
L2-cohomology

Wolfgang Lück∗

Fachbereich Mathematik
Universität Münster

Einsteinstr. 62
48149 Münster

Germany

February 10, 2004

0 Introduction

The purpose of this miniseries consisting of three talks is to give some examples
of striking applications of methods from L2-cohomology based on the theory
of finite von Neumann algebras to problems in geometry, manifold theory and
group theory. We will not talk about applications to von Neumann algebras
themselves but refer for instance to the work and talks of Connes-Shlyakhtenko,
Gaboriau and Popa. We have tried to keep the three talks as independent of
one another as possible.

The author wants to express is gratitude to all the people involved in the
organization of the special activity on non-commutative geometry in Luminy in
February 2004, in particular to Anthony Wassermann.

In the sequel ring will always mean associative ring with unit. The letter G
denotes a discrete group. The von Neumann algebra of a group will be denoted
by N (G).

1 Ring Properties and Dimension Functions of
Finite von Neumann Algebras

In the sequel we fix a finite (complex) von Neumann algebra A together with a
faithful finite normal trace tr : A → C.

Definition 1.1 (Finitely generated Hilbert N (G)-module). A finitely
generated HilbertA-module is a Hilbert space V together with a ∗-homomorphism
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A → B(V ) such that there exists an isometric linear A-embedding V → l2(A)n

for some integer n ≥ 0. A morphism of finitely generated Hilbert A-modules is
a bounded A-equivariant operator.

Let H(A) be the C-category with involution (coming from taking adjoint
operator) of finitely generated Hilbert A-modules and P(A) be the C-category
with involution (coming from taking dual modules) of finitely generated projec-
tive A-modules. Notice that the definition of P(A) involves only the structure
of a C-algebra with involution of A but not the topology.

Lemma 1.2. There is an equivalence of C-categories with involution

ν : H(A)→ P(A).

We do not give the full definition of ν and its inverse ν−1. At least we say
that ν−1 sends an A-homomorphism Am → An to the morphism of finitely
generated Hilbert A-modules l2(A)m → l2(A)n obtained from f by completion.

Lemma 1.2 allows us to switch hence and forth between the functional an-
alytic category H(A) and the purely algebraic category P(A). In the category
H(A) there is the obvious notion of taking the closure of the image of a mor-
phism f : V → W of finitely generated Hilbert A-modules which is again a
finitely generated Hilbert A-module. We translate this into a purely algebraic
definition in P(A) as follows.

Definition 1.3. Let R be a ring. Let M be a R-submodule of N . Define the
closure of M in N to be the R-submodule of N

M = {x ∈ N | f(x) = 0 for all f ∈ N∗ with M ⊂ ker(f)}.

For a R-module M define the R-submodule TM and the R-quotient module PM
by:

TM := {x ∈M | f(x) = 0 for all f ∈M∗};
PM := M/TM.

Notice that TM is the closure of the trivial submodule in M . It can also be
described as the kernel of the canonical map

i(M) : M → (M∗)∗

which sends x ∈ M to the map M∗ → R, f 7→ f(x). Notice that TPM = 0
and that PM = 0 is equivalent to M∗ = 0.

Assumption 1.4. We assume that there is a dimension function dim which
assigns to any finitely generated projective R-module P a non-negative real num-
ber

dim(P ) ∈ [0,∞)

with the following properties:
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(i) If P and Q are finitely generated projective R-modules, then

P ∼=R Q ⇒ dim(P ) = dim(Q);
dim(P ⊕Q) = dim(P ) + dim(Q);

(ii) Let K ⊂ Q be a submodule of the finitely generated projective R-module
Q. Then its closure K (see Definition 1.3) is a direct summand in Q and

dim(K) = sup{dim(P ) | P ⊂ K finitely generated projective submodule}.

Next we explain that this dimension function can be extended to all R-
modules and implies certain nice ring theoretic properties for R.

