THE TRANSFER MAPS INDUCED IN THE ALGEBRAIC K_{0} AND K_{1}-GROUPS BY A FIBRATION II

Wolfgang LÜCK
Mathematisches Institut, Georg-August-Universität, D-3400 Göttingen, Fed. Rep. Germany

Communicated by C.A. Weibel
Received 20 July 1985

0. Introduction

0.1. Abstract

In this paper we continue the study of the algebraic transfer $p^{*}: K_{n}\left(\mathbb{Z} \pi_{1}(B)\right) \rightarrow$ $K_{n}\left(\mathbb{Z} \pi_{1}(E)\right)$ for $n=0,1$ defined in [12] for a fibration $p: E \rightarrow B$. The algebraic transfer p^{*} agrees with the geometric transfers $p^{\prime}: K_{0}\left(\mathbb{Z} \pi_{1}(B)\right) \rightarrow K_{0}\left(\mathbb{Z} \pi_{1}(E)\right)$ and $p^{!}: \mathrm{Wh}\left(\pi_{1}(B)\right) \rightarrow \mathrm{Wh}\left(\pi_{1}(E)\right)$ constructed in $[7,8]$ and $[4]$ respectively. The geometric K_{0}-transfer sends Wall's finiteness obstruction of B to the one of E. The Whitehead torsion of a homotopy equivalence $f: B_{0} \rightarrow B$ is mapped by the Whitehead transfer to the one of $\bar{f}: E_{0} \rightarrow E$ given by the pullback. An algebraic vanishing theorem for p^{*} is a vanishing theorem for $p^{!}$and is thus geometrically meaningful. Such algebraic vanishing theorems are obtained in the last three sections.

0.2. Survey of the contents

In Section 1 we give a review of the construction of the algebraic transfer. On the one hand we construct an abelian group $K_{0}^{\mathrm{c}}(R-S)$ and a pairing $T: K_{0}^{\mathrm{c}}(R-S) \otimes K_{n}(R) \rightarrow$ $K_{n}(S)$ for $n=0,1$ and rings R and S. On the other hand we assign to a fibration $p: E \rightarrow B$ with a finitely dominated CW-complex as fibre an element $[p] \epsilon$ $K_{0}^{\mathrm{c}}\left(\mathbb{Z} \pi_{1}(B)-\mathbb{Z} \pi_{1}(E)\right)$.

We explain in Section 2 how [p] and p^{*} can be computed from homology if the homology possesses finitely generated projective resolutions.

In Section 3 we prove that the algebraic transfer is compatible with the Bass-Heller-Swan homomorphisms. We extend the constructions above to negative K groups.

We examine in Section 4 the orientation data of a fibration. They consist of the fundamental group sequence and the transport of the fibre resp. pointed fibre along loops in the base resp. total space.
This leads to the notion of a chain complex with a twist in Section 5. Given a nor-
mal subgroup H of G and a $\mathbb{Z} H$-chain complex, a G-twist is an extension of the H operation to a G-operation up to homotopy. We can assign to a fibration such a chain complex with a twist using the orientation data. It determines the class [p] in $K_{0}^{\mathrm{c}}\left(\mathbb{Z} \pi_{1}(B)-\mathbb{Z} \pi_{1}(E)\right)$.

In Section 6 we apply representation theory to compute $[p]$ and p^{*}. If $\pi_{1}(E)$ is finite and we use rational coefficients, it turns out that $[p]$ is given by a rational representation. Its character is computed by Lefschetz numbers. The algebraic transfer is given by tensoring with the representation corresponding to $[p]$.

We examine orientable fibrations in Section 7. We show that there is a section s of $p_{*}: \pi_{1}(E) \rightarrow \pi_{1}(B)$ such that p^{*} is given by $s_{*}: K_{n}\left(\mathbb{Z} \pi_{1}(B)\right) \rightarrow K_{n}\left(\mathbb{Z} \pi_{1}(E)\right)$ if the fibre is a finite CW-complex with non-vanishing Euler characteristic. If $\pi_{1}(F)$ can be written as $\mathbb{Z} \times H$ such that \mathbb{Z} is contained in the kernel of $\pi_{1}(F) \rightarrow \pi_{1}(E)$, then $[p]$ and p^{*} are zero.

In Section 8 we treat untwisted fibrations. Untwisted means that the transport of the pointed fibre is trivial. We are interested in vanishing theorems for the transfer. In this context untwisted fibrations are of special interest because for them $p_{*^{\circ}} p^{*}$ is always zero (Theorem 8.2). If we further assume a finite fibre, the composition $p^{* \circ} p_{*}$ vanishes. If a fibration is not untwisted with a finite fibre, we cannot, in general, expect $p_{*} \circ p^{*}=p^{*} \circ p_{*}=0$ or even $p^{*}=0$.

The main result for an untwisted fibration is that p^{*} can be written as a composition $\beta_{1} \circ \beta_{2} \circ \cdots \circ \beta_{r} \circ q^{*}$ such that the $\beta_{i}-s$ are S^{1}-transfers and q^{*} the transfer of an untwisted fibration whose fibre has a finite fundamental group (Theorem 8.1). This leads to some vanishing results (Theorem 8.3).

For explicit calculations it is reasonable to assume F and $\pi_{1}(B)$ to be finite because one has not much information about $K_{n}(\mathbb{Z} \pi)$ for infinite π. But then the K_{0}-transfer is zero (Theorem 8.3(b)). If we further presume that $\pi_{1}(F)$ is infinite, the K_{1}-transfer also turns out to be trivial except for the case where $\pi_{1}(F)$ is \mathbb{Z} and $\pi_{1}(E)$ is finite. In this special case p^{*} is $\chi(\tilde{F}) \cdot \beta$ where β is the transfer of an orientable S^{1}-fibration with the same fundamental group data and $\chi(\tilde{F})$ the Euler characteristic of the universal covering of the fibre. The homomorphism β, however, is not zero in general (see [19]).

Section 9 contains the proof that for an orientable fibration with a connected compact Lie group G the transfer p^{*} is zero if G is not isomorphic to $T^{a} \times \operatorname{SO}(3)^{b}$ and can always be written as a composition of S^{1}-transfers.

0.3. Conventions and notations

Given a fibration $F \rightarrow E \xrightarrow{p} B$ we always assume that E and B are connected and F is a finitely dominated CW-complex. We write $\Gamma=\pi_{1}(E), \pi=\pi_{1}(B)$ and $\Delta=$ $\operatorname{kernel}\left(p_{*}: \Gamma \rightarrow \pi\right)$. The epimorphism $\delta: \pi(F) \rightarrow \Delta$ is induced by the inclusion $F \subset E$.

We denote by A a commutative ring with unit. For a group G the group ring with A-coefficients is written as $A G$ or $A[G]$.

Module means left module unless a right action is stated explicitly. Chain complexes always consist of projective modules. The functor 'cellular chain complex
with A-coefficients' is denoted by $C(?, A)$. If $f: C \rightarrow D$ is a chain map, its mapping cone is given by

$$
\left.\cdots \rightarrow C_{*-1} \oplus D_{*} \xrightarrow[{\left[\begin{array}{cc}
-c_{*-1} & 0 \\
f_{*-1} & d_{*}
\end{array}\right.}]\right]{ } C_{*-2} \oplus D_{*-1}
$$

1. Review of the algebraic transfer

The purpose of this section is to recall the construction of the algebraic transfer defined in [12]. Namely, given associative rings with unit R and S, we introduce an abelian group $K_{0}^{\mathrm{c}}(R-S)$ and a pairing ${ }^{R} T^{S}: K_{0}^{\mathrm{c}}(R-S) \otimes K_{n}(R) \rightarrow K_{n}(S)$ for $n=0,1$.

A chain homotopy representation (C, U) consists of an S-chain complex C and a ring homomorphism $U: R \rightarrow[C, C]_{s}^{\circ}$ into the dual ring of homotopy classes of chain maps $C \rightarrow C$. A morphism $[f]:(C, U) \rightarrow(D, V)$ of chain homotopy representations is a homotopy class [f] of chain maps $f: C \rightarrow D$ with $f \circ U(r) \simeq V(r) \circ f$ for all $r \in R$. We call a sequence of morphisms of chain homotopy representations

$$
\left(C^{1}, U^{1}\right) \xrightarrow{[i]}\left(C^{0}, U^{0}\right) \xrightarrow{[p]}\left(C^{2}, U^{2}\right)
$$

exact if there exists a choice of representatives $i, p, U^{j}(r)$ for $j=0,1,2$ and $r \in R$ such that the following diagram has exact rows and commutes strictly (not only up to homotopy):

Let $K_{0}^{\mathrm{c}}(R-S)$ be the Grothendieck group of the category of chain homotopy representations. We recall that the Grothendieck group of a small category with exact sequences is the quotient of the free abelian group generated by the isomorphism classes of objects and the subgroup generated by elements $[X]-[Y]+[Z]$ for each exact sequence $X \rightarrow Y \rightarrow Z$.

Before we define the pairing ${ }^{R} T^{S}$ we have to introduce two invariants for chain complexes. Let $f: C \rightarrow C$ be a self-equivalence of a finitely dominated S-chain complex C. Choose a chain equivalence $h: C \rightarrow P$ and a homotopy inverse h^{-1} for a finitely generated projective S-chain complex P. If dis the differential and Δ a chain contraction of the algebraic mapping cone D of $h \circ f \circ h^{-1}$, then

$$
(\mathrm{d}+\Delta): \oplus_{n=0}^{\infty} D_{2 n+1} \rightarrow \oplus_{n=0}^{\infty} D_{2 n}
$$

is an automorphism of the finitely generated projective S-module $\bigoplus_{n=0}^{\infty} P_{n}$. Define the torsion $t(f)$ of f in $K_{1}(S)$ by the class of $\mathrm{d}+\Delta$.

Let C be a finitely dominated S-chain complex and $p: C \rightarrow C$ a homotopy projection, i.e. $p \circ p \simeq p$. A split object (D, r, i) for p consists of a chain complex D and chain maps $r: C \rightarrow D$ and $i: D \rightarrow C$ with $r \circ i \simeq \mathrm{ID}$ and $i \circ r \simeq p$. Such a split object exists uniquely up to homotopy and is the homotopy theoretic summand of C defined by p, namely $D \oplus \operatorname{Cone}(i) \simeq C$. Define the finiteness obstruction $w(p) \in K_{0}(S)$ of p by Wall's finiteness obstruction $w(D)$ for any split object (D, r, i). We recall that $w(D)$ is given by $\sum(-1)^{n}\left[P_{n}\right]$ for any finitely generated projective chain complex P with $P \simeq D$ (see [27, p. 138]).

Let F : \{based free R-modules $\} \rightarrow$ ho $\{S$-chain complexes $\}$ be an additive functor from the category of based free R-modules into the homotopy category of S-chain complexes such that $F(R)$ is finitely dominated. We define homomorphisms $F_{n}: K_{n}(R) \rightarrow K_{n}(S)$ for $n=0,1$.

Let $p: R^{k} \rightarrow R^{k}$ be a projection, i.e. $p \circ p=p$, such that its image represents η in $K_{0}(R)$. Define $F_{0}(\eta)$ by $w(F(p))$. Given an automorphism $f: R^{n} \rightarrow R^{n}$ representing $\eta \in K_{1}(R)$, let $F_{1}(\eta)$ be $t(F(f))$.

Let (C, U) be a chain homotopy representation with finitely dominated C. We associate to (C, U) an additive functor F : $\{$ based free R-modules $\} \rightarrow$ ho $\{S$-chain complexes $\}$ which sends $R^{n} \rightarrow R^{m} x \rightarrow x A$ for a matrix $A=\left(r_{i, j}\right)$ to $\oplus_{n} C \rightarrow \oplus_{m} C$ given by $\left(U\left(r_{j, i}\right)\right)$. Hence we can assign to (C, U) a homomorphism $F_{n}: K_{n}(R) \rightarrow K_{n}(S)$ for $n=0,1$. Since the Grothendieck group $K_{0}^{\mathrm{c}}(R-S)$ is generated by the isomorphism classes of chain homotopy representations we get a pairing ${ }^{R} T^{S}: K_{0}^{\mathrm{c}}(R-S) \otimes K_{n}(R) \rightarrow K_{n}(S)$ for $n=0,1$. The proof that this is well defined can be found in [12].

Given $x \in K_{0}^{\mathrm{c}}(R-S)$ we write ${ }^{R} T_{x}^{S}: K_{n}(R) \rightarrow K_{n}(S)$ for ${ }^{R} T^{S}(x, ?)$. Sometimes we abbreviate ${ }^{R} T^{S}$ and ${ }^{R} T_{x}^{S}$ by T and T_{x}.

Let $F \rightarrow E \xrightarrow{p} B$ be a fibration with F a finitely dominated CW-complex and B and E connected. We write $\Gamma=\pi_{1}(E)$ and $\pi=\pi_{1}(B)$. We denote by $\hat{p}: \tilde{E} \rightarrow B$ the composition of p with the universal covering of E. It is a Γ-equivariant fibration whose fibre \hat{F} is a Γ-space. The equivariant fibre transport defines a homomorphism $u: \pi \rightarrow[\hat{F}, \hat{F}]_{\Gamma}$. Define a ring homomorphism $U: A \pi \rightarrow[C(\hat{F}, A), C(\hat{F}, A)]_{A \Gamma}^{0}$ by $w \rightarrow\left[C\left(u\left(w^{-1}\right), A\right)\right]$ so that we get a chain representation $(C(\hat{F}, A), U)$.

Definition 1.1. Let $[p] \in K_{0}^{\mathrm{c}}(A \pi-A \Gamma)$ be the class of $(C(\hat{F}, A), U)$. The algebraic transfer of p with A-coefficients $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ is defined by $T_{[p]}$ for $n=0,1$.

