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0. Introduction

The purpose of this paper is to develop a geometric approach to Wall's finiteness
obstruction. We will do this for equivariant CW-complexes. The main advantage
will be that we can derive all the formal properties of the equivariant finiteness
obstruction easily from this geometric description. Namely, the obstruction
property, homotopy invariance, the sum and product formulas, and the restric-
tion formula can be stated and proved in a simple manner. Also a characteriza-
tion of the finiteness obstruction by a universal property is quickly available. This
geometric approach is similar to the treatment of Whitehead torsion by Cohen
in [3] .

In the first section we define a functor WaG from the category of G-spaces to
the category of abelian groups. We assign to a finitely dominated G-CW-complex
X an element ,"(X) eWaG(X) called its finiteness obstruction. The finiteness
obstruction vanishes if and only if X is G-homotopic to a finite G-CW-complex
and satisfies a sum formula and is homotopy invariant.

The notion of a universal functorial additive invariant is introduced in the
second section where its existence and uniqueness are proved. Product and
restriction formulas for the universal additive invariant are obtained by abstract
nonsense.

We define equivariant Euler characteristics in the third section generalizing the
notion of the Euler characteristic of a finite CW-complex.

The goal of the fourth section is to prove that the equivariant Euler
characteristic and finiteness obstruction determine the universal functorial addi-
tive invariant for finite', respectively finitely dominated, G-ClV-complexes.

The fifth section contains some algebraic computations of WaG in terms of
reduced projective class groups of certain integral group rings. In the non-
equivariant case Wall's algebraic approach and our geometric one agree.

Finally, in the sixth section, the results of the second and fourth sections are
used to state an abstract product formula, a restriction formula, and a diagonal
product formula.

We make some remarks about the simple-homotopy approach to the finiteness
obstruction due to Ferry. The treatment by Ferry in [7] is extended by Kwasik
in [1a] to the equivariant case. In $ 6 we construct geometrically an injection
I(Y):  Wf(V)+Who(y "  St)  into the equivar iant  Whitehead group of  Y x St

sending our geometric finiteness obstruction to that of Kwasik.
A compact Lie group is denoted by G.

1. The geometric finiteness obstruction

A G - C W - c o m p l e x  X i s  a  G - s p a c e  w i t h  a  f i l t r a t i o n  A : X - t c X o c . X 1 c . X z c . . .
such that Xn+t is obtained from X^ by attaching equivariant (n + 1)-dimensional
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cells G lH x Dn*t, namely, Xn+t is the G-push-out of

\ . n

2 G IHt x Dn*r <--, 2.G IHt x sn 
u"' a' ' xn'

i e l  
t e r

we equi p X : uX, with the weak topology with respect to the filtration (see

Irrman 
Ltltl] t the n-sketeton or x Td^ q:-!!" "Y:!i:!-^2o!,,,rltr"l:..:11

GlH,x Dn*r.For G: {1} the notion of a G-iw-complex agle:s with the one of

a cw-complex. From now on we write G-complex instead of G-CW-complex'

A G-complex X is finite if x is built from the empty set-by attaching a finite

number of cells. We lail a G-complex X finitely dominate.d rt: is a homotopy

retract of a finite G-comprex, thai is, there exists a finite G-complex Y and

G - m a p s r : Y + x a n d i : - x + Y s u c h t h a t r " i i s G - h o m o t o p i c t o t h e i d e n t i t y :
7 " i : 6 I D '  r , - ^ L ^ -  r t t ^ G  f r n r r r  t h e  e a t e g o r v  o f

The goal of this section is to construct a functor wac from the categott 
:

G-spaces into the category of abelian groups, and an assignment wo associating

to a G-sp ace Xhaving the homotopy tlpe'of u finitely dominated G-complex an

element w"(X) \n WaG(X) such trräi tüä foilowing theorem is valid'

THnonr,vr 1.1. (a) Homotopy inuariance'

(1) If f : X + Y is a homotopy equiualence^of G-sy191t of 
-'-l',homotopy 

Uye o7

a finitely-dominatea C-ri^piex, then f .; W;ä(X) - Wac (Y) sends w" (X)

to wG (Y1.

(11) I f  f  and g: f ,+Y are G-homotopic'  then f *:8*'

(b)obsrruct ionproper?. l tXbeaG-spaceof thehomotopytypeofaf in i te ly
dominated G-complex. Then x ß G-homotopy equiualent to a finite G-complex if

and onlY if wG(X) uanishes'
(c)Addi t iu iQ. I f thefo l lowingdiagramofG-spaceshauingthehomotopytype

of finitely doÄina-ted G-comp^Ii*r, i"s a Gip'sh-out and k a G-cofibration then

w"(X) - jr*(rä(i,)) * ir*(ro(xr)) 
-io*(w"(xo)) j

Xrr&

t \
X , T

x1

f,'
X

Given a G-space Y, we want to define WaG(Y) as the set of equtvalence classes

o f a n e q u i v a l e n c e r e l a t i o n d e f i n e d f o r G - m a p s f : X + Y w i t h X o f . t h e
homotopy ,yp" of a finitely dominated G-compiex' We.ca11 /6: Xo+Y and

fn. Xq+y equfuil-ent, fs-f^: if there exists a commutative diagram

:Y . +
.  t r .

x2

V,
Y

f'