Theorem 1.5. (Dimension function for arbitrary N (G)-modules, L.).
Suppose that (R, dim) satisfies Assumption 1.4. Then:

(i) R is semihereditary, i.e. every finitely generated submodule of a projective
module is projective;

(ii) If K ⊂ M is a submodule of the finitely generated R-module M , then
M/K is finitely generated projective and K is a direct summand in M ;

(iii) If M is a finitely generated R-module, then PM is finitely generated pro-
jective and

M ∼= PM ⊕TM ;

(iv) There is a dimension function

dim: {R−modules} → [0,∞]

defined for all R-modules which has and is uniquely determined by the
following properties:

(a) Extension Property
If M is a finitely generated projective R-module, then dim(M) agrees
with the given dimension;

(b) Additivity

If 0 → M0
i−→ M1

p−→ M2 → 0 is an exact sequence of R-modules,
then

dim(M1) = dim(M0) + dim(M2),

where for r, s ∈ [0,∞] we define r+s by the ordinary sum of two real
numbers if both r and s are not ∞, and by ∞ otherwise;

(c) Cofinality
Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e. M =⋃
i∈IMi and for two indices i and j there is an index k in I satisfying

Mi,Mj ⊂Mk. Then

dim(M) = sup{dim(Mi) | i ∈ I};
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(d) Continuity
If K ⊂M is a submodule of the finitely generated R-module M , then

dim(K) = dim(K);

In particular we get for a finitely generated R-module M :

dim(M) = dim(PM);
dim(TM) = 0.

Since every R-module is the union of the directed system of finitely generated
submodules, it is easy to check that the dimension function, if it exists, must
be given by

dim(M) := sup{dim(P ) | P ⊂M finitely generated projective submodule}.

The hard part in the proof is to show that this definition indeed has all the
listed properties.

Example 1.6. LetR = Z. LetM be a finitely generated Z-module andK ⊂M .
Then

K = {x ∈M | n · x ∈ K for some n ∈ Z};
TM := tors(M);
PM = M/ tors(M).

If we define the dimension of a finitely generated abelian group P by the unique
n for which P is Z-isomorphic to Zn, then Z together with this dimension func-
tion obviously satisfies Assumption 1.4. The dimension function constructed in
Theorem 1.5 is explicitly given by

dim(M) = dimQ(Q⊗ZM),

where dimQ denotes the dimension of a Q-vector space.

Lemma 1.7. Define for a projective A-module P its dimension by

dim(P ) :=
r∑
i=1

tr(ai,i)

for any matrix A ∈ M(n, n,A) for which A2 = A and the image of the A-map
An → An given by A is A-isomorphic to P .

Then the pair (N (G),dim) satisfies Assumption 1.4.

Proof. The definition of dim above is the so called Hattori-Stallings rank of P .
It coincides under the identification of the categories H(A) and P(A) appearing
in Lemma 1.2 to the von Neumann dimension of finitely generated Hilbert A-
modules. The condition (i) appearing in Assumption 1.4 is obviously satisfied.
The condition (ii) can be easily verified working in H(A) using the normality of
the trace tr : A → C.
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We mention that every von Neumann algebra is semihereditary.
Thanks to Theorem 1.5 we can assign to every A-module M its dimension

dim(M) ∈ [0,∞] such that properties like Additivity, Cofinality and Continu-
ity hold. This is the basis for the following definitions and the forthcoming
applications.

Definition 1.8. (Definition of L2-Betti numbers for G-spaces and groups).
Let G be a (discrete) group and X be a G-space. Define its p-th L2-Betti number
to be

b(2)
p (G) = dim (Hp(C∗(X)⊗ZG N (G))) ∈ [0,∞],

where C∗(X) is the singular chain complex of X.
Define the p-th L2-Betti number of G to be

b(2)
p (G) = b(2)

p (EG;N (G)) ∈ [0,∞].

Remark 1.9 (L2-Betti numbers for finite von Neumann algebras). Let
HHp(CG;N (G)⊗N (G)op) be the p-th Hochschild homology of CG with coeffi-
cients in the CG-bimodule N (G)⊗N (G)op, where ⊗ means the tensor product
of von Neumann algebras. One can show

b(2)
p (G) = dimN (G)⊗N (G)op (HHp(CG;N (G)⊗N (G)op)) .

Connes and Shlyakhtenko propose the following definition of the L2-Betti num-
ber of a finite von Neumann algebra A:

b(2)
p (A) = dimA⊗Aop (HHp(A;A⊗Aop)) .