2. Homological computations

In this section we want to calculate the class of a chain homotopy representation (C, U) in $K_{0}^{\mathrm{c}}(R-S)$ and the homomorphisms $T_{[C, U]}: K_{n}(R) \rightarrow K_{n}(S)$ by its homology.

We denote by $K_{0}(R-S)$ the Grothendieck group of S - R-bimodules possessing a finitely generated projective S-resolution regarded only as left S-modules. Given such a module M, the tensor product $M \otimes_{R}$? yields an exact functor from the category of finitely generated projective R-modules into the category of S-modules having a finitely generated projective S-resolution. This induces a pairing $s^{\otimes} \otimes_{R}: K_{0}(R-S) \otimes K_{n}(R) \rightarrow K_{n}(S)$ for $n=0,1,2,3, \ldots$ (see [22, pp. 106, 109]).

Let M be an S - R-bimodule and P a finitely generated projective resolution of M regarded as S-module. The right R-module structure can be considered as a ring homomorphism $R \rightarrow \operatorname{HOM}_{S}(M, M)^{0}$. The map $[P, P]_{S} \rightarrow \operatorname{HOM}_{S}(M, M)$ sending $[f]$ to $H_{0}(f)$ is an isomorphism of rings (see [13, p. 87]). This yields a ring homomorphism $U: R \rightarrow[P, P]_{S}^{\circ}$ so that (P, U) is a chain homotopy representation. Define a map $j: K_{0}(R-S) \rightarrow K_{0}^{\mathrm{c}}(R-S)$ by $[M] \rightarrow[P, U]$.

Theorem 2.1. (a) The map j is a well-defined homomorphism.
(b) The following diagram commutes for $n=0,1$:

(c) Let (C, U) be a chain homotopy representation such that each $H_{n}(C)$ possesses a finitely generated projective resolution of left S-modules. Then $\sum_{n=0}^{\infty}(-1)^{n}\left[H_{n}(C)\right]$ is a well-defined element in $K_{0}(R-S)$ sent by j to $[C, U]$ in $K_{0}^{\mathrm{c}}(R-S)$.
(d) If S is regular, then j is an isomorphism with inverse map $K_{0}^{\mathrm{c}}(R-S) \rightarrow$ $K_{0}(R-S)$ sending $[C, U]$ to $\sum_{n=0}^{\infty}(-1)^{n}\left[H_{n}(C)\right]$.

We will see in Section 6 that this theorem is a good tool for computations. All the various homological computations of the transfer induced by a fibration in [3, 7, $8,14,15]$ can easily be derived from it. The rest of this section contains the proof of Theorem 2.1 and some remarks at the end.

Proof of Theorem 2.1. (a) The difficult part of the proof consists in showing that j is compatible with the relations in $K_{0}(R-S)$ given by exact sequences. This is a consequence of the following Lemma 2.2. Its proof is closely related to the proof that K_{0} of the category of finitely generated projective modules and K_{0} of the category of modules possessing a finitely generated projective resolution are isomorphic [26, 102 ff$]$. Given an S - R-bimodule M, we call a chain homotopy representation (C, U) an $S-R$-resolution for M if C is a finitely generated projective S-resolution of M as left S-module and $H_{0}(C)$ and M are isomorphic as $S-R$ bimodules.

Lemma 2.2. Let $0 \rightarrow M^{1} \xrightarrow{j} M^{0} \xrightarrow{q} M^{2} \rightarrow 0$ be an exact sequence of S - R-bimodules and $\left(C^{1}, U^{1}\right)$ resp. $\left(C^{2}, U^{2}\right)$ an S - R-resolution for M^{1} resp. M^{2}. Then there exists an exact sequence of chain homotopy representations

$$
\left(C^{1}, U^{1}\right) \xrightarrow{[i]}\left(C^{0}, U^{0}\right) \xrightarrow{[p]}\left(C^{2}, U^{2}\right)
$$

such that $\left(C^{0}, U^{0}\right)$ is an S - R-resolution of M^{0}.
Proof. We construct inductively for $n=-1,0,1, \ldots$ commutative diagrams of S modules

and maps $U^{j}(r)_{k}: C_{k}^{j} \rightarrow C_{k}^{j}$ for $-1 \leq k \leq n$ and $j=1,0,2$ and $r \in R$ with the following properties:
(1) $0 \rightarrow C_{-1}^{1} \xrightarrow{i_{-1}} C_{-1}^{0} \xrightarrow{p_{-1}} C_{-1}^{2} \rightarrow 0$ is just $0 \rightarrow M^{1} \xrightarrow{j} M^{0} \xrightarrow{q} M^{2} \rightarrow 0$ and $U_{-1}^{j}(r)$ right multiplication with r on M^{j}.
(2) C_{k}^{j}, c_{k}^{j} and $U^{j}(r)_{k}$ come from the given $S-R$ resolutions $\left(C^{j}, U^{j}\right)$ of M^{j} for $j=1,2$. We have chosen representatives $U^{j}(r): C^{j} \rightarrow C^{j}$ for $j=1,2$.
(3) C_{k}^{0} is the direct sum $C_{k}^{1} \oplus C_{k}^{2}$ and i_{k} the canonical inclusion and p_{k} the canonical projection for $k \geq 0$.
(4) The columns and rows are exact.
(5)

$$
\begin{align*}
& i_{k-1} \circ c_{k}^{1}=c_{k}^{0} \circ i_{k}, \quad 0 \leq k \leq n, \\
& p_{k-1} \circ c_{k}^{0}=c_{k}^{2} \circ p_{k}, \quad 0 \leq k \leq n, \\
& U^{j}(r)_{k-1} \circ c_{k}^{j}=c_{k}^{j} \circ U^{j}(r)_{k}, \quad 0 \leq k \leq n, j=1,0,2 \\
& U^{0}(r)_{k} \circ i_{k}=i_{k} \circ U^{1}(r)_{k}, \quad-1 \leq k \leq n, j=1,0,2, \tag{6}\\
& U^{2}(r)_{k} \circ p_{k}=p_{k} \circ U^{0}(r)_{k}, \quad-1 \leq k \leq n, j=1,0,2 .
\end{align*}
$$

These data give us the desired S - R-resolution $\left(C^{0}, U^{0}\right)$ of M^{0} and the exact sequence of chain homotopy representations

$$
\left(C^{1}, U^{1}\right) \xrightarrow{[i]}\left(C^{0}, U^{0}\right) \xrightarrow{[p]}\left(C^{2}, U^{2}\right) \text { for } n \rightarrow \infty .
$$

The beginning of the induction $n=-1$ is determined by property (1) so that only the induction step remains to be done. Property (3) determines

$$
0 \rightarrow C_{n+1}^{1} \xrightarrow{i_{n+1}} C_{n+1}^{0} \xrightarrow{p_{n+1}} C_{n+1}^{2} \rightarrow 0
$$

Because of $p_{n}\left(\operatorname{kernel}\left(c_{n}^{0}\right)\right)=\operatorname{kernel}\left(c_{n}^{2}\right)$, we can choose $f: C_{n+1}^{2} \rightarrow \operatorname{kernel}\left(c_{n}^{0}\right)$ with $p_{n} \circ f=c_{n+1}^{2}$. Define $c_{n+1}^{0}: C_{n+1}^{0}=C_{n+1}^{1} \oplus C_{n+1}^{2} \rightarrow C_{n}^{0}$ by $\left(i_{n} \circ c_{n+1}^{1}, f\right)$. A short diagram chase proves that image $\left(c_{n+1}^{0}\right)=\operatorname{kernel}\left(c_{n}^{0}\right)$. Now $p_{n} \circ\left(U^{0}(r)_{n} \circ f-f \circ U^{2}(r)_{n+1}\right)=0$ and $c_{n}^{0} \circ\left(U^{0}(r)_{n} \circ f-f \circ U^{2}(r)_{n+1}\right)=0$ is valid. Because of image $\left(i_{n} \circ c_{n+1}^{1}\right)=$ $\operatorname{kernel}\left(p_{n}\right) \cap \operatorname{kernel}\left(c_{n}^{0}\right)$ a map $g: C_{n+1}^{2} \rightarrow C_{n+1}^{1}$ with $i_{n} \circ c_{n+1}^{1} \circ g=U^{0}(r)_{n} \circ f-$ $f \circ U^{2}(r)_{n+1}$ can be constructed. Define $U^{0}(r)_{n+1}: C_{n+1}^{0} \rightarrow C_{n+1}^{0}$ as the map $C_{n+1}^{1} \oplus$ $C_{n+1}^{2} \rightarrow C_{n+1}^{1} \oplus C_{n+1}^{2}$ given by

$$
\left[\begin{array}{cc}
U^{1}(r)_{n+1} & g \\
0 & U^{2}(r)_{n+1}
\end{array}\right]
$$

One easily checks that all the properties (1) to (6) are fulfilled. Hence j is well defined.
(b) We verify only the case $n=0$. Let $p: R^{m} \rightarrow R^{m}$ be a projection and $\eta \in K_{0}(R)$ represented by its image. Let (C, U) be an S - R-resolution for the S - R-module M so that j sends $[M]$ to $[C, U]$. Choose a split object (D, r, i) for the homotopy projection $F(p)$ if F is the additive functor assigned to (C, U) in Section 1. Because of $H_{i}\left(D_{*}\right)=\operatorname{image}\left(H_{i}(F(p))\right)$, we have $H_{i}\left(D_{*}\right)=0$ for $i>0$ and $H_{0}\left(D_{*}\right)=$ $M \otimes_{K}$ image (p). If D is homotopy equivalent to the finitely generated projective chain complex P, then P is a resolution of $M \otimes_{R}$ image (p). By definition this implies

$$
\begin{aligned}
T(j([M]), \eta) & =T([C, U], \eta)=w(D)=w(P)=\sum(-1)^{n}\left[P_{n}\right] \\
& =\left[M \otimes_{R} \operatorname{image}(p)\right]=[M]_{S} \otimes_{R} \eta
\end{aligned}
$$

(c) We use induction over $m=0,1,2, \ldots$ with $H_{i}(C)=0$ for all $i>m$. The case $m=0$ is just the definition of j and the inductive step is contained in the following lemma:

Lemma 2.3. Let $\left(C^{1}, U^{1}\right)$ be a chain homotopy representation with $H_{i}\left(C^{1}\right)=0$ for $i>m$. Let $\left(C^{2}, U^{2}\right)$ be an S - R-resolution for $H_{m}\left(C^{1}\right)$. Then there exists an exact sequence of chain homotopy representations

$$
\left(\mathrm{C}^{1} ; \mathrm{U}^{1}\right) \xrightarrow{[i]}\left(C^{0}, U^{0}\right) \xrightarrow{[p]} \Sigma^{m+1}\left(C^{2}, U^{2}\right)
$$

for Σ^{m+1} as the $(m+1)$-fold suspension such that $H_{i}\left(C^{0}\right)=H_{i}\left(C^{1}\right)$ for $i<m$ and $H_{i}\left(C^{0}\right)=0$ for $i \geq m$.

Proof. Let $f: \Sigma^{m} C^{2} \rightarrow C^{1}$ be an S-chain map inducing the identity on the m th homology group. Let $h(r): \Sigma^{m} C^{2} \rightarrow C^{1}$ be a chain homotopy $h(r): U^{1}(r) \circ f \simeq$ $f \circ \Sigma^{m} U^{2}(r)$ for $r \in R$. Define C^{0} as the mapping cone of f so that there is an exact sequence

$$
0 \rightarrow C^{1} \xrightarrow{i} C^{0} \xrightarrow{p} \Sigma^{m+1} C^{2} \rightarrow 0 .
$$

Define a chain map $U^{0}(r): C^{0} \rightarrow C^{0}$ by

$$
\left[\begin{array}{cc}
\left(\Sigma^{m} U^{2}(r)\right)_{n-1} & 0 \\
h(r)_{n-1} & U^{1}(r)_{n}
\end{array}\right]:\left(\Sigma^{m} C^{2}\right)_{n-1} \oplus C_{n}^{1} \rightarrow\left(\Sigma^{m} C^{2}\right)_{n-1} \oplus C_{n}^{1}
$$

Using the long homology sequence of f one shows that $H_{i}\left(C^{0}\right)=0$ for $i \geq m$ and $H_{i}\left(C^{0}\right)=H_{i}\left(C^{1}\right)$ for $i<m$ is valid. To prove that $\left(C^{1}, U^{1}\right) \xrightarrow{[i]}\left(C^{0}, U^{0}\right) \xrightarrow{[p]}$ $\Sigma^{m+1}\left(C^{2}, U^{2}\right)$ is an exact sequence of chain homotopy representations it suffices to verify that $U^{0}\left(r_{1}\right) \circ U^{0}\left(r_{2}\right) \simeq U^{0}\left(r_{1} \cdot r_{2}\right)$ and $U^{0}\left(r_{1}\right)+U^{0}\left(r_{2}\right) \simeq U^{0}\left(r_{1}+r_{2}\right)$ holds for $r_{1}, r_{2} \in R$. We will do this only for the first relation. Choose for $r_{1}, r_{2} \in R$ a homotopy $h^{1}\left(r_{1}, r_{2}\right): C^{1} \rightarrow C^{1}$ between $U^{1}\left(r_{1}\right) \circ U^{1}\left(r_{2}\right)$ and $U^{1}\left(r_{1} \cdot r_{2}\right)$. Define $h^{0}\left(r_{1}, r_{2}\right)_{i}: C_{i}^{0} \rightarrow C_{i+1}^{0}$ for $i<m$ by $h^{1}\left(r_{1}, r_{2}\right)_{i}: C_{i}^{1} \rightarrow C_{i+1}^{1}$ and for $i=m$ by $0 \oplus h^{1}\left(r_{1}, r_{2}\right)_{m}: C_{m}^{1} \rightarrow\left(\Sigma^{m} C^{2}\right)_{m} \oplus C_{m+1}^{1}$. If c^{0} denotes the differential of C^{0} we get

$$
c_{i+1}^{0} \circ h^{0}\left(r_{1}, r_{2}\right)_{i}+h^{0}\left(r_{1}, r_{2}\right)_{i-1} \circ c_{i}^{0}=U^{0}\left(r_{1}\right)_{i} \circ U^{0}\left(r_{2}\right)_{i}-U^{0}\left(r_{1} \cdot r_{2}\right)_{i}
$$

for $i \leq m$.
As C^{0} is projective and $H_{i}\left(C^{0}\right)=0$ for $i \geq m$ we can construct maps $h^{0}\left(r_{1}, r_{2}\right)_{i}: C_{i}^{0} \rightarrow C_{i+1}^{0}$ for $i>m$ yielding a homotopy $h^{0}\left(r_{1}, r_{2}\right): U^{0}\left(r_{1}\right) \circ U^{0}\left(r_{2}\right) \simeq$ $U^{0}\left(r_{1} \cdot r_{2}\right)$.

