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Abstract
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0 Introduction

The purpose of this survey article is to present an algebraic approach to L2-
invariants such as L2-Betti numbers and L2-torsion. Originally these were de-
fined analytically in terms of heat kernels. After it was discovered that they have
simplicial and homological algebraic counterparts, there have been many appli-
cations to various problems in topology, geometry, group theory and algebraic
K-theory, which on the first glance do not involve any L2-notions. Therefore
it seems to be useful to give a quick and friendly introduction to these notions
in particular for mathematicians who have more algebraic than analytic back-
ground. This does not at all mean that the analytic aspects are less important,
but for certain applications it is not necessary to know the analytic approach
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and it is possible and easier to focus on the algebraic aspects. Moreover, ques-
tions about L2-invariants of heat kernels such as the Atiyah Conjecture or the
zero-in-the-spectrum-Conjecture turn out to be strongly related to algebraic
questions about modules over group rings.

The hope of the author is that more people take notice of L2-invariants
and L2-methods, and may be able to apply them to their favourite problems,
which not necessarily come a priori from an L2-setting. Typical examples of such
instances will be discussed in this survey article. There are many open questions
and conjectures which have the potential to stimulate further activities.

The author has tried to write this article in a way which makes it possible to
quickly pick out specific topics of interest and read them locally without having
to study too much of the previous text.

These notes are based on a series of lectures which were presented by the
author at the LMS Durham Symposium on Geometry and Cohomology in Group
Theory in July 2003. The author wants to thank the organizers Martin Bridson,
Peter Kropholler and Ian Leary and the London Mathematical Society for this
wonderful symposium and Michael Weiermann for proof reading the manuscript.

In the sequel ring will always mean associative ring with unit and R-module
will mean left R-module unless explicitly stated differently. The letter G denotes
a discrete group. Actions of G on spaces are always from the left.
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1 Group von Neumann Algebras

The integral group ring ZG plays an important role in topology and geometry,
since for a G-space its singular chain complex or for a G-CW -complex its cellular
chain complex are ZG-chain complexes. However, this ring is rather complicated
and does not have some of the useful properties which other rings such as fields
or semisimple rings have. Therefore it is very hard to analyse modules over
ZG. Often in algebra one studies a complicated ring by investigating certain
localizations or completions of it which do have nice properties. They still
contain and focus on useful information about the original ring, which now
becomes accessible. Examples are the quotient field of an integral domain, the
p-adic completion of the integers or the algebraic closure of a field. In this
section we present a kind of completion of the complex group ring CG given by
the group von Neumann algebra and discuss its ring theoretic properties.

1.1 The Definition of the Group von Neumann Algebra

Denote by l2(G) the Hilbert space l2(G) consisting of formal sums
∑
g∈G λg · g

for complex numbers λg such that
∑
g∈G |λg|2 < ∞. The scalar product is

defined by 〈∑
g∈G

λg · g,
∑
g∈G

µg · g

〉
:=

∑
g∈G

λg · µg.

This is the same as the Hilbert space completion of the complex group ring CG
with respect to the pre-Hilbert space structure for which G is an orthonormal
basis. Notice that left multiplication with elements in G induces an isometric
G-action on l2(G). Given a Hilbert space H, denote by B(H) the C∗-algebra
of bounded (linear) operators from H to itself, where the norm is the operator
norm and the involution is given by taking adjoints.
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Definition 1.1 (Group von Neumann algebra). The group von Neumann
algebra N (G) of the group G is defined as the algebra of G-equivariant bounded
operators from l2(G) to l2(G)

N (G) := B(l2(G))G.

In the sequel we will view the complex group ring CG as a subring of N (G)
by the embedding of C-algebras ρr : CG → N (G) which sends g ∈ G to the
G-equivariant operator rg−1 : l2(G) → l2(G) given by right multiplication with
g−1.

Remark 1.2 (The general definition of von Neumann algebras). In
general a von Neumann algebra A is a sub-∗-algebra of B(H) for some Hilbert
space H, which is closed in the weak topology and contains id : H → H. Often
in the literature the group von Neumann algebra N (G) is defined as the closure
in the weak topology of the complex group ring CG considered as ∗-subalgebra
of B(l2(G)). This definition and Definition 1.1 agree (see [60, Theorem 6.7.2 on
page 434]).

Example 1.3 (The von Neumann algebra of a finite group). If G is
finite, then nothing happens, namely CG = l2(G) = N (G).

Example 1.4 (The von Neumann algebra of Zn). In general there is no
concrete model for N (G). However, for G = Z

n, there is the following illumi-
nating model for the group von Neumann algebra N (Zn). Let L2(Tn) be the
Hilbert space of equivalence classes of L2-integrable complex-valued functions
on the n-dimensional torus Tn, where two such functions are called equivalent if
they differ only on a subset of measure zero. Define the ring L∞(Tn) by equiv-
alence classes of essentially bounded measurable functions f : Tn → C, where
essentially bounded means that there is a constant C > 0 such that the set
{x ∈ Tn | |f(x)| ≥ C} has measure zero. An element (k1, . . . , kn) in Zn acts
isometrically on L2(Tn) by pointwise multiplication with the function Tn → C,
which maps (z1, z2, . . . , zn) to zk1

1 ·. . .·zknn . Fourier transform yields an isometric
Z
n-equivariant isomorphism l2(Zn)

∼=−→ L2(Tn). Hence N (Zn) = B(L2(Tn))Z
n

.
We obtain an isomorphism (of C∗-algebras)

L∞(Tn)
∼=−→ N (Zn)

by sending f ∈ L∞(Tn) to the Zn-equivariant operator

Mf : L2(Tn)→ L2(Tn), g 7→ g · f,

where g · f(x) is defined by g(x) · f(x).

Let i : H → G be an injective group homomorphism. It induces a ring
homomorphism Ci : CH → CG, which extends to a ring homomorphism

N (i) : N (H)→ N (G) (1.5)
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as follows. Let g : l2(H) → l2(H) be a H-equivariant bounded operator. Then
CG⊗CH l2(H) ⊆ l2(G) is a dense G-invariant subspace and

idCG⊗CHg : CG⊗CH l2(H)→ CG⊗CH l2(H)

is a G-equivariant linear map, which is bounded with respect to the norm coming
from l2(G). Hence it induces a G-equivariant bounded operator l2(G)→ l2(G),
which is by definition the image of g ∈ N (H) under N (i).

In the sequel we will ignore the functional analytic aspects of N (G) and will
only consider its algebraic properties as a ring.

1.2 Ring Theoretic Properties of the Group von Neumann
Algebra

On the first glance the von Neumann algebra N (G) looks not very nice as a
ring. It is an integral domain, i.e. has no non-trivial zero-divisors if and only if
G is trivial. It is Noetherian if and only if G is finite (see [80, Exercise 9.11]).
It is for instance easy to see that N (Zn) ∼= L∞(Tn) does contain non-trivial
zero-divisors and is not Noetherian. The main advantage of N (G) is that it
contains many more idempotents than CG. This has the effect that N (G) has
the following ring theoretic property. A ring R is called semihereditary if every
finitely generated submodule of a projective module is again projective. This
implies that the category of finitely presented R-modules is an abelian category.

Theorem 1.6 (Von Neumann algebras are semihereditary). Any von
Neumann algebra A is semihereditary.

Proof. This follows from the facts that any von Neumann algebra is a Baer
∗-ring and hence in particular a Rickart C∗-algebra [5, Definition 1, Definition
2 and Proposition 9 in Chapter 1.4] and that a C∗-algebra is semihereditary if
and only if it is Rickart [1, Corollary 3.7 on page 270].

Remark 1.7 (Group von Neumann algebras are semihereditary). It
is quite useful to study the following elementary proof of Theorem 1.6 in the
special case of a group von Neumann algebra N (G). One easily checks that
it suffices to show for a finitely generated submodule M ⊆ N (G)n that M is
projective. Let f : N (G)m → N (G)n be an N (G)-linear map. Choose a matrix
A ∈M(m,n;N (G)) such that f is given by right multiplication with A. Because
of N (G) = B(l2(G))G we can define a G-equivariant bounded operator

ν(f) : l2(G)m → l2(G)n, (u1, . . . , um) 7→

(
m∑
i=1

a∗i,1(ui), . . . ,
m∑
i=1

a∗i,n(ui)

)
,

where by definition
∑
g∈G λg · g :=

∑
g∈G λg · g and a∗i,j denotes the adjoint

of ai,j . With these conventions ν(id) = id, ν(r · f + s · g) = r · ν(f) + s ·
ν(g) and ν(g ◦ f) = ν(g) ◦ ν(f) for r, s ∈ C and N (G)-linear maps f and g.
Moreover we have ν(f)∗ = ν(f∗) for an N (G)-map f : N (G)m → N (G)n, where
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f∗ : N (G)n → N (G)m is given by right multiplication with the matrix (a∗j,i), if
f is given by right multiplication with the matrix (ai,j), and ν(f)∗ is the adjoint
of the operator ν(f).

Every equivariant bounded operator l2(G)m → l2(G)n can be written as ν(f)

for a unique f . Moreover, the sequence N (G)m
f−→ N (G)n

g−→ N (G)p of N (G)-
modules is exact if and only if the sequence of bounded G-equivariant operators

l2(G)m
ν(f)−−−→ l2(G)n

ν(g)−−−→ l2(G)p is exact. More details and explanations for
the last two statements can be found in [80, Section 6.2].

Consider the finitely generated N (G)-submodule M ⊆ N (G)n. Choose an
N (G)-linear map f : N (G)m → N (G)n with image M . The kernel of ν(f) is
a closed G-invariant linear subspace of l2(G)m. Hence there is an N (G)-map
p : N (G)m → N (G)m such that ν(p) is a G-equivariant projection, whose image
is ker(ν(f)). Now ν(p) ◦ ν(p) = ν(p) implies p ◦ p = p and im(ν(p)) = ker(ν(f))
implies im(p) = ker(f). Hence ker(f) is a direct summand in N (G)m and
im(f) = M is projective.

The point is that in order to get the desired projection p one passes to the
interpretation by Hilbert spaces and uses orthogonal projections there. We have
enlarged the group ring CG to the group von Neumann algebra N (G), which
does contain these orthogonal projections in contrast to CG.

1.3 Dimension Theory over the Group von Neumann Al-
gebra

An important feature of the group von Neumann algebra is its trace.

Definition 1.8 (Von Neumann trace). The von Neumann trace on N (G)
is defined by

trN (G) : N (G)→ C, f 7→ 〈f(e), e〉l2(G) ,

where e ∈ G ⊆ l2(G) is the unit element.

It enables us to define a dimension for finitely generated projective N (G)-
modules.

Definition 1.9 (Von Neumann dimension for finitely generated projec-
tive N (G)-modules). Let P be a finitely generated projective N (G)-module.
Choose a matrix A = (ai,j) ∈ M(n, n;N (G)) with A2 = A such that the image
of the N (G)-linear map rA : N (G)n → N (G)n given by right multiplication with
A is N (G)-isomorphic to P . Define the von Neumann dimension of P by

dimN (G)(P ) :=
n∑
i=1

trN (G)(ai,i) ∈ [0,∞).

We omit the standard proof that dimN (G)(P ) depends only on the isomor-
phism class of P but not on the choice of the matrix A. Obviously

dimN (G)(P ⊕Q) = dimN (G)(P ) + dimN (G)(Q).
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It is not hard to show that dimN (G) is faithful, i.e. dimN (G)(P ) = 0 ⇔ P = 0
holds for any finitely generated projective N (G)-module P .

Recall that the dual M∗ of a left or right R-module M is the right or
left R-module homR(M,R) respectively, where the R-multiplication is given
by (fr)(x) = f(x)r or (rf)(x) = rf(x) respectively for f ∈ M∗, x ∈ M and
r ∈ R.

Definition 1.10 (Closure of a submodule). Let M be an R-submodule of
N . Define the closure of M in N to be the R-submodule of N

M := {x ∈ N | f(x) = 0 for all f ∈ N∗ with M ⊆ ker(f)}.

For an R-module M define the R-submodule TM and the quotient R-module
PM by

TM := {x ∈M | f(x) = 0 for all f ∈M∗};
PM := M/TM.

Notice that TM is the closure of the trivial submodule in M . It can also be
described as the kernel of the canonical map i(M) : M → (M∗)∗, which sends
x ∈M to the map M∗ → R, f 7→ f(x). Notice that TPM = 0, PPM = PM ,
M∗ = (PM)∗ and that PM = 0 is equivalent to M∗ = 0.

The next result is the key ingredient in the definition of L2-Betti numbers
for G-spaces. Its proof can be found in [76, Theorem 0.6], [80, Theorem 6.7].

Theorem 1.11. (Dimension function for arbitrary N (G)-modules).

(i) If K ⊆M is a submodule of the finitely generated N (G)-module M , then
M/K is finitely generated projective and K is a direct summand in M ;

(ii) If M is a finitely generated N (G)-module, then PM is finitely generated
projective, there is an exact sequence 0 → N (G)n → N (G)n → TM → 0
and

M ∼= PM ⊕TM ;

(iii) There exists precisely one dimension function

dimN (G) : {N (G)-modules} → [0,∞] := {r ∈ R | r ≥ 0} q {∞}

which satisfies:

(a) Extension Property
If M is a finitely generated projective N (G)-module, then dimN (G)(M)
agrees with the expression introduced in Definition 1.9;

(b) Additivity
If 0→M0 →M1 →M2 → 0 is an exact sequence of N (G)-modules,
then

dimN (G)(M1) = dimN (G)(M0) + dimN (G)(M2),

where for r, s ∈ [0,∞] we define r+s by the ordinary sum of two real
numbers if both r and s are not ∞, and by ∞ otherwise;
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(c) Cofinality

Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e. M =⋃
i∈IMi and for two indices i and j there is an index k in I satisfying

Mi,Mj ⊆Mk. Then

dimN (G)(M) = sup{dimN (G)(Mi) | i ∈ I};

(d) Continuity
If K ⊆M is a submodule of the finitely generated N (G)-module M ,
then

dimN (G)(K) = dimN (G)(K).

Definition 1.12 (Von Neumann dimension for arbitrary N (G)-modules).
In the sequel we mean for an (arbitrary) N (G)-module M by dimN (G)(M) the
value of the dimension function appearing in Theorem 1.11 and call it the von
Neumann dimension of M .

Remark 1.13 (Uniqueness of the dimension function). There is only
one possible definition for the dimension function appearing in Theorem 1.11,
namely one must have

dimN (G)(M) := sup{dimN (G)(P ) | P ⊆M finitely generated
projective submodule} ∈ [0,∞].

Namely, consider the directed system of finitely generated N (G)-submodules
{Mi | i ∈ I} of M which is directed by inclusion. By Cofinality

dimN (G)(M) = sup{dimN (G)(Mi) | i ∈ I}.

From Additivity and Theorem 1.11 (ii) we conclude

dimN (G)(Mi) = dimN (G)(PMi)

and that PMi is finitely generated projective. This shows uniqueness of dimN (G).
The hard part in the proof of Theorem 1.11 (iii) is to show that the definition
above does have all the desired properties.

We also see what dimN (G)(M) = 0 means. It is equivalent to the condition
that M contains no non-trivial projective N (G)-submodule, or, equivalently, no
non-trivial finitely generated projective N (G)-submodule.

Example 1.14 (The von Neumann dimension for finite groups). If G
is finite, then N (G) = CG and trN (G)

(∑
g∈G λg · g

)
is the coefficient λe of

the unit element e ∈ G. For an N (G)-module M its von Neumann dimen-
sion dimN (G)(V ) is 1

|G| -times the complex dimension of the underlying complex
vector space M .
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The next example implies that dimN (G)(P ) for a finitely generated projective
N (G)-module can be any non-negative real number.

Example 1.15 (The von Neumann dimension for Zn). Consider G = Z
n.

Recall that N (Zn) = L∞(Tn). Under this identification we get for the von
Neumann trace

trN (Zn) : N (Zn)→ C, f 7→
∫
Tn
fdµ,

where µ is the standard Lebesgue measure on Tn.
Let X ⊆ Tn be any measurable set and χX ∈ L∞(Tn) be its characteris-

tic function. Denote by MχX : L2(Tn) → L2(Tn) the Zn-equivariant unitary
projection given by multiplication with χX . Its image P is a finitely generated
projective N (Zn)-module, whose von Neumann dimension dimN (Zn)(P ) is the
volume µ(X) of X.

In view of the results above the following slogan makes sense.

Slogan 1.16. The group von Neumann algebra N (G) behaves like the ring of
integers Z provided one ignores the properties integral domain and Noetherian.

Namely, Theorem 1.11 (ii) corresponds to the statement that a finitely gen-
erated Z-module M decomposes into M = M/ tors(M) ⊕ tors(M) and that
there exists an exact sequence of Z-modules 0 → Z

n → Z
n → tors(M) → 0,

where tors(M) is the Z-module consisting of torsion elements. One obtains the
obvious analog of Theorem 1.11 (iii) if one considers

{Z-modules} → [0,∞], M 7→ dimQ(Q⊗ZM).

One basic difference between the case Z and N (G) is that there exist projective
N (G)-modules with finite dimension which are not finitely generated, which is
not true over Z. For instance take the direct sum P =

⊕∞
i=1 Pi of N (Zn)-

modules Pi appearing in Example 1.15 with dimN (Zn)(Pi) = 2−i. Then P is
projective but not finitely generated and satisfies dimN (Zn)(P ) = 1.

The proof of the following two results is given in [80, Theorem 6.13 and
Theorem 6.39].

Theorem 1.17 (Dimension and colimits). Let {Mi | i ∈ I} be a directed
system of N (G)-modules over the directed set I. For i ≤ j let φi,j : Mi →Mj be
the associated morphism of N (G)-modules. For i ∈ I let ψi : Mi → colimi∈IMi

be the canonical morphism of N (G)-modules. Then:

(i) We get for the dimension of the N (G)-module given by the colimit

dimN (G) (colimi∈IMi) = sup
{

dimN (G)(im(ψi)) | i ∈ I
}

;

(ii) Suppose for each i ∈ I that there exists i0 ∈ I with i ≤ i0 such that
dimN (G)(im(φi,i0)) <∞ holds. Then

dimN (G) (colimi∈IMi)

= sup
{

inf
{

dimN (G)(im(φi,j : Mi →Mj)) | j ∈ I, i ≤ j
}
| i ∈ I

}
.
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Theorem 1.18 (Induction and dimension). Let i : H → G be an injective
group homomorphism. Then

(i) Induction with N (i) : N (H) → N (G) is a faithfully flat functor M 7→
i∗M := N (G)⊗N (i)M from the category of N (H)-modules to the category
of N (G)-modules, i.e. a sequence of N (H)-modules M0 → M1 → M2 is
exact at M1 if and only if the induced sequence of N (G)-modules i∗M0 →
i∗M1 → i∗M2 is exact at i∗M1;

(ii) For any N (H)-module M we have:

dimN (H)(M) = dimN (G)(i∗M).

Example 1.19 (The von Neumann dimension and C[Zn]-modules). Con-
sider the case G = Z

n. Then C[Zn] is a commutative integral domain and hence
has a quotient field C[Zn](0). Let dimC[Zn](0)

denote the usual dimension for
vector spaces over C[Zn](0). Let M be a C[Zn]-module. Then

dimN (Zn)

(
N (Zn)⊗C[Zn] M

)
= dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] M

)
. (1.20)

This follows from the following considerations. Let {Mi | i ∈ I} be the
directed system of finitely generated submodules of M . Then M = colimi∈IMi.
Since the tensor product has a right adjoint, it is compatible with colimits. This
implies together with Theorem 1.17

dimN (Zn)

(
N (Zn)⊗C[Zn] M

)
= sup

{
dimN (Zn)

(
N (Zn)⊗C[Zn] Mi

)}
;

dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] M

)
= sup

{
dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] Mi

)}
.

Hence it suffices to prove the claim for a finitely generated C[Zn]-module N .
The case n = 1 is easy. Then C[Z] is a principal integral domain and we can
write

N = C[Z]r ⊕
k⊕
i=1

C[Z]/(ui)

for non-trivial elements ui ∈ C[Z] and some non-negative integers k and r. One
easily checks that there is an exact N (Z)-sequence

0→ N (Z)
rui−−→ N (Z)→ N (Z)⊗C[Z] C[Z]/(ui)→ 0

using the identification N (Z) = L∞(S1) from Example 1.4 to show injectivity
of the map rui given by multiplication with ui. This implies

dimN (Z)

(
N (Z)⊗C[Z] N

)
= r = dimC[Z](0)

(
C[Z](0) ⊗C[Z] N

)
.

In the general case n ≥ 1 one knows that there exists a finite free C[Zn]-
resolution of N . Now the claim follows from [80, Lemma 1.34].

This example is the commutative version of a general setup for arbitrary
groups, which will be discussed in Subsection 4.2.
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A center-valued dimension function for finitely generated projective modules
will be introduced in Definition 7.3. It can be used to classify finitely generated
projective N (G)-modules (see Theorem 7.5) and shows that the representation
theory of finite dimensional representations over a finite group extends to infinite
groups if one works with N (G) (see Remark 7.6).

2 Definition and Basic Properties of L2-Betti
Numbers

In this section we define L2-Betti numbers for arbitrary G-spaces and study
their basic properties. Our general algebraic definition is very general and is
very flexible. This allows to apply standard techniques such as spectral se-
quences and Mayer-Vietoris arguments directly. The original analytic definition
for free proper smooth G-manifolds with G-invariant Riemannian metrics is due
to Atiyah and will be briefly discussed in Subsection 2.3.

2.1 The Definition of L2-Betti Numbers

Definition 2.1 (L2-Betti numbers of G-spaces). Let X be a (left) G-space.
Equip N (G) with the obvious N (G)-ZG-bimodule structure. The singular ho-
mology HG

p (X;N (G)) of X with coefficients in N (G) is the homology of the
N (G)-chain complex N (G)⊗ZGCsing

∗ (X), where Csing
∗ (X) is the singular chain

complex of X with the induced ZG-structure. Define the p-th L2-Betti number
of X by

b(2)
p (X;N (G)) := dimN (G)

(
HG
p (X;N (G))

)
∈ [0,∞],

where dimN (G) is the dimension function of Definition 1.12.
If G and its action on X are clear from the context, we often omit N (G)

in the notation above. For instance, for a connected CW -complex X we denote
by b(2)

p (X̃) the L2-Betti number b(2)
p (X̃;N (π1(X))) of its universal covering X̃

with respect to the obvious π1(X)-action.

Notice that we have no assumptions on the G-action or on the topology
on X, we do not need to require that the operation is free, proper, simpli-
cial or cocompact. Thus we can apply this definition to the classifying space
for free proper G-actions EG, which is a free G-CW -complex which is con-
tractible (after forgetting the group action). Recall that EG is unique up to
G-homotopy. Its quotient BG = G\EG is a connected CW -complex, which is
up to homotopy uniquely determined by the property that πn(BG) = {1} for
n ≥ 2 and π1(BG) ∼= G holds, and called classifying space of G. Moreover,
G→ EG→ BG is the universal G-principal bundle.

Definition 2.2 (L2-Betti numbers of groups). Define for any (discrete)
group G its p-th L2-Betti number by

b(2)
p (G) := b(2)

p (EG,N (G)).