Notice that for a free group of rank n we have b(2)
1 (Fn) = n − 1. If one could

show for a group G, that

b
(2)
1 (G) = b

(2)
1 (N (G)),

then one would know that N (Fm) and N (Fn) are isomorphic if and only if
m = n.

2 Rigidity for the Passage from Z to N (G)

Definition 2.1 (Algebraic middle K-and G-theory of a ring). Let R
be a ring. Define the projective class group K0(R) to be the abelian group
whose generators [P ] are isomorphism classes of finitely generated projective R-
modules and whose relations are [P1] = [P0] + [P2] for every exact sequence of
0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.

Define G0(R) analogously but replace finitely generated projective by finitely
generated everywhere.

Let GL(R) be the colimit of the directed system of groups

GL(1, R) ⊆ GL(2, R) ⊆ GL(3, R) ⊆ . . . ,
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where the various inclusions are given by taking the block sum with the (1, 1)
identity matrix. Define

K1(R) = GL(R)/[GL(R), GL(R)].

Next we summarize what is known about the middle algebraic K- and G-
theory and about the L-theory of von Neumann algebras. The following results
are due to Murray-von Neumann for K0 and to Lück-Rœrdam for K1.

Theorem 2.2. Middle algebraic K-theory of a von Neumann algebra).
Let A be a von Neumann algebra. Let

A = AIf ×AI∞ ×AAII1 ×AII∞ ×AIII

be its canonical decomposition. Then

(i) We have for n = 0, 1 natural isomorphisms

Kn(A) = Kn(AIf )×Kn(AI∞)×Kn(AII1)×Kn(AII∞)×Kn(AIII);

(ii) We have for n = 0, 1

Kn(AI∞) = Kn(AII∞) = Kn(AIII) = 0.

(iii) The center-valued universal trace induces an injection

K0(AIf )→ Z(A)Z/2,

and a bijection
K0(AII1)

∼=−→ Z(A)Z/2,

where Z(A) is the center of A with the Z/2-operation coming from taking
the adjoint and the group structure on Z(A)Z/2 comes from the addition;

(iv) There are isomorphisms

K1(AIf )
∼=−→ Z(A)inv,

and
K0(AII1)

∼=−→ Z(A)+,

where Z(A)inv is the multiplicative group of units in the center Z(A) and
Z(A)+ is the multiplicative group {aa∗ | a ∈ Z(A)inv}.

Recall that the topological K-theory of a von Neumann algebra agrees with
the projective class group K0(A) in even degrees and vanishes in odd degrees.

One can also compute the algebraic L-theory. We only state the result for
the projective versions.
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Theorem 2.3. Projective algebraic L-theory of a von Neumann alge-
bra). Let A be a von Neumann algebra. Let

A = AIf ×AI∞ ×AII1 ×AII∞ ×AIII

be its canonical decomposition. Then

(i) We have for n ∈ Z natural isomorphisms

Lnp (A) = Lnp (AIf )× Lnp (AI∞)× Lnp (AII1)× Lnp (AII∞)× Lnp (AIII);

(ii) We have for n = 0, 1

Lnp (AI∞) = Lnp (AII∞) = Lnp (AIII) = 0.

(iii) The L2-signature induces an isomorphism

L0
p(A)

∼=−→ K0(A),

(iv) We have
L1
p(A) = 0;

(v) The L-groups are 2-periodic, i.e. Lnp (A) ∼= Ln+2
p (A) for all n ∈ Z;

(vi) The quadratic and symmetric L-groups agree, i.e. the symmetrization map

Lpn(A)
∼=−→ Lnp (A)

is bijective for n ∈ Z.

These computations are useful for detecting elements in the K-or L-theory
of more complicated rings than A, namely of integral group rings. We mention
the following result.

Theorem 2.4 (L.-Rœrdam). Let G be a group with a finite normal subgroup
H ⊂ G. The map induced by induction K1(ZH) → K1(ZG) induces a homo-
morphism

α : Q⊗ZG K1(ZH)→ Q⊗Z K1(ZG),

where Q is equipped with the trivial G-action and the G-action on K1(ZH)
comes from the conjugation action of G on H.

Then the map α is injective.