This finishes the proof of Lemma 2.3 and therefore the proof of Theorem 2.1(c).
(d) is a direct consequence of (c), since for a regular ring S each finitely generated module possesses a finitely generated projective resolution and the homology of a finitely dominated chain complex is finitely generated.

The finiteness obstruction defines for $R=\mathbb{Z}$ an inverse map $w: K_{0}^{\mathrm{c}}(\mathbb{Z}-S) \rightarrow K_{0}(S)$ of $j: K_{0}(S)=K_{0}(\mathbb{Z}-S) \rightarrow K_{0}^{\mathrm{c}}(\mathbb{Z}-S)$. In this case Theorem 2.1(c) reproves the computation of the finiteness obstruction $w(C)$ of a finitely dominated chain complex by $w(C)=\sum(-1)^{n}\left[H_{n}(C)\right]$ in [21, p. 893] provided that $H_{n}(C)$ possesses a finitely generated projective resolution.

Let π and Γ be finite groups. A $Q \Gamma$ - $\mathbb{Z} \pi$-bimodule M can be interpreted as $Q[\Gamma \times \pi]$-module if $(x, y) \cdot m=x m y^{-1}$ for $x \in \Gamma, y \in \pi, m \in M$. Then Theorem 2.1 yields an isomorphism between $K_{0}^{\mathrm{c}}(\mathbb{Z} \pi-Q \Gamma)$ and the rational representation ring of $\Gamma \times \pi$.

Let R be the polynomial ring $\mathbb{Z}[x]$. Then $j: K_{0}(\mathbb{Z}[x]-S) \rightarrow K_{0}^{\mathrm{c}}(\mathbb{Z}[x]-S)$ is an isomorphism since a ring homomorphism $U: \mathbb{Z}[x] \rightarrow[C, C]_{S}^{\circ}$ is just a chain homotopy class of self-chain maps $C \rightarrow C$. If $H(A)$ resp. $P(A)$ is the category of S-modules which have a finitely generated projective resolution resp. which are finitely generated and projective, $K_{0}(\mathbb{Z}[x]-S)$ is isomorphic to

$$
K_{0}(\operatorname{End}(P(A)))=K_{0}(\operatorname{End}(H(A)))
$$

These groups were computed in [1] by characteristic polynomials for commutative S. See also [2,10].

3. Transfer and the Bass-Heller-Swan-homomorphisms

The purpose of this section is to show that the pairing $T: K_{0}^{\mathrm{c}}(R-S) \otimes K_{n}(R) \rightarrow$ $K_{n}(S)$ for $n=0,1$ is compatible with the Bass-Heller-Swan-homomorphisms. This enables us to define T also for negative n.

Let t be a generator of \mathbb{Z}. We can write $R\left[t, t^{-1}\right]$ as $R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$. Denote by $l_{l}: \mathbb{Z}[\mathbb{Z}] \rightarrow \mathbb{Z}[\mathbb{Z}]$ the multiplication with t. Let the homomorphism $h: K_{0}(R) \rightarrow$ $K_{1}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right)$ send $[P]$ to the class of the automorphism $\operatorname{ID} \otimes_{\mathbb{Z}} l_{t}$ of $P \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$.

Given an R-module M we write $M \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+}$for the R-submodule generated by elements $x \otimes t^{n}$ with $n \geq 0$, where R operates only on the left factor. Let f be an automorphism of the $R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$-module $R^{n} \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$. Choose an integer m such that $t^{\prime \prime} f$ maps $R^{n} \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+}$to itself. Then the cokernel of the R-module homomorphism $t^{m} f: R^{n} \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+} \rightarrow R^{n} \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+}$is a finitely generated projective R-module. Define a homomorphism $\varphi: K_{1}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right) \rightarrow K_{0}(R)$ by $\varphi([f])=\left[\operatorname{cokernel}\left(t^{m} f\right)\right]-$ [cokernel $\left(t^{m} \mathrm{ID}\right)$]. Then φ and h are well-defined homomorphisms with $\varphi \circ h=\mathrm{ID}$ (see [26, p. 227 ff$]$).

Let $\left(C, U: R \rightarrow[C, C]_{S}^{\circ}\right)$ be a chain homotopy representation. Now $C \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$ is a $S \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$-chain complex. Define a ring homomorphism $V: R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}] \rightarrow$ $\left[C \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}], C \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right]_{\left.\stackrel{\circ}{\circ} \otimes_{:} \mathbb{Z} \mathbb{Z}\right]}$ by $r \otimes t \rightarrow\left[U(r) \otimes_{\mathbb{Z}} t_{t}\right]$. Since $\left(C \otimes_{\mathbb{Z}[\mathbb{Z}]} \mathbb{Z}[\mathbb{Z}], V\right)$ is a chain homotopy representation we get a homomorphism $B: K_{0}^{\mathrm{c}}(R-S) \rightarrow$ $K_{0}^{\mathrm{c}}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]-S \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right)$.

Theorem 3.1. (a) The following diagram commutes:

(b) The following diagram commutes:

(c) Given $x \in K_{0}^{\mathrm{c}}(R-S), T_{x}: K_{0}(R) \rightarrow K_{0}(S)$ is the composition of $\varphi: K_{1}\left(S \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right) \rightarrow$ $K_{0}(S)$ and $T_{B(x)}: K_{1}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right) \rightarrow K_{1}\left(S \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right)$ and $h: K_{0}(R) \rightarrow K_{1}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right)$.

Proof. The verification of this theorem is straightforward if one has a computation of the Bass-Heller-Swan-homomorphisms for chain complexes. This is given by the following lemma whose proof is analogous to the one in [16, pp. 420-421].

Lemma 3.2. (a) Let P be a finitely generated projective S-chain complex and $f: P \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}] \rightarrow P \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$ an $S \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$-chain equivalence. Choose an integer $m \geq 0$ such that $t^{m} f$ induces an S-chain-map $t^{m} f: P \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+} \rightarrow P \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]^{+}$. Then the mapping cone Cone $\left(t^{m} f\right)$ is a finitely dominated S-chain complex and φ sends the torsion $t(f)$ to $w\left(\operatorname{Cone}\left(t^{m} f\right)\right)-w\left(\operatorname{Cone}\left(t^{m} \mathrm{ID}\right)\right)$ with w as Wall's finiteness obstruction.
(b) Given a finitely dominated S-chain complex C, the torsion t of $\mathrm{ID} \otimes_{\mathbb{Z}} l_{t}: C \otimes_{\mathbb{L}} \mathbb{Z}[\mathbb{Z}] \rightarrow C \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]$ is $h(w(C))$.

Let $F \rightarrow E \rightarrow B$ be a fibration with connected B, and F a finitely dominated CWcomplex. Because of Theorem 3.1(c) the following diagram commutes, since B maps [p] to $\left[p \times \mathrm{ID}_{S^{\prime}}\right]$:

Hence the K_{1}-transfer determines the K_{0}-transfer. This follows also geometrically from [16, p. 422].

Using Theorem 3.1 we can define our pairing $T: K_{0}^{\mathrm{c}}(R-S) \otimes K_{n}(R) \rightarrow K_{n}(S)$ also for negative n. Given $n \geq 0$ let $f(j): \mathbb{Z}\left[\mathbb{Z}^{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}] \rightarrow \mathbb{Z}\left[\mathbb{Z}^{n+1}\right]$ be the ring homomorphism sending $\left(t_{1} \otimes \cdots \otimes t_{n}\right) \otimes t$ to $t_{1} \otimes \cdots \otimes t_{j-1} \otimes t \otimes t_{j} \otimes \cdots \otimes t_{n}$ for $j=$
$1, \ldots, n+1$. It just permutes the variables. This induces a map $f(j)_{*}$ on the K_{1}-groups. If $h: K_{0}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}\left[\mathbb{Z}^{n}\right]\right) \rightarrow K_{1}\left(R \otimes_{\mathbb{Z}}\left[\mathbb{Z}^{n}\right] \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}]\right)$ is the Bass-Heller-Swan-homomorphism for $R \otimes_{\mathbb{Z}} \mathbb{Z}\left[\mathbb{Z}^{n}\right]$, one can define $K_{-n}(R)$ as the subgroup $\bigcap_{j=1}^{n+1}$ image $\left(f(j)_{*} \circ h\right)$ of $K_{1}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}\left[\mathbb{Z}^{n+1}\right]\right)$.

Define $T: K_{0}^{\mathrm{c}}(R-S) \otimes K_{-n}(R) \rightarrow K_{-n}(S)$ as the map for $n \geq 1$ making the following diagram commutative if k denotes the inclusion:

In the notation of [12, pp. 14,15] one checks that the maps $f(j)_{*} \circ B^{n+1}$ and $B^{n+1} \circ f(j)^{*}: K_{0}^{\mathrm{c}}(R-S) \rightarrow K_{0}^{\mathrm{c}}\left(R \otimes_{\mathbb{Z}} \mathbb{Z}\left[\mathbb{Z}^{n+1}\right]-S \otimes_{\mathbb{Z}} \mathbb{Z}\left[\mathbb{Z}^{n+1}\right]\right)$ agree. Now apply Lemma 4.3 and Lemma 4.4 in [12, pp. 14,15] and Theorem 3.1 to prove that the definition for negative K-groups makes sense.

4. The orientation data of a fibration

We collect in this section the orientation data of a fibration consisting of the fundamental group sequence and the (pointed) fibre transport and state some elementary but important properties of them.

Let $F \rightarrow E \rightarrow B$ be a fibration with connected F, E and B. The transport of the fibre along paths in the base space induces a homomorphism $\omega: \pi_{1}(B) \rightarrow[F, F]$ into the monoid of homotopy classes of self-maps of F (see [28, p. 186]). Similarly the transport of the pointed fibre along paths in the total space yields a homomorphism $\sigma: \pi_{1}(E) \rightarrow[F, F]^{+}$into the monoid of pointed homotopy classes of pointed selfmaps of the pointed fibre. We always suppress the notion of the base-points. The homomorphism $\varrho: \pi_{1}(F) \rightarrow[F, F]^{+}$sends the class of a loop w to the class of a pointed self-map of F which is homotopic along w to the identity (see [28, p. 98 ff]). Let $G_{1}(F)$ be the kernel of ϱ. This group was originally defined in [9]. We denote by $f:[F, F]^{+} \rightarrow[F, F]$ the forgetful map. One easily checks the following proposition (see [11, p. 3.3]):

Proposition 4.1. (a) The following sequence is exact:

$$
1 \rightarrow G_{1}(F) \hookrightarrow \pi_{1}(F) \xrightarrow{\varrho}[F, F]^{+} \xrightarrow{f}[F, F] \rightarrow 1
$$

(b) $\omega \circ p_{*}=f \circ \sigma$.
(c) $\sigma \circ i_{*}=\varrho$ for the inclusion $i: F \rightarrow E$.
(d) $\operatorname{kernel}\left(i_{*}\right) \subset G_{1}(F)$.
(e) $i_{*}\left(G_{1}(F)\right) \subset$ center $\left(\pi_{1}(E)\right)$.

The following proposition contains the main properties of $G_{1}(X)$:
Proposition 4.2. (a) The center of $\pi_{1}(X)$ contains $G_{1}(X)$. A central element w in $\pi_{1}(X)$ belongs to $G_{1}(X)$ if and only if $l(w): \tilde{X} \rightarrow \tilde{X} x \rightarrow w x$ is $\pi_{1}(X)$-homotopic to the identity.
(b) Let X be a finite $C W$-complex with $G_{1}(X) \neq\{1\}$. Then its Euler characteristic $\chi(X)$ is zero.
(c) Let X be a finitely dominated $C W$-complex with $G_{1}(X) \cap\left[\pi_{1}(X), \pi_{1}(X)\right] \neq$ $G_{1}(X)$. Then $\chi(X)$ is zero.
(d) If X is a H-space, we get $G_{1}(X)=\pi_{1}(X)$.

Proof. (a), (b) and (d) are proved in [9].
(c) Choose an epimorphism $f: \pi_{1}(X) \rightarrow G$ into a finite group such that there is a $g \in G$ with $g \neq 1, g \in f\left(G_{1}(X)\right)$.
Let \bar{X} be the covering of X with G as group of deck transformations. Since the change of rings induces the zero map $\tilde{K}_{0}(\mathbb{Z} G) \rightarrow \tilde{K}_{0}(Q G)$ [25], there is a finitely generated free $Q G$-chain complex D homotopy equivalent to $C(\bar{X}, Q)$. We get from (a) that $l(g): D \rightarrow D$ is homotopic to the identity. This implies for the Lefschetz number Λ_{Q} :

$$
0=\Lambda_{Q}(l(g): D \rightarrow D)=\Lambda_{Q}(\operatorname{ID}: D \rightarrow D)=\chi_{Q}(D)=\chi_{Z}(C(\bar{X}, Q))=\chi(\bar{X})=|G| \cdot \chi(X) .
$$

Therefore $\chi(X)$ is zero.
The following proposition is the basic observation for proving that the algebraic transfer for arbitrary fibres can sometimes be expressed by S^{1}-transfer maps.

