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0. Introduction

0.1. Abstract

In this paper we continue the study of the algebraic transfer p*: K, (Z7,(B))—~
K,(Zn\(E)) for n=0,1 defined in [12] for a fibration p:E— B. The algebraic
transfer p* agrees with the geometric transfers p! :Ko(Zm(B))— Ky(Zm (E)) and
p! :Wh(m(B))— Wh(n;(E)) constructed in [7,8] and [4] respectively. The
geometric Kj-transfer sends Wall’s finiteness obstruction of B to the one of E. The
Whitehead torsion of a homotopy equivalence f: B,— B is mapped by the White-
head transfer to the one of f: E,— E given by the pullback. An algebraic vanishing
theorem for p*is a vanishing theorem for p' and is thus geometrically meaningful.
Such algebraic vanishing theorems are obtained in the last three sections.

0.2. Survey of the contents

In Section 1 we give a review of the construction of the algebraic transfer. On the one
hand we construct an abelian group K5(R — S) and a pairing 7: K§(R - S)® K,(R)—
K,(S) for n=0,1 and rings R and S. On the other hand we assign to a fibration
p:E—B with a finitely dominated CW-complex as fibre an element [p]e
K§(Zn,(B)~Zn,(E)).

We explain in Section 2 how [p] and p* can be computed from homology if the
homology possesses finitely generated projective resolutions.

In Section 3 we prove that the algebraic transfer is compatible with the Bass-
Heller-Swan homomorphisms. We extend the constructions above to negative K-
groups.

We examine in Section 4 the orientation data of a fibration. They consist of the
fundamental group sequence and the transport of the fibre resp. pointed fibre along
loops in the base resp. total space.

This leads to the notion of a chain complex with a twist in Section 5. Given a nor-
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mal subgroup H of G and a ZH-chain complex, a G-twist is an extension of the H-
operation to a G-operation up to homotopy. We can assign to a fibration such a
chain complex with a twist using the orientation data. It determines the class [ p]
in Kg(Zn(B)—Zn(E)).

In Section 6 we apply representation theory to compute [p] and p*. If 7,(E) is
finite and we use rational coefficients, it turns out that [p] is given by a rational
representation. Its character is computed by Lefschetz numbers. The algebraic
transfer is given by tensoring with the representation corresponding to [p].

We examine orientable fibrations in Section 7. We show that there is a section
s of py:m(E)— n(B) such that p*is given by s: K,(Zn(B))— K, (Z7,(E)) if the
fibre is a finite CW-complex with non-vanishing Euler characteristic. If 7;(¥) can
be written as Zx H such that Z is contained in the kernel of n,(F)— n,(E), then
[p] and p* are zero.

In Section 8 we treat untwisted fibrations. Untwisted means that the transport of
the pointed fibre is trivial. We are interested in vanishing theorems for the transfer.
In this context untwisted fibrations are of special interest because for them py© p*
is always zero (Theorem 8.2). If we further assume a finite fibre, the composition
p*o ps vanishes. If a fibration is not untwisted with a finite fibre, we cannot, in
general, expect p4«° p*=p*op,=0 or even p*=0.

The main result for an untwisted fibration is that p* can be written as a composi-
tion B, 0By 0 -+ 0 B0 g* such that the g, —s are S'-transfers and g* the transfer of
an untwisted fibration whose fibre has a finite fundamental group (Theorem 8.1).
This leads to some vanishing results (Theorem 8.3).

For explicit calculations it is reasonable to assume F and 7;(B) to be finite
because one has not much information about K, (Zn) for infinite 7. But then the
Ky-transfer is zero (Theorem 8.3(b)). If we further presume that 7,(F) is infinite,
the K -transfer also turns out to be trivial except for the case where 7,(F’) is Z and
n,(E) is finite. In this special case p* is x(F)-  where /8 is the transfer of an orien-
table S'-fibration with the same fundamental group data and x(F) the Euler
characteristic of the universal covering of the fibre. The homomorphism S,
however, is not zero in general (see [19]).

Section 9 contains the proof that for an orientable fibration with a connected
compact Lie group G the transfer p* is zero if G is not isomorphic to 79 x SO(3)"
and can always be written as a composition of S'-transfers.

0.3. Conventions and notations

Given a fibration F~E-2 B we always assume that £ and B are connected
and F is a finitely dominated CW-complex. We write I'=n,(E), n=n,(B)and 4=
kernel(ps: I = m). The epimorphism ¢ : 7 (F)— A4 is induced by the inclusion FC E.

We denote by A a commutative ring with unit. For a group G the group ring with
A-coefficients is written as AG or A[G].

Module means left module unless a right action is stated explicitly. Chain com-
plexes always consist of projective modules. The functor ‘cellular chain complex
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with A-coefficients’ is denoted by C(2, A). If f: C—>D is a chain map, its mapping

cone is given by
"*C**‘C’DD*TTC*’Z@D*"'
[ e

1. Review of the algebraic transfer

The purpose of this section is to recall the construction of the algebraic transfer
defined in [12]. Namely, given associative rings with unit R and S, we introduce an
abelian group K§(R —S) and a pairing RTS . K§(R— SY® K, (R)— K,(S) for n =0,1.

A chain homotopy representation (C, U) consists of an S-chain complex C and
a ring homomorphism U: R~ [C, C]¢ into the dual ring of homotopy classes of
chain maps C — C. A morphism [f]: (C, U)— (D, V) of chain homotopy representa-
tions is a homotopy class [f] of chain maps /' C— D with fo U(r)=V(r)o f for all
reR. We call a sequence of morphisms of chain homotopy representations

1oy Ul 0 70 PV 22
(€, uH——(CU")——(CLUY)
exact if there exists a choice of representatives i, p, U/(r) for j=0,1,2and re R such
that the following diagram has exact rows and commutes strictly (not only up to
homotopy):

0 C' c’ C? 0
Ut(r) Uo(r) U(r)
0 C! c’ c:—0

i p

Let K§(R—S) be the Grothendieck group of the category of chain homotopy
representations. We recall that the Grothendieck group of a small category with ex-
act sequences is the quotient of the free abelian group generated by the isomorphism
classes of objects and the subgroup generated by elements [X]— [Y]+[Z] for each
exact sequence X =Y > Z.

Before we define the pairing RTS we have to introduce two invariants for chain
complexes. Let f:C—Cbea self-equivalence of a finitely dominated S-chain com-
plex C. Choose a chain equivalence #:C—P and a homotopy inverse h! for a
finitely generated projective S-chain complex P. If dis the differential and A a chain
contraction of the algebraic mapping cone D of hofo A, then

d+4): ® D2n+1—>@ D,
n=0 n=0
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is an automorphism of the finitely generated projective S-module 7:0 P,. Define
the torsion #(f) of f in K,(S) by the class of d+ 4.

Let C be a finitely dominated S-chain complex and p: C — C a homotopy projec-
tion, i.e. pop=p. A split object (D,r,i) for p consists of a chain complex D and
chain maps r: C—D and i : D— C with roi=ID and i °r=p. Such a split object
exists uniquely up to homotopy and is the homotopy theoretic summand of C de-
fined by p, namely D @ Cone(i) = C. Define the finiteness obstruction w(p) e Ky(S)
of p by Wall’s finiteness obstruction w(D) for any split object (D, r,i). We recall
that w(D) is given by ¥ (—1)"[P,] for any finitely generated projective chain com-
plex P with P=D (see [27, p. 138]).

Let F: {based free R-modules} —ho{S-chain complexes} be an additive functor
from the category of based free R-modules into the homotopy category of S-chain
complexes such that F(R) is finitely dominated. We define homomorphisms
F,:K,(R)—K,(S) for n=0,1.

Let p: R¥ > R¥ be a projection, i.e. p°p=p, such that its image represents # in
Ky(R). Define Fy(n7) by w(F(p)). Given an automorphism f: R" — R" representing
n€K(R), let Fy(n) be H(F(f)).

Let (CG,U) be a chain homotopy representation with finitely dominated
C. We associate to (C,U) an additive functor F:{based free R-modules}—
ho{S-chain complexes} which sends R"—R"™ x—xA for a matrix A=(r;,) to
@n Cc— @m C given by (U(r;;)). Hence we can assign to (C, U) a homomorphism
F,:K,(Ry—K,(S) for n=0,1. Since the Grothendieck group K5(R-S) is
generated by the isomorphism classes of chain homotopy representations we get a
pairing RTS:Kg(R—S)@)K,,(R)ﬂK,,(S) for n=0,1. The proof that this is well
defined can be found in [12].

