manuscripta mathematica © Springer-Verlag 1987

manuscripta math. 58, 67 - 75 (1987)

EQUIVARIANT EILENBERG MACLANE SPACES K(4, 1, 1) FOR POSSIBLY NON-CONNECTED OR EMPTY FIXED POINT SETS

Wolfgang Lück

Equivariant Eilenberg-MacLane spaces are constructed in [1, p. II.13], [3, p. 277], [8, p. 45], however, only for non-empty connected H-fixed point sets for all H \subset G and in the pointed category. This is a reasonable assumption in equivariant homotopy theory (equivariant Posnikov-systems, homology, obstruction theory) but too restrictive for the study of equivariant manifolds. Therefore we develope a treatment of equivariant Eilenberg-MacLane spaces of type one in full generality. They are used, for example, in equivariant L-theory as reference spaces (see [5]) or in [4].

A groupoid is a small category such that all morphisms are isomorphisms. The fundamental groupoid $\pi(X)$ of a space has as objects points x in X. A morphism $y \to x$ is a homotopy class of paths from x to y. The objects in the orbit category G(G) of a compact Lie group G are homogenous spaces G/H for closed H, morphisms are G-maps.

DEFINITION 1.: The fundamental G(G)-groupoid of a G-space X is the contravariant functor

LüCK

 $\pi^G x : O(G) \to \{\text{groupoids}\}, G/H \mapsto \pi(x^H) = \pi(\text{HOM}_G(G/H, X)). \quad \Box$

An G(G)-groupoid is a contravariant functor $G:G(G) \to \{groupoids\}$, an G(G)-functor $F:G(G) \to \{groupoids\}$, an G(G)-functor $F:G(G) \to \{groupoids\}$, an G(G)-functor $F:G(G) \to \{groupoids\}$ is a natural transformation. If \widehat{I} is the category of two objects 0 and 1 and two morphisms $O \to I$ and $I \to O$ beside the identities, an G(G)-transformation $G:F(G) \to F_I$ between G(G)-functors $G:F(G) \to G_I$ is an G(G)-functor $G:F(G) \to G_I$ is an G(G)-functor $G:F(G) \to G_I$ if such a G:F(G) exists we call G:F(G) and G:F(G) be the set of homotopy classes of G(G)-functors $G:F(G) \to G_I$. Obviously a G-map $G:F(G) \to G$ induces an G(G)-functor $G:F(G) \to G$ induces an G(G)-functor $G:F(G) \to G$ in $G:F(G) \to G$ and $G:F(G) \to G$ is the set of G-homotopy classes of G-maps $G:F(G) \to G$ is the set of G-homotopy classes of G-maps $G:F(G) \to G$ we get

$$[\Pi^{G}?] : [X,Y]^{G} \rightarrow [\Pi^{G}X,\Pi^{G}Y]@(G)$$

An G(G)-functor $F: G \to G$ is an G(G)-homotopy equivalence if there exists $F': G \to G$ with both composites homotopic to the identity. We call F a weak G(G)-homotopy equivalence if $F(G/H): G(G/H) \to G(G/H)$ is an equivalence of categories for each G/H, that is, there exists a functor in the other direction with both composites naturally equivalent to the identity or, equivalently, F(G/H) induces a bijection $G(G/H) \to G(G/H)$ between the set of isomorphism classes of objects and a bijection $G(G/H) \to G(G/H)$ for each $X \in G(G/H)$ (see G(G/H)) (see G(G/H)). A G-map G(G/H) induces a weak G(G)-homotopy equivalence G(G/H) if and only if

LüCK

 $\Pi_{O}(f^{H})$ and $\Pi_{1}(f^{H},x)$ are bijective for all $x \in X^{H}$ and closed $H \subset G$.