This result is predicted by the Farrell-Jones Conjecture for algebraic K-
theory. This conjecture is still open. The point is that the conclusion above
holds for all groups G.

The proof of the following theorem is based essentially on work due to Lin-
nell. The reduced K-groups K̃0(R) are defined to be the kernel of the obvious
homomorphism Kn(Z)→ Kn(R). Equivalently, K̃0(R) is obtained from K0(R)
by dividing out the subgroup generated by the class [R].
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Theorem 2.5. (Change of rings homomorphism from ZG to N (G) for
K̃0). The change of rings homomorphism

K̃0(ZG)→ K̃0(N (G))

is trivial.

Conjecture 2.6 (K1(ZG) and the Fuglede-Kadison determinant). The
composition

K1(ZG)→ K1(N (G))→ R

is trivial, where the first map is the obvious change of rings homomorphism and
the second map to the additive group of real numbers is given by the logarithm
of the Fuglede-Kadison determinant.

This conjecture is for instance known for residually amenable groups by a
result of Schick which is based on approximations techniques due to Dodziuk,
Matthey and Lück. It is not true that K1(ZG)→ K1(N (G)) is trivial.

Conjecture 2.7 (Atiyah Conjecture). Let G be a torsionfree group and
A ∈M(m,n,ZG) be a matrix. It induces a N (G)-homomorphism

rA : N (G)m → N (G)n.

Then
dim (ker(rA)) ∈ Z.

Recall that dim (ker(rA)) is the same as the von Neumann dimension of the
kernel of the map of finitely generated Hilbert modules r(2)

A : l2(G)m → l2(G)n

induced by A.
The Atiyah-Conjecture is true for instance for residually torsionfree amenable

group by a result of Schick which is based on a deep theorem of Linnell and
approximations techniques due to Lück. It implies the version of the Kaplan-
sky Conjecture that for a torsionfree group G the rational group ring QG has
no non-trivial zero divisors. The Atiyah-Conjecture has also a formulation for
groups with torsion with an upper bound on the orders of its finite subgroups.

Theorem 2.8 (L.). Let G be a torsionfree group such that BG is of finite type
and the Atiyah Conjecture is true for it. Let H(2)

p (EG; l2(G)) be its (reduced)
L2-cohomology as defined in Definition 3.1.

Then for every p there is a integer n(p) ≥ 0 such that

H(2)
p (EG;N (G)) ∼= l2(G)n(p)

holds as Hilbert N (G)-modules.

A module R-module M is called flat if and only if taking the tensor product
with M sends short exact sequences to short exact sequences. This equivalent
to the condition that TorRp (V,M) = 0 for all p ≥ 1 and every R-module V .
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It would be very convenient if N (G) were flat as CG-module because then the
natural map

Hp(C∗(X))⊗ZG N (G)→ Hp (C∗(X)⊗ZG N (G))

is bijective for all p ≥ 0. But this assumption is very unrealistic because of the
following conjecture which is known to be true for many groups.

Conjecture 2.9 (Flatness of N (G) over CG). The von Neumann algebra
N (G) is flat as CG-module if and only if G is virtually cyclic.

For dealing with L2-Betti numbers the following weaker flatness condition
is sufficient.

Definition 2.10 (Dimension-flatness of N (G) over CG). The von Neu-
mann algebra N (G) is called dimension-flat over CG if for every CG-module
and p ≥ 1 we have

dimN (G)

(
TorCGp (M ;N (G))

)
= 0.

Conjecture 2.11 (Dimension-flatness of N (G) over CG and amenabil-
ity). The von Neumann algebra N (G) is dimension flat over CG if and only if
G is amenable.

Theorem 2.12. (i) If G is amenable, then N (G) is dimension-flat over CG;

(ii) If G contains Z ∗ Z as a subgroup, then N (G) is not dimension-flat over
CG.

Using an easy spectral sequence argument together with Additivity and Co-
finality of the dimension function one can reprove the following result

Theorem 2.13 (Cheeger-Gromov). All the L2-Betti numbers of a group
which contains an infinite normal amenable subgroup vanish.

Conjecture 2.14 (G0(CG) and amenability). The following assertions are
equivalent:

(i) G0(CG) 6= 0;

(ii) [CG] 6= 0 in G0(CG);

(iii) [CG] generates an infinite cyclic subgroup in G0(CG);

(iv) G is amenable.

