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Introduction

This paper gives a new definition of G-equivariant surgery groups with better
formal properties than previous definitions, and it calculates the equivariant
groups in terms of usual L-groups in special cases.

The main new feature in our presentation is the systematic use of groupoids
with G-actions, and the concept of fibre transport (of G-bundles). This makes
possible a definition of equivariant L-groups much in the spirit of C.T.C. Wall’s
chapter 9, [21]. The surgery groups are bordism classes of degree one G-maps
f: M — N covered by a G-bundle map f: TM @ R¥— ¢ together with a certain
map from N into a reference (space) R, which, very roughly, captures the first
Stiefel-Whitney classes of £ and TN.

The normal map (f, f) defines a triple (¢ N, w, (&), w,(N)) as follows. The
first term is the collection of fundamental groupoids nN" of the various fixed
sets, considered as a functor on the orbit category. The next two terms are
the “homotopy classes’ of the maps

wy (&), w (N): n9N > 7% B(G, n+k)=B, .,

where B(G, n+k) classifies (locally linear) G—IR"** bundles. We remark that
w, (£) can be different from w,(N). However, they do agree when pushed into
BE,,,=n°% BF(G, n+k) where BF (G, n+k) is the classifying space for (locally
linear) G— S"** fibrations.

One should expect the equivariant L-groups to depend on the above triple,
generalizing Wall’s Ll (r; N, w,). However, this is not quite enough. As pointed
out in [7; 197, the definition from [21, Chap. 9] contains a bug: conjugation
with an element gen; N with w,(g)= —1 induces the identity after Wall’s geo-
metric definition, but it should be multiplication with —1 after the algebraic
definition of L-groups. The difficulty is one of base points and can be done
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away with by systematically working with orientation covers, or by passing
to transports as we have preferred.

Given a G-R"** bundle (or G-fibration) & over N and a (homotopy class
of a) path ¢ from x to y, there is the corresponding fibre transport ¢,: &, — .
This is a well-defined isomorphism class. The transport information can be
collected into an (¢(G)-functor

tp:: 7N —-B,.,.

The *homotopy class’ of tps is wi(&). The tangent bundle TN gives another
transport

. G Ik
tpN'TC N-}IBn_*) n+k-

Passing to the fibrewise one point compactifications one gets transports tp$
and tpy into BF, , .. They are ‘homotopic’ by the equivariant Freudental suspen-
sion theorem, because (¢ @ V) ~(TN ® R* @ V) for a suitable representation V.
In equivalent category terms, there exists an ¢ (G)-transformation

@:tps— 2*tpy.
There is no apriori choice for ¢, but given one, we have the 4-tuple

R(fﬂj: (p):(n(; N, tpﬁs tpNs (p)a

which record sufficient information to define L-groups. Note that ¢- f identifies
the tangent fibres of M and N. This allows the definition of equivariant degree
Deg (f; ¢-f), and in particular the concept of degree one.

Extracting the relevant properties of R(f, f, @) one obtains the concept of
a (geometric) reference R and one can consider normal maps (f, f, ¢) together
with maps p: R(f, f, ) > R. Bordism classes of such define the equivariant L-
groups % (R)=%,(G; R), corresponding to the I'-groups in [21, Chap. 9]. The
use of reference R, independent of the range manifold N, has the usual advan-
tages, namely one gets abelian groups with good functorial properties.

We prove the analog of Wall’s L' =2 theorem, namely that every class
in %(R) has a representative for which p is an ‘isomorphism’; this is the n— =
lemma.

Our definition of #"(R) makes sense in the smooth and in the locally linear
PL and ¢z categories. However, the n—n theorem, corresponding to [21,
Chap. 4], may only true in the first two categories. The ‘correct’ topological
L-groups could therefore be different from ours. We define £2(R) whenever
the reference R is G-simple. This works both in the smooth and in the PL
category.

In the second part of the work we give an exact sequence similar to the
Conner-Floyd neighbouring family sequence in equivariant bordism. This facili-
tates calculations. Indeed for G of odd order we go further and show that
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£7(R) is a direct sum of ordinary L-groups for g=s, h. If R=R(f, f. ¢) as above
and G is odd then

LHR)= YO Ly iy (ZLE(x, H)], w).
Here E(x, H) are the groups
E(x, H)=n,(EWH (x) x WH (x) N"(x))

where xe N¥, N¥(x) is the component of N7 which contains x and WH (x)c WH
is the stabilizer of N (x) in my N, and n(x, H)=dim N¥(x).

At many places below our arguments are based on stability results for
automorphism groups of representations. We state the relevant results, refering
the reader to [1511, I11] for details. Let ¥ be an RG-module with

5<dim V¥ <dim VK -3
for isotropy groups K < H. We have automorphism groups
GLo(V) PLo(V)E Tepr (V)= Ey(V)
where Fg(V) consists of the proper G-homotopy equivalences of V. Then
Aut; (V) - Autg (VO R)

is (dim V¢ —1) connected except for Autg=Jo4; where the map is (dim V¢
— 3)-connected.
The paper is divided into sections as follows

Part 1

1. Preliminary Notions

2. The Equivariant Surgery Obstruction Group

3. The n— 7 Results

4. Functorial Properties

Appendix. Comparison with Other Definitions (Smooth Category)

Part 11

1. The Orbit Sequence

2. Decomposition of Equivariant L-Theory
3. The Rothenberg Sequence

4. The Exact Surgery Sequence

1. Preliminary Notions

Equivariant topology is burdened by an involved set of notions, designed to
keep track of the combinatorial structure of the components of the various
fixed point sets and their fundamental groups. In this section we collect the
necessary notions, namely the equivariant fundamental groupoid, the fibre trans-
port and the equivariant degree, refering to [12, 13] for certain details.
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A groupoid is a small category in which all morphisms are isomorphisms.
The fundamental groupoid nX of a space has objects the points of X, and
morphisms w: x, — x; are homotopy classes of paths from x; to Xo.

Given a finite group G, let ((G) be the orbit category of homogeneous
spaces G/H and G-maps.

(1.1) Definition. An ((G)-groupoid is a contravariant functor from (¢(G) to
groupoids. The fundamental (G)-groupoid n% X of a G-space X is the functor
7% X (G/H)=n Hom¢ (G/H, X).

Given an ((G)-groupoid % and a subgroup H of G, let 4(G/H)" be the
isomorphism classes of objects in %(G/H), considered as an WH-set. For xe%(G/
H), let WH(x) be the isotropy group of £e%(G/H)", and let Aut(x) denote
the automorphisms of the object x.

