—_—— e —.

MATH. SCAND. 59 (1986}, 93-121

THE TRANSFER MAPS INDUCED
IN THE ALGEBRAIC K,- AND K,-GROUPS
BY A FIBRATION I

WOLFGANG LUCK

0. Introduction.

A. AsstrACT. Given a fibration F — E-% B with B and E connected and
F of the homotopy type of a finitely dominated CW-complex, we define
algebraic transfer maps p¥: K, (Z[#,(B)]) - K,(Z[n,(E)]) for n =0,1.
If p is a PL-bundle p} reduces to the geometric transfer p': Wh(x, (B))
— Wh(n,(E)) constructed in Anderson [2]. The homomorphism p' sends
the Whitehead torsion 1(f) e Wh(n,(B)) of a homotopy equivalence
f: By — B between finite simplicial complexes to () € Wh(n(E)) if [ is
the map induced by the pull-back-construction applied to f and p:

E,~1>E

|, b

B, 1> B

The projective class group transfer p§ agrees with the geometric transfer p'
constructed in Ehrlich [9] for a fibration F — E — B with F and B of the
homotopy type of a finitely dominated CW-complex and B and E
connected. Given a finitely dominated CW-complex B; with Wall
obstruction w(B,) and amap f: B; — B, Ehrlich defines: p'(f,(w(B,)))
= fy(W(E})).

One can find algebraic computations of p' in special cases in Anderson
[1]. Ehrlich [8], [9], Munkholm [14], Munkholm-Pedersen [15] using
the homology of a certain covering of the fibre. By writing down
explicit matrices representing elements in the K-groups, an algebraic
description of p' is stated in Munkholm-Pedersen [16]. Munkholm-
Ranicki [ 17] if the fibre is the one dimensional sphere S*. Our goal is to give
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an algebraic description in general. This can be used to calculate the Wall
obstruction of the total space from the one of the base space and similarly
for the Whitehead torsion.

B. A MOTIVATION AND SURVEY OF THE CONSTRUCTION OF p*. In order to
compute the geometric transfer we have to get some information about the
cellular Z[n, (E)]-chain complex C (E) of the universal covering of E in
terms of F and B. It suffices to do this in a special situation since an
element n € Ko(Z[n,(B)]) respectively Wh(r,(B)) can be geometrically
realized in the following simple way. One constructs a space B, by
attaching cells to B only in dimensions kand k+1 for k =2 and a map
r,: B, > B with r,| B = ID such that rl*(w(Bl)) =, respectively t(ry)
=1, holds (Theorem 2.1). Given a pair of fibrations

F - (E..E) -2 (B, B),

we have only to calculate C% (E,,E) in terms of the fibre and the cellular
Z[r,(B)]-chain complex C;(TB,,E) concentrated in two dimensions.

Let p: E— B be the composition of p: E— B and the universal -
covering of E. Thisis a m; (E)-equivariant fibration. The transport of the
fibre F = p~!(b) along paths in B defines a homomorphism

u: 1, (B) = [F.Flo g

into the monoid of 7, (E)-homotopy classes of m, (E)-self maps of F. Over
acell D of (B, B) the space E, lookslike F x D. Tt turns out that C;(I~31, B)
and u determine completely how these pieces F x D are glued together.

Namely, we assign to u a functor
U:Z[n,(B)] -—BMOD — Z|n,(E)] - CC

from the category of based free Z[n,(B)]-modules into the homotopy
category of projective Z[n;(E)]-chain complexes such that for the non-
trivial differential d of C%(B;,B) and a representative &, of U(d) the
mapping cone of &, is (simple) homotopy equivalent to C;(EI,E)
(Theorem 2.2).

In section 3 we will assign to U a homomorphism

Ug: Kn(z[nl(B)]) - Kn(z[nl(E)])

in a purely algebraic manner such that

U*(W(C;(BI,B))) = w(CS.(E.E)
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respectively U*(r(C;(BI,B)))zr(C;(El,E)) is valid. This map U, is the
algebraic transfer. (If one is interested only in the algebraic construction it
suffices to read the self contained sections 3 and 4.)

C. REeviEw OF RESULTS. The main result of this paper is that the geometric
and algebraic transfer coincide (Theorem 5.4). We explain in section 6 how
u:n,(B)— [F, F]mE) is determined by the homotopy operation of 7, (E)
on the pointed fibre. We will use this algebraic description to make some
computations of the transfer in part II (to appear in J. Pure Appl. Algebra).
It turns out that all the results for orientable S*-fibrations in Munkholm-
Pedersen [16] can be extended to fibrations which are untwisted i.e. the
homotopy action of n;(E) on the pointed fibre is trivial. This includes
orientable fibrations with a connected H-space as fibre.

One of the most interesting results will be the following. Let F — E — B
be an untwisted fibration with 7, (F) infinite and 7, (B) finite. Then pf is
zero for n = 0,1 in all cases except the one where 7, (F) = Z, 7, (E) finite
and n = 1 holds. In this special case p¥ is y(F) - p with x(F) the Euler
characteristic of the universal covering of F and f the transfer of an
orientable S!-fibration with the same fundamental group data. The
homomorphism f is extensively discussed in Oliver [18] and not zero in
general.

D. FURTHER PROBLEMS. It is possible to write down an algebraic transfer
for L-theory and lower K-theory but it is not clear whether there exists a
transfer homomorphism for higher K-theory. As the general behaviour of
an untwisted fibration with a finite odd dimensional Poincaré complex as
fibre corresponds to the one of an orientable S'-fibration it would be
interesting to have an example of such a fibration for which one could
prove more easily than for an orientable S!-fibration in Oliver [ 18] that the
induced transfer on K, is not trivial. In this context the question arises how
to construct an untwisted fibration p: E — B for which the kernel of
py: T (E)— my(B) is cyclic and the transfer on K, is not induced by the
transfer of an S'-fibration with the same fundamental group datas.

This paper essentially is a part of the author’s Ph. D. thesis (Gottingen
1984). Some details which are not explained here can be found in it. I would
like to thank Prof. Tammo tom Dieck for his help.

The paper is divided into the following sections:

1. The chain homotopy representation associated to a fibration.
2. Computations of cellular chain complexes.
3. Invariants for chain complexes in K, and K.
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4. The algebraic transfer.

The algebraic transfer induced by a fibration.

