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0. Introduction

0.I. Abstract

In th is paper we cont inue the study of  the algebraic t ransfer p*:  Kn(Znt(B))-
K,(Zt1(E))  for  n:0,1 def ined in t l2 l  for  a f ibrat ion p:E-+8. The algebraic
transfer p* agrees with the geometric transfers p! :K6(Zn1(B))- K6(Zn1(E')) and
pr : Wh(zr (B)) - Wh(n 1(E')) constructed in [7, 8] and t4l respectively. The
geometric K6-transfer sends Wall 's f initeness obstruction of B to the one of E'. The
Whitehead torsion of a homotopy equivalence f :Bo-B is mapped by the White-
head transfer to the one of f , Eo- E given by the pullback. An algebraic vanishing
theorem for p* is a vanishing theorem for pt and is thus geometrically meaningful.
Such algebraic vanishing theorems are obtained in the last three sections.

0.2. Survey of the contents

In Section I we give a review of the construction of the algebraic transfer. On the one
hand we construct an abelian group f6(n - S) and a pairing T : K$(R - S) I Kn(R)-
K,(S) for n:0, I and rings R and S. On the other hand we assign to a fibration
p: E --+ B with a finitely dominated CW-complex as fibre an element [p] e
K[(Zv1(B) -  Zn(E)) .  

'1

We explain in Section 2 how [p] and p* can be computed from homology if the
homology possesses finitely generated projective resolutions.

In Section 3 we prove that the algebraic transfer is compatible with the Bass-
Heller-Swan homomorphisms. We extend the constructions above to negative K-
groups.

We examine in Section 4 the orientation data of a fibration. They consist of the
fundamental group sequence and the transport of the fibre resp. pointed fibre along
loops in the base resp. total space.

This leads to the notion of a chain complex with a twist in Section 5. Given a nor-
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nral subgroup H of G and a ZH-chain complex, a G-twist is an extension of the H-
operation to a G-operation up to homotopy. We can assign to a fibration such a
chain complex with a twist using the orientation data. It determines the class Ip]
in  K [ (Znr  (B)  -  Znr@D.

In Sect ion 6 we apply representat ion theory to compute lp)  and px. I f  n1(E')  is
finite and we use rational coefficients, it turns out that [p] is given by a rational
representation. Its character is computed by Lefschetz numbers. The algebraic
transfer is given by tensoring with the representation corresponding to Ip].

We examine orientable fibrations in Section 7. We show that there is a section
s of  pa :  n(E)-  nt(B) such that p* is given by s* :  K,(zn1(B))  -  Kn(zn1(E'))  i f  the
fibre is a finite CW-complex with non-vanishing Euler characteristic. If z1(F) can
be wri t ten as Zxl l  such that Z is contained in the kernel  of  z1(F)-21(,8),  then

[p]  and p* are zero.
In Section 8 we treat untwisted fibrations. Untwisted means that the transport of

the pointed fibre is trivial. We are interested in vanishing theorems for the transfer.
In this context untwisted fibrations are of special interest because for them pxo p*

is always zero (Theorem 8.2). If we further assume a finite fibre, the composition
p* o p* vanishes. If a fibration is not untwisted with a finite fibre, we cannot, in
g e n e r a l ,  e x p e c t  P x o  P * : p * o  P * : 0  o r  e v e n  p * - - � 0 .

The main result for an untwisted fibration is that p* can be written as a composi-
t ion  B,  o  ßzo- - -o  ß ,oqx  such tha t  the  ß i -s  a re  S l - t rans fers  and qx  the  t rans fer  o f
an untwisted fibration whose fibre has a finite fundamental group (Theorem 8.1).
This leads to some vanishing results (Theorem 8.3).

For explicit calculations it is reasonable to assume F and nlB) to be finite
because one has not much information about Kn(Lrc) for infinite n. But then the
K,,-transfer is zero (Theorem 8.3(b)). If we further presume that rt1(F) is infinite,
the Kr- t ransfer also turns out to be tr iv ia l  except for  the case where n(F) isZand
n l E )  i s f i n i t e .  I n t h i s s p e c i a l  c a s e p x i s X ( F ) . B w h e r e B i s t h e t r a n s f e r o f  a n o r i e n -
table Sr-fibration with the same fundamental group data and X(n the Euler
characteristic of the universal covering of the fibre. The homomorphism P,
however, is not zero in general (see [9]).

Section 9 contains the proof that for an orientable fibration with a connected
compact Lie group G the transfer p* is zero if G is not isomorph ic to Tu x SO13)1'
and can always be written as a composition of Sl-transfers.

0.3. Conventions and notations

Given a fibration F-E-I-B we always assume that E and B are connected
and F is a f in i te ly dominated CW-complex.  We wri te f  :  f t t (E),  n:  nt(B) and A:
kerne l (ps :  f  -  z ) .  The ep imorph ism ä :n(F) -A  is  induced by  the  inc lus ion  FCE.

We denoteby A a commutative ring with unit. For a group G the group ring with
. .4-coeff ic ients is wr i t ten as AG or AlGl.

Module means left module unless a right action is stated explicit ly. Chain com-
plexes always consist of projective modules. The functor 'cellular chain complex

I



T r a n s f e r m a p s i n d u c e d i n a l g e b r a i c K o - a n d K l . g r o u p s b y a f i b r a t i o n l l | 4 5

with.4-coeff ic ients,  is  denoted by C(?,A). l f  f  :C-D is a chain f f iäp,  i ts  mapping

cone is given bY

. . .  - -  Cx r  O D* 
f  _ .*  ,  o  l -  

C*-zo-  Dx-  t .

l r . ,  d * l

1. Review of the algebraic transfer

The purpose of this section is to recall the construction of the algebraic transfer

defined in [12]. Namely, given associative rings with unit R and S, we introduce an

abel ian group ,<d(R -  S) and a pair ing  ̂ rs '  Kü(n -  s)  I  K,(R)- 'K,(s)  for  n:0 '  1 '

A chain homotopy representation (C, (l) consists of an S-chain complex C and

a r ing homomorphism U:R-, lc,Cl i  into the dual  r ing of  homotopy classes of

chain maps C-C. A morphism [ / ]  : (C,U)- ' (D,V) of  chain homotopy representa-

t ions is a homotopy class Lf l  of  chain maps - f  :C- l )  wi th f  o (J(r)=V(r)  o/ for  a l l

r e R. We call a sequence of morphisms of chain homotopy representations

( c r , u '  )  
[ ' l  ,  ( c u , ( J , t )  

[ ' ]  ,  ( c 2 , u 2 )

exact i f  there exists a choice of  representat ives i ,p,Ui1r1for7:0,  1,2 and re R such

that the following diagram has exact rows and commutes strictly (not only up to

homotopy):

0 ---------------- Cl 
' 

' Co 
P ' Cz '0

,,trl l ,,,t,"l l ut,r, l
i j I

0______-_________ Ct , -  ro  - - - ; -  Cz  -  O

Let Kf (R - S) be the Grothendieck group of the category of chain homotopy

representations. we recall that the Grothendieck group of a small category with ex-

act sequences is the quotient of the free abelian group generated by the isomorphism

classes of  objects and the subgroup generated by elements [X]  - ty l  + lz l  for  each

exact sequence X'Y -  Z.

Before we define the pairing oTt we have to introduce two invariants for chain

complexes. Let -f : c- c be a self-equivalence of a finitely dominated s-chain com-

plex c.  choose a chain equivalen ce h:  c 'P and a homotopy inverse h-t  f  or  a

finitely generated projective s-chain complex P. If d is the differential and a a chain

contract ion of  the algebraic mapping cone D of  h" ' f  " f t - l '  then

( d + A ) ,  ö  o r , * 1 ' @  D z n
n - 0  n : 0
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is an automorphism of the finitely generated projective S-module @I:oPn. Define
the torsion t (_f)  of  /  in Kr(S) by the c lass of  d+ A.

Let C be a finitely dominated S-chain complex and p: C --+ C a homotopy projec-

t ion,  i .e.  pop=p. A spl i t  object  (D,r , i )  for  p consists of  a chain complex D and
c h a i n  m a p s  r : C - D  a n d  i : D n C  w i t h  r o i = I D  a n d  i o r = p .  S u c h  a  s p l i t  o b j e c t
exists uniquely up to homotopy and is the homotopy theoretic summand of C de-
fined by p, namely D@Cone(i)= C. Define the finiteness obstruction w(p) e Ko(S)
of p by Wall 's f initeness obstruction w(D) for any split object (D,a i ). We recall
that w(D) is given bV I (-l) ' [P,] for any finitely generated projective chain com-
p lex  P w i th  P :D (see 127,  p .  138] ) .

Let F: {based free R-modules}-ho{S-chain complexes} be an additive functor
from the category of based free R-modules into the homotopy category of S-chain
complexes such that F(R) is f initely dominated. We define homomorphisms
Fr:  K,(R) -  r ( r (S) f  or  n:  0,  I  .

Let  p:Rk--Rk be a project ion,  i .e.  pop-p,  such that i ts image represents 4 in
Ko(R). Define FoQt) by w(F(p)). Given an automorphism .f : Rn - Rn representing

4 e Kt(R), let Ft(rt) be t(F(f)).
Let (C, U) be a chain homotopy representation with finitely dominated

C. We associate to (C,U) an additive functor ,F: {based free R-modules}--
ho{S-chain complexes} which sends R'-R^ x-xA for a matr ix A:(r i , )  to

@rC -@,,  C given by (U(ry, ; ) ) .  Hence we can assign to (C, U) a homomorphism
Fn:Kn(R) -K, (S)  fo r  n :0 ,1 .  S ince  the  Gro thend ieck  group K6(R-S)  i s
generated by the isomorphism classes of chain homotopy representations we get a
pa i r ing  RZs:K6(R-S)O K, (R) - -K , (S)  fo r  n :0 ,  l .  The proo f  tha t  th is  i s  we l l
defined can be found in [2].