12



Remark 2.3 (Comparison with the approach by Cheeger and Gro-
mov). A detailed comparison of our approach with the one by Cheeger and
Gromov [15, section 2] can be found in [80, Remark 6.76]. Cheeger and Gromov
[15, Section 2] define L2-cohomology and L2-Betti numbers of a G-space X by
considering the category whose objects are G-maps f : Y → X for a simplicial
complex Y with cocompact free simplicial G-action and then using inverse limits
to extend the classical notions for finite free G-CW -complexes such as Y to X.
Their approach is technically more complicated because for instance they work
with cohomology instead of homology and therefore have to deal with inverse
limits instead of directed limits. Our approach is closer to standard notions,
the only non-standard part is the verification of the properties of the extended
dimension function (Theorem 1.11).

Remark 2.4 (L2-Betti numbers for von Neumann algebras). The alge-
braic approach to L2-Betti numbers of groups as

b(2)
p (G) = dimN (G)

(
TorCGp (C,N (G))

)
based on the dimension function for arbitrary modules and homological algebra
plays a role in the definition of L2-Betti numbers for certain von Neumann
algebras by Connes-Shlyakhtenko [18]. The point of their construction is to
introduce invariants which depend on the group von Neumann algebra N (G)
only. If one could show that their invariants applied to N (G) agree with the
L2-Betti numbers of G, one would get a positive answer to the open problem,
whether the von Neumann algebras of two finitely generated free groups F1 and
F2 are isomorphic as von Neumann algebras if and only if the groups F1 and F2

are isomorphic.

Definition 2.5 (G-CW -complex). A G-CW -complex X is a G-space together
with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e. a set
C ⊆ X is closed if and only if C ∩ Xn is closed in Xn for all n ≥ 0) and Xn

is obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional
cells, i.e. there exists a G-pushout

∐
i∈In G/Hi × Sn−1

‘
i∈In qi−−−−−−→ Xn−1y y∐

i∈In G/Hi ×Dn −−−−−−→‘
i∈In Qi

Xn

13



The space Xn is called the n-skeleton of X. A G-CW -complex X is proper
if and only if all its isotropy groups are finite. A G-space is called cocompact
if G\X is compact. A G-CW -complex X is finite if X has only finitely many
equivariant cells. A G-CW -complex is finite if and only if it is cocompact. A
G-CW -complex X is of finite type if each n-skeleton is finite. It is called of
dimension ≤ n if X = Xn and finite dimensional if it is of dimension ≤ n for
some integer n. A free G-CW -complex X is the same as a regular covering
X → Y of a CW -complex Y with G as group of deck transformations.

Notice that Definition 2.5 also makes sense in the case where G is a topo-
logical group. Every proper smooth cocompact G-manifold is a proper G-CW -
complex by means of an equivariant triangulation.

For a G-CW -complex one can use the cellular ZG-chain complex instead of
the singular chain complex in the definition of L2-Betti numbers by the next
result. Its proof can be found in [76, Lemma 4.2]. For more information aboutG-
CW -complexes we refer for instance to [104, Sections II.1 and II.2], [71, Sections
1 and 2], [80, Subsection 1.2.1].

Lemma 2.6. Let X be a G-CW -complex. Let Cc∗(X) be its cellular ZG-chain
complex. Then there is a ZG-chain homotopy equivalence Csing

∗ (X) → Cc∗(X)
and we get

b(2)
p (X;N (G)) = dimN (G) (Hp (N (G)⊗ZG Cc∗(X))) .

The definition of b(2)
p (X;N (G)) and the above lemma extend in the obvious

way to pairs (X,A).

2.2 Basic Properties of L2-Betti Numbers

The basic properties of L2-Betti numbers are summarized in the following the-
orem. Its proof can be found in [80, Theorem 1.35 and Theorem 6.54] except
for assertion (viii) which follows from [80, Lemma 13.45].

Theorem 2.7 (L2-Betti numbers for arbitrary spaces).

(i) Homology invariance
We have for a G-map f : X → Y :

(a) Suppose for n ≥ 1 that for each subgroup H ⊆ G the induced map
fH : XH → Y H is C-homologically n-connected, i.e. the map

Hsing
p (fH ;C) : Hsing

p (XH ;C)→ Hsing
p (Y H ;C)

induced by fH on singular homology with complex coefficients is bi-
jective for p < n and surjective for p = n. Then

b(2)
p (X) = b(2)

p (Y ) for p < n;

b(2)
p (X) ≥ b(2)

p (Y ) for p = n;

14



(b) Suppose that for each subgroup H ⊆ G the induced map fH : XH →
Y H is a C-homology equivalence, i.e. Hsing

p (fH ;C) is bijective for
p ≥ 0. Then

b(2)
p (X) = b(2)

p (Y ) for p ≥ 0;

(ii) Comparison with the Borel construction
Let X be a G-CW -complex. Suppose that for all x ∈ X the isotropy group
Gx is finite or satisfies b(2)

p (Gx) = 0 for all p ≥ 0. Then

b(2)
p (X;N (G)) = b(2)

p (EG×X;N (G)) for p ≥ 0,

where G acts diagonally on EG×X;

(iii) Invariance under non-equivariant C-homology equivalences
Suppose that f : X → Y is a G-equivariant map of G-CW -complexes such
that the induced map Hsing

p (f ;C) on singular homology with complex coef-
ficients is bijective for all p. Suppose that for all x ∈ X the isotropy group
Gx is finite or satisfies b(2)

p (Gx) = 0 for all p ≥ 0, and analogously for all
y ∈ Y . Then we have for all p ≥ 0

b(2)
p (X;N (G)) = b(2)

p (Y ;N (G));

(iv) Independence of equivariant cells with infinite isotropy
Let X be a G-CW -complex. Let X[∞] be the G-CW -subcomplex consisting
of those points whose isotropy subgroups are infinite. Then we get for all
p ≥ 0

b(2)
p (X;N (G)) = b(2)

p (X,X[∞];N (G));

(v) Künneth formula
Let X be a G-space and Y be an H-space. Then X × Y is a G×H-space
and we get for all n ≥ 0

b(2)
n (X × Y ) =

∑
p+q=n

b(2)
p (X) · b(2)

q (Y ),

where we use the convention that 0 ·∞ = 0, r ·∞ =∞ for r ∈ (0,∞] and
r +∞ =∞ for r ∈ [0,∞];

(vi) Induction
Let i : H → G be an inclusion of groups and let X be an H-space. Let
N (i) : N (H) → N (G) be the induced ring homomorphism (see (1.5)).
Then:

HG
p (G×H X;N (G)) = N (G)⊗N (i) H

H
p (X;N (H));

b(2)
p (G×H X;N (G)) = b(2)

p (X;N (H));
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(vii) Restriction to subgroups of finite index
Let H ⊆ G be a subgroup of finite index [G : H]. Let X be a G-space and
let resHG X be the H-space obtained from X by restriction. Then

b(2)
p (resHG X;N (H)) = [G : H] · b(2)

p (X;N (G));

(viii) Restriction with epimorphisms with finite kernel
Let p : G → Q be an epimorphism of groups with finite kernel K. Let X
be a Q-space. Let p∗X be the G-space obtained from X using p. Then

b(2)
p (p∗X;N (G)) =

1
|K|
· b(2)
p (X;N (Q));

(ix) Zero-th homology and L2-Betti number
Let X be a path-connected G-space. Then:

(a) There is an N (G)-isomorphism HG
0 (X;N (G))

∼=−→ N (G)⊗CG C;

(b) b
(2)
0 (X;N (G)) = |G|−1, where |G|−1 is defined to be zero if the order
|G| of G is infinite;

(x) Euler-Poincaré formula
Let X be a free finite G-CW -complex. Let χ(G\X) be the Euler charac-
teristic of the finite CW -complex G\X, i.e.

χ(G\X) :=
∑
p≥0

(−1)p · |Ip(G\X)| ∈ Z,

where |Ip(G\X)| is the number of p-cells of G\X. Then

χ(G\X) =
∑
p≥0

(−1)p · b(2)
p (X);

(xi) Morse inequalities
Let X be a free G-CW -complex of finite type. Then we get for n ≥ 0

n∑
p=0

(−1)n−p · b(2)
p (X) ≤

n∑
p=0

(−1)n−p · |Ip(G\X)|;

(xii) Poincaré duality
Let M be a cocompact free proper G-manifold of dimension n which is
orientable. Then

b(2)
p (M) = b

(2)
n−p(M,∂M);
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(xiii) Wedges
Let X1, X2, . . . , Xr be connected (pointed) CW -complexes of finite type
and X =

∨r
i=1Xi be their wedge. Then

b
(2)
1 (X̃)− b(2)

0 (X̃) = r − 1 +
r∑
j=1

(
b
(2)
1 (X̃j)− b(2)

0 (X̃j)
)

;

b(2)
p (X̃) =

r∑
j=1

b(2)
p (X̃j) for 2 ≤ p;

(xiv) Connected sums
Let M1, M2, . . . , Mr be compact connected m-dimensional manifolds for
m ≥ 3. Let M be their connected sum M1# . . .#Mr. Then

b
(2)
1 (M̃)− b(2)

0 (M̃) = r − 1 +
r∑
j=1

(
b
(2)
1 (M̃j)− b(2)

0 (M̃j)
)

;

b(2)
p (M̃) =

r∑
j=1

b(2)
p (M̃j) for 2 ≤ p ≤ m− 2.

Example 2.8. If G is finite, then b
(2)
p (X;N (G)) reduces to the classical Betti

number bp(X) multiplied with the factor |G|−1.

Remark 2.9 (Reading off L2-Betti numbers from Hp(X;C)). If f : X →
Y is a G-map of free G-CW -complexes which induces isomorphisms Hsing

p (f ;C)
for all p ≥ 0, then Theorem 2.7 (i) implies

b(2)
p (X;N (G)) = b(2)

p (Y ;N (G)).

This does not necessarily mean that one can read off b
(2)
p (X;N (G)) from

the singular homology Hp(X;C) regarded as a CG-module in general. In gen-
eral there is for a free G-CW -complex X a spectral sequence converging to
HG
p+q(X;N (G)), whose E2-term is

E2
p,q = TorCGp (Hq(X;C),N (G)).

There is no reason why the equality of the dimension of the E2-term for two free
G-CW -complexes X and Y implies that the dimension of HG

p+q(X;N (G)) and
HG
p+q(Y ;N (G)) agree. However, this is the case if the spectral sequence collapses

from the dimension point of view. For instance, if we make the assumption
dimN (G)

(
TorCGp (M,N (G))

)
= 0 for all CG-modules M and p ≥ 2, Additivity

and Cofinality of dimN (G) (see Theorem 1.11) imply

b(2)
p (X;N (G)) =

dimN (G) (N (G)⊗CG Hp(X;C)) + dimN (G)

(
TorCG1 (Hp−1(X;C),N (G))

)
.
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The assumption above is satisfied if G is amenable (see Theorem 5.1) or G has
cohomological dimension ≤ 1 over C, for instance, if G is virtually free.

Remark 2.10 (L2-Betti numbers ignore infinite isotropy). Theorem 2.7
(iv) says that the L2-Betti numbers do not see the part of a G-space X whose
isotropy groups are infinite. In particular b(2)

p (X;N (G)) = 0 if X is a G-CW -
complex whose isotropy groups are all infinite. This follows from the fact that
for a subgroup H ⊆ G

dimN (G) (N (G)⊗CG C[G/H]) =
{ 1
|H| if |H| <∞;
0 if |H| =∞.

Remark 2.11 (L2-Betti numbers often vanish). An important phenomenon
is that the L2-Betti numbers of universal coverings of spaces and of groups tend
to vanish more often than the classical Betti numbers. This allows to draw
interesting conclusions as we will see later.

2.3 Comparison with Other Definitions

In this subsection we give a short overview of the previous definitions of L2-Betti
numbers. Originally they were defined in terms of heat kernels. Their analytic
aspects are important, but we will only focus on their algebraic aspects in this
survey article. So a reader may skip the brief explanations below.

The notion of L2-Betti numbers is due to Atiyah [2]. He defined for a smooth
Riemannian manifold with a free proper cocompact G-action by isometries its
analytic p-th L2-Betti number by the following expression in terms of the heat
kernel e−t∆p(x, y) of the p-th Laplacian ∆p

b(2)
p (M) = lim

t→∞

∫
F

trC(e−t∆p(x, x)) dvolx, (2.12)

where F is a fundamental domain for the G-action and trC denotes the trace of
an endomorphism of a finite-dimensional vector space. The L2-Betti numbers
are invariants of the large times asymptotic of the heat kernel.

A finitely generated Hilbert N (G)-module is a Hilbert space V together with
a linear G-action by isometries such that there exists a linear isometric G-
embedding into l2(G)n for some n ≥ 0. One can assign to it its von Neumann
dimension by

dimN (G)(V ) := trN (G)(A) ∈ [0,∞),

where A is any idempotent matrix A ∈ M(n, n;N (G)) such that the image
of the G-equivariant operator l2(G)n → l2(G)n induced by A is isometrically
linearly G-isomorphic to V .

The expression in (2.12) can be interpreted as the von Neumann dimension
of the space Hp(2)(M) of square-integrable harmonic p-forms on M , which is a

18



finitely generated Hilbert N (G)-module (see [2, Proposition 4.16 on page 63])

lim
t→∞

∫
F

trC(e−t∆p(x, x)) dvolx = dimN (G)

(
Hp(2)(M)

)
. (2.13)

Given a cocompact free G-CW -complex X, one obtains a chain complex of
finitely generated Hilbert N (G)-modules C(2)

∗ (X) := Cc∗(X) ⊗ZG l2(G). Its
reduced p-th L2-homology is the finitely generated Hilbert N (G)-module

H(2)
p (X; l2(G)) = ker(c(2)

p )/im(c(2)
p+1). (2.14)

Notice that we divide out the closure of the image of the (p+ 1)-th differential
c
(2)
p+1 of C(2)

∗ (X) in order to ensure that we obtain a Hilbert space. Then by a
result of Dodziuk [24] there is an isometric bijective G-operator

Hp(2)(M)
∼=−→ H(2)

p (K; l2(G)), (2.15)

where K is an equivariant triangulation of M . Finally one can show [74, Theo-
rem 6.1]

b(2)
p (K;N (G)) = dimN (G)

(
H(2)
p (K; l2(G))

)
, (2.16)

where b(2)
p (K;N (G)) is the p-th L2-Betti number in the sense of Definition 2.1.

All in all we see that our Definition 2.1 of L2-Betti numbers for arbitrary
G-spaces extends the heat kernel definition of (2.12) for smooth Riemannian
manifolds with a free proper cocompact G-action by isometries. More details of
all these definitions and of their identifications can be found in [80, Chapter 1].

2.4 L2-Euler Characteristic

In this section we introduce the notion of L2-Euler characteristic.
If X is a G-CW -complex, denote by I(X) the set of its equivariant cells.

For a cell c ∈ I(X) let (Gc) be the conjugacy class of subgroups of G given by
its orbit type and let dim(c) be its dimension. Denote by |Gc|−1 the inverse of
the order of any representative of (Gc), where |Gc|−1 is to be understood to be
zero if the order is infinite.

Definition 2.17 (L2-Euler characteristic). Let G be a group and let X be
a G-space. Define

h(2)(X;N (G)) :=
∑
p≥0 b

(2)
p (X;N (G)) ∈ [0,∞];

χ(2)(X;N (G)) :=
∑
p≥0(−1)p · b(2)

p (X;N (G)) ∈ R, if h(2)(X;N (G)) <∞;
m(X;G) :=

∑
c∈I(X) |Gc|−1 ∈ [0,∞], if X is a G-CW -complex;

h(2)(G) := h(2)(EG;N (G)) ∈ [0,∞];
χ(2)(G) := χ(2)(EG;N (G)) ∈ R, if h(2)(G) <∞.

We call χ(2)(X;N (G)) and χ(2)(G) the L2-Euler characteristic of X and G.
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The condition h(2)(X;N (G)) <∞ ensures that the sum which appears in the
definition of χ(2)(X;N (G)) converges absolutely and that the following results
are true. The reader should compare the next theorem with [15, Theorem 0.3
on page 191]. It essentially follows from Theorem 2.7. Details of its proof can
be found in [80, Theorem 6.80].

Theorem 2.18 (L2-Euler characteristic).

(i) Generalized Euler-Poincaré formula
Let X be a G-CW -complex with m(X;G) <∞. Then

h(2)(X;N (G)) < ∞;∑
c∈I(X)

(−1)dim(c) · |Gc|−1 = χ(2)(X;N (G));

(ii) Sum formula
Consider the following G-pushout

X0
i1−−−−→ X1

i2

y yj1
X2 −−−−→

j2
X

such that i1 is a G-cofibration. Suppose that h(2)(Xi;N (G)) < ∞ for
i = 0, 1, 2. Then

h(2)(X;N (G)) < ∞;
χ(2)(X;N (G)) = χ(2)(X1;N (G)) + χ(2)(X2;N (G))− χ(2)(X0;N (G));

(iii) Comparison with the Borel construction
Let X be a G-CW -complex. If for all c ∈ I(X) the group Gc is finite or
b
(2)
p (Gc) = 0 for all p ≥ 0, then

b(2)
p (X;N (G)) = b(2)

p (EG×X;N (G)) for p ≥ 0;

h(2)(X;N (G)) = h(2)(EG×X;N (G));
χ(2)(X;N (G)) = χ(2)(EG×X;N (G)), if h(2)(X;N (G)) <∞;∑

c∈I(X)

(−1)dim(c) · |Gc|−1 = χ(2)(EG×X;N (G)), if m(X;G) <∞;

(iv) Invariance under non-equivariant C-homology equivalences
Suppose that f : X → Y is a G-equivariant map of G-CW -complexes with
m(X;G) <∞ and m(Y ;G) <∞, such that the induced map Hp(f ;C) on
homology with complex coefficients is bijective for all p ≥ 0. Suppose that
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for all c ∈ I(X) the group Gc is finite or b(2)
p (Gc) = 0 for all p ≥ 0, and

analogously for all d ∈ I(Y ). Then

χ(2)(X;N (G)) =
∑

c∈I(X)

(−1)dim(c) · |Gc|−1

=
∑

d∈I(Y )

(−1)dim(d) · |Gd|−1

= χ(2)(Y ;N (G));

(v) Künneth formula
Let X be a G-CW -complex and Y be an H-CW -complex. Then we get
for the G×H-CW -complex X × Y

m(X × Y ;G×H) = m(X;G) ·m(Y ;H);
h(2)(X × Y ;N (G×H)) = h(2)(X;N (G)) · h(2)(Y ;N (H));
χ(2)(X × Y ;N (G×H)) = χ(2)(X;N (G)) · χ(2)(Y ;N (H)),

if h(2)(X;N (G)), h(2)(Y ;N (H)) <∞,

where we use the convention that 0 ·∞ = 0 and r ·∞ =∞ for r ∈ (0,∞];

(vi) Induction
Let H ⊆ G be a subgroup and let X be an H-space. Then

m(G×H X;G) = m(X;H);
h(2)(G×H X;N (G)) = h(2)(X;N (H));
χ(2)(G×H X;N (G)) = χ(2)(X;N (H)), if h(2)(X;N (H)) <∞;

(vii) Restriction to subgroups of finite index
Let H ⊆ G be a subgroup of finite index [G : H]. Let X be a G-space and
let resHG X be the H-space obtained from X by restriction. Then

m(resHG X;H) = [G : H] ·m(X;G);
h(2)(resHG X;N (H)) = [G : H] · h(2)(X;N (G));
χ(2)(resHG X;N (H)) = [G : H] · χ(2)(X;N (G)), if h(2)(X;N (G)) <∞,

where [G : H] · ∞ is understood to be ∞;

(viii) Restriction with epimorphisms with finite kernel
Let p : G → Q be an epimorphism of groups with finite kernel K. Let X
be a Q-space. Let p∗X be the G-space obtained from X using p. Then

m(p∗X;G) = |K|−1 ·m(X;Q);
h(2)(p∗X;N (G)) = |K|−1 · h(2)(X;N (Q));
χ(2)(p∗X;N (G)) = |K|−1 · χ(2)(X;N (Q)), if h(2)(X;N (Q)) <∞.
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Remark 2.19 (L2-Euler characteristic and virtual Euler characteris-
tic). The L2-Euler characteristic generalizes the notion of the virtual Euler
characteristic. Let X be a CW -complex which is virtually homotopy finite, i.e.
there is a d-sheeted covering p : X → X for some positive integer d such that
X is homotopy equivalent to a finite CW -complex. Define the virtual Euler
characteristic following Wall [105]

χvirt(X) :=
χ(X)
d

.

One easily checks that this is independent of the choice of p : X → X since the
classical Euler characteristic is multiplicative under finite coverings. Moreover,
we conclude from Theorem 2.18 (i) and (vii) that for virtually homotopy finite
X

m(X̃;π1(X)) < ∞;

χ(2)(X̃;N (π1(X))) = χvirt(X).

Remark 2.20 (L2-Euler characteristic and orbifold Euler characteris-
tic). If X is a finite G-CW -complex, then

∑
c∈I(X)(−1)dim(c) · |Gc|−1 is also

called orbifold Euler characteristic and agrees with the L2-Euler characteristic
by Theorem 2.18 (i).

3 Computations of L2-Betti Numbers

In this section we state some cases where the L2-Betti numbers b(2)
p (X̃) for cer-

tain compact manifolds or finite CW -complexes X can explicitly be computed.
These computations give evidence for certain conjectures such as the Atiyah
Conjecture 4.1 for (G, d,Q) and the Singer Conjecture 9.1 which we will discuss
later. Sometimes we will also make a few comments on their proofs in order to
give some insight into the methods. Besides analytic methods, which will not
be discussed, standard techniques from topology and algebra such as spectral
sequences and Mayer-Vietoris sequences will play a role. With our algebraic
setup and the nice properties of the dimension function such as Additivity and
Cofinality these tools are directly available, whereas in the original settings,
which we have briefly discussed in Subsection 2.3, these methods do not apply
directly and, if at all, only after some considerable technical efforts.

3.1 Abelian Groups

Let X be a Zn-space. Then we get from (1.20)

b(2)
p (X;N (Zn)) = dimC[Zn](0)

(
C[Zn](0) ⊗C[Zn] H

sing
p (X;C)

)
. (3.1)

Notice that b(2)
p (X;N (Zn)) is always an integer or ∞.
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3.2 Finite Coverings

Let p : X → Y be a finite covering with d-sheets. Then we conclude from
Theorem 2.7 (vii)

b(2)
p (X̃) = d · b(2)

p (Ỹ ). (3.2)

This implies for every connected CW -complex X which admits a selfcovering
X → X with d-sheets for d ≥ 2 that b(2)

p (X̃) = 0 for all p ∈ Z. In particular

b(2)
p (S̃1) = 0 for all p ∈ Z. (3.3)

3.3 Surfaces

Let F dg be the orientable closed surface of genus g with d embedded 2-disks
removed. (As any non-orientable compact surface is finitely covered by an ori-
entable surface, it suffices to handle the orientable case by (3.2).) From the
value of the zero-th L2-Betti number, the Euler-Poincaré formula and Poincaré
duality (see Theorem 2.7 (ix), (x) and (xii)) and from the fact that a com-
pact surface with boundary is homotopy equivalent to a bouquet of circles, we
conclude

b
(2)
0 (F̃ dg ) =

{
1 if g = 0, d = 0, 1;
0 otherwise;

b
(2)
1 (F̃ dg ) =

{
0 if g = 0, d = 0, 1;
d+ 2 · (g − 1) otherwise;

b
(2)
2 (F̃ dg ) =

{
1 if g = 0, d = 0;
0 otherwise.