Theorem 2.15. (The class [CG] ∈ G0(CG) and amenability).

(i) Let G be amenable. Then we obtain a well-defined homomorphism

d : G0(CG)→ R, [M ] 7→ dimN (G)(N (G)⊗ZGM).

It sends [CG] to 1 and hence [CG] generates an infinite cyclic subgroup in
G0(CG);
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(ii) Suppose that G contains Z ∗ Z. Then [CG] = 0 holds in G0(CG).

Proof. (i) Everything is obvious except the fact that d is well-defined. One has
to check that for an exact sequence 0 → M0 → M1 → M2 → 0 of finitely
generated CG-modules d([M1]) = d([M0]) + d([M2]) holds. This follows from
the dimension-flatness of N (G) over CG.
(i) Induction with the inclusion Z ∗ Z→ G induces a homomorphism

G0(C[Z ∗ Z])→ G0(CG)

which sends [C[Z ∗ Z]] to [CG]. Hence it suffices to show [C[Z ∗ Z]] = 0 in
G0(C[Z ∗ Z]). The cellular chain complex of the universal covering of S1 ∨ S1

yields an exact sequence of C[Z∗Z]-modules 0→ C[Z∗Z]2 → C[Z∗Z]→ C→ 0,
where C is equipped with the trivial Z∗Z-action. This implies [C[Z∗Z]] = −[C]
in G0(C[Z ∗ Z]). Hence it suffices to show [C] = 0 in G0(C[Z ∗ Z]). Choose an
epimorphism f : Z ∗ Z→ Z. Restriction with f defines a homomorphism

G0(C[Z])→ G0(C[Z ∗ Z]).

It sends the class of C viewed as trivial C[Z]-module to the class of C viewed
as trivial R[Z ∗Z]-module. Hence it remains to show [C] = 0 in G0(C[Z]). This
follows from the exact sequence 0→ C[Z] s−1−−→ C[Z]→ C→ 0 for s a generator
of Z which comes from the cellular C[Z]-chain complex of S̃1.

3 Applications to Geometry and Group Theory

Definition 3.1. (L2-Betti numbers of universal coverings of CW -comp-
lexes of finite type). Let X be a connected CW -complex of finite type, i.e.
all its skeleta are finite but X may possibly be infinite-dimensional. Let π be its
fundamental group and let X̃ → X be its universal covering. Denote by C∗(X̃)
its cellular Zπ-chain complex.

Define its cellular L2-chain complex C
(2)
∗ (X) to be the Hilbert N (G)-chain

complex
C

(2)
∗ (X) := l2(G)⊗ZG C∗(X).

It looks like

. . .
c
(2)
p+1−−−→

βp⊕
i=1

l2(π)
c(2)
p−−→

βp−1⊕
i=1

l2(π)
c
(2)
p−1−−−→ . . . ,

where βp is the number of p-cells in X and each differential is a bounded π-
equivariant operator.

Define its p-th (reduced) L2-homology to be the finitely generated Hilbert
N (G)-module

H(2)
p (X̃; l2(π)) := ker(c(2)

p )/im(c(2)
p+1).

Define its p-th L2-Betti number to be the von Neumann dimension of H(2)
p (X̃)

b(2)
p (X̃) = dimN (π)

(
H(2)
p (X̃; l2(π))

)
∈ [0,∞).
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This agrees with the more general definition of L2-Betti numbers presented
in the first talk.

Theorem 3.2. (Basic Properties of L2-Betti numbers).