Given xeKj(R-S) we wri te ^f  r  K,(R)- 'K,(S) for  RTt(x,?).  Sometimes we
abbreviate RZs and R(s by T and T*.

Let F--+ E J. Bbe afibration with F a finitely dominated CW-complex and B and
.Econnected .  We wr i te  f : f t l ( ^E)  and f t : f t t  (B) .  We denote  by  p :E- ,B the  com-
position of p with the universal covering of E. It is a f-equivariant f ibration whose
fibre F is a f-space. The equivariant f ibre transport defines a homomorphism
u : n--+ IF, Fl r. Define a ring homomorphism U : Av --, [C(F, A), C(F, 4)\, by
w-[C(u(r- t ) , ,4) ]  so that  we get a chain representat ion Q(F,A),U).

Def in i t ion 1.1.  Let  [p]  eKI(Aft-AD be the class of  (C(4 A),r0.The algebraic
transfer of p with ,4-coefficients p*:Kn(An)nK,,(AI-) is defined by Ttrt for
n  : 0 . l .

2. Homological computations

In this section we want to calculate the class of a chain homotopy representation
(C, U) in Kd(R - S) and the homomorphisms TLr,r): Kn(R)--K,(S) by its
homology.

I
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We denote by Ke(R - S) the Grothendieck group of S-R-bimodules possessing a
finitely generated projective S-resolution regarded only as left S-modules. Given
such a module M, the tensor product M\n? yields an exact functor from the
category of f initely generated projective R-modules into the category of S-modules
having a finitely generated projective S-resolution. This induces a pairing
s@n :  K'(R -  S) I  Kr(R) --Kr(S) f  or  n:0,  l ,  2,3,  . . .  (see 122, pp. 106, 1091).

Let M be an S-R-bimodule and P a finitely generated projective resolution of M
regarded as S-module. The right R-module structure can be considered as a ring
homomorphism R--' HOM s(M, M)0 . The map Ip, pls -- HOMs (M, M) sending [/]
to Hs(f)  is  an isomorphism of r ings (see [3,  p.  87]) .  This y ie lds a r ing homomor-
phism U: R'- ' lP,Pl !so that (P,U) is a chain homotopy representat ion.  Def ine a
map,/  :  Ko(R -  S)-Kd(n -  S) by IMI-  IP,  Ul .

Theorem 2.1. (a) The map j is a weil-defined homomorphism.
(b) The following diagram commutes for n:0, l:

Ko(R -

(c) Let (C, U) be
possesses a finitely
I l :o (- l) ' lH,(c)l is
rd(n - s).

@) ff S is regular,
Ko(R - S) sending lC,

ro* , Kr(s)

It o l
I

R r s  v
----------------+ K, (S )Kö(R -

s) 8 K,(R)

I
I  I ( . ID
t " -

I
s) 8 K,(R)

a chain homotopy representation such that each Hr(C)
generated projective resolution of left S-modules. Then
a well-defined element in Kg(R - S) sent by j to IC, U) in

then j is an isomorphism with inverse mop K,i(n - S) -

Ul  to I I :o (-  l ) ' IH,(C)1.

We will see in Section 6 that this theorem is a good tool for computations. All
the various homological computations of the transfer induced by a fibration in
[3,7,8, 14, l5] can easily be derived from it. The rest of this section contains the
proof of  Theorem 2.1 and some remarks at  the end.

Proof of Theorem 2.1. (a) The diff icult part of the proof consists in showing that
7 is compatible with the relations in Ke(R - S) given by exact sequences. This is a
consequence of the following Lemma 2.2. Its proof is closely related to the proof
that K6 of the category of f initely generated projective modules and K6 of the
category of modules possessing a finitely generated projective resolution are iso-
morphic 126, 102 ff]. Given an S-R-bimodule M, we call a chain homotopy
representation (C, U) an S-R-resolution for M if C is a finitely generated projective
S-resolution of M as left S-module and Ho(C) and M are isomorphic as S-R-
bimodules.

t
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Lemma 2.2. Let 0- Mt -!-, yo J-- Vaz - 0 be qn exqct sequence of S-R-bimodules

and (Ct,LJt) resp. (C',U') an S-R-resolution for Mt resp. M2. Then there exists

an exact sequence of choin homotopy representstions

(ct ,  tJr  ,  
[ i  ]  '  (Co, uo) l4 '  (C2, u ' )

such thqt (C0,U0) is an S-R-resolution o-f M0.

Proof . We construct inductively for n - - 1,0, l, ... commutative diagrams of S-

modules

Q ------------+ C)

.jl
I

0 ---------------) c),,,

,),,1
j
:

.öl
J

0 -  C l r

t .

CT
I.gl
J' n  t  ,  c l - ,

., 'l
J
:

-r l' 0 1

I, _ l  
,  C 9 r

pn
-t

P n l
---------------J

P t-'

---------------+ Q

r + 0

---------------+ Q

c3

,11
J

c3_

, l
j
:

.rl
c'_,

cj

and maps Ur ( r ) r :C t r - -Cro for  - l  <  k<n and 7 :1 ,0 ,2  and re  R w i th  the  fo l low ing
propert  ies:

(1 )  0  - - ,C t - ,3  Cgt l - \C2 r - - ,0  i s  jus t  0 -Mt  - ! -yo  J -yz-0  and Ur_ l r )
right multiplication with r on Mi.

(2) Ctk, cro and tl i(Dr, come from the given S-R resolutions (Ci,Ui) of Mi for
j  :1,2.  We have chosen representat ives U/(r) :  Cj  - -  Cj  for  7 :1,2.

(3) Cf is the direct sum Cf @Ct and, i1, the canonical inclusion and p1, the
canonical projection for k > 0.

(4) The columns and rows are exact.

(5) i k  t o  c t t r : c l r "  i t ,  0 S  k - n ,

p * - � t o t P :  c ? o p t ,  0 < k < n ,

r L i Q ) r ,  r "  c ' r : c l "  U i 1 r 7 r ,  0 < k = n ,  i  : 1 , 0 , 2 .

( 6 )  U 0 ( r ) t , o i k : i r o ( J l ( r ) r , ,  - l <  k - n ,  j : 1 , 0 , 2 ,

(12( r ) ro  p r< :pk"  U0( r ) r ,  |  <  k<  f l ,  j  :  I ,0 ,2 .

L
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These data give us the desired S-R-resolution (C0, U0) of M0 and the exact
sequence of chain homotopy representations

(Ct,  (J ' )  t ' l  ,  (Co, Uo) J4- (C' ,  U')  for  n--+ @.

The beginning of the induction n - - I is determined by property (l) so that only
the induction step remains to be done. property (3) determines

o - - , C ) + 1 4  C l * ,  
P n + 1  

, C 3 * r - 0 .

Because-of  p,(kernel(c!)) :kernel(cn2),  we can choose _f ,C3*,-kernel lc, ! ;  wi t f r
p n o . f  :  c l , * t -  D e f i n e  c 2 * t :  Q l * r :  c l , * r @ c | * p c I b y  Q n J  r ) * ' r , i l .  o s h o r t  d i a g r a m
chase proves that image(c|*  r ) :  kernel tc l ) .  Now ,no 1U0(r)n" - f  -_f  o tJt(r)n*,) :  O
and cl"  (J0(r) ,"  - f - - f  "  u2(r)n* r)  :  0 is val id.  Because of  image( i , .  .  r ) . '  r l  :
k e r n e l ( p n ) O k e r n e l ( c f )  a  m a p  g : C | * t - C t r * t  w i t h  i r o c ) * r  o g l  ü o @ , , " , _ f  -
- f " _ U ' ( r ) , 1 1 c ä r l  b e  c o n s t r u c t e d .  D e f i n e  U u ( r ) n * r : C X * r - ö I * , ' u r , f r .  ^ u p  i i . , O
Ci *  r - -  C, l  *  r@ Cl * ,  g iven by

One easi ly checks that al l  the propert ies ( l )  to (6) are fu l f i l led.  Hence 7 is wel l
defined. t l

(b) we verify only the case /? :0. Let p: R,, - R* be a projection and q e K6(R)
represented by its image. Let (C, U) be an S-R-resolution for the S-R-mod üe M
so that j sends [M) to lc, u]. choose a split object (D, r, i ) for the homotopy
projection F(p) if F is the additive functor assigned to (C, U) in Section l. Be-
cause of  Hi(D*): image(Hi(F(p))) ,  we have Hi(D*):0 for  i  >0 and H,(Dx):
MSnimage(p). If D is homotopy equivalent to the finitely generated projective
chain complex P, then P is a resolut ion of  M@pimage(p).  By def in i t ion th is
impl ies

T( j ( IM l ) , r t ) :  T ( IC,  U l ,D:  w(D) :  w(P) :  I  ( -  t ) , Ip , l

:  IM En image(p)) :  lMl  s@n 4.

