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L2-TORSION, THE MEASURE-THEORETIC DETERMINANT

CONJECTURE, AND UNIFORM MEASURE EQUIVALENCE

WOLFGANG LÜCK, ROMAN SAUER, AND CHRISTIAN WEGNER

Abstract. We show an invariance result for the L2-torsion of groups under uniform

measure equivalence provided a measure-theoretic version of the determinant conjecture
holds. The measure-theoretic determinant conjecture is discussed and, for instance,
proved for Bernoulli actions of residually amenable groups.

1. Introduction

Gaboriau [13] introduced L2-Betti numbers of measured equivalence relations and proved
that two measure equivalent countable groups have proportional L2-Betti numbers. This
notion turned out to have many important applications in recent years, most notably through
the work of Popa [21].

In the present paper we study another well known L2-invariant of a discrete group G, the
L2-torsion ρ(2)(G), with regard to measure equivalence. The L2-torsion (Definition 2.17)
is only defined if all the L2-Betti numbers of G vanish and the determinant conjecture (see
Definition 2.16) – an integral relative of the Connes’ embedding problem (see Remark 3.3)–
holds for G. The determinant conjecture is intensively studied [1, 4, 25], and there is no
counterexample known. Notably, all sofic groups satisfy the determinant conjecture [7].

The notion of measure equivalence was introduced by Gromov [15, 0.5.E] and, for the
first time, gained prominence in the work of Furman [10, Definition 1.1]:

Definition 1.1. Two countable groups G and H are called measure equivalent with index
c = I(G,H) > 0 if there exists a non-trivial standard measure space (Ω, µ) on which G×H
acts such that the restricted actions of G = G × {1} and H = {1} × H have measurable
fundamental domains X ⊂ Ω and Y ⊂ Ω, with µ(X) <∞, µ(Y ) <∞, and c = µ(X)/µ(Y ).
The space (Ω, µ) is called a measure coupling between G and H (of index c).

Evidence for the following conjectural analog (compare [20, Question 7.35 on p. 313]) of
the aforementioned result by Gaboriau comes from computations and the formal similarities
between ρ(2)(G) and the Euler characteristic of G.

Conjecture 1.2. Let G and H be countable groups such that all the L2-Betti numbers of
G and H vanish. Assume that both G and H admit finite CW-models for their classifying
spaces. Then G and H satisfy the determinant conjecture. If G and H are measure equivalent
with index c = I(G,H) > 0, then

ρ(2)(G) = c · ρ(2)(H).
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If one attempts to solve the conjecture by eventually reducing it to homotopy invariance,
which is done in [13] for L2-Betti numbers (see [23] for another approach), then one encoun-
ters at least two difficulties that do not appear for L2-Betti numbers: one is the need of a
measure-theoretic version of the determinant conjecture (Definition 1.6 below), the other is
that the Fuglede-Kadison determinant lacks a continuity property that is obvious for the
trace (discussed in Section 5). The latter difficulty disappears if we restrict to uniformly
measure equivalent groups in Conjecture 1.2.

The proof of the invariance of the L2-torsion under uniform measure equivalence, which
is the main topic of this paper, is nevertheless much more involved than the one of the
invariance of L2-Betti numbers under uniform measure equivalence.

Definition 1.3. Two countable groups are uniformly measure equivalent of index c =
I(G,H) if there exists a measure coupling (Ω, µ) between G and H of index c with a
measurable G-fundamental domain X and measurable H-fundamental domain Y such that
the following two conditions hold:

(1) for every g ∈ G there is a finite subset H(g) ⊂ H such that gY ⊂ H(g)Y up to
µ-null sets, and

(2) for every h ∈ H there is a finite subset G(h) ⊂ G such that hX ⊂ G(h)X up to
µ-null sets.

Uniform measure equivalence was introduced by Shalom and studied in the context of
quasi-isometry of amenable groups by Shalom and the second author [24, 26]. Uniform
measure equivalence is much more restrictive and geometric than measure equivalence. Here
are important examples:

Example 1.4.

(1) Two uniform lattices in the same locally compact, second countable Hausdorff group
are uniformly measure equivalent.

(2) Two finitely generated amenable groups are uniformly measure equivalent if and
only if they are quasi-isometric [22, Lemma 2.25; 26, Theorem 2.1.7].

Next we introduce a measure-theoretic version of the determinant conjecture. Some
definitions are in order:

Let R be a standard equivalence relation on a standard probability space (X,µ) with an
invariant measure µ in the sense of [8, Section 2]. We call an equivalence relation with these
properties just a measured equivalence relation. We call an action of a countable group G on
a standard probability space (X,µ) standard if it is measurable and µ is G-invariant. Every
measured equivalence relation on (X,µ) is the orbit equivalence relation of some standard
action of a countable group on (X,µ) [8, Theorem 1].

Definition 1.5. The groupoid ring of R is, as an additive group, defined as

CR =
{
f : R → C | ∃N ∈ N : f−1(C×) ∩ {x} ×X and f−1(C×) ∩X × {x} have

cardinality at most N a.e.
}
⊂ L∞(R,C).

endowed with the following multiplication, involution, and trace, respectively:

(1) (fg)(x, y) =
∑
z∼x f(x, z)g(z, y),

(2) f∗(x, y) = f(y, x),
(3) trN (R)(f) =

∫
X
f(x, x)dµ(x).
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The integral groupoid ring is ZR = CR ∩ L∞(R,Z). The finite von Neumann algebra of
R [9, Section 2], which contains CR as a weakly dense subset and to which trN (R) extends
as a finite trace, is denoted by N (R). If R is the orbit equivalence relation of a standard
action Gy X , we will also use the notation N (Gy X) instead of N (R).

Definition 1.6. Let R be a standard equivalence relation and G be a countable group. We
say that R satisfies the measure-theoretic determinant conjecture (abbreviated as MDC ) if
the (generalized) Fuglede-Kadison determinant of every matrix A ∈M(m×n,ZR) satisfies

detN (R)(A) ≥ 1.

A standard action of G satisfies MDC if its orbit equivalence relation satisfies MDC. The
group G satisfies MDC if every essentially free, standard action of G satisfies MDC.

Conjecture 1.7 (Measure Theoretic Determinant Conjecture). Every standard equivalence
relation satisfies the measure-theoretic determinant conjecture.

The following theorem, actually a stronger version thereof, is proved in Section 3.

Theorem 1.8. Let G be a countable group.

(1) Countable amenable groups satisfy MDC.
(2) If G satisfies MDC, then every subgroup of G satisfies MDC.
(3) If G satisfies MDC, then every amenable extension of G satisfies MDC.
(4) Let 1 → K → G→ Q→ 1 be a group extension such that K is finite. If G satisfies

MDC, then Q satisfies MDC.
(5) Assume that G = colimi∈I Gi where (Gi)i∈I is a directed system of countable groups

(whose structure maps are not necessarily injective). If every Gi satisfies MDC,
then G satisfies MDC.

(6) Bernoulli actions of countable residually amenable groups satisfy MDC.

Theorem 1.9. Let G and H be measure equivalent groups. If G satisfies MDC, then H
satisfies the determinant conjecture.

The preceding theorem is proved in Section 4. In the same section we also prove the
following theorem as a first step towards Conjecture 1.2. The conclusion about the vanish-
ing of the L2-Betti numbers of H below is of course due to the corresponding theorem of
Gaboriau [13], which we built in for a clean formulation.

Theorem 1.10. Let G and H be groups that admit finite CW-models for their classifying
spaces. Assume that all the L2-Betti numbers of G vanish and G satisfies MDC. If G and H
are uniformly measure equivalent with index c = I(G,H) > 0, then all the L2-Betti numbers
of H vanish, H satisfies the determinant conjecture, and

ρ(2)(G) = c · ρ(2)(H).

Example 1.4 yields the following corollary:

Corollary 1.11. Let G and H be amenable groups that admit finite CW-models for their
classifying spaces. If G and H are quasi-isometric, then

ρ(2)(G) = 0 ⇐⇒ ρ(2)(H) = 0.