Proposition 4.3. Let X be a $C W$-complex. There exists a $C W$-complex Y with $X \simeq Y \times S^{1}$ if and only if $\pi_{1}(X)$ can be written as $G \times \mathbb{Z}$ with $\mathbb{Z} \subset G_{1}(X)$.

Proof. Since G_{1} is compatible with the cartesian product and for a homotopy equivalence $f: X \rightarrow Y$ the group $G_{1}(X)$ is mapped by f_{*} to $G_{1}(Y)$ (see [9]), $X \simeq Y \times S^{1}$ implies $\pi_{1}(X)=G \times \mathbb{Z}$ with $\mathbb{Z} \subset G_{1}(X)$. It remains to prove the other implication. Let $w: S^{1} \rightarrow X$ represent the generator of \mathbb{Z}. Because of $\mathbb{Z} \subset G_{1}(X)$ there is a homotopy $h: X \times I \rightarrow X$ with $h_{0}=h_{1}=$ ID such that $h(*, ?)$ is $w \circ e$ for the obvious identification $e: I \rightarrow S^{1}$. This induces a map $g: X \times S^{1} \rightarrow X$ with $g(*, ?)=w$ and $g(?, e(0))=\operatorname{ID}_{X}$. Let $q: \bar{X} \rightarrow X$ be the covering of X with $q_{*}\left(\pi_{1}(\bar{X})\right)=G$. Then the composition $\bar{X} \times S^{1} \xrightarrow{q \times \mathrm{ID}} X \times S^{1} \xrightarrow{g} X$ is a weak homotopy equivalence of CW-complexes since we have $\pi_{1}\left(\bar{X} \times S^{1}\right)=\pi_{1}(\bar{X}) \times \pi_{1}\left(S^{1}\right)=G \times \mathbb{Z}=\pi_{1}(X)$ and $\pi_{n}\left(\bar{X} \times S^{1}=\pi_{n}(\bar{X}) \times \pi_{n}\left(S^{1}\right)=\pi_{n}(X)\right.$ for $n>1$. Hence $\bar{X} \times S^{1}$ and X are homotopy equivalent.

Definition 4.4. We call a fibration $F \rightarrow E \xrightarrow{p} B$ untwisted if $\sigma: \pi_{1}(E) \rightarrow[F, F]^{+}$is trivial and orientable if $\omega: \pi_{1}(B) \rightarrow[F, F]$ is trivial.

Proposition 4.1 implies that p is untwisted if and only if p is orientable and $G_{1}(F)=\pi_{1}(F)$. A G-principal bundle for a connected topological group is an untwisted fibration.

5. Chain complexes with a twist

In this section we explain how the chain homotopy representation of a fibration defined in Section 1 or [12, pp. 4,5] can be read off from the fibre and the orientation data. This leads to the notion of a chain complex with a twist. It is useful if one studies the algebraic transfer for group rings.

Now we set some notations we will use for the rest of the paper. Let $F \rightarrow E \xrightarrow{p} B$ be a fibration of connected spaces and base points $e \in E$ and $b=p(e)$, and $F=p^{-1}(b)$. We write $\Gamma=\pi_{1}(E, e)$ and $\pi=\pi_{1}(B, b)$ and $\Delta=\operatorname{kernel}\left(p_{*}: \Gamma \rightarrow \pi\right)$. Hence we get an exact sequence $1 \rightarrow \Delta \rightarrow \Gamma \xrightarrow{p_{*}} \pi \rightarrow 1$. The inclusion $F \subset E$ defines an epimorphism $\delta: \pi_{1}(F, e) \rightarrow \Delta$. The corresponding covering is denoted by $q:(\bar{F}, \bar{e}) \rightarrow(F, e)$.

The transport of the pointed fibre along loops in E yields a homomorphism $\sigma: \Gamma \rightarrow[F, F]^{+}$. For $w \in \Gamma$ choose a representative $s(w):(F, e) \rightarrow(F, e)$ of $\sigma(w)$.

If $c(w): \Delta \rightarrow \Delta$ is the homomorphism $d \rightarrow w d w^{-1}$ we get $\delta \circ s(w)_{*}=c(w) \circ \delta$. Hence there exists a unique lift $L(w):(\bar{F}, \bar{e}) \rightarrow(\bar{F}, \bar{e})$ which is a $c(w)$-equivariant map. This defines a free $c(w)$-equivariant homotopy class $[L(w)]$ of $c(w)$-maps $\bar{F} \rightarrow \bar{F}$. It depends only on $w \in \Gamma$ and not on the choice of $s(w)$. If $l(d): \Delta \rightarrow \Delta$ is the $c(d)$ equivariant map $x \rightarrow d x$, Proposition 4.1(c) implies

$$
\begin{align*}
& L(d) \simeq_{c(d)} l(d) \quad \text { for } d \in \Delta \tag{i}\\
& L\left(w_{1}\right) \circ L\left(w_{2}\right) \simeq_{c\left(w_{1} \cdot w_{2}\right)} L\left(w_{1} \cdot w_{2}\right) \text { for } w_{1}, w_{2} \in \Gamma .
\end{align*}
$$

We can think of the collection $\{[L(w)] \mid w \in \Gamma\}$ as an extension of the Δ-operation to a Γ-operation up to homotopy. This leads to the following definition:

Let H be a normal subgroup of G and $c(g): H \rightarrow H$ be $h \rightarrow g h g^{-1}$ and A be a commutative ring with unit. For $h \in H$ the left multiplication with h is denoted by $l(h)$.

Definition 5.1. A G-twist L for an H-chain complex C is a collection $\{[L(g)] \mid g \in G\}$ of $c(g)$-chain-maps $C \rightarrow C$ with

$$
\begin{equation*}
L(h) \simeq_{c(h)} l(h) \quad \text { for } h \in H \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
L\left(g_{1}\right) \circ L\left(g_{2}\right) \simeq_{c\left(g_{1} \cdot g_{2}\right)} L\left(g_{1} \cdot g_{2}\right) \quad \text { for } g_{1}, g_{2} \in G \tag{ii}
\end{equation*}
$$

A morphism $[f]:(C, L) \rightarrow(D, M)$ of $A H$-chain-complexes with a G-twist is a $A H$ homotopy class of $A H$ chain maps $f: C \rightarrow D$ with $M(g) \circ f \simeq_{c(g)} f \circ L(g)$ for all $g \in G$. We call

$$
\left(C^{1}, L^{1}\right) \xrightarrow{[i]}\left(C^{0}, L^{0}\right) \xrightarrow{[p]}\left(C^{2}, L^{2}\right)
$$

exact if there is a choice of representatives i, p and $L^{j}(g)$ for all $j=0,1,2$ and $g \in G$ such that the following diagram has exact rows and commutes:

Define $K_{0}^{\mathrm{c}}(H-G, A)$ as the Grothendieck group of the category of finitely dominated $A H$-chain complexes with a G-twist.

The collection $\{[L(w)] \mid w \in \Gamma\}$ above induces a Γ-twist on the cellular $A \Delta$-chain complex $C(\bar{F}, A)=C(\bar{F}) \otimes_{\mathbb{Z}} A$.

Definition 5.2. Define $[p] \in K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ as the class of

$$
(C(\bar{F}, A),\{[C(L(w), A)] \mid w \in \Gamma\})
$$

Given a $A H$-chain complex with a G-twist (C, L), we get a chain representation $\left(A G \otimes_{A H} C, V\right)$ with

$$
V: A[G / H] \rightarrow\left[A G \otimes_{A H} G, A G \otimes_{A H} C\right]_{A G}^{\circ}
$$

sending $g H$ to the homotopy class of

$$
A G \otimes_{A H} C \rightarrow A G \otimes_{A H} C \quad 1 \otimes x \rightarrow g \otimes L\left(g^{-1}\right)(x)
$$

This yields a homomorphism

$$
\Lambda: K_{0}^{\mathrm{c}}(H-G, A) \rightarrow K_{0}^{\mathrm{c}}(A[G / H]-A G)
$$

One easily checks, using [12, pp. 20,21],
Proposition 5.3. The homomorphism $\Lambda: K_{0}^{\mathrm{c}}(\Delta-\Gamma, A) \rightarrow K_{0}^{\mathrm{c}}(A \pi-A \Gamma)$ sends $[p] \in K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ of Definition 5.2 to $[p] \in K_{0}^{\mathrm{c}}(A \pi-A \Gamma)$ of Definition 1.1.

If one studies the algebraic transfer of a fibration it is often more convenient to work with $K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ than with $K_{0}^{\mathrm{c}}(A \pi-A \Gamma)$. The main advantage of the approach using chain homotopy representations is that it can be used for arbitrary rings and not only for group rings.

Now we state some definitions and propositions concerning chain complexes with a twist. We omit the proofs because they are very similar to the one of Section 2 and a detailed treatment can be found in [11].

Definition 5.4. Let \otimes_{t} be the pairing which makes the following diagram commutative for $n=0,1$:

Proposition 5.3 implies for a fibration p that $[p] \otimes_{t}$? is the algebraic transfer p^{*} of Definition 1.1.

Let $K_{0}(H-G, A)$ be the Grothendieck group of $A G$-modules whose restriction to $A H$ possesses a finitely generated projective $A H$-resolution. The tensorproduct over A together with the diagonal action induces a pairing $\otimes_{A}: K_{0}(H-G, A) \otimes$ $K_{n}(A[G / H]) \rightarrow K_{n}(A G)$. Given an $A G$-module M and a finitely generated projective $A H$-resolution P of its restriction to $A H$, let L be the G-twist on P uniquely defined by the property that $H_{0}(L(g))$ is left multiplication with g on M. We get a homomorphism $j: K_{0}(H-G, A) \rightarrow K_{0}^{\mathrm{c}}(H-G, A)$ mapping $[M]$ to $[P, L]$.

Proposition 5.5. (a) We have $\otimes_{t} \circ(j \otimes \mathrm{ID})=\otimes_{A}$.
(b) Let (C, L) be a AH-chain complex with a G-twist such that each $H_{n}(C)$ regarded as AH-module possesses a finitely generated projective AH-resolution. Then j maps $\sum(-1)^{n}\left[H_{n}(C)\right] \in K_{0}(H-G, A)$ to $[C, L] \in K_{0}^{\mathrm{C}}(H-G, A)$.

Let K be a normal subgroup of H and G. Given a $A H$-chain complex C with a G-twist L we get a G / K-twist \hat{L} on the $A[H / K]$-chain complex $A[H / K] \otimes_{A H} C$ by $\hat{L}(g K): A[H / K] \otimes_{A H} C \rightarrow A[H / K] \otimes_{A H} C$ sending $h K \otimes x$ to $g h g^{-1} K \otimes L(g)(x)$. This yields a homomorphism $q(K): K_{0}^{\mathrm{c}}(H-G, A) \rightarrow K_{0}^{\mathrm{c}}(H / K \rightarrow G / K, A)$ and corresponds to dividing out a K-operation in geometry.

Proposition 5.6. Let $\mathrm{pr}_{*}: K_{n}(A G) \rightarrow K_{n}(A[G / K])$ be induced from the projection. Then $\mathrm{pr}_{*} \circ \otimes_{t}=\otimes_{t} \circ(q(K) \times \mathrm{ID})$.

Given a homomorphism $f: A \rightarrow B$ of commutative rings with unit, we get a change of ring homomorphisms for $K_{n}(A G)$ and $K_{0}^{\mathrm{c}}(H-G, A)$, always denoted by f_{*}. If B is a flat A-module we get also f_{*} for $K_{0}(H-G, A)$. All the constructions above are compatible with change of rings provided that f_{*} is defined.

6. Transfer and representation theory

In this section we want to relate $K_{0}^{\mathrm{c}}(H-G, A)$ and the algebraic transfer to the representation ring $\operatorname{Rep}_{A}(G)$ and its operation on the K-theory of $A G$. The representation ring $\operatorname{Rep}_{A}(G)$ is the Grothendieck group of $A G$-modules which are finitely generated and projective over A. We make the following assumption:

The trivial $A H$-module A possesses a finitely generated projective $A H$-resolution.

Then we can define $i: \operatorname{Rep}_{A}(G) \rightarrow K_{0}(H-G, A)$ by $[M] \rightarrow[M]$. Let $k: \operatorname{Rep}_{A}(G) \rightarrow$ $K_{0}^{\mathrm{c}}(H-G, A)$ be the composition $j \circ i$. The tensor-product over A together with the diagonal action induces $\otimes_{A}: \operatorname{Rep}_{A}(G) \otimes K_{n}(A G) \rightarrow K_{n}(A G)$. Under the assumption (*) the $A G$-module $A[G / H]$ has a finitely generated projective $A G$-resolution. Let $\operatorname{trf}: K_{n}(A[G / H]) \rightarrow K_{n}(A G)$ be the transfer map defined by restriction with $A G \rightarrow A[G / H]$ in [22, p. 111]. Proposition 5.5 implies

Proposition 6.1. Assume that (*) holds. Then
(a) The following diagram commutes:

(b) If (C, L) is a AH-chain complex with a G-twist such that $H_{n}(C)$ is finitely generated and projective over A, we get $k\left(\sum(-1)^{n}\left[H_{n}(C)\right]\right)=[C, L]$.

