma 2.28 If G contains Z ∗ Z as sub-

group, then

[CG] = 0 ∈ G0(CG).

Conjecture 2.29 G is amenable if and only

if

[CG] 6= 0 ∈ G0(CG).



Theorem 2.30 (L2-Betti numbers and

S1-actions).

Let X be a connected S1-CW -complex.

Suppose that for one orbit S1/H (and hence

for all orbits) the inclusion into X induces

a map on π1 with infinite image. (In par-

ticular the S1-action has no fixed points.)

Let X̃ be the universal covering of X with

the canonical π1(X)-action. Then we get

for all p ≥ 0

b
(2)
p (X̃) = 0.

Theorem 2.31 L2-Betti numbers and fi-

brations

Let F
i−→ E

p−→ B be a fibration of con-

nected CW -complexes. Suppose that π1(F )→
π1(E) is injective. Suppose for a given

integer d ≥ 1 that b
(2)
p (F̃ ) = 0 for p ≤

d−1 and b
(2)
d (F̃ ) <∞ holds. Suppose that

π1(B) contains an element of infinite order

or finite subgroups of arbitrary large order.

Then b
(2)
p (Ẽ) = 0 for p ≤ d.



Definition 2.32 Let G be a finitely pre-

sented group. Define its deficiency def(G)

to be the maximum g(P )− r(P ), where P

runs over all presentations P of G and g(P )

is the number of generators and r(P ) is the

number of relations of a presentation P .

Lemma 2.33 Let G be a finitely presented

group. Then

def(G) ≤ 1− b(2)
0 (G) + b

(2)
1 (G)− b(2)

2 (G).

Proof We have to show for any presenta-

tion P that

g(P )−r(P ) ≤ 1−b(2)
0 (G)+b

(2)
1 (G)−b(2)

2 (G).

Let X be a CW -complex realizing P . Then

χ(X) = 1− g(P ) + r(P )

= b
(2)
0 (X̃) + b

(2)
1 (X̃)− b(2)

2 (X̃).

Since the classifying map X → BG is 2-

connected, we get

b
(2)
p (X̃) = b

(2)
p (G) for p = 0,1;

b
(2)
2 (X̃) ≥ b

(2)
2 (G).



Example 2.34 The free group Fg has the

obvious presentation 〈s1, s2, . . . sg | ∅〉 and

its deficiency is realized by this presenta-

tion, namely def(Fg) = g.

If G is a finite group, def(G) ≤ 0 by Lemma

2.33 because of b(2)
0 (G) = |G|−1 and b(2)

1 (G) =

0.

The deficiency of a cyclic group Z/n is 0,

the obvious presentation 〈s | sn〉 realizes

the deficiency.

The deficiency of Z/n×Z/n is −1, the ob-

vious presentation 〈s, t | sn, tn, [s, t]〉 realizes

the deficiency.



Example 2.35 One may expect that the
deficiency is additive under free products.
This is not true by the following exam-
ple due to Hog, Lustig and Metzler(1985).
The group (Z/2× Z/2) ∗ (Z/3× Z/3) has
the obvious presentation

〈s0, t0, s1, t1 | s2
0 = t20 = [s0, t0] = s3

1

= t31 = [s1, t1] = 1〉

and one may think that its deficiency is
−2. However, it turns out that its defi-
ciency is −1. For instance, there is the
following presentation, which looks on the
first glance to be the presentation above
with one relation missing

〈s0, t0, s1, t1 | s2
0 = 1, [s0, t0] = t20, s

3
1 = 1,

[s1, t1] = t31, t
2
0 = t31〉.

The following calculation shows that, from
the five relations appearing in the presen-
tation above, the relation t20 = 1 follows
which shows that the presentation above
indeed one of of (Z/2× Z/2) ∗ (Z/3× Z/3).

We start by proving inductively for k =

1,2, . . . the relation ski tis
−k
i = t

rki
i for i =



0,1 where r0 = 3 and r1 = 4. The be-

ginning of the induction is obvious, the in-

duction step follows from the calculation

sk+1
i tis

−(k+1)
i = sis

k
i tis
−k
i s−1

i

= sit
rki
i s
−1
i =

(
sitis

−1
i

)rki =
(
t
ri
i

)rki = t
rk+1
i
i .