We emphasize that there is the conjecture that the L2-torsion vanishes for all infinite
amenable groups. In [28] it is shown that ρ(2)(G) = 0 if G contains an infinite elementary
amenable normal subgroup and has a finite model of its classifying space.
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2. Background in L2-invariants and orbit equivalence relations

2.1. Uniform orbit equivalence. The notion of orbit equivalence has its roots in the
pioneering work of Dye [5, 6]. We recall it here:

Definition 2.1. Two standard actions G y (X,µX) and H y (Y, µY ) are called weakly
orbit equivalent with index c = I(G,H) > 0 if there are measurable subsets A ⊂ X , B ⊂ Y
and a measurable isomorphism f : A→ B such that

(1) G · A = X and H · B = Y up to null sets,
(2) 1

µX(A)f∗(µX |A) =
1

µY (B)µY |B,

(3) f(G · x ∩A) = H · f(x) ∩B for a.e. x ∈ A, and
(4) c = µX(A)/µY (B).

If µX(A) = µY (B) = 1, then we call the actions orbit equivalent. The map f is called a
weak orbit equivalence or orbit equivalence, respectively.

The following modification of orbit equivalence was introduced in [22] (under the name
bounded orbit equivalence).

Definition 2.2. Two standard actions Gy (X,µX) and H y (Y, µY ) are called uniformly
weakly orbit equivalent with index c = I(G,H) if there exists a weak orbit equivalence
f : A→ B of index c as in Definition 2.1 that satisfies the following additional properties:

(1) There exist finite subsets FA ⊂ G and FB ⊂ H such that FA ·A = X and FB ·B = Y
up to null sets,

(2) For every g ∈ G there is a finite subset F (g) ⊂ H such that f(gx) ∈ F (g) · f(x) for
a.e. x ∈ A ∩ g−1 · A.

(3) For every h ∈ H there is a finite subset F (h) ⊂ G such that f−1(hy) ∈ F (h) ·f−1(y)
for a.e. y ∈ B ∩ h−1 ·B.

The following theorem is proved in [11, Theorem 3.3] (see also [22, Theorem 2.33] for the
uniform version).

Theorem 2.3. Two countable groups G and H are (uniformly) measure equivalent with
respect to a measure coupling of index c > 0 if and only if there exist essentially free,
standard actions G and H that are (uniformly) weakly orbit equivalent of index c.

2.2. Algebras associated to groups and equivalence relations.

Definition 2.4. Let Gy (X,µ) be a standard action. The crossed product ring L∞(X,C)∗
G is the free L∞(X,C)-module withG as L∞(X,C)-basis. Here L∞(X,C) denotes the ring of
equivalence classes of essentially bounded measurable functions X → C. The multiplication
is given by

(∑

g∈G

rg · g
)
·
(∑

g∈G

sg · g
)
=

∑

g∈G

( ∑

g1,g2∈G
g1g2=g

rg1 · (sg2 ◦mg1−1)
)
· g

with mg : X → X, x 7→ gx. The crossed product ring L∞(X,Z) ∗G is defined analogously
using the ring of equivalence classes of essentially bounded measurable functions X → Z.

Remark 2.5 (compare [22, Sections 1.2 and 1.3]). Let G y (X,µ) be an essentially free,
standard action and R be its orbit equivalence relation. The rings L∞(X,Z) ∗ G and
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L∞(X,C) ∗G embed as subrings into ZR or CR, respectively. Let ig : X → R be the map
ig(x) = (x, g−1x). We obtain a (multiplicative) isomorphism

L∞(X,C) ∗G ∼=
{
f ∈ CR

∣∣ f ◦ ig = 0 ∈ L∞(X,C) for all but finitely many g ∈ G
}
⊂ CR

given by
∑
g∈G rg · g 7→ f with f(x, g−1x) = rg(x). There is an analogous statement

for integral (instead of complex) coefficients. In particular, we obtain a trace-preserving
inclusion CG →֒ CR; this inclusion extends to the von Neumann algebras N (G) of G and
N (R) of R.

The following lemmas about the crossed product of a standard action Gy X are rather
easy to verify.

Lemma 2.6. L∞(X,Z) ∗G is flat over ZG.

Proof. This follows from the fact that L∞(X,Z) is torsionfree and the isomorphism

L∞(X,Z) ∗G⊗ZGM ∼= L∞(X,Z)⊗Z M. �

Recall that that an idempotent p in a ring R is called full if the additive group generated
by elements of the form rpr′, r, r′ ∈ R, is R. If p ∈ R is full, then the rings pRp and R are
Morita equivalent. This implies e.g. that P is a finitely generated projective R-module if
and only if pP is a finitely generated projective pRp-module [17, (18.30B) on p. 490]. Note
also that if R ⊂ S is a unital subring and p ∈ R is a full idempotent in R, then p is also a
full idempotent in S.

Remark 2.7. Let R be the orbit equivalence relation of a standard action of G on (X,µ).
Let A ⊂ X be a subset. We denote the restricted equivalence relation by R|A = R∩A×A.
One has

ZR|A = χAZRχA,

where χA is the characteristic function of A. Similarly, N (R|A) = χAN (R)χA.

Lemma 2.8 ([22, Lemma 4.21]). Let A ⊂ X be a measurable subset such that finitely many
G-translates of A cover X up to null sets. Then the characteristic function χA is a full
idempotent in χAL

∞(X,Z) ∗GχA.

Lemma 2.9 ([22, Lemma 4.23]). Let f : A→ B be an orbit equivalence between essentially
free, standard actions of G on (X,µX) and H on (Y, µY ). Let R1 and R2 be the orbit
equivalence relations of Gy X and H y Y , respectively.

(1) The isomorphism R1|A
f×f
−−−→ R2|B induces the trace-preserving ∗-isomorphism

f∗ : ZR2|B → ZR1|A, φ 7→ φ ◦ (f × f).

Thus it extends to an isomorphism N (R2|B) → N (R1|A).
(2) If f is uniform, the isomorphism f∗ restricts to an isomorphism

χBL
∞(Y,Z) ∗HχB → χAL

∞(X,Z) ∗GχA

of the embedded subrings.

Convention 2.10. Let G y X be a standard action, A ⊂ X be a measurable subset, and
R be the orbit equivalence relation of the action. We introduce some equivalent notations:
Instead of N (R) and N (R|A) we also write N (G y X) and N (G y X |A), respectively.
For the GNS-construction l2(N (R|A)) of N (R|A) we write L2(R|A) or L2(Gy X |A).
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2.3. The Fuglede-Kadison determinant and L2-torsion. In the sequel, let A be a fi-
nite von Neumann algebra with trace trA : A → C. Our main examples are the group von
Neumann algebra N (G) of a group G and the von Neumann algebra N (R) of a standard
equivalence relation. A Hilbert space with a (left) A-action that embeds isometrically and
equivariantly as a closed subspace into a Hilbert sum of copies of l2(A) is a called a Hilbert
A-module. A bounded A-equivariant operator between Hilbert A-modules is called a mor-
phism of Hilbert A-modules. The trace trA extends in a natural way to positive morphisms
of Hilbert A-modules. Further, every Hilbert A-module H has a real-valued dimension
dimA(H) ∈ [0,∞]. This dimension satisfies, for example, dimA(l

2(A)p) = trA(p) for any
projection p ∈ A. We refer to [20, Chapter 6] for more information. The following convention
is adopted:

Convention 2.11. The n×n-matrices M(n×n,A) over A are again a von Neumann alge-
bra. We equip M(n×n,A) with the unnormalized trace trM(n×n,A)(A) =

∑n
i=1 trA(Aii). If

the context is clear, we just write trA instead of trM(n×n,A). There is a one-to-one correspon-

dence between A ∈M(n×n,A) and (left)-A-equivariant bounded operators l2(A)n → l2(A)n

via right matrix multiplication. If we want to stress the point of view of A as a bounded op-
erator, we also use the notation rA for the right multiplication on l2(A)n.

We remind the reader of the definition of the spectral density function and the Fuglede-
Kadison determinant: Let f : U → V be a morphism of Hilbert A-modules of finite di-

mension. Denote by
{
Ef

∗f
λ : U → U | λ ∈ R

}
the family of spectral projections of the

positive endomorphism f∗f . The spectral projections have the properties ‖f(u)‖ ≤ λ · ‖u‖

for u ∈ im(Ef
∗f

λ2 ) and ‖f(u)‖ > λ · ‖u‖ for 0 6= u ∈ ker(Ef
∗f

λ2 ). The spectral density function
of f is defined as

F (f) : R → [0,∞), λ 7→ trA
(
Ef

∗f
λ2

)
.

The spectral density function F (f) is monotonous and right-continuous.

Definition 2.12 ([20, Definition 3.11 on p. 127]). Let f : U → V be a morphism of Hilbert
A-modules of finite dimensions. The Fuglede-Kadison determinant or just determinant of f
is defined as

detA(f) =

{
exp

( ∫∞

0+
ln(λ) dF (f)(λ)

)
if
∫∞

0+
ln(λ)dF (f)(λ) > −∞,

0 otherwise.