II

such that ir and i2 are homotopy equivalences and is and i, are inclusions of
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subcomplexes for which X1, respectively Xr, is obtained from Xs, respectively Xa,

by attaChing a finite number of cells. One should notice that X1,Xz,Xt have the

homotopy type of a finitely dominated G-complex since the same is true for Xs

and Xaby uss.r-ption. Obviously - is symmetric and reflexive. The main part of

the construction of. (WaG, wG) and the proof of Theorem 1.1. is the verification

that - is transitive.
we will symbolize a diagram 

x^ L Xn+t

f\ y',,
Y

by -, respectively+, if it is commutative and k is the inclusion of a subcomplex

such thai X"*, is obtained from Xn by attaching a finite number of cells,

respectively k is a homotopy equivalence. Hence the diagram defining

.ori..ponds to the sequence c + e = . To prove transitivity we have to show

that a diagram c+<-= c+<-r can be reduced to c+e= without changing

the ends. For this purpose we will introduce some operations we are allowed to

do with diagrams given by a sequence of symbols c, = ' +, e'

(1) = c > c r. The sequence = c stands for

x^ : : - - .xn+t  ,  tn+7 
,  xn+2

Y

lf,f'^*; X',*t- Yis defined by the push-out, one gets c :r by

=+ ) --+ = and ec ) c +. This is analogous to (1).

e+ ) -+ e. Glue the mapping cylinders together.
+ c ) ec+ e and = <- ) + <- =+. Consider the diagram

x^+

Let u be a homotopy inverse to j^. Since i,,*r is an equivariant cofibration' we

can choose a homotopy h: Xna2x I+ Y with hol x^*r: f 'o u and h1: f ,*2. This

yields the commutative diagram:

x^L Xn + f!\ x,*r*Xn+Zx I i- xn +z

(2)
(3)
(4)

t
Y

I
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+ +  ) - - +  a n d  < - < - )  € ,  C  c  )  c  a n d  =  =  )  = .

Now we get using the operations (1) to (5):

c + < - = c + e f

c + < - c = + e =

c + c e + = e =

c e c + < - < - + + e = + =

c c e + e + e + f f

c  + e < - + + e f

c + < - - - ) e =

c + +  < - e  =

c + e f .

(s)

This finishes the proof that - is an equivalence relation. Hence we can define
WaG (Y) as the set of equivalence classes. The topological sum induces an
addition on WaG (Y) by

ffs: Xr+ Yl + If': Xr+ Yl:: [f, + ft: Xo + Xr+ Yl.

The inclusion of the empty set defines a zero element. Given an element

lf : X+ Y], we can construct an inverse element in the following wäy, because X
has the homotopy type of a finitely dominated G-complex.

Choose a finite G-complex Z and G-maps r: Z+X and i: X+Z with
roi:GID. Let C,, respectively C,, be the mapping cylinder of l, respectively r.
Construct  a map F:  Ci+Xwi th FIX: IDx and FIZ:r .  Then an inverse for

[/] is given by the composition

c ,u*c , ' u *F ,  xLv .

Namely, let

g :  C , U  t  C , U *  C i +  X

be an extension of  ID + FuxF: X + CiUxCi+X, and let

h :  Z - + C , U t C , U * C t

be a homotopy equivalence. This yields the following commutative diagram:

X  +  C i U * C , '  ) n * C ,  +  z  e A,c,
"81
, Y

C,U

f

This impl ies that  Vl+V"FUtFl  - fA+ Y]  :0 .  Hence WaG(V) is  an abel ian
group. A G-map f: Y--+Y' induces a homomorphism of abelian groups

f *: Wac(Y)-WaG(Y') by composition. So Wac is a functor from the category
of G-spaces into the category of abelian groups.

I
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DenrNrrroN I.2. Let X be a G-space of the homotopy type of a finitely
dominated G-complex. Define its finiteness obstruction ,"(X)eWaG(X) by the
class of the identity map of X.

Proof of Theorem 1.1. (a) The verification of the homotopy invariance is
trivial.

(b) Obstruction property. Let X be a G-space having the homotopy type of a
finitely dominated G-complex with w"(x) -- 0. Hence there are a G-space Y, a
G-map r: Y+X, and a G-homotopy equivalence Y+Z into a finite G-complex
Z such that Y is obtained from X by attaching finitely many cells and roi: ID is
valid for the inclusion i: X+Y. The mapping cylinder C, is built up from the
mapping cylinder C, by attaching a finite number of cells. Choose a G-homotopy
equivalence g; Ci- Z. Consider the push-out

C , 4  C ,
l l8l 18

Z + Z '

Since g is a G-homotopy equivalence, the same is true for g' (see Whitehead [21,
p.261).Hence X is homotopy equivalent to the finite G-complex Z'.

(c) Additivity. Consider the push-out

Xn+ Xr

l \ ,  l i ,+  \ t
x , T x

Choose a finite G-complex Z and r: Z-->Xo and i: Xo+Z with roi:GID. If
F: ci- Xo is a map with F lXo - ID and F I z: r, an inverse for [7s] in wac(x)
is given by [ioopUxoF]. To prove that

[i,] + url + [io. F Urn F] : [IDr]
inWaG(X), construct a commutative diagram with a homotopy equivalence h:

X t * C U r n C i + X 2  >

j r + j u o F U x F + i i  r  U iu i ,

2. Uniuersal functorial additiue inuariants

In this section the notion of a universal functorial additive invariant is
developed. Later this is used to characterize the finiteness obstruction by a simple
universal property.