An G(G)-homotopy equivalence is a weak G(G)-homotopy equivalence, the converse is false. Namely, let G be $\mathbb{Z}/p \times \mathbb{Z}/q$ and G the G(G)-groupoid with G(G/L) the trivial groupoid $\{*\}$ for $L \neq G$ and $G(G/G) = \emptyset$. If X is a G-space with simply connected $X_1X^{\mathbb{Z}/p}$ and $X^{\mathbb{Z}/q}$ and with $X^G = \emptyset$ the obvious projection $\Pi^GX \to G$ is a weak G(G)-homotopy equivalence. It cannot be an G(G)-homotopy equivalence since any G(G)-functor G is a weak G(G)-homotopy equivalence.

DEFINITION 2: A G-CW-complex Y together with an G(G)-functor $\mu: \Pi^G Y \to G$ is an equivariant Eilenberg-MacLane space $K(G,\mu,1)$ of type (G,1) if the map $[X,Y]^G \to [\Pi^G X,G]^{G(G)}$, $[f] \mapsto [\mu \circ \Pi^G f]$ is bijective for all G-CW-complexes X. \square

THEOREM 3:

- a) A G-CW-complex Y together with an G(G)-functor $\mu: \Pi^G Y \to \mathcal{C} \quad \underline{is} \ \underline{a} \ K(\mathcal{C}, \mu, 1) \quad \underline{if} \ \underline{and} \ \underline{only} \ \underline{if} \ \mu \ \underline{is} \ \underline{a} \ \underline{weak}$ G(G)-equivalence and $\Pi_n(Y^H, Y) = 0$ for all closed $H \subset G$, $Y \in Y^H, \ n \geq 2.$
- b) There is a $K(\mathcal{C}_{0},\mu,1)$ for any $\mathfrak{G}(G)$ -groupoid \mathcal{C}_{0} . Any two of them are G-homotopic. \square

COROLLARY 4:

- a) An G(G)-functor $F: G \to G$ 1 is a weak G(G)-equivalence if and only if $F_*: [\Pi^G X, G_O]^{G(G)} \to [\Pi^G X, G_1]^{G(G)}$ is bijective for all G-CW-complexes X.
- b) Each weak g(G)-homotopy equivalence $\Pi^G X \to \Pi^G Y$ for X and Y G-CW-complexes is an g(G)-homotopy equivalence.

PROOF: Because of theorem 3 it suffices to prove for a G-map $f: Y \to Z$ between G-spaces that $f^H: Y^H \to Z^H$ is a (non-equivariant) weak homotopy equivalence for all closed $H \subset G$ if and only if $f_*: [X,Y]^G \to [X,Z]^G$ is bijective for all G-CW-complexes X. As in [9], p. 220 this follows from elementary obstruction theory. Now a) implies b). \square

The homotopy colimit of $\Pi^G X$ is the fundamental group category used in [2] to introduce equivariant finiteness obstruction, Whitehead torsion and obstruction theory.

If Γ_1 is a group and $\hat{\Gamma}_1$ the groupoid with one object and elements of Γ as morphisms the set $[\hat{\Gamma}_1,\hat{\Gamma}_2]$ of natural equivalence classes of functors $\Gamma_1 \to \Gamma_2$ can be identified with $\text{HOM}(\Gamma_1,\Gamma_2)/\text{INN}(\Gamma_2,\Gamma_2)$. We rediscover the (non-equivariant) statement that (free) homotopy classes of maps $K(\Gamma_1,1) \to K(\Gamma_2,1)$ correspond bijectively to $HOM(\Gamma_1,\Gamma_2)/\text{INN}(\Gamma_2,\Gamma_2)$ (see [9, p. 226]).

We end with the proof of theorem 3.

a) We start with the "if"-statement. We only show that $\mu_* \circ \Pi^G$? $[X,Y]^G \to [\Pi^G X, \mathcal{C}]^{G(G)} \text{ is surjective because the easier proof of injectivity is similar. Given } \psi : \Pi^G X \to \mathcal{C}$, we have to construct $f: X \to Y$ and an G(G)-equivalence ϕ between $\mu \circ \Pi^G f$ and ψ . We define f inductively over the skeletons of X as $f_r: X_r \to Y$.