6. The homotopy operation of 7, (E) on the pointed fibre determines the
chain homotopy representation.

7. Proof of Theorem 2.2.

e

1. The chain homotopy representation associated to a fibration.

Let p: (E,e) - (B,b) be a fibration with connected E and B and with
fibre F =p~1(h). Let g (E.é)— (E.e) be the universal covering of E
and let p: (E,é) —» (B, b) be the composition pe g, with fibre F =p~ 1(b).
One easily checks that p is a I'-fibration for I'=mn,(E,e), that is:

DeFINITION 1.1. Let I' be a discrete group. A I-fibration is a I-
equivariant map p’: E' —» B’ such that I' acts trivially on B'and p’ has the I'-
equivariant homotopy lifting property for any I'-space X

T
I, 7

XxT— B

Here I is the unit interval with the trivial action and the diagram is a
diagram of I'-spaces. We have made the assumption that I" acts trivially on
B', as it is always fulfilled in the cases we will regard. For '=1 a I'-
fibration is a usual fibration (see Switzer [24, p. 52], Whitehead [28,
p- 29]). Givena I'-fibration p’: E' — B’, the I'-equivariant transport of the
fibre F’ along paths in the base space defines a homomorphism n,(B’)
— [F', F]; into the monoid of I'-homotopy classes of I'-self maps of F’
(see section 8 A, Switzer [24, p. 343], Whitehead [28, p. 186]). Applying
this to p=pogy we get a homomorphism u:n— [F,F]. for
n=mn,(B,b) and I = n,(E,e). Now we assume that F has the homotopy
type of a CW-complex so that we can choose a I’ -complex Y and a I'-
homotopy equivalence 1: Y — F. Let [C(Y),Co(Y)] be the ring of
Z[T'J-homotopy classes of Z[I']-self maps of the cellular Z[I']-chain
complex of Y. For a ring R we denote by R° the dual ring i.e. the
multiplication r - s in R° is given by s - r in R. We define
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Upe: Z[r] - [CL(Y), Co. (V)]
by
w i [CL(A7! e uw™) © A)].

DEFINITION 1.2. We call U,,: Z[n] - [CL(Y),C5(Y)]; the chain
homotopy representation associated to the fibration p: (E,e) — (B, b).

Up to conjugation with a Z[I"]-homotopy equivalence U, is uniquely
determined by p and e. We will see that U,, contains the whole
information needed to describe the geometric transfer algebraically. If
Z[n]-BMOD is the category of based Z[rn]-modules and Z[I']-CC the
homotopy category of Z[I']-chain complexes, we can interprete U = U,
as a covariant functor

U: Z[7]-BMOD - Z[TI']-CC

also_denoted by U and compatible with @. A morphism @,Z[n]
- @, Z[n] of based (left) modules given by a matrix (d; ;) with entries in
Z[n] is mapped by U to the homotopy class

(UE)): @ C(v) » @ cyv).

We denote by tr the transposed matrix. One should notice that in the first
case (d; ;) operates from the right and in the second case (U (d; ;))"" from the
left.

2. Computations of cellular chain complexes.

This chapter contains two theorems which connect geometry and
algebra and lead to an algebraic description of the geometric transfer. The
first one gives us a very simple geometric realization of elements in
Ko(Z[7]) and Wh(rn) for a connected space B with = ==,(B) and
universal covering B.

THEOREM 2.1. Let (D,,d,) be a based free Z[rn]-chain complex
concentrated in dimension k and k + 1 for k > 2. Then there exist a relative
n-CW-complex (B,,B) and a n-map r,: B, > B with r!B, = 1D such
that C<,(B,, B) is based isomorphic to (Dy.d,).

Proor. We write (D,.d,) as

.aOﬂ(‘?Z[ﬂ]W@J)Z[T[]—»O—»
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For each jeJ we attach a copy of mXx Sk to B by mx {x}
— B (w,x) —> w - b for some base points * in Skand b in B. We get (B, B)
with the obvious retraction rq: B, — B. Wewrited, ;as Y veqali,j,w) - w.
Let

ali,j,w): (S5,%) — (S*,%)

be a map of degree a(i,j,w). The map
a(w,j): (S, %) = (Bo,w - b)

identifies S* and the part {w} x S* of the jth cell 7 x S* in B,. Let

Bi,j,w): (S*,%) = (Bo,b)
be a map homotopic to

a(w,j) © ali,j,w): (S, %) > (By,w - b)
along a path in B from b tow - b. For each i € I choosea representative
Vi (Sk, %) — (BOaB)

of ¥ B(i,j, w)in m(Bo, B.B), where the sum is taken over all (j,w) € J X
with a(i,j,w) £0. Now attach a cell mx D' to B, by mxS*
— By (w,x) > w - 7;(x) foreach ie I. As

ro, - m(Bo,b) = m(B.D)

maps [7;] to zero we can extend ro to ry.

The next theorem contains the computation of the cellular chain
complex of the universal covering of the total space in the situation of
Theorem 2.1.

The mapping cone Cone(f,), of achainmap f,: Cx— D, isdefined as

Cone( fi)n Cone(f)n-1

e

Cn—l@Dn —_— Cn—2®Dn‘l

The suspension ZC, is Cone(C,—0,) and IkC, is the k-fold
suspension.
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Let (py,p): (E;,E) > (B,,B) be a pair of fibrations (respectively PL-
bundles) with

n=rmn;(B) =n(B,) and I' =n,(E) = n,(E,).

Let (gy,8): (B,,B)—> (A4,,4) be a homotopy equivalence (respectively
simple homotopy equivalence) into a pair of CW-complexes such that the
cellular chain complex C;(Zl,}i) of the pair of universal coverings is
concentrated in dimension k and k+1 for k > 2. Then its (k +1)th-
differential

d: 61") Z[n] TN (‘JD Z[n]

defines a morphism in Z[r]-BMOD. Let U: Z[=]-BMOD - Z[I']-CC
be the functor defined by the chain homotopy representation associated to
p: E— B in section 1.

THEOREM 2.2. Then there exists a pair of I'-homotopy equivalences
(respectively simple homotopy equivalences) (fy,f): (E{,E) - (X, X) into
a pair of I'-CW-complexes and a Z[I']-chain map

ey 6? Cs(Y) — (—JB C5(Y)

such that ¢, represents U(d) and Cx(X1,X) is based isomorphic to
Cone(Z*e,),.