(c )  We use induc t ion  over  m:0 ,1 ,2 , . . .  w i th  H i (C) :0  fo r  a l l  i  >2 .  The case
m:0 is just  the def in i t ion of  7 and the induct ive step is contained in the fo l lowing
lemma:

Lemma 2.3.  Let  \ct ,ut)  be o chain homotopy representat ion wi th Hi(ct) :0fo,
i>m- Let (C2,L121 be an S-R-resolutionfor H,,(C17. Then there exists an exact se-
quence of chain homotopy representations

I  U ' ( ' ) ,  , ,  s  l
L  o  u 2 ( r ) , , r | ' '

(C r ;U '  
)  

I t l  ,  (Co, Uo) J4- 2m + |  (C' ,  U')
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for Z^*t  os the (m+l)- fo ld suspension such that Hi(Co):H,(Ct)  - fo,  i<m qnd
H , ( C n ) : 0  f o r  i >  m .

Proof. Let f :2' '  C2 --, Ct be an S-chain map inducing the identity on the m th
homology group. Let h(r) :  Z^ C2 - 'Ct be a chain homotopy h(r) :  Ut 1r1" 7:
.f "2^tt '(r) for re R. Define C0 as the mapping cone of /so that there is an exact
sequence

0 - C l - 1 -  C o  
P r 2 m + t C 2 - 0 .

Def ine a chain map Uo(r) :Co --Co by

|  
( r ' '  u ' ( r ) \n - ,

I h(r\, I u, (r),1: Q* c'�), - r @ c), - (z* c2)n -,@ c)'

Using the long homology sequence of  - f  one shows that H,(C0):0 for  i>m
and H1(Co) :H, (CI ;  fo r  i<m is  va l id .  To  prove tha t  (C ' , (J ' )  [ i ]  '  (Co,U0)  [p ) ,

2rrt+t(C',U') is an exact sequence of chain homotopy representations it suffices
to verify that U0 (rr) " U0 (r) = U0 (rt . rz) and U0 (rr) + Uo (rr) = U0 (rt + r) holds
for 11 ,r2eR. We wi l l  do th is only for  the f i rst  re lat ion.  Choose for 11 ,r re R
a homotopy h' ( r r ,  r )  :  Ct -  C '  bet*een Ut (r)  "  Ut (rz)  and Ut (rr .  r r ) .  Def ine
h " ( r r , r z ) i t C l - C l n ,  f o r  i < m  b y  h ' ( r r , r ) i : C l  - - - , C i t * 1  a n d  f o r  i : m  b y
0 @ ht (r , ,  , r )n, :  C)--  (z* C2)*@ C)* r  .  I f  c0 denotes the di f ferent ia l  of  C0 we get

c,9* r  o h0(rr ,  r ) ;*  h01rr ,  r r ) ,  r  o c,9 :  (J0(rr) io U0(rz) , -  (10(rr .  r r \ ,

f o r  i < m .
As C0 is projective and H,(C07:g for i > m we can consrrucr maps

ho( r r , r ) i :C ! - - ,Cg*1  fo r  i>m y ie ld ing  a  homotopy  h0( r r , r r ) :U0( r ) "  U0( rz )=
Uo(rr .  r r ) .

This finishes the proof of Lemma 2.3 and therefore the proof of Theorem
2.r(c) .  t r

(d) is a direct consequence of (c), since for a regular ring S each finitely generated
module possesses a finitely generated projective resolution and the homology of a
finitely dominated chain complex is f initely generated. I

The finiteness obstruction defines for R :Z an inverse map lr : K$(Z- S)-Ko(S)
of  i  :  Ko(S) :  Ko(Z- S) -  K|(Z- S).  In th is case Theorem 2.1(c) reproves the com-
putation of the finiteness obstruction w(C) of a finitely dominated chain complex
by w(C):  I  ( - I ) ' IH,(C)]  in [2] ,  p.  893] provided that H,(C) possesses a f in i te ly
generated projective resolution.

Let n and f be finite groups. A Ql--Zn-bimodule M can be interpreted as

Q[ f  xz ] -modu le  i f  (a  D.m:Xf t r !  
I  fo r  xe l - ,  !e  f t ,  meM.  Then Theorem 2 .1

yields an isomorphism between K$(Zn - QD and the rational representation ring
o f  I - x n .
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Let R be the polynomial ring ZIxl. Then j : Ks(Z[x] - S) - K|@Ixl- S) is an
isomorphism since a r ing homomorphism U:Z[xl-- lC,C]!  is  just  a chain homo-
topy class of self-chain maps C - C.If H(A) resp. P(A) is the category of S-modules
which have a finitely generated projective resolution resp. which are finitely
generated and projective, Ko(Zlxl - S) is isomorphic to

K6 (E nd (P (A))) : Ko (E nd (H (A))) .

These groups were computed in [] by characteristic polynomials for commutative
S.  See a lso  [2 ,10 ] .

3. Transfer and the Bass-Heller-Swan-homomorphisms

The purpose of  th is sect ion is to show that the pair ing T:Kf i (R-s)O K,(R)-
,<r(S) for n:0, I is compatible with the Bass-Heller-Swan-homomorphisms. This
enables us to define Z also for negative n.

Le t  t  be  a  genera tor  o f  z .  we can wr i te  R[ t , t ' ]  as  RSrz lz ) .  Denote  by
l , :Z[Z]--Z[Z]  the mult ip l icat ion wi th t .  Let  the homomorphism h: Ks(R)--
Kr(R $tZ[Z))  send [P] to the c lass of  the automorphism lDEzl ,  of  p@zzlz l .

Given an R-module M we write M@zZlZ)* for the R-submodule generated by
elements x} t 'wi th n >0, where R operates only on the lef t  factor.  Let  f  be an
automorphism of the RSzZlZl-module Rn StZlV|  Choose an integer z such
that t" 'f maps Rn 8zZ[Z]* to itself. Then the cokernel of the R-module homomor-
phism t" ' f  :  R'8rZ[Z]+ -  Rn @rZlZ)* is a f in i te ly generated project ive R-module.
Define a homomorphism e : Kt (R 8z ZlVl) -Ko(R) bV rp(tf l): [cokern el(t 'nf)l -

[cokernel( /" ' ID)] .  Then rp and h are wel l -def ined homomorphisms with eo h: lD
(see [26, p. 221 ft]).

Let  (C u:R-- ' IC,clS) be a chain homotopy representat ion.  Now c@rzlz)
is a s8z z lz l -chain complex.  Def ine a r ing homomorphism v:  R8vz1z1--

1C8,.  ZIZI ,  C 8rZ[Z] l f le t ra by r  I  t  - -  [U(r)@t l , ) .  Since (C @qaVlV\ V) is
a chain homotopy representation we get a homomorphism B: K|(R - S) -
rö(n @.r z[z] - s gz zlvl).

Theorem 3.1. (a) The following diagram commutes:

Kö(n - s) 8Ko(R)

l 5 l

I
I

P a n
J

K6(R Stzlz l -  s€)z zlz))€)Kr @gtzlz l)  
'  , zl)K1

'  Ko(S)

Ir
I

(S  @rz l

I
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(b) The following diagram commutes:

Ko(S)

tv t \
L " l  /

'r
t

(R 8z ztzl) ---------------Kr (S S tZIZ l )

(c)Givenxe Kf(R-S),  f " :K6(R)-+60(5) ts thecomposi t ion o"f  rp:Kr(SOzZlZl)-)

Ko(S)  and Ts , * t :  K1  (R & tz lV l )  -  Kr  (S  S tZ lZ) )  and h :  Kg(R)  -  Kr  (R @ tZ [Z l ) .

Proof. The verif ication of this theorem is straightforward if one has a computation

of the Bass-Heller-Swan-homomorphisms for chain complexes. This is given by the

following lemma whose proof is analogous to the one in [6, pp.420-421).

Lemma 3.2. (a) Let P be a finitely generated projective S-chqin complex and

-f : PSrZlZl'- P@rZlZl an SOz VfZl-chain equivalence. Choose on integer m>0

such that t* f  induces an S-chain-map t 'nf  :P@vZIZln --PE,rZlZl* .  Then the

mapping cone Cone(t''f) is a finitely dominated S-chqin complex and rp sends the

torsion t("f) to w(Cone(/*f))- w(Cone(/"'ID)) with w qs Wall's finiteness ob-

struction.
(b) Given a finitely dominated S-chain complex C, the torsion t of

I D O z  l , : C @ n V l V l - - C S t Z l Z l  i s  h ( w ( C ) ) .  t r

Let ̂ F--+ E - B be a fibration with connected B, and F a finitely dominated CW-
complex. Because of Theorem 3. I (c) the following diagram commutes, since B maps

Ip l  to  Ip  x  ID5 ' ] :

Ks(Zn 1@D & K {Z[n 1@) x Z l )
1 t

p * l  |  ( p  x  t o .  ) *
I  l (px  

rD ' , ) '
l h l

Ko(Zn1 (B ))  -  K t  (Zln 1@) x Zl)

Hence the K1-transfer determines the K6-transfer. This follows also geometrically

f rom [6 ,  p .  4221.
Using Theorem 3.1 we can def ine our pair ing f  :K$(R -S)O K,(R)-K,(S) also

f o r  n e g a t i v e  n .  G i v e n  n > 0 l e t  f ( j \ : Z l Z ' l S t Z I Z l - - Z I Z n  
* ' l  b .  t h e  r i n g  h o m o -

m o r p h i s m  s e n d i n g  ( r r 8 . . . 8 / , ) 8 /  t o  / r 8 . . . 8 / ;  r O r E b ( ; ] - . . . @ t n  f o r  j :

K,i(n - s) 8Ko(R)

1
I 'ot '

K6(R -  S)  I  Kr  (R gtz

Iu 'o
J

.,(d(R @ tzlzl - S 8z zlzD8 Kr
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1,. . . ,  n+1. I t  just  permutes the var iables.  This induces a map , f ( i )x ot l  the

K1-groups .  I f  h  :  Ks(RStZ lZ ' l ) '  K tß$t  IZ ' l$ t  Z IZ I )  i s  the  Bass-He l le r -

Swan-homomorphism for R@zZIZn),  one can def ine K-r(R) as the subgroup

n;] i  image(/(7)*"  h) of  K,(ROz zlv '* t )) .
Define ?":  Kf  (R -  S) E K - , (R)--K-,(S) as the map for n > I  making the fol low-

ing diagram commutative if k denotes the inclusion:

153

K, i tn  Srv lvn '  ' l

K-,(s)

In  the  no ta t ion  o f  [12 ,  pp .  14 ,15 ]  one checks  tha t  the  maps f ( i ) *oBn*  
'and

g n + t  .  - f ( i ) * : K f  ( R - S ) - f ö ^ ( n  S t Z l Z '  
* ' l - S O z  V [ Z ' * t l )  a g r e e .  N o w  a p p l y

Lemma 4 .3  and Lemma 4 .4 in I l2 ,pp .  14 , l5 l  and Theorem 3 .1  to  p rove  tha t  the

definit ion for negative K-groups makes sense.

