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INTRODUCTION

The Wall finiteness obstruction of a finitely dominated CW complex X is
an element [X] eI?O(Z[n,(X)]) of the reduced projective class group such
that [X]=0 if and only if X is homotopy equivalent to a finite CW com-
plex. The finiteness obstruction of a pointed homotopy idempotent p ~ p*:
Y — Y of a finite CW complex Y is an element [Y, ple Ko(Z[n,(Y)]) such
that [Y, p]=0 if and only if (Y, p) is split by a finite CW complex. The
explicit formula of Ranicki [18] for a fg. (finitely generated) projective
Z[m,(X)]-module representing [X] is here generalized to an explicit
formula for a f.g. projective Z[7,(Y)]-module representing [ Y, p].

Let 4 be an associative ring with 1. The image of a projection of
a fg. free A-module p=p* 4" > A" is a fg projective A-module P=
im(p: A"~ A’) with a projective class [P] e Ko(A). The projective class of a
finite chain complex C of f.g. projective A-modules is defined in the usual
way by

[C]= 2 (=) [C,1eKy(A).
r=0
The reduced projective class [(] eI?O(A)zcoker(Ko(Z) — Ky(A4)) 1s such
that [C]=0 if and only if C is chain equivalent to a finite complex of f.g.
free 4-modules.
A chain homotopy projection (D, p) is a chain complex D together with
a chain map p: D— D for which there exists a chain homotopy p? ~ p:
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D — D. A splitting (C, f, g) of (D, p) is a chain complex C together with
chain maps /1 C— D, g:D— C such that gf ~1:C—-C, fg~p:D—D.
Splittings always exist (Liick [13]). Given a chain homotopy projection
(D, p) with D a finite chain complex of f.g. projective A-modules we define
a projective class invariant

[D, pl1=[CleKy(4)

for any splitting (C, f, g). The reduced projective class [D, p] e K,(A) is
such that [D, p]=0 if and only if (D, p) is split by a finite complex of f.g.
free A-modules.

A near-projection of an A-module M is an endomorphism p: M — M
such that (p(1—p))¥=0: M — M for some integer N >0, in which case
standard algebra leads to a projection

po=(p"+(1=p)") "' pY MM

In fact, p,, is the unique projection of M such that pp,, = p,,p and p— p,, 1s
nilpotent.

A finite domination (D, f, g) of an A-module chain complex C is a finite
chain complex D of f.g. free A-modules together with chain maps f: € — D,
g: D — C such that there exists a chain homotopy #: gf ~1:C— C. An
A-module chain complex is finitely dominated if and only if it is chain
equivalent to a finite complex of f.g. projective 4-modules. The instant
finiteness obstruction of Ranicki [18] is an explicit formula in terms of
(D, f. g) and a choice of h: gf ~ | for a projection

X=X*D,=YD,—-D,

such that the projective class of C is
[C]=[im(X)]— [Doga] € Ko(A),

with D =D, ®D;®Ds® ---. (See Proposition 6.1 below for the actual
formula.) Our main result is a generalization of the instant finiteness
obstruction to chain homotopy projections:

THEOREM. Given a chain homotopy projection (D, p) with D a finite
chain complex of f.g. projective A-modules and a chain homotopy q: pi=p:
D — D there is defined a near-projection

p —d 0
—-q t—p d
X: :Dm:DO@Dl@DZ@'”_—)Dm
0 qg »p
=D,®D,®D,® -
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such that

(D, p]=[im(X,:D,—D,)]—[Dosal € Ko(A).

w

The projective class of a finitely dominated CW complex X is defined by
[X]=[C(X)] e Ky(Z[ 7, (X)]),

with C(X) the cellular chain complex of the universal cover X. The Wall
finiteness obstruction is the reduced projective class [X] e Ry(Z[n,(X)]).

A homotopy idempotent (Y, p) is a space Y together with a map
p: Y= Y such that there exists a homotopy p*~p: Y —> Y. A splitting
(X, /, g) of (Y, p)is a space X together with maps f/: X —» Y, g: ¥ — X such
that gf ~1: X - X, fg~ p: Y - Y. Hastings and Heller [8] have shown
that every homotopy idempotent (Y, p) with ¥ dominated by a finite CW
complex admits a splitting (X, £, g), in which case X is also dominated by a
finite CW complex. In Section4 we define the projective class of a
homotopy idempotent (Y, p) with Y finitely dominated

LY, p1=/[X] € Ko(Z[7,(Y)])

using any splitting (X, f, g) of (Y, p). The reduced projective class
[Y, ple K(Z[n,(Y)]) is such that [ Y, p]=0 if and only if (Y, p) is split
by a finite CW complex. In the case of a pointed homotopy idempotent
(Y, p) we express the projective class in terms of the chain homotopy idem-
potent (C(Y), p) defined over Z[im(p,)], with ¥ the regular cover of Y
associated to the normal subgroup ker(p,:n,(Y)—n,(Y)) S n,(Y), such
that the group of covering translations is im(p,:7,(Y)—> n,(Y)). The
inclusion im(p,)—7n,(Y) is a split injection inducing a split injection
Ko(Z[im(p,)]) = Ko(Z[7((¥)]) sending [C(Y), p] to [, p]. For any
pointed splitting (X, /, g) of (Y, p) there are identifications

Y=g¢*X, n,(X)=im(p,),
[X]1=[C(Y), pleK(Z[n,(X)])=Ko(Z[im(p,)]),

with X the universal cover of X.

By way of application of the Theorem consider a Hurewicz fibration
F— E— B with the base B and the fibre F dominated by finite CW com-
plexes, in which case the total space E is also dominated by a finite CW
complex. It was shown in Liick [14] that the homotopy action of the loop
space 2B on the covering F of F pulled back from the universal cover E of
E determines a morphism of rings

U: Z[m(B)] — Ho(Hom . y1(C(F), C(F)))”
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with the following property: if
[B] = [im(p)] — [Z[7\(B)) ] Ko(Z[7:(B)])

for a projection p=rp= Z[n,(B)) = Z[=\(B)) (r, 529) then ~the chain
homotopy class of chain homotopy projections U(p): C(F)" — C(F)" is such
that

[E]=[C(Fy, Up)]— [C(FyJe Ky(Z[m(E)])

The original instant finiteness obstruction can be used to construct a fg.
projective Z[n,(E)]-module representing [C(F)'], and the Theorem can
be used to do the same for [C(F)", U(p)].