The proof of Theorem 2.2 is referred to section 7. The theorem leads to
the following construction of the algebraic transfer and explains the role
of the chain homotopy representation. Corollary 7.5 is responsible for the
appearance of the chain homotopy representation in Theorem 2.2.

3. Invariants for chain complexes in K oand K, .

Let R and S be associative rings with unit. A functor F between the
corresponding categories of finitely generated projective modules com-
patible with @ induces a homomorphism F,:K,(R)— K,(S) for all
n = 0 (see Quillen [20, p. 95]). We want to generalize this for Koand K.
Namely, we will assign to a functor F: R-BMOD — S-FDCC from the
category of finitely generated based R-modules into the homotopy
category of finitely dominated projective S-chain complexes compatible
with @ amap F,: K,(R) - K., (S) for n = 0,1. The main difficulty lies in
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the fact that S-FFDCC is an additive category but not an exact category In
the sense of Quillen [20, p. 92] or a category with cofibrations in the senst
of Waldhausen [25]. Namely, we cannot define a kernel or cokernel of a
homotopy class of chain maps. We will approximate the notion of 2
cokernel by taking the mapping cone of some representative of the
homotopy class. This will not determine a unique chain complex but a
(simple) homotopy class.

Our program to construct F,canbe outlined as follows: We will assign
to each self-homotopy equivalence (respectively homotopy projection)
fu: Ce— Cy in S-FDCC an element t(f,) € Ki(S) (respectively
w( fy) € Ko(S)). Then we can define:

DerinTion 3.1. Given a functor F: R-BMOD — S-FDCC of additive

categories we define F,: K,(R)— K, (S) for n=0,1 in the following
way: Let n € K{(R) respectively Ko(R) be represented by an automor
phism f: R"— R™ (respectively the image of a projection f: R™ - R"
(thatis f° f = f)). Then define F,(n) as t(F(f)) respectively w(F(f))-

Before we give the definition of t and w we introduce some notation:
Modules are always left modules. Each chain complex C, is positive and
projective, i.¢. C,=0forn< 0 and C, is projective for n > 0. WecallC,
finite if C, is finite dimensional and each C, finitely generated and
projective. We write Ceyen = @ ,Canand Cogg = T Cops1-

DeriniTioN 3.2, Let fo 1 Cy C, bea self-equivalence of a finitely
dominated projective chain complex. Choose a finite projective S-chain
complex P, and homotopy equivalences hy: Cy— P, and g,: Py~ P,

with hy © fi = 8 ° P If ¢, is the differential and 7, a chain contraction
of Cone(g,), define

Q. Cone(g*)odd - Cone(g*)even

by (c,+7s4)- Then @ is an automorphism of the finitely generated
projective module &) . P,. Define t(f,) € K;(S) as the class of ¢.

One can easily prove using Gersten [11] thattis well defined. Compare
also with the definition of the Whitehead torsion in Cohen [5, p- 52] and of
the absolute torsion in Ranicki [21] and Ranicki [22].

Now we consider a homotopy projection p,: Cy — C, (thatis py ° Ps

'~ p,). Wecall (DysTsriy) @ split object for py if D, 1s a projective chain
complex and 7,: Cy— D, and i,: Dy~ C, chain maps with i, o7y
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~py and r,ci, ~ID,. A split object is the homotopy theoretic
summand of C, defined by p,. Namely, one can easily prove that C, is
homotopy equivalent to D, @ Cone(iy),.

DeFINITION 3.3. Given a homotopy projection px: Cy— C, inS-FDCC
we define w(p,) € K,(S) as the Wall obstruction w(D,) for any split
object (D, r,,i,).

We recall that the Wall obstruction w(D,,) of a finitely dominated chain
complex D, is defined as Y (—=1)"[P,] for any finite projective chain
complex P, homotopy equivalent to D,, (see Wall [27, p. 38], Wall [26]).
The Definition 3.3 makes sense because of the following lemma. It is a
special case of Freyd [10]. We will, however, give an explicit construction.

LEMMA 3.4. Each homotopy projection P« Cy = C, possesses a split
object (Dy,r,,i,). If (DY, 75, iy) is another one, there exists a homotopy

. . C o y .
equivalence f,: D, — Dy with f, o r, ~r, and i, o Sfe = i,

PrOOF. Defining f, by r,ci, and f! by ry © I, one shows
uniqueness. Hence only the existence remains to be proved. We will
construct D, by a kind of Eilenberg swindle:

Let E| and EY be copies of @:LOC*. Let q,: E} — E2 be the chain
map defined by the matrix

ID, —p, 0 0 0
P ID, —p, 0 0
A= 0 Px ID, —p, 0
0 0 P« ID, —p,

Let s,: E3 — E} be given by the transposed matrix A" and uy: E3 > C,
by (p4.0,...,0) and v,:C, —»E% by (ID,,0,...,0)". Now choose
a homotopy h,:p, e Px ~py, and define chain homotopies
Py Ey > Eyiy and @0 EQ - EL, | and y,: E,—CL.| by:
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Wy (—h,,0,0,...).

One easily checks that ¢4:ID, ~v, °u,+q,°s, add @l:s, g,
~ID, and ¥ : u, ° g, ~ 0, arevalid. Then the following maps are chain
maps:

re: Cu —— Cone(q,)=E% |, @ EY

E(0,0,)"
iy 1 Cone(q,), XTRRS C,.
Define the chain homotopy &, : Cone (¢,,), — Cone(q,)y+; by
[ID* 0 ] . [(,o,lk_1 s*}
e, ID, 0 ?3
for ey =—v4i1 oWy —qysy° @x—0%° q,. Then &, is a homotopy

between ID, and r,°i, and we have i,°r, =p,. Therefore
(Cone(qy )y, 7y iy) is a split object for p,.

Since we have constructed for a homotopy projection p,: C, —C,
together with a homotopy h,: p, ° p, ~ p, an explicit domination
P Cx—> Dy, i,:Dy—>C,, and &,:ID, ~r, oi, one can use the
instant Wall obstruction in Ranicki [23] to get a finitely generated
projective module defined by a square matrix 4 with 42 = 4 and
representing w(p,,).