Let C be a small full subcategory of the category of G-spaces containingA and
{pt}.We assume that Cis closed under G-equivalences and G-push-outs, that is,
if X is an object in C and Y a G-space equivalent to X, then Y also belongs to C,

37r
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and if X is the push-out of

woLFGANc r_ücr

xr*xo&x,
with k a G-cofibration and x11, xr, x, are objects in c, then X is an object in c.

DnpINtuoN 2-1. A functorial additiue inuariant (8, b) for C consists of a
functor B from C into the category of abelian groups' and an assignme nt b
associating to an object Xin C an element b(X)e-n(i) such rhat the following
conditions are fulfilled.

(a) Homotopy invariance.
(i) If f : x+ Y is a G-homotopy equivalence in c, then B(/)(b(x)): b(y).( i i )  /-c s ) n19: B(s).

(b) Additivity. Given a G-push-out in c with k a G-cofibrarion
L

X r *  X ,
l .  l

l \ o  l i ,r  \ *
X z ? X

the following formula is valid:

b(x): B(j ,)(b(x,)) + B(j)(b(x,)) _ B(jö(b(xr)).
@) b(a) :0 .

Because of Theorem L.1 the pair (Wao,*o) is a functorial additive invariant if
C is the category of G-spaces having the homotopy type of a finitely dominated
G-complex. In $ 4, (WaG, wG) is characterized- uy ttre following universal
property.

DertNnlov 2-2. A functorial additive invariant (U, rz) for C is uniuersal if there
exists for any functorial additive invariant (8, b) of c a natural transformation
F: U+ B uniquely determined by the property that F(X)(u(X)): b(X) is valid
for all objects X in C.

This notion is a generalization of the well-known notion of an additive
invariant.

DenrNntoN 2.3. An additiue inuariant (8, ä) for C consists of an abelian group
f.qd an assignment sending an object x to b(x) e B with b@)- 0, sucü' thai
b(X): b(Y) holds for G-homotopy equivalent objects X and y and the sum
formula

b(X): b(Xr) + b(X) - b(Xo)

is valid for a G-push out as above.
We call an additive invari ant (U, u) uniuersal if for any additive invariant

(8, b) there is a homomorphism F: U+ B uniquely determined by F(u(X)):
b(X) for all objects X.

In other words, an additive invariant is a functorial additive invariant (8, b)
where B is a constant functor. In particular, each additive invariant can be
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regarded as a functorial additive invariant. Given a functorial additive in-
var iant  (B,b),  we can def ine an addi t ive invar iant  (8,6) UV 8: :B({pt})  and
6 6) : : B (x + {pt} )(b (x)).

PRoposnIoN 2.4. (u) There exßts a uniuersal functorial additiue inuariant
unique up to natural equiualence.

(b) There exßts a uniuersal additiue inuariant unique up to isomorphßm. It is
giuen by (Ü,ü) for the uniuersal functorial additiue inuariant ((1, u).

Proof. (a) The uniqueness is a direct consequence of the universal property. It
remains to construct a universal functorial additive invariant (U, u).

Given an object Y in C, define U(Y) as the quotient of the free abelian group
generated by the G-homotopy classes [/] of G-maps ,f: X + Y in C and the
subgroup generated by elements:

t/l - [S], if there exists a G-equivalence /r with f "h:og;

t/l - t,ftl - lfrl+ Lfol, if there exist representatives fo, fr, fr, f and a G-push-out
with k a G-cofibration

A G-map g: Y+ Z induces U(S), U(Y)+ U(Z) by composition. We assign to
an object X in C the element u(X) e U(X) represented by the identity.

(b) This is left to the reader.

For an object Y let C(Y) be the category of morphisms over Y in C. The
universal additive invariant for C(Y) is given by U(Y) and (f: X+Y)-
U(f)(u(X)). Hence (U, u) can be described by the universal additive invariants
for all C(Y).

Table 1 gives the universal functorial additive invariant (U, u) and the universal
additive invariant (Ü, ü for three categories C. Here .lr is a finite group. For a set
M let Z(M) be the free abelian group generated by M, and let (1) in Z(M) be the
element Er.u x.

Tesr-E 1

The universal additive invariant for C as the
homotopy type of a finite G-complex has

finite
CW-complexes

Ho(X)
componentwise

Euler-characteristic

Z

Euler-characteristic

category of G-spaces having the
been computed by tom Dieck

C

U(X)

u(x)

ü

ü

finite
SCtS

Z(X)

( l )

-v
L

finite
Ja -sets

Z(Orbits of X)

( 1 )

Burnside
nng A(n)

txl

& x ,
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[!'p. 98 tr]. We can re-prove this result by applying Proposition 2.4(b) to
Theorem 4.1.

Now we will show that we can derive the existence of a product and restriction
formula by abstract nonsense.