Of course b(2)
p (F̃ dg ) = 0 for p ≥ 3.

3.4 Three-Dimensional Manifolds

In this subsection we state the values of the L2-Betti numbers of compact ori-
entable 3-manifolds.

We begin with collecting some basic notations and facts about 3-manifolds.
In the sequel 3-manifold means connected compact orientable 3-manifold, pos-
sibly with boundary. A 3-manifold M is prime if for any decomposition of M as
a connected sum M1#M2, M1 or M2 is homeomorphic to S3. It is irreducible if
every embedded 2-sphere bounds an embedded 3-disk. Every prime 3-manifold
is either irreducible or is homeomorphic to S1 × S2 [50, Lemma 3.13]. A 3-
manifold M has a prime decomposition, i.e. one can write M as a connected
sum

M = M1#M2# . . .#Mr,

where each Mj is prime, and this prime decomposition is unique up to renum-
bering and orientation preserving homeomorphism [50, Theorems 3.15, 3.21].
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Recall that a connected CW -complex is called aspherical if πn(X) = 0 for
n ≥ 2, or, equivalently, if X̃ is contractible. Any aspherical 3-manifold is homo-
topy equivalent to an irreducible 3-manifold with infinite fundamental group or
to a 3-disk. By the Sphere Theorem [50, Theorem 4.3], an irreducible 3-manifold
is aspherical if and only if it is a 3-disk or has infinite fundamental group.

Let us say that a prime 3-manifold is exceptional if it is closed and no
finite covering of it is homotopy equivalent to a Haken, Seifert or hyperbolic
3-manifold. No exceptional prime 3-manifolds are known. Both Thurston’s
Geometrization Conjecture and Waldhausen’s Conjecture that any 3-manifold
is finitely covered by a Haken manifold imply that there are none.

Details of the proof of the following theorem can be found in [69, Sections 5
and 6]. The proof is quite interesting since it uses both topological and analytic
tools and relies on Thurston’s Geometrization.

Theorem 3.4 (L2-Betti numbers of 3-manifolds). Let M be the connected
sum M1# . . .#Mr of (compact connected orientable) prime 3-manifolds Mj

which are non-exceptional. Assume that π1(M) is infinite. Then the L2-Betti
numbers of the universal covering M̃ are given by

b
(2)
0 (M̃) = 0;

b
(2)
1 (M̃) = (r − 1)−

r∑
j=1

1
| π1(Mj) |

+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣− χ(M);

b
(2)
2 (M̃) = (r − 1)−

r∑
j=1

1
| π1(Mj) |

+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣ ;
b
(2)
3 (M̃) = 0.

Notice that in the situation of Theorem 3.4 the p-th L2-Betti number bp(M̃)
is a rational number. It is an integer, if π1(M) is torsion-free, and vanishes, if
M is aspherical.

3.5 Symmetric Spaces

Let L be a connected semisimple Lie group with finite center such that its Lie
algebra has no compact ideal. Let K ⊆ L be a maximal compact subgroup.
Then the manifold M := L/K equipped with a left L-invariant Riemannian
metric is a symmetric space of non-compact type with L = Isom(M)0 and
K = Isom(M)0

x, where Isom(M)0 is the identity component of the group of
isometries Isom(M) and Isom(M)0

x is the isotropy group of some point x ∈ M
under the Isom(M)0-action. Every symmetric space M of non-compact type
can be written in this way. The space M is diffeomorphic to Rn. Define its
fundamental rank

f-rk(M) := rkC(L)− rkC(K),

where rkC(L) and rkC(K) denotes the so called complex rank of the Lie algebra
of L and K respectively (see [62, page 128f]). For a compact Lie group K this
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is the same as the dimension of a maximal torus. The proof of the next result
is due to Borel [6].

Theorem 3.5 (L2-Betti numbers of symmetric spaces of non-compact
type). Let M be a closed Riemannian manifold whose universal covering M̃ is
a symmetric space of non-compact type.

Then b(2)
p (M̃) 6= 0 if and only if f-rk(M̃) = 0 and 2p = dim(M). If f-rk(M̃) =

0, then dim(M) is even and for 2p = dim(M) we get

0 < b(2)
p (M̃) = (−1)p · χ(M).

This applies in particular to a hyperbolic manifold and thus we get the result
of Dodziuk [25].

Theorem 3.6. Let M be a hyperbolic closed Riemannian manifold of dimension
n. Then

b
(2)
p (M̃)

{
= 0 if 2p 6= n
> 0 if 2p = n

.

If n is even, then

(−1)n/2 · χ(M) > 0.

The strategy of the proof of Theorem 3.6 is the following. Because of the
Euler-Poincaré formula (see Theorem 2.7 (x)) it suffices to show that b(2)

p (M̃) =
0 for 2p 6= n and b

(2)
p (M̃) > 0 for 2p = n. Because of the Hodge-deRham

Theorem (see (2.15)) and the facts that the von Neumann dimension is faithful
and M̃ is isometrically diffeomorphic to the hyperbolic space Hn, it remains
to show that the space of harmonic L2-integrable forms Hp(2)(H

n) is trivial for
2p 6= n and non-trivial for 2p = n. Notice that this question is independent of
M or the π1(M)-action. Using the rotational symmetry of Hn, this question is
answered positively by Dodziuk [25].

More generally one has the following so called Proportionality Principle (see
[80, Theorem 3.183].)

Theorem 3.7 (Proportionality Principle for L2-Betti numbers). Let M
be a simply connected Riemannian manifold. Then there are constants B(2)

p (M)
for p ≥ 0 depending only on the Riemannian manifold M with the following
property: For every discrete group G with a cocompact free proper action on M
by isometries the following holds

b(2)
p (M ;N (G)) = B(2)

p (M) · vol(G\M).

3.6 Spaces with S1-Action

The next two theorems are taken from [80, Corollary 1.43 and Theorem 6.65].
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Theorem 3.8. (L2-Betti numbers and S1-actions). Let X be a connected
S1-CW -complex. Suppose that for one orbit S1/H (and hence for all orbits)
the inclusion into X induces a map on π1 with infinite image. (In particular
the S1-action has no fixed points.)

Then we get

b(2)
p (X̃) = 0 for p ∈ Z;
χ(X) = 0.

Proof. We give an outline of the idea of the proof in the case where X is a
cocompact S1-CW -complex, because it is a very illuminating example. The
proof in the general case is given in [80, Theorem 6.65]. It is useful to show the
following slightly more general statement that for any finite S1-CW -complex Y
and S1-map f : Y → X we get b(2)

p (f∗X̃;N (π1(X))) = 0 for all p ≥ 0, where
f∗X̃ → Y is the pullback of the universal covering X̃ → X with f . We prove
the latter statement by induction over the dimension and the number of S1-
equivariant cells in top dimension of Y . In the induction step we can assume
that Y is an S1-pushout

S1/H × Sn−1 q−−−−→ Zy yj
S1/H ×Dn −−−−→

Q
Y

for n = dim(Y ). It induces a pushout of free finite π1(X)-CW -complexes

q∗j∗f∗X̃ −−−−→ j∗f∗X̃y y
Q∗f∗X̃ −−−−→ f∗X̃

The associated long exact Mayer-Vietoris sequence looks like

. . .Hp(q∗f∗X̃;N (π1(X)))

→ Hp(Q∗f∗X̃;N (π1(X)))⊕Hp(j∗f∗X̃;N (π1(X)))

→ Hp(f∗X̃;N (π1(X)))→ Hp−1(q∗j∗f∗X̃;N (π1(X)))

→ Hp−1(Q∗f∗X̃;N (π1(X)))⊕Hp−1(j∗f∗X̃;N (π1(X)))→ . . .

Because of the Additivity of the dimension (see Theorem 1.11 (iii)b) it suffices
to prove for all p ∈ Z

dimN (π1(X))

(
Hp(j∗f∗X̃;N (π1(X)))

)
= 0;

dimN (π1(X))

(
Hp(q∗f∗X̃;N (π1(X)))

)
= 0;

dimN (π1(X))

(
Hp(Q∗f∗X̃;N (π1(X)))

)
= 0.
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The induction hypothesis applies to f ◦j : Z → X and f ◦j ◦q : S1/H×Sn−1 →
X. Hence it remains to show

dimN (π1(X))

(
Hp(Q∗f∗X̃;N (π1(X)))

)
= 0.

By elementary covering theory Q∗f∗X̃ is π1(X)-homeomorphic to π1(X) ×j
˜S1/H × Dn for the injective group homomorphism j : π1(S1/H) → π1(X) in-
duced by f ◦Q. We conclude from the Künneth formula and the compatibility
of dimension and induction (see Theorem 2.7 (v) and (vi))

dimN (π1(X))

(
Hp(Q∗f∗X̃;N (π1(X)))

)
= b(2)

p (˜S1/H).

Since S1/H is homeomorphic to S1, we get b(2)
p (˜S1/H) = 0 from (3.3).

The next result is taken from [80, Corollary 1.43].

Theorem 3.9. Let M be an aspherical closed manifold with non-trivial S1-
action. (Non-trivial means that sx 6= x holds for at least one element s ∈ S1

and one element x ∈M). Then the action has no fixed points and the inclusion
of any orbit into X induces an injection on the fundamental groups. All L2-Betti
numbers b(2)

p (M̃) are trivial and χ(M) = 0.

3.7 Mapping Tori

Let f : X → X be a selfmap. Its mapping torus Tf is obtained from the cylinder
X×[0, 1] by glueing the bottom to the top by the identification (x, 1) = (f(x), 0).
There is a canonical map p : Tf → S1 which sends (x, t) to exp(2πit). It induces
a canonical epimorphism π1(Tf )→ Z = π1(S1) if X is path-connected.

The following result is taken from [80, Theorem 6.63].

Theorem 3.10 (Vanishing of L2-Betti numbers of mapping tori).
Let f : X → X be a cellular selfmap of a connected CW -complex X and let
π1(Tf )

φ−→ G
ψ−→ Z be a factorization of the canonical epimorphism into epimor-

phisms φ and ψ. Suppose for given p ≥ 0 that b(2)
p (G ×φ◦i X̃;N (G)) < ∞ and

b
(2)
p−1(G×φ◦i X̃;N (G)) <∞ holds, where i : π1(X)→ π1(Tf ) is the map induced

by the obvious inclusion of X into Tf . Let Tf be the covering of Tf associated
to φ, which is a free G-CW -complex. Then we get

b(2)
p (Tf ;N (G)) = 0.

Proof. We give the proof in the special case where X is a connected finite CW -
complex and φ = id, i.e. we show for a connected finite CW -complex X that
b
(2)
p (T̃f ) = 0 for all p ≥ 0. For each positive integer d there is a finite d-sheeted

covering Tf → Tf associated to the subgroup of index d in π1(Tf ) which is the
preimage of dZ ⊆ Z under the canonical homomorphism π1(Tf ) → Z. There
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is a homotopy equivalence Tfd → Tf . We conclude from (3.2) and homotopy
invariance of L2-Betti numbers (see Theorem 2.7 (i))

b(2)
p (T̃f ) =

b
(2)
p (T̃fd)
d

.

There is a CW -complex structure on Tfd with βp(X)+βp−1(X) p-cells, if βp(X)
is the number of p-cells in X. We conclude from Additivity of the dimension
function (see Theorem 1.11 (iii)b)

b(2)
p (T̃fd) ≤ dimN (π1(T

fd
))

(
N (π1(Tfd))⊗Zπ1(T

fd
) Cp(T̃fd)

)
= βp(X) + βp−1(X).

This implies for all positive integers d

0 ≤ b(2)
p (T̃f ) ≤ βp(X) + βp−1(X)

d
.

Taking the limit for d→∞ implies b(2)
p (T̃f ) = 0.

3.8 Fibrations

The next result is proved in [80, Lemma 6.6. and Theorem 6.67]. The proof is
based on standard spectral sequence arguments and the fact that the dimension
function is defined for arbitrary N (G)-modules.

Theorem 3.11 (L2-Betti numbers and fibrations).

(i) Let F i−→ E
p−→ B be a fibration of connected CW -complexes. Con-

sider a factorization p∗ : π1(E)
φ−→ G

ψ−→ π1(B) of the map induced by
p into epimorphisms φ and ψ. Let i∗ : π1(F ) → π1(E) be the homomor-
phism induced by the inclusion i. Suppose for a given integer d ≥ 1 that
b
(2)
p (G×φ◦i∗ F̃ ;N (G)) = 0 for p ≤ d− 1 and b(2)

d (G×φ◦i∗ F̃ ;N (G)) <∞
holds. Suppose that π1(B) contains an element of infinite order or finite
subgroups of arbitrarily large order. Then b

(2)
p (G ×φ Ẽ;N (G)) = 0 for

p ≤ d;

(ii) Let F i−→ E → B be a fibration of connected CW -complexes. Consider
a group homomorphism φ : π1(E) → G. Let i∗ : π1(F ) → π1(E) be the
homomorphism induced by the inclusion i. Suppose that for a given integer
d ≥ 0 the L2-Betti number b(2)

p (G ×φ◦i∗ F̃ ;N (G)) vanishes for all p ≤ d.
Then the L2-Betti number b(2)

p (G×φ Ẽ;N (G)) vanishes for all p ≤ d.
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4 The Atiyah Conjecture

In this section we discuss the Atiyah Conjecture

Conjecture 4.1 (Atiyah Conjecture). Let G be a discrete group with an
upper bound on the orders of its finite subgroups. Consider d ∈ Z, d ≥ 1 such
that the order of every finite subgroup of G divides d. Let F be a field with
Q ⊆ F ⊆ C. The Atiyah Conjecture for (G, d, F ) says that for any finitely
presented FG-module M we have

d · dimN (G) (N (G)⊗FGM) ∈ Z.

4.1 Reformulations of the Atiyah Conjecture

We present equivalent reformulations of the Atiyah Conjecture 4.1.

Theorem 4.2 (Reformulations of the Atiyah Conjecture). Let G be a
discrete group. Suppose that there exists d ∈ Z, d ≥ 1 such that the order of
every finite subgroup of G divides d. Let F be a field with Q ⊆ F ⊆ C. Then
the following assertions are equivalent:

(i) The Atiyah Conjecture 4.1 is true for (G, d, F ), i.e. for every finitely
presented FG-module M we have

d · dimN (G) (N (G)⊗FGM) ∈ Z;

(ii) For every FG-module M we have

d · dimN (G) (N (G)⊗FGM) ∈ Zq {∞}.

Proof. See [80, Lemma 10.7 and Remark 10.11].
We mention that the Atiyah Conjecture 4.1 is true for (G, d, F ) if and only

if for any finitely generated subgroup H ⊆ G the Atiyah Conjecture 4.1 is true
for (H, d, F ) (see [80, Lemma 10.4]).

The next result explains that the Atiyah Conjecture 4.1 for (G, d,Q) for a
finitely generated group G is a statement about the possible values of L2-Betti
numbers.

Theorem 4.3 (Reformulations of the Atiyah Conjecture for F = Q).
Let G be a finitely generated group with an upper bound d ∈ Z, d ≥ 1 on the
orders of its finite subgroups. Then the following assertions are equivalent:

(i) The Atiyah Conjecture 4.1 is true for (G, d,Q);

(ii) For every free proper smooth cocompact G-manifold M without boundary
and p ∈ Z we have

d · b(2)
p (M ;N (G)) ∈ Z;
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(iii) For every finite free G-CW -complex X and p ∈ Z we have

d · b(2)
p (X;N (G)) ∈ Z;

(iv) For every G-space X and p ∈ Z we have

d · b(2)
p (X;N (G)) ∈ Zq {∞}.

Proof. This follows from [80, Lemma 10.5] and Theorem 4.2.
We mention that all the explicit computations presented in Section 3 are

compatible with the Atiyah Conjecture 4.1.

4.2 The Ring Theoretic Version of the Atiyah Conjecture

In this subsection we consider the following fundamental square of ring exten-
sions

CG
i−−−−→ N (G)

j

y yk
D(G) −−−−→

l
U(G)

(4.4)

which we explain next.
As before CG is the complex group ring andN (G) is the group von Neumann

algebra.
By U(G) we denote the algebra of affiliated operators. Instead of its func-

tional analytic definition we describe it algebraically, namely, it is the Ore lo-
calization of N (G) with respect to the multiplicative subset of non-trivial zero-
divisors in N (G). The proof that this multiplicative subset satisfies the Ore
condition and basic definitions and properties of Ore localization and of U(G)
can be found for instance in [80, Sections 8.1 and 8.2]. In particular U(G) is flat
when regarded as an N (G)-module. Moreover, the ring U(G) is a von Neumann
regular ring, i.e. every finitely generated submodule of a projective module is a
direct summand. This is a stronger condition than being semihereditary.

Given a finitely generated projective U(G)-module Q, there is a finitely gen-
erated projective N (G)-module P such that U(G) ⊗N (G) P and Q are U(G)-
isomorphic. If P0 and P1 are two finitely generated projective N (G)-modules,
then P0

∼=N (G) P1 ⇔ U(G)⊗N (G) P0
∼=U(G) U(G)⊗N (G) P1. This enables us to

define a dimension function for dimU(G) with properties analogous to dimN (G)

(see [80, Section 8.3], [98] or [99]).

Theorem 4.5. (Dimension function for arbitrary U(G)-modules).
There exists precisely one dimension function

dimU(G) : {U(G)-modules} → [0,∞]

which satisfies:
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(i) Extension Property

If M is an N (G)-module, then

dimU(G)

(
U(G)⊗N (G) M

)
= dimN (G)(M);

(ii) Additivity

If 0→M0 →M1 →M2 → 0 is an exact sequence of U(G)-modules, then

dimU(G)(M1) = dimU(G)(M0) + dimU(G)(M2);

(iii) Cofinality

Let {Mi | i ∈ I} be a cofinal system of submodules of M . Then

dimU(G)(M) = sup{dimU(G)(Mi) | i ∈ I};

(iv) Continuity

If K ⊆M is a submodule of the finitely generated U(G)-module M , then

dimU(G)(K) = dimU(G)(K).

Remark 4.6 (Comparing Z ⊆ Q and N (G) ⊆ U(G)). Recall the Slogan 1.16
that the group von Neumann algebra N (G) behaves like the ring of integers Z,
provided one ignores the properties integral domain and Noetherian. This is
supported by the construction and properties of U(G). Obviously U(G) plays
the same role for N (G) as Q plays for Z as the definition of U(G) as the Ore lo-
calization of N (G) with respect to the multiplicative subset of non-zero-divisors
and Theorem 4.5 show.

A subring R ⊆ S is called division closed if each element in R, which is
invertible in S, is already invertible in R. It is called rationally closed if each
square matrix over R, which is invertible over S, is already invertible over R.
Notice that the intersection of division closed subrings of S is again division
closed, and analogously for rationally closed subrings. Hence the following def-
inition makes sense.

Definition 4.7 (Division and rational closure). Let S be a ring with sub-
ring R ⊆ S. The division closure D(R ⊆ S) or rational closure R(R ⊆ S)
respectively is the smallest subring of S which contains R and is division closed
or rationally closed respectively.

The ring D(G) appearing in the fundamental square (4.4) is the rational
closure of CG in U(G).

Conjecture 4.8 (Ring theoretic version of the Atiyah Conjecture). Let
G be a group for which there exists an upper bound on the orders of its finite
subgroups. Then:
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(R) The ring D(G) is semisimple;

(K) The composition ⊕
H⊆G,|H|<∞

K0(CH) a−→ K0(CG)
j−→ K0(D(G))

is surjective, where a is induced by the various inclusions H → G.

Lemma 4.9. Let G be a group. Suppose that there exists d ∈ Z, d ≥ 1 such that
the order of every finite subgroup of G divides d. If the group G satisfies the ring
theoretic version of the Atiyah Conjecture 4.8, then the Atiyah Conjecture 4.1
for (G, d,C) is true.

Proof. Let M be a finitely presented CG-module. Then D(G)⊗CGM is a finitely
generated projective D(G)-module since D(G) is semisimple by assumption. We
obtain a well-defined homomorphism of abelian groups

D : K0(D(G))→ R, [P ] 7→ dimU(G)

(
U(G)⊗D(G) P

)
.

Because of the fundamental square (4.4) and Theorem 4.5 (i) we have

dimN (G)(N (G)⊗CGM) = D([D(G)⊗CGM ]).

Hence it suffices to show that d · im(D) is contained in Z. Because of assump-
tion (K) it suffices to check for each finite subgroup H ⊆ G and each finitely
generated projective CH-module P

d · dimU(G)(U(G)⊗CG CG⊗CH P ) ∈ Z.

Example 1.14 and Theorem 1.18 imply

dimU(G)(U(G)⊗CG CG⊗CH P ) = dimN (G)(N (G)⊗CG CG⊗CH P )
= dimN (G)(N (G)⊗N (H) P )
= dimN (H)(P )

=
dimC(P )
|H|

.

Obviously d · dimC(P )
|H| ∈ Z.

4.3 The Atiyah Conjecture for Torsion-Free Groups

Remark 4.10 (The Atiyah Conjecture in the torsion-free case). Let G
be a torsion-free group. Then we can choose d = 1 in the Atiyah Conjecture 4.1.
The Atiyah Conjecture 4.1 for (G, 1, F ) says that dimN (G)(N (G)⊗FGM) ∈ Z

holds for every finitely presented FG-module M and Theorem 4.2 says that then
this holds automatically for all FG-modules M with dimN (G)(N (G)⊗FGM) <
∞. In the case, where F = Q and G is a torsion-free finitely generated group G,
Theorem 4.3 implies that the Atiyah Conjecture 4.1 for (G, 1, F ) is equivalent
to the statement that b(2)

p (X;N (G)) ∈ Z is true for all G-spaces X.
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Remark 4.11 (The ring theoretic version of the Atiyah Conjecture in
the torsion-free case). Let G be a torsion-free group. Then the ring theoretic
version of the Atiyah Conjecture 4.8 reduces to the statement that D(G) is a
skewfield. In this case we can assign to every D(G)-module N its dimension
dimD(G)(N) ∈ Zq {∞} in the usual way and we get for every CG-module M

dimN (G)(N (G)⊗CGM) = dimU(G)(U(G)⊗CGM) = dimD(G)(D(G)⊗CGM).

Example 4.12 (The case G = Z
n). In the case G = Z

n the fundamental
square of ring extensions (4.4) can be identified with

C[Zn] −−−−→ L∞(Tn)y y
C[Zn](0) −−−−→ MF (Tn)

where MF (Tn) the ring of equivalence classes of measurable functions Tn → C.
We have already proved

dimN (Zn)(N (Zn)⊗C[Zn] M) = dimC[Zn](0)
(C[Zn](0) ⊗C[Zn] M)

in Example 1.19.

4.4 The Atiyah Conjecture Implies the Kaplanski Conjec-
ture

The following conjecture is a well-known conjecture about group rings.

Conjecture 4.13 (Kaplanski Conjecture). Let F be a field and let G be a
torsion-free group. Then FG contains no non-trivial zero-divisors.

Theorem 4.14 (The Atiyah and the Kaplanski Conjecture). Let G be
a torsion-free group and let F be a field with Q ⊆ F ⊆ C. Then the Atiyah
Conjecture 4.1 for (G, 1, F ) implies the Kaplanski Conjecture 4.13 for F and
G.

Proof. Let u ∈ FG be a zero-divisor. Then the kernel of the N (G)-map
ru : N (G) → N (G) given by right multiplication with u is non-trivial. Since
N (G) is semihereditary, the image of ru is projective. Hence both ker(ru) and
N (G)/ ker(ru) are finitely generated projective N (G)-modules. Additivity of
dimN (G) implies

0 < dimN (G)(ker(ru)) ≤ dimN (G)(N (G)) = 1.

