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Abstract. The verification of the isomorphism conjectures of Baum and Connes and Farrell and
Jones for certain classes of groups is used to compute the algebraicK- andL-theory and the topolo-
gicalK-theory of cocompact planar groups (= cocompact N.E.C-groups) and of groupsG appearing
in an extension 1→ Zn → G → π → 1 whereπ is a finite group and the conjugationπ-
action onZn is free outside 0∈ Zn. These computations apply, for instance, to two-dimensional
crystallographic groups and cocompact Fuchsian groups.
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0. Introduction

The goal of this paper is to compute the algebraicK-groupsKp(ZG) for p6 1,
the algebraicL-groupsLp(ZG) for p ∈ Z (mostly after inverting 2) of the integral
group ringZG and the topologicalK-groupsKp(C∗r (G)) for p ∈ Z of the reduced
C∗-algebraC∗r (G) for certain infinite (discrete) groupsG. Namely, we assume that
G is either a cocompact planar group or that there is an exact sequence 1→ Zn→
G → π → 1, whereπ is a finite group and the conjugation action ofπ on Zn
is free outside 0∈ Zn. A cocompact planar group is a discontinuous group of
isometries ofS2, R2 or H2 with compact quotient. More information about these
groups and the result of the explicit computations will be given in Section 4 (see
Theorems 4.4 and 4.9).

For our techniques to work it is crucial to have very good information on the
structure of the finite subgroups, as well as their normalizers, and the infinite
virtually cyclic subgroups of cocompact planar groups. More explicitly, we use
that all maximal finite subgroups are either cyclic or dihedral, and that a com-
mon subgroup of any two different maximal finite subgroups has at most two
elements. Furthermore, the normalizerNGM of a maximal finite subgroupM
satisfiesNGM = M, except ifM is generated by a single reflection, in which
caseNGM ∼= Z × Z/2. These exceptions are responsible for the summands in-
dexed byB andB ′′ in Theorem 4.4, whereas the other maximal finite subgroups
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correspond to the summands indexed byA. Finally, we have a complete list of the
infinite virtually cyclic subgroups of a cocompact planar group; they are given as
subgroups of very simple amalgams. This will allow us to reduce the computations
in algebraicK- andL-theory from the family of virtually cyclic subgroups to the
family of finite subgroups. All the facts about cocompact planar groups mentioned
above will be recollected in Theorem 4.3 and Lemma 4.5 and 4.6.

Examples of cocompact planar groups are cocompact Fuchsian groups. Next
we give the result in this comparatively easy case as an illustration.

THEOREM 0.1. LetF be a cocompact Fuchsian group with presentation

F = 〈a1, b1, . . . , ag, bg, c1, . . . , ct | cγ1
1 = · · ·

= cγtt = c−1
1 · · · c−1

t [a1, b1] · · · [ag, bg] = 1〉
for integersg, t > 0 andγi > 1. Then

(a) the inclusions of the maximal subgroupsZ/γi = 〈ci〉 induce an isomorphism
t⊕
i=1

Whq(Z/γi)
∼=−→Whq(F )

for q 6 1. If the isomorphism conjecture for algebraic K-theory (see 1.9 and
Theorem 1.10) holds forF also in dimensionsq > 2, then this is an isomorph-
ism for all q ∈ Z. (Information aboutWhq(Z/γi) is given in Theorem 3.2
(d);

(b) there are isomorphisms

Lq(ZF)[1/2] ∼=


(
1+∑t

i=1

[
γi
2

]) · Z[1/2] q ≡ 0(4),
(2g) · Z[1/2] q ≡ 1(4),(
1+∑t

i=1

[
γi−1

2

])
· Z[1/2] q ≡ 2(4),

0 q ≡ 3(4),

where[r] for r ∈ R denotes the largest integer less than or equal tor;
(c) there are isomorphisms

Kq(C
∗
r (F ))

∼=
{ (

2+∑t
i=1(γi − 1)

) · Z q = 0,
(2g) · Z q = 1.

We will give more information about the algebraicL-theory of cocompact Fuch-
sian groups without inverting 2 in Remark 4.10. The algebraicK-theory in dimen-
sions6 1 of cocompact Fuchsian groups has been computed in [7].

Other examples of cocompact planar groups are two-dimensional crystallo-
graphic groups. TheirK- andL-theory is explicitly computed in Section 5. For
a two-dimensional crystallographic groupG the algebraicK-theory ofZG in di-
mensions6 1 has already been determined in [32], and the topologicalK-theory
of C∗r (G) in [51].
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In Section 6 we will prove a result which is similar to that of Theorem 4.4 but
applies to certain virtually Abelian groups whose classifying space for the family
of finite subgroupsEG = E(G,FIN ) is of higher dimension. (For an infinite
cocompact planar groupG, a model forEG isR2 orH2 with the obviousG-action,
and for the groupsG appearing below,Rn with a certainG-action is a model for
EG.)