The next theorem collects the main properties of t and w and ensures that




 D—
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Definition 3.1 makes sense. For its proof use Gersten [11], Ranicki [21],
Ranicki [22], Wall [27, p. 138], Cohen [5, p.48]. If we write t(fy)
(respectively w(f,)) we assume that Jx: Cy— Cy is a self equivalence
(respectively homotopy projection) of a finitely dominated chain complex
C,.

TueoreM 3.5. a) Homotopy invariance.

1) fa~g, = t(fy) = t(gy) respectively w(fy) = wig,).

i) Let hy:C,— D, bea homotopy equivalence and f, : C,—C, and
&x: Dy — Dy self maps with h, o f, ~ 8« © hy. Then t(f,)=t(g,)
(respectively w(f,) = w(gy)).

b) Additivity. The following diagram with exact rows commutes:

OﬁHCi%CS‘—h—»Ciﬁﬂo

d

Then t(1,) = t(f) +1(f2) = 0 respectively w(f,)) = w(£2) +w(f2) = 0.
¢) Logarithmic property
t(f* © g*) = t(f*)+[(g*)~

4. The algebraic transfer.

Using Definition 3.1 it is easy to define the algebraic transfer as a pairing:
We introduce a category R —S-FDCC motivated by Definition 1.2.
Objects are pairs (C,, U) consisting of a finitely dominated projective S-
chain complex C, and a ring homomorphism U:R-[C,,C,]s. A
morphism [ f,]: (C,,U) - (D, V) is a homotopy class of S-chain maps
Jx: Cy > Dy with V(r), o f, ~ J« o Ulr), forall r e R. We call

(CL Uy b (g, u9) L, (2,02

exact, if there exists a choice of representatives iy> Py, U/(r), such that for
all r € R the following diagram has exact rows and commutes strictly (not
only up to homotopy).
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0—————>Ci——i*—+C2——p*——>Ci———+O

lU‘(r)‘ lU"(r)* le(r)*

— CY cC2——0
i * . *

DerInITION 4.1. The Grothendieck group of R — S-FDCC is denoted by
5(R—=1S).

We recall that the Grothendieck group of a small category with exacl
sequences is the quotient of the free abelian group generated by the
isomorphism classes of objects and the subgroup generated by elements
[X]—[Y]+[Z] for all exact sequences X — Y — Z.

Given an object (C,,U) of R — S-FDCC let U: R-BMOD — S-FDCC
be the corresponding functor (see section 1). Using Definition 3.1 we geta
homomorphism U, : K,(R) = K,(S) for n = 0,1:

DeFINITION 4.2. The pairing
RTS. K¢(R—S)® K,(R) = K,(S)
is defined by
RTS([C, U], x) := Uy(x) for n=0,1.

For y € K5(R —S) let RTS: K,(R) - K,(S) be given by RT5(y,?).

We sometimes write simply T for RTS. This pairing is compatible with
the additive relations in K%(R —S) because of Theorem 3.5. Given an
object (C,, U) of R — S-FDCC, the map T¢, v is the composition of

U,: K,(R) - Kn([C*, C*]g)

and a homomorphism K,([Cy,C,]") = K.(S) defined by the obvious
functor [C,,C,]° —BMOD — S-FDCC according to Definition 3.1. If
C, is concentrated in dimension 0 then C is a S — R-bimodule and the
second homomorphism is the usual Morita homomorphism (Curtis-
Rainer [6]) and Tjc, yy is just given as Co Qr 7.

Now we regard the example of a ring S with a pseudostructure. Thisisa
ring S with an automorphism s+ s’ and an element ¢ € S such that the
relations ¢' = ¢ and s'o = os hold for each s e S. Then the left ideal
(o) generated by o is a twosided ideal. Let C, be the S-chain complex
S % S concentrated in dimension 0 and 1. We define a chain map
f(5)y: C » Cy forse S by

f(s);:S5HS and f(s): S>S.
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A nullhomotopy for f' (), is given by theidentity on S. Hence we get a ring
homomorphism U: S/(¢) - [C,, C,]s and thus homomorphisms

Tic, v): Ka(S/(0)) = Ky(S) for n=0.1.

One easily verifies that this is the homomorphism stated in Munkholm-—
Ranicki [17] for n = 0 respectively Munkholm—Pedersen [16]for n =1
which describes the transfer induced by a S'-fibration algebraically. In
Oliver [ 18] one can find a detailed study of the K ;-transfer of an orientable
S!-fibration with finite fundamental groups. It contains examples for which
the K ;-transfer is not zero (see also Munkholm—Pedersen [15, p. 423]).
Now we state the natural properties of these pairings. Let F be a functor
from the category of projective S-modules into the category of projective
S’-modules which is compatible with @ and sends S to a finitely generated
projective S’-module (for example localization or completion). Then F
induces an exact functor F: R — S-FDCC - R — §-FDCC and therefore
homomorphisms F,: KG(R —S) - K§(R—S') and F,: K,(S) = K,(S").

LEMMA 4.3, The following diagram commutes for n = 0,1:
RTS
K5(R—=S) ® K,(R) —— K,(S)

F,®ID F,
K5(R—S) ® K,(R) — 1 K,(S")

Especially this can be applied to a ring homomorphism ¢: S - S" and
the induction functor ind(¢). Then we write ¢, instead of ind(¢p),.
A ring homomorphism ¥ : R'— R induces a homomorphism

y*: K5(R —S) - K5(R — S)
by [Cy. U] = [Cy, U 2 ¥].

LEMMA 4.4. The following diagram commutes for n = 0,1:

K5(R —$)® K, (R) — 2 K,(S)
Y*Q 1D

o(R—15) ® K,(R) ID

o,

K5(R —5) ® K, (R) — K,(3)
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This yields the formulas ¢, ° T, = T,.» and T, ° Yy = Ty

For applications in geometry we define for two groups 7 and I'.

Derinition 4.5. The map 0, : Ko(Z[n] — zZ[r)) — HOM(n, Wh(I)) is
defined by

0,[C,. UD:x — pr(t(U(x): Cx — C,)

for the canonical projection pr: K (Z[I']) = Wh(I').
Let K5 (Z[n] —Z[I']) be the kernel of 0,. The pairing of Definition 4.1
induces a pairing

(-2 Ky (Z[x] - Z[I']) ® Wh(n) - Wh(l).