Let $\operatorname{Rep}_{\mathbb{Z}}^{\prime}(G)$ be the Grothendieck group of $\mathbb{Z} G$-modules which are finitely generated as abelian groups. Define $e: \operatorname{Rep}_{\mathbb{Z}}(G) \rightarrow \operatorname{Rep}_{\mathbb{Z}}^{\prime}(G)$ by $[M] \rightarrow[M]$. Then e is an isomorphism. An inverse e^{-1} is given by the following construction [21, p. 890]: Given a $\mathbb{Z} G$-module M which is finitely generated over \mathbb{Z}, choose an exact sequence of $\mathbb{Z} G$-modules $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ such that F_{0} and F_{1} are finitely generated and free as abelian groups. Define $e^{-1}([M])=\left[F_{0}\right]-\left[F_{1}\right]$. Let $i^{\prime}: \operatorname{Rep}_{\mathbb{Z}}^{\prime}(G) \rightarrow$ $K_{0}(H-G, \mathbb{Z})$ be given by $[M] \rightarrow[M]$ and $k^{\prime}: \operatorname{Rep}_{\mathbb{Z}}^{\prime}(G) \rightarrow K_{0}^{\mathrm{c}}(H-G, \mathbb{Z})$ by $j \circ i^{\prime}$ provided that (*) holds for $A=\mathbb{Z}$. Then we get

Proposition 6.2. (a) The map $e: \operatorname{Rep}_{\mathbb{Z}}(G) \rightarrow \operatorname{Rep}_{\mathbb{Z}}^{\prime}(G)$ is an isomorphism with $i^{\prime} \circ e=i$ and $k^{\prime} \circ e=k$.
(b) If (C, L) is a $\mathbb{Z} H$-chain complex with a G-twist such that $H_{*}(C)$ is finitely generated over \mathbb{Z} and $(*)$ is valid, then $k^{\prime}\left(\sum(-1)^{n}\left[H_{n}(C)\right]\right)=[C, L]$.

We apply this to a fibration $F \rightarrow E \rightarrow B$ using the notation of Section 5 . Let K be a normal subgroup of Δ and Γ. The Γ-twist L on \bar{F} induces a $A[\Gamma / K]$-structure on $H_{n}(\bar{F} / K, A)$. Denote by pr: $\Gamma \rightarrow \Gamma / K$ the projection.

Theorem 6.3. (a) Assume that $H_{n}(\bar{F} / K, A)$ has a finitely generated projective $A[\Delta / K]$-resolution for all n. Then $q(K): K_{0}^{\mathrm{c}}(\Delta-\Gamma, A) \rightarrow K_{0}^{\mathrm{c}}(\Delta / K-\Gamma / K, A)$ sends $[p]$ to the image of $\sum(-1)^{n}\left[H_{n}(\bar{F} / K, A)\right]$ under $j: K_{0}(\Delta / K-\Gamma / K, A) \rightarrow$
$K_{0}^{\mathrm{c}}(\Delta / K-\Gamma / K, A)$. The composition $\mathrm{pr}_{*}{ }^{\circ} p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A[\Gamma / K])$ is given by $\sum(-1)^{n}\left[H_{n}(\bar{F} / K, A)\right]$ in $K_{0}(\Delta / K-\Gamma / K, A)$ and the pairing \otimes_{A}.
(b) Assume that (*) holds for Δ / K and $A=\mathbb{Z}$ and that $H_{n}(\bar{F} / K)$ is finitely generated over \mathbb{Z}. Then $q(K): K_{0}^{\mathrm{c}}(\Delta-\Gamma, \mathbb{Z}) \rightarrow K_{0}^{\mathrm{c}}(\Delta / K-\Gamma / K, \mathbb{Z})$ sends $[p]$ to the image of $\sum(-1)^{n}\left[H_{n}(\bar{F} / K)\right]$ under $k^{\prime}: \operatorname{Rep}_{\mathbb{Z}}^{\prime}(\Gamma / K) \rightarrow K_{0}^{\mathrm{c}}(\Delta / K-\Gamma / K, \mathbb{Z})$. The composition $\mathrm{pr}_{*}{ }^{\circ} p^{*}: K_{n}(\mathbb{Z} \pi) \rightarrow K_{n}(\mathbb{Z}[\Gamma / K])$ is given by the image of $\sum(-1)^{n}\left[H_{n}(\bar{F} / K)\right]$ under $e^{-1}: \operatorname{Rep}_{\not / Z}^{\prime}(\Gamma / K) \rightarrow \operatorname{Rep}_{\mathbb{Z}}(\Gamma / K)$ and the pairing $\otimes_{\mathbb{Z}}: \operatorname{Rep}_{\mathbb{Z}}(\Gamma / K) \otimes K_{n}(\mathbb{Z}[\Gamma / K]) \rightarrow$ $K_{n}(\mathbb{Z}[\Gamma / K])$ and the transfer $\operatorname{trf}: K_{n}(\mathbb{Z} \pi) \rightarrow K_{n}(\mathbb{Z}[\Gamma / K])$.

Theorem 6.3 was already proved in $[14,15]$ using spectral sequences. We get a computation of $p_{*} \circ p^{*}$ from it.

Corollary 6.4. The transport of the fibre $\omega: \pi \rightarrow[F, F]$ defines $a \mathbb{Z} \pi$-structure on $H_{*}(F)$. Then $p_{*} \circ p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \pi)$ is given by the image of $\Sigma(-1)^{n}\left[H_{n}(F)\right]$ under $\operatorname{Rep}_{\mathbb{Z}}^{\prime}(\pi) \xrightarrow{e^{-1}} \operatorname{Rep}_{\mathbb{Z}}(\pi) \xrightarrow{f_{*}} \operatorname{Rep}_{A}(\pi)$ for $f: \mathbb{Z} \rightarrow A$ and the pairing \otimes_{A}.

As an illustration we consider the case that the fibre is a finitely dominated Eilenberg-MacLane-space and $\pi_{1}(F) \rightarrow \pi_{1}(E)$ injective. The cellular chain complex of the universal covering is a finitely generated projective resolution of \mathbb{Z} over $\mathbb{Z} \pi_{1}(F)=\mathbb{Z} \Delta$. Hence $(*)$ holds and by Theorem 6.3 the transfer p^{*} is just the classical transfer trf : $K_{n}(\mathbb{Z} \pi) \rightarrow K_{n}(\mathbb{Z} \Gamma)$.

For a finite group G the ring $Q G$ is semi-simple. Proposition 5.5 implies
Proposition 6.5. Let G be a finite group with a normal subgroup H. Assume either $H=\{1\}$ and $A=\mathbb{Z}$ or $A=Q$. Then $k: \operatorname{Rep}_{A}(G) \rightarrow K_{0}^{\mathrm{c}}(H-G, A)$ is an isomorphism and the following diagram commutes:

Representations of finite groups with rational coefficients are uniquely determined by their characters. Let $F \rightarrow E \xrightarrow{p} B$ be a fibration with finitely dominated fibre and connected E and B. If Γ is finite, \bar{F} is also a finitely dominated CWcomplex. We have defined $[L(w): \bar{F} \rightarrow \bar{F}]$ for $w \in \Gamma$ at the beginning of Section 5 . Denote by Λ the Lefschetz number of a self-map of a finite CW-complex.

Theorem 6.6. Let Γ be finite. Then the isomorphism $e^{-1}: K_{0}^{\mathrm{c}}(\Delta-\Gamma, Q) \rightarrow \operatorname{Rep}_{Q}(\Gamma)$ sends $[p]$ to the representation with character $w \rightarrow \Lambda(L(w))$ for $w \in \Gamma$.

One easily checks that the following statements are equivalent for finite Γ :
(i) $[p] \in K_{0}^{\mathrm{c}}(\Delta-\Gamma, Q)$ is zero;
(ii) $\Lambda(L(w))=0$ for all $w \in \Gamma$;
(iii) $p^{*}: K_{0}(Q \pi) \rightarrow K_{0}(Q \Gamma)$ is zero;
(iv) $p^{*}: K_{1}(Q \pi) \rightarrow K_{1}(Q \Gamma)$ is zero.

7. Orientable fibrations

Now we want to analyse the transfer of an orientable fibration. We will point out that this can be described easily if the fibre is a finite CW-complex with nonvanishing Euler characteristic, and what meaning the S^{1}-transfer has.

Let $F \rightarrow E \xrightarrow{p} B$ be a fibration of connected spaces F, E and B with F a finitely dominated CW-complex. We make use of the notation introduced in Section 5, e.g. $\Gamma=\pi_{1}(E)$ and $\pi=\pi_{\mathrm{I}}(B)$. We always assume in this section that p is orientable (Definition 4.4). Let A be a commutative ring with unit. We get from Corollary 6.4

Theorem 7.1. The composition $p_{*} \circ p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \pi)$ is multiplication with the Euler characteristic $\chi(F)$.

In Section 5 we have defined for $w \in \Gamma$ a $c(w)$-equivariant homotopy class of $c(w)$ maps $L(w): \bar{F} \rightarrow \bar{F}$. Since $\omega: \pi \rightarrow[F, F]$ is trivial we can regard the transport of the pointed fibre as a homomorphism $\sigma: \Gamma \rightarrow \operatorname{image}\left(\varrho: \pi_{1}(F) \rightarrow[F, F]^{+}\right)$and have $\sigma(\Delta)=$ image (ϱ) because of Proposition 4.1. Hence $L(w): \bar{F} \rightarrow \bar{F}$ is the left mult $\overline{-}$ plication with d for some $d \in \Delta$ with $\sigma(d)=\sigma(w)$ so that the Γ-twist on $C(\bar{F})$ is given by the Δ-operation.

Write Λ_{0} for $\delta\left(G_{1}(F)\right)$. Now $\varrho: \pi_{1}(F) \rightarrow[F, F]^{+}$induces an isomorphism $\bar{\varrho}: \pi_{1}(F) / G_{1}(F) \rightarrow \operatorname{image}(\sigma), \sigma: \Gamma \rightarrow$ image (σ) an epimorphism $\bar{\sigma}: \Gamma / \Delta_{0} \rightarrow$ image (σ) and $\delta: \pi_{1}(F) \rightarrow \Delta$ an isomorphism $\bar{\delta}: \pi_{1}(F) / G_{1}(F) \rightarrow \Delta / \Delta_{0}$. Then an isomorphism $\Phi: \Gamma / \Delta_{0} \rightarrow \Delta / \Delta_{0} \times \pi$ is given by $\left(\bar{\delta} \circ \varrho^{-1} \circ \bar{\sigma}\right) \times p_{*}$. We get a Γ / Δ_{0}-twist \hat{L} on the $A\left[\Delta / \Delta_{0}\right]$-chain complex $C\left(\bar{F} / \Delta_{0}, A\right)$ by assuming that $\hat{L}(x)$ is the left multiplication with $\bar{\delta} \circ \bar{\varrho}^{-1} \circ \bar{\sigma}(x)$ for $x \in \Gamma / \Delta_{0}$. One easily checks that $q\left(\Delta_{0}\right): K_{0}^{\mathrm{c}}(\Delta-\Gamma, A) \rightarrow$ $K_{0}^{\mathrm{c}}\left(\Delta / \Delta_{0}-\Gamma / \Delta_{0}, A\right)$ sends $[p]$ to $\left[C\left(\bar{F} / \Delta_{0}, A\right), \hat{L}\right]$. Let $\mathrm{pr}: \Delta \rightarrow \Delta / \Delta_{0}$ be the projection. Then the homomorphism $T_{\left[C\left(F / \Delta_{0}, A\right), \mathcal{L}\right]}: K_{n}(A \pi) \rightarrow K_{n}\left(A\left[\Gamma / \Delta_{0}\right]\right)$ agrees with the one given by $\operatorname{pr}_{*}{ }^{\circ} \delta_{*}(w(F)) \in K_{0}\left(A\left[\Delta / \Delta_{0}\right]\right)$ and the pairing $K_{0}\left(A\left[\Delta / \Delta_{0}\right]\right) \otimes K_{n}(A \pi) \xrightarrow{\otimes_{A}}$ $K_{n}\left(A\left[\Delta / \Delta_{0} \times \pi\right]\right) \xrightarrow{\Phi_{*}^{-1}} K_{n}\left(A\left[\Gamma / \Delta_{0}\right]\right)$. If $q: \Gamma \rightarrow \Gamma / \Delta_{0}$ is the projection, Proposition 5.6 implies

Theorem 7.2. The composition $q_{*}{ }^{\circ} p^{*}: K_{n}(A \pi) \rightarrow K_{n}\left(A\left[\Gamma / \Delta_{0}\right]\right)$ is the homomorphism defined by $\operatorname{pr}_{*} \circ \delta_{*}(w(F)) \in K_{0}\left(A\left[\Delta / \Delta_{0}\right]\right)$ and the pairing $K_{0}\left(A\left[\Delta / \Delta_{0}\right]\right) \otimes K_{n}(A \pi) \xrightarrow{\otimes \otimes_{A}}$ $K_{n}\left(A\left[\Delta / \Delta_{0} \times \pi\right]\right) \xrightarrow{\Phi_{\star}^{-1}} K_{n}\left(A\left[\Gamma / \Delta_{0}\right]\right)$.

The following corollary of Theorem 7.2 and Proposition 4.2(b) was already proved in [7]:

Corollary 7.3. Let $F \rightarrow E \xrightarrow{p} B$ be an orientable fibration of connected spaces. Assume that F is a finite $C W$-complex with Euler characteristic $\chi(F) \neq 0$. Then there is an isomorphism $\Phi: \Gamma \rightarrow \pi_{1}(F) \times \pi$ such that for the corresponding section $s: \pi \rightarrow \Gamma$ of p_{*} the transfer $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ is given by $\chi(F) \cdot s_{*}$.