This implies, for k = 2, i = 0 and k = 3

,i = 1

t0 = t3
2

0 ;

t1 = t4
3

1 .

Since t20 = t31, we conclude

(t20)4 = 1;

(t20)21 = 1.

As 4 and 21 are prime, we get t20 = 1 and

the claim follows.



Theorem 2.36 Let 1→ H
i−→ G

q−→ K → 1

be an exact sequence of infinite groups.

Suppose that G is finitely presented and

one of the following conditions is satisfied.

1. b(2)
1 (H) <∞;

2. The ordinary first Betti number of H

satisfies b1(H) <∞ and b
(2)
1 (K) = 0;

Then:

(i) def(G) ≤ 1;

(ii) Let M be a closed oriented 4-manifold

with G as fundamental group. Then

| sign(M)| ≤ χ(M);



Remark 2.37 Next we compare our ap-

proach with the one of Cheeger and Gro-

mov. We only consider the case of a count-

able simplicial complex X with free sim-

plicial G-action. Then for any exhaustion

X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ X by G-equivariant

simplicial subcomplexes for which G\X is

compact, the p-th L2-Betti number in the

sense and notation of Cheeger-Gromov is

given by

b
(2)
p (X : G) = lim

j→∞
lim
k→∞

dimN (G)(
im

(
H
p
(2)(Xk : G)

i∗j,k−−→ H
p
(2)(Xj : G)

))
,

where ij,k : Xj → Xk is the inclusion for

j ≤ k. There is an identification

H
p
(2)(Xj : G) = H

p
(2)(Xj;N (G)).

Notice that for a G-map f : Y → Z of G-

CW -complexes of finite type H(2)
p (Y ;N (G))

can be identified with H
p
(2)(Y ;N (G)) and

analogously for Z and that under these

identifications H
p
(2)(f) = (H(2)

p (f))∗. We



conclude from Additivity

dimN (G)

(
im

(
H
p
(2)(f)

))
= dimN (G)

(
im

(
H

(2)
p (f)

))
.

This implies

dimN (G)

(
im

(
H
p
(2)(Xk : G)

i∗j,k−−→ H
p
(2)(Xj : G)

))
= dimN (G)

(
im

(
HG
p (Xj;N (G))

(ij,k)∗
−−−−→ HG

p (Xk;N (G))
))
.

Hence we conclude from Theorem 2.13

that the definitions in Cheeger-Gromov(1986)

and in Definition 2.15 for a countable free

simplicial complex X with free simplicial

G-action agree.



3. Survey on Further Results
and Conjectures

Theorem 3.1 (Approximation Theorem)

Let X be a free G-CW -complex of finite

type. Suppose that G is residually finite,

i.e. there is a nested sequence

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

of normal subgroups of finite index. Then

Gn\X is a CW -complex of finite type and

for any such sequence (Gn)n≥1

b
(2)
p (X;N (G)) = lim

n→∞
bp(Gn\X)

[G : Gn]
.

Remark 3.2 We have already seen in the

first lecture that there are no relations be-

tween b
(2)
p (X;N (G)) and bp(G\X) for a fi-

nite G-CW -complex X except for the Euler-

Poincaré formula

χ(G\X) =
∑
p≥0

(−1)p · b(2)
p (X;N (G))

=
∑
p≥0

(−1)p · bp(G\X).



One decisive difference between the ordi-
nary Betti numbers and L2-Betti numbers
is that the ordinary ones are not multiplica-
tive under finite coverings, whereas the L2-
Betti numbers are, i.e. for a d-sheeted cov-
ering p : X → Y we get

b
(2)
p (X̃;N (π1(X)) = d · b(2)

p (Ỹ ;N (π1(Y )).

With the expression limn→∞
bp(G\X)
[G:Gn] we try

to force the Betti numbers to be multi-
plicative by a limit process.

Theorem 3.1 says that L2-Betti numbers
are asymptotic Betti numbers. It was con-
jectured by Gromov.

Example 3.3 Consider S1 and the nested
sequence

π1(S1) = Z ⊃ 21 · Z ⊃ 22 · Z ⊃ 23 · Z ⊃ . . . .

Then

b
(2)
p (S̃1;N (Z)) = lim

n→∞
bp((2n · Z)\S̃1)

[π1(S1) : 2n · Z]

= lim
n→∞

bp(S1)

2n
= 0.