4. The orientation data of a fibration

We collect in this section the orientation data of a fibration consisting of the

fundamental group sequence and the (pointed) fibre transport and state some

elementary but important properties of them.
Let F- E - B be a fibration with connected F, E and B. The transport of the fibre

along paths in the base space induces a homomorphism @;Tt1(B)- lF,Fl  into the

monoid of  homotopy classes of  sel f -maps of  F (see [28, p.  186]) .  Simi lar ly the

transport of the pointed fibre along paths in the total space yields a homomorphism

otf t . (E)- lF,F)* into the monoid of  pointed homotopy classes of  pointed sel f -

maps of the pointed fibre. We always suppress the notion of the base-points. The

homomorphism etf t r (F)- lF,Fl*  sends the class of  a loop w to the c lass of  a

pointed self-map of F which is homotopic along w to the identity (see [28, p. 98 ff]).

Let  G'(F) be the kernel  of  q.  This group was or ig inal ly def ined in [9] .  We denote

bV " f  : lF ,F l * - [4F]  the  fo rge t fu l  map.One eas i l y  checks  the  fo l low ing  propos i -

t i o n  ( s e e  [ 1 1 ,  p . 3 . 3 1 ) :

Proposition 4.1. (a) The following sequence is exqct:

I - Gr (f' ) c' nJF) 3--, [p, Ff J. [4 F] - l.

(b )  o  o  p* : - f  o  o .
(c)  ooix:  e for  the inclusion i  :  F- E.

(d) kernel( i  x)  c Gt@).
(e) is(G1 (F)) C center(21 (E')).

' l )  8 Kr (R & t,  ZlZn+ r 1; 
r '  Kr (s 8, zlz '* t  l )

l k
I

K '(R)

lz'

1
I
) a)

v
L L

E r

- s

- s 8

g n + l

K3(n
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contains the main properties of G1(X):

Proposition 4.2. (a) The center of nt(X) contains G1(n. A centrql element w
nJX) belongs to G1(n i"f and only if t(w):X--,X x-wx is n{X)-homotopic
the identity.

(b) Let X be a finite CW-complex with G(X)+ { I } . Then its Euler chqracteristic

Xq) is zero.
(c) Let X be a finitely dominated CW-complex with Gt (8nfuJX),nt(X)l+

Gr(X). Then X6) is zero.
(d) I-f X is a H-space, we get Gt(X):nt(X).

Proof. (a), (b) and (d) are proved in [91.
(c)  Choose an epimorphism -f  :nr(X)-G into a f in i te group such that there is a

s € G  w i t h  g * 1 ,  g e " f ( G t  ( X ) ) .

Let X be the covering of X with G as group of deck transformations. Since the

change of rings induces the zero map RrlZG)'R'(QG) t251, there is a finitely

generated free QG-chain complex D homotopy equivalent to C(X, Q).We get from
(a) that  l (d:D-D is homotopic to the ident i ty.  This impl ies for  the Lefschetz

number ,4q:

0 :  AaU(d  :  D  - -  D)  :  Aq( tD :  D  -  D) :  Xq@) :  y  (C(X,  Q) )  :  X{d( ) :  iG  |  .  X6) .

Therefore Xq) is zero. I

The following proposition is the basic observation for proving that the algebraic

transfer for arbitrary fibres can sometimes be expressed by,Sr-transfer maps.

Proposition 4.3. Let X be q CW-complex. There exists a CW-complex Y with

X=Y xS'  y '  and only r f  nJX) can be wri t ten as GxZ with Z:GIX).

Proof. Since G1 is compatible with the cartesian product and for a homotopy

equivalence - f :X'- ,Y the group Gr(X) is mapped by Ä to GJY) (see [9]) ,
X = Y  x S '  i m p l i e s  n  1  ( X ) : G x Z w i t h V C G I X ) . I t  r e m a i n s  t o  p r o v e  t h e  o t h e r  i m -

p l i ca t ion .  Le t  w:Sr 'X  represent  the  genera tor  o f  Z .  Because o f  ZCGIX)  there

i s  a  h o m o t o p y  h : X x I - X  w i t h  f t o - h t : I D  s u c h  t h a t  h ( x , ? )  i s  w o e  f o r  t h e  o b -

v i o u s  i d e n t i f i c a t i o n  e : 1 - S l .  T h i s  i n d u c e s  a  m a p  g : X  x S l - X  w i t h  E ( * , ? ) : w
and g(? ,e(0) ) : IDx .  Le t  q :X 'X  be  the  cover ing  o f  X  w i th  Q*(n  r (X) ) :G.  Then

the  compos i t ion  XxSt  
qx tD,XxSt -€-X 

is  a  weak homotopy  equ iva lence o f

CW-complexes since we have f tJXx St)  :  nJX)x 7tr(S'  )  :  G xZ: nJX) and

f t , ( X x S l :  f t , ( X ) x n , ( S t ) : n n ( X )  f o r  n > 1 .  H e n c e  X x S r  a n d  X  a r e  h o m o t o p y

equivalent. tr

Def in i t ion 4.4.  We cal l  a f ibrat ion F-E- l -n untwisted i f  o:nr(E)-- l -F-,Fl*  /s

trivial and orientqble if ctr: nr(B)--,lF,Fl is trivial.

in
to
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Proposition 4.1 implies that p is untwisted if and only if p is orientable and
Gt@):nt(F).  A G-pr incipal  bundle for  a connected topological  group is an un-
twisted fibration.

5. Chain complexes with a twist

In this section we explain how the chain homotopy representation of a fibration
defined in Section I or [ l2, pp.4,5] can be read off from the fibre and the orienta-
tion data. This leads to the notion of a chain complex with a twist. It is useful if
one studies the algebraic transfer for group rings.

Now we set some notations we will use for the rest of the paper. Let F --+ E 
p , B

be a fibration of connected spaces and base points ee E and b:p(e), and
F:p r1ö;.  We wri te f  : f t : (E,e) and. n: f t t (B,b) and A:kernel(p*:  f  - -+ n).  Hence
we get an exact sequence l - - / - f  P* r7t--+1. The inclusion FCE def ines an
epimorphism ö : n 1(F, e) - a . The corresponding covering is denoted by
q : (F, c) + (F, e).

The transport of the pointed fibre along loops in E yields a homomorphism
o: f  - ' [ ,F ,F ] * .  For  we f  choose a  representa t ive  s (w) :  (F ,e ) - - (F ,e )  o f  o (w) .

I f  c ( w ) : a ' a  i s  t h e  h o m o m o r p h i s m  d - w d w - l  w e  g e t  ä " s ( w ) * : c ( w ) o ö .
Hence there exists a unique lift L(w) : (F, c)-, (F,e) which is a c(w)-equivariant map.
This defines a free c(w)-equivariant homotopy class tL(w)l of c(w)-maps F--F. tt
depends only on w e f  and not on the choice of  s(w).  l f  t (d) :  A - /  is  the c(d\-
equivar iant  map x-dx,  Proposi t ion 4.1(c) impl ies

( i )  L(d) =,rat  l (d)  f  or  d e A,

(i i) L (wt )  "  L (w)=c(* , . * .y  L (w1.  wr )  fo r  w,  ,  w2e f  .

We can think of the collection {lt(w)ll w e f } as an extension of the / -operation
to a f-operation up to homotopy. This leads to the following definit ion:

Le t  H be  a  normal  subgroup o f  G and c (d :H-Hbe h-shs- land Abe a  com-
mutative ring with unit. For heH the left multiplication with /z is denotedby t(h).

D e f i n i t i o n S . l . A G - t w i s t L f o r a n H - c h a i n c o m p l e x C i s a c o l l e c t i o n { t z ( g ) l  l g e C }
of c(g)-chain-maps C-C with

( i )

( i i  )

L(h) =,161(h) for  h e H,

L ( S ) "  L ( g ) = r ( s , . d L ( g t . g )  f o r  9 1  , g z e  G .