Now we take a look at the S^{1}-transfer.
We denote by \mathbb{Z}_{m} the cyclic group of order m for $m=1,2,3, \ldots$ and by \mathbb{Z}_{0} the infinite cyclic group \mathbb{Z}. Let $t \in \mathbb{Z}_{m}$ be the generator represented by $1 \in \mathbb{Z}$. Given a group G with a subgroup \mathbb{Z}_{m} of its center, let $S\left(\mathbb{Z}_{m}-G, A\right) \in K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m}-G, A\right)$ be the class of the one-dimensional $A \mathbb{Z}_{m}$-chain complex $A \mathbb{Z}_{m} \xrightarrow{t-1} A \mathbb{Z}_{m}$ with the trivial G-twist L, i.e. $L(g)=\left[\right.$ ID] for all $g \in G$. We denote by $\beta\left(\mathbb{Z}_{m}-G, A\right): K_{n}\left(A\left[G / \mathbb{Z}_{m}\right]\right) \rightarrow$ $K_{n}(A G)$ the map $T_{S\left(\mathbb{L}_{m}-G, A\right)}$. Sometimes we write S resp. β for $S\left(\mathbb{Z}_{m}-G, A\right)$ resp. $\beta\left(\mathbb{Z}_{m}-G, A\right)$. One should notice that for an orientable S^{1}-fibration $S^{1} \rightarrow E \xrightarrow{p} B$ the class $S\left(\mathbb{Z}_{m}-G, A\right)$ is just $[p]$, if $t \in \mathbb{Z}_{m}=\Delta$ corresponds to the image of [ID : $\left.S^{1} \rightarrow S^{1}\right] \in \pi_{1}\left(S^{1}\right)$ under δ.

The transfer of an S^{1}-fibration was described algebraically for K_{0} in [17] and K_{1} in [16] by writing down matrices representing elements in the algebraic K-groups. These homomorphisms agree with the maps β. A detailed study of β for finite Γ can be found in [19].

A lot of our results are consequences of the following lemma:
Lemma 7.4. Let \mathbb{Z}_{m} be central in G.
(a) If $\mathbb{Z}_{m} \cap[G, G]$ is trivial, $S\left(\mathbb{Z}_{m}-G, A\right)$ and $\beta\left(\mathbb{Z}_{m}-G, A\right)$ are zero.
(b) If m is not zero and invertible in $A, S\left(\mathbb{Z}_{m}-G, A\right)$ and $\beta\left(\mathbb{Z}_{m}-G, A\right)$ are zero.
(c) If \mathbb{Z}_{m} is infinite, $\beta\left(\mathbb{Z}_{m}-G, A\right)$ is the transfer $\operatorname{trf}: K_{n}\left(A\left[G / \mathbb{Z}_{m}\right]\right) \rightarrow K_{n}(A G)$ defined by restriction in [22, pp. 111].

Proof. (a) Because of $\mathbb{Z}_{m} \cap[G, G]=\{1\}$ the projection pr: $G \rightarrow G /[G, G]$ is injective on \mathbb{Z}_{m} so that we can also regard \mathbb{Z}_{m} as a subgroup of $G /[G, G]$. Restriction with pr defines a homomorphism pr*: $K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m}-G /[G, G], A\right) \rightarrow K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m}-G, A\right)$. Construct an epimorphism of abelian groups $q: G^{\prime} \rightarrow G /[G: G]$ with a subgroup $\mathbb{Z} \subset G$ such that the kernel K of q is contained in \mathbb{Z} and q maps $1 \in \mathbb{Z}$ to $t \in \mathbb{Z}_{m}$. In Section 5 we have defined homomorphisms $q(K): K_{0}^{\mathrm{c}}\left(\mathbb{Z}-G^{\prime}, A\right) \rightarrow K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m}-G /[G, G], A\right]$ and $j: K_{0}\left(\mathbb{Z}-G^{\prime}, A\right) \rightarrow K_{0}^{\mathrm{c}}\left(\mathbb{Z}-G^{\prime}, A\right)$. Choose a homomorphism $f: G^{\prime} \rightarrow \mathbb{Z}$ such that $f \mid \mathbb{Z}: \mathbb{Z} \rightarrow \mathbb{Z}$ is an injection. If $K_{0}(\mathbb{Z}-\mathbb{Z}, A)$ corresponds to \mathbb{Z} as a subgroup of itself, restriction with f defines a homomorphism $f^{*}: K_{0}(\mathbb{Z}-\mathbb{Z}, A) \rightarrow K_{0}\left(\mathbb{Z}-G^{\prime}, A\right)$. The composition pr${ }^{* \circ} q(K) \circ j \circ f^{*}: K_{0}(\mathbb{Z}-\mathbb{Z}, A) \rightarrow K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m}-G, A\right)$ sends the class $[A]$ of the trivial $A \mathbb{Z}$-module A to $S\left(\mathbb{Z}_{m}-G, A\right)$. Since $0 \rightarrow A \mathbb{Z} \xrightarrow{t-1} A \mathbb{Z} \rightarrow A \rightarrow 0$ is exact, [A] vanishes in $K_{0}(\mathbb{Z}-\mathbb{Z}, A)$.
(b) If m is invertible in A, the trivial $A \mathbb{Z}_{m}$-module A is a direct summand in $A \mathbb{Z}_{m}$. Proposition 5.5 implies $S\left(\mathbb{Z}_{m}-G, A\right)=j([A]-[A])=0$.
(c) Proposition 5.5 implies for the trivial $A \mathbb{Z}_{m}$-module $A: S\left(\mathbb{Z}_{m}-G, A\right)=$ $j([A])$.

In the following theorem we decompose the transfer into the transfer of another orientable fibration and an S^{1}-fibration. Then the lemma above gives us vanishing theorems for the transfer.

Let H_{0} and H_{1} be normal subgroups of G such that $h_{0} \cdot h_{1}=h_{1} \cdot h_{0}$ is valid for all $h_{0} \in H_{0}$ and $h_{1} \in H$. We get a homomorphism pr: $H_{0} \times H_{1} \rightarrow G$ sending h_{0}, h_{1} to $h_{0} \cdot h_{1}$. Its image H is a normal subgroup of G. Let (C, L) resp. (D, M) be an $A H_{0}-$ resp. $A H_{1}$-chain complex with a G-twist. We define an $A\left[H_{0} \times H_{1}\right]$-structure on $C \otimes_{A} D$ in the obvious way. We can equip the $A H$-chain complex $A H \otimes_{\mathrm{pr}}\left(C \otimes_{A} D\right)$ with a G-twist N by $N(g): h \otimes x \otimes y \rightarrow g h g^{-1} \otimes L(g)(x) \otimes M(g)(y)$. This yields a pairing

$$
P: K_{0}^{\mathrm{c}}\left(H_{0}-G, A\right) \otimes K_{0}^{\mathrm{c}}\left(H_{1}-G, A\right) \rightarrow K_{0}^{\mathrm{c}}(H-G, A)
$$

Now assume that $\pi_{1}(F)$ contains subgroups H and \mathbb{Z} with $\pi_{1}(F)=H \times \mathbb{Z}$ and $\mathbb{Z} \subseteq G_{1}(F)$. If K is the kernel of $\delta \mid H: H \rightarrow \delta(H)$ and \tilde{F} the universal covering of F, let F^{\prime} be \tilde{F} / K regarded as $\delta(H)$-space. Given $w \in \Gamma$, define $L^{\prime}(w): C\left(F^{\prime}, A\right) \rightarrow C\left(F^{\prime}, A\right)$ as the left multiplication with $\delta \mid H \circ \operatorname{pr}_{H}(x)$ for any $x \in \pi_{1}(F)$ with $\sigma(w)=\varrho(x)$. This yields a Γ-twist L^{\prime} on the $A[\delta(H)]$-chain complex $C\left(F^{\prime}, A\right)$. If $F^{\prime \prime}$ is the $\delta(H) / \delta(H) \cap \delta(\mathbb{Z})$-space $F^{\prime} / \delta(H) \cap \delta(\mathbb{Z})$, define a $\Gamma / \sigma(\mathbb{Z})$-twist $L^{\prime \prime}$ on $C\left(F^{\prime \prime}, A\right)$ analogously.

The following theorem shows the importance of the S^{1}-transfer:
Theorem 7.5. Let p be orientable and assume $\pi_{1}(F)=H \times \mathbb{Z}$ with $\mathbb{Z} \subseteq G_{1}(F)$.
(a) The pairing defined above

$$
P: K_{0}^{\mathrm{c}}(\delta(H)-\Gamma, A) \otimes K_{0}^{\mathrm{c}}(\delta(\mathbb{Z})-\Gamma, A) \rightarrow K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)
$$

sends $\left[C\left(F^{\prime}, A\right), L^{\prime}\right] \otimes S(\delta(Z)-\Gamma, A)$ to $[p]$.
(b) If $\delta(\mathbb{Z}) \cap[\Gamma, \Gamma]$ is trivial, $[p]$ and p^{*} vanish.
(c) The algebraic transfer p^{*} is the composition of $\beta: K_{n}(A[\Gamma / \delta(\mathbb{Z})]) \rightarrow K_{n}(A \Gamma)$ and $T_{\left[C\left(F^{\prime \prime}, A\right), L^{\prime \prime}\right]}: K_{n}(A \pi) \rightarrow K_{n}(A[\Gamma / \delta(\mathbb{Z})])$.

Proof. (a) is a direct consequence of Proposition 4.1, Proposition 4.3 and Definition 5.2. Then (b) follows from Lemma 7.4(a). We will prove (c) only in the K_{1}-case since the K_{0}-case can be proved similarly using the instant Wall obstruction in [23] or can be derived from the K_{1}-case using Theorem 3.1(c).

The main problem lies in the fact that in the definition of the algebraic transfer $p^{*}: K_{1}(A \pi) \rightarrow K_{1}(A \Gamma)$ elements in $K_{1}(A \pi)$ are represented by automorphisms of modules and in $K_{1}(A \Gamma)$ by the torsion t of a self-chain equivalence defined in Section 1 . This causes difficulties in writing down the composition of two algebraic transfer maps.

Let α be an automorphism of $\oplus_{k} A \pi$ representing $[\alpha] \in K_{1}(A \pi)$. Since $\delta(\mathbb{Z})$ is central in Γ by Proposition 4.2(a), the homomorphism pr: $\delta(H) \times \delta(\mathbb{Z}) \rightarrow \Delta$ $x, y \rightarrow x \cdot y$ is well defined. Let S be the one-dimensional $A[\delta(\mathbb{Z})]$-chain complex $A[\delta(\mathbb{Z})] \xrightarrow{t-1} A[\delta(\mathbb{Z})]$ for t as $\delta(1)$ for the generator $1 \in \mathbb{Z}$. There exists a natural
isomorphisin of $A \Gamma$-chain complexes between $A \Gamma \otimes_{A \Delta} A \Delta \otimes_{A \mathrm{pr}}\left(C\left(F^{\prime}, A\right) \otimes_{A} S\right)$ and $\left(A \Gamma \otimes_{A[\delta(H)]} C\left(F^{\prime}, A\right)\right) \otimes_{A[\delta(\mathbb{Z})]} S$. By construction there is a self-chain map f of the $A \Gamma$-chain complex $\oplus_{k} A \Gamma \otimes_{A[\delta(H)]} C\left(F^{\prime}, A\right)$ such that $f \otimes_{A[\delta(\mathbb{Z})]} \mathrm{ID}_{S}$ and $A[\Gamma / \delta(\mathbb{Z})] \otimes_{A} f$ are self-equivalences and $T_{[p]}: K_{1}(A \pi) \rightarrow K_{1}(A \Gamma)$ sends $[\alpha]$ to $t\left(f \otimes_{A[\delta(\mathbb{Z})]} \mathrm{ID}_{S}\right)$ and $T_{\left[C\left(F^{\prime \prime}\right), L^{\prime \prime}\right]}: K_{1}(A \pi) \rightarrow K_{1}(A[\Gamma / \delta(\mathbb{Z})])$ maps $[\alpha]$ to $t\left(A[\Gamma / \delta(\mathbb{Z})] \otimes_{A} f\right)$. Hence it suffices to prove:

Let \mathbb{Z}_{m} be a cyclic subgroup with generator t of the center of G. Let $f: D \rightarrow D$ be an $A G$-chain map such that $f \otimes_{A \mathbb{Z}_{m}} \mathrm{ID}_{S}$ is an $A G$-self-equivalence of $D \otimes_{A \mathbb{Z}_{m}} S$ and $A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f$ an $A\left[G / \mathbb{Z}_{m}\right]$-chain equivalence of $A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} D$. Then $\beta: K_{1}\left(A\left[G / \mathbb{Z}_{m}\right]\right) \rightarrow K_{1}(A G)$ sends $t\left(A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f\right)$ to $t\left(f \otimes_{A \mathbb{Z}_{m}} \mathrm{ID}_{S}\right)$. Let C be the mapping cone of f with differential c. Then $\operatorname{Cone}\left(f \otimes_{A Z_{m}} \mathrm{ID}_{S}\right)$ is isomorphic to the mapping cone E of $C \xrightarrow{t-1} C$ given by

$$
\cdots \rightarrow C_{*-1} \oplus C_{*} \frac{}{\left[\begin{array}{cc}
-c & 0 \\
t-1 & c
\end{array}\right]} C_{*-2} \oplus C_{*-1} \rightarrow \cdots
$$

Choose a chain contraction of E

$$
\left[\begin{array}{ll}
u & v \\
w & x
\end{array}\right]: C_{*-1} \oplus C_{*} \rightarrow C_{*} \oplus C_{*+1} .
$$

We get the relations $c \circ u+u \circ c=v(t-1)$ - ID and $c \circ v=v \circ c$ so that another chain contraction h is given by

$$
\left[\begin{array}{cc}
u & v \\
0 & -u
\end{array}\right] .
$$

Then $t\left(f \otimes_{A \mathbb{Z}_{m}} \mathrm{ID}_{S}\right)$ is represented by the automorphism $(e+h): E_{\text {odd }} \rightarrow E_{\text {even }}$ of $E_{\text {odd }}=E_{\text {even }}=\oplus_{i=0}^{\infty} C_{i}$ with e as the differential of E. This automorphism is conjugated to the automorphism

$$
\left[\begin{array}{cc}
v & -c+u \\
c-u & t-1
\end{array}\right]
$$

of $C_{\text {odd }} \oplus C_{\text {even }}$. Because of $C_{\text {odd }}=C_{\text {even }}=\oplus_{i=0}^{\infty} D_{i}$ we can represent $t\left(f \otimes_{A \mathbb{Z}_{m}} \mathrm{ID}_{S}\right)$ also by

$$
\left[\begin{array}{cc}
c-u & t-1 \\
-v & c-u
\end{array}\right]: C_{\mathrm{odd}} \oplus C_{\mathrm{even}} \rightarrow C_{\mathrm{even}} \oplus C_{\mathrm{odd}}
$$

Since $A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G}(-u)$ is a chain contraction of

$$
A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} C \cong \operatorname{Cone}\left(A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f\right)
$$

the torsion $t\left(A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f\right)$ is given by

$$
A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G}(c-u): A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} C_{\text {odd }} \rightarrow A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} C_{\text {even }}
$$

The map $\left(1+u^{2}\right): C_{\text {even }} \rightarrow C_{\text {even }}$ is an automorphism representing zero in $K_{1}(A G)$.