Theorem 3.4 (Schick-Lück)

Let (X,A) be a pair of finite free G-CW -

complexes. Suppose that G\(X,A) is a

Poincaré pair of dimension 4m. Suppose

that G is residually finite, i.e. there is a

nested sequence

G = G0 ⊃ G1 ⊃ G2 ⊃ . . .

of normal subgroups of finite index. Then

Gi\(X,A) is a finite Poincaré pair of di-

mension 4m and for any such sequence

(Gn)n≥1

sign(2)(X,A;N (G)) = lim
n→∞

sign(G\(X,A))

[G : Gi]
.

Remark 3.5 In the case that Y = ∅ and

G\X = M for a closed orientable manifold

M , Theorem 3.4 follows from the index

theorem of Atiyah which says

sign(2)(X,A;N (G)) =
sign(Gn\(X,A))

[G : Gn]
.

In particular the signature is multiplicative

under finite coverings.



If G\(X,Y ) = (M,∂M) for a compact man-
ifold with non-empty boundary or if Y = ∅
and X is a Poincaré complex (which is not
necessarily a closed orientable manifold),
then the equation above is not true and
the signature is not multiplicative under
finite coverings.

Given a group G, let FIN (G) be the set
of finite subgroups of G. Denote by

1

|FIN (G)|
Z ⊂ Q

the additive subgroup of R generated by
the set of rational numbers { 1

|H| | H ∈
FIN (G)}.

Conjecture 3.6 (Strong Atiyah Conjec-
ture)

A group G satisfies the strong Atiyah
Conjecture if for any matrix A ∈M(m,n,QG)
the von Neumann dimension of the ker-
nel of the G-equivariant bounded operator
r

(2)
A : l2(G)m → l2(G)n, x 7→ xA satisfies

dimN (G)

(
ker

(
r

(2)
A : l2(G)m → l2(G)n

))
∈

1

|FIN (G)|
Z.



Remark 3.7 If G is torsionfree, then

1

|FIN (G)|
Z = Z.

Lemma 3.8 Let G be a group. Then the

following statements are equivalent:

1. For any cocompact free proper G-manifold

M without boundary we have

b
(2)
p (M ;N (G)) ∈

1

|FIN (G)|
Z;

2. For any cocompact free proper G-CW -

complex X we have

b
(2)
p (X;N (G)) ∈

1

|FIN (G)|
Z;

3. The Atiyah Conjecture 3.6 is true for

G.



Remark 3.9 Atiyah asked originally the fol-

lowing question. Let G→M →M be a G-

covering of a closed Riemannian manifold

M . Is then

b
(2)
p (M) = lim

t→∞

∫
F

tr
C

(e−t∆p(x, x)) dvol

a rational number?

Lemma 3.10 A group G satisfies the strong

Atiyah Conjecture if and only if for any

finitely presented QG-module M

dimN (G)(N (G)⊗
QGM) ∈

1

|FIN (G)|
Z.

Proof: Given a matrix A ∈ M(m,n,QG),

let

rA : QGm → QGn

resp.

r
N (G)
A : N (G)m → N (G)n

be the associated QG- resp. N (G)-map

given by right multiplication with A. Since

the tensor product N (G) ⊗
QG − is right



exact, coker
(
r
N (G)
A

)
is N (G)-isomorphic

to N (G)⊗
QGcoker(rA). We conclude from

Additivity

dimN (G)

(
ker

(
r
N (G)
A

))
= m−n+dimN (G)

(
N (G)⊗

QG coker(rA)
)
.

As N (G) is semihereditary, ker
(
r
N (G)
A

)
is

finitely generated projective. We have

dimN (G)

(
ker

(
r
N (G)
A

))
= dimN (G)

(
ker

(
r

(2)
A

))
.

Therefore

dimN (G)

(
ker

(
r

(2)
A

))
∈

1

|FIN (G)|
Z

if and only if

dimN (G)

(
N (G)⊗

QG coker(rA)
)
∈

1

|FIN (G)|
Z.



Conjecture 3.11 (Kaplanski Conjecture)

The Kaplanski Conjecture for a torsionfree

group G and a field F says that the group

ring FG has no non-trivial zero-divisors.