(1.2) Definition. The group E(x, H) consists of pairs (a, w) with geAutg (G/H)
and w: x — ¢* x @ morphism in 4(G/H). Multiplication is the *“semi-direct prod-
uct”,

(01, w)-(02, wa)=(0,°02, oEwiow,).

We elaborate on (1.2) in the geometric situation where ¥=n%X. Then
%(G/H)" =no X" and £=X"(x) is the component which contains x. If o: G/H
— G/H sends H to gH then g~ 'Hg=H and ¢*(x)=gx. Hence w is a homotopy
class of paths from gx to x; and o*(w) is the path g-w. A point in the universal
cover X¥(x) is a homotopy class u of paths ending at x. There is an action
of E(x, H) on X"(x) by u-(a, w)=0* uow. Note that

(13) E(x, Hy=m, (EWH (x) X0 X" (),
and the extension
1>, (X", x)-> E(x, H)— WH(x)— 1.

An € (G)-functor between ((G)-groupoids is a natural transformation f: %,
—%4,. Let I be the category with three objects 0 and 1 and three morphisms,
namely the identities and 0—1. An ¢ (G)-transformation h: fo—f1 between two
¢ (%)-functors is an (" (G)-functor

h: Gyx1—%, with h|%,x {iy=rfi

where %, x I sends G/H to %4,(G/H)x 1. We call two ((G)-functors f, and f
homotopic if there is an (¢’ (G)-transformation between them. This is an equiva-
lence relation (reflexive since morphisms of %,(G/H) are isomorphisms). The
set of homotopy classes is denoted [, 4,19, The homotopy class represented
by f is denoted [ f ].

Two examples will illustrate the concepts. If 4,=1I; are groups (= groupoids
with one element), and G = {1},

(%o, 9,19 =Hom (I, L)/Inn ([).
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If9,=n°X;, and f: X, — X, is a G-map we get f> 79X, >nS X, and fy~/f,
implies that [ fo]=[f,] in [z% X,, 7% X,]9®.

An ((G)-functor f: %, — %, is a homotopy equivalence if there exists an ¢/(G)-
functor g: 4, - %, such that the composites are homotopic to the identities.
We also need the (definitely) weaker notion:

(1.4)  Definition. A weak homotopy equivalence f:%,—%, is an ¢ (G)-functor
such that for each G/H, f(G/H): %,(G/H) - %,(G/H) is an equivalence of categor-
ies (i.. full and faithful, and a bijection on isomorphism classes of objects).

Given ¢ we can compose with the “space of a category” construction [16]
to get a functor |%|: (/(G)— {Spaces}. Construction (C) of [6] gives a G—CW
complex K(%, 1) together with an *(G)-functor

wn" K4, 1)>%
such that

(i) u1s a weak homotopy equivalence
(L.5)
(i) K(%, )" ~K(%(G/H), 1).

(cf. [18]).

(1.6)  Proposition. ([12]) Let Y be a G—CW-complex and u: n°Y—>% an € (G)-
Junctor. Then (Y, u) satisfies condition (1.5) if and only if the map [X, Y]¢
= [7% X, 919 which sends [ [] to [-n®[] is bijective for all G— CW-complexes
X.

For G=1, (1.6) reduces to the isomorphism  [X, K(m, 1)]
~Hom (n; X, n)/Inn (n).

(L.7)  Corollary. (i) An C(G)-functor f: G, — %, is a weak homotopy equivalence
if and only if it induces a bijection f,:[rn%X,%,]"9—>[n%X, 4,19 for all
G— CW-complexes X.

(i) For G—CW-complexes X and Y any weak homotopy equivalence from
X ton®Yisa homotopy equivalence.

We next consider the equivariant fibre transport and its associated equivar-
iant first Stiefel Whitney class. We shall work with locally linear G —IR"” bundles,
[11, p. 218]. This concept can be taken in the smooth category (G-vector bundles)
or in the piece-wise linear or topological categories. We assume in the two
latter cases a distinguished zero section, preserved by all bundle maps. When
there is no need to separate between the categories we simply speak of G—R"
bundles or G-bundles when it is unnecessary to specify the dimension.

Write B, (X) for the groupoid of G—R" bundles over X and isotopy classes
of G—IR" bundle isomorphisms (over idy). A G-map f: X - Y induces a functor
S*:B,(Y)— B,(X). Letting X vary over the homogenous spaces we get an (¢ (G)-
groupoid

B,: ¢(G)— {groupoids}.
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Given a G—R" bundle ¢ | X, let tp.(G/H): no(X") - B,(G/H) be the functor
which maps x: G/H — X to x*¢&. A morphism ¢: x — y, given by a G-homotopy
0:G/H xI— X, is sent to the fibre transport tp:(c): x* ¢ — y* ¢ defined as the
restriction to G/H x {0} of a bundle isomorphism x* ¢ x I —¢*¢ which is the
identity on G/H x {1}. The collection tp.(G/H) defines an (’(G)-functor (the fibre-
transport of &)

(1.8) tp:: 19X > B,.

Let [tps}: X —» K(IB,, 1) be the corresponding G-homotopy class, cf. (1.6). We
have the following elementary properties of the fibre transport, where 7 is the
classifying G—IR” bundle over the classifying space B(G, n):

(1.91)  tp, is a weak homotopy equivalence.

(1.9ii)) If f;: X - B(G, n) classifies & then
[tp,]o[fd=[tps] in [n° X, B,]”

(1.91i1)) If X is a 1-dimensional G — CW complex then

' B,(X)=[z°X, B,]“ by [£]- [tp].

The first two properties are obvious from the definitions. The third uses
that i: Y- K(n® Y, 1) is 2-connected on all fixed sets, and (1.6).

In the non-equivariant situation, an IR"-bundle over a 1-dimensional space
is determined by its underlying spherical fibration since =, (BO)=n,(BPL)
~n,(BTop)=n,(BF). The corresponding equivariant statement is false. Indeed
o (Autg (V) E[VC, V] in general for representations V, cf. [20, p. 1017, [1511].
Thus we must study equivariant spherical fibrations separately.

A G —S" Hurewicz fibration n over a G— CW-complex X is locally linear
if for each x in X there exists a G -invariant neighbourhood U,< X such that
n| U, is G ~fibre homotopy equivalent to a trivial G -fibration U, x V{ for some
n-dimensional G -representation V.. Here V5 denotes the one-point-compactifi-
cation. We abbreviate and call such fibrations G—S" fibrations. They have a
classifying space BF (G, n). If £ is a G—1IR" bundle its fibrewise one-point compac-
tification &€ determines a G — S” fibration.