The composition of

$$
\left(-\left(1+u^{2}\right)^{-1} \circ v,\left(1+u^{2}\right)^{-1} \circ(c-u)\right): C_{\mathrm{odd}} \oplus C_{\mathrm{even}} \rightarrow C_{\mathrm{odd}}
$$

and

$$
\left[\begin{array}{c}
-(t-1) \\
c-u
\end{array}\right]: C_{\mathrm{odd}} \rightarrow C_{\mathrm{odd}} \oplus C_{\mathrm{even}}
$$

is the identity on $C_{\text {odd }}$. Hence $\beta\left(t\left(A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f\right)\right)$ is representated by

$$
\left[\begin{array}{cc}
c-u & t-1 \\
-\left(1+u^{2}\right)^{-1} \circ v & \left(1+u^{2}\right)^{-1} \circ(c-u)
\end{array}\right]: C_{\mathrm{odd}} \oplus C_{\mathrm{even}} \rightarrow C_{\mathrm{even}} \oplus C_{\mathrm{odd}} .
$$

This implies $\beta\left(t\left(A\left[G / \mathbb{Z}_{m}\right] \otimes_{A G} f\right)\right)=t\left(f \otimes_{A \mathbb{Z}_{m}} \mathrm{ID}_{S}\right)$.
Corollary 7.6. Assume that $\pi_{1}(F)$ contains subgroups \mathbb{Z} and H with $\pi_{1}(F)=\mathbb{Z} \times H$ and $\mathbb{Z} \subset \operatorname{kernel}\left(\pi_{1}(F) \rightarrow \Gamma\right)$. Then $[p]$ and p^{*} vanish for orientable p.

8. Untwisted fibrations

In this section we regard a fibration $F \rightarrow E \xrightarrow{p} B$ of connected spaces with F a finitely dominated connected CW-complex. We always suppose p to be untwisted (Definition 4.4) and use the notation of Section 5, e.g. $\Gamma=\pi_{1}(E)$ and $\pi=\pi_{1}(B)$.
The following theorem is a consequence of Theorem 7.5. It shows that the algebraic transfer of an untwisted fibration can be written as a composition of S^{1}-transfers and the transfer of an untwisted fibration whose fibre has a finite fundamental group.

Theorem 8.1. Let p be untwisted. Write $\pi_{1}(F)=H_{1} \times H_{2} \times \cdots \times H_{r} \times G$ for $H_{i} \cong \mathbb{Z}$. If K is the kernel of $\delta \mid G: G \rightarrow \delta(G)$ and \tilde{F} the universal covering, let F^{\prime} be \tilde{F} / K regarded as $\delta(G)=G / K$-space. Denote by $F^{\prime \prime}$ the $\delta(G) / \delta\left(H_{1} \times \cdots \times H_{r}\right) \cap \delta(G)$ space $F^{\prime} / \delta\left(H_{1} \times \cdots \times H_{r}\right) \cap \delta(G)$. Let 1 be the trivial twist. Then
(a) The pairing defined in Section 7

$$
P: K_{0}^{\mathrm{c}}\left(\delta\left(H_{1}\right)-\Gamma, A\right) \otimes \cdots \otimes K_{0}^{\mathrm{c}}\left(\delta\left(H_{r}\right)-\Gamma, A\right) \otimes K_{0}^{\mathrm{c}}(\delta(G)-\Gamma, A) \rightarrow K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)
$$

sends

$$
S\left(\delta\left(H_{1}\right)-\Gamma, A\right) \otimes \cdots \otimes S\left(\delta\left(H_{r}\right)-\Gamma, A\right) \otimes\left[C\left(F^{\prime}, A\right), 1\right]
$$

to $[p]$.
(b) If $\beta_{i}: K_{n}\left(A\left[\Gamma / \delta\left(H_{1} \times \cdots \times H_{i}\right)\right]\right) \rightarrow K_{n}\left(A\left[\Gamma / \delta\left(H_{1} \times \cdots \times H_{i-1}\right)\right]\right)$ is the homomorphism $\beta\left(\delta\left(H_{1} \times \cdots \times H_{i}\right) / \delta\left(H_{1} \times \cdots \times H_{i-1}\right)-\Gamma / \delta\left(H_{1} \times \cdots \times H_{i-1}\right)\right.$, $\left.A\right)$ for $i=1,2, \ldots, r$ and $q^{*}: K_{n}(A \pi) \rightarrow K_{n}\left(A\left[\Gamma / \delta\left(H_{1} \times \cdots \times H_{r}\right)\right]\right)$ is $T_{\left[C\left(F^{\prime \prime}, A\right), 1\right]}$, then $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ is the composition $\beta_{1} \circ \beta_{2} \cdots \beta_{r} \circ q^{*}$.

Now we make some computations of $p_{*} \circ p^{*}$ and $p^{* \circ} p_{*}$. If $\pi_{1}(F)$ is trivial, then
p^{*} is, because of Theorem 7.1, given by $\chi(F) \cdot p_{*}^{-1}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$, so it suffices to treat $\pi_{1}(F) \neq\{1\}$ only.

Theorem 8.2. Assume $\pi_{1}(F) \neq\{1\}$. Then
(a) $\chi(F)=0$;
(b) $p_{*}{ }^{\circ} p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \pi)$ is zero;
(c) If F is a finite CW-complex, then $p^{* \circ} p_{*}: K_{n}(A \Gamma) \rightarrow K_{n}(A \Gamma)$ vanishes;
(d) If A is a field or A is finite or A is the ring of p-adic integers $\hat{\mathbb{}}_{p}$ for any prime, $p^{* \circ} p_{*}$ is zero;
(e) The composition $p^{* \circ} p_{*}$ is given by $f_{*} \circ \delta_{*}(w(F)) \in K_{0}(A \Delta)$ for f_{*} as the change of rings with $f: \mathbb{Z} \rightarrow A$ and the pairing $\otimes_{A \Delta}: K_{0}(A \Delta) \otimes K_{n}(A \Gamma) \rightarrow K_{n}(A \Gamma)$.

Proof. (a) Proposition 4.2(c).
(b) Theorem 7.1.
(c) Follows from (e).
(d) Because of (e), it suffices to check that $f_{*}{ }^{\circ} \delta_{*}(w(F))$ is zero. If $\pi_{1}(F)$ is infinite, Proposition 4.3 implies $w(F)=0$. Therefore we have only to prove that $f_{*}: K_{0}(\mathbb{Z} \Delta) \rightarrow K_{0}(A \Delta)$ is zero for finite Δ. As for any field A the map $\mathbb{Z} \rightarrow A$ factorizes over $\mathbb{Z} \rightarrow Q$ or $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$, we can assume $A=Q, A=\hat{\mathbb{Z}}_{p}$ or A finite. Then $A \Delta$ is semi-local and $K_{0}(A \Delta)$ a free abelian group [24, p. 28]. But it follows from [25] that $K_{0}(\mathbb{Z} \Delta)$ is finite.
(e) One should notice that Δ is central in Γ so that $\otimes_{A \Delta}$ is well defined. In this proof we work with $[p] \in K_{0}^{\mathrm{c}}(A \pi-A \Gamma)$ defined by chain representations in Definition 1.1. If $A\left[p_{*}\right]: A \Gamma \rightarrow A \pi$ is induced by $p_{*}: \Gamma \rightarrow \pi$, it suffices to compute the image of $[p]$ under $A\left[p_{*}\right]^{*}: K_{0}^{\mathrm{c}}(A \pi-A \Gamma) \rightarrow K_{0}^{\mathrm{c}}(A \Gamma-\Gamma)$ (see [12, p. 15]). Let \bar{F} be the covering of F with Δ as group of deck transformations. Choose a finitely generated projective $\mathbb{Z} \Delta$-chain complex P equivalent to $C(\bar{F})$. Let L be the Γ-twist on $A \Gamma \otimes_{\mathbb{Z}} P$ with $L(w): A \Gamma \otimes_{A \Delta} P \rightarrow A \Gamma \otimes_{A \Delta} P \quad v \otimes x \rightarrow v w \otimes x$ for $w \in \Gamma$ and similarly L^{\prime} for $A \Gamma \otimes_{\mathbb{Z}} C(\bar{F})$. We have defined $j: K_{0}(A \Gamma-A \Gamma) \rightarrow K_{0}^{\mathrm{c}}(A \Gamma-A \Gamma)$ in Section 2. Using the additive relation in K_{0}^{c} one gets $A\left[p_{*}\right]^{*}([p])=$ $\left[A \Gamma \otimes_{\mathbb{Z}} C(\bar{F}), L^{\prime}\right]=\left[A \Gamma \otimes_{A \Delta} P, L\right]=j\left(\sum(-1)^{n}\left[A \Gamma \otimes_{A \Delta} P_{n}\right]\right)$. Since $\quad \delta_{*}(w(F)) \in$ $K_{0}(\mathbb{Z} \Delta)$ is $\sum(-1)^{n}\left[P_{n}\right]$, an application of Theorem 2.1 finishes the proof.

The next theorem contains some conditions implying that p^{*} is zero.
Theorem 8.3. Let p be untwisted.
(a) If one of the following conditions is fulfilled, $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ vanishes for $n=0,1$ and any A.
(i) There is a direct summand \mathbb{Z} in $\pi_{1}(F)$ with $\delta(\mathbb{Z}) \cap[\Gamma, \Gamma]=\{0\}$.
(ii) $\mathrm{rk}_{\mathbb{Z}}(\Delta \cap[\Gamma, \Gamma])<\mathrm{rk}_{\mathbb{Z}}(\Delta)$.
(iii) $\pi_{1}(F)=\mathbb{Z}^{r} \times G$ for $G \neq 1$ and $\delta\left(\mathbb{Z}^{r}\right)=\Delta$.
(iv) π is finite and Γ infinite.
(b) If π is finite and F a finite $C W$-complex with $\pi_{1}(F) \neq\{1\}$, then $p^{*}: K_{0}(\mathbb{Z} \pi) \rightarrow K_{0}(\mathbb{Z} \Gamma)$ is zero.

Proof. (a) (i) Theorem 8.1 and Lemma 7.4.
(ii) $\mathrm{rk}_{\mathbb{Z}}(\Delta \cap[\Gamma, \Gamma])<\mathrm{rk}_{\mathbb{Z}}(\Delta)$ implies condition (i).
(iii) In the notion of Theorem $8.1(\mathrm{~b})$ it suffices to show that $\left[C\left(F^{\prime \prime}, A\right), 1\right] \in$ $K_{0}^{\mathrm{c}}(\{1\}-\pi, A)$ vanishes. The composition $K_{0}(\{1\}-\pi, \mathbb{Z}) \xrightarrow{j} K_{0}^{\mathrm{c}}(\{1\}-\pi, \mathbb{Z}) \xrightarrow{f_{*}}$ $K_{0}^{\mathrm{c}}(\{1\}-\pi, A)$ for $f: \mathbb{Z} \rightarrow A$ sends $\chi\left(F^{\prime \prime}\right) \cdot[\mathbb{Z}]$ to $\left[C\left(F^{\prime \prime}, A\right), 1\right]$. Because of Proposition 4.3 the CW-complex $F^{\prime \prime}$ is finitely dominated with $\pi_{1}\left(F^{\prime \prime}\right)=G_{1}\left(F^{\prime \prime}\right)=G \neq\{1\}$. Proposition 4.2 implies $\chi\left(F^{\prime \prime}\right)=0$.
(iv) Since Δ is central and π finite, $[\Gamma, \Gamma]$ is finite. Hence (iv) \Rightarrow (ii).
(b) Because of Theorem 8.2(c) and (a) above it suffices to prove that $p_{*}: K_{0}(\mathbb{Z} \Gamma) \rightarrow K_{0}(\mathbb{Z} \pi)$ is surjective for finite Γ. This follows from the MayerVietoris sequence [24, p. 162] of the Cartesian square

and the facts that $K_{0}(\mathbb{Z} \pi)$ is finite [25] and $K_{0}\left(\mathbb{Z}_{|\Delta|} \pi\right)$ is a free abelian group, as the finite ring $\mathbb{Z}_{|\Delta|} \pi$ is semi-local [24, p. 28].

Now we examine the behaviour of $[p]$ for change of rings $f: \mathbb{Z} \rightarrow A$.

Theorem 8.4. Denote by Δ^{t} the subgroup of torsion elements in Δ. If Δ^{\dagger} is not $\{1\}$ and the order $\left|\Delta^{t}\right|$ is invertible in A or if Δ^{t} is $\{1\}$ and $\delta: \pi_{1}(F) \rightarrow \Delta$ no isomorphism, $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ vanishes.