We conclude from Remark 4.10 that dimN (G)(ker(ru)) is an integer. Additivity
of dimN (G) implies

dimN (G) (N (G)/ ker(ru)) = 0.

We conclude N (G)/ ker(ru) = 0 and hence u = 0.
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4.5 The Status of the Atiyah Conjecture

Let l∞(G,R) be the space of equivalence classes of bounded functions from G
to R with the supremum norm. Denote by 1 the constant function with value
1.

Definition 4.15 (Amenable group). A group G is called amenable, if there
is a (left) G-invariant linear operator µ : l∞(G,R) → R with µ(1) = 1, which
satisfies for all f ∈ l∞(G,R)

inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G}.

The latter condition is equivalent to the condition that µ is bounded and µ(f) ≥ 0
if f(g) ≥ 0 for all g ∈ G.

Definition 4.16 (Elementary amenable group). The class of elementary
amenable groups EAM is defined as the smallest class of groups which has the
following properties:

(i) It contains all finite and all abelian groups;

(ii) It is closed under taking subgroups;

(iii) It is closed under taking quotient groups;

(iv) It is closed under extensions, i.e. if 1 → H → G → K → 1 is an exact
sequence of groups and H and K belong to EAM, then also G ∈ EAM;

(v) It is closed under directed unions, i.e. if {Gi | i ∈ I} is a directed system
of subgroups such that G =

⋃
i∈I Gi and each Gi belongs to EAM, then

G ∈ EAM. (Directed means that for two indices i and j there is a third
index k with Gi, Gj ⊆ Gk.)

The class of amenable groups satisfies all the conditions appearing in Defini-
tion 4.16. Hence every elementary amenable group is amenable. The converse
is not true.

Definition 4.17 (Linnell’s class of groups C). Let C be the smallest class of
groups, which contains all free groups and is closed under directed unions and
extensions with elementary amenable quotients.

The next result is due to Linnell [65].

Theorem 4.18 (Linnell’s Theorem). Let G be a group in C. Suppose that
there exists d ∈ Z, d ≥ 1 such that the order of every finite subgroup of G divides
d. Then the ring theoretic version of the Atiyah Conjecture 4.8 for G and hence
the Atiyah Conjecture 4.1 for (G, d,C) are true.

The next definition and the next theorem are due to Schick [101].

Definition 4.19. Let D be the smallest non-empty class of groups such that

34



(i) If p : G→ A is an epimorphism of a torsion-free group G onto an elemen-
tary amenable group A and if p−1(B) ∈ D for every finite group B ⊆ A,
then G ∈ D;

(ii) D is closed under taking subgroups;

(iii) D is closed under colimits and inverse limits over directed systems.

Theorem 4.20. (i) If the group G belongs to D, then G is torsion-free and
the Atiyah Conjecture 4.1 for (G, 1,Q) is true for G;

(ii) The class D is closed under direct sums, direct products and free products.
Every residually torsion-free elementary amenable group belongs to D.

More information about the status of the Atiyah Conjecture 4.1 can be found
for instance in [80, Subsection 10.1.3].

4.6 Groups Without Bound on the Order of Its Finite
Subgroups

Given a group G, let FIN (G) be the set of finite subgroups of G. Denote by

1
|FIN (G)|

Z ⊆ Q (4.21)

the additive subgroup of R generated by the set of rational numbers { 1
|H| | H ∈

FIN (G)}.
There is the following formulation of the Atiyah Conjecture for arbitrary

groups in the literature.

Conjecture 4.22 (Atiyah Conjecture for arbitrary groups G). A group
G satisfies the Atiyah Conjecture if for every finitely presented CG-module M
we have

dimN (G)(N (G)⊗CGM) ∈ 1
|FIN (G)|

Z.

There do exist counterexamples to this conjecture. The lamplighter group L
is defined by the semidirect product

L :=

(⊕
n∈Z

Z/2

)
o Z

with respect to the shift automorphism of
⊕

n∈Z Z/2, which sends (xn)n∈Z to
(xn−1)n∈Z. Let e0 ∈

⊕
n∈Z Z/2 be the element whose entries are all zero except

the entry at 0. Denote by t ∈ Z the standard generator of Z which we will
also view as an element of L. Then {e0t, t} is a set of generators for L. The
associated Markov operator M : l2(G) → l2(G) is given by right multiplication
with 1

4 ·(e0t+t+(e0t)−1+t−1). It is related to the Laplace operator ∆0 : l2(G)→
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l2(G) of the Cayley graph of G by ∆0 = 4 · id−4 ·M . The following result is a
special case of the main result in the paper of Grigorchuk and Żuk [41, Theorem
1 and Corollary 3] (see also [40]). An elementary proof can be found in [22].

Theorem 4.23 (Counterexample to the Atiyah Conjecture for arbi-
trary groups). The von Neumann dimension of the kernel of the Markov op-
erator M of the lamplighter group L associated to the set of generators {e0t, t}
is 1/3. In particular L does not satisfy the Atiyah Conjecture 4.22.

To the author’s knowledge there is no example of a group G for which there
is a finitely presented CG-module M such that dimN (G)(N (G)⊗ZGM) is irra-
tional.

Let A =
⊕

n∈Z Z/2. Because this group is locally finite, it satisfies the
Atiyah Conjecture for arbitrary groups 4.22, i.e. dimN (G)(N (G) ⊗CA M) ∈
Z[1/2] for every finitely presented CA-module M . On the other hand, each non-
negative real number r can be realized as dimN (G)(N (G)⊗CAM) for a finitely
generated CA-module (see [80, Example 10.13]). Notice that there is no upper
bound on the orders of finite subgroups of A, so that this is no contradiction to
Theorem 4.2.

5 Flatness Properties of the Group von Neu-
mann Algebra

The proof of next result can be found in [77, Theorem 5.1] or [80, Theorem
6.37].

Theorem 5.1. (Dimension-flatness of N (G) over CG for amenable G).
Let G be amenable and M be a CG-module. Then

dimN (G)

(
TorCGp (N (G),M)

)
= 0 for p ≥ 1,

where we consider N (G) as an N (G)-CG-bimodule.

It implies using an easy spectral sequence argument

Theorem 5.2 (L2-Betti numbers and homology in the amenable case).
Let G be an amenable group and X be a G-space. Then

(i) b
(2)
p (X;N (G)) = dimN (G)

(
N (G)⊗CG Hsing

p (X;C)
)

;

(ii) Suppose that X is a G-CW -complex with m(X;G) <∞. Then

χ(2)(X) =
∑

c∈I(X)

(−1)dim(c) · |Gc|−1

=
∑
p≥0

(−1)p · dimN (G) (N (G)⊗CG Hp(X;C)) .
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Further applications of Theorem 5.1 will be discussed in Section 6 and Sec-
tion 7.

Conjecture 5.3. (Amenability and dimension-flatness of N (G) over
CG). A group G is amenable if and only if for every CG-module M

dimN (G)

(
TorCGp (N (G),M)

)
= 0 for p ≥ 1

holds.

Remark 5.4 (Evidence for Conjecture 5.3). Theorem 5.1 proves the “only
if”-statement of Conjecture 5.3. Some evidence for the “if”-statement of Con-
jecture 5.3 comes from the following fact. Notice that a group which contains a
non-abelian free group as a subgroup, cannot be amenable.

Suppose that G contains a free group Z ∗Z of rank 2 as a subgroup. Notice
that S1 ∨ S1 is a model for B(Z ∗ Z). Its cellular C[Z ∗ Z]-chain complex yields
an exact sequence 0→ C[Z∗Z]2 → C[Z∗Z]→ C→ 0, where C is equipped with

the trivial Z ∗ Z-action. One easily checks b(2)
1 ( ˜S1 ∨ S1) = −χ(S1 ∨ S1) = 1.

This implies

dimN (Z∗Z)

(
TorC[Z∗Z]

1 (N (Z ∗ Z),C)
)

= 1.

We conclude from Theorem 1.18 (i)

N (G)⊗N (Z∗Z) TorC[Z∗Z]
1 (N (Z ∗ Z),C) = TorCG1 (N (G),CG⊗C[Z∗Z] C).

Theorem 1.18 (ii) implies

dimN (G)

(
TorCG1 (N (G),CG⊗C[Z∗Z] C)

)
= 1.

One may ask for which groups the von Neumann algebra N (G) is flat as a
CG-module. This is true if G is virtually cyclic, i.e. G is finite or contains Z
as a normal subgroup of finite index. There is some evidence for the following
conjecture (see [77, Remark 5.15]).

Conjecture 5.5 (Flatness of N (G) over CG). The group von Neumann
algebra N (G) is flat over CG if and only if G is virtually cyclic.

6 Applications to Group Theory

Recall the Definition 2.1 of the L2-Betti numbers of a group G by b
(2)
p (G) :=

b
(2)
p (EG;N (G)). In this section we present tools for and examples of compu-

tations of the L2-Betti numbers and discuss applications to group theory. We
will explain in Remark 7.8 that for a torsion-free group with a model of finite
type for BG the knowledge of b(2)

p (G;N (G)) is the same as the knowledge of the
reduced L2-homology H(2)

p (EG, l2(G)), or, equivalently, of PHG
p (EG;N (G)) if

G satisfies the Atiyah Conjecture 4.1 for (G, 1,Q).
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6.1 L2-Betti Numbers of Groups

Theorem 2.7 implies:

Theorem 6.1 (L2-Betti numbers and Betti numbers of groups). In the
sequel we use the conventions 0·∞ = 0, r ·∞ =∞ for r ∈ (0,∞] and r+∞ =∞
for r ∈ [0,∞] and put |G|−1 = 0 for |G| = ∞. Let G1, G2, . . . be a sequence of
non-trivial groups.

(i) Free amalgamated products
For r ∈ {2, 3, . . .} q {∞} we get

b
(2)
0 (∗ri=1Gi) = 0;

b
(2)
1 (∗ri=1Gi) =

{
r − 1 +

∑r
i=1

(
b
(2)
1 (Gi)− 1

|Gi|

)
, if r <∞;

∞ , if r =∞;

b(2)
p (∗ri=1Gi) =

r∑
i=1

b(2)
p (Gi) for p ≥ 2;

bp(∗ri=1Gi) =
r∑
i=1

bp(Gi) for p ≥ 1;

(ii) Künneth formula

b(2)
p (G1 ×G2) =

p∑
i=0

b
(2)
i (G1) · b(2)

p−i(G2);

bp(G1 ×G2) =
p∑
i=0

bi(G1) · bp−i(G2);

(iii) Restriction to subgroups of finite index
For a subgroup H ⊆ G of finite index [G : H] we get

b(2)
p (H) = [G : H] · b(2)

p (G);

(iv) Extensions with finite kernel
Let 1→ H → G→ Q→ 1 be an extension of groups with finite H. Then

b(2)
p (Q) = |H| · b(2)

p (G);

(v) Zero-th L2-Betti number

We have b(2)
0 (G) = 0 for |G| =∞ and b(2)

0 (G) = |G|−1 for |G| <∞.
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Example 6.2 (Independence of L2-Betti numbers and Betti numbers).
Given an integer l ≥ 1 and a sequence r1, r2, . . ., rl of non-negative rational
numbers, we can construct a group G such that BG is of finite type and

b(2)
p (G) =

{
rp for 1 ≤ p ≤ l;
0 for l + 1 ≤ p;

bp(G) = 0 for p ≥ 1,

holds as follows.
For integers m ≥ 0, n ≥ 1 and i ≥ 1 define

Gi(m,n) = Z/n×
(
∗2m+2
k=1 Z/2

)
×

i−1∏
j=1

∗4l=1Z/2


One easily checks using Theorem 6.1.

b
(2)
i (Gi(m,n)) =

m

n
;

b(2)
p (Gi(m,n)) = 0 for p 6= i;
bp(Gi(m,n)) = 0 for p ≥ 1.

Define the desired group G as follows. For l = 1 put G = G1(m,n) if r1 = m/n.
It remains to treat the case l ≥ 2. Choose integers n ≥ 1 and k ≥ l with
r1 = k−2

n . Fix for i = 2, 3, . . . , k integers mi ≥ 0 and ni ≥ 1 such that mi
n·ni = ri

holds for 1 ≤ i ≤ l and mi = 0 holds for i > l. Put

G = Z/n× ∗ki=2Gi(mi, ni).

One easily checks using Theorem 6.1 thatG has the prescribed L2-Betti numbers
and Betti numbers and a model for BG of finite type.

On the other hand we can construct for any sequence n1, n2, . . . of non-
negative integers a CW -complex X of finite type such that bp(X) = np and
b
(2)
p (X̃) = 0 holds for p ≥ 1, namely take

X = B(Z/2 ∗ Z/2)×
∞∨
p=1

(
np∨
i=1

Sp

)
.

This example shows by considering the (l+ 1)-skeleton that for a finite con-
nected CW -complex X the only general relation between the L2-Betti numbers
b
(2)
p (X̃) of its universal covering X̃ and the Betti numbers bp(X) of X is given

by the Euler-Poincaré formula (see Theorem 2.7 (x))∑
p≥0

(−1)p · b(2)
p (X̃) = χ(X) =

∑
p≥0

(−1)p · bp(X).
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6.2 Vanishing of L2-Betti Numbers of Groups

Let d be a non-negative integer or d = ∞. In this subsection we want to
investigate the class of groups

Bd := {G | b(2)
p (G) = 0 for 0 ≤ p ≤ d}. (6.3)

Notice that B0 is the class of infinite groups by Theorem 6.1 (v).

Theorem 6.4. Let d be a non-negative integer or d =∞. Then:

(i) The class B∞ contains all infinite amenable groups;

(ii) If G contains a normal subgroup H with H ∈ Bd, then G ∈ Bd;

(iii) If G is the union of a directed system of subgroups {Gi | i ∈ I} such that
each Gi belongs to Bd, then G ∈ Bd;

(iv) Suppose that there are groups G1 and G2 and group homomorphisms
φi : G0 → Gi for i = 1, 2 such that φ1 and φ2 are injective, G0 belongs to
Bd−1, G1 and G2 belong to Bd and G is the amalgamated product G1∗G0G2

with respect to φ1 and φ2. Then G belongs to Bd;

(v) Let 1 → H → G → K → 1 be an exact sequence of groups such that
b
(2)
p (H) is finite for all p ≤ d. Suppose that K is infinite amenable or

suppose that BK has finite d-skeleton and there is an injective endomor-
phism j : K → K whose image has finite index, but is not equal to K.
Then G ∈ Bd;

(vi) Let 1 → H → G → K → 1 be an exact sequence of groups such that
H ∈ Bd−1, b(2)

d (H) < ∞ and K contains an element of infinite order or
finite subgroups of arbitrary large order. Then G ∈ Bd;

(vii) Let 1 → H → G → K → 1 be an exact sequence of infinite countable
groups such that b(2)

1 (H) <∞. Then G ∈ B1.

Proof. (i) We get b(2)
p (G) = 0 for p = 0 from Theorem 6.1 (v). The case p ≥ 1

follows from Theorem 5.2 (i) since Hsing
p (EG;C) = 0 for p ≥ 1.

(ii) Apply Theorem 3.11 (ii) to the fibration BH → BG→ B(G/H).
(iii) The proof is based on a colimit argument. See [80, Theorem 7.2 (3)].
(iv) The proof is based on a Mayer-Vietoris argument. See [80, Theorem 7.2
(4)].
(v) See [80, Theorem 7.2 (5)].
(vi) This follows from Theorem 3.11 (i) applied to the fibration BH → BG →
B(G/H).
(vii) This is proved by Gaboriau [38, Theorem 6.8].

More information about the vanishing of the first L2-Betti number can be
found for instance in [4]. Obviously the following is true
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Lemma 6.5. If G belongs to B∞, then χ(2)(G) = 0.

Remark 6.6 (The Theorem of Cheeger and Gromov). We rediscover
from Theorem 6.4 the result of Cheeger and Gromov [15] that all the L2-Betti
numbers of an infinite amenable group G vanish. A detailed comparison of our
approach and the approach by Cheeger and Gromov to L2-Betti numbers can
be found in [80, Remark 6.76].

Remark 6.7 (Advantage of the general definition of L2-Betti numbers).
Recall that we have given criterions for G ∈ B∞ in Theorem 6.4. Now it
becomes clear why it is worth while to extend the classical notion of the Euler
characteristic χ(G) := χ(BG) for groups G with finite BG to arbitrary groups.
For instance it may very well happen for a group G with finite BG that G
contains a normal group H which is not even finitely generated and has in
particular no finite model for BH and which belongs to B∞ (for instance, H is
amenable). Then the classical Euler characteristic is not defined any more for
H, but we can still conclude that the classical Euler characteristic of G vanishes
by Remark 2.19, Theorem 6.4 and Lemma 6.5.

6.3 L2-Betti Numbers of Some Specific Groups

Example 6.8 (Thompson’s group). Next we explain the following obser-
vation about Thompson’s group F . It is the group of orientation preserving
dyadic PL-automorphisms of [0, 1], where dyadic means that all slopes are in-
tegral powers of 2 and the break points are contained in Z[1/2]. It has the
presentation

F = 〈x0, x1, x2, . . . | x−1
i xnxi = xn+1 for i < n〉.

This group has some very interesting properties. Its classifying space BF is
of finite type [8] but is not homotopy equivalent to a finite dimensional CW -
complex since F contains Zn as a subgroup for all n ≥ 0 [8, Proposition 1.8].
It is not elementary amenable and does not contain a subgroup which is free
on two generators [7], [10]. Hence it is a very interesting question whether F is
amenable or not. We conclude from Theorem 6.4 (i) that a necessary condition
for F to be amenable is that b(2)

p (F ) vanishes for all p ≥ 0. By [80, Theorem
7.10] this condition is satisfied.

Example 6.9 (Artin groups). Davis and Leary [19] compute for every Artin
group A the reduced L2-cohomology and thus the L2-Betti numbers of the
universal covering S̃A of its Salvetti complex SA. The Salvetti complex SA is a
CW-complex which is conjectured to be a model for the classifying space BA
of A. This conjecture is known to be true in many cases and implies that the
L2-Betti numbers of A are given by the L2-Betti numbers of S̃A.
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Example 6.10 (Right angled Coxeter groups). The L2-homology and the
L2-Betti numbers of right angled Coxeter groups are treated by Davis and Okun
[20]. More details will be given in Remark 9.6.

Example 6.11 (Fundamental groups of surfaces and 3-manifolds). Let
G be the fundamental group of a compact orientable surface F dg of genus g with
d boundary components. Suppose that G is non-trivial which is equivalent to
the condition that d ≥ 1 or g ≥ 1. Then F dg is a model for BG and we have

computed b
(2)
p (G) = b

(2)
p (F̃ dg ) in Subsection 3.3.

Let G be the fundamental group of a compact orientable 3-manifold M . The
case |G| <∞ is clear, since then the universal covering is homotopy equivalent
to a sphere or contractible. So let us assume |G| = ∞. Under the condition
that M in non-exceptional, we have computed b(2)

p (M̃) in Theorem 3.4. If M is
prime, then either M = S1 × S2 and G = Z and b

(2)
p (G) = 0 for all p ≥ 0 or M

is irreducible, in which case M is aspherical and b
(2)
p (G) = b

(2)
p (M̃).

Suppose that M is not prime. Then still b(2)
1 (G) = b

(2)
1 (M̃) by Theorem 2.7

(i)a since the classifying map M → BG is 2-connected. Suppose the prime
decomposition of M looks like M = #r

i=1Mi. Then G = ∗ri=1Gi for Gi =
π1(Mi). We know b

(2)
p (Gi) for each i if each Mi is non-exceptional and we get

b
(2)
p (G) =

∑r
i=1 b

(2)
p (Gi) for p ≥ 2 from Theorem 6.1 (i).

Example 6.12 (One relator groups). Let G = 〈g1, g2, . . . gs | R〉 be a
torsion-free one relator group for s ∈ {2, 3 . . .}q{∞} and one non-trivial relation
R. Then

b(2)
p (G) =

 0 if p 6= 1;
s− 2 if p = 1 and s <∞;
∞ if p = 1 and s =∞.

We only treat the case s < ∞, the general case is obtained from it by taking
the free amalgamated product with a free group. Because the 2-dimensional
CW -complex X associated to the given presentation is a model for BG (see [85,
chapter III §§9 -11]) and satisfies χ(X) = s− 2, it suffices to prove b(2)

2 (G) = 0.
We sketch the argument of Dicks and Linnell for this claim. Howie [56] has
shown that such a group G is locally indicable and hence left-orderable. A
result of Linnell [64, Theorem 2] for left-orderable groups says that an element
α ∈ CG with α 6= 0 is a non-zero-divisor in U(G). This implies that the second
differential cU(G)

2 in the chain complex U(G) ⊗CG C∗(EG) is injective. Since
U(G) is flat over N (G), we get from Theorem 4.5

b
(2)
2 (G) = dimN (G)

(
HG
p (EG;N (G))

)
= dimU(G)

(
HG
p (EG;U(G))

)
= dimU(G)

(
ker
(
c
U(G)
2

))
= 0.

Linnell has an extensions of this argument to non-torsion-free one-relator groups
G with s ≥ 2 generators. (The case s = 1 is obvious.) Such a group contains a
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cyclic subgroup Z/k such that any finite subgroup is subconjugated to Z/k and
then

b(2)
p (G) =

 0 if p 6= 1;
s− 1− 1

k if p = 1 and s <∞;
∞ if p = 1 and s =∞.

Example 6.13 (Lattices). Let L be a connected semisimple Lie group with
finite center such that its Lie algebra has no compact ideal. Let G ⊆ L be a
lattice, i.e. a discrete subgroup of finite covolume. We want to compute its
L2-Betti numbers. There is a subgroup G0 ⊆ G of finite index which is torsion-
free. Since b(2)

p (G) = [G : G0] · b(2)
p (G0), it suffices to treat the case G = G0, i.e.

G ⊆ L is a torsion-free lattice.
Let K ⊆ L be a maximal compact subgroup. Put M = G\L/K. Then the

space L/K = M̃ is a symmetric space of non-compact type. We have already
mentioned in Theorem 3.5 that the work of Borel [6] implies for cocompact G
that b(2)

p (G) = b
(2)
p (M̃) 6= 0 if and only if f-rk(M̃) = 0 and 2p = dim(M). This is

actually true without the condition “cocompact”, because the condition “finite
covolume” is enough.

Next we deal with the general case of a connected Lie group L. Let Rad(L)
be its radical. One can choose a compact normal subgroup K ⊆ L such that
R = Rad(L) × K is a normal subgroup of L and the quotient L1 = L/R is
a semisimple Lie group such that its Lie algebra has no compact ideal. Then
G1 = L/L∩R is a lattice in L1 and G∩R is a lattice in R. The group G∩R is
a normal amenable subgroup of G. If G∩R is infinite, we get b(2)

p (G) = 0 for all
p ≥ 0 from Theorem 6.4. If G∩R is finite, we get b(2)

p (G) = |G∩R|−1 · b(2)
p (G1)

for all p ≥ 0 from Theorem 6.1 (iv). If the center of L1 is infinite, the center of
G1 must also be infinite and hence b(2)

p (G1) = 0 for all p ≥ 0 by Theorem 6.4.
Suppose that the center of L1 is finite. Then we know already how to compute
the L2-Betti numbers of G1 from the explanation above.