Here the integral is understood to be the Lebesgue-Stieltjes integral with respect to F (f).

The main properties of this determinant are described in [20, Theorem 3.14].

Remark 2.13 (Induction). Let A →֒ B be a trace-preserving inclusion of finite von Neumann
algebras. Let f : l2(A)m → l2(A)n be a morphism of Hilbert A-modules. Then f is given by
right multiplication rA with an m× n-matrix over A. The morphism of Hilbert B-modules
l2(B)m → l2(B)n defined by right multiplication with the same matrix is denoted by indBA(f).
It is obvious that

trB
(
P (indB

A(f))
)
= trA

(
P (f)

)

for any complex polynomial P and m = n. Normality of the trace yields that F (indBA(f)) =
F (f), hence

(2.1) detB
(
indBA(f)

)
= detA(f).
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Remark 2.14 (Restriction). Let p ∈ A be a projection. Then pAp is a finite von Neumann
algebra with normalized trace trpAp = 1

trA(p) trA [3, Prop. 1 on p. 17]. Let f : U → V be

a morphism of finitely generated Hilbert A-modules. The morphism f∗f decomposes as an
orthogonal sum

pU ⊕ (1− p)U
f∗f |pU⊕f∗f |(1−p)U
−−−−−−−−−−−−−→ pU ⊕ (1− p)U.

Since spectral calculus respects orthogonal sums, we obtain that im(E
f∗f |pU
λ2 ) = p im(Ef

∗f
λ2 ).

Viewing f |pU as a morphism of Hilbert pAp-modules, we obtain that F (f) = trA(p)F (f |pU )
provided p is full [16, Proposition 2.2.6 vii) on p. 26]. From this we conclude that, if
detA(f) > 0, then

(2.2) ln detA(f) = trA(p) · ln detpAp
(
f |pU

)
.

Definition 2.15. Let C∗ a Hilbert A-chain complex. Suppose that

(1) C∗ is dim-finite, i.e. dimA(Cn) <∞ for all n ∈ Z and there exists N ∈ N such that
Cn = 0 if n < 0 or n > N ,

(2) b
(2)
n (C∗) = 0 for all n ∈ Z,

(3) detA(cn) > 0 for all n ∈ Z.

We define its L2-torsion by

ρ(2)(C∗) = −
∑

n∈Z

(−1)n ln
(
detA(cn)

)
∈ R.

The following conjecture is true for all sofic groups [7]; no example of a group that is not
sofic is known.

Definition 2.16 ([20, Conjecture 13.2 on p. 454]). We say that the group G satisfies the
determinant conjecture or is of determinant class if the Fuglede-Kadison determinant of
every matrix A ∈M(m× n,ZG) satisfies

detN (G)(A) ≥ 1.

Let X be a finite CW-complex with vanishing L2-Betti numbers such that G = π1(X)
satisfies the determinant conjecture. We define the L2-torsion of X as

ρ(2)
(
X̃
)
= ρ(2)

(
l2(G)⊗ZG C

cell
∗ (X̃)

)
.

Since the differentials in the cellular chain complex Ccell
∗ (X̃) are matrices over ZG with

respect to cellular bases and thus have positive determinant, this definition is justified.
If G is of determinant class, then this definition only depends on the homotopy type of
X [20, Lemma 13.6 on p. 456].

Definition 2.17. Let G be a group that admits a finite CW-model X of its classifying
space BG. Suppose that the group G satisfies the determinant conjecture and that all its

L2-Betti numbers vanish. Then we define the L2-torsion of G as ρ(2)(G) = ρ(2)(X̃).

3. The measure-theoretic determinant conjecture

The goal of this section is to prove Theorem 1.8; we actually prove the following slightly
stronger formulation:

Theorem 3.1. Let G be a countable group and H ⊂ G a subgroup.

(1) The trivial group satisfies MDC.
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(2) If G satisfies MDC, then H satisfies MDC.
(3) Let H ⊂ G be a normal subgroup such that the quotient G/H is amenable. Let

G y X be a standard action. If H y X satisfies MDC, then G y X satisfies
MDC.

(4) Let 1 → K → G→ Q→ 1 be a group extension such that K is finite. If G satisfies
MDC, then Q satisfies MDC.

(5) Assume that G = colimi∈I Gi where (Gi)i∈I is a directed system (with not necessarily
injective structure maps) of countable groups. If every Gi satisfies MDC, then G
satisfies MDC.

(6) Let (X,µ) be a standard probability space. Suppose that G is a directed limit of
countable groups G = limi∈I Gi such that the shift action of Gi on the product space
(X,µ)Gi satisfies MDC. Then the shift action of G on (X,µ)G satisfies MDC.

Actions as in (6) are called Bernoulli actions. The reason that we restrict to Bernoulli
actions in (6) is that we do not know how to approximate an arbitrary G-action by actions
of the groups Gi. The remainder of this section is devoted to the proof of the theorem above.

3.1. The approximation lemma. The proof of the next lemma is essentially the same as
in the special case of group von Neumann algebras. Such proofs are given in [18, Lemma 2.5;
20, Theorem 13.19 on p. 461; 25, Section 6].

Lemma 3.2. Let A, Ai (i ∈ I) be finite von Neumann algebras with I a directed set. Let
A ∈ M(d × d′;A) and Ai ∈ M(di × d′i;Ai) be matrices with the following properties where
∆, ∆i are defined as ∆ := AA∗ ∈M(d× d;A), ∆i := AiA

∗
i ∈M(di × di;Ai):

(1) detAi
(Ai) ≥ 1,

(2) there exists a constant K > 0 with ‖r∆‖ ≤ K and ‖r∆i
‖ ≤ K,

(3) limi∈I
trAi

(∆m
i )

di
= trA(∆m)

d for all m ∈ N.

Then limi∈I dimAi
(kerAi) = dimA(kerA) and detA(A) ≥ 1.

Remark 3.3. In Connes’ pioneering paper [2] the question was raised whether every finite
von Neumann algebra embeds into an ultraproduct of the hyperfinite II1-factor (nowadays
referred to as the Connes embedding problem). If the Connes embedding problem has a
positive answer for the finite von Neumann algebra A, then for every self-adjoint ∆ ∈ A
there is a sequence of matrices ∆i ∈M(di× di,C) that satisfies (3) of Lemma 3.2. If the ∆i

have only integral entries, then detA(∆) ≥ 1. In that regard the determinant conjecture is
an integral relative of the Connes embedding problem.

The following lemma is often helpful for verifying the second condition in Lemma 3.2.
We omit its proof which is essentially the same as in [20, Proof of Lemma 13.33 on p. 466].

Lemma 3.4. Let G y X be a standard action and A ∈ M(d × d′;L∞(X,C) ∗G). For an
element f =

∑
g∈G fg · g ∈ L∞(X,C) ∗G, let ‖f‖∞ =

∑
g∈G ‖fg‖∞. Then:

‖rA‖ ≤ d · d′ ·max
k,l

‖Ak,l‖∞.

3.2. Some reductions used in the proof.

Lemma 3.5. Let G y (X,µ) be an essentially free, standard action of a countable group
G. Let R be its orbit equivalence relation on X. Assume that detN (R)(A) ≥ 1 for every
matrix A ∈M(d× d′;L∞(X,Z) ∗G). Then R satisfies MDC.
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Proof. Let A ∈ M(d × d′;ZR). Choose an enumeration G = {g1, g2, . . . }. We define an
increasing sequence (Xn)n≥1 of measurable subsets of X by

Xn =
{
x ∈ X |Aij(x, gmx) = 0 for m > n and all 1 ≤ i ≤ d, 1 ≤ j ≤ d′

}
.

Obviously, µ(Xn) → 1. Set An = χXn
A. Then An ∈M(d×d′;L∞(X,Z)∗G) and

∥∥rAnA∗
n

∥∥ =∥∥rχXnAA
∗χXn

∥∥ ≤ ‖rAA∗‖. By the continuity of the trace and the trace property, we obtain
that

trN (R)(AA
∗) = lim

n→∞
trN (R)(χXn

AA∗) = lim
n→∞

trN (R)(AnA
∗
n).

The assertion now follows from Lemma 3.2. �

Lemma 3.6. If detN (GyX)(A) ≥ 1 for every n ≥ 1 and every positive matrix A ∈ M(n×
n;L∞(X,Z) ∗ G), then detN (GyX)(B) ≥ 1 holds for all m,n ≥ 1 and every matrix B ∈
M(m× n;L∞(X,Z) ∗G).