Given xe K§(R—S) we write *T5: K,(R)— K,(S) for RT5(x,?). Sometimes we
abbreviate *7°5 and *T)5 by T and T,.

Let F— E -2 B be a fibration with F a finitely dominated CW-complex and B and
E connected. We write I'=7,(E) and 7 =n,(B). We denote by p: E— B the com-
position of p with the universal covering of E. It is a I-equivariant fibration whose
fibre F is a I-space. The equivariant fibre transport defines a homomorphism
u:n—[F,F];. Define a ring homomorphism U:An—[C(F, A), C(F, A%, by
w— [Cu(w™"), A)] so that we get a chain representation (C(F, A), U).

Definition 1.1. Let [p] e K§(An —AI) be the class of (C(F, A), U). The algebraic
transfer of p with A-coefficients p*:K,(An)— K,(AI') is defined by T, for
n=0,1.

2. Homological computations

In this section we want to calculate the class of a chain homotopy representation
(GU) in K§(R—S) and the homomorphisms Ticu: Ky(R)— K, (S) by its
homology.
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We denote by Ky(R — S) the Grothendieck group of S-R-bimodules possessing a
finitely generated projective S-resolution regarded only as left S-modules. Given
such a module M, the tensor product M®p ? yields an exact functor from the
category of finitely generated projective R-modules into the category of S-modules
having a finitely generated projective S-resolution. This induces a pairing
sQr:Ky(R=S)RK,(R)—~ K, (S) for n=0,1,2,3,... (see [22, pp. 106, 109]).

Let M be an S-R-bimodule and P a finitely generated projective resolution of M
regarded as S-module. The right R-module structure can be considered as a ring
homomorphism R +HOMg(M, M)°. The map [P, P]g— HOM(M, M) sending [ f]
to Hy(f) is an isomorphism of rings (see [13, p. 87]). This yields a ring homomor-
phism U: R— [P, PIg so that (P, U) is a chain homotopy representation. Define a
map j: Ko(R—S)—>K5(R-S) by [M]—~[P,U].

Theorem 2.1. (a) The map j is a well-defined homomorphism.
(b) The following diagram commutes for n=0, 1:

s®g
Ky(R-S)® K, (R) K, (S)
J®ID 1D
X RS
K3 (R-S)®K,(R) K, (S)

(¢) Let (C,U) be a chain homotopy representation such that each H,(C)
possesses a finitely generated projective resolution of left S-modules. Then
E;’fzo(—l)”[H,,(C)] is a well-defined element in Ky(R—S) sent by j to [C, U] in
K5(R-S).

(d) IS S is regular, then j is an isomorphism with inverse map Ks(R—8)—
Ko(R—S) sending [C, U] to Yoo CD)'HL(O)).

We will see in Section 6 that this theorem is a good tool for computations. All
the various homological computations of the transfer induced by a fibration in
[3,7,8,14,15] can easily be derived from it. The rest of this section contains the
proof of Theorem 2.1 and some remarks at the end.

Proof of Theorem 2.1. (a) The difficult part of the proof consists in showing that
J is compatible with the relations in Ky(R —S) given by exact sequences. This is a
consequence of the following Lemma 2.2. Its proof is closely related to the proof
that K of the category of finitely generated projective modules and K, of the
category of modules possessing a finitely generated projective resolution are iso-
morphic [26, 102 ff]. Given an S-R-bimodule M, we call a chain homotopy
representation (C, U) an S-R-resolution for M if C is a finitely generated projective
S-resolution of M as left S-module and H,(C) and M are isomorphic as S-R-
bimodules.
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Lemma 2.2. Let 0—»M' — M° -4 M? -0 be an exact sequence of S-R-bimodules
and (C',U") resp. (C% U?) an S-R-resolution for M ' resp. M?. Then there exists
an exact sequence of chain homotopy representations

', vy (e, vy 2 (2 v

such that (C° U®) is an S-R-resolution of M°.

Proof. We construct inductively for n=-1,0,1,... commutative diagrams of S-
modules

0 c) I c? UINYo: 0
e ch <

0 cl,—acy e 0
Cilr—l CS—I 0371
a o c

0 o, o P, o2 0

and maps Uj(r)k : C}{:%CI{ for —1=k=<nand j=1,0,2 and re R with the following
properties: . .

(M o—-C' =50, L%, -0 s just 0> M' MO -4 M2 -0 and U2 ()
right multiplication with » on M.

2) C,{, ci and Uf(r)k come from the given S-R resolutions (C’, U’) of M’ for
j=1,2. We have chosen representatives U’(r): C/— C’ for j=12.

3) C,? is the direct sum Ck'@C,f and i/, the canonical inclusion and p, the
canonical projection for £ =0.

(4) The columns and rows are exact.
(5) ik_i1och=cloi,, O<k<n,
Pr_i1°oci=ciopy, O<k=<n,
Ury (oc]=cloU/(r),, O<ks=n, j=1,0,2.
(6) Ur),ciy=i, o UNr), —ls<k=n, j=1,0,2,
UXr)gope=pi o Ur),, —1<k=<n, j=1,0,2.
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These data give us the desired S-R-resolution (C° U®) of M° and the exact
sequence of chain homotopy representations
Loy L] (N V2) AT et
(CLU)—(C, Uy ——=(C3L U?) for n—oo.

The beginning of the induction n = —1 is determined by property (1) so that only
the induction step remains to be done. Property (3) determines

i P
1 n+1 0 n+1 2
OHCH—H Cn+l Cn+l_>0'

Because of p,(kernel(c?)) = kernel(c?), we can choose f:Cl ,— kernel(c?) with
PnOf=ciiy. Definec), :CY, =Cl, ®C2, ,~C by (iyoch.1,f). A short diagram
chase proves that image(c?, = kernel(c,?). Now p, © (Uo(r),7 of—fo Uz(r),,+ =0
and cYo (U°(r), o f—fo Uz(r)n+ D=0 is valid. Because of image(i,cc), )=
kernel(p,)Nkernel(c?) a map g: C,er ,—CY ., with iyocl, og= Ul(r), of-
fo Uz(r),,ﬂ can be constructed. Define U%(r),,, ,: C,?+ = CY, | as the map C!, | ®
Cii1—~Chy ®CL, | given by

[Ul(")nﬂ g }
0 UA(P)pi |

One easily checks that all the properties (1) to (6) are fulfilled. Hence J is well
defined. [

(b) We verify only the case n=0. Let p: R > R" be a projection and # € Ky(R)
represented by its image. Let (C, U) be an S-R-resolution for the S-R-module M
so that j sends [M] to [C,U]. Choose a split object (D, r,i) for the homotopy
projection F(p) if F is the additive functor assigned to (C,U) in Section 1. Be-
cause of H;(D,)=image(H;(F(p))), we have H;(Dy)=0 for i>0 and Hy(Dy)=
M &y image(p). If D is homotopy equivalent to the finitely generated projective
chain complex P, then P is a resolution of M Xy image(p). By definition this
implies

TGAMD, m) =T(C UL, my=w(D)=w(P) = Y, (- 1)"[P,]

=[M &y image(p)] = [M] Qg 7.

(c) We use induction over m=0,1,2,... with H;(C)=0 for all i>m. The case
m =0 1is just the definition of j and the inductive step is contained in the following
lemma:

Lemma 2.3. Let (C!, U'Y be a chain homoltopy representation with H.(C") =0 for
i>m. Let (C*,U?) be an S-R-resolution for H,(C'). Then there exisis an exact se-
quence of chain homotopy representations

(C];UI)L(CO, UO)ﬂ,zfﬂle(Cz’ UZ)
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Sor =™ as the (m + 1)-fold suspension such that H,~(C0) =H.(C") for i<m and
H(C°)=0 for i=m.