5. The algebraic transfer induced by a fibration.

Let p: (E,e) — (B,b) be a fibration of connected spaces whose not
necessarily connected fibre has the homotopy type of a finitely dominated
CW-complex. Let Kg(p,e) be an abbreviation for K$(Z[m,(B.h)]
—Z[n,(E,e)]) and analogously for K5 (p,e). The chain homotopy
representation U, of Definition 1.2 determines an isomorphism class ol
objects in Z[n,(B,b)] —Z[n,(E,e)] —FDCC and thus a class
Ul(p,e) € Ki(p,e). Define

0,(p,¢): Ko(p.e) - H' (B, Wh(n(E)))

as the composition of the homomorphism 6, of Definition 4.5 and the
isomorphism

HOM (r, (B, b), Wh(r (E.e))) = HOM (H, (B), Wh(r, (E)))
— H'(B,Wh(x,(E)))
DerinTion 5.1, For n= 0.1
p*: K(Z[=,(B,b)]) - K, (Z[m,(E,e)])

denotes the homomorphism Ty, of Definition 4.2. If 0,(p,e)U(pe)
vanishes, then U(p,e) is an element of K%(p,e) and defines

p*: Wh(n,(B,b)) — Wh(n, (E,e))
by Definition 4.5.

Now we want to get rid of the base points. The problem of the choice of
the base points and the models of the universal coverings is extensively
discussed in Cohen [5, pp. 63-65] for Whitehead groups.
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Let w be a path in E from e, to e, and w™ the inverse path. Conjugation
with w, respectively p e w™, defines a homomorphism

Cw: Ty (E,eq) = my(E,e;),

respectively Cpow-: T1(B,by) = m(B,by). For a group homomorphism
¢ wedenote by Z[¢] the induced map on the group rings. Now one verifies
that

Z[Cw]* ° Z[Cpow’]* : Kco(P,eo) g K%(psel)
maps U(p,e,) to U(p,e,) and that
01(p,ey) ° Z[Cw]* °© Z[Cpowf]* = 0,(p,eo)

is valid. Hence we get a well-defined cohomology class
Vi(p) € H'(B, Wh(m,(E))) by 0,(p.e)(U(p,e)). Because of Lemmata 4.3
and 4.4 the following definition makes sense.

DEFINITION 5.2. Let
p*: Ko(Z[ny(B)]) = Ko(Z[n,(E)])

be induced by the collection of homomorphisms of Definition 5.1 for
ecE.
We call p simple if V; (p) vanishes. For simple p let

p*: Wh(n,(B)) - Wh(n, (E))
be induced by the homomorphism of Definition 5.1.
A consequence of Lemma 4.3 and 4.4 is:

CoroLLary 5.3. The algebraic transfer is compatible with pull backs.
Namely, for a pull back

Pol JP
B,—L B

the following diagram commutes

Ko(Z[m1(Eo)]) —— Ko(2[n,(E)])
23 r*

Ko(Z[m,(By)]) —L— Ko(2[r,(B)]).

If p and py are simple the same is true for W hitehead groups.
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Proor. For e, € E, and e € E with f(e,) = e one verifies:

Z[”l(f)]*(U(Pano)) = Z[”x(f)]*(U(Pae))-

The class V,(p) € H'(B, Wh(r,(E))) = HOM(H ((B), Wh(r,(E))) can
be described in the following more familiar way if there exists a homotopy
equivalence A: Y — F, from a finite CW-complex into the fibre of poverb.
If ¢ is the Whitehead torsion, w: mn,(B,b) > [F,, F,] the homotopy
operation of m,(B,b) on the fibre, i: F, —» E the inclusion and ¢
conjugation with 4, one gets the following commutative diagram

(B, b) —2— [Fy, Fy] —*— [Y, Y] —— Wh(m,(Y))
A

Wh(r, (F,))

Le

H,(B) hilp) — Wh(m, (E)).

Obviously V,(p) vanishes for an orientable fibration (that is w =0} and
for a fibration with Wh(r,(F,))=0. Each PL-bundle and each local
trivial fibre bundle with a finite CW-complex as fibre is simple as the fibre
transport is given by homeomorphisms which are simple homotopy
equivalences (Chapman [4], Cohen [5. p. 102]).

Now we can state the main result.

THEOREM 5.4. Whenever the geometric transfer p' for a fibration
respectively PL-bundle p: E — B is defined the same is true for the algebraic
transfer p* and p' and p* coincide.

Proor. This is a consequence of the definitions of p* and p' and of
Theorems 2.1 and 2.2. In the K-case one can assume w(B) = w(E) =0
since p*, respectively p', are compatible with pull-back by Corollary 5.3,
respectively definition. Given a projection p: R"— R" with image P one
gets an explicit free resolution of P by the Eilenberg swindle. This
corresponds to the explicit construction of a split object in Lemma 3.4.

One should notice that for a covering p: E — B with a finite set as fibre
the transfer p* is just the classical transfer induced by restriction with

Z[p,]: Z[=,(E)] — Z[=,(B)].
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Each fibration E -*> B can be written as a composition
E P BO Po B

of a fibration p, with a connected fibre and a covering p,. Because of p'
= pi ° p§ it suffices to study fibrations with connected fibres.

6. The homotopy operation of 7, (E) on the pointed fibre determines
the chain homotopy representation.

Let p:(E,e) > (B,b) be a fibration with fibre F =p~'(b) and
connected spaces E and B. Although it is not necessary we assume for
simplicity in this section that F is connected. We write 7 = n,(B,b), T
=mn,(E,e), and 4 for the kernel of p,: I —n. The epimorphism
0:my(F,e)—> 4 is induced by the inclusion F < E and gp:F — F is the
covering corresponding to &. Let gqg: (E,é)— (E,e) and gg: (B,b)
— (B,b) be universal coverings. Define p: (E,é) - (B,b) as p° qg and
p:(E,&)— (B,b) by gqz° p=p. Let F=p-1(b) be the fibre of the I'-
fibration p.

We can identify F with the fibre 5~ !(b) of the A-fibration j. We get the
following diagrams:

Lol Lol
r ——E %, F and E ——>E
TR
n B —*, B B % .,pB.

Obviously F is contained in F as a 4-space and
h:I'x F— F(c,x) > cx

is a I'-homeomorphism.