THEOREM 0.2. Let 1→ Zn → G → π → 1 be a group extension for a finite
groupπ such that the conjugation action ofπ onZn is free, i.e. the only element
in π with a fixed point inZn different from zero is the identity element inπ . Let
{Mα | α ∈ A} be a complete system of representatives of conjugacy classes of
maximal finite subgroups ofG. Then

(a) the natural map induced by the inclusions of subgroups⊕
α∈A

Whq(Mα)→ Whq(G)

is an isomorphism forq 6 1, andKq(ZG) is trivial for q 6 − 2.
If the isomorphism conjecture in algebraicK-theory (see 1.9 and Theorem 1.10)
holds also forq > 2, then the map above is an isomorphism for allq ∈ Z;

(b) there are short exact sequences

0 →
⊕
α∈A

L̃q(ZMα)[1/2]→ Lq(ZG)[1/2]

→ Hq(G\EG;L (Z))[1/2]→ 0,

whereL (Z) is theL-theory spectrum associated to the ringZ, H∗(−;L (Z))
is the associated homology theory and the first map is induced by the various
inclusionsMα → G.
If we invert2|π |, this sequence splits and we obtain isomorphisms(⊕

α∈A
L̃q(ZMα)

[
1

2|π |
])
⊕Hq(π\T n;L (Z))

[
1

2|π |
] ∼=−→Lq(ZG)

[
1

2|π |
]
,

where theπ -action onT n is induced by the conjugation action ofπ onZn;
(c) there are short exact sequences

0→
⊕
α∈A

K̃q(C
∗
r (Mα))→ Kq(C

∗
r (G))→ Kq(G\EG)→ 0,

whereKq(G\EG) is the topological complexK-homology ofG\EG and the
first map is induced by the various inclusionsMα → G.
If we invert|π |, this sequence splits and we obtain isomorphisms(⊕

α∈A
K̃q(C

∗
r (Mα))

[
1

|π |
])
⊕Kq(π\T n)

[
1

|π |
] ∼=−→Kq(C

∗
r (G))

[
1

|π |
]
.
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We will present more detailed information on theL-theory (without inverting
2) of groups as in Theorem 0.2 in Remark 6.4. Furthermore, we can generalize the
methods of Theorem 0.1 and 0.2 to yield similar results for groups which are given
as extensions of the form 1→ Zn → G→ π → 1, whereπ ∼= D2m is a dihedral
group of order 2m such that the subgroupZ/m acts freely onZn. See Remark 6.5
for more information on this.

Our computations use the isomorphism conjectures inK-andL-theory due to
Farrell and Jones and to Baum and Connes which are known to be true for the
groups we consider here. We exploit the unified treatment of these conjectures
of [15]. Thus the computation is reduced to the investigation of the homology
of certain spaces over the orbit category with coefficients inK- andL-spectra
over the orbit category which will be carried out by homological methods, mainly
Mayer–Vietoris sequences. There are various spectral sequences to compute these
homology groups but they turn out to be too complicated even for the relatively
elementary groups we consider here. It seems to be very hard to compute theseK-
andL-groups integrally (or after inverting 2) for more general groups even if one
assumes in theK-theory case that one does know theK-theory of integral group
rings of finite subgroups. Rationally these computations can be done via Chern
characters and lead to rather general and explicit formulas, since the existence
of the Chern characters guarantees that the relevant spectral sequences collapses
[27]. The integral computations ofK- andL-groups presented here exploit the
explicit knowledge and special properties of the virtually cyclic and finite sub-
groups and their normalizers of the groups under consideration (see Lemma 4.5
and Lemma 6.3).

The paper is organized as follows:

(1) Review of the isomorphism conjectures inK- andL-theory.
(2) Preliminaries about spaces over the orbit category.
(3) Preliminary computations ofK- andL-groups of finite groups.
(4) Cocompact planar groups.
(5) Two-dimensional crystallographic groups.
(6) Extensions of finite groups with a free Abelian group references.

1. Review of the Isomorphism Conjectures inKKK- andLLL-Theory

We want to review the isomorphism conjectures inK- andL-theory as far as we
will need here. Since we want to do this in the language of spaces and spectra over
a category we give some basic facts about these notions. More information can be
found for instance in [15, 18].