Proof. Let f:2"C*—C! be an S-chain map inducing the identity on the mth
homology group. Let A(r):2"C*—C' be a chain homotopy Ah(r): U'(r)e f=
foZ™MUX(r) for re R. Define C° as the mapping cone of f so that there is an exact
sequence

0-Cl-b 0 L smeicr g,
Define a chain map U%r): C°— C? by

[ E"UA(r) -,

. m ~2 1_, 2 )
h(r)nfl Ul(r)n](z ¢ )n~l®c,, (2 c )”‘1®Cn~

Using the long homology sequence of f one shows that H,-(CO):O for i=zm
and H;(C")=H,(C") for i<m is valid. To prove that (C',U')—LL, (¢ y®)—2L,
>mHI(C? U?) is an exact sequence of chain homotopy representations it suffices
to verify that U%(r))o Uo(rz)zUO(rl-rz) and U°(r,)+ U%ry)=U"(r,+r,) holds
for ri,r,eR. We will do this only for the first relation. Choose for ry,r,eR
a homotopy hl(rl,rz):Cl—>Cl between U'(rl)OUl(rz) and Ul(rl-rz). Define
Bo(ry, ) CP=CP,y for i<m by h'(r,r),:C/'—C)., and for i=m by
0@ h'(r, 1)y : Ch—=(Z™C?),, @ CL . . If ¢ denotes the differential of C° we get

C:QHOho("l”’z)/+h0("1a”2)plOCIQ:UO(rl)iOUO(”z)i—UO(rl‘rz)i
for i=m.

As C° is projective and H,~(C0)=() for i=zm we can construct maps
ho(rl,rz),-:C,-0—>C,-O+l for i>m yielding a homotopy ho(r,,rz):UO(rl)O UO(rZ)z
Ul(ry-ry).

This finishes the proof of Lemma 2.3 and therefore the proof of Theorem
2.1(c). O

(d) is a direct consequence of (c), since for a regular ring S each finitely generated
module possesses a finitely generated projective resolution and the homology of a
finitely dominated chain complex is finitely generated. [

The finiteness obstruction defines for R =7 an inverse map w: K5(Z — S)— Ky(S)
of j: Ky(S)=Ky(Z—-S)— K§(Z—S). In this case Theorem 2.1(c) reproves the com-
putation of the finiteness obstruction w(C) of a finitely dominated chain complex
by w(C)= Y (-1)"[H,(C)] in [21, p. 893] provided that H,(C) possesses a finitely
generated projective resolution.

Let n and I" be finite groups. A QI'-Zn-bimodule M can be interpreted as
QII' x n]-module if (x,y)- m=xmy ' for xel, yen, me M. Then Theorem 2.1
yields an isomorphism between K5(Zn — QI') and the rational representation ring
of I'xm.
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Let R be the polynomial ring Z[x]. Then j:Ky(Z[x]-S)—K§(Z[x]-S) is an
isomorphism since a ring homomorphism U: Z[x] = [C, C]¢ is just a chain homo-
topy class of self-chain maps C— C. If H(A) resp. P(A) is the category of S-modules
which have a finitely generated projective resolution resp. which are finitely
generated and projective, Ky(Z[x] —S) is isomorphic to

Ko(End(P(A4))) = Ko(End(H(A))).

These groups were computed in [1] by characteristic polynomials for commutative
S. See also [2,10].

3. Transfer and the Bass-Heller-Swan-homomorphisms

The purpose of this section is to show that the pairing 7: K§(R—S)® K,(R)—
K,(S) for n=0,1 is compatible with the Bass-Heller-Swan-homomorphisms. This
enables us to define T also for negative n.

Let ¢ be a generator of Z. We can write R[t,7 '] as R®; Z[7]. Denote by
l;:Z[Z]—Z[Z] the multiplication with 7. Let the homomorphism #:Ky(R)—
K (R®; Z[Z]) send [P] to the class of the automorphism ID®, /, of P®, Z[Z].

Given an R-module M we write M®, Z[Z]"* for the R-submodule generated by
clements x® ¢" with n=0, where R operates only on the left factor. Let f be an
automorphism of the R®, Z[Z]-module R"®; Z[Z]. Choose an integer m such
that "' maps R"®, Z[Z]" to itself. Then the cokernel of the R-module homomor-
phism " f: R"®, Z[Z]" = R"®; Z[Z]" is a finitely generated projective R-module.
Define a homomorphism ¢ : K,(R®; Z[Z]) = Ky(R) by ¢([f]) = [cokernel(t"'f)] —
[cokernel(”ID)]. Then ¢ and 4 are well-defined homomorphisms with ¢ © 4 =ID
(see [26, p. 227 ff]).

Let (C,U:R—[C,C]3) be a chain homotopy representation. Now C®,Z[Z]
iIs a S®jz Z[Z]-chain complex. Define a ring homomorphism V:R®;Z[Z]—
[C®.Z[7),CQ; ZIZNSw. 71y bY r®t—=[U()®,1]. Since (C&R,nZ[Z),V) is
a chain homotopy representation we get a homomorphism B:KS(R-S)—
K$(R®; 2171 - S®, Z17)).

Theorem 3.1. (a) The following diagram commutes:

K3 (R—=S)® Ko(R) Ko(S)

B®h h

Ki(R®; Z[Z2] - S®, Z[2) ® K{(R®, Z[Z)) K\(S®z Z14])
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(b) The following diagram commutes:

T
Kj(R—=S)® Ky(R) Ko(S)
ID®¢
Ki(R-S)® K| (R®; Z[Z]) ¢
B®ID
T

KiR®, 212]-S®, Z17) ® K((R®, Z[Z]) K (S&®; 217])

(¢) Given xe Kg(R—S), T,: Ko(R)— Ko(S} is the composition of ¢ : K|(S®, Z[7])—
Ko(S) and Ty, : K{(R®, Z[7)) > K|(S®; Z[7]) and h: Ky(R)— K{(R®, Z[Z)).

Proof. The verification of this theorem is straightforward if one has a computation
of the Bass-Heller-Swan-homomorphisms for chain complexes. This is given by the
following lemma whose proof is analogous to the one in [16, pp. 420-421].

Lemma 3.2. (a) Let P be a finitely generated projective S-chain complex and
[iP®R;Z[7]= P®;Z[Z) an S®; Z[7]-chain equivalence. Choose an integer m=0
such that t"f induces an S-chain-map t"f:P®,7[Z)* > P®,Z[Z]"*. Then the
mapping cone Cone(t"f) is a finitely dominated S-chain complex and ¢ sends the
torsion (f) to w(Cone(t"f))— w(Cone(t"1D)) with w as Wall’s finiteness 0b-
struction.

(b) Given a (finitely dominated S-chain complex C, the torsion ( of
ID®;/,:C®,Z[Z] > C®; Z[Z] is h(w(C)). []

Let F— E — B be a fibration with connected B, and F a finitely dominated CW-
complex. Because of Theorem 3.1(c) the following diagram commutes, since B maps

[p] to [pXIDg]:
Ko(Zm,(E)) «———— K,(Z[n,(E) X 7])

p* (px1Dg))*

Ko(Zm\(B))

Ky (Z[n(B) x Z])

Hence the K,-transfer determines the K,-transfer. This follows also geometrically
from [16, p. 422].

Using Theorem 3.1 we can define our pairing 7: Kj(R —S)® K,(R)—~ K,,(S) also
for negative n. Given n=0 let f(j):Z[7"1®, Z[Z]1—Z[Z"*"] be the ring homo-
morphism sending (1, Q@--®1,)®¢ to QX | QIR X1, for j=
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l,...,n+1. It just permutes the variables. This induces a map f(j)s on the
K,-groups. If h:Ky(R®,Z[7"]))> K, (R®,[2"]®; Z[7]) is the Bass-Heller-
Swan-homomorphism for R®; Z[7"], one can define K_,(R) as the subgroup
;2 image(f(/)«° h) of K,(R®, ZIZ""]).

Define T: K§(R—S)® K_,(R)—~ K_,(S) as the map for n=1 making the follow-

ing diagram commutative if & denotes the inclusion:

K§(R®, 77" " -S®, 212" ") Q K((R®, Z[Z"" ') K(S®,Z[Z"""])
Bn+l®k X

KS(R—S)®K (R ! K_,(S)

In the notation of [12, pp. 14,15] one checks that the maps f(j)*OB”1 and
B" o f(j)*: K§(R—S) > K§(R®; Z[7"* 1~ S®, Z[Z""']) agree. Now apply
Lemma 4.3 and Lemma 4.4 in [12, pp. 14,15] and Theorem 3.1 to prove that the
definition for negative K-groups makes sense.

