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EQUIVARIANT EILENBERG MACLANE SPACES K(*%, (us1) FOR

POSSIBLY NON-CONNECTED OR EMPTY FIXED POINT SETS

Wwolfagang Liick

Equivariant Eilenberg-MacLane spaces are constructed in [1,
p. I1.131, [3, p. 2771, [8, p. 45], however, only for non-
empty connected H-fixed point sets for all H c G and in the
pointed category. This is a reasonable assumption in equi-
variant homotopy theory (equivariant Posnikov-systems, ho-
mology, obstruction theory) but too restrictive for the stu-
dy of equivariant manifolds. Therefore we develope a treat-
ment of equivariant Eilenberg-MacLane spaces of type one in
full generality. They are used, for example, in equivariant

L-theory as reference spaces (see [5]) or in [4].

A groupoid is a small category such that all morphisms are
isomorphisms. The fundamental groupoid w(X) of a space has
as objects points x in X. A morphism y - x is a homotopy
class of paths from x to V. The objects in the orbit cate-
gory @&(G) of a compact Lie group G are homogenous spaces G/H

for closed H, morphisms are G-maps.

DEFINITION 1.: The fundamental 6(G) —groupoid of a G-space X

is the contravariant functor

67



LiTCK
G , H
X : 0(G) » {groupouﬂs},G/H > (X)) = W(HOMG(G/H,X)). o

An @G)—grougoid is a contravariant functor s%: 6(G) »
{groupoids}, an 6(G)-functor F : ﬁ%o > €}1 is a natural
transformation. If I is the category of two objects 0 and 1
and two morphisms 0 - 1 and 1 - o beside the identi-

ties, an @(G)—transformation © : Fo - F1 between 6 (G) -func-

tors F, o ‘%/O - ‘%/1 is an ¢(G) ~functor © : go x% - \%,1

with wﬁ%()X{i} = F;. If such a ¢ exists we call F_ and F,

homotopic. Let [ ?%(ngw] 6(G) be the set of homotopy classes
of 6(G)-functors %%o - f}1. Obviously a G-map £ : X o vy

induces an o(G) -functor WGf : WGX > WGY and a G-homotopy

h: Xx1 5 vy an(gG)—transformation HGho - ﬂGh1. If
[x,v1¢ is the set of G-homotopy classes of G-maps X - y
we get

%1 ¢ x,v16 L (1%, Gy 6(6)

An (G) ~functor F %%(D - f%1 is an @(G)—homotopz equivalence

if there exists F' . *%1 - %&o with both composites homo-
topic to the identity. we call F a weak @(G)—homotogz equi-
valence if F(G/H) . %fo(G/H) - €%1(G/H) is an equivalence
of categories for each G/H, that is, there exists a functor
in the other direction with both composites haturally equi-
valent to the identity Or, equivalently, F(G/H) induces a
bijection %5375737 - ?%7767?7 between the set of isomor-
phism classes of objects and a bijection Aut (x) - Aut (F (x))
for each x € g?O(G/H) (see [6]1, p. 98). a G-map f : X - vy

induces a weak @(G)—homotopy equivalence WGf if and only if
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H
ﬂo(f ) and ﬁ1(fH,x) are bijective for all x € XH and closed

H < G.

in 6 (G)-homotopy equivalence is a weak 6 (G)-homotopy equiva-
lence, the converse is false. Namely, let G be Z/p *x Z/q
and %% the 6(G)-groupoid with %% (G/L) the trivial groupoid
{*x} for L # G and f% (G/G) = . If X is a G-space with simp-
ly connected X'*E/p and iz/q and with XG = @ the obvious
projection WGX - f} is a weak 6(G)-homotopy equivalence.
It cannot be an 6(G)-homotopy equivalence since any c(G) -
functor F : f% » 1°% must send the object in f%(G) to a

point in gﬁ/p n iz/q = XG, a contradiction.

DEFINITION 2: A G-CW-complex Y together with an @ (G)-functor

u ot HGY - @f is an egquivariant Eilenberg-MaclLane space
K(%%,u,1) of type (é%,1) if the map
[X,Y]G - [HGX,Q,]@(G),[f] » [ue nCf] is bijective for

all G-CW-complexes X. O

THEOREM 3:

a) A G-CwW-complex Y together with an 6(G)-functor

uot oy e-f% is a K(ﬁ%,u,1) if and only if p is a weak
6(G)-equivalence and ﬂn(YH,y) = 0 for all closed H < G,

y e v, n > 2.

b) There is a K(%%,u,1) for any @(G)-groupoid s; . Any two of

them are G-homotopic. D
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COROLLARY 4.

=—"DOLLARY 4:

a) 2n 6(G)-functor F :%% 5 131 is a weak 6(G) ~equivalence
An Lfunctor 1S a weak fquivalence
if and only if p, . [nGx,ﬁ}o]®‘G) - [nGx,f}1J@(G)

bijective for all G-CW-complexes X.

b) Each weak @(G)—homotop equivalence HGX - WGY for X and
—2cl weak DY =divalence for and

¥ G-CW-complexes is an 6 (G) ~homot-opy equivalence,

f:rvy 5 g between G-spaces that fH 'S 2> Z is a (non-
équivariant) weak homotopy equivalence for all closed H c g if
andonly if £, ¢ [x,v1% L [x,516 . bijective for all g-
CW-complexes X, As in [9], p. 220 this follows from ele-

mentary obstruction theory. Now a) implies b). o

If Ti is a droup and ;i the groupoid with one object andg
elements of 1 as morphisms the get [;1,;2] of natural equi-
valence classes of functors F1 - F2 can be identified with
HOM(F1,F2)/INN(F2,F2). We rediscover the (non—equivariant)
statement that (free) homotopy classes of maps

K(F1,1) > K(T2,1) correspond bijectively to

HOM(F1,I‘2)/INN(T2,I‘2) (see [9, p. 2261) .