Other applications require a greater algebraic generality, so that in the
main body of the paper we shall be working with chain homotopy projec-
tions in any additive category. For example, lower K-theory in the
treatment of Pedersen [17] works with chain complexes in the additive
category %;(A4) of Z'-graded A-modules and bounded morphisms.

The second author would like to thank the Sonderforschungsbereich 170
“Geometrie und Analysis” at the Mathematics Institute of Gottingen
University for the opportunity to spend several months there in 1986,
during which this paper was written.

Contents. Introduction. 1. Splitting idempotents. 2 Chain homotopy projections. 3. Pro-
jective class. 4. Geometric homotopy projections. 5. Lifting idempotents. 6. The instant projec-
tive class. 7. Torsion.

1. SPLITTING IDEMPOTENTS

We bring together general results on the idempotent completion (¢ of an
additive category (¢ and the splitting of idempotents.

A projection (D, p) in (0 is an endomorphism p: D — D of an object D in
¢t such that p?=p: D — D, or equivalently p(1— p)=0:D—D.

The idempotent completion (7 of (1 is the additive category with objects
projections (D, p = p* D - D) in (T and morphisms

f:(D, p)—~(E. q)

defined by morphisms f: D — E in a with qfp=f:D— E. The identity
morphism of an object (D, p) in (7 to itself is defined by

p: (D, p) = (D, p).

The full embedding



s

CHAIN HOMOTOPY PROJECTIONS 365

is used to identify ¢¢ with a full subcategory of (1. Every object (D, p) in a
is a direct summand of the object (D,1) in (¢ <dl, with inverse
isomorphisms

(D, p)® (D, 1 —p)z‘("——‘;%zw, 1).
I—p

ExampLE 1.1, If & = {fg. free A-modules} for a ring A there is defined
an equivalence of additive categories

(i - {f.g. projective 4-modules };
([4"1q p)%im(p: AI'IZ__)ANI).

A splitting (C, f. g) of a projection (D, p) in (7 is an object C together
with morphisms

f:C-D, gD-C

such that gf=1: C-> C, fg=p: D - D.

ProPOSITION 1.2. (i) A splitting (C, f, g) of a projection {D, p) in (1 is
the same as a pair of inverse isomorphisms in (X

(D, p)===(C, 1).
(ii) For any two splittings (C, f, g), (C', f', g') of a projection (D, p)
in (T there are defined inverse isomorphisms
gfC- ', gf ' - C.

Proof. Trivial. |

An additive category (7 is idempotent complete if the embedding (7 < a
is an equivalence of categories.

PROPOSITION 1.3.  An additive category (U is idempotent complete if and
only if every projection (D, p) in (U splits.

Proof. Trivial.

In particular, the idempotent completion ( is idempotent complete,
since every projection ¢: (D, p) — (D, p) in (I has a splitting ((D, q), ¢, q)
in .

The additive category (I is countable if for every object D in (T the
countable direct sum Y ; D is defined in .
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Given a countable category (¢ and a projection (D, p)ind define the
Eilenberg-Freyd direct sum system in

(}: D, 1>7zz<z D, 1) = (D, p)
4]

J 0

DODE®DD® S>D®DO®D® -

An additive category (( is complementary if for every projection (D, p) in
(¢ which admits a splitting (C, f, g) there exists a splitting (B, 1,]) of the
projection (D, 1—p). Equivalently, any morphisms f: C =~ D, g:D—Cin
(¢ such that gf =1:C—~ C can be extended a direct sum system

B::If—iquf;—LC.
7

pProposiTION 1.4, A countable complementary additive category a is
idempotent complete.

Proof. Given 2 projection (D, p) in (1 let f, g, i, j be the maps in the
Eilenberg-Freyd direct sum system, SO that in particular the projection
(gD t—fg= if) is split by (¢ D. i J). Since (1 is complementary the
projection
(So.se=1 =@ Y0)
0 1

splits in (¥. A splitting (B, h, k) of (¢ Ds 1—/2) determines the splitting
(B, fh. kg) of (D. p)- B
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Proposition 1.4 is a reformulation of the result of Freyd [6] on the
splitting of idempotents in a countable complementary category, such as
the stable homotopy category.

ExaMPLE 1.5. The idempotent complete additive category I =
{projective 4-modules} defined for any ring A is countable and com-
plementary. The splitting of a projection (F, p) in (¢ given by
Proposition 1.4 corresponds to the A-module isomorphism of the Eilenberg
swindle

POY F>Y F;

0 0

(X, Yo» Vis o) =2 (x+ (L= p)(yo) p(ro) + (1= p)(>3y), )

2. CHAIN HoMOTOPY PROJECTIONS

Given an additive category (@ let 2(() denote the derived category, the
additive category with objects chain complexes in
C:.-—C,-5%C, ,— - —C, —4 C,,

and morphisms the chain homotopy classes of chain maps.
In dealing with chain complexes and chain maps we adopt the sign
convention that a chain homotopy

gf=f1C-D
is such that
f'—f=dpg+gdc::C.—>D,.
The sign convention for the algebraic mapping cone C(f) of a chain map

fiC->Dis

d A .

degyy= ( OD —ld )I cf,=D@&C -Cf),_ =D, ®C, _,.
-

PrROPOSITION 2.1.  The derived category Z() is complementary.

Proof. Let (D, p) be a projection in Z(¢7) with a splitting (C, /1, g). For
any representative chain maps in (7

fiC-D, g D—->C
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there exist chain homotopies
h:gf~1:.C—-C, kifg~p:D—D.
The algebraic mapping cone

B=C(f C—D)

and the chain maps

i=(1~fg fh):B-D, j=G)D~B

are such that there are defined chain homotopies

(O 0>:ji=<1_fg M <188
g —h 0 0

—kijj=1—fg~1—p:D—>D,

and hence a splitting (B,i,j) of (D,1—p) in (. Now apply
Proposition 1.4. |1

PROPOSITION 2.2. If (X is countable then Z((U) is idempotent complete.