Lemma 3.12 The Kaplanski Conjecture holds

for G and the field Q if the strong Atiyah

Conjecture 3.6 holds for G.

Proof: Let x ∈ QG be a zero-divisor. Let

r
(2)
x : l2(G)→ l2(G) be given by right mul-

tiplication with x. We get

0 < dimN (G)

(
ker(r(2)

x )
)
≤ 1

Since by assumption dimN (G)

(
ker(r(2)

x )
)
∈

Z, we conclude dimN (G)

(
ker(r(2)

x )
)

= 1.

Since ker(r(2)
x ) is closed in l2(G), we con-

clude ker(r(2)
x ) = l2(G) and hence x = 0.

Definition 3.13 Let C be the smallest class

of groups which contains all free groups

and is closed under directed union and ex-

tensions with elementary amenable quo-

tients.



Theorem 3.14 (Linnell) Let G be a group

such that there is an upper bound on the

orders of finite subgroups and G belongs

to C. Then the strong Atiyah Conjecture

3.6 holds for G.

Definition 3.15 Let G be the smallest class

of groups which contains the trivial group

and is closed under the following opera-

tions:

1. Amenable quotient

Let H ⊂ G be a normal subgroup. Sup-

pose that H ∈ G and the quotient G/H

is amenable. Then G ∈ G;

2. Colimits

If G = colimi∈I Gi is the colimit of the

directed system {Gi | i ∈ I} of groups

indexed by the directed set I and each

Gi belongs to G, then G belongs to G;



3. Inverse limits

If G = limi∈I Gi is the limit of the in-

verse system {Gi | i ∈ I} of groups in-

dexed by the directed set I and each

Gi belongs to G, then G belongs to G;

4. Subgroups

If H is isomorphic to a subgroup of the

group G with G ∈ G, then H ∈ G;

5. Quotients with finite kernel

Let 1 → K → G → Q → 1 be an exact

sequence of groups. If K is finite and

G belongs to G, then Q belongs to G.

Theorem 3.16 (Schick)

Let {Gi | i ∈ I} be a directed system of

groups such that each Gi belongs to the

class G and satisfies the strong Atiyah Con-

jecture 3.6. Then both its colimit and its

inverse limit satisfy the strong Atiyah Con-

jecture 3.6.



The lamplighter group L is defined by

the semidirect product

L := ⊕n∈ZZ/2o Z

with respect to the shift automorphism of

⊕n∈ZZ/2, which sends (xn)n∈Z to (xn−1)n∈Z.

Let e0 ∈ ⊕n∈ZZ/2 be the element whose

entries are all zero except the entry at

0. Denote by t ∈ Z the standard gener-

ator of Z.Then {e0t, t} is a set of gener-

ators for L. The associate Markov op-

erator M : l2(G) → l2(G) is given by right

multiplication with 1
4 · (e0t + t + (e0t)

−1 +

t−1). It is related to the Laplace operator

∆0 : l2(G)→ l2(G) of the Cayley graph of

G by ∆0 = 4 · id−4 ·M .

Theorem 3.17 (Grigorchuk-Zuk)

The von Neumann dimension of the kernel

of the Markov operator M of the lamp-

lighter group L associated to the set of

generators {e0t, t} is 1/3. In particular L

does not satisfy the strong Atiyah Conjec-

ture 3.6.



Remark 3.18 No counterexample to the

strong Atiyah Conjecture 3.6 is known if

one replaces 1
|FIN (G)|Z by Q or if one as-

sumes that there is a bound on the orders

of finite subgroups of G.

Conjecture 3.19 (Singer Conjecture)

If M is an aspherical closed manifold, then

b
(2)
p (M̃) = 0 if 2p 6= dim(M).

If M is a closed connected Riemannian

manifold with negative sectional curvature,

then

b
(2)
p (M̃)

{
= 0 if 2p 6= dim(M);
> 0 if 2p = dim(M).

Because of the Euler-Poincaré formula

χ(M) =
∑
p≥0

(−1)p · b(2)
p (M̃)

the Singer Conjecture 3.19 implies the fol-

lowing conjecture in the cases where M is

aspherical or has negative sectional curva-

ture.



Conjecture 3.20 (Hopf Conjecture) If M

is an aspherical closed manifold of even di-

mension, then

(−1)dim(M)/2 · χ(M) ≥ 0.