4. The orientation data of a fibration

We collect in this section the orientation data of a fibration consisting of the
fundamental group sequence and the (pointed) fibre transport and state some
elementary but important properties of them.

Let F— E — B be a fibration with connected F, E and B. The transport of the fibre
along paths in the base space induces a homomorphism w : 7,(B)— [F, F'] into the
monoid of homotopy classes of self-maps of F (see [28, p. 186]). Similarly the
transport of the pointed fibre along paths in the total space yields a homomorphism
o:m(E)—[F,F]" into the monoid of pointed homotopy classes of pointed self-
maps of the pointed fibre. We always suppress the notion of the base-points. The
homomorphism g :7,(F)—[F,F]" sends the class of a loop w to the class of a
pointed self-map of F which is homotopic along w to the identity (see [28, p. 98 ff]).
Let G,(F) be the kernel of ¢. This group was originally defined in [9]. We denote
by f:[F, F]*' —[F, F] the forgetful map. One easily checks the following proposi-
tion (see [11, p. 3.3]):

Proposition 4.1. (a) The following sequence is exact:

1= Gy(F)om, (F) -2 [F, FI* L (R F - 1.

(b) wopx=foo.

(¢) goiy=0 for the inclusion i: F—E.
(d) kernel(ix) C G(F).

(e) i+(G,(F))Ccenter(m;(E)).
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The following proposition contains the main properties of G,(X):

Proposition 4.2. (a) The center of n,(X) contains G,(X). A central element w in
n,(X) belongs to G,(X) if and only if I(w): X —X x— wx is n,(X)-homotopic to
the identity.

(b) Let X be a finite CW-complex with G\(X)+{1}. Then its Euler characteristic
x(X) is zero.

(¢) Let X be a finitely dominated CW-complex with G (X)N[n(X), 7,(X)]+
G(X). Then x(X) is zero.

(d) If X is a H-space, we get G(X)=m;(X).

Proof. (a), (b) and (d) are proved in [9].

(c) Choose an epimorphism f: 7;(X)— G into a finite group such that there is a
ge G with g#1, ge f(G(X)).

Let X be the covering of X with G as group of deck transformations. Since the
change of rings induces the zero map Ky(ZG)— Ky(QG) [25], there is a finitely
generated free QG-chain complex D homotopy equivalent to C(X, Q). We get from
(a) that /(g): D— D is homotopic to the identity. This implies for the Lefschetz
number Ag:

0=Ao((g): D—>D)=Ap(ID: D D)=yxo(D)=x,(CX, Q) =x(X) =G| - x(X).
Therefore x(X) is zero. [

The following proposition is the basic observation for proving that the algebraic
transfer for arbitrary fibres can sometimes be expressed by S!'-transfer maps.

Proposition 4.3. Let X be a CW-complex. There exists a CW-complex Y with
X=YxS" if and only if n,(X) can be written as GxZ with 7C G,(X).

Proof. Since G, is compatible with the cartesian product and for a homotopy
equivalence f:X—Y the group G,(X) is mapped by fix to G(¥Y) (see [9]),
X=YxS"implies 7,(X) =G x Z with ZC G,(X). It remains to prove the other im-
plication. Let w:S'— X represent the generator of Z. Because of ZC G,(X) there
is a homotopy A : X xI— X with hy=h,=1D such that A(x,?) is woe for the ob-
vious identification e:/—S'. This induces a map g: XxS'>X with g(+,7)=w
and g(?,e(0))=IDy. Let g: X~ X be the covering of X with g«(7,(X))=G. Then
the composition X x §' -2, x« §1_&, x is a weak homotopy equivalence of
CW-complexes since we have 7,(XxSH)=n,(X)xn(8")=GxZ=nr,(X) and
T (X xS'=7,(X)xn,(S")=n,(X) for n>1. Hence X xS' and X are homotopy
equivalent. [

Definition 4.4, We call a fibration FHELB untwisted if o:n(E)—[F,F]" is
trivial and orientable it w:n(B)—[F, F] is trivial.
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Proposition 4.1 implies that p is untwisted if and only if p is orientable and
G(F)=mn(F). A G-principal bundle for a connected topological group is an un-
twisted fibration.

5. Chain complexes with a twist

In this section we explain how the chain homotopy representation of a fibration
defined in Section 1 or [12, pp. 4,5] can be read off from the fibre and the orienta-
tion data. This leads to the notion of a chain complex with a twist. It is useful if
one studies the algebraic transfer for group rings.

Now we set some notations we will use for the rest of the paper. Let F—E -2, B
be a fibration of connected spaces and base points ec £ and b=p(e), and
F=p~'(b). We write I'= m,(E,e) and n=m,(B, b) and 4 =kernel( ps: ' 7). Hence
we get an exact sequence 1—A—1 2%, 71, The inclusion FCE defines an
epimorphism d:7(F,e)—>A. The corresponding covering is denoted by
q:(F,e)—(F,e).

The transport of the pointed fibre along loops in E yields a homomorphism
o:I'—[F,F1". For wel choose a representative s(w): (F, e)— (F, e) of a(w).

If c(w):4—>4 is the homomorphism d— wdw™' we get dos(Wyx=c(w)°d.
Hence there exists a unique lift L(w) : (F, €)= (F, &) which is a c(w)-equivariant map.
This defines a free c(w)-equivariant homotopy class [L(w)] of c(w)-maps F—F. It
depends only on we I and not on the choice of s(w). If I(d):A— A is the c(d)-
equivariant map x—dx, Proposition 4.1(c) implies

(i) L(d)=y4)l(d) for deA,
(ii) L(wi)© L(W2) =y, wy) LW, - wy)  for w, wyel.

We can think of the collection {[L(w)]|we "} as an extension of the A-operation
to a [-operation up to homotopy. This leads to the following definition:

Let H be a normal subgroup of G and c(g) : H— H be h— ghg ' and A be a com-
mutative ring with unit. For 4 € H the left multiplication with # is denoted by /(h).

Definition 5.1. A G-rwist L for an H-chain complex C is a collection {[L(©)] lg eG}
of c¢(g)-chain-maps C— C with

() L(h) =gy l(h) for heH,
(ii) L(g1) ° L(g3) =g, o) L(g1- &) for g),8,€G.

A morphism [f]:(C, L)~ (D, M) of AH-chain-complexes with a G-twist is a A4 H-
homotopy class of AH chain maps f:C—D with M(g)o f=y4 S L(g) for all
geG. We call

"', Ly 00 102 (o2 12
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exact if there is a choice of representatives i, p and L/(g) for all j=0,1,2 and ge G
such that the following diagram has exact rows and commutes:

0 cl— 02 ¢ 0
L'(g) LO%eg) L*(g)
0 c'—ct—t 0

Define K§(H- G, A) as the Grothendieck group of the category of finitely
dominated AH-chain complexes with a G-twist.

The collection {[L(w)]|we "} above induces a I'-twist on the cellular AA4-chain
complex C(F, A)=C(F)®z A.

Definition 5.2. Define [p] € K§(4 — I, A) as the class of
(C(F, A), {[CLw), A [ weT}).
Given a AH-chain complex with a G-twist (C, L), we get a chain representation
(AG® 4y C, V) with
V:A[G/H] = [AG R4 G, AGRau Clic
sending gH to the homotopy class of
AGRuy C>AG®,C 1@x-2®LE ).
This yields a homomorphism
A:K§(H— G, A)—~ KG(AIG/H] - AG).
One easily checks, using [12, pp. 20,21],

Proposition 5.3. The homomorphism A:Kg(A -, A)—K§(An—AI') sends
[pl € Ks(A =T, A) of Definition 5.2 to [p] e K§(An— AI) of Definition 1.1.

If one studies the algebraic transfer of a fibration it is often more convenient to
work with K§(4 — T, A) than with K5(An—AI'). The main advantage of the ap-
proach using chain homotopy representations is that it can be used for arbitrary
rings and not only for group rings.

Now we state some definitions and propositions concerning chain complexes with
a twist. We omit the proofs because they are very similar to the one of Section 2
and a detailed treatment can be found in [11].