Given a lattice G in a connected Lie group, b(2)
1 (G) > 0 is true if and only

if G is commensurable with a torsion-free lattice in PSL2(R), or, equivalently
commensurable with a surface group for genus ≥ 2 or a finitely generated non-
abelian free group (see Eckmann [27] or Lott [68, Theorem 2]).

6.4 Deficiency and L2-Betti Numbers of Groups

Let G be a finitely presented group. Define its deficiency def(G) to be the
maximum g(P )− r(P ), where P runs over all presentations P of G and g(P ) is
the number of generators and r(P ) is the number of relations of a presentation
P .

Next we reprove the well-known fact that the maximum appearing in the
definition of the deficiency does exist.

Lemma 6.14. Let G be a group with finite presentation

P = 〈s1, s2, . . . , sg | R1, R2, . . . , Rr〉
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Let φ : G→ K be any group homomorphism. Then

g(P )− r(P ) ≤ 1− b(2)
0 (K ×φ EG;N (K)) + b

(2)
1 (K ×φ EG;N (K))

− b(2)
2 (K ×φ EG;N (K)).

Proof. Given a presentation P with g generators and r relations, let X be the
associated finite 2-dimensional CW -complex. It has one 0-cell, g 1-cells, one
for each generator, and r 2-cells, one for each relation. There is an obvious
isomorphism from π1(X) to G so that we can choose a map f : X → BG which
induces an isomorphism on the fundamental groups. It induces a 2-connected
K-equivariant map f : K ×φ X̃ → K ×φ ẼG. We conclude from Theorem 2.7
(i)a

b(2)
p (K ×φ X̃;N (K)) = b(2)

p (K ×φ EG;N (K)) for p = 0, 1;

b
(2)
2 (K ×φ X̃;N (K)) ≥ b

(2)
2 (K ×φ EG;N (K)).

We conclude from the L2-Euler-Poincaré formula (see Theorem 2.18 (i))

g − r = 1− χ(2)(K ×φ X̃;N (K))

= 1− b(2)
0 (K ×φ X̃;N (K)) + b

(2)
1 (K ×φ X̃;N (K))

−b(2)
2 (K ×φ X̃;N (K))

≤ 1− b(2)
0 (K ×φ EG;N (K)) + b

(2)
1 (K ×φ EG;N (K))

−b(2)
2 (K ×φ EG;N (K)).

Example 6.15 (Deficiency of some groups). Sometimes the deficiency is
realized by the “obvious” presentation. For instance the deficiency of a free
group 〈s1, s2, . . . , sg | ∅〉 on g letters is indeed g. The cyclic group Z/n of order
n has the presentation 〈t | tn = 1〉 and its deficiency is 0. The group Z/n×Z/n
has the presentation 〈s, t | sn, tn, [s, t]〉 and its deficiency is −1.

Remark 6.16 (Non-additivity of the deficiency). The deficiency is not
additive under free products by the following example which is a special case
of a more general example due to Hog, Lustig and Metzler [55, Theorem 3 on
page 162]. The group (Z/2× Z/2) ∗ (Z/3× Z/3) has the obvious presentation

〈s0, t0, s1, t1 | s2
0 = t20 = [s0, t0] = s3

1 = t31 = [s1, t1] = 1〉

One may think that its deficiency is −2. However, it turns out that its deficiency
is −1, realized by the following presentation

〈s0, t0, s1, t1 | s2
0 = 1, [s0, t0] = t20, s

3
1 = 1, [s1, t1] = t31, t

2
0 = t31〉.

This shows that it is important to get upper bounds on the deficiency of groups.
Writing down presentations gives lower bounds, but it is not clear whether a
given presentation realizes the deficiency.
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Lemma 6.17. Let G be a finitely presented group and let φ : G → K be a
homomorphism such that b(2)

1 (K ×φ EG;N (K)) = 0. Then

(i) def(G) ≤ 1;

(ii) Let M be a closed oriented 4-manifold with G as fundamental group. Then

| sign(M)| ≤ χ(M).

Proof. (i) This follows directly from Lemma 6.14.
(ii) This is a consequence of the L2-Signature Theorem due to Atiyah [2]. Details
of the proof can be found in [80, Lemma 7.22].

Theorem 6.18. Let 1 → H
i−→ G

q−→ K → 1 be an exact sequence of infinite
groups. Suppose that G is finitely presented and one of the following conditions
is satisfied:

(i) b
(2)
1 (H) <∞;

(ii) The classical first Betti number of H satisfies b1(H) <∞ and K belongs
to B1.

Then

(i) def(G) ≤ 1;

(ii) Let M be a closed oriented 4-manifold with G as fundamental group. Then

| sign(M)| ≤ χ(M).

Proof. If condition (i) is satisfied, then b(2)
p (G) = 0 for p = 0, 1 by Theorem 6.4

(vii), and the claim follows from Lemma 6.17.
Suppose that condition (ii) is satisfied. There is a spectral sequence con-

verging to HK
p+q(K ×q EG;N (K)) with E2-term

E2
p,q = TorCKp (Hq(BH;C),N (K))

[108, Theorem 5.6.4 on page 143]. Since Hq(BH;C) is C with the trivial K-
action for q = 0 and finite dimensional as complex vector space by assumption
for q = 1, we conclude dimN (K)(E2

p,q) = 0 for p + q = 1 from the assumption

b
(2)
1 (K) = 0. This implies b(2)

1 (K ×q EG;N (K)) = 0 and the claim follows from
Lemma 6.17.

Theorem 6.18 generalizes results in [29], [58], where also some additional
information is given. Furthermore see [49], [63]. We mention the result of
Hitchin [54] that a connected closed oriented smooth 4-manifold which admits
an Einstein metric satisfies the stronger inequality | sign(M)| ≤ 2

3 · χ(M).
Finally we mention the following result of Lott [68, Theorem 2] (see also [28])

which generalizes a result of Lubotzky [70]. The statement we present here is a
slight improvement of Lott’s result due to Hillman [53].
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Theorem 6.19 (Lattices of positive deficiency). Let L be a connected Lie
group. Let G be a lattice in L. If def(G) > 0, then one of the following assertions
holds:

(i) G is a lattice in PSL2(C);

(ii) def(G) = 1. Moreover, either G is isomorphic to a torsion-free non-
uniform lattice in R× PSL2(R) or PSL2(C), or G is Z or Z2.

7 G- and K-Theory

In this section we discuss the projective class group K0(N (G)) of a group von
Neumann algebra. We present applications of its computation to G0(CG) and
the Whitehead group Wh(G) of a group G.

7.1 The K0-group of a Group von Neumann Algebra

In this subsection we want to investigate the projective class group of a group
von Neumann algebra.

Definition 7.1 (Definition of K0(R) and G0(R)). Let R be an (associative)
ring (with unit). Define its projective class group K0(R) to be the abelian group
whose generators are isomorphism classes [P ] of finitely generated projective R-
modules P and whose relations are [P0] + [P2] = [P1] for any exact sequence
0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.

Define the Grothendieck group of finitely generated modules G0(R) analo-
gously but replace finitely generated projective with finitely generated.

The group K0 is known for any von Neumann algebra (see for instance [80,
Subsection 9.2.1]. For simplicity we only treat the von Neumann algebra N (G)
of a group here.

The next result is taken from [60, Theorem 7.1.12 on page 462, Proposition
7.4.5 on page 483, Theorem 8.2.8 on page 517, Proposition 8.3.10 on page 525,
Theorem 8.4.3 on page 532].

Theorem 7.2 (The universal trace). There is a map

truN (G) : N (G)→ Z(N (G))

into the center Z(N (G)) of N (G) called the center valued trace or universal
trace of N (G), which is uniquely determined by the following two properties:

(i) truN (G) is a trace with values in the center, i.e. truN (G) is C-linear, for
a ∈ N (G) with a ≥ 0 we have truN (G)(a) ≥ 0 and truN (G)(ab) = truN (G)(ba)
for all a, b ∈ N (G);
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(ii) truN (G)(a) = a for all a ∈ Z(N (G)).

The map truN (G) has the following further properties:

(iii) truN (G) is faithful, i.e. truN (G)(a) = 0⇔ a = 0 for a ∈ N (G), a ≥ 0;

(iv) truN (G) is normal, i.e. for a monotone increasing net {ai | i ∈ I} of positive
elements ai with supremum a we have truN (G)(a) = sup{tr (ai) | i ∈ I}, or,
equivalently, truN (G) is continuous with respect to the ultra-weak topology
on N (G);

(v) || truN (G)(a)|| ≤ ||a|| for a ∈ N (G);

(vi) truN (G)(ab) = a truN (G)(b) for all a ∈ Z(N (G)) and b ∈ N (G);

(vii) Let p and q be projections in N (G). Then p ∼ q, i.e. p = uu∗ and q = u∗u
for some element u ∈ N (G), if and only if truN (G)(p) = truN (G)(q);

(viii) Any linear functional f : N (G) → C which is continuous with respect to
the norm topology on N (G) and which is central, i.e. f(ab) = f(ba) for
all a, b ∈ N (G) factorizes as

N (G)
truN(G)−−−−→ Z(N (G))

f |Z(N(G))−−−−−−→ C.

Definition 7.3 (Center valued dimension). For a finitely generated projec-
tive N (G)-module P define its center valued von Neumann dimension by

dimu
N (G)(P ) :=

n∑
i=1

truN (G)(ai,i) ∈ Z(N (G))Z/2 = {a ∈ Z(N (G)) | a = a∗}

for any matrix A = (ai,j)i,j ∈Mn(N (G)) with A2 = A such that im(rA : N (G)n →
N (G)n) induced by right multiplication with A is N (G)-isomorphic to P .

There is a classification of von Neumann algebras into certain types. We
only need to know what the type of a group von Neumann algebra is.

Lemma 7.4. Let G be a discrete group. Let Gf be the normal subgroup of G
consisting of elements g ∈ G whose centralizer has finite index (or, equivalently,
whose conjugacy class (g) consists of finitely many elements). Then:

(i) The group von Neumann algebra N (G) is of type If if and only if G is
virtually abelian;

(ii) The group von Neumann algebra N (G) is of type II1 if and only if the
index of Gf in G is infinite;
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(iii) Suppose that G is finitely generated. Then N (G) is of type If if G is
virtually abelian, and of type II1 if G is not virtually abelian;

(iv) The group von Neumann algebra N (G) is a factor, i.e. its center consists
of {r · 1N (G) | r ∈ C}, if and only if Gf is the trivial group.

Proof. (i) This is proved in [61], [103].
(ii) This is proved in [61],[88].
(iii) This follows from assertions (i) and (ii) since for finitely generated G the
group Gf has finite index in G if and only if G is virtually abelian.
(iv) This follows from [23, Proposition 5 in III.7.6 on page 319].

The next result follows from [60, Theorem 8.4.3 on page 532, Theorem 8.4.4
on page 533].

Theorem 7.5 (K0 of finite von Neumann algebras). Let G be a group.

(i) The following statements are equivalent for two finitely generated projec-
tive N (G)-modules P and Q:

(a) P and Q are N (G)-isomorphic;

(b) P and Q are stably N (G)-isomorphic, i.e. P ⊕ V and Q ⊕ V are
N (G)-isomorphic for some finitely generated projective N (G)-module
V ;

(c) dimu
N (G)(P ) = dimu

N (G)(Q);

(d) [P ] = [Q] in K0(N (G));

(ii) The center valued dimension induces an injection

dimu
N (G) : K0(N (G))→ Z(N (G))Z/2 = {a ∈ Z(N (G)) | a = a∗},

where the group structure on Z(N (G))Z/2 comes from addition. If N (G)
is of type II1, this map is an isomorphism.

Remark 7.6 (Group von Neumann algebras and representation the-
ory). Theorem 7.5 shows that the group von Neumann algebra is the right gen-
eralization of the complex group ring from finite groups to infinite groups if one is
concerned with representation theory of finite groups. Namely, let G be a finite
group. Recall that a finite dimensional complex G-representation V is the same
as a finitely generated CG-module and that K0(CG) is the same as the complex
representation ring. Moreover, two finite dimensional G-representations V and
W are linearly G-isomorphic if and only if they have the same character. Recall
that the character is a class function. One easily checks that the complex vector
space of class functions on a finite group G is the same as the center Z(CG)
and that the character of V contains the same information as dimu

N (G)(V ).
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Remark 7.7 (Factors). Suppose that N (G) is a factor, i.e. its center consists
of {r ·1N (G) | r ∈ C}. By Lemma 7.4 (iv) this is the case if and only if Gf is the
trivial group. Then dimN (G) = dimu

N (G) and two finitely generated projective
N (G)-modules P and Q are N (G)-isomorphic if and only if dimN (G)(P ) =
dimN (G)(Q) holds. This has the consequence that for a free G-CW -complex
X of finite type the p-th L2-Betti number determines the isomorphism type of
PHG

p (X;N (G)). In particular we must have PHG
p (X;N (G)) ∼=N (G) N (G)n

provided that n = b
(2)
p (X;N (G)) is an integer. If one prefers to work with

reduced L2-homology, this is equivalent to the statement that H(2)
p (X; l2(G)) is

isometrically G-linearly isomorphic to l2(G)n provided that n = b
(2)
p (X;N (G))

is an integer.

Remark 7.8 (The reduced L2-cohomology of torsion-free groups). Let
G be a torsion-free group. Suppose that it satisfies the Atiyah Conjecture 4.1 for
(G, 1,Q). Suppose that there is a model for BG of finite type. Then we get for all
p that PHG

p (EG;N (G)) ∼=N (G) N (G)n, or, equivalently, that H(2)
p (X; l2(G))

is isometrically G-linearly isomorphic to l2(G)n if the integer n is given by
n = b

(2)
p (X;N (G)). This claim is proved in [80, solution to Exercise 10.11 on

page 546].

We mention that the inclusion i : N (G)→ U(G) induces an isomorphism

K0(N (G))
∼=−→ K0(U(G)).

The Farrell-Jones Conjecture for K0(CG), the Bass Conjecture and the pas-
sage in K0 from ZG to CG and to N (G) is discussed in [80, Section 9.5.2] and
[81].

7.2 The K1-group and the L-groups of a Group von Neu-
mann Algebra

A complete calculation of theK1-group and of the L-groups of any von Neumann
algebra and of the associated algebra of affiliated operators can be found in [80,
Section 9.3 and Section 9.4], [83] and [99].

7.3 Applications to G-theory of Group Rings

Theorem 7.9 (Detecting G0(CG) by K0(N (G)) for amenable groups).
If G is amenable, the map

l : G0(CG)→ K0(N (G)), [M ] 7→ [PN (G)⊗CGM ]

is a well-defined homomorphism. If f : K0(CG)→ G0(CG) is the forgetful map
sending [P ] to [P ] and i∗ : K0(CG) → K0(N (G)) is induced by the inclusion
i : CG→ N (G), then the composition l ◦ f agrees with i∗.
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Proof. This is essentially a consequence of the dimension-flatness of N (G) over
CG (see Theorem 5.1). Details of the proof can be found in [80, Theorem
9.64].

Now one can combine Theorem 7.5 and Theorem 7.9 to detect elements in
G0(CG) for amenable G. In particular one can show

dimQ (Q⊗Z G0(CG)) ≥ | con(G)f,cf |, (7.10)

where con(G)f,cf is the set of conjugacy classes (g) of elements g ∈ G such that
g has finite order and (g) contains only finitely many elements. Notice that
con(G)f,cf contains at least one element, namely the unit element e.

Remark 7.11 (The non-vanishing of [RG] in G0(RG) for amenable
groups). A direct consequence of Theorem 7.9 is that for an amenable group
G the class [CG] in G0(CG) generates an infinite cyclic subgroup. Namely, the
dimension induces a well-defined homomorphism

dimN (G) : G0(CG)→ R, [M ] 7→ dimN (G) (N (G)⊗CGM) ,

which sends [CG] to 1. This result has been extended by Elek [32] to finitely
generated amenable groups and arbitrary fields F , i.e. there is a well-defined
homomorphism G0(FG)→ R, which sends [FG] to 1 and is given by a certain
rank function on finitely generated FG-modules.

The class [RG] in K0(RG) is never zero for a commutative integral domain
R with quotient field R(0). The augmentation RG→ R and the map K0(R)→
Z, [P ] 7→ dimR(0)(R(0)⊗R P ) together induce a homomorphism K0(RG)→ Z

which sends [RG] to 1. A decisive difference between K0(RG) and G0(RG) is
that [RG] = 0 is possible in G0(RG) as the following example shows.

Example 7.12 (The vanishing of [RG] in G0(RG) for groups G con-
taining Z ∗ Z). We abbreviate F2 = Z ∗ Z. Suppose that G contains F2 as a
subgroup. Let R be a ring. Then

[RG] = 0 ∈ G0(RG)

holds by the following argument. Induction with the inclusion F2 → G induces
a homomorphism G0(RF2) → G0(RG) which sends [RF2] to [RG]. Hence it
suffices to show [RF2] = 0 in G0(RF2). The cellular chain complex of the
universal covering of S1 ∨ S1 yields an exact sequence of RF2-modules 0 →
(RF2)2 → RF2 → R→ 0, where R is equipped with the trivial F2-action. This
implies [RF2] = −[R] in G0(RF2). Hence it suffices to show [R] = 0 in G0(RF2).
Choose an epimorphism f : F2 → Z. Restriction with f defines a homomorphism
G0(RZ)→ G0(RF2). It sends the class of R viewed as trivial RZ-module to the
class of R viewed as trivial RF2-module. Hence it remains to show [R] = 0 in
G0(RZ). This follows from the exact sequence 0 → RZ

s−1−−→ RZ → R → 0 for
s a generator of Z which comes from the cellular RZ-chain complex of S̃1.

Remark 7.11 and Example 7.12 give some evidence for
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Conjecture 7.13. (Amenability and the regular representation in G-
theory). Let R be a commutative integral domain. Then a group G is
amenable if and only if [RG] 6= 0 in G0(RG).

Remark 7.14 (The Atiyah Conjecture for amenable groups and G0(CG)).
Assume that G is amenable and that there is an upper bound on the orders of
finite subgroups of G. Then the Atiyah Conjecture 4.1 for (G, d,C) is true if
and only if the image of the map

dimN (G) : G0(CG)→ R, [M ] 7→ dimN (G)(N (G)⊗CGM)

is contained in {r ∈ R | d · r ∈ Z}.

Example 7.15 (K0(CG) → G0(CG) is not necessarily surjective). Let
A =

⊕
n∈Z Z/2. This abelian group is locally finite. Hence the map⊕

H⊆A,|H|<∞

K0(CH)→ K0(CA)

is surjective and the image of

dimN (G) : K0(CA)→ R, [P ] 7→ dimN (A) (N (A)⊗CA P )

is Z[1/2]. On the other hand the argument in [80, Example 10.13] shows that
the map

dimN (G) : G0(CA)→ R, [M ] 7→ dimN (A) (N (A)⊗CAM)

is surjective. In particular the obvious map K0(CA)→ G0(CA) is not surjective.

7.4 Applications to the Whitehead Group

The Whitehead group Wh(G) of a group G is the quotient of K1(ZG) by the
subgroup which consists of elements given by units of the shape ±g ∈ ZG for
g ∈ G. Let i : H → G be the inclusion of a normal subgroup H ⊆ G. It induces
a homomorphism i0 : Wh(H) → Wh(G). The conjugation action of G on H
and on G induces a G-action on Wh(H) and on Wh(G) which turns out to be
trivial on Wh(G). Hence i0 induces homomorphisms

i1 : Z⊗ZG Wh(H) → Wh(G); (7.16)
i2 : Wh(H)G → Wh(G). (7.17)

Theorem 7.18 (Detecting elements in Wh(G)). Let i : H → G be the
inclusion of a normal finite subgroup H into an arbitrary group G. Then the
maps i1 and i2 defined in (7.16) and (7.17) have finite kernel.

Proof. See [80, Theorem 9.38].
We emphasize that Theorem 7.18 above holds for all groups G. It seems to

be related to the Farrell-Jones Isomorphism Conjecture.
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8 L2-Betti Numbers and Measurable Group The-
ory

In this section we want to discuss an interesting relation between L2-Betti num-
bers and measurable group theory. We begin with formulating the main result.

Definition 8.1 (Measure equivalence). Two countable groups G and H
are called measure equivalent if there exist commuting measure-preserving free
actions of G and H on some standard Borel space (Ω, µ) with non-zero Borel
measure µ such that the actions of both G and H admit measure fundamental
domains X and Y of finite measure.

The triple (Ω, X, Y ) is called a measure coupling of G and H. The index of
(Ω, X, Y ) is the quotient µ(X)

µ(Y ) .

Here are some explanations. A Polish space is a separable topological space
which is metrizable by a complete metric. A measurable space Ω = (Ω,A) is a
set Ω together with a σ-algebra A. It is called a standard Borel space if it is
isomorphic to a Polish space with its Borel σ-algebra. (The Polish space is not
part of the structure, only its existence is required.) More information about
this notion of measure equivalence can be found for instance in [36], [37] and
[46, 0.5E].

The following result is due to Gaboriau [38, Theorem 6.3]. We will discuss
its applications and sketch the proof based on homological algebra and the
dimension function due to R. Sauer [100].

Theorem 8.2 (Measure equivalence and L2-Betti numbers). Let G and
H be two countable groups which are measure equivalent. If C > 0 is the index
of a measure coupling, then we get for all p ≥ 0

b(2)
p (G) = C · b(2)

p (H).

The general strategy of the proof of Theorem 8.2 is as follows. In the first
step one introduces the notion of a standard action Gy X and of a weak orbit
equivalence of standard actions of index C and shows that two groups G and
H are measure equivalent of index C if and only if there exist standard actions
G y X and H y Y which are weakly orbit equivalent with index C. In the
second step one assigns to a standard action Gy X L2-Betti numbers b(2)

p (Gy
X), which involve only data that is invariant under orbit equivalence. Hence
b
(2)
p (G y X) itself depends only on the orbit equivalence class of G y X. In

order to deal with weak orbit equivalences, one has to investigate the behaviour
of the L2-Betti numbers of b(2)

p (G y X) under restriction. Finally one proves
that the L2-Betti numbers of a standard action Gy X agree with the L2-Betti
numbers of G itself.

A version of Theorem 8.2 for the L2-torsion is presented in Conjecture 11.30.

52



8.1 Measure Equivalence and Quasi-Isometry

Remark 8.3 (Measure equivalence is the measure theoretic version of
quasi-isometry). The notion of measure equivalence can be viewed as the mea-
sure theoretic analogue of the metric notion of quasi-isometric groups. Namely,
two finitely generated groups G0 and G1 are quasi-isometric if and only if there
exist commuting proper (continuous) actions of G0 and G1 on some locally com-
pact space such that each action has a cocompact fundamental domain [46, 0.2
C ′2 on page 6].

Example 8.4 (Infinite amenable groups). Every countable infinite amenable
group is measure equivalent to Z (see [94]). Since obviously all the L2-Betti num-
bers of Z vanish, Theorem 8.2 implies the result of Cheeger and Gromov that
all the L2-Betti numbers of an infinite amenable group vanish.

Remark 8.5 (L2-Betti numbers and quasi-isometry). If the finitely gen-
erated groups G0 and G1 are quasi-isometric and there exist finite models for
BG0 and BG1, then b

(2)
p (G0) = 0 ⇔ b

(2)
p (G1) = 0 holds (see [46, page 224],

[95]). But in general it is not true that there is a constant C > 0 such that
b
(2)
p (G0) = C · b(2)

p (G1) holds for all p ≥ 0 (cf. [39, page 7], [46, page 233],
[109]).