Given a (discrete) groupG, a family F of subgroups is a set of subgroups of
G closed under taking subgroups and conjugates. Our main examples for famil-
ies will be the familiesTR, FIN , VC andALL, respectively, consisting of the
trivial subgroup, finite subgroups, virtually cyclic subgroups and all subgroups,
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respectively. Recall thatG is virtually cyclic ifG is finite or containsZ as subgroup
of finite index. Theorbit categoryOr(G,F) ofG with respect toF has as objects
homogeneous spacesG/H with H ∈ F and as morphismsG-maps. IfF is the
family ALL of all subgroups, we abbreviateOr(G,ALL) byOr(G).

A contravariant (pointed)Or(G)-spaceis a contravariant functor fromOr(G)
to the category of (pointed) spaces. A morphism between contravariant (pointed)
Or(G)-spaces is a natural transformation. AG-spaceX defines a contravariant
Or(G)-space by assigning toG/H itsH -fixed point setXH = mapG(G/H,X). A
covariantOr(G)-spectrumis a covariant functor from the categoryOr(G) into the
categorySpectra of spectra. An objectE in Spectra is a sequence of spaces
(En)n∈Z together with structure mapsσn : 6En → En+1 for eachn ∈ Z. A
map f : E → F of spectra is a sequence(fn : En → Fn)n∈Z of maps satisfying
fn+1◦σE

n = σ F
n ◦6fn for all n ∈ Z. Theqth homotopy groupπq(E) of a spectrum

E for q ∈ Z is the colimit colimn→∞ πq+n(En) with respect to the obvious maps
πq+n(En) → πq+n+1(En+1) induced by the structure mapsσn and the suspension
homomorphisms. Next we review our main examples of covariantOr(G)-spectra.

LetGroupoids be the category of groupoids. LetGroupoidsinj be the subcat-
egory ofGroupoidswhich has the same objects asGroupoids and as morphisms
covariant functorsF : G0 → G1 which are faithful, i.e., for any two objectsx, y
in G0 the induced map morG0(x, y) −→ morG1(F (x), F (y)) is injective. A leftG-
setS defines a groupoidGG(S), where Ob(GG(S)) = S and mor(s, t) = {g ∈
G | gs = t} for s, t ∈ S. The composition law is given by group multiplication.
Obviously a map of leftG-sets defines a functor of the associated groupoids. The
categoryG(G/H) is equivalent to the groupoid associated withH which has one
object andH as set of morphisms, and henceG(G/H) can serve as a substitute for
the subgroupH . Thus we obtain a covariant functor

GG : Or(G)→ Groupoidsinj. (1.1)

In [15, section 2] covariant functors

Kalg: Groupoids −→ Spectra,

L : Groupoids −→ Spectra,

K top: Groupoidsinj −→ Spectra,

are constructed using [34] and [40] in the algebraic context. (Unfortunately there
is a problem in the actual construction ofK top concerning the pairingµ in [15,
page 217] which will be corrected elsewhere. This does not affect the results of
this paper.) We denote their composition withGG by the same letters or by the
following abbreviations and obtain covariant functors

K = Kalg
G : Or(G) −→ Spectra, (1.2)

L = LG : Or(G) −→ Spectra, (1.3)

K = K top
G : Or(G) −→ Spectra. (1.4)
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Notice thatπq(L (G/H)) ∼= Lq(ZH), πq(Kalg(G/H)) ∼= Kq(ZH) andπq(K top

(G/H)) ∼= Kq(C
∗
r (H)), whereC∗r (H) is the reducedC∗-algebra of the group

H andKq(C∗r (H)) denotes its topologicalK-theory. Functoriality for aG-map
G/H → G/K, g′H 7→ g′g−1K corresponds under this isomorphism to induction
with respect to the injective homomorphismH → K given byh 7→ ghg−1.

If ∗ denotes the trivial groupoid consisting of one morphism, there is for any
groupoidG the canonical projection pr :G → ∗. Denote byL̃ (G) the homo-
topy fiber of the map of spectraL (pr) : L (G) → L (∗). Thus we obtain covariant
functors

K̃ = K̃alg
G : Or(G) −→ Spectra, (1.5)

L̃ = L̃G : Or(G) −→ Spectra, (1.6)

K̃ = K̃ top
G : Or(G,FIN ) −→ Spectra. (1.7)

Notice that we have defined̃K top
G only for Or(G,FIN ). The problem is that

pr : G → ∗ is not a morphism inGroupoidsinj. However, if we replace the
reducedC∗-algebra by the maximalC∗-algebra, thenK top is indeed a functor
on Groupoids, and for amenable groups such as all finite groups and virtually
Abelian groups the natural map from the maximal to the reducedC∗-algebra is
an isomorphism [33, Theorem 7.3.9 on page 243]. Notice that we only needK̃ =
K̃ top
G : Or(G,FIN ) −→ Spectra since it will be only applied in context with

Or(G)-spacesX for whichX(G/H) is empty for infiniteH .
The homologyHG

q (X;E) of a contravariantOr(G)-spaceX with coefficients
in the covariantOr(G)-spectrumE is defined forq ∈ Z in [15, section 4] using
Or(G)-CW -approximations. The above homology groups are functorial inX and
E. We get from [15, Lemma 4.4]

LEMMA 1.1. HG
p (X,A;E) is an unreduced homology theory on pairs of con-

travariant Or(G)-spaces which satisfy the WHE-axiom and the disjoint union
axiom.