We end with the proof of theorem 3,
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a) We start with the "if"-statement. We only show that p,e WG?
[X,Y]G - [HGXf% ]®“3) is surjective because the easier
proof of injectivity is gsimilar. Given ¥ : HGX - *% ,
we have to construct £ : X - Y and an 6(G) ~equivalence
@ between pe HGf and V. We define f inductively over the
skeletons of X as fr : X - Y.

r

We fix for each zero-cell a characteristic map p : G/H > X.

Since p(G/H) : ﬂ(YH) > f%(G/H) is bijective we can choose
a point y 'in v and an isomorphism u : u(G/H) (y)~ U (G/H) (p(eH)) .
Define fo : Xo + Y such that foc p(eH) is Y.

Now we also fix a characteristic map q : G/KxI > Xy for

each one-cell. With the choices above there is a unique zero-
cell with characteristic map p; : G/Hi > Xy and a unique

G-map 0;: G/K » G/H; with alG/k x {1} = p;e o, for i = 0,1.

Let u; = u(G/Hi)(fOc pi(eHi)) - w(G/Hi)(pi(eH)) be the iso-
morphism choosen above. Now interprete g eKx I as a morphism

in ﬂ(XK). Since 1 is a weak & (G)-homotony equivalence there

is exactly one morphism w: focq(eK><0) > fd:q(eK><1) in

H(YK) making the following diagram commutative:

w(G/K) (w)
u(G/R) (f e q(ekx0)) ——————3 u(G/K) (f e a(ek x 1))

(
| I

05w (G/H,) (£ e Dy (eHg)) oju(G/H)) (£ e Dy (eH )
* *
oouo \L J/O1u1
ozw(G/Ho)(po(eHo)) o0 (G/H,) (py (eH)))
I
U (G/K) (q(eK x 0) ———  Y(G/K) (al(eK x 1))

¥ (G/R) (qlek x T)
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Use w to extend fO over the one-cell g. Thus we get

f X > Y.

15 M
. H . . H | .

Each path in X1 between two points in XO is given up to ho-

motopy by a sequence of oriented one-cells. Therefore f1 has

the following property.

Let p; G/H - X be any zero-cell, P G/L -~ G/Hi any
G-map for i = 0,1 and v any path in X% from o:pT(eH1) to
UZpo(eHO). Denote by v the composition pe nt1. Then the

following diagram commutes

v(G/L) (0 D (eH ) _M v (G/L) (07pq (eH )
o:’)\) (G/Ho) (po(eHo)) oTv (G/H1) (p:I(eH1))
. |
ogb(G/H_) (p_(eH ) oy (G/H,) (P, (eH,))

w(G/Jg(pO<eHo)) IPy— ¢(G/L)(P1(£H1))

Let r : G/L><S1 - X1 be the attaching map of a two-cell.
We can assume without loss of generality that there is a
zero-cell p : G/H - XO and a G-map ¢ : G/L > G/H with
pec = r!G/Lx % for * a base point in S1. Let

v : r(eLx%) > r(eLxx) bhe the morphism in H(XL) given by
rleL><S1. Since rleL x % is nullhomotopic in XL this morphism

v and hence Y (G/L) (v) are the identity. Because of the dia-

gram above Vv (G/L) (v) = p(G/L)e ﬂ(fﬁ)(v) is also the identity.
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Now u(G/L) induces a bijection between Aut(f1o r(eL x %)) in
n(vY) ana Aut (1 (G/L) (£1¢ r(eLx *))) in § (G/L) by assumption.
Hence f1o v is nullhomotopic in Y so that we can extend f1

to f, : X, - Y. Since Wn(YH,y) vanishes for all H < G, vy

in YH and n 2 2 we can extend f2 to £f ¢+ X - Y.

We next construct the @(G)-equivalence ¢ : nc ﬁGf - Y. We
must specify for each L. ¢ G and x in XL an isomorphism

©(G/L) (x) from uen C£(G/L) (x) to ¥(G/L) (x) in € (G/L) . Choose
any zero cell p : G/H » X, any G-map ¢ : G/L -+ G/H and
any path w from 0*(p(eH)) to x in XL. Define 0 (G/L) (x) as the

composition
L
L(G/L)e m(f7) (x)
L
L(G/L)e n(f )(W)l
L *
W(G/L)e m(f7) (o pleH))

o*u(a/me () (p(en))

*
g u l

¥ (G/H) (p(eH))
I
1 (G/L) (c*p(eH))

B (G/L) (w )
WG/ 1) (x)

This is independent of the choices of p,0 and w because of

the diagram above. It is left to the reader to verify that
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these ©(G/L) (x) fit nicely together yielding ©. This fi-

nishes the proof of the "jf'-gtatement.

The "only if"-statement follows from the explicit construc-

tion in the proof of b) and the if-statement.

b) Givenan 6 (G) ~groupoid f% we must construct a G-CW-com=
plex Y with a weak & (G) ~hamotopy equivalence TTGY - % such
that ﬂn(YH,y) is zero for all H <= G, ¥ in YH and n = 2.
Composing ﬁ% with the functor "eslassifying space' of a
category (see [7]) gives a contravariant functor
6(G) =~ {CcW-complexes}. Now Y is obtained by applying

the construction C of [37.
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