Definition 5.4. Let ®, be the pairing which makes the following diagram com-
mutative for n=0, 1:
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&,
K3(H-G, A) @K, (A[G/H]) K, (AG)
A®ID ID
K§(AIG/H) - AG)® K, (A[G/H]) K, (AG)

Proposition 5.3 implies for a fibration p that [P]1®, ? is the algebraic transfer p*
of Definition 1.1.

Let Ko(H — G, A) be the Grothendieck group of AG-modules whose restriction
to AH possesses a finitely generated projective AH-resolution. The tensorproduct
over 4 together with the diagonal action induces a pairing ®,: Ky(H-G, A)®
K, (A[G/H])~ K,(AG). Given an AG-module M and a finitely generated projec-
tive AH-resolution P of its restriction to AH, let L be the G-twist on P uniquely
defined by the property that H,(L(g)) is left multiplication with g on M. We get a
homomorphism J 1 Ko(H—G, A)— K5(H — G, A) mapping [M] to [P, L].

Proposition 5.5. (a) We have ®°(J®ID)=®,.

(b) Let (C,L) be a AH-chain complex with a G-twist such that each H, (C)
regarded as AH-module possesses a finitely generated projective AH-resolution.
Then j maps ¥, (—1)"[H,,(C)] eKy(H-G, A) to [C, L1 K§(H~G, A).

Let K be a normal subgroup of H and G. Given a A H-chain complex C with a
G-twist L we get a G/K-twist L on the A[H/K]-chain complex A[H/K]® 44 C by
L(gK): AH/K]) @4 C—= A[H/K1® 45 C sending hK®x to ghg 'K® L(g)(x).
This yields a homomorphism ¢(K): K{(H - G, A)~ Ko(H/K—G/K, A) and cor-
responds to dividing out a K-operation in geometry.

Proposition 5.6. Let pr«: K, (AG)—~ K,(A[G/K]) be induced from the projection.
Then pry° ®,=®,° (q(K) X ID).

Given a homomorphism f: A — B of commutative rings with unit, we get a change
of ring homomorphisms for K,(AG) and Kj(H -G, A), always denoted by fi. If
B is a flat A-module we get also f for Ko(H~ G, A). All the constructions above
are compatible with change of rings provided that S« is defined.

6. Transfer and representation theory

In this section we want to relate Ks(H—-G, A) and the algebraic transfer to the
representation ring Rep,(G) and its operation on the K-theory of AG. The
representation ring Rep ,(G) is the Grothendieck group of AG-modules which are
finitely generated and projective over 4. We make the following assumption:
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The trivial AH-module A possesses a finitely generated projective
AH-resolution.

(*)

Then we can define 1:Repy(G)— Ky(H- G, A) by [M]—[M]. Let k:Rep, (G)—
Ky(H -G, A) be the composition J©i. The tensor-product over A4 together with the
diagonal action induces ®4:Repy(G)® K, (AG)— K,(AG). Under the assump-
tion (*) the AG-module A[G/H] has a finitely generated projective AG-resolution.
Let trf: K,(A[G/H])~ K,(AG) be the transfer map defined by restriction with
AG—A[G/H] in [22, p. 111]. Proposition 5.5 implies

Proposition 6.1. Assume that (+) holds. Then
(@) The following diagram commutes:

ID & trf
Rep,(G)® K, (A[G/H))

Rep(G)® K, (AG)
k®ID &4

t

Ko(H -G, A)® K, (A[G/H]) K.(AG)
(b) If (C, L) is a AH-chain complex with a G-twist such that H,(C) is finitely
generated and projective over A, we get k(L (-D"[H, (O =IC, L.

Let Rep%(G) be the Grothendieck group of ZG-modules which are finitely
generated as abelian groups. Define e: Rep,(G)—Rep’(G) by [M]— [M]. Then e
is an isomorphism. An inverse e ! is given by the following construction [21, p.
890]: Given a ZG-module M which is finitely generated over Z, choose an exact se-
quence of ZG-modules 0— F,— Fy— M —0 such that Fy and F, are finitely gener-
ated and free as abelian groups. Define e‘l([M]):[Fo]—[Fl]. Let i": Rep’(G)—
Ko(H -G, Z) be given by [M]—[M] and k’: Rep7(G)— K§(H-G,Z) by joi’ pro-
vided that (=) holds for 4 =7. Then we get

Proposition 6.2. (a) The map e: Rep(G)— Repy(G) is an isomorphism with
i'ce=iand k'ce=k.

(b) If (C, L) is a ZH-chain complex with a G-twist such that H *(C) is finitely
generated over 7 and (*) is valid, then k'( Y -D'[H(O))=]C, L].

We apply this to a fibration F—» E— B using the notation of Section 5. Let K be
a normal subgroup of A and I". The I-twist L on F induces a A[I'/K]-structure on
H,(F/K, A). Denote by pr:I"—I/K the projection.

Theorem 6.3. (a) Assume that H.(F/K,A) has a finitely generated projec-
tive AlA/K]-resolution for all n. Then qQK): Ko(4—T,A)> K§(A/K-T/K, A)
sends |[p] to the image of Y (=1)'[H(F/K, A)] under J Ky(A/K-T/K, A)—
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K5(A/K—T/K, A). The composition pryop*:K,(An)—K,(A[I[/K]) is given by
Y (—1Y'[H,(F/K, A)] in Kj(A/K~T/K, A) and the pairing & ,4.

(b) Assume that (x) holds for A/K and A =17 and that H,(F/K) is finitely gener-
ated over Z. Then q(K): Ks(A —T,7)—> Ki(A/K — /K, 7) sends | p] to the image of
Y (- 1)'[H,(F/K)] under k':Rep,(IVK)—=K{(A/K—T/K,7). The composition
preop*: K,(Zn)~ K, (Z[I/K)) is given by the image of ¥ (—1)"[H,(F/K)] under
e :Rep,(I'/K)~ Rep,(I'/K) and the pairing &;:Rep,(I/K)R K, (Z[[/K])—
K (ZII'/K]) and the transfer trf: K, (Zn)— K, (Z[I /K]).

Theorem 6.3 was already proved in [14,15] using spectral sequences. We get a
computation of p,©op* from it.

Corollary 6.4. The transport of the fibre w:n— [F, F] defines a Zn-structure on
H.(F). Then p, ?{)*:Kn(An)ﬁK,,(An) is given by the image of ¥ (—=1)'[H,(F)]
under Rep'Z(n)—eﬁRep[(n)ARepA(ﬂ) for f:7— A and the pairing & ,.

As an illustration we consider the case that the fibre is a finitely dominated
Eilenberg-MacLane-space and n,(F)— n,(E) injective. The cellular chain complex
of the universal covering is a finitely generated projective resolution of Z over
ZIr(F)=7A. Hence (*) holds and by Theorem 6.3 the transfer p* is just the
classical transfer trf: K, (Zn)— K,(ZTI').

For a finite group G the ring QG is semi-simple. Proposition 5.5 implies

Proposition 6.5. Let G be a finite group with a normal subgroup H. Assume either
H={1} and A=7 or A=Q. Then k:Rep,(G)— Ks(H— G, A) is an isomorphism
and the following diagram commutes:

Rep4(G)® K, (A[G/H]) — 2 K, (AG)
hAk®ID ID

. ®),
K§(H—-G, A) @ K,(AIG/H])) K,(AG)

Representations of finite groups with rational coefficients are uniquely deter-
mined by their characters. Let '~ E -5 B be a fibration with finitely dominated
fibre and connected £ and B. If I is finite, F is also a finitely dominated CW-
complex. We have defined [L(w): F— F] for weI” at the beginning of Section 5.
Denote by A the Lefschetz number of a self-map of a finite CW-complex.

Theorem 6.6. Let I” be finite. Then the isomorphism e~ (KA T, Q)—Repp(l)
sends [ p] to the representation with character w— A(L(w)) for wel.

One easily checks that the following statements are equivalent for finite /™
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() [pPleKs(A—T, Q) is zero;
(iiy A(L(w))=0 for all we Tl
(iii) p*: Ko(Qn)— Ky(QI') is zero;
(iv) p*: K, (Qmn)— K (QI') is zero.

7. Orientable fibrations

Now we want to analyse the transfer of an orientable fibration. We will point out
that this can be described easily if the fibre is a finite CW-complex with non-
vanishing Euler characteristic, and what meaning the S'-transfer has.