Proof. Z((() is complementary (by Proposition 2.1) and countable,
and hence idempotent complete by Proposition 1.2. [

A domination (D, f, g) of a chain complex C in ({ is a chain complex D
together with chain maps

fiC—-D, gD-C

such that there exists a chain homotopy #: gf ~1: C— C.

A chain homotopy projection (D, p) is a chain complex D in (7 together
with a self chain map p: D — D such that there exists a chain homotopy
q:p°~p:D—D.

EXaMPLE 2.3. Given a chain complex C in (¢ and a domination
(D, f, g) of C there is defined a chain homotopy projection (D, p= fg:
D — D), with a chain homotopy

fhg: p*~p: D - D.

A splitting (C, f, g) of a chain homotopy projection (D, p) is a chain
complex C with a domination (D, f, g) such that there exists a chain
homotopy fg ~p: D — D. This is just a splitting in Z((7) together with a
choice of representative chain maps.
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PrROPOSITION 2.4. If (U is countable every chain homotopy projection
(D, p) in A admits a splitting (C, f, g).

Proof. Immediate from Propositions 1.3, 2.2. |

Remark 2.5. The splitting of chain homotopy idempotents of
Proposition 2.4 was first obtained in Liick [13] by the following explicit
construction. Given a chain homotopy projection (D, p) in a countable
additive category (Z define chain maps

!
!

:DﬂiD=D@D@D@”H
o
g=(p 0 0 ---):ZD:D@D@D@..._,Q
4

. p 1—p 0 - \=
i= >YD=D®D®D® --- - ) D

=D®D®DD -,
1—p p 0
=\ o T, fEeerenene . atn
=D®DAD® ---,
such that

gf=p:D->D.

If p: D— D were an actual projection these chain maps would define the
Eilenberg-Freyd direct sum system of Section 1

<i D. 1>1—_/i(20 1>7%—L(D, )
0 0 :

Choosing a chain homotopy

g pi~p:D->D
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let

s=pqg—qp:D, > D, ..

Define chain homotopies

a:gi:O:ZD—»D, ﬂ:ji:l:ZD—»ZD,
0 0

0

it fe=~1:Y. DY D,

0 Q

by

1=(—q 0 0 -):Y.D,=D,®D,®D,® - >D,..,
0

2¢ —q O
o 2 — -* S
g 4 M 4 .Y D,=D,®D,®D,® --- =Y. D,
0 0

0 —q 24

=Dr+l®Dr+l@Dr+l® T

g9 —q 0
. 2 _ e -
y= |4 9 TV Yp=D,@D,®D@ - 2D
0 0

0 —g 29
:Dr+1®Dr+l@Dr+l®
Define a splitting (C', /', g') of (D, p) by

C:CQiDaiD)

0 (4]
y o (. «
[ =(g—a):C —-D, g=l, D C,
with

f'g=gf=pD—-D.

There is defined a chain homotopy

1 fa+if—yi\/7 0
p=(' L a1 C
: (0 1 >(1 —B) gf =1~ C
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which can be expressed as

/ - 0 ' - - / o o
R D T
J -B 0 0 0 0
with
Sgs  —dgs  gs

o

:‘JD
Sgs —10gs  10gs - )&

0= —(fa+if—yi)p= —9¢gs  10gs —5gs

=D, &D,_ ®&D,_ ,® --- “"ZDrH:DrH@DrH@DrH@ T
0

2ps—2s  —3ps+s .
d=(fa+if—yi)j= | —3ps+s 6ps—3s - |:3.D,
: : 0

=D,®D,® - —») D, ,=D, ,®D,,,® -~
0

3. PROJECTIVE CLASS

In dealing with a pair of additive categories (%4, (') we assume that (7 is
a full subcategory of 4, and that # is countable (=has countable direct
sums). We recall the (I-finiteness obstruction theory for (Z-finitely
dominated chain complexes in %4, and interpret it in terms of chain
homotopy projections.

A chain complex C is finite if there exists an integer n>0 such that
C,=0for r>n.

The class group K,((t) of an additive category (1 is the abelian group
with one generator [A] for each isomorphism class of objects A4 in (,
subject to the relations

[A® A )=[A]+[A 1€ Ky(X).

The class of a finite chain complex C in (7 is the chain homotopy invariant
defined as usual by

oS

[C1= ) (=) [CIeKyA)

r=0

A domination (D, f, g) of a chain complex C in # is (-finite if D is a
finite chain complex in (Z.
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ProOPOSITION 3.1. (i) A chain complex C in B is (-finitely dominated if
and only if the chain complex (C, 1) in @ is chain equivalent to a finite chain
complex (E, p) in (L.

(ii) The projective class of an (t-finitely dominated chain complex C
in #B is defined by
[C1=[E pleKy)

for any finite chain complex (E, p) in A chain equivalent to (C,1). The
projective class is such that [C]eim(Ko(l) — Ko((T)) if and only if C is
chain equivalent to a finite chain complex in (L.

Proof. See Ranicki [18]. |

A chain homotopy projection (D, p) in # is (U-finite (resp. (X-finitely
dominated) if the chain complex D is (¢-finite (resp. ({-finitely dominated).

PROPOSITION 3.2.  Every (l-finitely dominated chain homotopy projection
(D, p) in B admits a splitting (C, 1. g) with C an (l-finitely dominated chain
complex in %, and for any two splittings (C, f, g), (C', [, g') there are
defined inverse chain equivalences gffC-C,gf C-C.

Proof. Immediate from Proposition 24. 1

DerINITION 3.3, The projective class of an (& -finitely dominated chain
homotopy projection (D, p) in 4 is

[D, p]=[CTeKo(cD),
for any splitting (C, f, g) of (D, p) in A.

The projective class has the following properties:

PROPOSITION 34. (i) [D, pleim(Ko(()— Ko(1)) if and only if
(D, p) admits a splitting (C, 1, &) with C (U-finite.

(ii) If (B, i, j, k) is a domination of D with B (l-finitely dominated
[D, p]=[B.ipjle Ko(CD).
(iii) If p=p* D — D is a projection of a finite chain complex D in a

[D,pl=7Y (=)D, pleKo(c),

Proof. (i) By Proposition3.1, C is chain homotopy (Z-finite if and
only if [C]eim(Ko() = Ko(CT)).
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(ii) A splitting (C, £, g) of (D, p) determines a splitting (C, if, gj) of
(B, ipj), so that

[D, p1=L1C1=1[B, ipjle Ko(CD).