Let IBBF,(X) be the groupoid of G—S" fibrations over X with homotopy
classes of fibrewise G-homotopy equivalences as morphisms, and let BF, be
the corresponding (/(G)-groupoid. Each neIBF,(X) gives a fibre transport
[tp,Je[n¢ X, BF,].

Fibrewise one-point compactification gives a G-map

J: B(G, n)— BF(G, n),

well-defined up to homotopy, and a corresponding ¢ (G)-functor j: B, —» IBF,
such that [tp,]-[n%J]=[/]-[tp,]. For an ¢(G)-functor f: 7% X — B,, write f°
for jo . In particular tp. = tp§ for a G —R" bundle ¢.

{1.10) Definition. The equivariant first Stiefel-Whitney class of a G — S" fibration
i is the homotopy class w()=[tp,] in [z X, BF,]“.
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If £ is a G—IR" bundle we abuse notation and write w(&) instead of w(&).
For a G-manifold M, we use the abbreviations tpy=tpyuy, Py =tpPry. and
w(M)=w(TM).

Given G-manifolds M and N of the same dimensions and a G-map f: M — N,
we define an equivariant degree which collects all information about the degrees
of the components of the fixed point maps f*: M" — N". This requires that
we can compare the local orientations of M and N at corresponding points.

We fix an ¢ (G)-equivalence ¢: f* tpy — tpyy, giving G.-homotopy equiva-
lences ¢, : Ty, N‘— T, M¢, compatible with the action of G and with fibre trans-
ports along curves. The degree of f: M — N will depend on .

Consider first the non-equivariant case G=1 and suppose M and N are
connected. Let yeN be an (interior) regular value for f. For xef ~'(y) there
is a commutative diagram

TM—L~ TN

Here f. is an isomorphism (in the relevant category), i and j are inclusions
with i(0)=x, j(0)=y, and the differentials di, and dj, are the identity of T, M
and T, N, respectively. Define

(1.11) deg(f;p)= Y  deg(p.of).

xef 1y
For an ("(G)-groupoid ¥, write

(1.12) Conj (4)=][%(G/H)"/WH.,

(H)

where (H) runs over conjugacy classes of subgroups of G and where the circonflex
denotes isomorphism classes of objects in the given category. Thus for 4 =n% N,
4(G/H) JWH =7,(N™)/WH. The element in Conj (%) determined by ye%(G/H)
is denoted (y, H)".

Let C=N"(y) be the component of N¥, which contains y. Let Cy, ..., C,
be the components of M* which map into C and f;: C;— C the restriction
of f#. Then dim C;=dim C. The given (*(G)-transformation defines

(1.13) Definition. The element Deg (f; ¢)e Hom (Conj (=% N), Z) is given by

Deg (f; @) (y, H)"» = Y deg(f:; ¢)

i=1

on (y, H)" eny(N")/WH.
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We list some obvious properties of (1.13). Consider a G-map of triads
F:(P; M, M,)—(Q; N, N,)

with F| M =f. Suppose @: F* tp, — tpp agrees with (the suspension of) ¢ when
we identify T.P=T,M @R for xe M using the inward pointing normal. The
inclusion induces j: 7° N —» % Q. Let j* be the Z-dual. Then

(1.14) Deg (f; ¢)=j* Deg(F. @)

As a special case, consider a G-homotopy h: M x I — N between fo and f.
Fibre transport defines an (’(G)-transformation

Yu: fo P = S D
We get from (1.14) that

Deg (fo; o) =Deg(fi; @)

Finally, suppose we have G-maps f: L—» M, g: M - N and (" (G)-transforma-
tions

@ f*tpy—tpl, Wi gFtpy — Py
If 7o (g™): mo(M™) > 1o (NM) is bijective for all H=G then
(1.15) Deg (g f; pof*())=Deg(g: ¥)(g*)” ' Deg(f: )

as functions on Conj (n¢ N).
Consider the partial ordering in Conj (%) given by

(1.16) (x, H)" <(y, K)* < o¢*y" =x" in 4(G/H)"

for some ¢: G/H - G/K. For any (/(G)-functor t: 4 — IBF, there is a dimension
function

(1.17) Dim,;: Conj (%) —~Z

whose value on (x, H)” is equal to the dimension of the H-fixed set of the
fibre t(G/H)(x),y. For ¥=n°N and t=tp,,, Dimy (X, H)" is the dimension
of the component N*(x) of N¥ which contains x.

(1.18) Definition. (i) For a fixed ¢'(G)-functor t: % — BF,, (y, K)~ eConj (%) is
called an isotropy object if

(x, H)" >(y, K)* = Dimy,(x, H)" <Dim,(y, K)".

The set of all isotropy objects is denoted Iso (z).
(ii) The ¢(G)-functor t satisfies the weak gap conditions if for each pair
of isotropy objects (x, H)<(y, K)

8§Dlm[1] (y. I()A +3 §D1m[t](x, H)/\
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(iii) Tt satisfies the strong gap conditions if
10=2 Dimg,(y,K)® < Dimg,(x, H)"

A G-manifold N satisfies the gap conditions if tp%, does. Consider such G-
manifolds and G-maps f: M — N for which ny f#: 1y M¥ — o N¥ is a bijection
for all H= G. Under these assumptions we have the following results from [13].

(1.19)  Proposition. Suppose for each pair of corresponding components C = M
and D N*

(SM*(w (D)=w(C) and deg(f™: C->D)=1.

Then

(i) there exists a wunique O(G)-transformation @: f* tpy —>tpy with
Deg (f; @)=1 in Hom (Conj (z° N), Z),

(i) if |G| is odd, then for any @, Deg(f; @) is constant either +1 or —1.

2. The Equivariant Surgery Obstruction Group

Our definition of the equivariant surgery obstruction groups is modeled upon
C.T.C. Wall’s geometric approach in the case of G=1, [21, Chap.9]. It is a
variant, and extension, of the surgery groups introduced by T. Petrie and H. Do-
vermann in [3].

The basic problem in the equivariant setting is which bundle data to use.
On the one hand one needs unstable data in order to make surgeries and on
the other hand one wants to be able to construct normal maps by equivariant
transversality; this corresponds to G-stable bundle data. Only in special cases
(e.g. |G| odd and PL category) can one destabilize G-stable bundle data. We
first present our definitions and then give a discussion of their applicability.