Let G and G' be compact Lie-groups and C, respectively C'respectively D, be
subcategories of the category of G-spaces, respectively G'-spaces respäctively
G x G'-spaces, as defined above such that C x C' is containedin O. fit (U, u),
respectively (U',u') respectively (V,u), be the universal functorial additive
invariant for c, respectively C'respectivery D. Given an object y, in c,, we
denote by T(Y') the abelian group of natural transformatiöns from U(?) to
V(? x y'). A map /: Y' + Y" in C' induces a homomorphism T(y,)- f 1i,,) by
composition with v(ID x/). As (v(? xy'), u(? x y,)) is a functorial additive
invariant for c, there exists a natural transformation t(y,): U(?)--V(? xy')
uniquely determined by the property that t(y')(y) sends u(y) to u(y x y,) for
all objects Y in C. Then (7, t) is a functorial additive invariant for C', so that
there exists exactly one natural transformation F: u+T with F(y,)(u(y,)):
t(Y') for all objects Y' in C'. This can be interpreted as a natural pairing' 

"

P(Y, Y'):  U(Y) I  U'(Y')+ V (Y x y,)

uniquely determined by the property that p(y,y,) sends u(y)gu,(y,) to
u (Y  x  Y ' \ .

Hence one gets a product formula. Because of Proposition 2.4(b) this also
yields a product formula for the universal additive invariant.

Let H be a closed subgroup of G and C, respectively D, z subcategory of the
category of G-spaces, respectively l/-spaces, as defined above. Assume for each
object Y of C that its restriction res(Y) lies in D. The universal functorial additive
invariant of. C, respectively D, is denoted by (U,u), respectively (v,u). The
restriction defines a functor res: C+D. Since (Vores,u"res) ii a functorial
additive invariant for C, there exists exactly one natural transformation
R: U+V ores such that R(Y) sends u(Y) to u(res(Y)) for al l  objects y in C.
Hence one gets a restriction formula. This also yields a restriction formula for
the universal additive invariant. Applying this to a finite group n and the trivial
subgroup and C as the category of finite a-sets and D ai ttt" category of finite
sets, one gets the homomorphism A(n)+l associating to a finite a_set its
cardinality.

Let C be a subcategory of G-spaces as defined before. Given two G-spaces y
and Y' we equip Y x Y' with the diagonal G-action. Assume that C ii closed
under the product. Combining the product and restriction formula we get a
diagonal product formula. Namely, if (U,rz) is the universal functorial adäitive
invariant for C, there is a natural pairing

P(Y, Y'):  U(Y) I  U(Y')--+ U(Y x y,)

uniquely determined by

P(Y,  Y ' ) (u(Y)  I  u(Y ' ) ) :  u(Y x Y ' ) .

Because of Proposition 2.4(b) this also yields a^ diagonal product formula
Ü A Ü -- Ü for the universal additive invariant U sending ü(y) I ü(y,) to
ü(Yx Y').  Hence Ü is a commutative r ing with unit  rz({pt}fand U becomes a
functor into the category of Ü-modules by the diagonal pioduct formula. If C is
the category of finite rr-sets for a finite group n, the universal additive invariant
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A(n) is just the Burnside ring of. n (see tom Dieck [4, p. 1 tr]). For C as the
category of G-spaces having the homotopy type of a finite G-complex the ring
structure of the universal additive invariant is computed in [4, p. 101 tr].

Finally we mention that the notion of a functorial additive invariant can be
introduced in more general situations than above and can also be applied to
modules and chain complexes. For example, the projective class group of a ring is
the universal additive invariant for the category of finitely generated projective
modules.

3. Equiuariant Euler characteristics

In this section we introduce the notion of an equivariant Euler characteristic.
They appear in the next section in the universal functorial additive invariant of
finite, respectively finitely dominated, G-complexes.

Define a functor AG from the category of G-spaces to the category of abelian
groups in which the equivariant Euler characteristic lives. Given a G-spaca X,
denote by {G l? - X} the set of all G-maps G lH - X f.or all closed subgroups .f1.
Cal l  x :  GIH+X and y:  GIK+X equivalent ,  x-y ,  i f  there is  a G'
isomorphism /: GIH-G/K with l"f:cx. Obviously is an equivalence
relation. Let {G l? - X} l- be the set of equivalence classes.

DerrNrrroN 3.1.. Define A"(X) as the free abelian group generated by the set

{G l? - X} I -. Amap /: X+Y induces a homomorphism

A" (f):  A" (x)+ eG (Y)
by composition.

A G-map x: GIH-X is the same as a point x: x(IH) in the F/-fixed point
set Xä: {x € Xl hx:x for all h e.FI}. Denote by WH the Weyl group NHIH of
H. It acts on Xo by gH, x+gx and hence on no(XH). For a G-map x: GIH+X
we write V(x) for the component of XH containing x(IH), and [V(x)] for its class
in no(X\lWn Let C(G) be a complete system of representatives for the
conjugacy classes of closed subgroups of G.

LErrar'an 3.2. There is a natural biiection

sending the class of x:

Thus A" (X) can be

{G l? -X } I - -  2  no (Xo) lwn
C ( G )

G I H - X to IV (x)l e n(,(X") lWn.

written as

@ O z .
C(G) no(xIt)/wH

If n is a finite group, the additive group of the Burnside ring A(n) is just
A"({pt}). For the trivial group {1} we can identify Attt(X) with the singular
homology Ho(X).