(i) For any spllttlng (C, f. g) of (D, p) in # the chain complex (C, 1)
is chain equivalent in 4 to the chain complex (D, p) in a, so that

[CT1=D, p1=Y (=) [D,. pleKo(cD). I

r=0
ExaMPLE 3.5. Given a ring A4 let
(A, ()= ({free A-modules}, {f.g. free A-modules}),

abbreviating (Z-finite to finite. An A-module chain complex C is finitely
dominated if and only if it is chain equivalent to a finite complex P of f.g.
projective 4-modules, in which case

[C]= S (—) [P, ]eKo(ch) =Kyl A)

The projective class [D, ple Ky(A4) of a finitely dominated chain
homotopy projection (D, p) in 4 is such that [D, p]eim(Ky(Z) — K(4))
if and only if (D, p) admits a splitting by a finite complex of fg. free
A-modules.

4, GEOMETRIC HOMOTOPY PROJECTIONS

We now connect the algebra and the topology.
A domination (Y, f, g) of a space X is a space Y together with maps

XY, gY-X

such that there exists a homotopy A: gf ~1: X —» X.

A homotopy idempotent (Y, p)is a space Y together with a map p: Y - Y
such that there exists a homotopy p?=~p:Y— Y. For example, a
domination (Y, f, g) determines a homotopy idempotent (Y, fg).
splitting (X, f, g) of a homotopy idempotent (Y, p) is a space X together
with a domination (Y, f, g) such that there exists a homotopy fg =~ p:
Y — Y. A homotopy idempotent (Y, p) is pointed if the space Y is connected
and pointed, and there exists a pointed homotopy p?~p: Y — Y. Similarly
for splittings.
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ProPOSITION 4.1 (Hastings and Heller [8]). Every pointed homotopy
idempotent (Y, p) with Y a CW complex admits a pointed splitting (X, f, g)-

Proof. Define the mapping telescope of p: Y — Y, the identification
space

X=(Yx[0, 11xN)/{(p(y),0,n)=(y1,n+ ) yeY,neNj,
with N = {0, 1, 2, ..}. Given a pointed homotopy
gpri=p Y=Y
with g(y, 0)= p(»), q(y, )=p(y) (¥ € Y) there are defined pointed maps

fX-Y, (yntn) gyt
g Y- X, y—(1,0,0)

such that

fe=p’=p Y-V,

and such that gft X - X is a pointed homotopy equivalence by Whitehead’s
theorem, since it induces isomorphisms of fundamental groups and the
homology groups of the universal covers. It follows that there exists a
pointed homotopy gf ~ 1: X - X, since

gf =~ (gf) ' (geNeef) '= (gf) " g(f2)fe) f(gf)
~(gf) 'g(fe) flgf) = XX

so that there exists a pointed splitting (X, g 1

Remark 42. The use of the infinite mapping telescope in the proof of
Proposition 4.1 corresponds to the countable direct sum in the Eilenberg-
Freyd direct sum system.

Remark 4.3. Dydak [3] and Freyd and Heller [7] have constructed
an unpointed homotopy idempotent of an infinite-dimensional CW com-
plex which does not split. Hastings and Heller [9] have shown that
unpointed homotopy idempotents of finite-dimensional CW complexes
split. Every finitely dominated CW complex is homotopy equivalent to a
finite-dimensional (but not necessarily finite) CW complex. Thus for finitely
dominated Y every unpointed homotopy idempotent (Y, p) splits.

Let X be a connected CW complex, and let X be a regular cover of X
with group of covering translations 7. The cellular chain complex C(X)isa
free Z[ n]-module chain complex which is finite (resp. finitely dominated) if
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X is finite (resp. finitely dominated). The projective class of a finitely
dominated X is defined as usual by

[XT=[C(X)] e Ko(Z[m,(X)]),

with X the universal cover of X. The reduced projective class [X]e
I?O(Z[n,(X)]) is the Wall finiteness obstruction, such that [X] =0 if and
only if X is homotopy equivalent to a finite CIW complex. See Ferry and
Ranicki [5] for an exposition of finiteness obstruction theory in terms of
homotopy idempotents on finite CW complexes.

Let Groups be the category of groups. Two morphisms £, fim—pin
Groups are homotopic if there exist inner automorphisms a: 7 > 7w, f: p - p
such that ' = Bfx, which we denote by

f=f"mop.
Following Freyd and Heller [7] and Hastings and Heller [8] let
Ho(Groups) be the homotopy category of groups, with objects groups and
morphisms the homotopy classes of morphisms in Groups. Pointed maps
of pointed connected spaces which are unpointed homotopic induce
homotopic maps on fundamental groups. An unpointed homotopy idem-
potent (Y, p) with Y a pointed connected space induces a projection
Py (Y) > (YY) in Ho(Groups), with a homotopy
(Pe)* > pm(Y)>m(Y).

Inner automorphisms induce the identity in the projective class group, so
that there is defined a functor

Ky: Ho(Groups) — Abelian Groups; = Ky(Z[n]).

Given an unpointed homotopy idempotent (¥, p) with ¥ a pointed con-
nected finitely dominated CW complex there exists by Remark 4.3 an
unpointed splitting (X, f, g) with X a pointed connected finitely dominated
CW complex, and with the maps /> X' — Y and g: Y - X pointed. However,
there may not exist a pointed homotopy fg~ p: Y- Y. The projection
(7, (Y), p,) is split in Ho(Groups) by (7,(X), J%> &4), so that the projec-
tion (Ko(Z[rn,(Y)]), Py) is split in Abelian Groups by (K(Z[=,(X)]),
s> &4) Thus f*:KO(Z[n,(X)])—»KO(Z[nl(Y)]) is a split injection onto
the image of the projection Pe=(p)% Ko(Z[n(Y)]) > Ko(Z[ 7, (Y)]).