(i) Homotopy invariance
If f : X → Y be homotopy equivalence of connected CW -complexes of
finite type, then we get for all p ≥ 0

b(2)
p (X) = b(2)

p (Y );

(ii) Euler-Poincaré formula (Atiyah)
Let X be a connected finite CW -complex with Euler characteristic χ(X).
Then

χ(X) =
∑
p≥0

(−1)p · b(2)
p (X̃);

(iii) Poincaré duality
Let M be a connected closed manifold of dimension n. Then we get for
every p ≥ 0

b(2)
p (M̃) = b

(2)
n−p(M̃);

(iv) Künneth formula (Zucker)
Let X and Y be connected CW -complexes of finite type. Then we get for
all n ≥ 0

b(2)
n (X̃ × Y ) =

∑
p+q=n

b(2)
p (X̃) · b(2)

q (Ỹ );

(v) Morse inequalities (Novikov-Shubin)
Let X be a connected CW -complex of finite type. Let βp(X) be the number
of p-cells in X. Then we get for n ≥ 0

n∑
p=0

(−1)n−p · b(2)
p (X̃) ≤

n∑
p=0

(−1)n−p · βp(X);

(vi) Wedges
Let X1, X2, . . . , Xr be connected CW -complexes of finite type and X =
∨ri=1Xi be their wedge. Then

b
(2)
1 (X̃)− b(2)

0 (X̃) = r − 1 +
r∑
j=1

(
b
(2)
1 (X̃j)− b(2)

0 (X̃j)
)

;

and for p ≥ 2

b(2)
p (X̃) =

r∑
j=1

b(2)
p (X̃j);
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(vii) Zero-th L2-Betti number
Let X be a connected CW -complex of finite type. Then

b
(2)
0 (X) =

1
|π|

;

(viii) Finite coverings
Let p : X → Y be a covering of connected CW -complexes of finite type
with a finite number n of sheets. Then we get for all p ≥ 0

n · b(2)
p (X̃) = b(2)

p (Ỹ ).

Notice that the assertions (i), (ii), (iii), (iv), (v) and (vi) appearing in The-
orem 3.2 have obvious analogues for the classical Betti numbers, whereas as-
sertions (vii) and (viii) mark a basic difference between L2-Betti numbers and
Betti numbers.

Remark 3.3 (Relation between Betti numbers and L2-Betti numbers).
One can show that the only general relation between the Betti numbers and
L2-Betti numbers for a connected finite CW -complex X is given by the Euler-
Poincaré formula ∑

p≥0

(−1)p · b(2)
p (X̃) =

∑
p≥0

(−1)p · bp(X).

On the other hand L2-Betti numbers are in the following sense asymptotic Betti
numbers. Namely, if π admits a sequence of nested normal subgroups of finite
index

π ⊇ Γ1 ⊇ Γ2 ⊇ Γ3 ⊇ . . .
with

⋂∞
n=1 Γn, then by a result of Lück

b(2)
p (X̃) = lim

n→∞

bp(Xn)
[π : Γn]

,

where Xn → X is the finite sheeted covering associated to Γn ⊆ π.
One may also say that L2-Betti numbers are obtained from the classical

Betti numbers by forcing multiplicativity for finite sheeted coverings to be true
(see Theorem 3.2 (viii)).

Example 3.4 (L2-Betti numbers of CW -complexes covering themselves).
Consider a connected CW -complex X of finite type for which there is a self-
covering X → X with d-sheets for some integer d ≥ 2. Then we get from
Theorem 3.2 (viii) for all p ≥ 0

b(2)
p (X̃) = 0.

This implies for every finite CW -complex X of finite type and all p ≥ 0

b(2)
p ( ˜S1 ×X) = 0.
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Example 3.5. Let Fg be the orientable closed surface. Since F0 = S2 is simply-
connected, we get

b(2)
p (F̃0) = bp(S2) = 1 if p = 0, 2;

b(2)
p (F̃0) = bp(S2) = 0 if p 6= 0, 2.

If g ≥ 0, then π1(Fg) is infinite and hence b(2)
0 (F̃g) = 0. By Poincaré duality

b
(2)
2 (F̃g) = 0. Since dim(Fg) = 2, we get b(2)

p (F̃g) = 0 for p ≥ 3. Using the
Euler-Poincaré formula we get

b
(2)
1 (F̃g) = −χ(Fg) = 2g − 2;

b(2)
p (F̃0) = 0 for p 6= 1.