To be more precise, homology theory means that homotopic maps of pairs
of contravariantOr(G)-spaces induce the same maps on the homology groups,
that there are long exact sequences of pairs(X,A), and that for any commutative
diagram of contravariantOr(G)-spaces

X0

i2

��

i1 // X1

j1

��
x2

j2

// X

the map(j2, i1) : (X2, X0) −→ (X,X1) induces an isomorphism on homology,
provided that the evaluation of the diagram at any objectG/H yields a pushout of
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spaces with a cofibration of spaces as upper horizontal arrow. We will frequently
use the associated long exact Mayer–Vietoris sequence

· · · δ−→ HG
p (X0;E)→ HG

p (X1;E)⊕HG
p (X2;E)→ HG

p (X;E)
∂−→ HG

p−1(X0;E)→ · · · .
The disjoint union axiom says that for an arbitrary disjoint union the obvious

map from the direct sum of the homology groups of the various summands to the
homology of the disjoint union is an isomorphism. The WHE-axiom requires that a
weak homotopy equivalence of contravariantOr(G)-spaces induces an isomorph-
ism on homology, where a mapf : X→ Y ofOr(G)-spaces or spectra is calledn-
connectedresp. aweak homotopy equivalence, if the mapf (G/H) : X(G/H)→
Y (G/H) isn-connected resp. a weak homotopy equivalence for every objectG/H .
In order to guarantee the WHE-axiom,Or(G)-CW -approximations are used in the
definitions. Notice, however, that we will almost everywhere do calculations with
theOr(G)-spaceX itself and not with itsOr(G)-CW -approximations, which will
be quite convenient since theOr(G)-spacesX we will deal with will very often
be very simple. Namely, we will consider theOr(G)-spaces?G,F associated to a
family F , which assigns to an objectG/H the space∗ consisting of one point
if H belongs toF and the empty set∅ otherwise. For these spaces it will be
comparatively easy to check whether the necessary conditions are satisfied for the
square above to get a Mayer–Vietoris sequence.

Notice in the sequel that for any covariantOr(G)-spectrumE there is a canon-
ical isomorphism

HG
q (?G,ALL;E)

∼=−→ πq(E(G/G)),

which comes from the fact that?G,ALL is anOr(G)-CW -complex. The isomorph-
ism conjecture for a groupG, a family of subgroupsF and anOr(G)-spectrumE
says that the map induced by the inclusion?G,F → ?G,ALL

HG
q (?G,F;E)→ HG

q (?G,ALL;E) = πq(E(G/G)) (1.8)

is an isomorphism for allq ∈ Z. The philosophy is to compute the groups of
interestπq(E(G/G)) by the values ofE(G/H) on the groups inH ∈ F . The
isomorphism conjectures of Farrell and Jones for algebraicK-theory andL-theory
are the special cases whereE is given by theOr(G)-spectraK and L of (1.2)
and (1.3) andF is the familyVC of virtually cyclic subgroups ofG. The Baum–
Connes conjecture is the special case whereE is given by theOr(G)-spectraK top

of (1.4) andF is the familyFIN of finite subgroups ofG. The Farrell and Jones
isomorphism conjecture and the Baum–Connes conjecture provide tools to com-
puteπq(Kalg(G/G)) = Kq(ZG), πq(L (G/G)) = Lq(ZG) andπq(K top(G/G)) =
Kq(C

∗
r (G)) in terms of data given by the virtually cyclic subgroups or the finite
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subgroups ofG. If G is torsion free, these conjectures predict that forq ∈ Z
Whq(G) ∼= 0,

Lq(ZG) ∼= Hq(BG;L (Z)),
Kq(C

∗
r (G))

∼= Kq(BG),
whereHq(BG;L (Z)) is the homology of the classifying spaceBG with respect
to theL-theory spectrum associated to the ringZ, Kq(BG) is the topological
complexK-homology ofBG and Whq(G) denotes the reduced negative or zeroth
K-group K̃q(ZG) for q 6 0, the ordinary Whitehead group Wh(G) for q = 1
and Waldhausen’s definition forq > 1 in terms of the fiber of the assembly map
BG+ ∧ K (Z)→ K (ZG).

We mention that the assembly map appearing in the original conjectures of
Farrell and Jones and of Baum and Connes are different from the one presented
here. Their identification is discussed in [15, page 239, page 247–248] and based
on [11] and [39, Proposition 8.4 on page 421].