Remark 8.6 (Measure equivalence versus quasi-isometry). If Fg denotes
the free group on g generators, then define Gn := (F3×F3) ∗Fn for n ≥ 2. The
groups Gm and Gn are quasi-isometric for m,n ≥ 2 (see [21, page 105 in IV-
B.46], [109, Theorem 1.5]) and have finite models for their classifying spaces.
One easily checks using Theorem 6.1 that b(2)

1 (Gn) = n and b
(2)
2 (Gn) = 4.

Theorem 8.2 due to Gaboriau implies that Gm and Gn are measure equiva-
lent if and only if m = n holds. Hence there are finitely presented groups which
are quasi-isometric but not measure equivalent.

The converse is also true. The groups Zn and Zm are infinite amenable
and hence measure equivalent. But they are not quasi-isometric for different m
and n since n is the growth rate of Zn and the growth rate is a quasi-isometry
invariant.

Notice that Theorem 8.2 implies that the sign of the Euler characteristic
of a group G is an invariant under measure equivalence, which is not true for
quasi-isometry by the example of the groups Gn above.

Let the two groups G and H act on the same metric space X properly and
cocompactly by isometries. If X is second countable and proper, then G and
H are measure equivalent. [100, Theorem 2.36]. If X is a geodesic and proper,
then G and H are quasi-isometric.

Remark 8.7 (Kazhdan’s property (T)). Kazhdan’s property (T ) is an
invariant under measure equivalence [36, Theorem 8.2]. There exist quasi-
isometric finitely generated groups G0 and G1 such that G0 has Kazhdan’s
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property (T ) and G1 not (see [39, page 7]). Hence G0 and G1 are quasi-isometric
but not measure equivalent.

The rest of this section is devoted to an outline of the proof of Theorem 8.2
due to R. Sauer [100] which is simpler and more algebraic than the original one
of Gaboriau [38] and may have the potential to apply also to L2-torsion.

8.2 Discrete Measured Groupoids

A groupoid is a small category in which all morphisms are isomorphisms. We
will identify a groupoid G with its set of morphisms. Then the set of objects
G0 can be considered as a subset of G via the identity morphisms. There are
four canonical maps,

source map s : G → G0, (f : x→ y) 7→ x;
target map t : G → G0, (f : x→ y) 7→ y;
inverse map i : G → G, f 7→ f−1;
composition ◦ : G2 → G, (f, g) 7→ f ◦ g,

where G2 is {(f, g) ∈ G × G | s(f) = t(g)}. We will often abbreviate f ◦ g by
fg.

A discrete measurable groupoid is a groupoid G equipped with the structure
of a standard Borel space such that the inverse map and the composition are
measurable maps and s−1(x) is countable for all objects x ∈ G0. Then G0 ⊆ G
is a Borel subset, the source and the target maps are measurable and t−1(x) is
countable for all objects x ∈ G0.

Let µ be a probability measure on G0. Then for each measurable subset
A ⊆ G the function

G0 → C, x 7→ |s−1(x) ∩A|

is measurable and we obtain a σ-finite measure µs on G by

µs(A) :=
∫
G0
|s−1(x) ∩A| dµ(x).

It is called the left counting measure of µ. The right counting measure µt is
defined analogously replacing the source map s by the target map t. We call
µ invariant if µs = µt, or, equivalently, if i∗µs = µs. A discrete measurable
groupoid G together with an invariant measure µ on G0 is called a discrete
measured groupoid. Given a Borel subset A ⊆ G0 with µ(A) > 0, there is the
restricted discrete measured groupoid G|A = s−1(A)∩ t−1(A), which is equipped
with the normalized measure 1

µ(A) · µ|A.
An isomorphism of discrete measured groupoids f : G → H is an isomor-

phisms of groupoids which preserves the measures. Given measurable subsets
A ⊆ G0 and B ⊆ H0 such that t(s−1(A)) and t(s−1(B)) have full measure in
G0 and H0 respectively, we call an isomorphism of discrete measured groupoids
f : GA → HB a weak isomorphism of discrete measured groupoids.
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Example 8.8 (Orbit equivalence relation). Consider the countable group
G with an action Gy X on a standard Borel space X with probability measure
µ by µ-preserving isomorphisms. The orbit equivalence relation

R(Gy X) := {(x, gx) | x ∈ X, g ∈ G} ⊆ X ×X

becomes a discrete measured groupoid by the obvious groupoid structure and
measure.

An action Gy X of a countable groupG is called standard ifX is a standard
Borel measure space with a probability measure µ, the action is by µ-preserving
Borel isomorphisms and the action is essentially free, i.e. the stabilizer of almost
every x ∈ X is trivial. Every countable group G admits a standard action, which
is given by the shift action on

∏
g∈G[0, 1]. Notice that this G-action is not free

but essentially free.
Two standard actions G y X and H y Y are weakly orbit equivalent if

there are Borel subsets A ⊆ X and B ⊆ Y , which meet almost every orbit
and have positive measure in X and Y respectively, and a Borel isomorphism
f : A→ B, which preserves the normalized measures on A and B and satisfies

f(G · x ∩A) = H · f(x) ∩B

for almost all x ∈ A. If A has full measure in X and B has full measure in Y ,
then the two standard actions are called orbit equivalent. The map f is called
a weak orbit equivalence or orbit equivalence respectively. The index of a weak
orbit equivalence of f is the quotient µ(A)

µ(B) . The next result is due to Furman
[37, Theorem 3.3].

Theorem 8.9 (Measure equivalence and weak orbit equivalence). Two
countable groups are measure equivalent with respect to a measure coupling of
index C > 0 if and only if there exist standard actions of G and H which are
weakly orbit equivalent with index C.

8.3 Groupoid Rings

Let G be a discrete measured groupoid with invariant measure µ on G0. For a
function φ : G→ C and x ∈ G0 put

S(φ)(x) := |{g ∈ G | φ(g) 6= 0, s(g) = x} ∈ {0, 1, 2 . . .} q {∞};
T (φ)(x) := |{g ∈ G | φ(g) 6= 0, t(g) = x} ∈ {0, 1, 2 . . .} q {∞}.

Let µG = µs = µt be the measure on G induced by µ. Let L∞(G) = L∞(G;µG)
be the C-algebra of equivalence classes of essentially bounded measurable func-
tions G → C. Define L∞(G0) = L∞(G0;µ) analogously. Define the groupoid
ring of G as the subset

CG := {φ ∈ L∞(G) | S(φ) and T (φ) are essentially bounded on G}. (8.10)
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The addition comes from the pointwise addition in L∞(G). Multiplication comes
from the convolution product

(φ · ψ)(g) =
∑

g1,g2∈G
g2◦g1=g

φ(g1) · ψ(g2).

An involution of rings on CG is defined by (φ∗)(g) := φ(i(g)). Define the
augmentation homomorphism ε : CG → L∞(G0) by sending φ to ε(φ) : G0 →
C, x 7→

∑
g∈s−1(x) φ(g). Notice that ε is in general not a ring homomorphism,

it is only compatible with the additive structure. It becomes a homomorphism
of CG-modules if we equip L∞(G0) with the following CG-module structure

φ · f := ε(φ · j(f)) for φ ∈ CG, f ∈ L∞(G0),

where j : L∞(G0)→ CG is the inclusion of rings, which is given by extending a
function on G0 to G by putting it to be zero outside G0.

Given a group G and a ring R together with a homomorphism c : G →
aut(R), define the crossed product ring R ∗c G as the free R-module with G as
R-basis and the multiplication given by∑

g∈G
rg · g

 ·
∑
g∈G

sg · g

 =
∑
g∈G

 ∑
g1,g2∈G,
g=g1g2

rg1 · c(g1)(sg2)

 · g.
Given a standard action G y X, let L∞(X) ∗ G be the crossed product ring
L∞(X) ∗c G with respect to the group homomorphism c : G → aut (L∞(X))
sending g to the automorphism given by composition with lg−1 : X → X, x 7→
g−1x. We obtain an injective ring homomorphism

k : L∞(X) ∗G→ CR(Gy X)

which sends
∑
g∈G fg · g to the function (gx, x) 7→ fg(gx). In the sequel we

will regard L∞(X) ∗G as a subring of CR(Gy X) using k.
Next we briefly explain how one can associate to the groupoid ring CG of

a discrete measured groupoid G a von Neumann algebra N (G), which is finite,
or, equivalently, which possesses a faithful finite normal trace. One can define
on CG an inner product

〈φ, ψ〉 =
∫
G

φ(g) · ψ(g) dµG.

Then CG as a C-algebra with involution and the scalar product above satisfies
the axioms of a Hilbert algebra A, i.e. we have 〈y, x〉 = 〈x∗, y∗〉 for x, y ∈ A,
〈xy, z〉 = 〈y, x∗z〉 for x, y, z ∈ A and the map A → A, y 7→ yx is continuous
for all x ∈ A. Let HA be the Hilbert space completion of A with respect to
the given inner product. Define the von Neumann algebra N (A) associated to
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A by the C-algebra with involution B(HA)A which consists of all bounded left
A-invariant operators HA → HA. The standard trace is given by

trN (A) : N (A)→ C, f 7→ 〈f(1A), 1A〉 .

We do get a dimension function as in Theorem 1.11 for N (A).
Our main example will be N (G y X) := N (CR(G y X)) for a standard

action Gy X of G.
If G is a countable group and G = G is the associated discrete measured

groupoid with one object, then CG = CG, l2(G) = HCG and the definition of
N (G) and trN (G) above agrees with the previous Definition 1.1 of N (G) and
trN (G).

Remark 8.11 (Summary and Relevance of the algebraic structures
associated to a standard action). Let G y X be a standard action. We
have the following commutative diagram of inclusions of rings

C −−−−→ CG
=−−−−→ CG −−−−→ N (G)y y y y

L∞(X) −−−−→ L∞(X) ∗G −−−−→ CR(Gy X) −−−−→ N (Gy X)

There is a CG-module structure on L∞(R(Gy X)0) = L∞(X). Its restriction
to L∞(X) ∗G ⊆ CR(Gy X) is the obvious L∞(X) ∗G-module structure on
L∞(X).

The following observation will be crucial. Given two standard actions Gy
X and G y Y , an orbit equivalence f from G y X to H y Y induces
isomorphisms of rings, all denoted by f∗, such that the following diagram with
inclusions as horizontal maps commutes

L∞(X) −−−−→ CR(Gy X) −−−−→ N (Gy X)

f∗

y∼= f∗

y∼= f∗

y∼=
L∞(Y ) −−−−→ CR(H y Y ) −−−−→ N (Gy Y )

It is not true that f induces a ring map L∞(X)∗G→ L∞(Y )∗H, since we only
require that f maps orbits to orbits but nothing is demanded about equivariance
of f with respect to some homomorphism of groups from G→ H. The crossed
product ring L∞(X) ∗ G contains too much information about the group G
itself. Hence we shall only involve L∞(X), CR(Gy X), and N (Gy X) in any
algebraic construction which is designed to be invariant under orbit equivalence.

8.4 L2-Betti Numbers of Standard Actions

Definition 8.12. Let G be a discrete measured groupoid. Define its p-th L2-
Betti number by

b(2)
p (G) = dimN (G)

(
TorCGp

(
N (G), L∞(G0)

))
.
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Given a standard action Gy X, define its p-th L2-Betti number as the p-th
L2-Betti number of the associated orbit equivalence relation R(Gy X), i.e.

b(2)
p (Gy X) = dimN (GyX)

(
TorCR(GyX)

p (N (Gy X), L∞(X))
)
.

Notice that Theorem 8.2 is true if we can prove the following three lemmas.

Lemma 8.13. If two standard actions Gy X and H y Y are orbit equivalent,
then they have the same L2-Betti numbers.

Lemma 8.14. Let G be a discrete measured groupoid. Let A ⊆ G be a Borel
subset such that t(s−1(A)) has full measure in G0. Then we get for all p ≥ 0

b(2)
p (G) = µ(A) · b(2)

p (G|A).

Lemma 8.15. Let Gy X be a standard action. Then we get for all p ≥ 0

b(2)
p (Gy X) = b(2)

p (G).

Lemma 8.13 follows directly from Remark 8.11. The hard part of the proof
of Theorem 8.2 is indeed the proof of the remaining two Lemmas 8.14 and 8.15.
This is essentially done by developing some homological algebra over finite von
Neumann algebras taking the dimension for arbitrary modules into account.

8.5 Invariance of L2-Betti Numbers under Orbit Equiva-
lence

As an illustration we sketch the proof of Lemma 8.15. It follows from the
following chain of equalities which we explain briefly below.

b(2)
p (G) = dimN (G)

(
TorCGp (N (G),C)

)
(8.16)

= dimN (GyX)

(
N (Gy X)⊗N (G) TorCGp (N (G),C)

)
(8.17)

= dimN (GyX)

(
TorCGp (N (Gy X),C)

)
(8.18)

= dimN (GyX)

(
TorL

∞(X)∗G
p (N (Gy X), L∞(X) ∗G⊗CG C)

)
(8.19)

= dimN (GyX)

(
TorL

∞(X)∗G
p (N (Gy X), L∞(X))

)
(8.20)

= dimN (GyX)

(
TorCR(GyX)

p (N (Gy X), L∞(X))
)

(8.21)

= b(2)
p (Gy X). (8.22)

Equations (8.16) and (8.22) are true by definition. The inclusion of von Neu-
mann algebras N (G) → N (G y X) preserves the traces. This implies that
the functor N (G y X) ⊗N (G) − from N (G)-modules to N (G y X)-modules
is faithfully flat and preserves dimensions. The proof of this fact is completely
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analogous to the proof of Theorem 1.18. This shows (8.17) and (8.18). For
every CG-module M there is a natural L∞(X) ∗G-isomorphism

L∞(X) ∗G⊗CGM
∼=−→ L∞(X)⊗CM.

This shows that L∞(X)∗G is flat as CG-module and that (8.19) and (8.20) are
true. The hard part is now to prove (8.21), which is the decisive step, since here
one eliminates L∞(X) ∗G from the picture and stays with terms which depend
only on the orbit equivalence class of G y X. Its proof involves homological
algebra and dimension theory. It is not true that the relevant Tor-terms are
isomorphic, they only have the same dimension.

This finishes the outline of the proof of Lemma 8.15 and of Theorem 8.2.
The complete proof can be found in [100].

9 The Singer Conjecture

In this section we briefly discuss the following conjecture.

Conjecture 9.1 (Singer Conjecture). If M is an aspherical closed manifold,
then

b(2)
p (M̃) = 0 if 2p 6= dim(M).

If M is a closed connected Riemannian manifold with negative sectional curva-
ture, then

b(2)
p (M̃)

{
= 0 if 2p 6= dim(M);
> 0 if 2p = dim(M).

We mention that all the explicit computations presented in Section 3 are
compatible with the Singer Conjecture 9.1. A version of the Singer Conjecture
for L2-torsion will be presented in Conjecture 11.28.

9.1 The Singer Conjecture and the Hopf Conjecture

Because of the Euler-Poincaré formula χ(M) =
∑
p≥0(−1)p · b(2)

p (M̃) (see The-
orem 2.7 (x)) the Singer Conjecture 9.1 implies the following conjecture in case
M is aspherical or has negative sectional curvature.

Conjecture 9.2 (Hopf Conjecture). If M is an aspherical closed manifold
of even dimension, then

(−1)dim(M)/2 · χ(M) ≥ 0.

If M is a closed Riemannian manifold of even dimension with sectional curva-
ture sec(M), then

(−1)dim(M)/2 · χ(M) > 0 if sec(M) < 0;
(−1)dim(M)/2 · χ(M) ≥ 0 if sec(M) ≤ 0;

χ(M) = 0 if sec(M) = 0;
χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.
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In original versions of the Singer Conjecture 9.1 and the Hopf Conjecture
9.2 the statements for aspherical manifolds did not appear. Every Riemannian
manifold with non-positive sectional curvature is aspherical by Hadamard’s The-
orem.

9.2 Pinching Conditions

The following two results are taken from the paper by Jost and Xin [59, Theorem
2.1 and Theorem 2.3].

Theorem 9.3. Let M be a closed connected Riemannian manifold of dimension
dim(M) ≥ 3. Suppose that there are real numbers a > 0 and b > 0 such that
the sectional curvature satisfies −a2 ≤ sec(M) ≤ 0 and the Ricci curvature is
bounded from above by −b2. If the non-negative integer p satisfies 2p 6= dim(M)
and 2pa ≤ b, then

b(2)
p (M̃) = 0.

Theorem 9.4. Let M be a closed connected Riemannian manifold of dimension
dim(M) ≥ 4. Suppose that there are real numbers a > 0 and b > 0 such that the
sectional curvature satisfies −a2 ≤ sec(M) ≤ −b2. If the non-negative integer p
satisfies 2p 6= dim(M) and (2p− 1) · a ≤ (dim(M)− 2) · b, then

b(2)
p (M̃) = 0.

The next result is a consequence of a result of Ballmann and Brüning [3,
Theorem B on page 594].

Theorem 9.5. Let M be a closed connected Riemannian manifold. Suppose that
there are real numbers a > 0 and b > 0 such that the sectional curvature satisfies
−a2 ≤ sec(M) ≤ −b2. If the non-negative integer p satisfies 2p < dim(M) − 1
and p · a < (dim(M)− 1− p) · b, then

b(2)
p (M̃) = 0.

Theorem 9.4 and Theorem 9.5 are improvements of the older results by
Donnelly and Xavier [26].

Remark 9.6 (Right angled Coxeter groups and Coxeter complexes).
Next we mention the work of Davis and Okun [20]. A simplicial complex L is
called a flag complex if each finite non-empty set of vertices which pairwise are
connected by edges spans a simplex of L. To such a flag complex they associate
a right-angled Coxeter group WL defined by the following presentation [20,
Definition 5.1]. Generators are the vertices v of L. Each generator v satisfies
v2 = 1. If two vertices v and w span an edge, there is the relation (vw)2 = 1.
Given a finite flag complex L, Davis and Okun associate to it a finite proper WL-
CW -complex ΣL, which turns out to be a model for the classifying space of the
family of finite subgroups EFIN (WL) [20, 6.1, 6.1.1 and 6.1.2]. Equipped with
a specific metric, ΣL turns out to be non-positive curved in a combinatorial
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sense, namely, it is a CAT(0)-space [20, 6.5.3]. If L is a generalized rational
homology (n−1)-sphere, i.e. a homology (n−1)-manifold with the same rational
homology as Sn−1, then ΣL is a polyhedral homology n-manifold with rational
coefficients [20, 7.4]. So ΣL is a reminiscence of the universal covering of a closed
n-dimensional manifold with non-positive sectional curvature and fundamental
group WL. In view of the Singer Conjecture 9.1 the conjecture makes sense
that b(2)

p (ΣL;N (WL)) = 0 for 2p 6= n provided that the underlying topological
space of L is Sn−1 (or, more generally, that it is a homology (n−1)-sphere) [20,
Conjecture 0.4 and 8.1]. Davis and Okun show that the conjecture is true in
dimension n ≤ 4 and that it is true in dimension (n+ 1) if it holds in dimension
n and n is odd [20, Theorem 9.3.1 and Theorem 10.4.1].

9.3 The Singer Conjecture and Kähler Manifolds

Definition 9.7. Let (M, g) be a connected Riemannian manifold. A (p−1)-form
η ∈ Ωp−1(M) is bounded if ||η||∞ := sup{||η||x | x ∈ M} < ∞ holds, where
||η||x is the norm on Altp−1(TxM) induced by gx. A p-form ω ∈ Ωp(M) is called
d(bounded) if ω = d(η) holds for some bounded (p − 1)-form η ∈ Ωp−1(M). A
p-form ω ∈ Ωp(M) is called d̃(bounded) if its lift ω̃ ∈ Ωp(M̃) to the universal
covering M̃ is d(bounded).

The next definition is taken from [45, 0.3 on page 265].

Definition 9.8 (Kähler hyperbolic manifold). A Kähler hyperbolic mani-
fold is a closed connected Kähler manifold (M,h) whose fundamental form ω is
d̃(bounded).

Example 9.9 (Examples of Kähler hyperbolic manifolds). The following
list of examples of Kähler hyperbolic manifolds is taken from [45, Example 0.3]:

(i) M is a closed Kähler manifold which is homotopy equivalent to a Rieman-
nian manifold with negative sectional curvature;

(ii) M is a closed Kähler manifold such that π1(M) is word-hyperbolic in the
sense of [44] and π2(M) = 0;

(iii) M̃ is a symmetric Hermitian space of non-compact type;

(iv) M is a complex submanifold of a Kähler hyperbolic manifold;

(v) M is a product of two Kähler hyperbolic manifolds.

The following result is due to Gromov [44, Theorem 1.2.B and Theorem
1.4.A on page 274]. A detailed discussion of the proof and the consequences of
this theorem can also be found in [80, Chapter 11].
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Theorem 9.10. (L2-Betti numbers of Kähler hyperbolic manifolds).
Let M be a Kähler hyperbolic manifold of complex dimension m and real di-
mension n = 2m. Then

b(2)
p (M̃) = 0 if p 6= m;

b(2)
m (M̃) > 0;

(−1)m · χ(M) > 0.

10 The Approximation Conjecture

This section is devoted to the following conjecture.

Conjecture 10.1 (Approximation Conjecture). A group G satisfies the
Approximation Conjecture if the following holds:

Let {Gi | i ∈ I} be an inverse system of normal subgroups of G directed
by inclusion over the directed set I. Suppose that

⋂
i∈I Gi = {1}. Let X be a

G-CW -complex of finite type. Then Gi\X is a G/Gi-CW -complex of finite type
and

b(2)
p (X;N (G)) = lim

i∈I
b(2)
p (Gi\X;N (G/Gi)).

Remark 10.2 (The Approximation Conjecture for subgroups of finite
index). Let us consider the special case where the inverse system {Gi | i ∈ I}
is given by a nested sequence of normal subgroups of finite index

G = G0 ⊃ G1 ⊃ G2 ⊃ G3 ⊃ . . . .

Notice that then b
(2)
p (Gi\X;N (G/Gi)) = bp(Gi\X)

[G:Gi]
, where bp(Gi\X) is the

classical p-th Betti number of the finite CW -complex Gi\X. In this special
case Conjecture 10.1 was formulated by Gromov [46, pages 20, 231] and proved
in [72, Theorem 0.1]. Thus we get an asymptotic relation between the L2-Betti
numbers and Betti numbers, namely

b(2)
p (X;N (G)) = lim

i→∞

bp(Gi\X)
[G : Gi]

,

although the Betti numbers of a connected finite CW -complex Y and the L2-
Betti numbers of its universal covering Ỹ have nothing in common except the
fact that their alternating sum equals χ(Y ) (see Example 6.2).

Interesting variations of this result for not necessarily normal subgroups of
finite index and Betti-numbers with coefficients in representations can be found
in the paper by Farber [34].

Definition 10.3. Let G be the smallest class of groups which contains the trivial
group and is closed under the following operations:
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(i) Amenable quotient
Let H ⊆ G be a (not necessarily normal) subgroup. Suppose that H ∈ G
and the quotient G/H is an amenable discrete homogeneous space. (For
the precise definition of amenable discrete homogeneous space see for in-
stance [80, Definition 13.8]. If H ⊆ G is normal and G/H is amenable,
then G/H is an amenable discrete homogeneous space.)