Sometimes an element f eAc(X) is written as a function from {Gl?'--X}l-
to the integers. For V en1,(XH) let I(V)c.WH be the isotropy group of
V e ns(XH) under the WH-operation. The operation of WH on XH induces an
operation of I(V) on V. Let V-H be {u eVHl there exists heG, heH with
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hu: u). Given a pair (Y, B) of spaces such that H*(Y, B) is finitely generated,
define X(Y, B) as Xä:o (-l)"rk(H"(Y, B)).

DenNrnoN 3.3. Let X be a G-space of the homotopy type of a finitely
dominated G-complex. Define its equiuariant Euler characteristic yG(X) eeG(X)
by

x" (X)(x : G I H - X) : xV @) I I (V (x)), v (x)- H I l(v(r))).

Since X is finitely dominated, the homology of

(v (x) I I (v (x)), v (*)- n I t 1v 1x117
is finitely generated, so that this definition makes sense. If X is a finite
G-complex, f (X\(x: GIH+X) can be computed by counting equivariant cells.
Namely, x"(X)(x: GIH-X) is XX:o ?I)F@, x) with F@,*) the number of
n-dimensional cells in the relative CW-complex (V(x)lI(V(x)), V(x)'n 1t1V1x171.
The number of free n-dimensional cells I(V(x))xD" in V(x)\V(*)" is also
F@, *) .

PnoposrrroN 3.4. The pair (Ao, Xo) ß a functorial additiue inuariant for the
category C of G-spaces hauing the homotopy type of a finitely dominated
G-complex.

Proof. The homotopy invariance (see Definition 2.I) is obviously fulfilled, so
that it remains to verify additivity. Using mapping cylinders and homotopy
invariance one shows that it suffices to regard finitely dominated G-complexes
Xo, Xr, Xr., X with X: XrU Xzand Xo: XrnX2. Let iü X*-->X be the inclusion
for k:0, L,2 and x: G lH- X a G-map. We have assigned to x a space
V(x) c. XH with 1(V(x))-action for I(V(x)) c.WH. Because of the relations

(V (x)n x') u (lz(r) n Xr) : V (x),
(v (r) n &) n (v(x) n X,) - v (x) o Xo,
(v (*)'n n x,) u (v(x)" n x) : v (x)" ,

(v(*)"  nÄ) n (v(x)"  nX):v(x) 'n tXo,

one obtains

xV @) I I(v (x)), v (x)'H I l(v(r)))
- x(v (x) . xrl I(v (x)), v (x)" n xrl w (x)))

+ x( @) n xzl I(v (x)), v (x)" n xzl I(v (x)))
- xV @) n xol I(v (x)), v (x)" n xol I(v (x))).

Hence it suffices to prove for k :0, 1, 2, that

xV @) o Xo I I(v (x)), v (x)" n x* I I(v (x)))

is l ,Xo(X)(y: GIH--XI) where the sum is taken over al l  y e {Gl?--Xo}l-

and
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with ieol:x in {Gl?-X)l-. Choose a complete system of representatives

l i i  GIH+Xo for  i :1 , . . . , r  for  these c lasses in  {Gl?+X*} l - .  Now one
verifies that V(x)nXrll(y(x)) is the topological sum Ei:tV(y,)lt1V1ry. This
finishes the proof.

4. The uniuersal property of the Euler characterßtic
and the finiteness obstruction

In this section a characterization of the equivariant Euler characteristic and the
finiteness obstruction by a universal property is given in:

THsonBu 4.L. (a) The pair (Ao, X")
inuariant for the category C of G-spaces
G-complex.

(b) The pair (A" O Wao, (xo, *o))
inuariant for the category C of G-spaces
dominated G-complex.

ls the uniuersal functorial additiue
hauing the homotopy tYpe of a finite

is the uniuersal functorial additiue

hauing the homotopy type of a finitely

Proof. (a) Because of Proposition 3.4 it remains to verify the universal
property. Given an arbitrary functorial additive invariant (B,b), define a natural
transformation F: AG + B: for a G-space X and r7 e AG (X) represented
by a function 4: {G l? -- X} I - -+ Z the homomorphism F(X): A" (X)+ B(X)

sends q to E q(x: G lH -, X) . B(x)(b(C lH)) where the sum is taken over

{G l?  ' -  x}  l - .
Each element 11 e AG (X) can be written as a sum over {G l? -- X} l- by

2 n(*: G lH - X) '  Ao (r:  G lH - X)(x" (G lH)).

Hence the natural transformation F is uniquely determined by the property that
F(GlH):  AG(GlH)+ B(GlH) maps x"(c ln)  to  b(GlH).  I t  remains to prove
that for any finite G-complex X the relation F'(X)(X"(o{.D: b(X) is valid. Use
induction over the number of cells. lt X consists only of one cell, X is a
homogeneous space G lH and the relation holds by definition of F.