THEOREM 1.2. LetG be a planar group with compact orbit space or a virtually
finitely generated Abelian group. Then the assembly maps

HG
q (?G,VC;Kalg)→ HG

q (?G,ALL;Kalg) = Kq(ZG) for q 6 1,

HG
q (?G,FIN ;L )[1/2]→ HG

q (?G,ALL;L )[1/2] = Lq(ZG)[1/2] for q ∈ Z,
HG
q (?G,FIN ;K top)→ HG

q (?G,ALL;K top) = Kq(C∗r (G)) for q ∈ Z,
are isomorphisms. The first map is surjective forq = 2.

Here and in the sequelA[1/m] for an integerm> 1 meansA ⊗Z Z[1/m]
for Z[1/m] = {a · mb ∈ Q | a, b ∈ Z}. ThusA[1/m] is obtained fromA
by invertingm. The claim for algebraicK- andL-theory is a consequence of
the results of [18, Proposition 2.3, Proposition 2.4 and Remark 2.1.3], [50] and
Theorem 2.3. Since we will invert 2 in (almost) all ourL-theory calculations we
do not have to distinguish between the various decorations ofL-groups such as
Lh, Ls or L−∞ as they differ by 2-torsion because of the Rothenberg sequences.
The Baum–Connes-conjecture has been proven for a very large class of groups
including virtually finitely generated Abelian groups and cocompact planar groups
[21, Theorem 1.12].

2. Preliminaries About Spaces Over the Orbit Category

In this section we prove some facts about spaces over the orbit category and their
homology which will be needed later.

Given a homomorphism of groupsi : H → G, there is an induced functor
I = I (i) : Or(H) → Or(G) sendingH/K to G ×i H/K = G/i(K). Given a
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(covariant or contravariant)Or(G)-spaceY , we obtain a (covariant or contravari-
ant)Or(H)-spaceI ∗Y called the restriction ofY with I by the compositionY ◦I .
Given a covariantOr(H)-spaceX, its inductionI∗X is the covariantOr(G)-space
defined in [15, Definition 1.8]. Its value at the objectG/K ofOr(G) is the quotient
space ∐

H/L∈Or(H)
X(H/L)×mapG(G/K,G/i(L))/ ∼,

where∼ is the equivalence relation generated by(X(φ)(x), ψ) ∼ (x, I (φ)◦ψ) for
aH -mapφ : H/L → H/L′, aG-mapψ : G/K → G(i(L)) andx ∈ X(H/L′).
There is an adjunction homeomorphism for anOr(G)-spaceX and anOr(G)-
spaceY (see [15, Lemma 1.9])

homOr(G)(I∗X,Y )
∼=−→ homOr(H)(X, I

∗Y ). (2.1)

In the sequel we use the identification of the Weyl groupWGH = NGH/H with
the automorphism group autG(G/H,G/H) which sendsgH ∈ NGH/H to the
G-mapRg−1 : G/H → G/Hg′H 7→ g′g−1H . Notice that autG(G/H,G/H) =
mapG(G/H,G/H) holds for finiteH but not in general (see [26, Example 1.32 on
page 22]).

LEMMA 2.1. Let G be a group with subgroupsH,L ⊂ G. Let {Hα|α ∈ A}
be a complete system of representatives ofL-conjugacy classes of subgroups of
L which areG-conjugated toH . To every indexα ∈ A choose an isomorphism
µα : G/H → G/Hα. LetI = I (L) be the functor induced by the inclusionL ↪→
G. Then we have forK ⊂ L:

(a) The following map is a natural equivalence of functorsOr(L)→ Sets

T (L/K) :
∐
α∈A

mapL(L/Hα,L/K) ×

×WLHαWGHα −→ mapG(G/H,G/K)

[φ,ψ ] 7→ (IdG×Lφ)◦ψ◦µα,
(b) There is a homeomorphism, natural inX,∐

α∈A
X(L/Hα)×WLHα WGHα −→ I∗X(G/H)

for every contravariantOr(L)-spaceX,
(c) There is a natural isomorphism

HG
q (I∗X;E)

∼=−→HL
q (X;E)

for E one of the spectra associated toG andL in (1.2)–(1.7),
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(d) The map from{g ∈ L\G/NGH | gHg−1 ⊂ L} to the set ofL-conjugacy
classes of subgroups ofL beingG-conjugated toH which sendsLgNGH to
(gHg−1)L is bijective.

Proof. (a), (b) and (d) are elementary consequences of the definitions. (c) fol-
lows from the facts that induction withI : Or(L) → Or(G) sends anOr(L)-
CW -approximation to anOr(G)-CW -approximation and that the canonical map
EL→ I ∗EG is an equivalence ofOr(L)-spectra together with the adjunction (2.1)
and [15, Lemma 4.6].