DEFINITION 4.4, The projective class of an unpointed homotopy idem-
potent (Y, p) of a finitely dominated CW complex Y is defined for any
splitting (X, f; g) by

LY, pl = f[X] eim(f*: Ko(Z[n(X)]) - Ko(Z[m (Y)]))

=im(p, = (p.)" Kf(Z[7,(Y)]) = Ko(Z[7,(Y)])),
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the image of the projective class [X]1eKy(Z[n,(X)]) under the split
injection f,.

The projective class has the following properties:

PROPOSITION 4.5. The projective class [Y, p] =f,[X]eKo(Z[m\( )
is independent of the choice of splitting (X, f. g). The reduced projective class

(Y, pl=/filX]e Ko(Z[®,(Y)]) is such that [Y, p1=0 if and only if there
exists a splitting (X, f, g) with X a finite CW complex.

It should be possible to express the projective class [Y, p] in terms of
the Z-module chain map j: C(¥)— C(¥) induced by a lift p: ¥ — ¥ of
p: Y= Y to the universal cover Y of Y, for which

lgy) = pul@(FIeC(T)  (gem(Y). reC(T))

with p,: 7, (Y) = n,(Y) the morphism in Groups induced by p: Y- Y and

5 such that p(5)=5 for a lift he ¥ of the basepoint be Y. If h: p*>~ p:
Y - Y is an unpointed homotopy and w € 7, ( Y) is the track of be Y then in
Groups

(p*)Z:C(W) Py T[I(Y)_’HI(Y)’
with
c(w):m (Y) > (Y) g—wgw L

A lift 7: Y xI— Y of the homotopy h: Y xI—Y determines a Z-module
chain homotopy

B pr~ i, p C(Y) > C(Y),
with
i C(Y)-C(Y)y, oy

o) = (py ) (g) A3 eC(T)  (gem(Y), reC(Y)).

We have only been able to express the projective class [ Y, p] in terms of p
in the case of a pointed homotopy idempotent, as follows.

Let (Y, p) be a pointed homotopy idempotent with Y a finitely
dominated CW complex, so that

w=1lemn,(Y) c(w)y=id: m,(Y) - m,(Y),
i.=1:C(7)- C(Y).

By Proposition 4.1 there exists a pointed splitting (X, /. ). Thus
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(7,(Y), p,) is a projection in Groups which is split by (m(X), fo) &) Let
X be the universal cover of X, and let

Y= g*¥ = Fker(g,: m,(¥) - n,(X))

be the induced cover of Y. The group of covering translations T=n,Y)/
ker(g,) is isomorphic to 7,(X) and also to im(p,:n(Y)>n,(Y)). Let
¢:m,(Y) - 7 be the projection, and let i: 7 — n,(Y) be the injection induced
by p,. Then (7,4, q) is a splitting in Groups of the projection (m,(Y), Py)
and there are defined inverse isomorphisms

=t 7, (X).
4f,
The Z[7]-module chain map
P=1®p: C(V)=27[7] ®ztnyryy C(¥) = C(Y)

defines a finitely dominated chain homotopy projection (C(Y), p) over
Z[ 7], with a chain homotopy

h=1®h: p> ~ p: C(Y)- C(Y).

The following result expresses the projective class of a pointed homotopy
idempotent in terms of the projective class of a chain homotopy projection.

PROPOSITION 4.6.  The projective class of a finitely dominated pointed
homotopy idempotent (Y, p) is such that

LY, p1=i,[C(Y), ple Ko(Z[n\(Y)]),

with [C(Y), ple Ko(Z[7]) the projective class of the finitely dominated
chain - homotopy projection (C(Y), p) over Z[7] and i, Ky(Z[7])—
Ky(Z[m,(Y)]) the split injection of projective class groups induced by the split
injection of groups i: @ — m,(Y).

Proof. By Definition 4.4, [, pl=/f,[X] for any geometric splitting
(X, /. g) of (Y, p). By Definition 33, [C(Y), p]=[D] for any algebraic
splitting (D, h, k) of (C(Y), P). A pointed geometric splitting (X, £, g) of
(Y, p) induces a splitting 9. [ (C(X), [, &) of (C(Y), p) over Z[ 7], so that

LY. p1= /i [XT = iyq, /L [X1 =i, [C(P), ple K(Z[n\(V)]). 1

EXAMPLE 4.7. Let 7 be a finitely presented group, and let Q be afg.
) projective Z[ n]-module, with

Q=im(g=¢>: Z[n]" > Z[n]").
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For any finite CW complex K such that n,(K)=n and any integer r>2
there exists by the Hurewicz theorem a pointed homotopy idempotent

pY=Ko\/S >Y

extending 1: K — K, and inducing
Pe=qH(Y.R)=2[n]" > Z[r]"

with ¥, K the universal covers of Y, K, respectively. The projective class of
(Y, p)is

LY, pI1=[K1+ (=) [Q]eKo(Z[n]).
and the reduced projective class is
LY. p1=(=) [QTeRy(Z[n]).
Remark 4.8. Let (Y, p) be an unpointed homotopy idempotent with ¥

finitely dominated. The homology H ., (Y) is finitely generated, so that the
Lefschetz number of p: ¥ — ¥ is defined

A(p)= Y (=) tr(p,: H(Y) > H,(Y))eZ.
r=0

For any splitting (X, /, g) of (Y, p) the homology H,(X) is finitely
generated, so that the Euler characteristic of X is defined

WX)=Y (=) rank(H,(X))e Z.

The trace is such that tr(aff)=tr(fx) for any morphisms a: M — N,
p: N — M of f.g. abelian groups, so that

A(p)=A(fg)=A(gf)=A(1,)=y(X)e Z
Thus the augmentation map
Ko(Z[n(YV)]) > Ko(2)=7, [P]— rank(z@z'[m(m] P)

sends the projective class [ Y, p] to A(p)=y(X)eZ.

5. LIFTING IDEMPOTENTS

A near-projection is an endomorphism which fails to be a projection
only up to nilpotence. The approximation of near-projections by projec-
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tions (“lifting of idempotents™) is a classical procedure (Jacobson [10,
Sect. IT1.8]), which is also used in the perturbation theory of linear
operators (Kato [117]). The origin of the technique appears to be the use of
the binomial theorem by Wedderburn [23, 11.2.13] to construct the square
root of a matrix.