Let F— E-25 B be a fibration of connected spaces F, E and B with F a finitely
dominated CW-complex. We make use of the notation introduced in Section 5, e.g.
I'=m(E) and n=m;(B). We always assume in this section that p is orientable
(Definition 4.4). Let A be a commutative ring with unit. We get from Corollary 6.4

Theorem 7.1. The composition py© p*: K, (An)— K,(An) is multiplication with the
Euler characteristic y(F).

In Section 5 we have defined for we I" a ¢(w)-equivariant homotopy class of c(w)-
maps L(w): F—F. Since w: n— [F, F] is trivial we can regard the transport of the
pointed fibre as a homomorphism o:I —image(o:n,(F)—[F, F1*) and have
o(A)=image(o) because of Proposition 4.1. Hence L(w):F— F is the left multi-
plication with d for some d € A with g(d) = a(w) so that the I-twist on C(F) is given
by the A-operation.

Write A, for 8(G(F)). Now o:m(F)—[F, F]" induces an isomorphism
o0 :m(F)/G(F)—image(o), o: I —image(cg) an epimorphism &:7/4,—image(o)
and §:7,(F)— A an isomorphism &: 7,(F)/G,(F)—A4/4,. Then an isomorphism
D:I/Ay—>A/Ayx n is given by (600 'oG) X ps. We get a I'/Aq-twist L on the
A[A/Ay]-chain complex C(F/A4,, A) by assuming that L(x) is the left multiplication
with §og 'og(x) for xel/A,. One easily checks that g(4,): Ks{d—1,A)—
K§(A/Ay—T/A,, A) sends [ p] to [C(F/Ay, A), L]. Let pr: A—A/A, be the projection.
Then the homomorphism Tiqr/4, ), 1) 2 Ky(An) = K, (A[l/A]) agrees with the one
given by pry© 5*(W(ﬁ)) € Ky(A[A/A4,]) and the pairing Ko(A[A4/40]) ® K, (An)— _®a,
K,,(A[A/AOXn])&ﬁK,,(A[F/AO]). If g: "'—>1T/A4, is the projection, Proposition
5.6 implies

Theorem 7.2. The composition g+° p*: K,(An)— K, (A[[/A,]) is the homomorphlsm
defined by pr,.© 5*(W(F)) € Ky(A[A/4,]) and the pairing Ky(A[A4/4,]) Q K,,(A ﬂ)*»
K, (A[A/Ayx n])—»K (A[T/4,)).

The following corollary of Theorem 7.2 and Proposition 4.2(b) was already
proved in [7]:
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Corollary 7.3. Let F—~E-2>B be an orientable fibration of connected spaces.
Assume that F is a finite CW-complex with Euler characteristic y(F)#0. Then there
is an isomorphism @:I' > (F)Xn such that for the corresponding section
s:—=>1" of py« the transfer p*: K, (An)— K, (AI') is given by y(F)- ss.

Now we take a look at the S'-transfer.

We denote by 7, the cyclic group of order m for m=1,2,3,... and by Z, the in-
finite cyclic group Z. Let teZ,, be the generator represented by 1€Z. Given a
group G with a subgroup Z,, of its center, let S(Z,,— G, A)e K§(Z,,~ G, A) be the
class of the one-dimensional AZ, -chain complex A47,,—— AZ,, with the trivial
G-twist L, i.e. L(g) = [ID] for all g€ G. We denote by 3(Z,,— G, A): K,(A[G/Z,,])~
K,(AG) the map Ty, _ 4). Sometimes we write S resp. B for S(Z,, — G, A) resp.
B(Z,,— G, A). One should notice that for an orientable S'-fibration S'—>E-2>B
the class S(Z,,— G, A) is just [p], if t€Z,=A corresponds to the image of
[ID:S'-S'"1en,(S') under 4.

The transfer of an S'-fibration was described algebraically for K, in [17] and K|
in [16] by writing down matrices representing elements in the algebraic K-groups.
These homomorphisms agree with the maps 8. A detailed study of £ for finite /" can
be found in [19].

A lot of our results are consequences of the following lemma:

Lemma 7.4. Let 7Z,, be central in G.
(@) If 7,,0NIG,G] is trivial, S(Z,,— G, Ay and B(Z,,— G, A) are zero.
(b) If m is not zero and invertible in A, S(Z,,— G, A) and p(Z,,— G, A) are zero.
() If Z,, is infinite, J(Z,, — G, A) is the transfer trf: K, (A[G/Z,,])~ K,(AG)
defined by restriction in [22, pp. 111].

Proof. (a) Because of 7,,N[G, G] = {1} the projection pr: G— G/[G, G] is injective
on Z,, so that we can also regard Z,, as a subgroup of G/[G, G]. Restriction with
pr defines a homomorphism pr*: K§(Z,, — G/[G, G, A) = K{(Z,, — G, A). Construct
an epimorphism of abelian groups ¢: G’'— G/[G:G] with a subgroup ZC G such
that the kernel K of ¢ is contained in Z and ¢ maps 1e€Z to teZ,,. In Section 5
we have defined homomorphisms ¢(K): K§(Z — G’, A)— K§(Z,,— G/[G, G], A] and
J:Ko(Z -G, A)~> Ky(Z—-G', A). Choose a homomorphism f:G’—Z such that
f|7:7—-7 is an injection. If Ko(Z -7, A) corresponds to Z as a subgroup of itself,
restriction with f defines a homomorphism f*: Ky(Z —~Z, A)— Ky(Z — G’, A). The
composition pr¥o g(K)ejo f*: K(Z —Z, A)— K§(7,,— G, A) sends the class [4] of
the trivial AZ-module 4 to S(Z,,— G, A). Since 0—AZ =1 47— 40 is exact,
[A] vanishes in Ky(Z —Z, A).

(b) If m is invertible in A, the trivial AZ,-module A4 is a direct summand in
AZ,,. Proposition 5.5 implies S(Z,,— G, A)=j([A] - [A])=0.

(c) Proposition 5.5 implies for the trivial AZ,,-module A:S(Z,,—G, A)=
JaAD. 1
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In the following theorem we decompose the transfer into the transfer of another
orientable fibration and an S'-fibration. Then the lemma above gives us vanishing
theorems for the transfer.

Let Hy and H, be normal subgroups of G such that - h, = h, - h is valid for all
hye Hy and h e H. We get a homomorphism pr: Hyx H,— G sending hy, h; to
ho- hy. Its image H is a normal subgroup of G. Let (C, L) resp. (D, M) be an AH,-
resp. AH,-chain complex with a G-twist. We define an A[H,x H,]-structure on
C®, D in the obvious way. We can equip the 4 H-chain complex AH®, (C&® 4 D)
with a G-twist N by NMg):h@x®y—ghg ' ® L(g)(x) ® M(g)(). This yields a
pairing

P:Ky(Hy— G, A)® Ki(H, - G, A) = Ks(H - G, A).

Now assume that 7,(F) contains subgroups H and Z with 7,(F)=HxZ and
Z < Gy(F). If K is the kernel of 6|H: H—&(H) and F the universal covering of F,
let /" be F/K regarded as 6(H)-space. Given we I, define L'(w):C(F', A)— C(F', A)
as the left multiplication with 8| H o pr(x) for any x € 7,(F) with a(w) =o(x). This
yields a [I-twist L’ on the A[Jd(H)]-chain complex C(F’, A). If F” is the
o(H)/6(H)N(Z)-space F'/O(HYNS(Z), define a I'/o(Z)-twist L” on C(F”, A)
analogously.
The following theorem shows the importance of the S'-transfer:

Theorem 7.5. Let p be orientable and assume n,(F)=HXxZ with 7 C G,(F).
(@) The pairing defined above

P:Ki(6(H) =TI, A)® K5(8(2) — I, A) = K5 (4 — T, A)

sends [C(F', A), L'l @ S(6(Z2)-T, A) to [p].

(b) If ()N, I is trivial, [ p] and p* vanish.

(¢) The algebraic transfer p* is the composition of B: K, (A[I'/5(2)]))— K, (AT')
and Ty, 4y, 17 Ky(A) = K, (ALT/0(2))).