The definition of #" makes sense both in the smooth and in the locally
linear PL or Foy categories. For #* one needs the smooth or the locally linear
PL category.

Given G-bundles &, and &,, an R-stable bundle map from &, to &, is a
G-bundle map

f Cul@]Rk'_’@@]sz

where G acts trivially on IR*. It will not be necessary to keep track of the
dimensions k;, so we will abbreviate notation and write f: &, — &,.
Given an ((G)-groupoid and an ¢ (G)-functor t: 4 — BF, (or B,), its k-fold

suspension X* ¢ is the composite 4 — BF, —~- BBF,, ,. An R-stable (/(G)-transfor-
mation between the (' (G)-functors t; and t, is an ¢(G)-transformation ¢: X* r,
— X*2t,. Again we will often abbreviate and write @:ty—>t,. The (G)-grou-
poids B, and BBF, were defined in Sect. 1.

(2.1) Definition. A G-normal map (f. f, ¢) of triads consists of
(i) a G-map

(f3 011,00 f): (M:8, M, 0o M)~ (N; 0, N, 0o N)
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of G-manifolds with dM =3, M Ud; M, é(0, M)=0, MN{, M=27(¢o M) and
¢ f=f10:M,

(i) a G—R™-bundle ¢ over N and an R-stable G-bundle map f: TM —¢
over f,

(iii) an R-stable (/(G)-transformation ¢: tps — tpiy-

If 0, M=0 we call (f; f. ¢) a G-normal map of pairs.

A G-normal map gives the R-stable ((G)-transformation

@I tphy = fH Pt = f* Py

so we have the function Deg(f;(¢-f)~"): Conj(n® N)—Z. It does not matter
that @« f is only given R-stably.

In (1.18) we defined the concept of isotropy object in Conj(n N) w.r.t.
tpy: (x, H)” emo N¥/NH is isotropic if the component C(x) of N¥ determined
by x contains an element with isotropy group H. The subset of all isotropy
objects is denoted Iso(tpy). For a G-map [:M-—N, f.: Conj (1% M)
— Conj (n% N) maps (x, H)" to (f(x), H)”. A G-homotopy equivalence i X-Y
between G— CW complexes defines an equivariant torsion wh(f)eWh%(n®Y)
in the equivariant Whitechead group, [5: 10; 14]. The map f is G-simple if
whe(f)=0.

(2.2) Definition. A [G-simple] G-surgery problem is a G-normal map which
satisfies the extra conditions
(i) Deg(f;(@-/) =1,
(ii) £ : Conj (n® M) — Conj (z¢ N) has Iso (tpa) =1y " Iso (tpy)s
(iii) 0o f: 8o M — 0o N is a [G-simple] G-homotopy equivalence.

(2.3) Definition. A reference R=(%4, 14,1, 1) of ambient dimension n consists
of an €(G)-groupoid ¥, two ('(G)-functors

to:%— B, . t,: 9B,

and an R-stable ¢ (G)-equivalence t: 15— 1 between the associated functors

t: 4 - BF,,,. The suspension Y R is the (n+ 1)-dimensional reference Z R
:(g, Zto, 2t17 Zf).

(2.4) Definition. A reference R=(9, t, t1, 1) is called G-simple if for each pair
(x, H) with xe%(G/H), the homotopy equivalence

12 15(G/H) (X)ep = 15(G/H) (X)ens
is H-simple.
A map of [G-simple] references of the same ambient dimension

(25) p: ((f’ tOv tl’ T) _'(g/s t/O: tllv I')

is a triple p=(4, fo, #;) consisting of an ¢ (G)-functor 2: % — %" and R-stable
[G-simple] ¢(G)-transformations y;: t; — A*t; such that

(i) Topo=p-1
(i) 4z " Iso(ry)=TIso(ty).
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The opposite of a reference map p=(4, u,, 1,) is defined to be

—p=(4 —Hos — )

where — ;= u; @ (—id): 1;® tpg — A* 1} ® tpg.

Given a G-normal map (f,f,¢) we get an associated reference
(T[G Na tpfa tpN, QD)
(2.6)  Definition. A G-normal map with reference R =(%,, ty, t;, 7)1s a G-normal
map together with a map of references p: (¢ N, tps, tPy, @)= (%, 1y, 14, 7).

Given an n-dimensional reference R, we can now imitate the geometric defini-
tion of L-groups given in [21, Chap. 9] as certain bordism groups. Let

S (M, dM)—(N, ¢N), f [G-simple] homotopy equivalence,
fi TM > ¢,

@ tp; — tpy,

p: (n9N, tp:, tpy, ) > R

be a G-surgery problem of pairs with dim M =n and with reference R.
A [G-simple] null bordism of (f, f, ¢, p) is a G-surgery problem of triads
of one dimension higher (F, F, @, p),

F: (P, 0P, 0, P)>(Q,000,0,0),0, F=f
F: TPy, F=f 0, F a [G-simple] homotopy equivalence
¢ tp, > 1tpg,  p: (190, tpy, tpg, )= Y R

such that there are isomorphisms uy: do P— M, v,: 3, Q — N and an R-stable
bundle map 8,: 1|3, Q — & for which all the obvious compatibility conditions
hold.

More generally, two G-surgery problems of pairs over R are bordant if
there is a null bordism of the disjoint union (fos fos @0, o)+ (15 f15 @1, —p1).

(2.7)  Definition. The bordism classes of G-surgery problems of n-dimensional
pairs with reference R=(%, t,, t,, 1) is denoted (%, to, ty, 7). If R is G-simple
the corresponding G-simple bordism classes of G-simple surgery problems is
denoted %%(%, t,, t,, 7).

The sets LM%, t,,t,, 1) and £5(%, to, Ly, 7) are groups under disjoint union
of bordism classes. The zero element is the empty & —-& and
~LL T 9, p1=L1 F 0. —pl.

A map p: (9, ty,t,7)>(¥,t,, ), 1) of references induces a map p,: % (R)
- Z,(R’), so our #-groups are covariant functors.

Two maps p=(7, o, fi;) and p=(4, o, it;) from R to R’ are homotopic of

there is an ¢ (G)-transformation \: 2 — 1 such that
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commutes for i=0, 1 where y; is induced from i in the obvious way,
Yi(G/H)(x)=1;(G/H) () (G/H) (x)).

(2.8) Lemma. Homotopic maps of references induce the same map of ¥-groups.