Proof. If Δ^{t} is $\{1\}$ and δ no isomorphism, $[p]=0$ follows from Theorem 8.3(a)(iii). For $\Delta^{t} \neq\{1\}$ the $\operatorname{map} \mathbb{Z} \rightarrow A$ factorizes through $\mathbb{Z}\left[1 / \Delta^{t}\right]$. Hence we only have to prove $[p]=0$ in $K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ for $\Delta^{\mathrm{t}} \neq\{1\}$ and $A=\mathbb{Z}\left[1 / \Delta^{\mathrm{t}}\right]$. Then A is flat over \mathbb{Z}. In the notion of Theorem 8.1(a) for finite G it suffices to check that $S\left(\delta\left(H_{i}\right)-\Gamma, A\right)$ or $\left[C\left(F^{\prime}, A\right), 1\right]$ vanishes. If G is trivial, one of the $\delta\left(H_{i}\right)$ must be finite and $S\left(\delta\left(H_{i}\right)-\Gamma, A\right)$ is zero because of Lemma 7.4(b). Assume that G is a finite nontrivial group. Proposition 4.3 implies that $\tilde{F} / G=F^{\prime} / \delta(G)$ is a finitely dominated CW-complex with $\pi_{1}(\tilde{F} / G)=G_{1}(\tilde{F} / G)=G \neq\{1\}$ so that $\chi\left(F^{\prime} / \delta(G)\right)$ and hence $\chi\left(F^{\prime}\right)$ is zero because of Proposition 4.2(c). As $|\delta(G)|$ is invertible in A the trivial $A[\delta(G)]$-module A is a direct summand in $A[\delta(G)]$. The homology $H_{n}\left(F^{\prime}\right)$ is finitely generated as abelian group and $\delta(G)$ acts trivially. The homomorphism $j: K_{0}(\delta(G)-\Gamma, A) \rightarrow K_{0}^{\mathrm{c}}(\delta(G)-\Gamma, A)$ sends $\chi\left(F^{\prime}\right) \cdot[A]$ for the trivial $A \Gamma$-module A to [$\left.C\left(F^{\prime}\right), 1\right]$ so that $\left[C\left(F^{\prime}, A\right), 1\right]$ is zero.

Finally we treat the K_{1}-transfer for finite Γ. In the K_{0}-case for finite Γ we already know $p^{*}=0$ from Theorem 8.3(b).

Theorem 8.5. Let p be untwisted with $\pi_{1}(F) \neq 1$ and Γ be finite. Then $p^{*}: K_{1}(A \pi) \rightarrow K_{1}(A \Gamma)$ is trivial if $|\Delta|$ is invertible in A, if A is finite or if A is $\hat{\mathbb{Z}}_{p}$ for any prime.

Proof. If $|\Delta|$ is invertible in A, the result follows from Theorem 8.4. In the other cases $A \Gamma \rightarrow A \pi$ is a surjection of semi-local rings so that $p_{*}: K_{1}(A \Gamma) \rightarrow K_{1}(A \pi)$ is surjective [5, p. 87]. But Theorem 8.2(d) implies $p^{* \circ} p_{*=}=0$.

The subgroup $\mathrm{CL}_{1}(\mathbb{Z} \Gamma)$ of $K_{1}(\mathbb{Z} \Gamma)$ is defined as the kernel of the map $K_{1}(\mathbb{Z} \Gamma) \rightarrow$ $K_{1}(Q \Gamma) \oplus \oplus_{p} K_{1}\left(\hat{\mathbb{Z}}_{p} \Gamma\right)$.

Corollary 8.6. Let p be untwisted with $\pi_{1}(F) \neq\{1\}$ and Γ finite. Then
(a) image $\left(p^{*}\right) \subset \mathrm{CL}_{1}(\mathbb{Z} \Gamma)$;
(b) If F is finite, $\mathrm{CL}_{1}(\mathbb{Z} \pi) \subset \operatorname{kernel}\left(p^{*}\right)$.

Proof. (a) follows from Theorem 8.5 and the fact that p^{*} is compatible with change of rings.
(b) The composition $p^{* \circ} p_{*}$ is zero by Theorem 8.2(c). But $p_{*}\left(\mathrm{CL}_{1}(\mathbb{Z} \Gamma)\right)=$ $\mathrm{CL}_{1}(\mathbb{Z} \pi)$ is proved in [18, p. 184].

Theorem 8.7. Let p be untwisted, $\pi_{1}(F)$ infinite and π finite.
(a) If $\pi_{1}(F)$ is not isomorphic to \mathbb{Z}, p^{*} vanishes.
(b) For $\pi_{1}(F)=\mathbb{Z}$ we get $p^{*}=\chi(\tilde{F}) \cdot \beta(\Delta-\Gamma, \mathbb{Z})$ with $\chi(\tilde{F})$ the Euler characteristic of the universal covering of \tilde{F}.

Proof. Because of Theorem 8.3 it suffices to treat the K_{1}-transfer for finite Γ. Decompose $\pi_{1}(F)$ in $\mathbb{Z} \times G$. Theorem 8.1 implies that we can write p^{*} as $\beta(\delta(\mathbb{Z})-\Gamma, \mathbb{Z}) \circ T_{\left[C\left(F^{\prime \prime}\right), 1\right]}$ for $\left[C\left(F^{\prime \prime}\right), 1\right] \in K_{0}^{\mathrm{c}}(\delta(G) / \delta(G) \cap \delta(\mathbb{Z})-\Gamma / \delta(\mathbb{Z}), \mathbb{Z})$. For $G \neq 1$ we get from Corollary $8.6 \mathrm{CL}_{1}(\mathbb{Z}[\Gamma / \delta(\mathbb{Z})]) \subset \operatorname{kernel}(\beta(\delta(\mathbb{Z})-\Gamma, \mathbb{Z}))$ and image $\left(T_{\left[C\left(F^{\prime \prime}\right), 1\right]}\right) \subset \mathrm{CL}_{1}(\mathbb{Z}[\Gamma / \delta(\mathbb{Z})])$ so that p^{*} is zero. For $G=\{1\}$ we have $F=S^{1} \times \tilde{F}$ (Proposition 4.3) and hence $[p]=\chi(\tilde{F}) \cdot S(\Delta-\Gamma, \mathbb{Z})$ in $K_{0}^{\mathrm{c}}(\Delta-\Gamma, \mathbb{Z})$.

With this theorem we have computed the algebraic transfer of an untwisted fibration for finite π and infinite $\pi_{1}(F)$ completely. The only non-trivial case is the K_{1}-transfer of an orientable S^{1}-fibration with Γ finite. This case is extensively studied in [19].

9. Orientable fibrations with a connected compact Lie group as fibre

We want to prove that the transfer p^{*} is zero for an orientable fibration with a connected compact Lie group G. See also [16, pp. 429,430].

Theorem 9.1. Let $G \rightarrow E \xrightarrow{p} B$ be an orientable fibration.
(a) If G is not isomorphic to $T^{a} \times \mathrm{SO}(3)^{b}$, then $[p]$ and p^{*} vanish.
(b) If G is isomorphic to $T^{a} \times \mathrm{SO}(3)^{b}$, then $p^{*}: K_{n}(A \pi) \rightarrow K_{n}(A \Gamma)$ is $2 b \cdot \beta_{1} \circ \beta_{2} \circ \cdots \circ \beta_{a+b}$ for appropriate $\beta_{i}=\beta\left(\Delta_{i}-\Gamma_{i}, A\right)$ and $n=0,1$.
(c) Let π be finite. If G is not $\{1\}, S^{1}$ or $\mathrm{SO}(3)$, the transfer $p^{*}: K_{1}(\mathbb{Z} \pi) \rightarrow$ $K_{1}(\mathbb{Z} \Gamma)$ vanishes for $n=0,1$. For $G=S^{1}$ resp. SO(3) the map $p^{*}: K_{1}(\mathbb{Z} \pi) \rightarrow K_{1}(\mathbb{Z} \Gamma)$ is $\beta\left(\mathbb{Z}_{m}-\Gamma, \mathbb{Z}\right)$ resp. $2 \cdot \beta\left(\mathbb{Z}_{m}-\Gamma, \mathbb{Z}\right)$. The transfer $p^{*}: K_{0}(\mathbb{Z} \pi) \rightarrow K_{0}(\mathbb{Z} \Gamma)$ is zero.

Proof. Let $T^{n} \subset G$ be the maximal torus in G. Then $\pi_{1}\left(T^{n}\right) \rightarrow \pi_{1}(G)$ is surjective [6, p. 223]. Let $\overline{T^{n}}$ be the covering of T^{n} belonging to $\pi_{1}\left(T^{n}\right) \rightarrow \pi_{1}(G) \xrightarrow{\delta} \Delta$ and $\bar{G} \rightarrow G$ the covering corresponding to δ. Then \bar{G} is a free \bar{T}^{n} - CW -complex and Δ operates on \bar{G} by the inclusion $\Delta \subset \overline{T^{n}} \subset \bar{G}$. Using the additive relation in $K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ one shows $[p]=\chi\left(G / T^{n}\right) \cdot\left[C\left(\overline{T^{n}}, 1\right)\right]$ where 1 denotes the trivial Γ-twist. One should notice that p is untwisted. Writing $\pi_{1}\left(T^{n}\right)=\mathbb{Z}^{n}$ let $\mathbb{Z}_{m_{i}}$ be the image of the i th summand under $\delta: \pi_{1}\left(T^{n}\right) \rightarrow \Delta$. Then the pairing defined before Theorem 7.5 can be iterated yielding a map $P: K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m_{1}}-\Gamma, A\right) \otimes \cdots \otimes K_{0}^{\mathrm{c}}\left(\mathbb{Z}_{m_{n}}-\Gamma, A\right) \rightarrow K_{0}^{\mathrm{c}}(\Delta-\Gamma, A)$ with $[p]=\chi\left(G / T^{n}\right) \cdot P\left(S\left(\mathbb{Z}_{m_{1}}-\Gamma, A\right) \otimes \cdots \otimes S\left(\mathbb{Z}_{m_{n}}-\Gamma, A\right)\right)$.
(a) If G is not isomorphic to $T^{a} \times \operatorname{SO}(3)^{b}$ there is a subgroup S^{3} in $G[20, \mathrm{p}$. 221]. Hence we can find a maximal torus $T^{n}=S^{1} \times \cdots \times S^{1}$ such that the first factor is contained in S^{3} and is therefore nullhomotopic in G. This implies $\mathbb{Z}_{m_{1}}=\{1\}$. Because of Lemma 7.4(a) the classes $S\left(\mathbb{Z}_{m_{1}}-\Gamma, A\right)$ and $[p$] vanish.
(b) For $G=T^{a} \times \operatorname{SO}(3)^{b}$ we have $\chi\left(G / T^{n}\right)=\chi\left(\left(S^{2}\right)^{b}\right)=2 b$. Apply Theorem 7.5(c).
(c) For $a+b>1$ we get $p^{*}=0$. This follows from Theorem 8.3 (a) (iv) and Corollary 8.6 in the K_{1}-case. For K_{0}, apply Theorem 8.3(b).

References

[1] G. Almkvist, The Grothendieck ring of the category of endomorphisms, J. Algebra 28 (1974) 375-388.
[2] G. Almkvist, K-theory of endomorphisms, J. Algebra 55 (1978) 308-340.
[3] D.R. Anderson, The Whitehead torsion of the total space 179-194.
[4] D.R. Anderson, The Whitehead torsion of a fibre homotopy equivalence, Michigan Math. J. 21 (1974) 171-180.
[5] H. Bass, Algebraic K-theory (Benjamin, New York, 1968).
[6] T. Bröcker and T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98 (Springer, Berlin, 1985).
[7] K. Ehrlich, Finiteness obstructions of fibre spaces, Cornell University, Ph.D. thesis, 1977.
[8] K. Ehrlich, Fibrations and a transfer map in algebraic K-theory, J. Pure Appl. Algebra 14 (1979) 131-139.
[9] D.H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965) 840-856.
[10] D.R. Grayson, The K-theory of endomorphisms, J. Algebra 48 (1977) 439-446.
[11] W. Lück, Eine allgemeine algebraische Beschreibung des Transfers für Faserungen auf projektiven Klassengruppen und Whiteheadgruppen, Doktorarbeit, Göttingen, 1984.
[12] W. Lück, The transfer maps induced in the algebraic $K_{0^{-}}$and K_{1}-groups by a fibration I, Math. Scand., to appear.
[13] S. MacLane, Homology (Springer, Berlin, 1963).
[14] H.J. Munkholm, Transfer on algebraic K-theory and Whitehead torsion for PL-fibrations, J. Pure Appl. Algebra 20 (1981) 195-225.
[15] H.J. Munkholm and E.K. Pedersen, On the Wall finiteness obstruction for the total space of certain fibrations, Trans. Amer. Math. Soc. 261 (1980) 529-545.
[16] H.J. Munkholm and E.K. Pedersen, Whitehead transfer for S^{1}-buncles, an algebraic description, Comm. Math. Helv. (1981) 404-430.
[17] H.J. Munkholm and A. Ranicki, The projective class group transfer induced by an S^{1}-bundle, Canad. Math. Soc. Conf. Proc. Vol. 2, part 2 (1982).
[18] B. Oliver, $S K_{1}$ for finite group rings I, Invent. Math. 57 (1980) 183-204.
[19] B. Oliver, The Whitehead transfer homomorphism for oriented S^{1}-bundles, Math. Scand. 57 (1985) 51-104.
[20] E.K. Pedersen, Smoothing H-spaces II, Math. Scand. 46 (1980) 216-222.
[21] E.K. Pedersen and L. Taylor, The Wall finiteness obstruction for a fibration, Amer. J. Math. 100 (1978) 887-896.
[22] D. Quillen, Higher algebraic K-theory I, Lecture Notes in Mathematics 341 (Springer, Berlin, 1973) 85-147.
[23] A. Ranicki, The algebraic theory of finiteness obstruction, Math. Scand. 57 (1985) 105-126.
[24] J.R. Silvester, Introduction to Algebraic K-theory (Chapman and Hall, London, 1981).
[25] R.G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960) 552-578.
[26] R.G. Swan, Algebraic K-theory, Lecture Notes in Mathematics 76 (Springer, Berlin, 1968).
[27] C.T.C. Wall, Finiteness conditions for CW-complexes II, Proc. Roy. Soc. (1966) 129-139.
[28] G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61 (Springer, Berlin, 1978).