Proof. This directly follows from the identity

detN (GyX)(B) = detN (GyX)(BB
∗)1/2. �

At certain stages in the proof of Theorem 3.1 it is convenient to allow for the flexibility
of non-free actions on a probability space. Let G y (X,µ) be a, not necessarily free,
standard action. The crossed product ring L∞(X) ∗ G with its trace can be completed to
a von Neumann algebra L∞(X) ∗vNG. This von Neumann algebra is the von Neumann
algebra associated to the translation groupoid of the action [27, XIII §2]. If the action is
essentially free, then L∞(X)∗G = N (R) where R ⊂ X×X is the orbit equivalence relation
of G y X . On the other extreme, if X is just a point, then we have N (R) = C and
L∞(X) ∗vNG = N (G).

Lemma 3.7. Assume that G satisfies MDC. Let Gy X be a (not necessarily free) standard
action. Then

detL∞(X) ∗vNG(A) ≥ 1

for every A ∈M(m× n, L∞(X ;Z) ∗G).

Proof. Let G y Y be an essentially free, standard action; take, for example, Y = [0, 1]G

with its shift action. Then the diagonal action of G on the product probability spaceX×Y is
essentially free. The projection pr : X×Y → X induces a trace-preserving ∗-homomorphism

pr∗ : L∞(X) ∗G→ L∞(X × Y ) ∗G,
∑

fg · g 7→
∑

(fg ◦ pr) · g,

which extends to the von Neumann algebras. Since Gy X×Y satisfies MDC by hypothesis,
the assertion follows (see Remark 2.13). �

The remainder of this section is devoted to the proof of Theorem 3.1. Because of
Lemma 3.5 it suffices in each case to show MDC only for matrices in the crossed prod-
uct ring.
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3.3. The trivial group and transition to subgroups.

Proof of Theorem 3.1 (1). Let (X,µ) be a standard probability space. Let A ∈ M(m ×
n, L∞(X,Z)). We have to show that

detL∞(X)(A) ≥ 1.

By [19, Lemma 4.1] there is a unitary matrix U ∈M(m×m,L∞(X)) such that U−1AA∗U is
a diagonal matrix whose diagonal entries f1, f2, . . . , fm ∈ L∞(X) are positive functions. We
conclude from [20, Theorem 3.14 (1) and (4) and Lemma 3.15 (3), (4) and (7) on p. 128/129]
that

detL∞(X)(A)
2 =

m∏

i=1

detL∞(X)(fi).

According to [20, Example 3.13 on p. 128] we have

detL∞(X)(fi) = exp
(∫

X

ln(fi(x)) · χ{x∈X|fi(x)>0}dµ(x)
)
.

Combining the aforementioned equalities yields

(3.1) detL∞(X)(A)
2 = exp

(∫

X

ln
( ∏

i=1,2,...,m
fi(x)>0

fi(x)
)
dµ(x)

)
.

Fix x ∈ X . Then A(x)A(x)∗ is a matrix in M(m × m,Z). Let p(t) be its characteristic
polynomial. It can be written as p(t) = ta ·q(t) for a polynomial q(t) with integer coefficients
and q(0) 6= 0. Then q(0) is the product of the positive eigenvalues of A(x)A(x)∗ , i.e.

∏

i=1,2,...,m
fi(x)>0

fi(x) = q(0).

Now the assertion follows from q(0) ≥ 1 and (3.1). �

Proof of Theorem 3.1 (2). Let i : H → G be the inclusion of a subgroup, and let (X,µ) be
a standard probability space endowed with an essentially free standard H-action. Let i!X
be the coinduction of X , i.e. the G-space mapH(G,X), on which g ∈ G acts from the left
by composition with the G-map rg−1 : G → G, g0 7→ g0g

−1. By choosing a set theoretic
section s : G/H → G of the projection with s(1) = 1, we obtain a bijection

i!X
∼=
−→

∏

gH∈G/H

X, φ 7→
(
φ(s(gH))

)
gH∈G/H

.

We endow i!X with the structure of a standard probability space (i!X, ν) by pulling back
the product measure on

∏
gH∈G/H X . This structure does not depend on the choice of s;

the measure ν is G-invariant [14, 3.4].
Let pr : i!X → X be the map sending φ to φ(1). We obtain a trace preserving, H-

equivariant ∗-homomorphism pr∗ : L∞(X) → L∞(i!X) by composition with pr. Thus we
obtain a trace preserving ∗-algebra homomorphism

u : L∞(X) ∗H → L∞(i!X) ∗G,
∑

h∈H

λh · h 7→
∑

h∈H

pr∗(λh) · h,

which extends to the von Neumann algebras u : N (H y X) → N (G y i!X) [3; 22, Theo-
rem 1.47].
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Let A ∈ M(m × n;L∞(X,Z) ∗ H). Let u∗A ∈ M(m × n;L∞(i!X,Z) ∗ G) be the ma-
trix obtained from A by applying elementwise the ring homomorphism u. By hypothesis,
detN (Gyi!X)(u∗A) ≥ 1. The assertion follows from detN (HyX)(A) = detN (Gyi!X)(u∗A)
(Remark 2.13). �

3.4. Extensions with amenable quotients.

Proof of Theorem 3.1 (3). Let G′ ⊂ G be a subgroup. Then H ′ = H ∩ G′ is normal in G′,
and G′/H ′ injects into G/H , thus G′/H ′ is also amenable. Obviously, H ′ y X satisfies
MDC, if H y X does. We have to show that detN (GyX)(A) ≥ 1 for every matrix A over
the ring L∞(X) ∗ G. Taking G′ ⊂ G to be the subgroup generated by the finitely many
elements of G appearing in such A, it is enough to show that G′ ⊂ X satisfies MDC for every
finitely generated subgroup G′ ⊂ G. By our first remark, we thus may and will assume that
G is finitely generated.

Let p : G → G/H be the projection. We choose a left-invariant word-metric d on the
finitely generated group G/H . For R > 0 and a subset Z ⊂ G/H we define

NR(Z) =
{
x ∈ G/H | d(x, Z) ≤ R and d(x,G/H − Z) ≤ R

}
.

By amenability (compare [20, Lemma 13.40 on p. 469]) there exists an increasing exhaustion
of G/H by finite subsets Z1 ⊂ Z2 ⊂ Z3 ⊂ · · · ⊂ G/H (Følner exhaustion) such that for all
R > 0 and ǫ > 0 we find N ∈ N satisfying |NR(Zn)| ≤ ǫ · |Zn| for all n ≥ N . Let S be a
transversal for H in G. We set Sn = {s ∈ S

∣∣sH ∈ Zn} ⊂ G. We have |Sn| = |Zn|. Let

pn : L2(G y X) → L2(G y X) be the projection onto the closure of the span of p−1(Zn)
and L2(X), i.e.

pn
(∑

g∈G

rg · g
)
=

∑

g∈G
gH∈Zn

rg · g.

The map pn is not L∞(X) ∗G-equivariant in general but L∞(X) ∗H-equivariant.
We remark that in the group case (X = {∗}) a more general statement, where H is

not necessarily normal, is stated in [25, Section 4] and [20, Proposition 13.93 on p. 469].
However, the proofs of these statements are not correct: the mistakes are related to the
equivariance of the map pn above for which normality of H is essential.

Notice that we have an isometric L∞(X) ∗H-equivariant isomorphism

un : L
2(H y X)|Sn| → im(pn), (fs)s∈Sn

7→
∑

s∈Sn

fs · s.

Let A ∈M(d×d′;L∞(X,Z)∗G). In order to show detN (GyX)(A) ≥ 1 we may assume that
d = d′ and A is positive (Lemma 3.6). Consider the operator

L2(H y X)d|Sn| ⊕un−−−→ im(pn)
d rA−−→ L2(Gy A)d

⊕pn
−−−→ im(pn)

d ⊕u−1
n−−−−→ L2(H y X)d|Sn|.

It is easy to see that this operator is given by right multiplication with a positive matrix
An ∈M(d · |Zn| × d · |Zn|;L∞(X,Z) ∗H). By hypothesis, we have detN (HyX)(An) ≥ 1 for
every n ≥ 1. Since ‖pn‖ ≤ 1 holds for all n ∈ N, we conclude ‖rAn

‖ ≤ ‖rA‖.
By Lemma 3.2 it suffices to show that

lim
n→∞

trN (HyX)(A
m
n )

d · |Zn|
=

trN (GyX)(A
m)

d
for all m ∈ N.
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This is proven in the case X = {∗} in [20, Lemma 13.42 on page 470], and the proof is
essentially the same in our setting. �

3.5. Extensions with finite kernels.

Proof of Theorem 3.1 (4). Let Qy X be an essentially free, standard action. Let G act on
X via p : G → Q. In the sequel, we write F = l2(L∞(X) ∗vNG) for the GNS-construction
of the von Neumann algebra L∞(X) ∗vNG.