Proof. There is an obvious normal bordism, by crossing a normal map with
reference R with I. [

(29)  Remark. Let G=1 and let % = be a group. An ¢'(1)-functor t: 7 — B, is an
n-dimensional vector space together with a homomorphism w: 7 —r, Aut (V)
={£1}. Consider the reference R=(m, t, t, id). Conjugation with a fixed group
element gen defines an automorphism p=(c(g),id, id) of R. This is homotopic
to the automorphism o =(id, w(g)-id, w(g)-id). Indeed, y: ¢(g) —id is the a(1)-
transformation induced by the morphism g~!. By (2.8), py=0,. By definition
of the group structure in %,(R), 5, = —id if w(g)= —1; cf. the discussion and
slight correction of Wall’s definition of L-groups given in [7].

In the next section we prove under mild restrictions on R that each element
of £’(R) can be represented by a G-surgery problem with p: (¢ N, tpe, tpy, @)
— R such that £: N - % is a weak homotopy equivalence.

Our R-stable bundle data used above are more restrictive than one would
like them to be, so it is in order to make two points. First, they look more
restrictive than the bundle data used in [3, Chap. 4], but actually they are
not, se¢ the appendix. Second, for G of odd order and in the locally linear
PL category the natural G-stable bundle data, f: TM @ V—¢& (V an arbitrary
RG-module can be desuspended to the R-stable ones provided M (and N)
satisfies the strong gap conditions, cf. [1511].

(2.10)A Lemma. Let f: (M, 0M)— (N, dN) be a map covered by an R-stable bundle
map f: TM — &. Then there exists a representation W and a fibrewise G-map

P:EOW) (TN WY.

Proof. Let V be a representation in which M can be embedded. Then the compo-
sition M — N —» @ V is homotopic to a G-embedding, say fo: M > E@ V. and

JHTE@V)=/*EDV)D[*(TN)=TM ® V@ f*(TN).

It follows that v(fo)) @ TM=V@® f*(TN)® TM and (after a change of V) we
may assume

v(fo)= V@ f*(TN).

We now collapse onto a tubular neighbourhood of f,(M) in ¢@® V and compose
with the bundle map f*(TN)— TN to get a G-map of Thom spaces

dj: N:@tf_)Mf*(TN)@V‘,NTN@V.
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This is induced by a fibrewise G-map
O (EDWY (TN WY

for some representation W which contains V. Indeed, embed N in some represen-
tation U and add v(N, U) to @; this gives

Né@V@v_>NU®V=N+ /\(U('D V)c

Since the Thom space is the quotient of the fibrewise one point compactification
by the section at co, we obtain

Ve -Uary
and we can add TN again. This gives (2.8) with W=U® V. [J

The converse of (2.8) is not in general true. Given G-bundles ¢ and # over
N, and a fibrewise G-map &: & —n°. Suppose @ can be deformed to a G-map
f which is G-transverse to N<#n. Set M=/"'(N). Then f/: M — N is covered
by a bundle map f: TM ® f*(5) > TN @ &. Thus we pick a complement n @ { =
N x U to get

T™MOU L S TN®(E®))

AN N.

This is not a normal map in the sense of (3.1 (ii)) unless U is the trivial representa-
tion; we need to desuspend f. Second, in general @ cannot be made G-transverse,
see [151] for a discussion. If G has odd order, and N satisfies the strong gap
conditions then the transversality and desuspension can always be achieved
in the locally linear PL category.

The next lemma is an easy consequence of (1.13) and (1.18)

(2.11) Lemma. Let (F,f.,f):(P,M_, M)—(Q, N, N) be a G-map between
triads satisfying the weak gap conditions. Suppose the inclusions M, =P and
N, <Q are G simply connected and that f, is a G-homotopy equivalence. Then
there exists an O(G)-transformation @ f* tpy — tpy such that Deg (f; ¢)=1.

Hence a G-map which satisfies 2.1(i), (ii) can be normally cobordant to
a G-homotopy equivalence only if (2.11ii)), (2.21)) and (2.2 (ii)) are satisfied.

3. The n — = Results

In this section we prove (under mild restrictions) that each bordism class of
G-surgery problems contains a representative whose reference map p is an equiv-
alence. This is the G-quivariant version of [21, Theorem 9.4]: L' =12. Also
the equivariant 7—n theorem is valid provided we work in the smooth or
in the PL categories, cf. [4], or [21, Theorem 3.3].

First, we use the ordering of (1.16) to introduce a necessary restriction on
the reference R=(%, t,, t,, 7).
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(3.1) Definition. An ¢ (G)-functor t: % — IBEF, is called geometric if for each
(x, H)~ eConj (%) there exists a maximal isotropy object (x,, Hy)" €lso (1), larger
than (x, H)~ with the same dimension, 1.e.

(i) (x, H)" =(xo, Ho)"

(i) (x, H)" <(», K)* and (y, K)" €lso (1)=(x, Ho)" =(y, K)"

(i) Dimy,(x, H)® =Dimy,(xq, Ho) N

(IV) For GEHOH’IG(G/H), G/Ho), a*: Autgg(G/H())(xo);)Aut{g(G/H)(O—* Xo).

The standard example (4, t)=(=° N, tp}) is geometric. Indeed. for each com-
ponent C of N there is a unique K> H with CeN* and K=G, for some
xeC.

A reference R=(%, t,, t,, 1) is called geometric if (¥, 1) or equivalently (¥, 15)
is geometric. Our main result is the following

(3.2) Theorem {n — 1 lemma). Let R be a geometric reference of ambient dimension
n which satisfies the weak gap conditions. Then any element we £ (R) (resp. £ (R))
contains a representative (f. f, ¢, p), with 4: 1 N - % a weak ((G)-equivalence.

Before we begin the proof of (3.2) we do a preliminary modification on
(f. f. @, p) to obtain the following:

(3.3) (i) There is a 2-dimensional G—CW complex K with n°K =%, and a
G-map Z: N¥ — K from the 2-skeleton N of N inducing 2: a% N - %
(i) /. M" - N" is 2-connected for H=G
(iii) p,: Conj(n% N)— Conj (%) maps Iso (tpy) onto Iso (t,).

We may take K to be the 2-skeleton of K(%, 1). By (1.7), there is a map
of references

i(mOK, i*ty, i*ty, i*1) = (Y, 1y, 11, T),

inducing an isomorphism between the corresponding L-groups, and Z: n¢ N >4
can be realized by 4: N'¥ - K. We get (ii) by doing zero and one-dimensional
surgeries.