A morphism [/] : (C, L)--'(D, M) of AH-chain-complexes with a G-twist is a AH-
homotopy class of  AH chain maps _f  :c-- 'D wi th M(do.f=tr)- f  "L(d for  a l l
g  e  G.  We ca l l

to y JPI-- (c2, L' I_!L (cu,

I

( c t ,  L ' )
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exact if there is a choice of representatives i, p and Ij(d for all i  :0,1,2 and g e G

such that the following diagram has exact rows and commutes:

0 --------------) Cr ---: ----+ C0 
P , C2 - 0

..,*,1 .'k)l
0---------------) Ct 

' 
'Co P 'C2-0

Define K|(H - G, A) as the Grothendieck group of the

dominated AH-chain complexes with a G-twist.

The collection {tf(w)l lwef\ above induces a f-twist on

complex C(F, A):  C(F) 8t  A.

category of f initelY

the cellular AA-chain

Definit ion 5.2. Define Ip] e K$(A - f, A) as the class of

(c(F, A), \ lc(L(w), A)l I w e r)).

Given a AH-chain complex with a G-twist (C, L), we get a chain representation

(AG @an C, V) with

V :  AIG /  Hl  - '  IAG @au G, AG $au Cl\a

sending gH to the homotopy class of

A G S a n C '  A G S a u  C  I  @ x - - g @  L ( S - t X t ) '

This yields a homomorPhism

A : K$(H - G, A) -- ' K|(A\G / Hl - AG)'

One easi ly checks, using U2, pp-20,21),

Proposition 5.3. The homomorphism A: K$(A - f, A)-'K|(An - AI-) sends

[p ]e  K3@-� r ,A)  o f  Def in i t ion  5 .2  to  Ide  K$(An-AD o f  Def in i t ion  r . l .

If one studies the algebraic transfer of a fibration it is often more convenient to

work wi th Kj( /  - � f ,A) than with KI(AT-Af) .  The main advantage of  the ap-

proach using chain homotopy representations is that it can be used for arbitrary

rings and not onlY for group rings.

Now we state some definit ions and propositions concerning chain complexes with

a twist. We omit the proofs because they are very similar to the one of Section 2

and a detai led t reatment can be found in [11] .

Definit ion 5.4. Let E, be the pairing which makes the following diagram com-

muta t ive  fo r  n :0 ,  1 :

It'(c) 
j
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K3@ - G, A)g K,(A

l ,  - ,o

K)rerc/Ht- ^L8 K,

tG/Hl) 8' , o,rl.,

I I D

(AIG/H)) ' , *,1O",

Proposition 5.3 implies for a fibration p that lpl@,? is the algebraic transfer px
o f  Def in i t ion  l . l .

Let Ks(H - G, A) be the Grothendieck grou p of AG-modules whose restriction
to AH possesses a finitely generated projective AH-resolution. The tensorproduct
over A together wi th the diagonal  act ion induces a pair ing @o:Ko(H-G,A)g
K,(AIG/Hl)-nK,(AG). Given an AG-module M and a finitely generated projec-
tive AH-tesolution P of its restriction to AH, let L be the G-twist on p uniquely
defined by the property that Ho(L(g)) is left multiplication with g on M. We get a
homomorphism j : Ks(H - G, A) -, K|(H - G, A) mapping [M] to Ip, Ll.

Proposition 5.5. (a) We hsve O, " (l g ID) : @.q.
(b) Let (C, L) be q AH-chain complex with a G-twist such thst each H,(C)

regarded as AH-module possesses a finitety generated projective AH-resolution.
Then j mops I (- l) ' tH,(C)l e Ks(H - G, A) to [C, Ll e Kfi(H _ G, A).

Let K be a normal subgroup of H and G. Given a AH-chain complex C with a
G-twist z we get a G/K-twist L on the A[H/Kl-chain complex AIH/K]@,qac by
L@x) : AIH/KI @tn C --+ AIH/KI @au c sending hK @ x to she-t x 8.1tslt.i
This y ie lds a homomorphism q(K):  K$(H -  G, A)-- 'K|(H/K - .  G/K,.4) and cor_
responds to dividing out a K-operation in geometry.

Proposition 5.6. Let pr4:K,(AG)- K,(AlG/Kl) be induced from the projection.
Then prx o 8r:  8r  "  @(K) X ID).

Given a homomorphism -f : A-B of commutative rings with unit, we get a change
of ring homomorphisms for K,(AG) and Ki(H-G,A), always denoted by f*. lf
B is a flat A-module we get also f*for Ko(H-G,A). All the constructions above
are compatible with change of rings provided that f* is defined.

6. Transfer and representation theory

In this section we want to relate x|(n - G, A) and the algebraic transfer to the
representation ring RepT(G) and its operation on the K-theory of AG. The
representation ring Repr(G) is the Grothendieck group of AG-modules which are
finitely generated and projective over A. We make the following assumption:
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The trivial AH-module A possesses a finitely generated projective
AH-resolution. (*)

Then we can de f ine  i :  RepT(G)-Ko(H-G,A)  bv  IMI - - [M] .  Le t  k :  Repa(G)-
Kö(H - G, A) be the composition i o i. The tensor-product over A together with the
diagonal  act ion induces Ea: Repr(G)O K,(AG)- K,(AG).  Under the assump_
tion (*) the AG-module AIG/Hl has a finitely generated projective,4G-resolution.
Let trf : K,(AIG/Hl)-' K,(AG) be the transfer map defined by restriction with
AG - AIG/H] in [22,  p.  I  I  l ] .  proposi t ion 5.5 impl ies

Proposition 6.1. Assume thot (x) hotds. Then
(a) The following diagrom commutes:

Repa(G)g  K, (A1G/H) )  
IDOt r r ,  

Rep.q(c )6 l  K , (AG)
I I

l k 6 r D  l a ,
IJ . ' . Y

K3@ - G, A)@ K,(AIG/HI)  
- '  

,  K,(AG)

@) r"f (C, L) is a AH-chain complex with q G-twist such that H,(C) is finitely
generated and project ive over A, we get k(1,(-D?IHr(C)D:[C,L] .

Let nep)1G) be the Grothendieck group of ZG-modules which are finitely
generated as abel ian groups. Def ine e:Repv(G)-Rep2(G) by [M)- lM].  Then e
is an isomorphism. An inverse e- l is  g iven by the fol lowing construct ion [2] ,  p.
8901: Given aZG-module M which is f initely generated over Z, choose an exacr se-
quence of ZG-modules 0-Fr'Fo- Jlt[---+0 such that ^F6 and F, are finitely gener_
ated and free as abel ian groups. Def ine e- | {Ml) : [F0] - lFr l .  Let  i , :Rep,n(G)_,
Ko(H - G,Z) be given bV tMl-- lM) and k,: Rep)(G )- Kt(H _ G,Z) by j o i, pro_
vided that (*)  holds for  A:2.  Then we eet

Proposition 6.2. (a) The map e:Repv(G)-Rep!(G) is an isomorphism with
i ' o e : i A n d  k , o e : k .

@) r"f (C, L) is a ZH-chain comptex with a G-twist such that H,,(C) is finitety
generated over Z and (x)  is  val id,  then k,( I  ( - l ) , \H,(C) l ) : [C,L] .

we apply this to a fibration F- E - B using the notation
a normal subgroup of a and f. The f-twist L onF induces
H,(F/K,,4). Denote by pr: f --,I-/K the projection.

of  Sect ion 5.  Let  K be
a A[f/K]-structure on

Theorem 6.3. (a) Assume that H,(F/K,A) has a finitety generated projec-
tive AIA/Kl-resolution for all n. Then q(K): K$(Z - f, A)=, KtU/K _ f/K, A)
sends tpl to the image of I  (-I) , [H,(F/K,A)] under j :K',(A/K_ f/K,A)-

I

t
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KiU / K - f /K, A). The composition prx o p*: Kn(An)- K,(AI| /Kl) is given by

E (-l) ' [H,(F/K,A)] in Ko(A/K-f/K,A) and the pairing @a.
(b) Assume that (x) holdsfor A/K and A:Zand that H,(F/K) isfinitely gener-

ated over Z. Then q(K): K[(A - f,7)-- K|(A/K - f /K,Z) sends [p] to the image of

I (- l) ' \H,,(F/K)l under k': Rep!( f/n--, K|U/K - f/K,Z). The composition
prxo px: Kn(Zr)- K,(Zlf/Kl) is given by the image o"f l, (-1)'IH,(F/K\l under
e-r  :  Rep!(r /K)-Repv( l - /K) qnd the pair ing @u:Rep7(r/K)8K,(z l r /Kl)-
K,,(Zlf/KD and the transfer trf : K,(Lrc)- K,(ZII-/Kl).

Theorem 6.3 was already proved in [4,15] using spectral sequences. We get a
computat ion of  pxo p* f rom i t .

Corollary 6.4. The transport of the fibre o):n---rIF,Fl defines q Zn-structure on
H*(F).  Then p*"p*:K,(An)-Kn(An) is given by the image o"f  E (-1) ' [H,(F) l

under Rep)(z) 
e ' > RepT(z) 4 Repa (n) for -f :Z--' A and the pairing 8a.

As an i l lustration we consider the case that the fibre is a finitely dominated
Eilenberg-Maclane-space and n1(F)- nt(E) injective. The cellular chain complex
of the universal covering is a finitely generated projective resolution of Z over
ZI1(F):ZA. Hence (x)  holds and by Theorem 6.3 the t ransfer p* is just  the
classical transfer trf : Kr(Zn\- Kr(Zf).