Now w:n—[F,F] (respectively o:I —[(F,e),(F,e)]*) is the
homomorphism into the monoid of (pointed) homotopy classes of
(pointed) self-maps of the fibre. Given a loop win (E, e) a representative of
o(w) is defined by H, for a solution H of the homotopy lifting problem

Fx{1}Uf{e}x1-Y* E

H P
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Analogous for w (see Whitehead [28, pp. 35+ 185+186], Switzer [24,
p. 343]). In Whitehead [28, pp. 98-100]) an operation

p:my(F,e)x [(F,e), (F,e)]" - [(F,e), (F,e)]"

is defined. We denote by
p: nl(F:e) - [(Fve)’ (F’e)]+

the homomorphism given by the evaluation of 5 on the identity on (F,e).
Let G, (F,e) be the kernel of p (compare Gottlieb [12, p. 842]).

We have defined u: n — [F, F], in section 1.

Now o: I — [(F,e),(F.¢)]" induces a map ¢: I — [F,ﬁ]r in the
following way. Choose a representative s(w): (F,e) — (F,e) of a(w) for
w € I'. Conjugation with winduces a homomorphism ¢, : 4 — 4. Because
of @ ° s(w), =c, ° 0 there exists a unique lift

S(w): (F,é) — (F,é),

which is automatically c,-equivariant.
Hence we can define

Sw): I'x ,F >I'x F

by (¢, x) — (cw,5(w™")(x)). Let 6(w) be given by the I'-homotopy class of
hoSw)ye h™ 1.

THEOREM 6.1.
a)The map 6: T — [F,F], is a well-defined homomorphism.
b) The homotopy operation u is determined by ¢ and thus by o. Namely, i
Jactorizesin u ° p,.
¢)i)  Theforgetfulmap f: [(F,e), (F,e)]* — [F,F] is the projection onto
the orbit space of the operation p.
i) wop,=fco.
i) a(d(v) - w) = p(v,a(w)) for ve ny(Fye) and we I. Especially:
geod=p.

The proof of this theorem is straightforward. It shows in combination
with Theorem 5.4 and the definition of p* that the geometric trans
fer induced by a fibration depends only on the so called fundamental
group data, i.e., the fibre F, the homotopy operation ¢ and the sequence
ny(F) > n;(E) - n,(B). This result has been proved geometrically by
universal fibrations respecting this data in Pedersen [19].
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DeriniTion 6.2. We call p untwisted if ¢ is trivial and orientable if w is
trivial.

“Untwisted” implies “orientable” but the converse implication is not
valid in general. Namely, p is untwisted if and only if G,(F) = n,(F) and p
is orientable. Therefore each orientable fibration with a connected H-space
as fibre is untwisted. This includes principal G-bundles for connected
topological group G.

7. Proof of Theorem 2.2.

The proof consists of four parts. In part A we give some information
about I'-fibrations we need in part B to explain the construction of
(f1.f): (E;,E) - (X;,X). We prove in part C that in the PL-case (f;, )
can be chosen as a pair of simple homotopy equivalences and C%(X,, X) is
computed in part D.

A. I'-fibrations. The definition of a I'-fibration was given in section 1. The
usual definitions of fibre map, tibre homotopy, etc. can be translated
directly (Switzer [ 24, p. 342], Whitehead [28, p. 38]). Amap (f,f): p—p’
of I'-fibrations p: E— B and p': E' > B’ consists of I'-maps f: E — E’
and f: B— B’ with p'o f= fop. AI'-homotopy h: ZxI—>E isaTl-
fibre homotopy if p © his stationary. Two maps f,, f, : Z — E are I'-fibre
homotopic (f, =, f,) if there exists a I'-fibre homotopy h with hy = f,
and h; = f;. Thisimplies p © f, = p ° f;. Fortwo I'-fibrations p: E > B
and p': E'— B over the same space B a I'-fibre map (f,ID): p—p’ is
a I'-fibre equivalence if there exists a I'-fibre map (g,1D): p' — p with
fog~,ID and g° f~,ID. The fibre F=p~'(b) is a I'-subspace
of E.

For a I'-fibration p: E — B and a map f: Z — B we use the following
notation for the pull-back:

*E—J1 L E

J

Z—— B

DeriniTiON 7.1. Let h: Zx I — B be a homotopy between f, and f,
and H a solution of the I'-homotopy lifting problem:

Jo

Jo E—""— E

et

FEx XD, g
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Define a,: f E— f*E by H, and f ° p;, using the pull back property.

Of course «, depends on H but we will see that the I'-fibre homotopy
class of «, depends only on the homotopy class of h. If h and g are
homotopies Zx1— B with hy =g, and h, =g, we call them
homotopic (h = g) if they are homotopic as maps relative to Z x {0,1}.
Given homotopies h: fo~ fi and g: fi =~ f,, let hxg be the obvious
homotopy h*g: fo =~ f,. Using Switzer [24, p. 342] one can easily prove:

PrOPOSITION 7.2.
a) o, is a I'-fibre equivalence.
b) H is a I'-homotopy fo =~ fi ° oy over h.
c) h~g = o, >, o
d) Gy =, 0 ° o

Applying this to Z = {*} one gets the functor “I'-equivariant transport
of the fibre along pathsin B” u: n(B) = I'"TOPyq from the fundamental
groupoid of B into the homotopy category of I'-spaces (compare Switzer

[24, p. 343)).
Let (D, d) be a pointed contractible space and f: D — B amap. Given:

morphism ¢: f(d) - b in n(B), i.e. a homotopy class relative to {0,1} of
paths from b to f(d) in B, we define:

DEFINITION 7.3. Let h be any homotopy between the constant map
¢,: D— {b} = B and f such that h(d, ) represents ¢. Define
Ty: F,x D— f*E
by o, and
T(f,¢): F,xD—E
by o T
Because of Proposition 7.2 and the following Lemma 7.4 the I'-fibre

homotopy class of T; depends only on &.

LemMA 7.4. Let h and g be homotopies between fo and fi: D — B fo
contractible (D,d). Then h ~ g is valid if and only if the paths h(d, -) an
g(d, - ) are homotopic relative to {0,1}.