Let NK ∈ G be the element
∑

g∈K g. Consider the Hilbert L∞(X) ∗vNG-morphism

r|K|−1·NK
: F → F.

Then r|K|−1·NK
is an orthogonal projection with the K-fixed points FK as image since

K ⊆ G is normal and K acts trivially on X . In particular, FK is a finitely generated
Hilbert L∞(X) ∗vNG-module. Define an isometric bijective operator

v : L2(Qy X)
∼=
−→ FK ,

∑

q∈Q

λq · q 7→ |K|−1/2 ·
∑

g∈G

λp(g) · g.

We also set

w = v−1 ◦ r|K|−1·NK
: F → L2(Qy X).

For every g ∈ G, f ∈ L∞(X), and a ∈ L2(Qy X) we have

v(rp(g)(a)) = rg(v(a)),(3.2)

v(rf (a)) = rf (v(a)).

This, in particular, implies that the image of a N (Q y X)-invariant subspace L2(Q y

X)d under diag(v) : L2(Q y X)d → (FK)d is L∞(X) ∗vNG-invariant. Upon choosing an
isometric embedding into L2(Qy X)d and thus into (FK)d via diag(v), we can equip every
finitely generated Hilbert N (Q y X)-module V with the structure of a finitely generated
Hilbert L∞(X) ∗vNG-module. We denote V endowed with this new structure by resp V .
Because of (3.2) these module structures are related by gφ(x) = p(g)x and fφ(x) = fx,
where we denote the identity V → resp V by φ for better distinction. From this we also see
that the module structure on resp V does not depend on the chosen embedding V →֒ L2(Qy

X)d and that every morphism f : V →W of finitely generated Hilbert N (Q y X)-modules
induces a morphism resp f : resp V → respW of finitely generated Hilbert L∞(X) ∗vNG-
modules by the same map. Next we show that

(3.3) trL∞(X) ∗vNG(resp f) =
1

|K|
· trN (QyX)(f).

It suffices to treat the case V = L2(Q y X). Let eG ∈ F and eQ ∈ L2(Q y H) be
the elements given by the unit element in the rings L∞(X) ∗ G and L∞(X) ∗ Q. Write
f(eQ) =

∑
q∈Q λq · q. Then

w∗ ◦ f ◦ w(eQ) =
1

|K|
·
∑

g∈G

λp(g) · g.
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This implies

trN (QyX)(f) = 〈f(eQ), eQ〉L2(QyX)

= 〈1, λeQ〉L2(X)

= |K| · 〈w∗ ◦ f ◦ w(eG), eG〉F

= |K| · trL∞(X) ∗vNG(resp f).

Hence (3.3) follows.
If {Eλ | λ ∈ R} is the spectral family of f : V → V , then {respEλ | λ ∈ R} is the spectral

family of resp f : resp V → resp V . Hence (3.3) successively yields that

F (resp f) =
1

|K|
· F (f),

detL∞(X) ∗vNG(resp f) =
(
detN (QyX)(f)

)1/|K|
.(3.4)

Let A ∈ M(d′ × d, L∞(X,Z) ∗ Q). We have to show that detN (QyX)(A) ≥ 1. By
Lemma 3.6 we may and will assume that d′ = d and A is positive.

Let n ∈ N. We get a morphism resp rAn : resp L
2(Qy X)d → resp L

2(Qy X)d of finitely
generated Hilbert L∞(X) ∗vNG-modules. We have the orthogonal sum decomposition

F = im(r|K|−1·NK
)

︸ ︷︷ ︸
=FK

⊕ im(r1−|K|−1·NK
).

Consider the morphism

w∗ ◦ rAn ◦ w ⊕ idim(r1−|K|−1·NK
)d : F

d → F d.

We conclude from (3.4) and [20, Theorem 3.14 (1) on p. 128 and Lemma 3.15 (7) on
p. 130] that

detN (QyX)(rA)
n = detN (QyX)(rAn)

= detL∞(X) ∗vNG(resp rAn)|K|

= detL∞(X) ∗vNG(w
∗ ◦ rAn ◦ w)|K| · detL∞(X) ∗vNG

(
idim(r1−|K|−1·NK

)d
)|K|

= detL∞(X) ∗vNG

(
w∗ ◦ rAn ◦ w ⊕ idim(r1−|K|−1·NK

)d
)|K|

.(3.5)

For u =
∑
q∈Q λq ·q in L

∞(X,Z)∗Q let s(u) ∈ L∞(X,Z)∗G be the element
∑

g∈G λp(g) ·g.
Define B = (bi,j)i,j ∈ M(d × d, L∞(X,Z) ∗G) to be the matrix obtained from An = (ai,j)
by setting bi,i = s(ai,i − 1) and bi,j = s(ai,j) if i 6= j. One easily verifies that

1

|K|
· r|K|·Id+B = w∗ ◦ rAn ◦ w ⊕ idim(r1−|K|−1·NK

)d ,

where Id is the identity matrix in M(d× d, L∞(X,Z) ∗G). Notice that |K| · Id +B lies in
M(d×d, L∞(X,Z)∗G); thus, by hypothesis and Lemma 3.7, detL∞(X) ∗vNG

(
r|K|·Id+B

)
≥ 1.
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We conclude from [20, Theorem 3.14 (1) on page 128] that

detL∞(X) ∗vNG

(
w∗ ◦ rAn ◦ w ⊕ idim(r1−|K|−1·NK

)d

)
= detL∞(X) ∗vNG

(
1

|K|
· r|K|·Id+B

)

=
1

|K|d
· detL∞(X) ∗vNG

(
r|K|·Id+B

)

≥
1

|K|d
.(3.6)

We conclude from (3.5) and (3.6) that

detN (QyX)(rA) ≥ |K|−d|K|/n

holds for every n ∈ N. Hence detN (QyX)(rA) ≥ 1. �

3.6. Colimits. Throughout this subsection, we consider a directed system of groups {Gi |
i ∈ I} over the directed set I. Denote its colimit by G = colimi∈I Gi. Let ψi : Gi → G for
i ∈ I and ψi,j : Gi → Gj for i, j ∈ I, i ≤ j, be the structure maps. We do not require that
ψi or ψi,j are injective.

Proof of Theorem 3.1 (5). Let G y (X,µ) be an essentially free, standard action. Ev-
ery Gi acts on X via ψi (but not necessarily free). We obtain a trace-preserving ring
∗-homomorphism

αi : L
∞(X) ∗Gi → L∞(X) ∗G,

∑

h∈Gi

lh · h 7→
∑

h∈Gi

lh · ψi(h).

Let A ∈ M(m × n, L∞(X ;Z) ∗ G). Write A =
∑

g∈G fgg with fg ∈ M(m × n, L∞(X,Z)).
Let i0 ∈ I be such that for every i ≥ i0 the implication

fg 6= 0 ⇒ g ∈ im(ψi)

holds. Let V = {g ∈ G|fg 6= 0}. For every g ∈ V let g(i) ∈ Gi be a preimage of g. Let

Ai =
∑

g∈V fg · g
(i) and ∆i = AiA

∗
i . We have αi(Ai) = A. From Lemma 3.4 it is clear that

there is a uniform bound of the operator norms of the ∆i ∈ M(n × n, L∞(X) ∗vNGi). By
hypothesis and Lemma 3.7 we have

detL∞(X) ∗vNGi

(
Ai

)
≥ 1.

Let m ≥ 1. The assertion would follow from Lemma 3.2 provided we show that

(3.7) trN (GyX)(∆
m) = lim

i∈I
trL∞(X) ∗vNGi

(∆m
i ).

We can find i1 ≥ i0 in I such that for every h ∈ Gi1 with lh 6= 0 ∈M(n× n, L∞(Xi1 ×X))
in the finite linear combination ∆m

i1 =
∑

h lhh we have the implication

ψi1(h) = 1 ⇒ h = 1.

For i ≥ i1 the right hand side of (3.7) is stationary and equal to the left hand side. �
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3.7. Bernoulli actions.