For a finite group G the ring QG is semi-simple. Proposition 5.5 implies

Proposition 6.5. Let G be a finite group with q normql subgroup H. Assume either
H : { l }  o n d  A : Z  o r  A : Q .  T h e n  k : R e p a ( G ) ' K 3 @ - G , A )  i s  a n  i s o m o r p h i s m
and the following diagram commutes:

Rep,q (G ) I K,(A\G / Hl) 
8' 

'  K,(AG)
I
l l

i l r  lks  
ID 

| to
l s

K3@ - G, A)@ K,(A\G/H)) --------, K,(AG)

Representations of f inite groups with rational coefficients are uniquely deter-
mined by their characters. Let F-ELn be a fibration with finitely dominated
fibre and connected E and B. If 1- is f inite, F is also a finitely dominated CW-
complex.  We have def ined [L(w):F--- ,F1 for wef at  the beginning of  Sect ion 5.
Denote by A the Lefschetz number of a self-map of a finite CW-complex.

Theorem 6.6. Let f be finite. Then the isomorphism e-t : K[(A - f, Q)- Repg(1-)
sends lpl to the representation with character w-A(L(w)) for wef .

1 5 9

I

One easily checks that the following statements are equivalent for f inite /-:
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( i )  lp l  e  K |U -  r ,Q)  i s  zero ;
( l i )  A(L(w)):O for al l  w e I - ;

( i i i )  p* :Ks(Qrc) -Ko(Qf )  i s  zero ;
( i v )  p* :  K t (Qn) -  K . (QI - )  i s  zero .

7. Orientable fibrations

Now we want to analyse the transfer of an orientable fibration. We will point out
that this can be described easily if the fibre is a finite CW-complex with non-
vanishing Euler character ist ic,  ancl  what meaning the Sl- t ransfer has.

Let F-E P,B be a f ibrat ion of  connected spaces F, E and B with ^F a f in i te ly
dominated CW-complex.  We make use of  the notat ion introduced in Sect ion 5,  e.g.
I - : f t t (E) and f t : f t l (B).  We always assume in th is sect ion that p is or ientable
(Def in i t ion 4.4).  Let  A be a commutat ive r ing wi th uni t .  We get f rom Corol lary 6.4

Theorem 7.1. The composition pooo p*: K,,(An)- K,(An) is multiplication with the
Euler characteristic X(F).

In Section 5 we have defined for w e f a c(w)-equivariant homotopy class of c(rv)-
maps L(w) :F-F .  S ince  u : f t - - , l .F ,F l  i s  t r i v ia l  we can regard  the  t ranspor t  o f  the
pointed f ibre as a homomorphism o :  I -  -  image(p :  n1(F)-- , lF,  Fl*  )  and have
o(A) : image(C)  because o f  Propos i t ion  4 .1 .  Hence L(w) :F-F  is  the  le f t  mu l t l -
plication with d for some d e A with o(d) : o(w) so that the f-twist on C(F) is given
by the /-operat ion.

Wri te A0 for ä(Gr(F )) .  Now e :  f t r (F) -  [F,  F]-  induces an isomorphism

Q:  t r r@) /Gt (F) - image(o) ,  o :  f  - - image(o)  an  ep imorph ism 6 :  I - /As- image(o)
and ä  :  r (F) -  A  an  isomorph ism ä :  n t (F) /Gr (F) -  A /A0.  Then an  isomorph ism
@ : l - / A s - - A / A o x z  i s  g i v e n  b y  ( ä " p  t o o ) x p * . W e  g e t  a  f / r J ( r - t w i s t  i  o n  t h e
AIA/A,- l -chain complex C(F/Ao, A) bv assuming that / (x)  is  the lef t  mult ip l icat ion
w i t h  ä " 0  r o a ( x )  f o r  x e f / A 1 1 .  O n e  e a s i l y  c h e c k s  t h a t  q ( A 0 ) : K [ ( A - f , A ) ' -
XttZ /Ao- f /A0,.4) sends [p] to [C(F/A,, A), L| Let pr : A- A /A11be the projection.
Then the homomorphism TrcGtt , , , i l ,Lt :  K,(An)-  Kn(A[f /Ad) agrees with the one
given by pr*.  ä*(w-(4)\  e Kr,(AlA/A;D and the pair ing Ko(AlA/A;D8 K,,(Att) -9a
K,(AIA/A,x z l )  

(D* '  
,  K,(AIf /A0l) .  l f  q:  I -  -  f /Ao is the project ion,  Proposi t ion

5.6 impl ies

Theorem 7.2. The composition qao px: Kn(Att)- Kr(AV/A,D is the homomorpht_sm
defined by pr*" äx(w(F)) e K1(A\A/A1D and rhe pairing Ko(AIA/A1D@K,(An)-9:t,

K , ( A [ A  / A o x  z ] ) ' P i ' ,  K , ( A I r / A o l ) .

The following corollary of Theorem 7.2 and Proposition 4.2(b) was already
proved in [7] :

t
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Corof lary 7.3. Let F - E -l-- n be an orientable fibration of connected spaces.
Assume that F is a finite CW-complex with Euler cherqcteristic y(F) *0. Then there
/s an isomorphism Q:f -nr(F)xn such that for the corresponding section
.s :z -+ l -  o " f  pa the  t rans fer  p* :K , , (An) -K, , (A f ) ,s  g iven  by  X(F) .sx .

Now we take a look at  the Sl- t ransfer.
We denoteby  2 , , ,  the  cyc l i c  g roup o f  o rder  m fo r  t f l :1 ,2 ,3 , . . .  and  by  Zothe  in -

finite cyclic group Z. Let t e2,,, be the generator represented by I eZ. Given a
group C with a subgroup Z* of  i ts  center,  let  S(2, , , -  G, A) 9 Kr: ,12, , , -  G, A) be the
class of  the one-dimensional  AZ,n-chain compl ex Av,, ,  ' -  t  ,  AZ^ with the t r iv ia l
G-twist  L,  i .e.  L(g):  [ ID] for  a l l  g e G. We denote by ß(Z,n- G, A):  K, , (A[G/2, , ,1)-- ,
K, , (AG) the map ktz: , , ,  G,A).  Sometimes we wri te S resp. B for S(Z,r-G,A) resp.
ß(2 , , , -G,A) .One shou ld  no t ice  tha t  fo r  an  or ien tab le  S l - f ib ra t ion  Sr -  E  P,B

the  c lass  S(Zr , -G,A)  i s  jus t  [p l ,  i f  teZ , , , :A  cor responds to  the  image o f
[ I D  :  S r  * S t  l .  n r ( S r  )  u n d e r  ä .

The transfer of  an Sr- f ibrat ion was descr ibed algebraical ly for  K6 in [17]  and K1
in [16] by writ ing down matrices representing elements in the algebraic K-groups.
These homomorphisms agree with the maps p. A detailed study of 13 f or f inite I- can
be found in  [9 ] .

A lot  of  our resul ts are consequences of  the fo l lowing lemma:

Lemma 7.4. Let 2,,, be central in G.
(a) I " f  Z, , , ) lG,Gl is t r iv ia l ,  S(Z,u-G,A) and p(2, , , -G,A) are zero.
@) f_f m is not zero and invertible in A, S(2,,-G,A) and p(2,,,-G,A) are zero.
(c) I"f 2,,, is infinite, ß(2,,,-G,A) is the transfer trf :K,(A[G/2,,,))-- 'K,{AG)

deJ'ined by restriction in 122, pp. I I ll.

P roo f .  (a )  Because o f  2 , , ) [G,G]  :  { l }  the  pro jec t ion  pr :G -G/ IG,Gl  i s  in jec t i ve
onz,, ,  so that  we can also regardz, , ,  as a subgroup of  G/[G,G].  Restr ict ion wi th
pr def ines a homomorphism pr* :  K[(2, , ,  -  G / [G, Gl,  A) -  K3(2, , ,  -  G, A).  Construct
an  ep imorph ism o f  abe l ian  groups  e tG ' - -+G/ [G:G]  w i th  a  subgroup ZcG such
that the kernel  K of  q is contained in Z and q maps I  eZ to t  eZ,r .  In Sect ion 5
rve have def ined homomorphisms q(K):  K[(Z- G' ,  A)-  Kt t (Z, , , -  G/[G,Gl,  A) and
j : K , l ( Z - G ' , A ) n K i ( Z - G ' , A ) .  C h o o s e  a  h o m o m o r p h i s m  f  : G ' - - Z  s u c h  t h a t
" f l z ,Z-Z  is  an  in jec t ion .  I f  Ky(Z-2 ,  A)  cor responds to  Z  as  a  subgroup o f  i t se l f ,
res t r i c t ion  w i th  /  de f ines  a  homomorph ism fx :K , (Z-Z ,A) -Ko(Z-G ' , ,4 ) .  The
composi t ion pr* o q(K) "  j  " . f*  :  Ks(V-2,  A)-  K3(2, , ,  -  G, A) sends the class [A]  of
t h e  t r i v i a l  A Z - m o d u l e  A  t o  S ( 2 , , , - G , A ) . S i n c e  0 n A Z  

' - t , A Z - A - 0  
i s  e x a c t ,

[ ,4 ]  van ishes  in  Ko(Z-Z ,A) .
(b) I f  z is invert ib le in A, the t r iv ia l  AL,, , -module A is a direct  summand in

42, , , .  Propos i t ion  5 .5  imp l ies  S(2 , , , -  G,  A) :  j ( [A ]  -  [ ,4 ] )  :0 .
(c) Proposition 5.5 implies for the trivial AL,,,-module A ; S(2,,, - G, 41 :

j(AD. Ll
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In the following theorem we decompose the transfer into the transfer of another
orientable fibration and an Sr-fibration. Then the lemma above gives us vanishing
theorems for the transfer.