Let (7 be an additive category. An endomorphism e:4 > A4 in & is
nilpotent if for some integer N > 1

eN=0:4- A,
in which case | —e: 4 —» A is an automorphism with inverse
(1—e) '"=t14+e+te?+ - +e¥ " Ao A

Any such integer N> 1 is an exponent of e.

PROPOSITION 5.1.  Projections (A, p), (A, p') with p' — p: A — A nilpotent

are isomorphic in the idempotent completion (1.

Proof. Define inverse isomorphisms in (I by

p'p: (A4, p) = (4, p'),
(L+p =p) 'p'=p(l=p' +p) (4, p) > (4, p) 1
Remark 5.2. If the objects (A4, p), (B, q) in (I are such that there exists

an isomorphism 4: 4 - B with gh=hp: A > B then there are defined
inverse isomorphisms in ¢

(4, p) === (B, q).

h
h’lq
Given (4, p), (4, p') in (@ as in Proposition 5.1 there exists an auto-
morphism in

h=(1—(p=p)) 7 (pp+1=p)l=p):4->4
(Kato [11, Sect. 4.6]) such that

ph=hp:A— A,

giving a different isomorphism Ap: (4, p) = (A4, p') in .

A near-projection (A, p) in an additive category (¢ is an object A4
together with an endomorphism p: 4 > 4 such that the defect endo-
morphism

g=p(l—p)A—-A4

is nilpotent.
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EXAMPLE 5.3. A projection (A4, p= p?) is a near-projection with defect
of exponent 1, or equivalently with defect 0.

PROPOSITION 5.4. For any near-projection (A, p) with defect g = p(1 —p)
of exponent N there Is defined a projection

po=(p"+(1=p)") " p"
= p+(12)2p—1)(1—4g) "= 1)
= p+(2p—1)(g+3¢>+10¢” +35¢* + 126¢° + 462¢° + 17164’
+6435¢% +24310¢° +92378¢" + 352716g"
4 1352078¢"2 + ---): 4 — A.

(A, p,) is the unique projection with p., — p nilpotent and pp.,= P P- In
particular, for the near-projection (4,1—p)

(l—p)(,)zl—[)w:A—’A.

Proof. For any integer M >1 we have that the endomorphism

MoV M1
(pM+(1—p)M)—1=q(Z (( )(—1)’—1>p’1>1A*A

r=1 r

is nilpotent, so that pM+(1—p)iA—>A is an automorphism. The
endomorphism defined by

py=(p+(1=p)*) pTiA—A
is a near-projection with defect
pull = pa)= (" +(1=p)") 2 (p(1 = p))* A=A
Thus for M > N there is defined a projection
PN=PNni1= =p, A=A

The expression for p,, in terms of the binomial expansion for (1 —4q)" 12
follows from the identity

(1 —4g) 2= (1= 2p)(p" + (1= p)")(=p" + (1 —p)¥)y A4

For uniqueness note that for any ring R and any indeterminates w, z
over R the morphism of formal power series rings

R[[Z]]_)R[[W]]; o w—w?
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sends the binomial expansion of (1 —4z)~ "2 to the binomial expansion of
(1 —2w) ', that is

(1=2w)""=142w+ 4w+ 8w’ + ...

Given a near-projection (4, p) in (¢ and any expression of p as a sum
p=/f+ g of a projection f=f*A4— A and a nilpotent map g: 4 — 4 such
that fg=gflet R= Hom, (4, 4) be the endomorphism ring of A in ¢, and
define ring morphisms

RN =R zog=p(1—p)=(1-2f) g— (1 -2f) g)>,
RIw]I->R,  w—(1-2f)g

compatible with w— z—z% The binomial expansions of (1 —4z) ' and
(1 —2w) ! are sent to the same element of R, namely

(1—4g) "2 =(1-2(1-2f)g) "1 4 4,
so that
Po=p+(1/2)2p—1)((1-4g) "2 —1)=f14—> 4. |
For any endomorphism e: 4 - 4 in ¢ define an endomorphism in #

1—e 0 0
1—e 0
e 1—e

.“:iA:A®A®A@~~aZA
.

0

ile)=

“AQADAD ---.

PROPOSITION 5.5. (i) If e is nilpotent then i(e) is an automorphism.

(it) If' | —e is nilpotent there is defined a direct sum system in B
iAc%ngc%jA
5 .
Proof. (i) i(e) is an automorphism for nilpotent e since the difference
l—i(e):iA eiA
0 0

is nilpotent.
(ii) Define a morphism in #

f=€®0®0~~:A—>iA=A@A@A@
0
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and an isomorphism in #
h: ‘Z A— A @i A; (Xgs X1s Xa, ) = (X, (X, X2, L))
O (&}
If 1 —e is nilpotent then
(file): A®Y, A—Y A

is an isomorphism, since the difference

ek A=Y A
0 0

is nilpotent. i

For a projection (4, p), i(p) is one of the maps in the Eilenberg-Freyd
direct sum system of Section 1, which we shall now generalize to near-
projections.

PROPOSITION 5.6.  For any near-projection (A, p) in (L there is defined a
direct sum system in B

o))

Proof. The near-projection p: 4 > 4 splits in the idempotent com-
pletion ¢ as a direct sum

ppu®p(l - pw): (A’ pm)® (‘47 1— [7«;) - (A7 pw)@ (Aa 1 _pm)v
and similarly for i(p)=i(pp.,)®i(p(1— p,)). The endomorphisms

11.4./),‘,)— PP = pm(pw— [))3 (A’ pm) - (Aa pm)a
p(l=p)=pl=p)+plp—p,) (4, 1=-p,)>(4,1-p,)

are nilpotent. By Proposxtlon 5.5(1), i(p(1 = p,)) is an automorphlsm and
by Proposition 5.5(ii) there is defined a direct sum system in Y

(iA,l) 1) (ZA 1) == (4, p.,). 1

ExaMmpPLE 5.7 (Bass, Heller, and Swan [2]). Let 4 be a ring, with
polynomial extension A[z] and Laurent polynomial extension A[z,z ']
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Let e: 4™ —> 4™ be an endomorphism of a fg free 4-module. The
endomorphism

l—e+ze:A[z]" > Alz]”

of the induced f.g. free A[z]-module is an automorphism if and only if e is
nilpotent, with inverse

(I—etze) '=1—(z~1)e+(z—1)2 e + ot A[z]™ - A[Z]™
The endomorphism of the induced A[z, 27" ]-module
l—etzeAlz,z7 '] A[z, z ']
is an automorphism if and only if e is a near-projection. If ¢ is a near-

projection the f.g. projective 4-modules

P_F:im(lﬁew;Am—»Am), P‘=im(ew:A"’—>A'")
are such that P, @ P_ = 4" and

L—v, +zv 0
1— e = + + :A z —1qm
et=e ( 0 v¥+z(l—v‘)> [=271]
:(P+®P,)[z,z*‘]—»A[z,z*']’”z(P+@P*)[z,z‘l]
withv P, P v :P Lp nilpotent endomorphisms. Indeed, the

proof of Proposition 5.6 above relies on the abstract version of this decom-
position.