Suppose that the assertion is true for X and that Y is obtained from X by
attaching one equivariant cell. Namely, we have the G-push out

G l H x S "

I
t

G  lH  x  D" * l

+ X

I
t

+ Y

Applying additivity to this G-push out and homotopy invariance to G lH -

G lH x D"*r for both (Ao, yc) and (8, b) one proves the assertion for Y.
(b) Let (8, b) be any functorial additive invariant for C and F: AG @ WaG + B

be a natural transformation with F(X)(X" (X), w" (X)) : b(X) for all objects X in
C. Then F is already determined by (8, b).Namely, let Y be any object in C and
q:  {Gl?-  y}  l - -Z be a funct ion represent ing r7 eAG(Y) and f  :  X+Y a
G-map with X of the homotopy type of a finitely dominated G-complex
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representing [/] eWaG(Y). Consider the following computation. The sums are
taken over {G l? - Y) l-, respectively {G l? - X} l-.

r(Y)('r, [/])
: F(y)(rt, 0) - F(n(AGff)Q"6)), 0) + F(y)(A"(flQ"(x)), [/])
: 2 qO, G I H + y) . F(y)(A" (y)(xc (G I H)), 0)

- F(Y)(A"(/X> x" (x)(x: G lH---> X) . Ac (x)(xc (c tu))), 0)
+ r(y) . (A" (f) a wac (fl)Q" (x), wo (x))
:  ) ' l ( y :  G I  H-D .  n (D@(G lH) )
-) f (x)(x: G lH + x) . B(f " x)(b(G lH)) + B(f)(b(x)).

This shows uniqueness.
To prove the existence of F define F just by the formula above. Namely,

F (Y): ec (V) @ Wac (Y) -+ B (Y) sends (rt , [fD to the element

2 , t0 :  G lH -  v)  .  B(y)(b(G lH))
-) xG (x)(x: G I H -- x) .  B(f " x)(b(G lH)) + B(f)(b(x)).

The verification that F is well defined is left to the reader. One has to check
that this is compatible with the equivalence relation appearing in the definition of
WaG. Obviously F(y) sends (x"(y), w"(Y)) to b(Y).

5. Computations of the obstruction group

Firstly WaG is computed for G as the trivial group {1}, written briefly as 1.
Then wt is related to Wall's finiteness obstruction.

Let X be a connected finitely dominated CW-complex with universal covering
X. ß C(N) is the cellular Zfnr(X)l-chain complex, we can choose a finitely
gen_erated projective Z[nr(X)]-chain complex P which is homotopy equivalent to
C(X). The finiteness obstruction [X] e Ko@[lr{X)l) of Wall is defined by
XX:o (-1)"[P"] (see Wall  [20, p. 138]).

If Y is a topological space, define Ks(Z[n(Y)]) UV

O R(z[nlv)]).

A map /: Y + Zinduces 

veno(Y\

no(f l :  no(Y)+ ns(Z) and nr(f lV): nr(V)+ n(W)

for V e ns(Y), W e no(Z), *t_rn noff)V):Y.This yields a homomorphism

f *: Ko(Z[n(Y)]) - Ks(Z[n(z)]),

so that Ko1Z1n1t)]) becomes a functor from the category of topological spaces
into the category of abelian groups.

Given a not necessarily connected finitely dominated CW-complex X, define its
Wall obstruction

lxl eKo1z1n1x)l): @ ko(zlnlv)l)
V  e n o ( X ' )
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by the collection of the finiteness obstructions [V] e ko@[lr(V)]) for each
component V of X.

PRoposnrox 5.1. (a) Let X be a finitety dominated CW-complex. Then X is
homotopic to a firyite cw-complex if and only if lxle Ro1z1n(x)l) uanßhes.

(b) The pair (Ko(Z[n(?)]), [?l) is a functoriat additiue iniariani for the category
of finitely dominated CW -complexes.

Proof. (a) This follows from [19, p. 66;20].
(b) Additivity is proved by Siebenmann in [1S].

- Given a topological space y with nr(y, y) finitely represented, define a
homomorphism F(y): War(y)-. Ko(Z[n(y)l) by [/: X_+yl,+f .([X]).

THponeu 5.2. This induces a natural equiualence

F: 1ryor -= , Kr1Z1n1t117
such that for a finitely dominated cW-complex x the relation F(x)(wt(x)) _Wl
holds.

Proof. Given a topological space Y one has to show that F(y) is bijective.
(a) Injectivity. Let x be a finitely dominate d cw -complex and /: x + y a

map such that F(Y) sends lfleWal(Y) to zero. By attaching finitely many cells
one can extend f to a map g: Z-+Y such that no(g): no(Z)+no(y) is bijective
and a1(g | I/): nt(v)- nt(w) an isomorphism for all v e ns(Z) and w i ns(y)
with zn(gxy) - W. Hence the homomorphism

B*i Ks(Zln(z)l) - Ko1z1n1v1yy
is bijecrive, so that [Zl e K1z1n1Z)]) vanishes because

0 : F(Y)([/]) : r(YX[s]) : I.([zl).
Proposition 5.1 implies the existence of a finite CW-complex Z'and a homotopy
equivalence h: Z'+ Z.

Because of the following diagram [/] vanishes in Wat(y):

X +  Z ,  h  
Z , € 0

\x /ry-
\ y '

(b) Surjectivity.. since Ko(zln(y)l) is the direct sum @v.oo(y) Ks(zln{v)l),
we can assume without loss of generality that Y is connecteOl Cnoorä u'nnii.
connected complex Yt and a map g: yr+ y inducing isomorphisms on the
fundamental groups. As

8* I Ko(Zln r(y,)l) - Ro@llr {y)l)
is an isomorphism, it suffices to show that F(Y1) is an epimorphism. Given
q e Ks(Z[nr(Yr)l), a retraction r: Yz+Yt with yz a finitely dominated CW-
complex and r*([Yr]): t/ can easily be constructed (see Wall t19]). Therefore
r(Y,X[r]) - ,t.