Theorem 3.6. (L2-Betti numbers of 3-manifolds, Lott-L.)
Let M be the connected sum M1] . . . ]Mr of compact connected orientable prime

3-manifolds Mj which are Haken oder satisfy Thurston’s Geometrization Con-
jecture. Assume that π1(M) is infinite. Then the L2-Betti numbers of the
universal covering M̃ are given by

b(2)
p (M̃) = 0 for p 6= 1, 2;

b
(2)
1 (M̃) = (r − 1)−

r∑
j=1

1
| π1(Mj) |

+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣− χ(M);

b
(2)
2 (M̃) = (r − 1)−

r∑
j=1

1
| π1(Mj) |

+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣ .
Theorem 3.7. (L2-Betti numbers and S1-actions, L.).
Let X be a connected S1-CW -complex of finite type, for instance a connected

compact manifold with S1-action. Suppose that for one orbit S1 · x (and hence
for all orbits) the inclusion into X induces a map on π1 with infinite image. (In
particular the S1-action has no fixed points.) Then we get for all p ≥ 0

b(2)
p (X̃) = 0.

Theorem 3.8. (L2-Betti numbers and aspherical S1-manifolds, L.).
Let M be an aspherical closed manifold with non-trivial S1-action. Then the

action has no fixed points and the inclusion of any orbit into X induces an
injection on the fundamental groups. All L2-Betti numbers b(2)

p (M̃) are trivial
and χ(M) = 0.

Theorem 3.9. Vanishing of L2-Betti numbers of mapping tori, L.).
Let f : X → X be a cellular selfhomotopy equivalence of a connected CW -

complex X of finite type. Then we get for all p ≥ 0

b(2)
p (T̃f ) = 0.
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Proof. There is a d-sheeted covering p : E → Tf such that E and Tfd are homo-
topy equivalent. Hence

b(2)
p (T̃f ) =

b
(2)
p (T̃fd)
d

.

If βp(X) is the number of p-cells, then there is a CW -structure on Tfd with
β(Tfd) = βp(X) + βp−1(X). We have

b(2)
p (T̃fd) = dim

(
H(2)
p (C(2)

p (T̃fd))
)
≤ dim

(
C(2)
p (T̃fd)

)
= βp(Tfd).

This implies for all d ≥ 1

0 ≤ b(2)
p (T̃f ) ≤ βp(X) + βp−1(X)

d
.

Taking the limit for d→∞ yields the claim.

Theorem 3.10. L2-Hodge-de Rham Theorem, Dodziuk).
Let M be a connected closed Riemannian manifold. Let

Hp(2)(M̃) =
{
ω ∈ Ωp(M̃)

∣∣∣∣ ∆p(ω) = 0,
∫
fM
ω ∧ ∗ω < ∞

}
be the space of harmonic L2-forms on M̃ . Then integration defines an isomor-
phism of finitely generated Hilbert N (G)-modules

Hp(2)(M̃)
∼=−→ Hp

(2)(M̃, l2(π)).

Moreover we get

b(2)
p (M) = lim

t→∞

∫
F

trR
(
e−t∆p(x, x)

)
dvol.

where F is a fundamental domain for the G-action and e−t∆p(x, y) is the heat
kernel on M̃ .

Theorem 3.11. (L2-Betti numbers of hyperbolic manifolds , Dodziuk).
Let M be a hyperbolic closed Riemannian manifold of dimension n. Then:

b(2)
p (M̃)

{
= 0 , if 2p 6= n;
> 0 , if 2p = n.

Proof. A direct computation shows that Hp(2)(H
n) is not zero if and only if 2p =

n. Notice that M is hyperbolic if and only if M̃ is isometrically diffeomorphic
to the standard hyperbolic space Hn.

Corollary 3.12 (S1-actions on hyperbolic manifolds). Let M be a closed
hyperbolic manifold. Then it carries no non-trivial S1-action. If its dimension is
even, it cannot fiber over a circle, or more generally, cannot be homotopy equiv-
alent to a mapping torus of an selfhomotopy equivalence of a finite connected
CW -complex.
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Proof. If the dimension of M is even, this follows from Theorem 3.8, Theo-
rem 3.9 and Theorem 3.11. In dimension odd one has to use L2-torsion to get
the result.

Definition 3.13 (Deficiency). Let G be a finitely presented group. Define
its deficiency def(G) to be the maximum g(P ) − r(P ), where P runs over all
presentations P of G and g(P ) is the number of generators and r(P ) is the
number of relations of a presentation P .