If M is a closed Riemannian manifold of

even dimension with sectional curvature

sec(M), then for ε = (−1)dim(M)/2

ε · χ(M) > 0 if sec(M) < 0;
ε · χ(M) ≥ 0 if sec(M) ≤ 0;
χ(M) = 0 if sec(M) = 0;
χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.

Theorem 3.21 (Jost-Xin)

Let M be a closed connected Riemannian

manifold of dimension dim(M) ≥ 3. Sup-

pose that there are real numbers a > 0

and b > 0 such that the sectional curva-

ture satisfies −a2 ≤ sec(M) ≤ 0 and the

Ricci curvature is bounded from above by

−b2. If the non-negative integer p satisfies

2p 6= dim(M) and 2pa ≤ b, then

b
(2)
p (M̃) = 0.



Theorem 3.22 (Ballmann-Brüning)

Let M be a closed connected Rieman-

nian manifold. Suppose that there are real

numbers a > 0 and b > 0 such that the sec-

tional curvature satisfies −a2 ≤ sec(M) ≤
−b2. If the non-negative integer p satisfies

2p < dim(M)− 1;

p · a < (dim(M)− 1− p) · b,

then

b
(2)
p (M̃) = 0.

Remark 3.23 Direct computations show

that the Singer Conjecture 3.19 holds for a

closed Riemannian manifold M if dim(M) ≤
3 (assuming Thurston’s Geometrization)

or if M is a locally symmetric space or if

M carries an S1-action.

Definition 3.24 A Kähler hyperbolic man-

ifold is a closed connected Kähler manifold

M whose fundamental form ω is d̃(bounded),

i.e. its lift ω̃ ∈ Ωp(M̃) to the universal cov-

ering can be written as d(η) holds for some

bounded (p− 1)-form η ∈ Ωp−1(M̃).



Example 3.25 The closed manifold M is

Kähler hyperbolic if it satisfies one of the

following conditions:

1. M is a closed Kähler manifold which

is homotopy equivalent to a Rieman-

nian manifold with negative sectional

curvature;

2. M is a closed Kähler manifold such

that π1(M) is word-hyperbolic and π2(M)

is trivial;

3. M̃ is a symmetric Hermitian space of

non-compact type;

4. M is a complex submanifold of a Kähler

hyperbolic manifold;

5. M is a product of two Kähler hyper-

bolic manifolds.



Theorem 3.26 (Gromov)

Let M be a closed Kähler hyperbolic man-

ifold of complex dimension m and real di-

mension n = 2m. Then

b
(2)
p (M̃) = 0 if p 6= m;

b
(2)
m (M̃) > 0;

(−1)m · χ(M) > 0;

Theorem 3.27 Let M be a closed Kähler

hyperbolic manifold of complex dimension

m and real dimension n = 2m.

1. The canonical line bundle L = ΛmT ∗M
is quasiample, i.e. its Kodaira dimen-

sion is m;

2. M satisfies all of the following four as-

sertions (which are equivalent for closed

Kähler manifolds):

(a) M is Moishezon, i.e. the transcen-

dental degree of the field M(X) of



meromorphic functions is equal to

m;

(b) M is Hodge, i.e. the Kähler form

represents a class in H2(M ;C) which

lies in the image of H2(M ;Z) →
H2(M ;C);

(c) M can be holomorphically embed-

ded into CPN for some N ;

(d) M is a projective algebraic variety;

3. The fundamental group is an infinite

non-amenable group of deficiency ≤ 1.

It cannot be a non-trivial free product.



Let X be a topological space and let Csing
∗ (X;R)

be its singular chain complex with real co-

efficients. Let Sp(X) be the set of all sin-

gular p-simplices. Then Cp(X;R) is the

real vector space with Sp(X) as basis. De-

fine the L1-norm of an element x ∈ Cp(X),

which is given by the (finite) sum
∑
σ∈Sp(X) λσ·

σ, by

||x||1 :=
∑
σ
|λσ|.

Define the L1-seminorm of an element y

in the p-th singular homology Hsing
p (X;R) :=

Hp(C
sing
∗ (X;R)) by

||y||1 := inf{||x||1 | x ∈ Csing
p (X;R),

∂p(x) = 0, y = [x]}.