Proof of Theorem 3.1 (6). For any countable set A denote by µA the product measure⊗
a∈A µ on XA. The σ-algebra of Borel sets in XG =

∏
g∈GX is the σ-algebra S gen-

erated by

B =
{∏

g∈G

Ug
∣∣Ug = X for almost all g ∈ G

}
.

Let A be the algebra generated by B. We say that a measurable function f : X → Z is A-
measurable if f−1(z) ∈ A for every z ∈ Z. Any set M ∈ A can be written as M = ∪nk=1Mk

with disjoint setsMk ∈ B. The setsM ∈ A have the property that there exists a finite subset
F ⊆ G with M = pr−1

F (prF (M)) where prF :
∏
g∈GX →

∏
g∈F X is the projection onto the

components of F . We denote with F (M) ⊆ G the smallest subset with this property. Let
R be the ring of all bounded, A-measurable functions XG → Z. For f ∈ R, we denote with
F (f) ⊂ G the (finite) union F (f) =

⋃
z∈Z

F (f−1(z)). Since any non-empty set in A has

positive measure, the ring R embeds into L∞(XG,Z). Since R is G-invariant, we obtain a
subring R ∗G ⊂ L∞(XG,Z) ∗G that is closed under the involution.

Let ψi : G → Gi, i ∈ I, be the structure maps of the limit. The map ψi induces a
measurable map

αi : X
Gi → XG, αi((xh))g = xψi(g).

If ψi|F (M) is injective for M ∈ A, then µGi
(α−1
i (M)) = µG(M). Since every f ∈ R is a

finite linear combinations of characteristic functions of sets in A, we also obtain that

(3.8)

∫

XGi

f ◦ αi(z)dµGi
(z) =

∫

XG

f(x)dµG(x)

provided ψi|F (f) is injective.
We obtain a ring homomorphism which respects the involutions:

βi : R ∗G→ L∞
(
XGi

)
∗Gi,

∑

g∈G

fg · g 7→
∑

g∈G

(fg ◦ αi) · ψi(g).

By applying this homomorphism entry-wise we obtain a ring homomorphism M(d× d′, R ∗
G) →M(d× d′, L∞(XGi) ∗Gi) that we denote by the same name.

Lemma 3.8. Let A ∈ M(d× d′, R ∗G) and ∆ = AA∗. Let ∆i = βi(A)βi(A)
∗. Let m ≥ 1.

Then

(3.9) trN (GyXG)(∆
m) = lim

i→∞
trN (GiyXGi )

(
∆m
i

)
,

and we have detN (GyXG)(A) ≥ 1.

Proof of lemma. By considering the matrix entries separately, the assertion reduces to show-
ing that for any set of 2m elements a1, . . . , am, b1, . . . , bm ∈ R ∗G we have

trN (GyXG)(a1b
∗
1a2b

∗
2 · · · amb

∗
m) = lim

i→∞
trN (GiyXGi )

(
βi(a1)βi(b1)

∗ · · ·βi(am)βi(bm)∗
)
.

Since βi is a ring ∗-homomorphism, the assertion reduces further to showing that for f ∈ R
and g ∈ G we have

trN (GyXG)(f · g) = lim
i→∞

trN (GiyXGi )(βi(f · g)).

Choose i0 ∈ I such that ψi|F (f)∪{1,g} is injective for i ≥ i0. Then (3.8) yields that

trN (GyXG)(f · g) = trN (GiyXGi )(βi(f · g))
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for i ≥ i0. This concludes the proof of (3.9). By Lemma 3.4 there is an upper bound
∥∥r∆m

i

∥∥
that is independent of i. By hypothesis, detN (GiyXGi )(βi(A)

m) ≥ 1. Finally, Lemma 3.2

implies that detN (GyXG)(A) ≥ 1. �

We need a general fact before we can complete the proof: Let f1, f2 . . . , fm ∈ L∞(X).

For every 1 ≤ i ≤ m let f
(n)
i ∈ L∞(X) be a sequence such that there is a constant C > 0

with ‖f
(n)
i ‖L∞(X) < C and limn→∞ ‖fi − f

(n)
i ‖L1(X) = 0. Then:

(3.10) lim
n→∞

‖f1 · · · fm − f
(n)
1 · · · f (n)

m ‖L1(X) = 0.

This follows from an iterated application of the corresponding assertion for m = 2. For
m = 2 we have:

∫

X

|f1(x)f2(x)− f
(n)
1 (x)f

(n)
2 (x)|dµ(x)

≤ ‖f2‖L∞(X)

∫

X

|f1(x)− f
(n)
1 (x)|dµ(x) + ‖f

(n)
1 ‖L∞(X)

∫

X

|f2(x) − f
(n)
2 (x)|dµ(x)

≤ ‖f2‖L∞(X) · ‖f1 − f
(n)
1 ‖L1(X) + C · ‖f2 − f

(n)
2 ‖L1(X)

n→∞
−−−−→ 0.

Now we can complete the proof of Theorem 3.1 (6). For any S ∈ S and any ǫ > 0 there
exists a set M ∈ A with µG(S△M) < ǫ. Since every element in f ∈ L∞(X,Z) is a finite
linear combination of characteristic functions, there exist functions f (n) ∈ R associated
to f such that

∥∥f (n)
∥∥
L∞(X)

≤ ‖f‖L∞(X) for all n ≥ 1 and
∥∥f − f (n)

∥∥
L1(X)

< 1/n. Let

A ∈ M(d × d′, L∞(X) ∗ G). Let B(n) ∈ M(d × d′, R ∗ G) be the matrix obtained from A

by replacing each entry
∑
fg · g with

∑
f
(n)
g · g. Let ∆ = AA∗ and ∆n = B(n)(B(n))∗. For

every m ≥ 1 we have

(3.11) trN (GyX)(∆
m) = lim

n→∞
trN (GyX)(∆

m
n ).

By considering matrix entries separately as in the proof of Lemma 3.8, this easily follows
from (3.10) and the G-invariance of the measure. By Lemma 3.4,

∥∥r∆m
n

∥∥ has an upper
bound independent of n. Lemma 3.8 and Lemma 3.2 complete the proof. �

4. Proofs of Theorems 1.9 and 1.10

The following two results are proved in first author’s book [20] for group von Neumann
algebras. We need them for arbitrary finite von Neumann algebras; the proof translates
literally to the general case.

Proposition 4.1 ([20, Theorem 3.35 (5) on p. 142]). Let A be a finite von Neumann algebra
with a fixed trace. Let φ∗ : C∗ → D∗ be a chain map of finitely generated Hilbert A-chain

complexes. Suppose that b
(2)
n (C∗) = b

(2)
n (D∗) = 0 and detA(cn), detA(dn) > 0 for all n ∈ Z.

Then the mapping cone cone∗(φ∗) is also a finitely generated Hilbert A-chain complex with
vanishing L2-Betti numbers and positive determinants of his differentials. Moreover, we
obtain the equation

ρ(2)
(
cone∗(φ∗)

)
= ρ(2)(D∗)− ρ(2)(C∗).
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Lemma 4.2 ([20, Lemma 3.41 on p. 146]). Let C∗ be a finitely generated Hilbert A-chain

complexes and γ∗ a chain contraction. Then b
(2)
n (C∗) = 0 for all n ∈ Z. If detA(cn) > 0 for

all n ∈ Z then

ρ(2)(C∗) = ln detA

(
(c∗ + γ∗)odd : ⊕n∈Z C2n+1 → ⊕n∈Z C2n

)
.

Definition 4.3. Let R be a ring with involution. A finitely generated based free R-module
is a finitely generated free R-module together with an isomorphism M ∼= Rn. A finitely
generated based projective R-module P is a finitely generated projectiveR-module P together
with an isomorphism P ∼= RnA where A ∈M(n× n,R) satisfies A2 = A and A∗ = A.

Remark 4.4. Consider a standard action Gy X and a measurable subset A ⊂ X such that
there is a finite subset S ⊂ G with S · A = X up to null sets. We can find (and fix for
the following discussion) measurable subsets Ag ⊂ A for each g ∈ S such that the sets gAg
partition X . We obtain the isomorphism of left χA

(
L∞(X,Z) ∗G

)
χA-modules

(4.1) φ : χA
(
L∞(X,Z) ∗G

) ∼=
−→

⊕

g∈S

χA
(
L∞(X,Z) ∗G

)
χAg

, φ(x) =
∑

g∈S

xgχAg
.