Sometimes we can use smaller families thanVC such as the familyFIN of
finite subgroups as explained in the next result. Notice that forn = ∞ andm = 1
it is just [18, Theorem A.10].

DEFINITION 2.2. LetG be a group, and letF be a family of subgroups ofG. For
a subgroupH of G, we defineH ∩ F to be the family of subgroups ofH given as
{H ∩K | K ∈ F}.
THEOREM 2.3. LetF ⊂ G be families of subgroups of the groupG. Letm> 1
andn be integers. Suppose for everyH ∈ G that the assembly map

HH
q (?H,H∩F ; I (H)∗E)[1/m] → HH

q (?H,ALL; I (H)∗E)[1/m]

is an isomorphism forq 6 n. Then the relative assembly map

HG
q (?G,F;E)[1/m] → HG

q (?G,G;E)[1/m]

is an isomorphism forq 6 n.
Proof. In the sequel we use the identification

HG
p (?G,F;E) = πq(hocolim

Or(G,F)
E)

as explained in [15, section 3]. By assumption the map

πq

(
hocolim
Or(H,H∩F)

I (H)∗E
)

[1/m] → πq(E(G/H))[1/m]

is an isomorphism forq 6 n andH ∈ G. A standard spectral sequence argu-
ment applied to the Atiyah–Hirzebruch spectral sequence [15, Theorem 4.7] or the
Bousfield–Kan spectral sequence [9, XXII 5.7 on page 339] shows that the induced
map

πq

(
hocolim
Or(G,G)

hocolim
Or(H,H∩F)

I (H)∗E
)

[1/m] → πq(hocolim
Or(G,G)

E)[1/m]

is an isomorphism forq 6 n. There is an equivalence of categories

Or(G,F) ↓ (G/H) ∼=−→Or(H,H ∩ F) (G/F → G/H) 7→ H/F,

whereOr(G,F) ↓ (G/H) denotes the category of objects overG/H . For
E′(G/F → G/H) := E(G/F) we get an isomorphism
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πq

(
hocolim

G/H∈Or(G,G)
hocolim
Or(H,H∩F)

I (H)∗E
)
∼= πq

(
hocolim

G/H∈Or(G,G)
hocolim

Or(G,F)↓G/H
E′
)
.

By [24, Theorem 2.4] the homotopy colimits commute, hence there is an isomor-
phism forq 6 n

πq

(
hocolim
Or(G,G)

E
)

[1/m] ∼= πq

(
hocolim

G/H∈Or(G,G)
hocolim
Or(H,H∩F)

I (H)∗E
)

[1/m]

∼= πq

(
hocolim

G/H∈Or(G,G)
hocolim
Or(H,H∩F)

I (H)∗E
)

[1/m]

∼= πq

(
hocolim

G/H∈Or(G,G)
hocolim

Or(G,F)↓G/H
E′
)

[1/m]

∼= πq

(
hocolim

G/H∈Or(G,F)
hocolim

Or(G,G)↓G/H
E′
)

[1/m]

∼= πq

(
hocolim
Or(G,F)

E
)

[1/m].

Recall that aclassifying spaceE(G,F) for a familyF of subgroups ofG is
aG-CW -complex whoseH -fixed point set is contractible ifH ∈ F and empty
otherwise. Such aG-space is unique up toG-homotopy. In particularE(G, TR) is
a model forEG. We abbreviateEG = E(G,FIN ) for the familyFIN of finite
subgroups.

For the reader’s convenience we briefly sketch a different more geometric proof
of Theorem 2.3. Namely, given a model forE(G,G), one can construct a model for
E(G,F) by replacing each cellG/H×Dn inE(G,G) byG×H E(H,H∩F)×Dn

and then use Mayer–Vietoris sequences. Notice that the assumption in Theorem 2.3
implies that for eachH ∈ G the projection induces an isomorphism

HH
q (?H,H∩F ; I (H)∗E)[1/m] = HG

p (G×H E(H,H ∩ F);E)[1/m]
∼=−→HG

p (G/H ;E)[1/m] = HH
q (?H,ALL; I (H)∗E)[1/m],

where we interpret aG-space as aOr(G)-space by assigning toG/L its L-fixed
point set.

The next result follows from the definitions of Whq(G) in [47, Definition 15.6
on page 228 and Proposition 15.7 on page 229], from the definition ofHG∗ (X,A;E)
in [15, Section 4] and from [15, Lemma 7.6].