I
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There is also an unreduced version for Wall's finiteness obstruction [X] .
Ks(Zln(X)l). For any group n the unreduced projective class group Ks(Z[nl)
splits as Kolzlnl) @ Z.This induces a natural isomorphism

Ks(Zln(x)l)- ko1z1n1x)l) @ A'(x)

sending [xl e Ks(Z[n(X)]) to (lxl,x'6DeKo1Z1n(x)l)OAl(X) for a finitely
dominated CW -complex X.

Conorrenv 5.3. There is a natural equiualence F: War @ At 
= , Ks(Z[n(?)l).

Giuen a finitely dominated CW-complex X, the homomorphßm F(X) sends
(*'(x), x'(,I.D to [X].

Because of Theorem 4.I, Ks(Z[n(?)]) with Wall's finiteness obstruction is the
universal functorial additive invariant for the category of finitely dominated
CW -complexes.

For a G-rpu.. Y there is a natural homomorphism QV): Wac (Y)+ Wat(Y I G)
sending lf : X+ Yl to lf lC: X lG - Y lGl.

Tseonnu 5.4. The natural homomorphism QV): WaG(Y)-Wa'(YlG) sends
w"(Y) to wr(YlG) ,f Y ß a finitely dominated G-complex. If Y is free then Q(Y)
ß an isomorphism.

Proof. For a free G-complex Y an inverse map War(YlG)+WaG(Y) is given
by the pull-back construction. It sends lf: X+YlGl to [l: X- 7] where / is
obtained from the pull-back construction applied to / and the principal G-bundle
Y + Y  l G .

Combining Corollary 5.3 and Theorem 5.4 one gets a natural isomorphism

wac (Y) = Ko(zln(v lG)l)

for a free finitely dominated G-complex Y. lt sends w"(Y) to lYlcl.
Using induction over the orbit bundles one can show the following splitting

theorem.

THeoneu 5.5. If Y is a G-space of finite orbit type, there exists a natural
isomorphßm

wac 1v1 = (E Rolz[nr1El(v (x))) xr1,,1,yy v(r)]).
{Gt?+Y} / -

The definition of V(x) and I(V(x)) for x: GIH- Y was given in $ 3 and
EI(V(x)) is the classifying bundle of the Lie group I(V(x))c.WH. This result is
proved algebraically by the author in [15] for a discrete group G. The arguments
given there can be generalized to arbitrary compact Lie groups and yield an
analogous statement for the equivariant Whitehead group defined by Illman in

[10]. The sptitting theorem for equivariant Whitehead groups is also proved
algebraicatly by Illman [11] and geometrically by Hauschild [9] and Kunihiko [13]
and under some restrictions also by Baglivo [2]. See also [1].

I
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6. Product and restriction formulas

In this section the existence of a product and restriction formula is easily

derived from the universal property of the finiteness obstruction. In contrast to

the geometric approach it is difficult to give an algebraic description. One reason

for ihis is the complicated structure of the splitting Theorem 5.5 and the bad

behaviour of the orbit bundles under restriction to subgroups.
Applying the remarks of $ 2 about product and restriction formulas to

Theorem 4.1 we get:

Tueoneu 6.L. Product formula. Let G and G' be compact Lie groups and Y,

respectiuely Y', a finitely dominated G-complex, respectiuely G''complex. There

exists a natural pairing

p(y, Y'): (A" (Y) @ Wac (Y)) o (A"' (Y'�) @ WaG'� 1Y'�11
+ 4Gxc,  (y  x  y , )  O 1ryocxc '7y x  y , )

uniquely determined by the property that P(Y, Y') sends

(x"(y), r" (y)) @ (x" '  (y ') ,  *" '  (Y')) to (xo"o' (Y x Y'),  *cxc' (Y x y')).

THnonsu 6.2. Restriction formula. Let H be a closed subgroup of G and Y a

finitety dominated G-complex. There exßts a natural homomorphism

R(v) : ec (Y) @ WaG (Y)+ AH (res(Y)) @ WaH (tes(Y))

uni q ue Iv o' *' *t;;:ruä" 

rrr,, o (y))-- (s ä ( re s ( v) ), w H ( re s ( y) ) ).

Tseoneu 6.3. Diagonal product formula. Let X and Y be finitely dominated

G-complexes. There exists a natural pairing

p(X, Y): (A" (X) @ WaG (X)) a (4"(v) o wac 1v71
+Ac(X x Y)  @Wac(X x Y)

uniquely determined by

P(X, Y)((x" 6), ," (X)) I (x" V), ,o (v))) : k"( X x Y), wo (x x v))

with G acting diagonally on X x Y.

To get these formulas we have always worked with G-spaces having the

homotopy type of a finitely dominated G-complex and not only with finitely
dominated G-complexes. The restriction to a subgroup H of. a G-complex does
not have the structure of an .F/-complex canonically but has the homotopy type of

an I1-complex.
Now some explanations of these formulas and computations of them are given.

Using Corollary 5.3 the product formula in Theorem 6.L reduces to the product
formulas for Wall's finiteness obstruction in [8, 18] for G as the trivial group. One
can also give an explicit version of the product formula using the algebraic
computation of Wac in Theorem 5.5. This was stated for G as a discrete group in

t151. The arguments given there can be generalized to compact Lie groups
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without difficulty and can also be applied to the equivariant Whitehead group (see

also Illman [l2]).
The existence of the product formula implies some interesting facts.