Example 3.14 (The deficiency of some elementary groups). The free
group Fg has the obvious presentation 〈s1, s2, . . . sg | ∅〉 and its deficiency is
realized by this presentation, namely def(Fg) = g.

The deficiency of a cyclic group Z/n is 0, the obvious presentation 〈s | sn =
1〉 realizes the deficiency.

The deficiency of Z/n×Z/n is −1, the obvious presentation 〈s, t | sn = tn =
[s, t] = 1〉 realizes the deficiency.

If G is a finite group, def(G) ≤ 0.

Example 3.15 (Non-additivity of deficieny). The deficiency is not additive
under free products by the following example due to Hog, Lustig and Metzler.
The group (Z/2× Z/2) ∗ (Z/3× Z/3) has the obvious presentation

〈s0, t0, s1, t1 | s2
0 = t20 = [s0, t0] = s3

1 = t31 = [s1, t1] = 1〉.

One may think that its deficiency is −2. However, it turns out that its deficiency
is −1 and is realized by the following presentation

〈s0, t0, s1, t1 | s2
0 = 1, [s0, t0] = t20, s

3
1 = 1, [s1, t1] = t31, t

2
0 = t31〉.

Lemma 3.16. Let G be a finitely presented group. Then

def(G) ≤ 1− b(2)
0 (G) + b

(2)
1 (G)− b(2)

2 (G).

Proof. We have to show for any presentation P that

g(P )− r(P ) ≤ 1− b(2)
0 (G) + b

(2)
1 (G)− b(2)

2 (G).

Let X be a CW -complex realizing P . Its fundamental group is G. It has 1
zero-cell, g(P ) one-cells and r(P ) two-cells and no further cells. Hence

χ(X) = 1− g(P ) + r(P ) = b
(2)
0 (X̃) + b

(2)
1 (X̃)− b(2)

2 (X̃).

Since the classifying map X → BG is 2-connected, we get

b(2)
p (X̃) = b(2)

p (G) for p = 0, 1;

b
(2)
2 (X̃) ≥ b

(2)
2 (G).
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Theorem 3.17 (Deficiency and extensions, L.). Let 1→ H
i−→ G

q−→ K → 1
be an exact sequence of infinite groups. Suppose that G is finitely presented, H
is finitely generated and K is infinite. Then:

(i) b
(2)
1 (G) = 0;

(ii) def(G) ≤ 1;

(iii) Let M be a closed oriented 4-manifold with G as fundamental group. Then

| sign(M)| ≤ χ(M).

Proof. Assertion (i) is the hard part. It implies Assertion (ii) by Lemma 3.16
and assertion (iii) by the L2-index theorem of Atiyah.

We mention the following further two applications of L2-invariants, namely
of the L2-signature and L2-ρ-invariants, combined with the computations of
algebraic K- and L-groups of finite von Neumann algebras.

Theorem 3.18 (Cochran-Orr-Teichner). There are non-slice knots in 3-
space whose Casson-Gordon invariants are all trivial.

Theorem 3.19 (Chang-Weinberger). Let M4k+3 be a closed oriented smooth
manifold for k ≥ 1 whose fundamental group has torsion. Then there are in-
finitely many smooth manifolds which are homotopy equivalent to M (and even
simply and tangentially homotopy equivalent to M) but not homeomorphic to
M.

Finally we state two open conjectures which have gained a lot of attention
during the last years and certainly will create further work in the future. Some
of the results give evidence or prove them in special cases and they are known for
certain classes of groups or manifolds. The first conjecture is the space version
of the previous Atiyah Conjecture 2.7.

Conjecture 3.20 (Atiyah Conjecture). If X is a connected CW -complex
of finite type with torsionfree fundamental group, then all its L2-Betti numbers
b
(2)
p (X̃) are integral.

Conjecture 3.21 (Singer Conjecture). Let M be a closed aspherical mani-
fold of dimension n. Then

b(2)
p (M̃ ;N (G)) = 0 if 2p 6= n.

If the dimension n = 2k is even, then

(−1)k · χ(M) ≥ 0.

If the dimension n = 2k is even and M carries a Riemannian metric with
negative sectional curvature, then

b
(2)
k (M̃) > 0;

(−1)k · χ(M) > 0.
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