LEMMA 2.4. For a groupG there is an isomorphism

HG
q (?G,ALL, ?G,TR;Kalg) =


Whq(G) q > 2,
Wh(G) =Wh1(G) q = 1,
K̃0(ZG) =Wh0(G) q = 0,
Kq(ZG) =Whq(G) q 6 − 1,

which is natural inG.
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LEMMA 2.5. The assembly map

HOr(G)
q (?G,FIN ;K )

∼=−→HOr(G)
q (?G,ALL;K )

is an isomorphism for anyq ∈ Z if G = Z or Z/2 ∗ Z/2, and an isomorphism
for q 6 2 if G = Z/2× Z, Z/2× (Z/2∗ Z/2), Z/4∗Z/2 Z/4, or Z/4∗Z/2 (Z/2)2.

Proof. We begin with the caseG = Z. A model forEG = E(G,FIN ) is
the universal covering ofS1. Therefore, the source of the assembly map above
reduces toKq(Z) ⊕ Kq−1(Z) and the assembly map itself is the restriction of the
Bass–Heller–Swan isomorphism (see [4, Chapter XII], [5] and [37, Corollary to
Theorem 8 on p. 114])

Kq(Z)⊕Kq−1(Z)⊕ Nil q(Z)⊕ Nil q(Z)→ Kq(Z[Z])

to the first two summands. Since the ringZ is regular and hence all its Nil-groups
are trivial, the assembly map is an isomorphism forG = Z.

ForG = Z/2 ∗ Z/2 = Z o Z/2 there is a model forEG with R as underlying
space such thatG\EG is the unit interval. Then the assembly map in question can
be identified with the obvious map Whq(Z/2) ⊕Whq(Z/2) → Whq(Z/2 ∗ Z/2)
which is bijective by a result of Waldhausen [47, Corollary 11.5 and the following
remark].

By Theorem 3.2 (e) the Nil-groups ofZ[Z/2×Zl] are trivial forq 6 2 andl> 0.
So the claim follows forG = Z × Z/2 from the Bass–Heller–Swan Theorem [4,
Chapter XII], [5] and [37, Corollary to Theorem 8 on p. 114].

In the remaining casesG is of the shapeG = G1 ∗Z/2 G2 for finite groupsGi

such that Whq(Gi) = 0 for q 61 (see Theorem 3.2 (div)). The claim forq 6 − 1
follows from [19, Theorem 2.1]. We obtain from [47, Theorem 1 on page 137] the
exact sequence

Wh2(Z/2) → Wh2(G1)⊕Wh2(G2)→Wh2(G)→Wh(Z/2)
→ Wh(G1)⊕Wh(G2)→Wh(G)→ K̃0(Z[Z/2])

→ K̃0(ZG1)⊕ K̃0(ZG2)→ K̃0(ZG)→ 0

where it is not clear a priori why the last map is surjective. This follows from
the exact sequence, obtained by applying the same argument toG × Z = (G1 ×
Z) ∗Z/2×Z (G2× Z),

Wh(G1× Z)⊕Wh(G2× Z)→Wh(G× Z)→ K̃0(Z[Z/2× Z]),

the computatioñK0(Z/2× Z) = 0 from Theorem 3.2 (diii) and (e) and the fact
that K̃0(ZG1) ⊕ K̃0(ZG2) → K̃0(ZG) is a natural direct summand in Wh(G1 ×
Z) ⊕Wh(G2 × Z) → Wh(G × Z) by the Bass–Heller–Swan decomposition. In
order to get the claim forq = 0,1,2, one constructs an exact sequence as above
but now withHG

q (?G,FIN ;Kalg) instead of Whq(G), together with a map between
these exact sequences, and uses the five-lemma. The last exact sequence is the
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Mayer–Vietoris sequence associated to theG-CW -model forEG which has one
1-cell with isotropy groupZ/2 and two 0-cells with isotropy groupsG1 andG2

[43, Theorem 7 on page 32 and Corollary on page 36].

LEMMA 2.6. Let G be a group and letL ⊂ G be a normal subgroup such
that there is an epimorphismf : G → L inducing the identity onL. Denote by
SUB(L) the family of subgroups ofG which consists of the subgroups ofL. Then
there is an isomorphism

HG
q (?G,SUB(L);L )→ Hq(B(G/L);L (ZL)),

and analogously for both versions ofK-theory and all the reduced versions ofK-
andL-theory.