Conorranv 6.4. Let X be a finitely dominated G-complex and Y a connected

finite CW-complex with uanishi,ng Euler characteristic. Then X xY is G homoto-

pic to a finite G-comPlex-

proof. This follows from Theorem 6.1 for G' : {1} because (11(Y), wtlY;; - g

in a1(r) @ wat(v).

In particular, this can be applied to Y as the one-dimensional circle St. The

g"o-ätric proof of Mather [17,-p. 93] that X x 51 is up to homotopy finite if X is

ä finit"ty d^ominate d CW -compläx can be generalized directly to the equivariant

case. Let X be a G-complex and K a finite G-complex and r: K+X and

i: X+K G-maps with roi-:clD. Define the mapping torus T(i"r) as the space

obtained from th.lnupping cylinder Ci", of lor by identifying the top and the

bottom using the identity -up. Now C;"' is homotopic to C,l)*C' relative to

K+ K and ö,1)*C,is homotopi. to Xx I relat ive to X x d1 because roi:6ID.

This yields a homotopy equivälence @: T(i"r)+X xSr' But I(i 'r) is a finite

G-complex.
Mather's idea was used by Ferry [7] to develop a simple homotopy approach to

Wall's finiteness obstruction. This was extended by Kwasik [1a] to the equivariant

case. Here is a reformulation using our approach to the finiteness obstruction.

Given a G-space Y, define a hJmo-oipttltm E(Y): Wac(V_)+WhG(Y x St)'

Let X be a finitely dominated G-complex and/: X+ Y be a G-map representing

t/1 in wac(v). choose a finite G-complex K and G-maps r: K-->X and

i :  x+K wi th ro i :GIDr.  Let  O:  T( i " r ) -+X x St  be the G-homotopy equiv-

alence above and @-r be a homotopy inverse. l t  0: sr-rsr sends z to z-r,

denote by C the mapping cylinder of the homotopy equivalence

Q - l o ( I D  x  g ) " @ :  T ( i " r ) - - ' T ( i " r )

between finite G-complexes. Then the pair (c, T(i"r)) determines an element in

whc QQ. r)) calleo itre rorsion of (Dl . (ID x 0). (D. Define E(y)(t/l) by the

image of (C, I( i ' r))  under

(/ x ID . @)* :  whc (r(t  " r)) --> whc (Y x S'),

namely E(D(t / l )  is  represented by (CUy*ro"-YXSt,  yxst ) .Using the argu-

ments in [7] one proves that E(Y) it.u well-defined homomorphism'

The invariant ö"(x) ewhc(X x st) defined by Kwasik U.4, p. 366] for a finitely

dominared cly-complex is just E(X)(W"(X)). The statement in [L4, p' 366] that

X is homotopy equivalent to a finite G-complex if and only if O"(X) vanishes is

equivalent to the statement that EV) is. injective'
An algebraic computation of the'restricti,on formula for finite groups is given in

F.5] usirig Theorem 5.5. It turns out, however, that this cannot be generalized to

lompactli" gro.rps directly if the dimension of the subgroup H is smaller than

the äimension of b. As an illustration consider the following special case.

Let y be a free connected finitely dominated G-complex. Applying the
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restriction formula to the trivial subgroup one gets a homomorphism
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wac(v7 @ AG (Y)-Wat(res(Y)) O Al(res(Y))

sending (*o(y), X"VD to (wl(res(y)),  Xtg)).Corol lary 5.3 and Theorem 5.4
yield iho*otnorphism Ks(Zln'(YlG)l)+ Ko(Zln'(v)l) mapping IYICI to IY] if

[ ] denotes the non-equivariant finiteness obstruction due to Wall. One easily

checks that this coincides with the geometric transfer homomorphism
pt: Ko(Zlnr(Ylc)l)- Ko(Zlnr(nl) associated by Ehrlich t6l to the principle

G-bundle p: Y + Y lG regarded as a fibration

G + Y L Y l G .

If G is finite, the homomorphism p*: nt(Y)- n(YlG) is injective with finite

cokernel. Then restriction with p* defines a homomorphism

K 1,(Zln'(Y I G)l) -> K s(Zfn' ( Y)l)

which turns out to be p'. For an arbitrary compact Lie group G such a simple

algebraic computation of p' is not available. An algebraic description of p! is

stited in [16]. It .un be üsed, for example, to show for connected G that pl

vanishes if G is not isomorphic to SO(3)" x(St)- or if n{YlG) is finite.

Combining the methods of [1.5] and [16] one can give an algebraic description of

the formula of Theorem6.2 generally. This can also be done for the Whitehead
torsion.

The same problems arise for the diagonal product formula of Theorem 6.3

which is completely treated in [.5] for G as a discrete group (see also tom Dieck

[5]). For example, one can prove for a finite group n and a finitely dominated
n-complex X and a free finite a-complex Y that X x Y is z-homotopy equivalent
to a finite a-complex.

The diagonal product formula implies that (4"({pt}) is a commutative ring
with unit and Ac @ Wac is a functor from the category of finitely dominated
G-complexes into the category of A"({pt})-modules. We recall that for a finite
group z the ring A"({pt}) is just the Burnside ring of rr.
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