Then G ∈ G;

(ii) Colimits
If G = colimi∈I Gi is the colimit of the directed system {Gi | i ∈ I} of
groups indexed by the directed set I and each Gi belongs to G, then G
belongs to G;

(iii) Inverse limits
If G = limi∈I Gi is the limit of the inverse system {Gi | i ∈ I} of groups
indexed by the directed set I and each Gi belongs to G, then G belongs to
G;

(iv) Subgroups
If H is isomorphic to a subgroup of the group G with G ∈ G, then H ∈ G;

(v) Quotients with finite kernel
Let 1 → K → G → Q → 1 be an exact sequence of groups. If K is finite
and G belongs to G, then Q belongs to G.

Next we provide some information about the class G. Notice that in the
original definition of G due to Schick [102, Definition 1.12] the resulting class is
slightly smaller: there it is required that the class contains the trivial subgroup
and is closed under operations (i), (ii), (iii) and (iv), but not necessarily under
operation (v). The proof of the next lemma can be found in [80, Lemma 13.11].

Lemma 10.4. (i) A group G belongs to G if and only if every finitely gener-
ated subgroup of G belongs to G;

(ii) The class G is residually closed, i.e. if there is a nested sequence of normal
subgroups G = G0 ⊃ G1 ⊃ G2 ⊃ . . . such that

⋂
i≥0Gi = {1} and each

quotient G/Gi belongs to G, then G belongs to G;

(iii) Any residually amenable and in particular any residually finite group be-
longs to G;

(iv) Suppose that G belongs to G and f : G→ G is an endomorphism. Define
the “mapping torus group” Gf to be the quotient of G ∗ Z obtained by in-
troducing the relations t−1gt = f(g) for g ∈ G and t ∈ Z a fixed generator.
Then Gf belongs to G;

(v) Let {Gj | j ∈ J} be a set of groups with Gj ∈ G. Then the direct sum⊕
j∈J Gj and the direct product

∏
j∈J Gj belong to G.
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The proof of the next result can be found in [80, Theorem 13.3]. It is a
mild generalization of the results of Schick [101] and [102], where the original
proof of the Approximation Conjecture for subgroups of finite index was gener-
alized to the much more general setting above and then applied to the Atiyah
Conjecture. The connection between the Approximation Conjecture and the
Atiyah Conjecture for torsion-free groups comes from the obvious fact that a
convergent series of integers has an integer as limit.

Theorem 10.5 (Status of the Approximation Conjecture). Every group
G which belongs to the class G (see Definition 10.3) satisfies the Approximation
Conjecture 10.1.

11 L2-Torsion

Recall that L2-Betti numbers are modelled on Betti numbers. Analogously
one can generalize the classical notion of Reidemeister torsion to an L2-setting,
which will lead to the notion of L2-torsion. The L2-torsion may be viewed as
a secondary L2-Betti number just as the Reidemeister torsion can be viewed as
a secondary Betti number. Namely, the Reidemeister torsion is only defined if
all the Betti numbers (with coefficients in a suitable representation) vanish, and
similarly the L2-torsion is defined only if the L2-Betti numbers vanish. Both
invariants give valuable information about the spaces in question.

11.1 The Fuglede-Kadison Determinant

In this subsection we briefly explain the notion of the Fuglede-Kadison deter-
minant. We have extended the notion of the (classical) dimension of a finite
dimensional complex vector space to the von Neumann dimension of a finitely
generated projective N (G)-module (and later even to arbitrary N (G)-modules).
Similarly we want to generalize the classical determinant of an endomorphism of
a finite dimensional complex vector space to the Fuglede-Kadison determinant
of an N (G)-endomorphism f : P → P of a finitely generated projective N (G)-
module P and of an N (G)-map f : N (G)m → N (G)n of based finitely generated
N (G)-modules. This is necessary since for the definition of Reidemeister tor-
sion one needs determinants and hence for the definition of L2-torsion one has
to develop an appropriate L2-analogue.

Definition 11.1 (Spectral density function). Let f : N (G)m → N (G)n be
an N (G)-homomorphism. Let ν(f) : l2(G)m → l2(G)n be the associated bounded
G-equivariant operator (see Remark 1.7). Denote by {Ef

∗f
λ | λ ∈ R} the (right-

continuous) family of spectral projections of the positive operator ν(f∗f). Define
the spectral density function of f by

Ff : R→ [0,∞) λ 7→ dimN (G)

(
im(Ef

∗f
λ2 )

)
.
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The spectral density function is monotone and right-continuous. It takes
values in [0,m]. Here and in the sequel |x| denotes the norm of an element x
of a Hilbert space and ‖T‖ the operator norm of a bounded operator T . Since
ν(f) and ν(f∗f) have the same kernel, dimN (G)(ker(f)) = Ff (0).

Example 11.2 (Spectral density function for finite G). Suppose that G
is finite. Then CG = N (G) = l2(G) and ν(f) = f . Let 0 ≤ λ0 < . . . < λr be
the eigenvalues of f∗f and µi be the multiplicity of λi, i.e. the dimension of the
eigenspace of λi. Then the spectral density function is a right continuous step
function which is zero for λ < 0 and has a step of height µi

|G| at each
√
λi.

Example 11.3 (Spectral density function for G = Z
n). Let G = Z

n. We
use the identification N (Zn) = L∞(Tn) of Example 1.4. For f ∈ L∞(Tn) the
spectral density function FMf

of Mf : L2(Tn) → L2(Tn), g 7→ g · f sends λ to
the volume of the set {z ∈ Tn | |f(z)| ≤ λ}.

Definition 11.4. (Fuglede-Kadison determinant of N (G)-maps N (G)m →
N (G)n). Let f : N (G)m → N (G)n be an N (G)-map. Let Ff (λ) be the spectral
density function of Definition 11.1 which is a monotone non-decreasing right-
continuous function. Let dF be the unique measure on the Borel σ-algebra on
R which satisfies dF (]a, b]) = F (b)− F (a) for a < b. Then define the Fuglede-
Kadison determinant

detN (G)(f) ∈ [0,∞)

by the positive real number

detN (G)(f) = exp
(∫ ∞

0+

ln(λ) dF
)

if the Lebesgue integral
∫∞

0+
ln(λ) dF converges to a real number and by 0 oth-

erwise.

Notice that in the definition above we do not require m = n or that f is
injective or f is surjective.

Example 11.5 (Fuglede-Kadison determinant for finite G). To illustrate
this definition, we look at the example where G is finite. We essentially get the
classical determinant detC. Namely, we have computed the spectral density
function for finite G in Example 11.2. Let λ1, λ2, . . ., λr be the non-zero eigen-
values of f∗f with multiplicity µi. Then one obtains, if f∗f is the automorphism
of the orthogonal complement of the kernel of f∗f induced by f∗f ,

detN (G)(f) = exp

(
r∑
i=1

µi
|G|
· ln(

√
λi)

)
=

r∏
i=1

λ
µi

2·|G|
i =

(
detC

(
f∗f

)) 1
2·|G| .

If f : CGm → CGm is an automorphism, we get

detN (G)(f) = |detC(f)|
1
|G| .
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Example 11.6 (Fuglede-Kadison determinant over N (Zn)). Let G = Z
n.

We use the identification N (Zn) = L∞(Tn) of Example 1.4. For f ∈ L∞(Tn)
we conclude from Example 11.3

detN (Zn)

(
Mf : L2(Tn)→ L2(Tn)

)
= exp

(∫
Tn

ln(|f(z)|) · χ{u∈S1|f(u) 6=0} dvolz

)
using the convention exp(−∞) = 0.

Here are some basic properties of this notion. A morphism f : N (G)m →
N (G)n has dense image if the closure im(f) of its image in N (G)n in the
sense of Definition 1.10 is N (G)n. The adjoint A∗ of a matrix A = (ai,j) ∈
M(m,n;N (G)) is the matrix inM(n,m;N (G)) given by (a∗j,i), where ∗ : N (G)→
N (G) sends an operator a to its adjoint a∗. The adjoint f∗ : N (G)n → N (G)m

of f : N (G)m → N (G)n is given by the matrix A∗ if f is given by the matrix
A. The proof of the next result can be found in [80, Theorem 3.14].

Theorem 11.7 (Fuglede-Kadison determinant).

(i) Composition
Let f : N (G)l → N (G)m and g : N (G)m → N (G)n be N (G)-homomor-
phisms such that f has dense image and g is injective. Then

detN (G)(g ◦ f) = detN (G)(g) · detN (G)(f);

(ii) Additivity
Let f1 : N (G)m1 → N (G)n1 , f2 : N (G)m2 → N (G)n2 and f3 : N (G)m3 →
N (G)n3 be N (G)-homomorphisms such that f1 has dense image and f2 is
injective. Then

detN (G)

(
f1 f3

0 f2

)
= detN (G)(f1) · detN (G)(f2);

(iii) Invariance under adjoint map

Let f : N (G)m → N (G)n be an N (G)-homomorphism. Then

detN (G)(f) = detN (G)(f∗);

(iv) Induction
Let i : H → G be an injective group homomorphism and let f : N (H)m →
N (H)n be anN (H)-homomorphism. Then

detN (G)(i∗f) = detN (H)(f).
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Definition 11.8. (Fuglede-Kadison determinant of N (G)-endomorphisms
of finitely generated projective modules). Let f : P → P be an endomor-
phism of a finitely generated projective N (G)-module P . Choose a finitely gener-
ated projective N (G)-module Q and an N (G)-isomorphism u : N (G)n

∼=−→ P⊕Q.
Define the Fuglede-Kadison determinant

detN (G)(f) ∈ [0,∞)

by the Fuglede-Kadison determinant in the sense of Definition 11.4

detN (G)

(
u−1 ◦ (f ⊕ idQ) ◦ u

)
.

This definition is independent of the choices of Q and u by Theorem 11.7.
Notice that in Definition 11.8 no N (G)-basis appear but that it works only
for endomorphisms, whereas in Definition 11.4 we work with finitely generated
free based modules but do not require that the source and target of f are
isomorphic. There is an obvious analogue of Theorem 11.7 for the Fuglede-
Kadison determinant of endomorphisms of finitely generated projective N (G)-
modules.

11.2 The Determinant Conjecture

It will be important for applications to geometry to study the Fuglede-Kadison
determinant of N (G)-maps f : N (G)m → N (G)n which come by induction from
ZG-maps or CG-maps. The following example is taken from [80, Example 3.22].

Example 11.9 (Fuglede-Kadison determinant of maps coming from
elements in C[Z]). Consider a non-trivial element p ∈ C[Z] = C[z, z−1]. We
can write

p(z) = C · zn ·
l∏

k=1

(z − ak)

for non-zero complex numbers C, a1, . . . , al and non-negative integers n, l. Let
rp : N (Z)→ N (Z) be the N (Z)-map given by right multiplication with p. Then

detN (Z)(rp) = |C| ·
∏

1≤k≤l,
|ak|>1

|ak|.

Definition 11.10 (Determinant class). A group G is of det ≥ 1-class if for
each A ∈ M(m,n;ZG) the Fuglede-Kadison determinant (see Definition 11.4)
of the morphism rA : N (G)m → N (G)n given by right multiplication with A
satisfies

detN (G)(rA) ≥ 1.

Conjecture 11.11 (Determinant Conjecture). Every group G is of det ≥
1-class.
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The proof of the next result can be found in [80, Theorem 13.3]. It is a mild
generalization of the results of Schick [101] and [102].

Theorem 11.12 (Status of the Determinant Conjecture). Every group
G which belongs to the class G (see Definition 10.3) satisfies the Determinant
Conjecture 11.11.

One easily checks that the Fuglede-Kadison determinant defines a homomor-
phism of abelian groups

ΦG : Wh(G) → (0,∞) = {r ∈ R | r > 0} (11.13)

with respect to the group structure given by multiplication of positive real num-
bers on the target. We mention the following conjecture.

Conjecture 11.14 (Triviality of the map induced by the Fuglede-Kadison
determinant on Wh(G)). The map ΦG : Wh(G) → (0,∞) is trivial.

Lemma 11.15. (i) If G satisfies the Determinant Conjecture 11.11, then G
satisfies Conjecture 11.14;

(ii) The Approximation Conjecture 10.1 for G and the inverse system {Gi |
i ∈ I} is true if each group Gi is of det ≥ 1-class.

Proof. See [80, Theorem 13.3 (1) and Lemma 13.6].

11.3 Definition and Basic Properties of L2-Torsion

We will consider L2-torsion only for universal coverings and in the L2-acyclic
case. A more general setting is treated in [80, Section 3.4].

Definition 11.16 (det-L2-acyclic). Let X be a finite connected CW -complex
with fundamental group π = π1(X). Let CN∗ (X̃) be the N (π)-chain complex
N (G) ⊗ZG C∗(X̃) with p-th differential cNp = idN (G)⊗Zcp. We say that X is
det-L2-acyclic if for each p we get for the Fuglede-Kadison determinant of cNp
and for the p-th L2-Betti number of X̃

detN (π)

(
cNp
)

> 0;

b(2)
p (X̃) = 0.

If X is det-L2-acyclic, we define the L2-torsion of X̃ by

ρ(2)(X̃) = −
∑
p≥0

(−1)p · ln
(
detN (G)

(
cNp
))

∈ R.

If X is a finite CW -complex, we call it det-L2-acyclic if each component C
is det-L2-acyclic. In this case we define

ρ(2)(X̃) :=
∑

C∈π0(X)

ρ(2)(C̃).
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The condition that X̃ is L2-acyclic is not needed for the definition of L2-
torsion, but is necessary to ensure the basic and useful properties which we will
discuss below.

Remark 11.17 (L2-torsion in terms of the Laplacian). One can express
the L2-torsion also in terms of the Laplacian which is closer to the notions
of analytic torsion and analytic L2-torsion. After a choice of cellular Zπ-
basis, every N (π)-chain module CNp (X̃) looks like N (π)np for appropriate non-
negative integers np. Hence we can assign to cNp : CNp (X̃)→ CNp−1(X̃) its adjoint(
cNp
)∗ : CNp−1(X̃) → CNp (X̃) which is given by the matrix (a∗j,i) if c(2)

p is given
by the matrix (ai,j). Define the p-th Laplace homomorphism ∆p : CNp (X̃) →
CNp (X̃) to be the N (π)-homomorphism

(
cNp
)∗ ◦ cNp + cNp+1 ◦

(
cNp+1

)∗. Then X̃ is
det-L2-acyclic if and only if ∆p is injective and has dense image, i.e. the closure
of its image in CNp (X̃) is CNp (X̃), and detN (π)(∆p) > 0. In this case we get

ρ(2)(X̃) = − 1
2
·
∑
p≥0

(−1)p · p · ln
(
detN (π)(∆p)

)
.

This follows from [80, Lemma 3.30].

The next theorem presents the basic properties of ρ(2)(X̃) and is proved in
[80, Theorem 3.96]. Notice the formal analogy between the behaviour of ρ(2)(X̃)
and the classical Euler characteristic χ(X).

Theorem 11.18. (Cellular L2-torsion for universal coverings).

(i) Homotopy invariance
Let f : X → Y be a homotopy equivalence of finite CW -complexes. Let
τ(f) ∈Wh(π1(Y )) be its Whitehead torsion (see [17]). Suppose that X̃ or
Ỹ is det-L2-acyclic. Then both X̃ and Ỹ are det-L2-acyclic and

ρ(2)(Ỹ )− ρ(2)(X̃) = Φπ1(Y )(τ(f)),

where Φπ1(Y ) : Wh(π1(Y )) =
⊕

C∈π0(Y ) Wh(π1(C)) → R is the sum of
the maps Φπ1(C) of (11.13);

(ii) Sum formula
Consider the pushout of finite CW -complexes such that j1 is an inclusion
of CW -complexes, j2 is cellular and X inherits its CW -complex structure
from X0, X1 and X2

X0
j1−−−−→ X1

j2

y yi1
X2 −−−−→

i2
X
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Assume X̃0, X̃1 and X̃2 are det-L2-acyclic and that for k = 0, 1, 2 the
map π1(ik) : π1(Xk)→ π1(X) induced by the obvious map ik : Xk → X is
injective for all base points in Xk.

Then X̃ is det-L2-acyclic and we get

ρ(2)(X̃) = ρ(2)(X̃1) + ρ(2)(X̃2)− ρ(2)(X̃0);

(iii) Poincaré duality
Let M be a closed manifold of even dimension. Equip it with some CW -
complex structure. Suppose that M̃ is det-L2-acyclic. Then

ρ(2)(M̃) = 0;

(iv) Product formula

Let X and Y be finite CW -complexes. Suppose that X̃ is det-L2-acyclic.
Then X̃ × Y is det-L2-acyclic and

ρ(2)(X̃ × Y ) = χ(Y ) · ρ(2)(X̃);

(v) Multiplicativity
Let X → Y be a finite covering of finite CW -complexes with d sheets.
Then X̃ is det-L2-acyclic if and only if Ỹ is det-L2-acyclic and in this
case

ρ(2)(X̃) = d · ρ(2)(Ỹ ).

The next three results are taken from [80, Corollary 3.103, Theorem 3.105
and Theorem 3.111]. There is also a more general version of Theorem 11.19 for
fibrations (see [80, Theorem 3.100]).

Theorem 11.19 (L2-torsion and fiber bundles). Suppose that F → E
p−→

B is a (locally trivial) fiber bundle of finite CW -complexes with B connected.
Suppose that for one (and hence all) b ∈ B the inclusion of the fiber Fb into E
induces an injection on the fundamental groups for all base points in Fb and F̃b
is det-L2-acyclic. Then Ẽ is det-L2-acyclic and

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ ).

Theorem 11.20 (L2-torsion and S1-actions). Let X be a connected S1-
CW -complex of finite type. Suppose that for one orbit S1/H (and hence for
all orbits) the inclusion into X induces a map on π1 with infinite image. (In
particular the S1-action has no fixed points.) Then X̃ is det-L2-acyclic and

ρ(2)(X̃) = 0.
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Theorem 11.21 (L2-torsion on aspherical closed S1-manifolds). Let M
be an aspherical closed manifold with non-trivial S1-action. Then the action
has no fixed points and the inclusion of any orbit into M induces an injection
on the fundamental groups. Moreover, M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.

The assertion for the L2-torsion in the theorem below is the main result of
[106] (see also [107]). Its proof is based on localization techniques.

Theorem 11.22 (L2-torsion and aspherical CW -complexes). Let X be
an aspherical finite CW -complex. Suppose that its fundamental group π1(X)
contains an elementary amenable infinite normal subgroup H and π1(X) is of
det ≥ 1-class. Then X̃ is det-L2-acyclic and

ρ(2)(X̃) = 0.

Remark 11.23 (Homotopy invariance of L2-torsion). Notice that Con-
jecture 11.14 implies because of Theorem 11.18 (i) the homotopy invariance
of the L2-torsion. i.e. for two homotopy equivalent det-L2-acyclic finite CW -
complexes X and Y we have ρ(2)(X̃) = ρ(2)(Ỹ ).

11.4 Computations of L2-Torsion

Remark 11.24 (Analytic L2-torsion). It is important to know for the fol-
lowing specific calculations that there is an analytic version of L2-torsion in
terms of the heat kernel due to Lott [66] and Mathai [86] and that a deep result
of Burghelea, Friedlander, Kappeler and McDonald [9] says that the analytic
one agrees with the one presented here.

The following result is due to Hess and Schick [51].

Theorem 11.25 (Analytic L2-torsion of hyperbolic manifolds).
Let d = 2n+1 be an odd integer. To d one can associate an explicit real number
Cd > 0 with the following property:

For every closed hyperbolic d-dimensional manifold M we have

ρ(2)(M̃) = (−1)n · Cd · vol(M),

where vol(M) is the volume of M .

The existence of a real number Cd with ρ(2)(M̃) = (−1)n · Cd · vol(M)
follows from the version of the Proportionality Principle for L2-Betti numbers
(see Theorem 3.7) for L2-torsion (see [80, Theorem 3.183]). The point is that
this number Cd is given explicitly. For instance C3 = 1

6π and C5 = 31
45π2 . For

each odd d there exists a rational number rd such that Cd = π−n · rd holds.
The proof of this result is based on calculations involving the heat kernel on
hyperbolic space.
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Remark 11.26 (L2-torsion of symmetric spaces of non-compact type).
More generally, the L2-torsion ρ(2)(M̃) for an aspherical closed manifold M

whose universal covering M̃ is a symmetric space is computed by Olbricht [93].

The following result is proved in [84, Theorem 0.6].

Theorem 11.27 (L2-torsion of 3-manifolds). Let M be a compact con-
nected orientable prime 3-manifold with infinite fundamental group such that
the boundary of M is empty or a disjoint union of incompressible tori. Suppose
that M satisfies Thurston’s Geometrization Conjecture, i.e. there is a geometric
toral splitting along disjoint incompressible 2-sided tori in M whose pieces are
Seifert manifolds or hyperbolic manifolds. Let M1, M2, . . ., Mr be the hyperbolic
pieces. They all have finite volume [90, Theorem B on page 52]. Then M̃ is
det-L2-acyclic and

ρ(2)(M̃) = − 1
6π
·
r∑
i=1

vol(Mi).

In particular, ρ(2)(M̃) is 0 if and only if there are no hyperbolic pieces.

11.5 Some Open Conjectures about L2-Torsion

All the computations and results above give evidence and are compatible with
the following conjectures about L2-torsion taken from [80, Theorem 11.3].

Conjecture 11.28 (L2-torsion for aspherical manifolds). If M is an as-
pherical closed manifold of odd dimension, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) ≥ 0.

If M is a closed connected Riemannian manifold of odd dimension with negative
sectional curvature, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) > 0.

If M is an aspherical closed manifold whose fundamental group contains an
amenable infinite normal subgroup, then M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.

Consider a closed orientable manifold M of dimension n. Let [M ;R] be the
image of the fundamental class [M ] ∈ Hsing

n (M ;Z) under the change of coef-
ficient map Hsing

n (M ;Z) → Hsing
n (M ;R). Define the L1-norm on Csing

n (M ;R)
by sending

∑s
i=1 ri · [σi : ∆n → M ] to

∑s
i=1 |ri|. It induces a seminorm on

Hn(M ;R). Define the simplicial volume ||M || ∈ R to be the seminorm of [M ;R].
More information about the simplicial volume can be found for instance in [42],
[47] and [57], and in [80, Chapter 14], where also the following conjecture is
discussed.
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Conjecture 11.29 (Simplicial volume and L2-invariants). Let M be an
aspherical closed orientable manifold of dimension ≥ 1. Suppose that its sim-
plicial volume ||M || vanishes. Then M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.

The simplicial volume is a special invariant concerning bounded cohomology.
The point of this conjecture is that it suggests a connection between bounded
cohomology and L2-invariants such as L2-cohomology and L2-torsion.

We have already seen that L2-Betti numbers are up to scaling invariant
under measure equivalence. The next conjecture is interesting because it would
give a sharper invariant in case all the L2-Betti numbers vanish, namely the
vanishing of the L2-torsion.

Conjecture 11.30 (Measure equivalence and L2-torsion). Let Gi for i =
0, 1 be a group such that there is a finite CW -model for BGi and EGi is det-
L2-acyclic. Suppose that G0 and G1 are measure equivalent. Then

ρ(2)(EG0;N (G0)) = 0 ⇔ ρ(2)(EG1;N (G1)) = 0.

11.6 L2-Torsion of Group Automorphisms

In this section we explain that for a group automorphism f : G → G the L2-
torsion applied to the (G of Z)-CW -complex E(G of Z) gives an interesting
new invariant, provided that G is of det ≥ 1-class and satisfies certain finiteness
assumptions. It seems to be worthwhile to investigate it further. The following
definition and theorem are taken from [80, Definition 7.26 and Theorem 7.27].