We fix for each zero-cell a characteristic map $p:G/H\to X$. Since $\mu(G/H):\Pi(Y^H)\to G(G/H)$ is bijective we can choose a point y in Y^H and an isomorphism $u:\mu(G/H)(y)\to \psi(G/H)(p(eH))$. Define $f_O:X_O\to Y$ such that f_O e p(eH) is y.

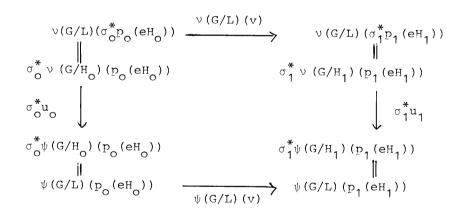
Now we also fix a characteristic map $q:G/K\times I\to X_1$ for each one-cell. With the choices above there is a unique zero-cell with characteristic map $p_i:G/H_i\to X_0$ and a unique G-map $\sigma_i:G/K\to G/H_i$ with $q|G/K\times \{i\}=p_i$ σ_i for i=0,1. Let $u_i:\mu(G/H_i)(f_0\circ p_i(eH_i))\to \psi(G/H_i)(p_i(eH))$ be the isomorphism choosen above. Now interprete $q:K\times I$ as a morphism in $\Pi(X^K)$. Since μ is a weak G(G)-homotopy equivalence there is exactly one morphism $W: f_0\circ q(eK\times O)\to f_0\circ q(eK\times I)$ in $\Pi(Y^K)$ making the following diagram commutative:

$$\begin{array}{c} \mu\left(G/K\right)\left(f_{O} \bullet q(eK \times O)\right) \xrightarrow{} \mu\left(G/K\right)\left(w\right) \\ \downarrow \\ \sigma_{O}^{*}\mu\left(G/H_{O}\right)\left(f_{O} \bullet p_{O}(eH_{O})\right) \\ \sigma_{O}^{*}u_{O} \\ \sigma_{O}^{*}\psi\left(G/H_{O}\right)\left(p_{O}(eH_{O})\right) \\ \downarrow \sigma_{O}^{*}\psi\left(G/H_{O}\right)\left(p_{O}(eH_{O})\right) \\ \downarrow \phi\left(G/K\right)\left(q(eK \times O)\right) \\ \downarrow \psi\left(G/K\right)\left(q(eK \times I)\right) \end{array}$$

Use w to extend f_0 over the one-cell q. Thus we get $f_1: X_1 \rightarrow Y$.

Each path in \mathbf{X}_1^H between two points in \mathbf{X}_0^H is given up to homotopy by a sequence of oriented one-cells. Therefore \mathbf{f}_1 has the following property.

Let $p_i: G/H \to X$ be any zero-cell, $\sigma_i: G/L \to G/H_i$ any G-map for i=0,1 and v any path in X_1^L from $\sigma_1^*p_1(eH_1)$ to $\sigma_0^*p_0(eH_0)$. Denote by v the composition $\mu \circ \Pi^Gf_1$. Then the following diagram commutes



Let $r: G/L \times S^1 \to X_1$ be the attaching map of a two-cell. We can assume without loss of generality that there is a zero-cell $p: G/H \to X_0$ and a G-map $\sigma: G/L \to G/H$ with $p \bullet \sigma = r | G/L \times * \text{ for } * \text{ a base point in } S^1$. Let $v: r(eL \times *) \to r(eL \times *)$ be the morphism in $\Pi(X^L)$ given by $r | eL \times S^1$. Since $r | eL \times * \text{ is nullhomotopic in } X^L$ this morphism v and hence $\psi(G/L)(v)$ are the identity. Because of the diagram above $v(G/L)(v) = \mu(G/L) \bullet \Pi(f_1^L)(v)$ is also the identity.