Notice that ||y||1 defines only a semi-norm

on Hsing
p (X;R), it is possible that ||y||1 = 0

but y 6= 0. The next definition is due to

Gromov and Thurston.



Definition 3.28 Let M be a closed con-

nected orientable manifold of dimension n.

Define its simplicial volume to be the

non-negative real number

||M || := ||j([M ])||1 ∈ [0,∞)

for any choice of fundamental class [M ] ∈
Hsing
n (M,Z) and j : Hsing

n (M ;Z)→ Hsing
n (M ;R)

the change of coefficients map associated

to the inclusion Z→ R.

Theorem 3.29 (Simplical volume of hy-

perbolic manifolds)

Let M be a closed hyperbolic orientable

manifold of dimension n. Let vn be the

volume of the regular ideal simplex in Hn.

Then

||M || =
vol(M)

vn
.

Example 3.30 We have ||S2|| = ||T2|| =

0. Let Fg be the closed connected ori-

entable surface of genus g ≥ 1. Then

||Fg|| = 2 · |χ(Fg)| = 4g − 4.



Definition 3.31 Let M be a smooth man-

ifold. Define its minimal volume minvol(M)

to be the infimum over all volumes vol(M, g),

where g runs though all complete Rieman-

nian metrics on M , for which the sectional

curvature satisfies | sec(M, g)| ≤ 1.

Example 3.32 Obviously any closed flat

Riemannian manifold has vanshing mini-

mal volume. Hence we get

minvol(Tn) = ||Tn|| = 0.

Let Fg be the closed orientable surface of

genus g, then

minvol(Fg) = 2π · |χ(Fg)| = 2π · |2−2g|
= π · ||Fg||

by the following argument. The Gauss-

Bonnet formula implies for any Rieman-

nian metric on Fg whose sectional curva-

ture satisfies | sec | ≤ 1

vol(Fg) ≥
∫
Fg
| sec |dvol ≥

∣∣∣∣∣
∫
Fg

sec dvol

∣∣∣∣∣
= |2π · χ(Fg)|.



If g 6= 1 and we take the Riemannian met-

ric whose sectional curvature is constant

1 or −1, then the Gauss-Bonnet Theorem

shows

|2π · χ(Fg)| =

∣∣∣∣∣
∫
Fg

sec dvol

∣∣∣∣∣ = vol(Fg).

Now the claim follows.

Notice that ||S2|| = 0 and minvol(S2) 6= 0.

We have

minvol(R2) = 2π(1 +
√

2);

minvol(Rn) = 0 for n ≥ 3.

Theorem 3.33 (Gromov-Thurston)

Let M be a closed connected orientable

Riemannian manifold of dimension n. Then

||M || ≤ (n− 1)n · n! ·minvol(M).



Conjecture 3.34 (Simplical volume and

L2-invariants)

Let M be an aspherical closed oriented

manifold of dimension ≥ 1. Suppose that

its simplicial volume ||M || vanishes. Then

b
(2)
p (M̃) = 0 for p ≥ 0.

Example 3.35 Let M be an aspherical closed

orientable manifold. Then Conjecture 3.34

is true in following cases:

1. Suppose that M carries an S1-action.

Then minvol(M) = 0, ||M || = 0 and

b
(2)
p (M̃) = 0 for all p ≥ 0;

2. Let H ⊂ π1(M) be a normal infinite

subgroup. If H is amenable, then ||M || =
0. If H is elementary amenable sub-

group, then b
(2)
p (M̃) = 0 for all p ≥ 0;

3. If there is a selfmap f : M →M of de-

gree deg(f) different from −1, 0, and

1, then ||M || = 0.



If any normal subgroup of finite index

of π1(M) is Hopfian and there is a self-

map f : M → M of degree deg(f) dif-

ferent from −1, 0, and 1, then b(2)
p (M̃) =

0 for all p ≥ 0;

4. Supose that M has dimension 3 (and

satisfies Thurston’s Geometrization Con-

jecture). Then ||M || = 0 implies that

b
(2)
p (M̃) = 0 for all p ≥ 0;

5. If the minimal volume minvol(M) of M

is zero, then ||M || = 0 and b
(2)
p (M̃) = 0

for all p ≥ 0.