ProoF. Choose a homotopy ¢ : D x I - D between IDj, and the constan
map c, relative to {d}. Now define y": DxIx1— B
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g h({(x,3t),0) 0<t<3s
Yh(x,t,s) = ( h(((x,s),%_}%) Fs<t<1-3s
Wl(x,3-30,1) 1-ssr<1
' Then " is a homotopy between h and
Jo© {(x,31) 0<t=<3
'ﬁ’i(xat)Z h(d73t_1) %été%
fiel(x,3-31) 3=st=1

l Obviously y! ~ 4 is valid, if h(d, -) ~ g(d, -) relative to {0,1}.

We will later apply this to the characteristic map of a cell of the base
space. Now we get the main result of part A. It is responsible for the
appearance of the chain homotopy representation in Theorem 2.2.

COROLLARY 7.5. Let D be a contractible space and h: (D,S)*x 1 — (B, A)
be a homotopy between the maps of pairs fo and f; and p: E— B a I'-
fibration. Let £, be a homotopy class of paths relative {0,1} from b € B to
fi(d) for d € S and & be the class of h(d, *).

Then the following diagram commutes up to homotopy of I'-pairs

(E,ElA)

uE*E +Eo) < ID

Fy,x(D,S)

F,x (D,S) A T(:,/1)

B. The construction of (f,,f). We construct (f,f) now for (p;,p) a
pair of fibrations. Without loss of generality we can assume (B, B)
"= (A,,A) as the pullback with a homotopy equivalence gives also a
homotopy equivalence between the total spaces. Let B, (respectively B,) be
the (k+1)- (respectively k-)skeleton of the relative CW-complex (By, B).
The characteristic map of the ith (respectively jth) cell of dimension k +1
(respectively k) is denoted by

(P(l)> p(l)) (Dk+1ask) - (BhBO)
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(respectively (Q(j).¢q(j)): (D*,$*7') — (B,. B). Let &, (respectively ;) be a
homotopy class of paths relative to {0,1} from b to P(i)(*) (respectively
Q(j)(*)) for a base point x in S* (respectively S*~!). Choose trivializations

T(i): Fx D¥*1 - PG)*E,

(respectively S(j): F x D¥ —» Q(j)*E,) using ¢, (respectively 1;) according
to Definition 7.3. The restriction of T (i) (respectively S(j)) to S* (respectively
S¥~1) is denoted by t(i) (respectively s(j)). Since we are working in the
category of compactly generated spaces the following diagrams are push-
outs and the inclusions cofibrations, Whitehead [28, p. 33]. Let E, be the
restriction of E, to B,.

T
;CI(I)*EO —t— E
N 2000 [
YOG*Ey ———— Eo
J
and
Y

We recall that we have chosen a I'-homotopy equivalence A: Y -f
with Y a I'-CW-complex in section 1. Now choose a I'-homotopy
equivalence f: E - X into a I'-CW-complex X and a homotopy hl)
between f © g(j)© s(j) ° (A X ID) and a cellular map S(j): ¥ x S¥ =X,
The following diagram of push-outs defines a I'-homotopy equivalenc
(fo.f): (Eo, E) = (X4, X) into a pair of I'-CW-complexes (see Brown [3
p. 249] or tom Dieck [7, p. 161]. The sum is taken over J.
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Y0()*Eg Ya0)*E, —0 g
2.8() © (4 xID) TZS () ° (AxID) IID
2 Y x Dt Sy Y x skt 240500 GxID) | g
e lf
Y YxDEx] PYY xSty XRO
Y Y x Dk Y Y x gkt D W10 BN X.

The second step is completely analogous. Choose a homotopy of pairs
gAY X (S5,%)x T — (X,, X)
between f, o pG) o t(i) » (A x ID) and a cellular map y (i) and define
(fi:Jo./): (Ey, Eo, E) - (X, X,, X)

by the following diagram. Here the sum is taken over J.

YPGBy~ sy p()* E, — 2, g,
2.T) = (AxID) Y i) (AxID) JID
TYXD e 5Yy gk 2000 éx1D) | g
ZleDk“xIleYxS"xl — 250 io
i I D
YYXD o LYy — 0y

C. In the PL-case (/1,f) can be chosen as a pair of simple homotopy
equivalences. The difficulty here lies in the technical point that the
characteristic maps (Q0). () and (P(i), p(i)) can only be simplicial if ¢(j)
and p(i) are injective because Q(j) and P(i) are injective on the interior. But
only if they are simplicial we get a simplicial structure on P(i)*E, and
Q()* E. We will solve this problem by shrinking Q(j) respectively P(i) to
PL-embeddings Q) and P(iy.

Without loss of generality we can assume that (41, A)is equal to (B;,B)
and that the attaching maps q(j) and p(i) are simplicial for a triangulation
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of B, for which B and B, are simplicial subcomplexes (use Anderson [2,
p. 174], Cohen [5, p. 24]). Further we can suppose that there exists PL-
embeddings

(QG), q()): (D*,S*"') - (By,B) foreach jeJ

whose image is a simplex contained in the interior of the jth cell. Choose a
path {;in the jth cell in B, from Q(j)(*) to Q(j) (). Defincn’as 1 = " By
definition of a PL-bundle (see Anderson [1, p. 181]) there cxists a map
S(j): Fx D*¥ - Q(j)*E corresponding to 1 and Definition 7.3 such that it
is a PL-homeomorphism and especially a simple homotopy equivalence.
Its restriction to S*~! is denoted by s(j). Let By be B, \ Y, image
(Q()). There exists a strong deformation retraction ro: By — B, covered
by a PL-bundle map ry: E,l B, — E such that both r, and 7, are simple
homotopy equivalences. As Q(j) and r, > Q(j) are homotopic along {; the
map 7, ° q(j) ° s(jY and q(j)° s(j) are homotopic (Corollary 7.5).
Because 7, © q(j) ° s(j)’ is already simplicial there exists a cellular I~
homotopy h(j) between f © 7, © q(j) © s(j) ° (4 x ID) and the map B(j) of
part B. Now define a I"-homotopy equivalence

(fO’f): (EOaE) - (XO)X)

by the following diagram of push-outs. The sum is taken over J.