Definition 11.31 (L2-torsion of group automorphisms). Let f : G → G
be a group automorphism. Suppose that there is a finite CW -model for BG and
G is of det ≥ 1-class. Define the L2-torsion of f by

ρ(2)(f : G→ G) := ρ(2)( ˜B(Gof Z)) ∈ R.

Next we present the basic properties of this invariant. Notice that its be-
haviour is similar to the Euler characteristic χ(G) := χ(BG).

Theorem 11.32. Suppose that all groups appearing below have finite CW -
models for their classifying spaces and are of det ≥ 1-class.

(i) Suppose that G is the amalgamated product G1∗G0G2 for subgroups Gi ⊆ G
and the automorphism f : G→ G is the amalgamated product f1 ∗f0 f2 for
automorphisms fi : Gi → Gi. Then

ρ(2)(f) = ρ(2)(f1) + ρ(2)(f2)− ρ(2)(f0);

(ii) Let f : G→ H and g : H → G be isomorphisms of groups. Then

ρ(2)(f ◦ g) = ρ(2)(g ◦ f).

In particular ρ(2)(f) is invariant under conjugation with automorphisms;
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(iii) Suppose that the following diagram of groups

1 −−−−→ G1 −−−−→ G2 −−−−→ G3 −−−−→ 1

f1

y f2

y id

y
1 −−−−→ G1 −−−−→ G2 −−−−→ G3 −−−−→ 1

commutes, has exact rows and its vertical arrows are automorphisms.
Then

ρ(2)(f2) = χ(BG3) · ρ(2)(f1);

(iv) Let f : G→ G be an automorphism of a group. Then for all integers n ≥ 1

ρ(2)(fn) = n · ρ(2)(f);

(v) Suppose that G contains a subgroup G0 of finite index [G : G0]. Let
f : G→ G be an automorphism with f(G0) = G0. Then

ρ(2)(f) =
1

[G : G0]
· ρ(2)(f |G0);

(vi) We have ρ(2)(f) = 0 if G satisfies one of the following conditions:

(a) All the L2-Betti numbers of G vanish;
(b) G contains an amenable infinite normal subgroup.

Example 11.33 (Automorphisms of surfaces). Using Theorem 11.27 one
can compute the L2-torsion of the automorphism π1(f) for an automorphism
f : S → S of a compact connected orientable surface, possibly with boundary.
Suppose that f is irreducible. Then the following statements are equivalent: i.)
f is pseudo-Anosov, ii.) The mapping torus Tf has a hyperbolic structure and
iii.) ρ(2)(π1(f)) < 0. Moreover, f is periodic if and only if ρ(2)(π1(f)) = 0. (see
[80, Subsection 7.4.2]).

The L2-torsion of a Dehn twist is always zero since the associated map-
ping torus contains no hyperbolic pieces in his Jaco-Shalen-Johannson-Thurston
splitting.

Remark 11.34 (Weaker finiteness conditions). The definition of the L2-
torsion of a group automorphism above still makes sends and has still most of
the properties above, if one weakens the condition that there is a finite model
for BG to the assumption that there is a finite model for the classifying space
of proper G-actions EG = EFIN (G). This is explained in [80, Subsection 7.4.4].

12 Novikov-Shubin Invariants

In this section we briefly discuss Novikov-Shubin invariants. They were origi-
nally defined in terms of heat kernels. We will focus on their algebraic definition
and aspects.
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12.1 Definition of Novikov-Shubin Invariants

Let M be a finitely presented N (G)-module. Choose some exact sequence

N (G)m
f−→ N (G)n → M → 0. Let Ff be the spectral density function of f

(see Definition 11.1). Recall that Ff is a monotone increasing right continuous
function [0,∞)→ [0,∞). Define the Novikov-Shubin invariant of M by

α(M) = lim inf
λ→0+

ln(Ff (λ)− Ff (0))
ln(λ)

∈ [0,∞],

provided that Ff (λ) > Ff (0) holds for all λ > 0. Otherwise, one puts formally

α(M) = ∞+.

It measures how fast Ff (λ) approaches Ff (0) for λ → 0+. For instance, if
Ff (λ) = λα for λ > 0, then α(M) = α. The proof that α(M) is independent of
the choice of f is analogous to the proof of [80, Theorem 2.55 (1)].

Definition 12.1 (Novikov-Shubin invariants). Let X be a G-CW -complex
of finite type. Define its p-th Novikov-Shubin invariant by

αp(X;N (G)) = α
(
H

(2)
p−1(X;N (G))

)
∈ [0,∞]q {∞+}.

If the group G is clear from the context, we abbreviate αp(X) = αp(X;N (G)).

Notice that H(2)
p−1(X;N (G)) is finitely presented since N (G) is semiheredi-

tary (see Theorem 1.6) and C
(2)
k (X) is a finitely generated free N (G)-module

for all k ∈ Z because X is by assumption of finite type.

Remark 12.2 (Analytic definition of Novikov-Shubin invariants). Novi-
kov-Shubin invariants were originally analytically defined by Novikov and Shu-
bin (see [91], [92]). For a cocompact smooth G-manifold M without boundary
and with G-invariant Riemannian metric one can assign to its p-th Laplace
operator ∆p a density function F∆p(λ) = trN (G)(Eλ) for {Eλ | λ ∈ [0,∞)}
the spectral family associated to the essentially selfadjoint operator ∆p. Define
α∆
p (M ;N (G)) ∈ [0,∞] q {∞+} by the same expression as appearing in the

definition of α(M) above, only replace Ff by F∆p
. Then α∆

p (M) agrees with
1
2 ·min{αp(K), αp+1(K)} for any equivariant triangulation K of M . For a proof
of this equality see [31] or [80, Section 2.4]. One can define the analytic Novikov-
Shubin invariant α∆

p (M ;N (G)) also in terms of heat kernels. It measures how
fast the function

∫
F trC(e−t∆p(x, x)) dvolx approaches for t→∞ its limit

b(2)
p (M) = lim

t→∞

∫
F

trC(e−t∆p(x, x)) dvolx.

The “thinner” the spectrum of ∆p is at zero, the larger is α∆
p (M ;N (G)).

In view of this original analytic definition the result due to Gromov and Shu-
bin [48] that the Novikov-Shubin invariants are homotopy invariants, is rather
surprising.
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Remark 12.3 (Analogy to finitely generated Z-modules). Recall Slo-
gan 1.16 that the group von Neumann algebra N (G) behaves like the ring of
integers Z, provided one ignores the properties integral domain and Noethe-
rian. Given a finitely generated abelian group M , the Z-module M/ tors(M) is
finitely generated free, there is a Z-isomorphism M ∼= M/ tors(M) ⊕ tors(M)
and the rank as abelian group of M is dimQ(Q ⊗Z M) and of tors(M) is 0.
In analogy, given a finitely generated N (G)-module M , then PM := M/TM
is a finitely generated projectiveN (G)-module, there is an N (G)-isomorphism
M ∼= PM ⊕ tors(M) and we get dimN (G)(M) = dimU(G)(U(G)⊗N (G) M) and
dimN (G)(TM) = 0. Define the so called capacity c(M) ∈ [0,∞] ∪ {0−} of a
finitely presented N (G)-module M by

c(M) =


1

α(M) if α(M) ∈ (0,∞);
∞ if α(M) = 0;
0 if α(M) =∞;
0− if α(M) =∞+.

Then the capacity c(M) contains the same information as α(M) and corresponds
under the dictionary between Z and N (G) to the order of the finite group
tors(M). Notice for a finitely presented N (G)-module M that M = 0 is true if
and only if both dimN (G)(M) = 0 and c(M) = 0− hold. The capacity is at least
subadditive, i.e. for an exact sequence 1 → M0 → M1 → M2 → 0 of finitely
presented N (G)-modules we have c(M1) ≤ c(M0) + c(M2) (with the obvious
interpretation of + and ≤). In particular we get c(M) ≤ c(N) for an inclusion
of finitely presented N (G)-modules M ⊆ N .

Remark 12.4 (Extension to arbitrary N (G)-modules and G-spaces).
The algebraic approach presented above has been independently developed in
[33] and [74]. The notion of capacity has been extended by Lück-Reich-Schick
[82] to so called cofinal-measurable N (G)-modules, i.e. N (G)-modules such
that each finitely generated N (G)-submodule is a quotient of a finitely pre-
sented N (G)-module with trivial von Neumann dimension. This allows to define
Novikov-Shubin invariants for arbitrary G-spaces and also for arbitrary groups
G.

12.2 Basic Properties of Novikov-Shubin Invariants

We briefly list some properties of Novikov-Shubin invariants. The proof of the
following theorem can be found in [80, Theorem 2.55] and [80, Lemma 13.45].

Theorem 12.5 (Novikov-Shubin invariants).

(i) Homotopy invariance
Let f : X → Y be a G-map of free G-CW -complexes of finite type. Suppose
that the map Hp(f ;C) : Hp(X;C) → Hp(Y ;C) induced on homology with
complex coefficients is an isomorphism for p ≤ d− 1. Then we get

αp(X;N (G)) = αp(Y ;N (G)) for p ≤ d.
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In particular we get αp(X;N (G)) = αp(Y ;N (G)) for all p ≥ 0 if f is a
weak homotopy equivalence;

(ii) Poincaré duality
Let M be a cocompact free proper G-manifold of dimension n which is
orientable. Then αp(M ;N (G)) = αn+1−p(M,∂M ;N (G)) for p ≥ 1;

(iii) First Novikov-Shubin invariant
Let X be a connected free G-CW -complex of finite type. Then G is finitely
generated and

(a) α1(X) is finite if and only if G is infinite and virtually nilpotent. In
this case α1(X) is the growth rate of G;

(b) α1(X) is ∞+ if and only if G is finite or non-amenable;

(c) α1(X) is ∞ if and only if G is amenable and not virtually nilpotent;

(iv) Restriction to subgroups of finite index
Let X be a free G-CW -complex of finite type and H ⊆ G a subgroup of
finite index. Then αp(X;N (G)) = αp(resHG X;N (H)) holds for p ≥ 0;

(v) Extensions with finite kernel
Let 1 → H → G → Q → 1 be an extension of groups such that H
is finite. Let X be a free Q-CW -complex of finite type. Then we get
αp(p∗X;N (G)) = αp(X;N (Q)) for all p ≥ 1;

(vi) Induction
Let H be a subgroup of G and let X be a free H-CW -complex of finite
type. Then αp(G×H X;N (G)) = αp(X;N (H)) holds for all p ≥ 1.

A product formula and a formula for connected sums can also be found in
[80, Theorem 2.55]. If X is a finite G-CW -complex such that b(2)

p (X;N (G)) = 0
for p ≥ 0 and αp(X;N (G)) > 0 for p ≥ 1, then X is det-L2-acyclic [80, Theorem
3.93 (7)].

12.3 Computations of Novikov-Shubin Invariants

Example 12.6 (Novikov-Shubin invariants of T̃n). The product formula
can be used to show αp(T̃n) = n if 1 ≤ p ≤ n, and αp(T̃n) =∞+ otherwise (see
[80, Example 2.59].)

Example 12.7 (Novikov-Shubin invariants for finite groups). If G is
finite, then αp(X;N (G)) = ∞+ for each p ≥ 1 and G-CW -complex X of
finite type. This follows from Example 11.2. This shows that the Novikov-
Shubin invariants are interesting only for infinite groups G and have no classical
analogue in contrast to L2-Betti numbers and L2-torsion.
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Example 12.8 (Novikov-Shubin invariants for G = Z). Let X be a free
Z-CW -complex of finite type. Since C[Z] is a principal ideal domain, we get
C[Z]-isomorphisms

Hp(X;C) ∼= C[Z]np ⊕

 sp⊕
ip=1

C[Z]/((z − ap,ip)rp,ip )


for ap,ip ∈ C and np, sp, rp,ip ∈ Z with np, sp ≥ 0 and rp,ip ≥ 1, where z is a
fixed generator of Z. Then we get from [80, Lemma 2.58]

b(2)
p (X;N (Z)) = np.

If sp ≥ 1 and {ip = 1, 2 . . . , sp, |ap,ip | = 1} 6= ∅, then

αp+1(X;N (Z)) = min
{

1
rp,ip

| ip = 1, 2 . . . , sp, |ap,ip | = 1
}
,

and otherwise

αp+1(X;N (Z)) = ∞+.

Remark 12.9 (Novikov-Shubin invariants and S1-actions). Under the
conditions of Theorem 3.8 and of Theorem 3.9 one can show αp(X̃) ≥ 1 for all
p ≥ 1 (see [80, Theorem 2.61 and Theorem 2.63]).

Remark 12.10 (Novikov-Shubin invariants of symmetric spaces of
non-compact type). The Novikov-Shubin invariants of symmetric spaces of
non-compact type with cocompact free G-action are computed by Olbricht [93,
Theorem 1.1], the result is also stated in [80, Section 5.3].

Remark 12.11 (Novikov-Shubin invariants of universal coverings of
3-manifolds). Partial results about the computation of the Novikov-Shubin
invariants of universal coverings of compact orientable 3-manifolds can be found
in [69] and [80, Theorem 4.2].

12.4 Open Conjectures about Novikov-Shubin invariants

The following conjecture is taken from [69, Conjecture 7.1 on page 56].

Conjecture 12.12. (Positivity and rationality of Novikov-Shubin in-
variants). Let G be a group. Then for any free G-CW -complex X of finite
type its Novikov-Shubin invariants αp(X) are positive rational numbers unless
they are ∞ or ∞+.
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This conjecture is equivalent to the statement that for every finitely pre-
sented ZG-module M the Novikov-Shubin invariant of N (G)⊗ZGM is a positive
rational number, ∞ or ∞+.

Here is some evidence for Conjecture 12.12. Unfortunately, all the evidence
comes from computations, no convincing conceptual reason is known. Conjec-
ture 12.12 is true for G = Z by the explicit computation appearing in Exam-
ple 12.8. Conjecture 12.12 is true for virtually abelian G by [66, Proposition
39 on page 494]. Conjecture 12.12 is also true for a free group G. Details of
the proof appear in the Ph.D. thesis of Roman Sauer [100] following ideas of
Voiculescu. The essential ingredients are non-commutative power series and the
question whether they are algebraic or rational. All the computations mentioned
above are compatible and give evidence for Conjecture 12.12.

Conjecture 12.13 (Zero-in-the-spectrum Conjecture). Let G be a group
such that BG has a closed manifold as model. Then there is p ≥ 0 with
HG
p (EG;N (G)) 6= 0.

Remark 12.14 (Original zero-in-the-spectrum Conjecture). The origi-
nal zero-in-the-spectrum Conjecture, which appears for the first time in Gro-
mov’s article [43, page 120], says the following: Let M̃ be a complete Rieman-
nian manifold. Suppose that M̃ is the universal covering of an aspherical closed
Riemannian manifold M (with the Riemannian metric coming from M). Then
for some p ≥ 0 zero is in the spectrum of the minimal closure

(∆p)min : dom ((∆p)min) ⊆ L2Ωp(M̃)→ L2Ωp(M̃)

of the Laplacian acting on smooth p-forms on M̃ .
It follows from [80, Lemma 12.3] that this formulation is equivalent to the

homological algebraic formulation appearing in Conjecture 12.13.

Remark 12.15 (Status of the zero-in-the-spectrum Conjecture). The
zero-in-the-spectrum Conjecture is true for G if there is a closed manifold model
for BG which is Kähler hyperbolic [45], or whose universal covering is hyper-
Euclidean [43] or is uniformly contractible with finite asymptotic dimension
[110]. The zero-in-the-spectrum Conjecture is true for G if the strong Novikov
Conjecture holds for G [67]. More information about zero-in-the-spectrum Con-
jecture can be found for instance in [67] and [80, Section 12].

Remark 12.16 (Variations of the zero-in-the-spectrum Conjecture).
One may ask whether one can weaken the condition in Conjecture 12.13 that BG
has a closed manifold model to the condition that there is a finite CW -complex
model for BG. This would rule out Poincaré duality from the picture. Or one
could only require that BG is of finite type. Without any finiteness conditions
on G Conjecture 12.13 is not true in general. For instance HG

p (EG;N (G)) = 0
holds for all p ≥ 0 if G is

∏∞
i=1 Z ∗ Z.
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The condition aspherical cannot be dropped. Farber and Weinberger [35]
proved the existence of a closed non-aspherical manifold M with fundamental
group π a product of three copies of Z∗Z such that Hπ

p (M̃ ;N (π)) vanishes for all
p ≥ 0. Later Higson-Roe-Schick [52] proved that one can find for every finitely
presented group π, for which Hπ

p (Eπ;N (π)) = 0 holds for p = 0, 1, 2, a closed
manifold M with π as fundamental group such that Hπ

p (M̃ ;N (π)) vanishes for
all p ≥ 0.

Remark 12.17 (Novikov-Shubin invariants and quasi-isometry). Since
α1(Zn) = n for n ≥ 1, the Novikov-Shubin invariants are not invariant under
measure equivalence. It is not known whether they are invariant under quasi-
isometry. At least it is known that two quasi-isometric amenable groups G1 and
G2 which possess finite models for BG1 and BG2 have the same Novikov-Shubin
invariants [100]. Compare also Theorem 8.2, Remark 8.5 and Conjecture 11.30.

13 A Combinatorial Approach to L2-Invariants

In this section we want to give a more combinatorial approach to the L2-
invariants such as L2-Betti numbers, Novikov-Shubin invariants and L2-torsion.
The point is that it is in general very hard to compute the spectral density func-
tion of an N (G)-map f : N (G)m → N (G)n. However in the geometric situation
these morphisms are induced by matrices over the integral group ring ZG. We
want to exploit this information to get an algorithm which produces a sequence
of rational numbers converging to the L2-Betti number or the L2-torsion in
question.

Let A ∈ M(m,n;CG) be an (m,n)-matrix over CG. It induces by right
multiplication an N (G)-homomorphism rA : N (G)m → N (G)n. We define an
involution of rings on CG by sending

∑
g∈G λg · g to

∑
g∈G λg · g−1, where λg is

the complex conjugate of λg. Denote by A∗ the (m,n)-matrix obtained from A
by transposing and applying the involution above to each entry. Define the CG-
trace of an element u =

∑
g∈G λg ·g ∈ CG by the complex number trCG(u) := λe

for e the unit element in G. This extends to a trace of square (n, n)-matrices A
over CG by

trCG(A) :=
n∑
i=1

trCG(ai,i) ∈ C. (13.1)

We get directly from the definitions that the CG-trace trCG(u) for u ∈ CG
agrees with the von Neumann trace trN (G)(u) introduced in Definition 1.8.

Let A ∈M(m,n;CG) be an (m,n)-matrix over CG. In the sequel let K be
any positive real number satisfying K ≥ ||r(2)

A ||, where ||r(2)
A || is the operator

norm of the bounded G-equivariant operator r(2)
A : l2(G)m → l2(G)n induced

by right multiplication with A. For u =
∑
g∈G λg · g ∈ CG define ||u||1 by
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∑
g∈G |λg|. Then a possible choice for K is

K =
√

(2n− 1)m ·max {||ai,j ||1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

Definition 13.2. The characteristic sequence of a matrix A ∈ M(m,n;CG)
and a non-negative real number K satisfying K ≥ ||r(2)

A || is the sequence of real
numbers given by

c(A,K)p := trCG
((

1−K−2 ·AA∗
)p)

.

We have defined dimN (G)(ker(rA)) in Definition 1.12 and detN (G)(rA) in
Definition 11.4. The proof of the following result can be found in [73] or [80,
Theorem 3.172].

Theorem 13.3. (Combinatorial computation of L2-invariants).
Let A ∈ M(m,n;CG) be an (m,n)-matrix over CG. Let K be a positive real

number satisfying K ≥ ||r(2)
A ||. Then:

(i) Monotony
The characteristic sequence (c(A,K)p)p≥1 is a monotone decreasing se-
quence of non-negative real numbers;

(ii) Dimension of the kernel
We have

dimN (G)(ker(rA)) = lim
p→∞

c(A,K)p;

(iii) Novikov-Shubin invariants of the cokernel
Define β(A) ∈ [0,∞] by

β(A) := sup
{
β ∈ [0,∞)

∣∣∣∣ lim
p→∞

pβ ·
(
c(A,K)p − dimN (G)(ker(rA))

)
= 0
}
.

If α(coker(rA)) < ∞, then α(coker(rA)) ≤ β(A) and if α(coker(rA)) ∈
{∞,∞+}, then β(A) =∞;

(iv) Fuglede-Kadison determinant
The sum of positive real numbers

∞∑
p=1

1
p
·
(
c(A,K)p − dimN (G)(ker(rA))

)
converges if and only if rA is of determinant class and in this case

ln(det(rA)) = (n− dimN (G)(ker(rA))) · ln(K)

− 1
2
·
∞∑
p=1

1
p
·
(
c(A,K)p − dimN (G)(ker(rA))

)
;
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(v) Speed of convergence
Suppose α(coker(rA)) > 0. Then rA is of determinant class. Given a real
number α satisfying 0 < α < α(coker(rA)), there is a real number C such
that we have for all L ≥ 1

0 ≤ c(A,K)L − dimN (G)(ker(rA)) ≤ C

Lα

and

0 ≤ − ln(det(rA)) + (n− dimN (G)(ker(rA))) · ln(K)

−1
2
·
L∑
p=1

1
p
·
(
c(A,K)p − dimN (G)(ker(rA))

)
≤ C

Lα
.

Remark 13.4 (Vanishing of L2-Betti numbers and the Atiyah Conjec-
ture). Suppose that the Atiyah Conjecture 4.1 is satisfied for (G, d,C). If we
want to show the vanishing of dimN (G)(ker(rA)), it suffices to show that for
some p ≥ 0 we have c(A,K)p < 1

d . It is possible that a computer program spits
out such a value after a reasonable amount of calculation time.

14 Miscellaneous

The analytic aspects of L2-invariants are also very interesting. We have already
mentioned that L2-Betti numbers were originally defined by Atiyah [2] in context
with his L2-index theorem. Other L2-invariants are the L2-Eta-invariant and
the L2-Rho-invariant (see Cheeger-Gromov [13], [14]). The L2-Eta-invariant ap-
pears in the L2-index theorem for manifolds with boundary due to Ramachan-
dran [97]. These index theorems have generalizations to a C∗-setting due to
Mǐsčenko-Fomenko [89]. There is also an L2-version of the signature. It plays
an important role in the work of Cochran, Orr and Teichner [16] who show
that there are non-slice knots in 3-space whose Casson-Gordon invariants are
all trivial. Chang and Weinberger [11] show using L2-invariants that for a closed
oriented smooth manifold M of dimension 4k + 3 for k ≥ 1 whose fundamental
group has torsion there are infinitely many smooth manifolds which are homo-
topy equivalent to M (and even simply and tangentially homotopy equivalent
to M) but not homeomorphic to M. The L2-cohomology has also been inves-
tigated for complete non-necessarily compact Riemannian manifolds without a
group action. For instance algebraic and arithmetic varieties have been studied.
In particular, the Cheeger-Goresky-MacPherson Conjecture [12] and the Zucker
Conjecture [111] have created a lot of activity. They link the L2-cohomology of
the regular part with the intersection homology of an algebraic variety.

Finally we mention other survey articles which deal with L2-invariants: [30],
[39], [46, Section 8], [67], [75], [78], [79], [87] and [96].
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