Proof. (a) is a direct consequence of Proposition 4.1, Proposition 4.3 and Definition
5.2. Then (b) follows from Lemma 7.4(a). We will prove (c) only in the K,-case
since the Kj-case can be proved similarly using the instant Wall obstruction in [23]
or can be derived from the K;-case using Theorem 3.1(c).

The main problem lies in the fact that in the definition of the algebraic transfer
p*:K(An)—~ K{(AI') elements in K,(An) are represented by automorphisms of
modules and in K,(AI’) by the torsion ¢ of a self-chain equivalence defined in Sec-
tion 1. This causes difficulties in writing down the composition of two algebraic
transfer maps.

Let @ be an automorphism of B, An representing [or] € K,(A7). Since §(Z)
is central in I” by Proposition 4.2(a), the homomorphism pr:d(H)x (7))~ A
x,y—x-y is well defined. Let S be the one-dimensional A4[d(Z)]-chain complex
A[J(Z)]LL»A[é(Z)] for r as d(1) for the generator 1eZ. There exists a natural



Transfer maps induced in algebraic K- and K\-groups by a fibration 11 163

isomorphisin of AI'-chain complexes between Al ® 44 AA® 4, (CE', A) &4 S)
and (Al @5y CA', A) R a5y S- By construction there is a self-chain map
f of the Al-chain complex @®; Al ® 454y C(F, A) such that f& sz IDs
and A[I/0(Z)|®,f are self-equivalences and Tj,: K (An)—K(Al') sends
[a] to Hf®uawzy1Ds) and Tigpry g Ki(Am) 2 K, (A[T/6(Z)]) maps [a] to
HA[T/0(Z)}® 4 f). Hence it suffices to prove:

Let Z,, be a cyclic subgroup with generator ¢ of the center of G. Let f: D—>D be
an AG-chain map such that f®,;, IDgs is an AG-self-equivalence of D®uz, S
and A[G/Z,]®.cf an A[G/Z,]-chain equivalence of A[G/Z,]®,;D. Then
B:K,\(A[G/Z,,])~ K \(AG) sends H(A[G/Z,,]®46f) to H(f®az,IDs). Let C be
the mapping cone of f with differential ¢. Then Cone(f® 4z, [Ds) is isomorphic
to the mapping cone E of C’;1>C given by

“'_)C*'I@C*—,-CO—)C*—2®C*—1_>.“’
[tfl C]

Choose a chain contraction of F

u v
[ jlic*|®c*_’c*@c*+1~
w X

We get the relations cou+uoc=uv(t—1)—1ID and cov=v°c so that another chain
contraction # is given by

u v
0 —-ul
Then #f®,, 1Dg) is represented by the automorphism (e+#): Eqgq = Eeven of

m

Eoiq=Ecyen= @, C; with e as the differential of E. This automorphism is con-

even

jugated to the automorphism
v —ct+u
L’u r—1 ]
0f Coyq @ Cuven- Because of Cyyq=Ceyen= D, D; we can represent #(f Q47
also by

IDs)

m

c—u t-1
: Codd @ Ceven - Ccven @ Codd .
-V cC—Uu

Since A[G/Z,,] ® 4 (—u) is a chain contraction of
A[G/Z,,)® 46 C=Cone(AIG/Z,] R a6 S)s
the torsion H(A[G/Z,,] ®.c f) is given by
AlG/Z,,) R (¢ = 1) : AIG/Z,) B 46 Cosa = ALG/ 23] @46 Ceven-

The map (1 4 #?): Cuye = Coyen 1S an automorphism representing zero in K,(AG).
cven cven
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The composition of
('(1 + u2)7l ou, (1 + uZ)—l © (C_ H)) : Codd@ Cevena Codd
and

—(@-1)
{ :Coqa™ Codd @ Ceven
c—Uu

is the identity on C,qq. Hence BUHAIG/Z ) @ ac /) is representated by

c—u t—1
[—(l+u2)*‘00 (1+u2)10(c—u):\ :Codd@cevell_’ceven@Codd-

This implies B(AIG/Zy) @ a6 /) =1(f®az,1Ds). U

Corollary 7.6. Assume that m,(F) contains subgroups 7 and H with m(F)=ZxH
and 7 Ckernel(n(F)—~T"). Then [p] and p* vanish for orientable p.

8. Untwisted fibrations

In this section we regard a fibration F—E-2, B of connected spaces with F' a
finitely dominated connected CW-complex. We always suppose p to be untwisted
(Definition 4.4) and use the notation of Section 5, e.g. I'=m(E) and n=m,(B).

The following theorem is a consequence of Theorem 7.5. It shows that the
algebraic transfer of an untwisted fibration can be written as a composition of
S'_transfers and the transfer of an untwisted fibration whose fibre has a finite fun-
damental group.

Theorem 8.1. Let p be untwisted . Write m(F)=H; X HyX-- x H,x G for H;=1.
If K is the kernel of 6|G:G—d(G) and E the universal covering, let F' be F/K
regarded as J(G)=G/K-space. Denote by F” the 5(G)/6(H1><~--><H,)05(G)—
space F'/S(H, x --- X H)N(G). Let 1 be the trivial twist. Then

(a) The pairing defined in Section 7

PiKé(é(H1)~F,A)®-~-®K§(5(H,)—F,A)®K§(5(G)—F,A)—’KS(A -1, A)
sends
S(é(Hl)—EA)®---®S(5(Hr)—EA)®[C(F’,A), 1]

to [pl.

(b) If B;: K, (AT /0(H X -+ X H))) — K (AUT/6(H X -+ X H;_)))) is the homomor-
phism BOH, X -+ X H)/6(H X - X H;_)—T/0(H X xH;_), A) fori=12,....r
and q*: K,(An)— K, (AU /6(H X -+ x H)Y) is Ty, 4, 1) then p*: K (Am)— K (ATI')
is the composition f,° By B,°q*

Now we make some computations of px°p* and p*opy. If my(F) is trivial, then
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p*is, because of Theorem 7.1, given by x(F)- ps' 1K, (An)— K, (AT), so it suffices
tu treat m;(F)# {1} only.

Theorem 8.2. Assume n((F)+{1}. Then

(@) x(F)=0;

(b) pxop*: K, (An)— K, (An) is zero;

(¢) If F is a finite CW-complex, then p*op,: K, (A= K, (AI") vanishes;

(d) If A is a field or A is finite or A is the ring of p-adic integers Zp Sfor any
prime, p*op. is zero;

(e) The composition p*ép* is given by [0 0+(W(F))e Ky(AA) for fi as the
change of rings with f:7— A and the pairing ® 4, : Ko(AA) Q K, (AT~ K, (AT).

Proof. (a) Proposition 4.2(c).

(b) Theorem 7.1.

(c) Follows from (e).

(d) Because of (e), it suffices to check that fy© §«(W(F)) is zero. If m(F) is in-
finite, Proposition 4.3 implies w(#')=0. Therefore we have only to prove that
Jx: Ko(ZA)— Ko(AA) is zero for finite A. As for any field A the map 7Z— A fac-
torizes over Z—Q or 7—17,, we can assume A=0Q, A =Zp or A finite. Then AA
is semi-local and K,(A4) a free abelian group [24, p. 28]. But it follows from [25]
that K,(ZA) is finite.

(¢) One should notice that A is central in I so that ® ,, is well defined. In this
proof we work with [ p] € K5(An — AI') defined by chain representations in Defini-
tion 1.1. If A[p.] : AT = Anisinduced by ps: I’ = 7, it suffices to compute the image
of [p] under A[p.l*:Ks(An— A= K{(AM-T) (see [12, p. 15]). Let F be
the covering of F with 4 as group of deck transformations. Choose a finitely
generated projective ZA-chain complex P equivalent to C(F). Let L be the I'-twist
on AI'®z4 P with Lw): AT @ P> ArC®,, P v@®@x—vw®x for wel and
similarly L” for AI'®,, C(F). We have defined j: Ky(AI'— AI'Y—> K{(Al— AT)
in Section 2. Using the additive relation in K§ one gets A[p«]*([p])=
(A ®,4 C(F), LN =[AT' ® 44 P, L1 =j(X (- 1)'[AT @44 P,]). Since J«(w(F))e
Ko(ZA4) is ¥ (=1)"[P,], an application of Theorem 2.1 finishes the proof. [

The next theorem contains some conditions implying that p* is zero.