If ψ : F
∼=
−→ (L∞(X,Z) ∗G)n is a finitely generated based free module, then χAF becomes

a finitely generated based projective module over the ring χAL
∞(X,Z) ∗GχA by

χAF
χAψ
−−−→

(
χAL

∞(X,Z) ∗G
)n ⊕n

i=1⊕Sφ
−−−−−−→

(
χAL

∞(X,Z) ∗GχA
)|S|n

Q,

where is Q is the projection matrix

Q = diag((χAg
)g∈S)⊕ · · · ⊕ diag((χAg

)g∈S).

Let P
∼=
−→ (χAL

∞(X,Z)∗GχA)
nQ′ be a finitely generated based projective χAL

∞(X,Z)∗
GχA-module. Then L2(G y X |A) ⊗χAL∞(X,Z)∗GχA

P is isomorphic to the image of the
orthogonal projection

L2(Gy X |A)
n → L2(Gy X |A)

n, x 7→ xQ′,

and obtains the structure of a Hilbert N (Gy X |A)-module from this isomorphism.
Let F be a finitely generated based free module over the ring L∞(X,Z) ∗G. Since χA is

full, there is an obvious isomorphism

(4.2) χAL
2(Gy X)⊗L∞(X,Z)∗G F ∼= χAL

2(Gy X)χA ⊗χAL∞(X,Z)∗GχA
χAF.

If V is any Hilbert N (Gy X)-module, then χAV becomes a Hilbert N (Gy X |A)-module
(see [16, pp. 19-27]). Since L2(G y X) ⊗L∞(X,Z)∗G F is a Hilbert N (G y X)-module
through the free basis of F , the left hand side in (4.2) is a Hilbert N (G y X |A)-module.
On the other hand, the right hand side in (4.2) is a Hilbert N (Gy X |A)-module since χAF
is based projective. The isomorphism (4.2) is an isomorphism of Hilbert N (G y X |A)-
modules.

Lemma 4.5. Let G y (X,µ) be an essentially free, standard action and A ⊂ X a mea-
surable subset such there is a finite subset F ⊂ G with FA = X up to null sets. Then the
following statements are equivalent:

(1) Gy X satisfies MDC.
(2) For every homomorphism of finitely generated based projective L∞(X,Z)∗G-modules

f : P → Q the associated Hilbert N (G y X)-morphism L2(G y X) ⊗L∞(X,Z)∗G f
has determinant ≥ 1.
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(3) For every homomorphism of finitely generated based projective χAL
∞(X,Z) ∗GχA-

modules f : P → Q the associated Hilbert N (Gy X |A)-morphism
L2(Gy X |A)⊗χAL∞(X,Z)∗GχA

f has determinant ≥ 1.

Proof. (1) implies (2): Every homomorphism f : P → Q between finitely generated based
projective L∞(X,Z) ∗G-modules can be extended by zero to an homomorphism

P ⊕ P ′ f⊕0
−−−→ Q⊕Q′

of finitely generated based free modules. We have detN (GyX)(f) = detN (GyX)(f ⊕ 0), and
the latter is ≥ 1 since G satisfies MDC.
(2) implies (3): By a similar argument, it is enough to show that, for every homomorphism of
finitely generated based free χAL

∞(X,Z) ∗GχA-modules f : P → Q, the associated Hilbert
N (G y X |A)-morphism L2(G y X |A) ⊗χAL∞(X,Z)∗GχA

f has determinant ≥ 1. This is
equivalent to: For every matrix B ∈M(m×n, χAL∞(X,Z)∗GχA) we have detN (R)(B) ≥ 1.
We can view such B also as an element in M(m×n, L∞(X,Z)∗G). It is obvious (just check
on polynomials) that the spectral density function of B with respect to N (G y X) is just
µ(A) times the spectral density function with respect to N (G y X |A). Assuming (2), we
now see that detN (GyX|A)(B) ≥ 1 and

ln detN (GyX)(B) = µ(A) · ln detN (GyX|A)(B).

(3) implies (1): Let f : F → F ′ be a homomorphism of finitely generated based free
L∞(X,Z)∗G-modules. Since χA is full by Lemma 2.8, χAF and χAF

′ are finitely generated
(based) projective χAL

∞(X,Z) ∗GχA-modules. By (3) and Remark 4.4 the map

χAL
2(Gy X)⊗ f : χAL

2(Gy X)⊗L∞(X,Z)∗G F → χAL
2(Gy X)⊗L∞(X,Z)∗G F

′

has determinant ≥ 1. Thus, by Remark 2.14, the map L2(G y X) ⊗ f has determinant
≥ 1. By Lemma 3.5 this suffices to show that Gy X satisfies MDC. �

We omit the proof of the following lemma which is essentially the same as that of
Lemma 4.5.

Lemma 4.6. Let R be a standard equivalence relation on (X,µ). Let A ⊂ X be a measurable
subset such that χA is a full idempotent in ZR. Then the following statements are equivalent:

(1) R satisfies MDC.
(2) For every homomorphism of finitely generated based projective ZR-modules f : P →

Q the associated Hilbert N (R)-morphism L2(R)⊗ZR f has determinant ≥ 1.
(3) R|A satisfies MDC.
(4) For every homomorphism of finitely generated based projective ZR|A-modules f : P →

Q the associated Hilbert N (R)-morphism L2(R)⊗ZR|A f has determinant ≥ 1.

Proof of Theorem 1.9. By Theorem 2.3 there exist essentially free, standard actions G y

(X,µX) and H y (Y, µY ) that are weakly orbit equivalent. Let f : B → A be a weak
orbit equivalence between measurable subsets A ⊂ X and B ⊂ Y . By [10, Lemma 2.2] we
may assume that both actions are ergodic. The map f induces an isomorphism between
the restricted orbit equivalence relations R(G y X)|A and R(H y Y )|B . By hypothesis,
R(Gy X) satisfies MCD. That R(H y Y ) satisfies MDC, thus H satisfies the determinant
conjecture, follows by applying Lemma 4.6 twice provided that χA ∈ ZR(G y X) and
χB ∈ ZR(H y Y ) are full idempotents. For that, we prove in general that χA ∈ ZR is a
full idempotent if R is an ergodic standard equivalence relation and A ⊂ X is a measurable
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subset of positive measure: Let X =
⋃n+1
i=1 Ai be a Borel partition of X such that A1, . . . , An

all have the same measure as A and µ(An+1) ≤ µ(An). By ergodicity and [12, Lemma 2.1]
there are measure isomorphisms φi : X → X for each 1 ≤ i ≤ n+1 such that (x, φi(x)) ∈ R
for x ∈ X and φi(A) = Ai for 1 ≤ i < n and An+1 ⊂ φn+1(A). The characteristic function
χφi

of the graph of each φi is an element in ZR. From the properties of φi we obtain that

1 = χX =

n∑

i=1

χ∗
φi
χAχφi

+ χ∗
φn+1

χAχφn+1χim(φn+1).

Thus, χA is a full idempotent. �

Proof of Theorem 1.10. Let ZG and ZH be finite CW-models of the classifying spaces BG
and BH , respectively. By Theorem 2.3 there exist essentially free, standard actions G y

(X,µX) and H y (Y, µY ) that are uniformly weakly orbit equivalent. Let f : B → A be
a uniform weak orbit equivalence between measurable subsets A ⊂ X and B ⊂ Y . It in-
duces a trace-preserving ring isomorphism f∗ : χAL

∞(X,Z) ∗ GχA → χBL
∞(Y,Z) ∗ HχB

(Lemma 2.9) which extends to an isometry f∗ : L2(G y X |A) → L2(H y Y |B). By
assumption, G satisfies MDC. Because of the previous ring isomorphism and by applying
Lemma 4.5 twice it follows that H y Y satisfies MDC; in particular, H satisfies the deter-
minant conjecture.

The cellular chain complex Ccell
∗ (Z̃G) of the universal cover Z̃G is a finite based free ZG-

resolution of Z. By successively applying (2.1) and (2.2) to the differentials of l2(G) ⊗ZG

Ccell
∗ (Z̃G), we obtain that

ρ(2)
(
χAL

2(Gy X)⊗ZG C
cell
∗ (Z̃G)

)
=
ρ(2)(G)

µX(A)
.

The χAL
∞(X,Z) ∗GχA-chain complex

C(G)∗ := χAL
∞(X,Z) ∗G⊗ZG C

cell
∗ (Z̃G)

is a finite resolution by based projective modules of χAL
∞(X,Z) = L∞(A,Z) by Lemma 2.6

and Lemma 2.8. Furthermore, we define:

C(G)
(2)
∗ := L2(Gy X |A)⊗χAL∞(X,Z)∗GχA

C(G)∗.