For (iii), we add appropriate null-bordant G-surgery problems with R-refer-
ence to (f, /. @, p) as follows. Let (x, H)"en%K be an isotropy object. There
are the G—S"** (resp. G—S") bundles 15,(G/H)(x) (resp. t{(G/H)(x)) over G/H.
We can destabilize the first one, and write

7o @ (RY =15(G/H)(x), 1y =11(G/H)(x).
The R-stable homotopy equivalence t destabilizes to an equivariant homotopy
equivalence t: 1§ — n5. The tangent bundies are Ty$=p¥(y5) where p, is the pro-

jection for x§. Consider the surgery problem (z, £, ¢, p)

Ty ——— p¥n,

no ——— 1,
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with @=p¥7, and map of references p=(4 id, id), A=n%xep,). Here
xe%(G/H)=Mapg(G/H, K). We leave for the reader to check that 2 satisfies
(2.5(ii)); at this point one uses that R is geometric.

Given (f, /. @, p) which satisfies (3.3), we shall do zero and one-dimensional
G-surgeries on A: N — K to make JH 2_connected, and simultaneously do surgery
on f: M —>N.

One can do surgery only on isotropy components of N, but this suffices
since we have

(3.4) Lemma. Given a map (4, fto, #;): R— R’ of geometric references. Then
/194 -9 is a weak (((G)-equivalence if and only if 2, : Conj (¥) - Conj (%') maps
[so(t,) bijectively to Iso(tp) and A(G/H): 4(G/H)— %' (G/H) induces an
isomorphism between Auty g (x) and Autg: g, (4(x)) for all isotropy objects

(x, H). [J

Proof of Theorem 3.2. Consider an element in 1, (A1), £=0,1 given by a G-
diagram
G/HxS' ———N?

(3.5) p

G/HxD' "' —* K

We want to do surgeries on N and on M simultaneously to kill (j, k). This
requires that f induces a G-isomorphism from f~YG/H x S") to G/H x S, and
in particular that /'(eH x S")c M".

We only treat the case /=1; /=0 is similar but casier. Assume for conve-
nience that MY and N¥ are connected (and isotropic), in general one works
with connected components separately.

Step 1. Let V and W be the H-modules given by the fibres of & and TN over
the point k(e H, 0). We have bundles (=G xp Vand {, =G x,; Wover G/H x D?,
and, since D? is contractible unique ¢/(G)-equivalences k* ;= tp;,, s =0, 1. Using
1, from the reference map p=(4, o, ;) we get over G/H x S'

o j¥ tpe—tp,, and i j* TN —tp,.

Since G/H x §' is 1-dimensional we can choose (R-stable) G-bundle isomorph-
isms by: j*&— (@ R* and b, : j* TN - {; with

(3.6) P, = ii-

We remark that the isotopy classes of b, are not determined by (3.6), and that
J* & and b, destabilizes k times.

By the immersion classification theorems, [8], [9], we may suppose that
j is an embedding of S' in Ny={xeN|G,=H} associated to the bundle
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isomorphism b¥: j* TN" - (. As WH acts freely on Ny we can G-homotop
f to obtain that f#: M# — N¥ is transverse to eH x S' <Ny, and induces a
diffeomorphism (resp. PL-homeomorphism or homeomorphism)

(ff Y eHxS')—>eHxS!
(cf. [21, p. 90]). After a further isotopy, we get a commutative diagram
M S N N
i J
G/HxS' —4— G/HxS".

We want to thicken i and j, and begin by destabilizing the G-bundle

isomorphisms
ci*TM Lapreor,  d=b,: j* TN >{,.
It suffices to consider the corresponding H-bundles over S'=¢H x S'.

Let ¥ be an open H-neighbourhood of S' in M which H-deforms onto
S'. Since TM|S' is trivial so is TU, and by G-smoothing theory [11], U is
a smooth G-manifold. Let v(S!, M) be the H-normal bundle of S' in U. Then
v(iSL,MY®@R=TM|S!. Write V=V,@R*"' and W=W,®R. Since

Auty (Vo) = Auty (V) is 1-connected in all three categories the maps ¢ and d
desuspend to H-bundle isomorphisms

(3.7) cv(iSL, M=V, d:v(S',N)>W,.
Step 2. We next deform f in a neighbourhood of M. Let ey: Vo — W, be a
norm preserving H-equivariant map such that the diagram below of R-stable

maps commutes up to H-homotopy

eg® 1

(Vo @ RY ——— (W, @R
dx T

™, —Y— TN,

(W=¢of, cf 2.13ii)). By a cofibration argument and  beccause
Deg (f; ¥~ ") (x, H» =1 we may change f up to G-homotopy so that

f=d 'ceqoé:v(S', M)—>v(S', N)
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in a neighbourhood of S'. Thus there is an open G-set U in M with

(3.8) (i) M7cU

(i) £ 1(SHYNU=§" ]

(i) T, Me—Y— T, ) N° =L, T, M has degree 1
on all fixed sets for xeS', (cf. 1.13).

Step 3. We finish the proof under the additional assumption that U=M in
(3.8). Indeed, one obtains the desired bordism F: P — Q by the G-push-outs:

G xy(D*xDVy) ——— G x g(S' x DVy) — 25 M x|
G X g7 (id X eg) G X g (id x eq) S xid

G X g(D? x DWy) e——— G x (S x DWy) S9N x 1,
if we identify v(S', M) and v(S', N) with neighbourhoods in M and N. The
assumption U=M and (3.8(ii)) ensure that F respects boundaries. There is an
obvious extension of 1: N - K to A4: Q — K. The bundle data extend by construc-
tion and the reference map by (3.6). The map F has degree one by (1.14).

Step 4. It remains to obtain U= M. We prove inductively that U contains M*
for more and more K, beginning with K=H, (3.8). So suppose M~ XcU; we
attempt to enlarge U to U, with U, > M¥ and without destroying (3.8 (ii)).

By possibly shrinking U we can find a G-neighbourhood U’ of cls(U) with
STHSHNUNU=@. Let M'=M*"\(U~M¥) and write f'=f¥|M': M’ - NX.
Note that WK acts freely on M’

We can change

£ xid/WK: M'JWK — NX x M"/WK

relative to U'nM'/WK to make it transverse to Y/WK, where Y
=(NK/NKnHxS'")x M'=N¥x M. The preimage is a one-dimensional sub-
manifold of M'/WK. Two of its components can be connected by a path whose
image under f” xid/WK is homotopic to a path in Y/WK (use (3.3(ii)). We
homotop [’ xid/WK relative to M’ nU’/WK keeping it transverse to Y/WK,
and such that the preimage has one component less. In the end the preimage
consists of a single circle.