Theorem 8.3. Let p be untwisted.

(a) If one of the following conditions is fulfilled, p*: K,(An) = K,(AI') vanishes
Sfor n=0,1 and any A.

() There is a direct summand Z in nt,(F) with S(Z)N[I, '] ={0}.

(i) rk (AN[LT])<rky(4).

(iii) m,(F)=2"XG for G#1 and 5(Z")=A.

(iv) n is finite and I infinite.

(b) If = is finite and F a finite CW-complex with n,(F)#{l1}, then
p*:Ky(Zn)— Ky(ZI') is zero.
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Proof. (a) (i) Theorem 8.1 and Lemma 7.4.

(ii) rkz(ANI[I, I']) <rk,(A) implies condition (i).

(iii) In the notion of Theorem 8.1(b) it suffices to show that [C(F”, A),1] e
K§({1} —m, A) vanishes. The composition Ky({1}—m,2)—>K5({1} -7, Z)—J:*»
Ki({1} —m, A) for f:Z— A sends x(F")-{Z] to [C(F”, A),1]. Because of Proposi-
tion 4.3 the CW-complex F” is finitely dominated with 7,(F")=G,(F")=G =+ {1}.
Proposition 4.2 implies x(F”)=0.

(iv) Since A is central and n finite, [/, '] is finite. Hence (iv)= (ii).

(b) Because of Theorem 8.2(c) and (a) above it suffices to prove that
Px: Ko(ZI'Y—> Kog(Z7m) is surjective for finite /. This follows from the Mayer-
Vietoris sequence [24, p. 162] of the Cartesian square

zr

In

7T/(Z,)

Z‘A{ﬂ

and the facts that K,(Zn) is finite [25] and K((Z 4 7) is a free abelian group, as the
finite ring 7 47 is semi-local [24, p. 28]. [J

Now we examine the behaviour of [p] for change of rings f:Z— A.

Theorem 8.4. Denote by A' the subgroup of torsion elements in A. If A' is not {1}
and the order |A'| is invertible in A or if A' is {1} and 6:7,(F)— A no isomor-
phism, p*: K, (An)— K,(AI') vanishes.

Proof. If A'is {1} and 6 no isomorphism, [ p] =0 follows from Theorem 8.3(a)(iii).
For A'# {1} the map Z— A factorizes through Z[1/4']. Hence we only have to
prove [p]=0in K§(A - T, A) for A'# {1} and A=7[1/4"]. Then A is flat over Z.
In the notion of Theorem 8.1(a) for finite G it suffices to check that S(6(H;) -1, A)
or [C(F', A), 1] vanishes. If G is trivial, one of the §(H;) must be finite and
S(6(H,;)— T, A) is zero because of Lemma 7.4(b). Assume that G is a finite non-
trivial group. Proposition 4.3 implies that £/G=F'/5(G) is a finitely dominated
CW-complex with 7n,(F/G)=G,(F/G)=G#{1} so that x(F'/6(G)) and hence
x(F’) is zero because of Proposition 4.2(c). As |6(G)| is invertible in A the trivial
A[d(G)]-module A is a direct summand in A[d(G)]. The homology H,(F’) is finite-
ly generated as abelian group and &(G) acts trivially. The homomorphism
J i Ky(d(G)—T,A)~> K5(6(G)—T, A) sends x(F’)- [A] for the trivial AI’-module A
to [C(F"), 1] so that [C(F’, A), 1] is zero. []

Finally we treat the K -transfer for finite /. In the K,-case for finite I we
already know p*=0 from Theorem 8.3(b).
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Theorem 8.5. Let p be untwisted with m(F)+1 and I' be finite. Then
P*:Ki(Arn)—> K ((AT) is trivial if |4| is invertible in A, if A is finite or ifAis Z,,
Sor any prime.

Proof. If [4] is invertible in A4, the result follows from Theorem 8.4. In the other
cases A" Ar is a surjection of semi-local rings so that P« K{(AT)— K (An) is
surjective [S, p. 87]. But Theorem 8.2(d) implies propy.=0. [J

The subgroup CL(ZI") of K,(ZI') is defined as the kernel of the map K,(ZI')—~
K(QN@®® K, 2,I).

Corollary 8.6. Let p be untwisted with m(F)#= {1} and I finite. Then
(@) image(p*)CCL(ZI);
(b) If F is finite, CL,(Zn)Ckernel(p*).

Proof. (a) follows from Theorem 8.5 and the fact that p*is compatible with change
of rings.

(b) The composition p*op, is zero by Theorem 8.2(c). But p.(CL(ZI"))=
CL,(Zn) is proved in [18, p. 184]. [

Theorem 8.7. Let p be untwisted, n,(F) infinite and n finite.

(@) If m,(F) is not isomorphic to 7, p* vanishes.

(b) For m\(F)=17 we get p*=x(F)- J(A — I, Z) with x(F) the Euler characteristic
of the universal covering of F.

Proof. Because of Theorem 8.3 it suffices to treat the K,-transfer for finite
I'. Decompose 7,(F) in ZxG. Theorem 8.1 implies that we can write p*
as ﬂ(&(Z)—EZ)OT[C(FN)‘” for [C(F"), 11€ KG((G)/8(G)NS(Z) —T'/(Z), 7). For
G#1 we get from Corollary 8.6 CL(Z[I'/6(Z)]) C kernel(B(6(Z) — I, 7)) and
image(7;cr, 1)) CCL(Z[I'/3(Z)]) so that p*is zero. For G = {1} wehave F=S'x F
(Proposition 4.3) and hence [p] = x(F)- S(4-1,7) in Ks(A-T,7z). 3

With this theorem we have computed the algebraic transfer of an untwisted fibra-
tion for finite 7 and infinite 7,(F) completely. The only non-trivial case is the
Ki-transfer of an orientable S'-fibration with I finite. This case is extensively
studied in [19].

9. Orientable fibrations with a connected compact Lie group as fibre

We want to prove that the transfer p* is zero for an orientable fibration with a
connected compact Lie group G. See also [16, pp. 429,430].

Theorem 9.1. Let G~ E -2 B be an orientable fibration.
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(a) If G is not isomorphic to T9 % SO(3)’, then [p] and p* vanish.

b If G is isomorphic to T"XSO(3)b, then p*:K,,(An)—>K,,(AF) is
2b- B0 fy0 Y (4 appropriate f8;=p(A4; —T,A) and n=0,1.

(c) Let m be finite. If G is not {1},Sl or SO(Q3), the transfer p*:K\(Zn)~
K,(ZI') vanishes forn=0,1. For G =S" resp. SO(3) the map p*: Kl(Zn)ﬂK,(ZF)
is pZ,,—I,7) resp. 2-pZ -1, 7). The transfer p*:KO(Zn)*KO(ZF) is zero.

Proof. Let T"CG be the maximal torus in G. Then (T~ m(G) is surjective [6,
p. 223]. Let T" be the covering of 7" belonging to nl(T")—>7z1(G)—5—>A and GG
the covering corresponding to J. Then G is a free T".CW-complex and 4 operates
on G by the inclusion ACT" c G. Using the additive relation in K§(4—1T,A) one
shows [pl=x(G/T")- [C(T", 1] where 1 denotes the trivial /-twist. One should
notice that p is untwisted. Writing n (T =1" let Z,, be the image of the ith
summand under J: n(T")—A. Then the pairing defined before Theorem 7.5 can
be iterated yielding a map P:Kg(Zm, —~ [LA®- @Ky, — T, A~ Ks4 -1, A)
with [pl=x(G/T") - P(SLp,—~ [, DS RSy, — T, A))-

(a) If G is not isomorphic to T”><SO(3)” there is a subgroup S3in G [20, p.
221]. Hence we can find a maximal torus T"=8'%x-x S guch that the first factor
is contained in S° and is therefore nullhomotopic in G. This implies 7y =11}
Because of Lemma 7.4(a) the classes S(Z,,,— 1, A) and [p] vanish.

(b) For G=TxSO@3)" we have $(G/T")=x((S")")=2b. Apply Theorem
7.5(c).

(c) Fora+b>1weget p*=0. This follows from Theorem 8.3 (a) (iv) and Corol-
lary 8.6 in the Kj-case. For K,, apply Theorem 8.3(b). U
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