EXAMPLE 5.8 (Bass [1, I11.2.10], Swan [22, 2.17]). Let A bea ring and
let 7 be a nilpotent two-sided ideal of A, such that /" =0 for some integer
N=1. Given a fg. projective A/I-module

P=im(p=p” (4/1)" - (A/I)")
let p: A” —> A™ be a lift of the projection p. Then (A4, P) is a near-
projection with defect of exponent A, and there is defined a lift of ptoa
projection

Po=(PY+ (L= p)Y) ' a7 o 4

such that

L Po=pr A/I® 4 A™ = (4/1)" — (A/I)".
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The abelian group morphisms
Ko(A) = Ko(A/T);  [M]—[A[I®, M]=[M/IM],
Ko(A4/1) = Ko(A);  [im(p)] - [im(p,,)]

are inverse isomorphisms.

EXAMPLE 5.9. For a near-projection (A4, p) with defect g= p(1 — p) of
exponent 2 the projection (4, p,,) is given by

Po=3p"=2p* 4> A

See Munkholm and Ranicki [16] for an application of this to the transfer
map in the algebraic K,-groups induced by an S'-bundle.

EXAMPLE 5.10. See Lam, Ranicki, and Smith [12] for an application of
near-projections to the Jordan normal form.

6. THE INSTANT PROJECTIVE CLASS

Given a finite chain homotopy projection (D, p) in & we obtain an

explicit representative of the projective class [D, p]e Ky(cl), using the
instant finiteness obstruction.

PRrOPOSITION 6.1 (Ranicki [18]). An (I-finite domination (D, [, g) of a
chain complex C in # and a choice of chain homotopy h: gf ~1:C > C
determine the instant finiteness obstruction projection

fg —-d 0
—fh l—fe d
= —jf‘hif f‘h;g fo o | o= D@D ®D® - > D,
=D,®D,®D,® ---
such that

[C1=[D.,, X1 = [Dosy]eKolcl),

with Doy =D, @D, @ D@ -- .

Given an (7-finite chain homotopy projection (D, p) and a chain
homotopy ¢: p° ~ p: D — D there is defined a particular splitting (C, £, g)
of (D, p) as in Remark 2.5, so that the projective class [D, ple K,(cl) is
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represented by the instant finiteness obstruction obtained from the
domination (D, £, g) of C, as in Proposition 6.1. This procedure is
somewhat cumbersome, and can be shortened by means of the theory of
Section 3, as follows.

PROPOSITION 6.2. The projective class of an (-finite chain homotopy
projection (D, p) is such that

[D7 p] = [Dm’ Xu)] - [Dodd] EKO(é%)’

with
X(u:(XN+(1_X)N)‘IXN:D(U_’D(U

the projection defined Jor any exponent N of the instant near-projection
X:D,-D,, given for any chain homotopy q: p? ~p:D—-D by

p —d 0
—q l—p d ..
A= 0 q p - :D(“:DOGBDI@DZ@“'—’DU)
:DO®D|@02®

Proof.  Define
S=pq—qp:D, > D, .

The defect of the near-projection X'

p —d 0 -\ [1—p 4 0
—g 11— —
Y= X(1-X)= q p d q P d
9 »p 0 —g 1-p
0 0 0
— 0 0
=7 :D,=Dy®D,®D,@ - - D,
g —5 0
:DO@DI®D2®"'

is nilpotent because the matrix is lower triangular, with exponent N such
that D, =0 for r > N. The projection given by Proposition 5.4

Xo=X"+(1-x)Y) "XN:D(‘,)—>D1U
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is such that

Xo,=X=(1-2X)(Y+3Y24+10Y* + ...)

1-2p 24 0 0 0 0
_ 2g 2p—1 —2d ... —s 00
- 0 -2q 1-2p .. ¢ +3s —s 0
—2ds 0 0
* 2ds 0

[

= “}V:p.=pDj@n, @D, ® - 5D
* ¥ —2ds ..
=Dy®@D,®D,® -
The diagonal entries are nilpotent of exponent 2 since > =0 and
ds+sd = p(qgd + dq) — (qd + dq)p
=p(p=p)—(p=p’)p=0:D,-D,.
By Remark 2.5 there exists a splitting (C, f g) of (D, p) such that

fe=p: D> D,

Choose a chain homotopy 4: gf ~1: C - C. The instant finiteness obstruc-
tion projection

g —-d 0
—fh l—fe d ..
Y — -}{hi /‘h;g o :D,=D,®D, ®D,® --- > D, |
=D,®D,®D,® ---
is such that
0 0 0
0
X—X'= " 8 :Dm:D()@DJ@Dz@“'—*D,,,

=Dy®D ®D,® ---.
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The difference of the projections X, X': D, - D,

X,— X =X,-X)+(X-X")
—2ds 0 0
* 2ds 0

:D,=D,®D,®D,® --- - D,
* * —2ds

=D,®D,®D,® ---
is nilpotent and by Propositions 5.1, 6.1

[D’ p] = [C] = [Dun X,] - [Dodd] = [Dwv X(u] - [Dodd] eKO(GZ) l

ExaMPLE 6.3. Let (D, p) be a chain homotopy projection of a finite-
dimensional f.g. projective 4-module chain complex D, for'some ring 4,
and let ¢: p*> ~ p: D —» D. The instant near-projection X: D, - D, and the
associated projection X,: D, — D,, are such that

[D, p] = [im(Xw:D v_)Dm)]— [Dodd]EKO(A)v

by a direct application of Proposition 6.2 in the case

(B, ()= ({projective A-modules}, {f.g. projective A-modules }).