We have achieved that f': M’ —» N¥ is WK-transverse to NK/NKNH x S'
and that (/)" '(NK/NK n H x S') is the preimage of a circle S' = M’/WH under
the WK-principal bundle M’ - M'/WK. Let v: S' — S' be the map induced by
f* from S'<M’/WK to the circle S'cNX/WK coming from NK/NKH
x S' = N¥. Consider the ¢(G)-transformation

Y=(p-f)" 1 f* tpiy— tply

and let Y be the induced transformation on MX. Choose a regular value
zeS <= N¥ of fX Notice that (f¥)~'(S') consists of a part in M¥ which is
a single point {y} and a part in M'. One easily checks that

(39  Deg (/5 y*)(z, K)=deg WX (y) ' T, f*)+INK/NK n H|-degv
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Since Deg (f%, y¥)(z, K) and deg (y%(y))- T, 1¥) are both equal to one, deg v=0.
By the weak gap conditions (1.18) and (3.3 (11)), M, /WK — N¥/WK is 2-connected
so that S' < M /WK is null-homotopic. Hence (/)" HNK/NK nH x S')is equal
to WK x S" and fX restricted to eK x S! is null-homotopic.

We can assume f*, in a tubular neighbourhood of §' =K x §' = WK x St
looks like ¢xid: S'x D" ' {z) x D" ' =y (S', NX). The obvious extension
¢xid: D*x D™ "' - {2} x D™~ ! has the property that its restriction to D2 x N
does not meet S' x NX. Hence we can do surgery,

Sl——)MK

i

D? —< , NK

The new normal map Jo:M,. >N is equal to f on U, and
SEHSHAME(UAMY)=g. We can enlarge U to U,>MX such that
STHSY) N Uy=S". This completes the proof. [J

Note in particular that (3.2), applied to the normal map & — &, gives a
normal map M — N with the prescribed ‘fundamental groupoid data’. The next
theorem was proved in [4] when m,(M")=0and in [21, Chap. 3] when G=1.

(3.10)  Theorem (n — 7 theorem). Let J:M, 0o M, 3, M)~ (N, d,N, Oy NYbea[G-
simple] G-surgery problem in the smooth or PL category. Suppose n°(d, N)
—-n%N) is a weak homotopy equivalence and that N satisfies the strong gap
conditions (1.18). Then F is G-normally cobordant (rel Oo N) to a surgery problem
(f+,0C0 f+, 01 fy) whichis a [simple] G-homotopy equivalence of triads. [

We shall not elaborate on the proof of (3.10). It is similar to the proof
presented in [4], but two comments are in order, Firstly, there are certain minor
errors in [4], which the reader can overcome by using some of the material
presented in the proof of (3.2) above. Secondly, in the extension of the 7—n
theorem to the case of non-simply connected fixed sets one uses the group
extension.

l>m (M"Y, x) > E(x, H)» WH(x) > 1
and the E(x, H)-action on the universal covering M (x)~ over the component
M*"(x) of M™ which contains x. The surgery is done in the regular part of
M™(x)~. In the G-simple case one needs to compare the equivariant Whitehead
torsions wh(f) and wh(f, éf) for G-homotopy equivalences

(fs Of): (M, dM)— (N, éN), fiM—N

This is done [1], where an involution

#: Wh(n® N) — Wh(zn% N)
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is constructed (by reversing h-cobordisms) such that
(3.11) whif)= —=wh(f. of).

(Here we use the assumption that R be G-simple.)

In particular, wh(f)=0<>wh(f, 0f)=0. See [4, Chap. 5] for a discussion
when 7, (N¥, x)=0 for all H=G, xe N

Finally, one defines the equivariant surgery obstruction of an n-dimensional
normal map (f,f,¢) to be the class A%(f. [ @) it represents in
%(n° N, tpe, tpy, @). From (3.2) and (3.10) one gets

(3.12) Theorem If N x I satisfies the strong gap conditions in (1.18), then a (G-
simple) normal map (f,f, ¢) is normally cobordant to a (G-simple) G-homotopy
equivalence if and only if 2°(f, f, ¢)=0.

4. Functorial Properties

This section compares the G-equivariant L-groups for varying G. Let i: -G
be a homomorphism of groups. It induces a functor i: € (I') > ((G), i(X)=G x  X.
For any category % consider the functor categories [ (I'), ]°" of contravariant
functors. Then i induces

*: [C(G), 41— [C(I'), €]°".
Under mild restrictions on %, i* has a left adjoint

iy [OAT), €]°° > [(G), 6]°P
(see e.g. [1711,§ 17]). In particular, for each ¥ e[ (/(G), ]°P there is the adjunction
4.1) Y(9): i, i*9>9.

We spell out the definition of i, (%) when % is the category of groupoids. Given
an (“(I')-groupoid %, and G/Le (¢ (G) let

(4.2) G(G/LYy= 1] %(I'/K)xHomg(G/L, i(I'/K)).

/Ket(I)

There is an equivalence relation on 4(G/L), defined as follows. For a I'-map
f:T/K—T/H and object

(u, v)e%(I'/H) x Homg (G/L, i(I'/K))
we set

(G(fu, v)~(u i(f)v).

Similarly for a morphism ¢: uq —u, in 4(I'/H),

(G @) v)~ (@, i(f) ().
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This generates an equivalence relation and (i,, 4)(G/L) is the groupoid of equiva-
lence classes. Letting L vary over the subgroups of G we obtain the ((G)-
groupoid i, (%).

If X is a I'-space and Y a G-space then

i, (X)=71%G xpX), i*n%Y)=nr"(Y).

Let BY be the groupoid of G—R" bundles over the orbits G/H considered
in §1. It is obvious that i* B¢=IB!, and an ((G)-functor t: ¥4 — B¢ induces
an O(I')-functor i*t: i*% — BL. An O(I')-functor t: 4 — B! induces an ¢ (G) func-
tor by setting

i ()i, (%) > i, Bl =i, i* BS > BS

with  from (4.1). If t=tp, is the transport of a I'-bundle over X then i,()
is the transport of the G-bundle G x & over G x, X.

Given a T'-reference R=(%,t,,t,,7) one gets a G-reference i, R
=(iy 9, iy to, iy 11, iy T) Which is geometric if R is. Similarly, a G-reference S
gives a [-reference i* S, geometric if S is.