Since χA is full (Lemma 2.8),

C(G)
(2)
∗

∼= χAL
2(Gy X)⊗ZG C

cell
∗ (Z̃G).

Hence,

ρ(2)
(
C(G)

(2)
∗

)
=
ρ(2)(G)

µX(A)
.

By replacing Gy X by H y Y and A by B, we define C(H)∗ and C(H)
(2)
∗ in an analogous

fashion. A similar discussion as before applies; so C(H)∗ is a finite projective resolution of
L∞(B) over the ring χBL

∞(Y,Z) ∗HχB, and

ρ(2)
(
C(H)(2)

)
=
ρ(2)(H)

µY (B)
.

It remains to prove that

(4.3) ρ(2)
(
C(G)(2)

)
= ρ(2)

(
C(H)(2)

)
.
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Via the ring isomorphism f∗ we obtain χBL
∞(Y,Z)∗HχB-module structures on C(G)∗ and

indicate this by writing f∗(C(G)∗). So f∗(C(G)∗) is a finite projective resolution of L∞(B)
over the ring χBL

∞(Y,Z) ∗HχB. We have

ρ(2)
(
L2(H y Y |B)⊗χBL∞(Y,Z)∗HχB

f∗(C(G)∗)
)
= ρ(2)

(
C(G)

(2)
∗

)
.

By the fundamental lemma of homological algebra there exists a χBL
∞(Y,Z) ∗HχB-linear

chain homotopy equivalence

h∗ : f∗(C(G)∗) → C(H)∗.

Let cone∗(h∗) denote the mapping cone of h∗ [20, Definition 1.33 on p. 35]; each conei(h∗)
is a finitely generated based projective χBL

∞(Y,Z) ∗ HχB-module. The chain complex
L2(H y Y |B) ⊗χBL∞(Y,Z)∗HχB

cone∗(h∗) coincides with the cone of the Hilbert-N (H y

Y |B)-chain map

h
(2)
∗ : L2(H y Y |B)⊗χBL∞(Y,Z)∗HχB

f∗(C(G)∗) → C(H)
(2)
∗

induced by h∗. Proposition 4.1 implies

ρ(2)
(
cone∗(h

(2)
∗ )

)
= ρ(2)

(
C(H)

(2)
∗

)
− ρ(2)

(
L2(H y Y |B)⊗χBL∞(Y,Z)∗HχB

f∗(C(G)∗)
)

= ρ(2)
(
C(H)

(2)
∗

)
− ρ(2)

(
C(G)

(2)
∗

)
.

It remains that show that ρ(2)(cone∗(h∗)) = 0: Since cone∗(h∗) is acyclic, there exists
a chain contraction δ∗. Let us denote the differentials of the χBL

∞(Y,Z) ∗ HχB-chain
complex cone∗(h∗) by c∗ and the induced differentials of the Hilbert N (G)-chain complex

cone∗(h
(2)
∗ ) by c

(2)
∗ . Lemma 4.2 tells us that

ρ(2)
(
cone∗(h

(2)
∗ )

)
= ln detN (HyY |B)((c

(2)
∗ + δ

(2)
∗ )odd)

with δ
(2)
∗ being the chain contraction induced by δ∗. Notice that

(c∗ + δ∗)odd : ⊕n∈Z cone2n+1(h∗) → ⊕n∈Z cone2n(h∗)

is an isomorphism because (c∗+δ∗)odd◦(c∗+δ∗)even is given by a a lower triangle matrix with
1 on the diagonal (compare [20, Lemma 3.40 on p. 145]). By Lemma 4.5, for every homomor-
phism of finitely generated based projective χBL

∞(Y,Z) ∗HχB-modules, the determinant
of the induced morphisms of Hilbert N (H y Y |B)-modules is ≥ 1. Since the determi-
nant is multiplicative for isomorphisms [20, Theorem 3.14 on p. 128], we conclude that any
isomorphism of Hilbert N (H y Y |B)-modules which comes from a χBL

∞(Y,Z) ∗ HχB-

isomorphism has determinant 1. In particular, we obtain detN (HyY |B)((c
(2)
∗ + δ

(2)
∗ )odd) = 1

and ρ(2)(cone∗(h
(2)
∗ )) = 0. �

5. A cautionary example

In Gaboriau’s proof [13] of the orbit equivalence invariance of L2-Betti numbers one
encounters the following situation: One obtains a homotopy equivalence between Hilbert
N (R)-complexes C∗ and D∗ which is not bounded – unless the given orbit equivalence
is uniform. To obtain an estimate (and by symmetry an equality) between the L2-Betti

numbers of these complexes, one constructs increasing sequences of subcomplexes C
(k)
∗ ⊂ C∗

and D
(k)
∗ ⊂ D∗ such that for every n ≥ 0 the closures of

⋃
k C

(k)
n and

⋃
kD

(k)
n are Cn and

Dn, respectively, and bounded homotopy retracts C
(k)
∗ → D

(k)
∗ for every k ∈ N. The needed
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continuity property for the L2-Betti numbers boils down to the following (easy) continuity
property of the von Neumann trace:

Let A be a finite von Neumann algebra and M a finitely generated Hilbert A-module.
Let f : M → M be a positive A-morphism and pk : M → M a sequence of A-equivariant
projections that weakly converge to the identity. Then

trA(f) = lim
k→∞

trA(f ◦ pk).

To be able to drop the uniformity assumption in Theorem 1.10 one would want, among
other things, a similar continuity property of the Fuglede-Kadison determinant. The fol-
lowing theorem, whose proof we omit, states such – but with an important, restrictive
assumption on the kernels:

Theorem 5.1. Let f : U → V be a morphism of finitely generated Hilbert A-modules. Let
pk : U → U for k ∈ N be a sequence of projections with ker(f) ⊆ im(pk) ⊆ im(pk+1) that
weakly converges to the identity. Then

detA(f) = lim
k→∞

detA(f ◦ pk).

Next we will show that the condition ker(f) ⊂ im(pk) is necessary. In our example, A
is L∞([0, 1]), and f is the projection onto the second factor pr2 : L

2([0, 1]) ⊕ L2([0, 1]) →
L2([0, 1]). We drop the subscript L∞([0, 1]) in the notation of the trace and the determinant.
Obviously, det(pr2) = 1. Let ǫk for k = 1, 2, . . . be any sequence of positive real numbers.
Consider the morphism of finitely generated Hilbert L∞([0, 1])-modules

uk : L
2([1− 21−k, 1− 2−k]) → L2([0, 1])⊕ L2([0, 1])

φ 7→
( ǫk√

1 + ǫ2k
· φ,

1√
1 + ǫ2k

· φ
)
,

where φ ∈ L2([0, 1]) is obtained from φ by extending by zero on the complement of [1 −
21−k, 1− 2−k]. Consider the morphism of finitely generated Hilbert L∞([0, 1])-modules

vk : L
2([0, 1− 21−k])⊕ L2([0, 1− 21−k]) → L2([0, 1])⊕ L2([0, 1])

(φ1, φ2) 7→
(
φ1, φ2

)
.

The morphisms uk and vk are isometric L∞([0, 1])-embeddings, and im(uk) and im(vk) are
othogonal to one another. Then

Ak = im(uk)⊕ im(vk).

is an increasing sequence of closed subspaces. Since

dim(Ak) = 2 · (1 − 21−k) + 21−k − 2−k
k→∞
−−−−→ 2,

the sequence of projections defined by

pk : L
2([0, 1])⊕ L2([0, 1]) → L2([0, 1])⊕ L2([0, 1]), im(pk) = Ak
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weakly converges to the identity. Furthermore, we have

det(pr2 ◦pk) = det(pr2 |Ak
) = det

(
pr2 ◦(uk ⊕ vk)

)

= det
(
(pr2 ◦uk)⊕ (pr2 ◦vk)

)

= det(pr2 ◦uk) · det(pr2 ◦vk)

= det
( 1√

1 + ǫ2k
· idL2([1−21−k,1−2−k])

)

· det
(
pr2 |L2([0,1−21−k])⊕L2([0,1−21−k])

)

=
( 1√

1 + ǫ2k

)dim(L2([1−21−k,1−2−k]))

· 1

=
( 1√

1 + ǫ2k

)21−k−2−k

=
(
1 + ǫ2k

)−2−k−1

.

If we choose ǫk =
√
k2k+1 − 1, then we obtain that

det(pr2 ◦pk) =
1

k
for k = 1, 2 . . . ;

det(pr2) = 1.
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