Y 0()* Eg=—— Y q()* Eq 907 E,

TZ NOERVES 1) Y.s() e (AxID) LD
ZIYXD"<——-—72Y>(Sk—1 240) ° s() © (- x1D) E,

io iy Jforo
ZYXD"XI<—)Z§"><S"“1><1 3 hGy %

i i IID
Y Yx Dt-a—— Ty x gkt 2.8G) X

Using the topological invariance of the Whitehead torsion (Chapman [4],
Cohen [5, p. 102]), the sum and product formula Cohen [5, pp. 76 +77]

and the fact that S(j), s(j)’, 4, f, and r, are simple homotopy equivalences
one proves that f is a simple homotopy equivalence. One should notice
that in each step the push-out space has at least a CW-structure and that
(X9, X )constructed here is the same as in part B. The same argument shows
that f; can also be constructed as a simple homotopy equivalence.
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D. Computation of Cy (X, X). We have defined X as the push-out of

LYXDM s Sy gk x,
1 1 pRYG)
1

for a map y(i): Y x (S*,%) > (X0, X). Let 6(i) be the restriction of y(i)
to ¥ x {x}. Now the cone of

CLlr@),0(0)): C(Y X (8%,%)) > C4(X,, X)

is the cellular chain complex of the relative I -CW-complex
(Cone(y(i)), Cone(s (i))). There exist relative I -homeomorphisms

(Xl, Cylinder(é(i)) - (X1, X,)
and

(X4, Cylinder(5(i)) — (Cone(y (i), Cone(4(i)))

inducing based isomorphisms between the cellular chain complexes.
Therefore C<(X,, X) is based isomorphic to Cone(ka(y(i),(S(i)))*. Since
X has been defined as the push-out of

2. BG)
ZYkaMZYXSk_IJﬁ"X;
J J

we have for the characteristic map
(RGO, BG): ¥ x (D54 1) > (X, X)
a based isomorphism
6? CURG), p()): B Cy(v x (055 1) - c<(x,, X).
Now it remains to show that using this isomorphism and the identification
CLY X (DX S571) = C4(Y x (8%, 4)) = Z*Ce(v)

the chain map Co(y (i), o(i)) isforany iel a representative of the chain
homotopy class of

ZECL(Y)

(J;r) SRCE(Y).

Eeua@ )y
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We recall that the matrix (d;;) describes the nontrivial differential d of
C%(By,B). Now we fix i € I and write dijas ) a(j,w)-w. We denote
by K the finite index set

K ={(,w) e Jxnla(,w) + 0}.

Let
Q: (DK S 1 %) - (S, %, %)
and
Y Yx (DK Sty o yx \/ (D¥, S%~1)
K K

be the obvious projections. Choose a map

Vi(D5SY) >\ (Dk sk

K
inducing the diagonal map
A4: H (D¥ Sk~ 1y Hk<\/ (D",S"‘U) =@ H,(D* Sk~ 1),
K K

Given a homotopy class ¢ of paths relative to 0,15 from by to b, and
[®.¢] € m (B, B,by) we define ¢ [P,¢] € m(By,B,by) by the homo-
morphism induced by ¢ (see Whitehead [28, p. 101]).

The Hurewicz homomorphism and the universal covering (B,, B,, B)
— (By, By, B) induce an 1somorphism between C¢ (B,.B) and the Z[n]-
chain complex given by the connecting homomorphism

0: T+ 1(By, By, b) — (B, B, b)

of the triple (B,, B,, B) (see Whitehead [28, p. 289]). We can assume that
the cellular Z[rn]-base of C%(By,B) corresponds to the elements
¢+ [P(i),p(i)] and n; - [Q0). q())]. Therefore we getin m(By, B, b):

(& - [PG), p(i)]) = ;du 1 [Q0), q0)]

= ;a(j,w) “wen s [Q6), ()]

Let

O(,w): (D" S~ %) > (B,,B,b)
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be a representative of the homotopy class given by the composition of
w-n; - [Q().q()] and a map (D¥, 81 %) — (D*,8*7',%) of degree
a(j,w).

LEMMA 7.6. The maps &; - (p(i) ° Q) and
\V Q(,w) o V: (D¥S¥ !, %) — (Bo,B.b)
are homotopic. :
Proor. We get in 7, (Bo, B, b):
(& - [P(),p®]) = &lp) ° Q]

and
[\K/ QA(}.eW) ¢ V] = ;a(j,w) Twe r.’j ’ [Q(])s CIU)]

Applying Lemma 7.6 and Corollary 7.5 one proves that the following
diagram of pairs of I'-spaces commutes up to homotopy. The map v sends
the summand corresponding to (j, w) identically to the one of j. The class of
the constant path in b is denoted by &,. The maps £(i) and S(j) have been
defined in part B and the maps T(p(i), &), etc. in Definition 7.3. The
homomorphism u: n — [F, F]r isinduced by the fibre transport u defined
in section 7A and was already introduced in section 1.

1D
Y x (S*,*) foo p@ e tli)» (Ax1D) Yxl(sk *)
IDxQ
Y x (D¥, 87 1) Jo© Tlpt) = 2.8)° ¢ x1D) 2 (i), (1)
j,IDXV
Joo T(Y QU &) (3x1D) I
Yx V (DK S1) - ‘()W(O’X)
K
Jo
ko1 Lhoe T(Q(. ), &) © (2% 1D)
Y (PRI Y RG).BG)
* J
lz Gt o u(w Yo Ay xa(,w)
K

;/00 S@) e (4> 1D)

ZYX(Dk,Sk_l) ZYX(Dk’Skfl)
J

T B
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The following diagram of chain complexes commutes where =~ denotes a
based isomorphism. Let diag be the diagonal K X K-matrix with
a(j,w) - C4(A~" e u(w™') ° 1) as entry on the diagonal corresponding to
(/,w) € K. The map v' sends the summand corresponding to (j,w) € K
identically to the one of j and 4 is the diagonal map:

TKCL(Y) = Cy(Y X (S, #)

ID C5(ID x Q)
TRCLY) = Cy(Yx (DRSS
4 ;D x V)
@ TRCL(Y) = C(Yx Y (D, S¥71))
IDI (OA()
EKB skCc(Y) = C;(ZYX (DX, $*°1)
diagl C;(;(ff' ou(w™ ') o A xa(j,w))
@ THCLUY) = G Y X (DN S)
| C
"l |

I

@ zxce(Y) C;(ZYX (D%, %~ 1)).
J

Now v’ o diag ° 4 is just

ZHCL(Y)

This finishes the proof of Theorem 2.2.

er) TkCE(Y) .

e —
(U@, )y
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