Let Hrand Hl be normal subgroups of  G such that h0.hr:ht .ho is val id for  a l l
hoeH,  and h1e11.  We get  a  homomorph ism pr :HsXHr- -+G send in l  ho ,h ,  to
hu'  h ' .  I ts image H is a normal subgroup of  G. Let (C z) resp. (D, M) be an AHo-
resp. AHt-chain complex wi th a G-twist .  We def ine an AtH,x11, l -structure on
C 8,c D in the obvious way. We can equip the AH-chain com plex AH @, (C I a D)
with a G-twist  N by N(g):  h@x9y--shs- '  gz(gx")  @pt(dD. This y ie lds a
pairing

P: K$(H,-  G, A)OK6(11r -  G, A)- .  K|(H -  G, A).

Now assume that nJF) contains subgroups l l and Z with nlF):HxZ and
Ze Gr(F).  I f  K is the kernel  of  ä lH:H-ö(H) and F the universal  cover ing of  F,
let F'be Flx regarded as d(/I)-space. Given w e I-, define L'(w): C(F', A)- c(F', A)
as the left multiplication with ä lIt " pr r(x) for any x e n{F) with o(w) : p(x). This
yields a 1--twist L' on the AIö@)l-chain complex c(F', A). If Fu is the
ö(H)/ö(H)oö(z)-space F'/ö(H)aö(z), define a f/o(z)-twist L" on c(F',A)
analogously.

The following theorem shows the importance of the sl-transfer:

Theorem 7.5. Let p be orientable and ussume nr(F):HxZ with Ze GIF).
(a) The pairing defined sbove

P : Ki'id@) - r, A) I K|(@(Z) - r, A)--' K|U - r, A)

sends [C(F', A), L'18 S(ä(Z) - f, A) to lpl.
@) ff ö(Z)O[f,f] is trivial, Ipl and p* vanish.
(c) The algebraic transfer p* is the composition o-f ß:K,(AV/ö(Z)l)-K,(AI-)

ctnd Tp1r.,,A), L"t: Kn(An)- Kn(AIf/ö(Z)l).

Proof. (a) is a direct consequence of Proposition 4.1, Proposition 4.3 and Definit ion
5.2. Then (b) follows from Lemma 7.4(a). We wil l prove (c) only in the K,-case
since the Ke-case can be proved similarly using the instant Wall obstruction in [23]
or can be der ived from the K,-case using Theorem 3.1(c).

The main problem lies in the fact that in the definit ion of the algebraic transfer
p*:  Kt(An) 'Kt(AI-)  e lements in K1 (An) are represented by automorphisms of
modules and in Kt(Af) by the torsion t of a self-chain equivalence defined in Sec-
tion 1. This causes diff iculties in writ ing down the composition of two algebraic
transfer maps.

Let a be an automorphism of @oAz represent ing [a leKr(An).Since ä(Z)
is central  in f  by Proposi t ion 4.2(a),  the homomorphism pr:ö(H)xö(z)-- ,x
x, ! -x 'y i? wel l  def ined. Let S be the one-dimensional  Alö(Z) l -chain complex
Alö(Z) l  t - t ,AIö(Z)I  

for  I  as ä(1) for  the generator leZ. There exists a natural

I
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isomorphisrn of  ,A/--chain complexes between AI-@aoAAOzp, (C(F' ,1)Oz S)

and (AI-8aWu11C(F',,4))Ea1;117y1 S. By construction there is a self-chain map

f of  the Al--chain complex @rAf8A@@)tC(F' ,A) such that fS,qvt t \ IDs
and Atf /ö@)l@a"f  are sel f -equivalences and 716: K1(An) 'K.(AI-)  sends

tal to t(-f @araerr IDs) and Ts1n"), r"1: Kr(An)- KJAV/ö@)I) maps lal to

\AV/ö(Z)l8z/). Hence it suffices to prove:

Let Zo, be a cyclic subgroup with generator / of the center of G. Let f : D'D be

an AG-chain map such that .f@,q2,,,ID5 is an AG-self-equivalence of D$ou,,,S

and AIG/Z*l}ac-f  an AIG/Z^l-chain equivalence of  AIG/Z*l8ac D. Then

ß:  K . (A [G/Z^ ] ) 'Kr  @G) sends  t (A lc /Z ,n l8ac" i l  to  t ( - f  @az, , IDs) .  Le t  C be

the mapping cone of / with differential c. Then Cone(/@AZ,,ID5) is isomorphic

to the t"'::l:-,ä:.':'^:'":ril,u 
c*-,.,

|  - c  u l

l l - l  c )

Choose a chain contraction of E

I  u  r r - l
|  | : C *  r @ C * - ' C , o @ C * * r .
l w  x l

W e  g e t  t h e  r e l a t i o n s  c o  u + u o c : u ( t -  l ) - I D  a n d  c o u : u o c  s o  t h a t  a n o t h e r  c h a i n

contraction ft is given by

f u u l

L o  - , )
Then t(_f  $az, , , ID5) is represented by the automorphism (e+h) lEodd-Eu.n of
r  - E  - f lLoctd- leven-,r loCr wi th e as the di f ferent ia l  of  E.  This automorphism is con-

jugated to the automorphism

I  u  - c + u f
I
l c - u  t - l  J

of Coa,r @ C.u.n. Because of Co,ra: C.u.n: @lo Di we can represent /(/@.qz,,, lDs)

also by

l  r - u  1 -  I  I
I  l :Co. r , re  C.u .nrC.u"n@C"ao.
L  - u  c - u )

Since AIG/V,, l$�aa (-rz)  is  a chain contract ion of

AIG /  Z,nl  @ ac C = Cone (AlG /  Z  ̂ l  @ ao " f  ) ,

the torsion t(AlG/Z,,l}ao"D is given by

AIG /  Z * l  I  ac G -  u)  :  AIG /  2, , ]  @ a c Co6o -  AIG /  Z, , l  I  e c C.u.n .

The map ( l  + u2) r  C.u.n -  C.u"n is an automorphism represent ing zero in K1@G).
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The composition of

and

is the

This

Corollary 7.6. Assume thqt

and ZC kernel(z r  (F) -  f  ) .

[ 
-(t - t ' l  

I codd + codo O c"u.n
I  c - u  - l

identity on Co46. Hence P(t(AlG/Z*l$ac"f

|  ' - ,  t - , t  l ,
L - t t  + u 2 1 - t o 1 r  ( l + u 2 )  ' o ( t - u ) )

implies P(t(AlG/Z^l@ao f l) :  t( f  8at, IDs)'

( - ( l  +  uz)  
I  o  u ,  (1  +  uz) - t  "  ( t -  u) )  ;  Coa6@ C"u.n-  Codo

)) is representated bY

Coao @ C.u.n - C.u.n @ Coao'

tr

nlF) contains subgroups Z- and H with nlF):Lx H

Then lpl and px vanish for orientable p'

8. Untwisted fibrations

In this section we regard a fibration F-- E -l- 'B of connected spaces with F a

finitely dominated connected CW-complex. We always suppose p to be untwisted

(Def in i t ion 4.4) and use the notat ion of  Sect ion 5,  e.9.  I - : f t t  (E) and n:nt(B) '

The following theorem is a consequence of Theorem 7'5' lt shows that the

algebraic transfer of an untwisted fibration can be written as a composition of

sr-transfers and the transfer of an untwisted fibration whose fibre has a finite fun-

danrental group.

Theorem 8.1.  Let  p be untwisted .wr i te nlF):  HtxHzx " 'xH,"G f2:  ! ,=-( , '
I-f K is the kernel o-f ölC:C-ä(G) and F the universal covering' let F'be F/K

regarded as ö(G):G/K-spqce. Denote by F' the ö(G)/ö(H.x "'x H,)nä(G)-

space F' /ö(Htx. . .x H,)nä(G).  Let  I  be the t r iv ia l  twist .  Then

(a) The pairing defined in Section 7

P : Klril@r ) - 4 A) @''' 8,K6 (ä (H,) - r, A)O 1(ö (ö(G ) - r' A) - Kitt - r' A)

sends

s(ö(Hr ) - 4 A) @"' I S(ä( H,) - r, A) 8 [C(F" A)' r\

t o l p l  . , , - , ^ . ^ ^ ^ . ^ ^ ^ ,
@) rf ß i : K,(AV/ ö(H \x ... x H i)D 

-- K n(AIr/ ö(H tx' " x H i - r)l) is the homomor -

ph ism ß(ö (Htx  " ' x  H i ) /ö (H t t  " " t  H i - ) -  f /ö (H tx  " ' x  H i - � ' ) 'A )  fo r  i : l ' 2 '  " ' ' r

and q*: Kn(An)-- Kn(AV/ö(Htx "' x Hr)l) is Tg1n",.a1,t1, then px: Kn(An)' K'(Af\

is the comPosit ion 81" ß2"'ßro Q*'

N o w w e m a k e s o m e c o m p u t a t i o n s o f P x o P x a n d p * o p * ' l f n 1 ( F ) i s t r i v i a l ' t h e n
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p* is,  because of  Theorem 7 .1,  g iven bV X(F).  p i t  :  K,(An)-  K,(Af ) ,  so i t  suf f ices
t o  t r e a t  n r ( F ) +  { l }  o n l y .