If /1 M - N etc. is a I'-surgery problem with reference R then we can apply
the functor G x {—) to obtain a G-surgery problem with reference i, R. Similarly,
a G-surgery problem with reference S can be composed with i: '— G to define
a I'-surgery problem with reference i* S. This defines homorphisms

(4.3) Lyt LI R)> Z(G, iy R),  i*: £(G; S)—> LI, 1*S)
* *

We next define a Mackey-functor over G for a given geometric reference
R of ambient dimension n. On objects,

(4.4) G/H — %,(H, i(H)* R)

where i(H): H— G is the inclusion. Consider a G-map o: G/H — G/K. Choose
1

geG with a(eH)=g ' K. Let ¢(g) be conjugation with g, ie. c(g)(g)=ggg "
We obtain a commutative diagram

G

‘iu\’)

K

G
i(II)]
H c(g)

Consider the functors id and ¢(g): ¢(G) — ¢(G) induced by induction with the
corresponding group homomorphism. For any object G/H in ((G) we have
a morphism r(g): G/gHg ' — G/H which sends g(gHg ') to ggH, and get a
natural transformation r(g): ¢(g) —id. It induces an isomorphism of references
p(g): R—>c(g)* R. The adjunction between i, and i* carries over to references
to give a bijection

c(g)
—_—

ad: Hom (c(g), i(H)* R, i(K)* R)—> Hom (i(H)* R, c(g)* i(K)* R).
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Since ¢(g)*i(K)*R=i(H)*c(g)* R we get an element i(H)*(p(g) in
Hom (i(H)* R, c(g)*i(K)*R). Let u(g): c(g), i(H)* R—i(K)*R be its preimage
under ad. Now define

(4.5) 0,1 Ly(H, i(H* R) - Z(K, i(K)* R)

as the composition
Z(H,i(H* R)—2 #,(K, c(g), i(H)* R) %28, & (K i(K)*R).

Similarly, let
(4.6) o*: %(K, i(K)*R)—> %,(H, i(H)*R)

be the composition
Z(K,i(K)* R —F" #,(H, c(g)* i(K)* R)—<> ,(H, i(H)* c(g)* R)
SO 4 (HL i(H)* R).

We have to show that these definitions are independent of the choice of which
g we pick with o(eH)=g ' K. This follows from

(4.7) Lemma. The homomorphisms c(g)* and Z,(G, p(g)) from £(G,R) to
Z(G, c(g)* R) are equal.

Proof. Suppose that ¥ =79 K. An element in %,(G, R) is represented by a surgery
problem f: M — N and a reference map 4: N — K, suppressing the bundle data.
Then c¢(g)* applied to this element is represented by c(g)*f: c¢(g)* M — ¢(g)* N
and c(g)* 2: c(g)* N — c(g)* K. Multiplication /(g): K —c(g)* K is a G-map, and
Z,(G, p(g)) sends the given surgery problem to f: M — N, /(g)oi: N - c(g)* K.
These two elements agree in %,(G, c(g)* R) since the following diagram com-
mutes:

M — L N

W
‘® c(@)*K

i *
clg* ML, c(g)¥ N

(g

The reader can easily verify that the maps in (4.5) and (4.6) give the functor
in (4.4) the structure of a Mackey functor. In particular we have

(4.8) Corollary. The equivariant L-group %,(G, R) is a module over the Burnside
ring A(G).
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Appendix
Comparison With Other Definitions ( Smooth Category )

In the original source for G-surgery groups [3] the bundle data required for
a G-normal map is somewhat different from ours (2.1 (i1)). We examine the differ-
ence.

For any G-bundle 5 over a G-space X, let #” be the fixed point bundle
over X" and write 1y for the quotient bundle, (n] X™)/n", with a similar notation
for maps. Note that n| X" =" @y, but with no preferred isomorphism (unless
we have an invariant inner metric on ).

Dovermann and Petrie’s bundle data for a normal map over J: M — N con-
sists of bundle isomorphisms

(A1) a: TM@V-f*EPV (G-map)

by: TMy = [*(&n) (NH-map)
such that ay=h; @ Vy and such that the b, satisfy obvious compatibility condi-
tions. Here V is any (large) RG-module with V¢ (.

(A2) Proposition. Suppose f: M — N is a map between G-manifolds covered by
a bundle map a. If there exist bundle maps by satisfying (A1) then there exists
a bundle map f: TM VS = [*(E) @ VT so that azf@ V.

Before we give the casy proof of (A2) let us remark that a bundle map

fin - 12 between two bundles over M is equivalent to a section of the G-bundle

Iso (n,, n,) over M whose fibre over xeM is the set of isomorphisms Iso (y, ., Nax)
with the induced action of G,.

Proof of (A2). The proof will be by induction over the orbit types. This proce-
dure is described for example in [2, §8.17]. It reduces the proof to the following
special case. Consider

al MU TMIMP @ V> | MTy @ v

as an N H-isomorphism. Let (M*")* be the singular set in MY consisting of points
with larger isotropy groups. Suppose

al(MPy=a,®V,
for some NH-bundle map
ap i TMI(MHY @V - f+ &MYy @ V6,
We want to show that there exists an NH-bundle map
a: TM| M@ VG—{,‘*f]MH@ |2

sothata|[M"=a,® V.
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The assumptions (A1) implies that there are decompositions
TM MY =TM" @ TMy, [*(&)=/*(E") @ [*(Cn) so that

alMi=a"®by®Vy (V@ Vs =V5).
Hence it suffices to show that a” =a, ® V¥ for some NH-bundle map
ag: TMH @ V- [* (M@ Ve

We do have a, defined over (M")’, namely by setting a,|(MHy=al. The NH-
space M is build up from (M) by attaching free NH/H-cells, and we can
attempt to extend aff to a,, cell by cell. Suppose d, already defined over X
and let Y=X UNH/H x Di*". The obstruction to extend a, over Y such that
a,® Vi =a" lie in

ni+1(GLH(TxMH® VG)L’GLH(TX M@ V™)

where ¢ adds the identity along V. There is no H-action on T.MT@® V!,
S0
GL, (T, MY @® V")~ 0 (dim M" +dim V™).

Hence ¢ is (dim MY +dim V¢ —1)-connected, and since dim VS+0 the stated
homotopy group vanishes. This proves the existence of a, and completes the
inductive step. [

We have used the definition (3.5') in [4] as (A1). There is a weaker definition
(3.5) in [4] (see also [3, Sect. 3]), where a: TM @© V— f*¢& for some G-bundle
& and by : TM ;; = ny for some bundle functors 1, such that certain compatibility
conditions hold. However, the argument above shows that one can destabilize
& to & @V, for appropriate ¢ and that one can destabilize a to fTM@ V-
also in this case.
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