7. TORSION

We express the projective class of a chain homotopy projection as the
torsion of a chain equivalence.

Given an additive category (¥ define the Laurent extension ([z,z '] to
be the additive category with one object A[z, z '] for each object 4 in (Z,
and with morphisms

oo

f= 3 zlfpAlz:z 11— B[z,z "]

j= —=x

defined by Laurent polynomials with coefficients morphisms f;: 4 — B in (&
such that {je Z|f;#0} is finite. The embedding

A->d[z,z7']; A—-Alz,z7'], f=fo=f

identifies ¢¢ with a subcategory of ¢[z, z '].
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ExaMmpLE 7.1. The Laurent extension ({[z,z '] of the additive
category (¢ = {based f.g. frec A-modules} for a ring 4 is such that there is
defined a natural isomorphism of additive categories

[z z ']— {based fg free A[z 2 ']-modules,
with
K(@)=K(A),  Ko((T)=K(A),
K(afzz"1)=K(A[z =]

The natural direct sum decomposition of Bass [1] for the torsion group
of the Laurent polynomial extension A4[z, z~ 7 of any ring A4

K\(A[z, 2 '])=K\(A4)® Ky(4) @ Nilo(A) D Nilo(4)
involved the split injection
B: Ko(A) = K (A[z, = ')
[P1-t(z: Pz, 2 '] > Pz ')

In Ranicki [19] it was pointed out that the natural direct sum decom-
position involving the split injection

B Ky(A)— K (A[z, = ']):
[Pl-t(—zPlzz "1=Plzz ']
was more gemetrically significant. If P=im(p = p* A" — A”) then
B((PY) =t(1—p+p=Alzz ') —Alz = '1)eK(4lz =1,
B([PD)=t(l—p—pzA[z.z '] = Al= = ']’)eKl(A[:',Z"]).

In Ranicki [21] it is shown that the torsion group of the Laurent extension
[z, z '] of any additive category (1 is such that there are defined two
natural direct sum decompositions of the type

K(d[z =" ") =K, ((1)® Kol l )@N’[()( )@ Nil (),

involving the split injections

B: Ko((D) - K\(A[z. 2 ']);

[A, p]l-t(l—p+pz Az, = J-Aln D
B Ky()—>K([z,z7"]);

[4, pl=t(l—p—pzAlz,z ' ]>A[zz '],
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using the split exact structures on ¢ and [z, z~'] to define the torsion
groups.

PROPOSITION 7.2.  An ({-finitely dominated chain homotopy projection
(D, p) in B determines self chain equivalences 1 —p+zp:D[z,z '] —
D[z, z7 '] of the [z, z~ ' -finitely dominated chain complex D{z,z '] in
B[z, 27 "] such that

B([D, pl)=t(1 —p+zp:D[z,z '] > D[z, z" ' 1) e K, (A [z, z ']),
B([D,p)=t(l—p—zp:D[z,z "]-> D[z, z ' DeK(A[z,z7']).
Proof. Given a domination (D', f, g) of D by an (-finite chain complex
D’ define an ¢Z-finite chain homotopy projection (D', p’ = fpg) such that
]:Dv P] = [D,v p,] EKO(ﬁ?’)’
t(1=p+zp:Dlz,z ']1-D[zz '])
=t(l—p tzp:D'[z,z ']1->D[z,z 'NekK(A[zz""])

As in Ranicki [18] it is possible to replace (D', p’) by a chain equivalent
Ci-finite (D", p”) with p"? = p”: D" — D" an actual projection, such that

[D.p1=[D" p"1= Y (=) [D], p"leKoD),

r=0
t(l—p' +zp:D'[z,z ']>D[z,z7"])
=t(1—p"+zp":D"[z,z ']>D"[z,z '])

Z t(l=p"+zp":D/[z,z7 "1 > D[z, z ' De K (A2 2 "]).

|

Remark 73. A linear automorphism f = f, + zf,: A[z, z7'] -
A[z,z '] in [z z~'] determines a near-projection

=(fo+ /1) M fiid- A

(cf. Example 5.7) and hence a projection p,: A4 — 4. The torsions
r(f eK,((([z,z7']) of linear automorphisms f=f,+zf, generate
K,([z,z']), by the Higman linearization trick. Both the injections
E, B': K,((1)—> K (([z,z ']) are split by the projection
B:K\(([z,z']) - Ko();

t(fotzfiiAlz,z ' ]>Alz, 27 ) = [4, p, ]

See Ranicki [21] for the details and the generalization to chain complexes.
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Define the mapping torus of a map f* X - X in the usual way by
()= Xx[0,11/{(x,0)= (f(x). DlxeXi.
Ferry [4] defined a geometric split injection
Ro(Z[n]) > Wh(x x Z);
[XT = dut(e '(1ux —1)¢: T(fz) > T( f2))
by sending the Wall finiteness obstruction

[XT=[C(X)IeRy(Z[n])

of a space X with 7,(X) == and with a domination (Y, /. g) by a finite CW
complex Y to the Whitehead torsion of the self homotopy equivalence of a
finite CW complex

¢ (Lex —1)g: T(fg) s Xx S0, yooqt o T(fe),

with ¢: T(fz) - Tgf)~T(1,)=XxS"' the homotopy equivalence of
Mather [15]. In Ranicki [ 19, 207 this was identified with the geometrically
significant split injection

E’: [?O(Z[TL']) g VVh(T[ X Z)’
[P1=t(—zPlzz '] = Pz - 1),
Propositions 4.6, 7.2 show that the geometrically significant split injection

sends the finiteness obstruction (Y. p] ek(,(Z[nl()’)]) of a finitely
dominated pointed homotopy idempotent (Y, p) to the Whitehead torsion

B([Y, ph)=(fx L) at(@ (1 x —1)¢: T(p) — I(p))
eWh(n,(YxS'))= Whin,(Y)x Z)

for any splitting (X, /, g) of (Y, p), with ¢: T(p) ~ T(fg) > T(gf)~XxS!
the homotopy equivalence of Mather [15].
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