LiiCK

Now $\mu(G/L)$ induces a bijection between Aut($f_1 \circ r(eL \times *)$) in $\pi(Y^L)$ and Aut($\mu(G/L)(f_1 \circ r(eL \times *))$) in $\mathcal{G}(G/L)$ by assumption. Hence $f_1 \circ v$ is nullhomotopic in Y so that we can extend f_1 to $f_2: X_2 \to Y$. Since $\pi_n(Y^H, y)$ vanishes for all $H \subset G$, Y in Y^H and $n \geq 2$ we can extend f_2 to $f: X \to Y$.

We next construct the $\mathfrak{G}(G)$ -equivalence $\phi: \mu \in \Pi^G f \to \psi$. We must specify for each $L \subset G$ and x in X^L an isomorphism $\phi(G/L)(x)$ from $\mu \in \Pi^G f(G/L)(x)$ to $\psi(G/L)(x)$ in $\mathcal{G}(G/L)$. Choose any zero cell $p: G/H \to X$, any G-map $\sigma: G/L \to G/H$ and any path ψ from $\sigma^*(p(eH))$ to χ in χ^L . Define $\phi(G/L)(\chi)$ as the composition

$$\mu(G/L) \circ \pi(f^{L})(x)$$

$$\mu(G/L) \circ \pi(f^{L})(w)$$

$$\mu(G/L) \circ \dot{\pi}(f^{L})(\sigma^{*}p(eH))$$

$$\sigma^{*}\mu(G/H) \circ \dot{\pi}(f^{H})(p(eH))$$

$$\sigma^{*}u$$

$$\phi^{*}u$$

$$\psi(G/H)(p(eH))$$

$$\psi(G/L)(\sigma^{*}p(eH))$$

$$\psi(G/L)(w^{-1})$$

$$\psi(G/L)(x)$$

This is independent of the choices of p,σ and w because of the diagram above. It is left to the reader to verify that

these $\phi(G/L)\left(x\right)$ fit nicely together yielding $\phi.$ This finishes the proof of the "if"-statement.

The "only if"-statement follows from the explicit construction in the proof of b) and the if-statement.

b) Given an G(G)-groupoid G we must construct a G-CW-complex Y with a weak G(G)-homotopy equivalence $\Pi^G Y \to G$ such that $\Pi_n(Y^H, Y)$ is zero for all $H \subset G$, Y in Y^H and Y and Y composing Y with the functor "classifying space" of a category (see [7]) gives a contravariant functor $G(G) \to \{CW\text{-complexes}\}$. Now Y is obtained by applying the construction C of [3].

REFERENCES

- [1] Bredon, G. E.: Equivariant Cohomology Theories, LNM 34, Springer (1967)
- [2] tom Dieck, T.: Transformation groups, de Gruyter (1987)
- [3] Elmendorf, A. D.: Systems of fixed point sets, Trans. of the AMS 277, 275 284 (1983)
- [4] Lück, W.: The equivariant degree, preprint, Math. Gott. Göttingen (1986)
- [5] Lück, W. and Madsen, I.: Equivariant L-groups, preprint, Arhus (1987)
- [6] MacLane, S.: Kategorien, Springer (1972)

- [7] Segal, G. B.: Classifying spaces and spectral seguences, Publ. Math. I.H.E.S. 34, 113 128 (1968)
- [8] Triantafillou, G.: Aquivariante rationale Homotopietheorie, Bonner Math. Schriften 110, Bonn (1978)
- [9] Whitehead, G. W.: Elements of homotopy theory, grad. texts in math. 61, Springer (1978)

Wolfgang Lück Mathematisches Institut der Georg-August-Universität Bunsenstraße 3 - 5

3400 Göttingen Federal Republic of Germany

(Received October 22, 1986)