Theorem 8.2. Assutn€ Tt1(F ) + { l }. Then
(a) x(F) : g;

(b) p* o px:  K,(At)-  K,(An) is zero;
@) f"f F is q finite CW-complex, then p*op*:K,(Af)-,K,(AI-) vanishes;
@) f"f A is a field or A is finite or A is the ring of p-adic integers 2, for an!

prime, p* o px is zero;
(e) The composition p* o p* is given by _f*o ä.-(w(F)) e K;(AA) _for f * as the

change of rings with f :Z- A and the pairing lat: Ky(AA)8 K,t(Af)-- K,,(AI-).

Proof.  (a)  Proposi t ion 4.2(c).
(b )  Theorem 7 .1 .
(c) Follows from (e).
(d) Because of (e), it suffices to check that f,,oäx(w(F)) is zero. If tt1(F) is in-

f in i te,  Proposi t ion 4.3 impl ies w(F):9.  Therefore we have only to prove that
fa:Ky(ZA)-Ko(AA) is zero for  f in i te A. As for any f ie ld,  A the map Z-A fac-
to r izes  over  z ' -+Q or  z -zo ,  we can assume A:Q,  A :2por  A  f in i te .  Then AA
is semi- local  and Ko(AA) a f ree abel ian group 124, p.281. But i t  fo l lows from [25]
that K,(ZA) is finite.

(e) One should notice that A is central in 1- so that @a^ is well defined. In this
proof we work with [p] e KI(An - Af) defined by chain representations in Defini-
t ion  I  . l . I f  A [p* ]  :  A f  - ,  Azr  i s  induced by  px :  f  -  n , i t  su f f i ces  to  compute  the  image
of  lp )  under  A lp* lx :K I (Av-AI - ) - - ,K | (A f  - f )  (see  l t2 ,  p .  t5 ] ) .  Ler  F  be
the covering of F with A as group of deck transformations. Choose a finitely
generated projective ZA-chain complex P equivalent to C(F). Let L be the f-twist
on  Af@roP wi th  L (w) :A I -@ooP-- rA I -9 ,qzP D@x--+Dl4 l8x  fo r  wer -  and
similarly L' f or AI- 8u CG). We have defined j : Ks(Af - Af)-. K|(Af - Af)
in Sect ion 2.  using the addi t ive relat ion in K3 one gets Alp* l*( [p]) :
IAI- @nt C(F), L'� l : lAf ga.t p, Ll: j( I (- l),IAf @az p,D. Since ä*(ru(F)) e
Ky(za) is I  ( - l ) ' [P; ,  an appl icat ion of  Theorem 2.1 f in ishes the proof.  t r

The next theorem contains some conditions implying that p* is zero.

Theorem 8.3. Let p be untwisted.

@) r"f one of the following conditions is fulfilled, p*: K,(An)- K,(AI-) vanishes
for n:0,  I  and any A.

(i) There is a direct summand Z in n{F) with ö(Z)n tI ,1-l : {0}.
(t1) rkv(A n t4 1- l) < rkv(A).

( i i i )  z1(F)  :  Z 'x  G fo r  G *  l  und  ö(Z '1 :  X .
(iv) zr is finite and f infinite.

@) f-f ft ,s finite qnd F o finite CW-complex with nJF)*{1}, then
p*:  Ko(Zn)-  K6(Zf)  rs zero.
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Proof.  (a)  ( i )  Theorem 8.1 and Lemma7.4.
(11) rkv(A n t|, 1- l) < rkv(A) implies condition (i).

( i i i )  In the not ion of  Theorem 8.1(b) i t  suf f ices to show.that IC(F",A), l l ,e
Kö({  l }  -  4 A) vanishes. The composi t ion Ko({  1} -  n,Z)-r- .K6({  I  \  -  n,Z)r5
Kö^({  l }  -  , ,  A) f  or  f  :  Z- A sends X(F")  .  [Zl  to IC(F",  A), l l .  Because of  Proposi-
t ion  4 .3  the  CW-complex  F"  i s  f in i te ly  dominated  w i th  f t JF" ) :Gr (F" ) :G+ { I } .
Proposi t ion 4.2 impl ies X(F") :0.

(iv) Since / is central and z finite, I/ i l � ,f) is f inite. Hence (iv)=(ii).
(b) Because of Theorem 8.2(c) and (a) above it suffices to prove that

px: Ko(ZI-)- Ks(Zn) is surjective for f inite ,|-. This follows from the Mayer-
Vietoris sequence [24, p. 162l of the Cartesian square

ZT Zn

I
J

Zf /(Z/)---------------- Z ztn

and the facts that Ks(Zz) is finite l25l and Ks(21,r zr) is a free abelian group, as the
finite ring Z x n is semi-local 124, p. 281. tr

Now we examine the behaviour of  Ip]  for  change of  r ings f  :Z--A.

Theorem 8.4. Denote by At the subgroup of torsion elements in A. I-f A' is not {l}
and the order lAt l  is  invert ib le in A or i f  AI  is  { l }  and ö:n1(F)-  A no isomor-
phism, p*: Kn(An)- Kn(Af) vanishes.

Proof .  I f  / t i s  {1 }  and ä  no  isomorph ism,  lp l :0  fo l lows f rom Theorem 8 .3(a) ( i i i ) .
For At+{ l }  the map Z--+A factor izes through Z| /At l .  Hence we only have to
prove lp l :0  in  K [ (A  -  f ,  A)  fo r  A '  +  {  I  }  and A:V l l /A ' ] .Then ,4  i s  f la t  over  Z .
In the not ion of  Theorem 8.1(a) for  f in i te G i t  suf f ices to check that S(ä(Hi)- f ,A)
or lC(F' ,A), l l  vanishes. I f  G is t r iv ia l ,  one of  the ö(H) must be f in i te and
S(ä(1//) - f, A) is zero because of Lemma 7 .a(\. Assume that G is a finite non-

trivial group. Proposition 4.3 implies that F/G:F'/ö(G) is a finitely dominated
CW-complex with nrlFtCl: G{F/G) -- G + { 1} so that y(F'/ö(G)) and hence

X(F')  is  zero because of  Proposi t ion a.2@). As lä(G)l  is  invert ib le in A the tr iv ia l
Alö(G)l-module A is a direct  summand in Alö(G)] .  The homology Hn(F')  is  f in i te-
ly generated as abelian group and ä(G) acts trivially. The homomorphism
j :K6@(G)- f ,A) -Kö- (ä(G) - | : , ,4 )  sends  X(F ' ) . [ ,4 ]  fo r  the  t r i v ia l  A / - -modu le  A
to [C(F') ,  1]  so that  [C(F' ,A), \ ]  is  zero.  f l

Finally we treat the K1-transfer for f inite /-. In the K6-case for f inite ,1- we

already know P*:0 f rom Theorem 8.3(b).
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Theorem 8.5. Let p be untwisted with n(F)+l and r be finite. Then
p*:Kt(An).'Kt(Af) is trivial if lAl is invertibte in A, i_f A isfinite or if A is2,
for any prime.

Proof. If lA I is invertible in A, the result follows
cases AI-- An is a surjection of semi-local rings
sur ject ive [5,  p.  87] .  But Theorem g.2(d) impl ies

The subgroup CLIZD of K, @f) is defined as
K.(QD@ c, KlLpD.

from Theorem 8.4. In the other
s o  t h a t  p x :  K r @ f ) n  K y ( A n )  i s
p *  o  p * - _ . 0 .  I

the kernel of the map K1 (Zf1--,

corollary 8.6. Let p be untwisted with nr(F)+{l} and I- f inite. Then
(a) image (  p*)  c CL r(Z[) ;
@) ff F is f inite, CLr(Zn)Ckernel(p*).

Proof. (a) follows from Theorem 8.5 and the fact that p* is compatible with change
of r ings.

(b) The composi t ion p*op* is zero by Theorem s.2(c).  But pa(cLlzrD:
CL1(ZI)  is  proved in [18,  p.  184].  t r

Theorem 8.7. Let p be untwisted, nJF) infinite and n finite.
@) ff nt(F) is not isomorphic to Z, p* vanishes.
(b) For n{F):z we get p*: x(F). P(a - r,z) with x(F) the Euler characteristic

of the universal covering of F.

Proof. Because of Theorem 8.3 it suffices to treat the K,-transfer for f inite
f .  Decompose nt(F) in ZxG. Theorem 8.1 impl ies that  we can wri te px
as ß(ö(Z) -  r ,Z)o Ttc(p") , t t  for  lC(F') , l l  e Kd(ä( G)/ö(G)Oö(Z) -  r /ö(Z),2).  For
G + | we get from corollary 8.6 cLlz[r/ö(z)])C kernel(p (ö(z) - r,z)) and
i m a g e ( 7 1 6 ' r r ' " l r r ) c c l r ( z l r / ö ( z ) l ) s o t h a t p * i s z e r o . F o r G : { l } w e h a v e F : s t x F
(Proposi t ion 4.3) and hence lp l :X(F).  5(A _ f ,Z) in K[(A _ f ,Z).  I

With this theorem we have computed the algebraic transfer of an untwisted fibra-
tion for f inite n and infinite nt(F) completely. The only non-trivial case is the
K'-transfer of an orientable Sr-fibration with f f inite. This case is extensivelv
studied in [9] .

9. orientable fibrations with a connected compact Lie group as fibre

We want to prove that the transfer p* is zero for an orientable fibration with a
connected compact Lie group G. See also [16, pp. 429,430].

Theorem 9.1. Let GnE-l-n be an orientable fibration.
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