Proof. We only treat the case of theL-theory spectrumL , the others are com-
pletely analogous. We get from the definitions and [15, section 7] an isomorphism

HG
q (?G,SUB(L);L ) ∼= πq(E(G/L)+ ∧G/L L (G/L)),

sinceEG/L regarded as aG-space via the projectionG→ G/L is a model for the
classifying spaceE(G,SUB(L)) of G for the familySUB(L). Fromf we obtain
a morphism inGroupoidsinj

f∗ : GG(G/L)→ GL(L/L).
Notice thatG/L = autG(G/L,G/L) acts onGG(G/L) in the obvious way and
that this action induces a non-trivial action onL (GG(G/L)) although it induces a
trivial action on the homotopy groups. If we equipGL(L/L) with the trivialG/L-
action, the mapf∗ is L-equivariant. Sincef∗ is an equivalence of categories, the
induced mapπq(L (GG(G/L))) → πq(L (GL(L/L))) is an isomorphism. Hence
the induced map

πq(E(G/L)+ ∧G/L L (G/L))
∼=−→πq(E(G/L)+ ∧G/L L (GL(L/L))) = Hq(B(G/L);L (ZL))

is an isomorphism [15, Lemma 4.6].

DEFINITION 2.7. If E is a spectrum, we denote the generalized homology of a
spaceX which is associated toE by H∗(X;E). If E is the topologicalK-theory
spectrumK = K (C), then we also writeK∗(X) = H∗(X;K ).
LEMMA 2.8. LetG be a discrete group. LetA be a ring withZ ⊂ A ⊂ Q such
that the order of any finite subgroup ofG is invertible inA.

(a) LetH∗ be any generalized homology theory. Then we obtain a natural iso-
morphism

H∗(BG)⊗Z A
∼=−→H∗(G\EG)⊗Z A.
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(b) There is a long exact sequence

· · · → Hq+1(G\EG;L (Z))→ HG
q (?G,FIN ; L̃ )→ HG

q (?G,FIN ;L )
→ Hq(G\EG;L (Z))→ · · · ,

whereL (Z) is theL-theory spectrum associated to the ringZ. This sequence
splits after tensoring withA, yielding isomorphisms

Hq(G\EG;L (Z))⊗Z A⊕HG
q (?G,FIN ; L̃ )

⊗ZA
∼=−→HG

q (?G,FIN ;L )⊗Z A.
(c) For topologicalK-theory we obtain the long exact sequence

· · · → Kq+1(G\EG)→ HG
q (?G,FIN ; K̃ )→ HG

q (?G,FIN ;K )
→ Kq(G\EG)→ · · · .

This sequence splits after tensoring withA yielding isomorphisms

Kq(G\EG)⊗Z A ⊕ HG
q (?G,FIN ; K̃ )⊗Z A

∼=−→HG
q (?G,FIN ;K )⊗Z A.

Proof. (a) By the Atiyah–Hirzebruch spectral sequence it suffices to check the
claimed isomorphism in the special case whereH∗ is the cellular homologyH∗.
The claim follows from the fact that the projection induces a homology equivalence
of projectiveAG-chain complexesC∗(EG) ⊗Z A → C∗(EG) ⊗Z A which is
then anAG-chain homotopy equivalence and hence induces a chain homotopy
equivalenceC∗(EG)⊗ZG A→ C∗(EG)⊗ZG A.

(b) There are natural maps ofOr(G)-spectrãL → L → L (Z), whereL (Z) de-
notes the constantOr(G)-spectrum with valueL (Z) = L (∗). Since its evaluation
at an objectG/H is a fibration of spectra, it induces a long exact sequence

· · · → HG
q+1(X;L (Z))

δq+1−−→ HG
q (X; L̃ )→ HG

q (X;L )→ HG
q (X;L (Z))→ · · · ,

for any contravariantOr(G)-spaceX. Notice that it suffices to check exactness
for anyOr(G)-CW -complexX and hence for anyOr(G)-space of the form mapG
(G/?,G/K) for any fixed objectG/K in Or(G), where the claim reduces to the
exactness of the long homotopy sequence associated to a fibration. We get from
[15, Lemma 7.6] an identificationHG

q (?G,FIN ;L (Z)) withHq(G\EG;L (Z)) and
thus the desired long exact sequence by takingX = ?G,FIN .

The composition

Hq(BG;L (Z)) = HG
q (?G,TR;L )→ Hq(?G,FIN ;L )→ Hq(G\EG;L (Z))

becomes an isomorphism after tensoring withA by assertion (a) and thus induces
the splitting of the long exact sequence after tensoring withA.

The proof of (c) is analogous to that of assertion (b) taking into account that
Kq(Y ) = Hq(Y ;K top(C)) holds by definition.
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3. Preliminary Computations of K- and L-Groups of Finite Groups

In this section we state some computations aboutK-andL-groups for finite groups
which we will use later in the computations for infinite groups.

DEFINITION 3.1. Letπ be a finite group. Byq(π), r(π) andc(π), we denote the
number of irreducible rational, real respective complex representations ofπ . Let
rC(π) be the number of isomorphisms classes of irreducible realπ -representations
V which are of complex type, i.e. autRπ (V ) ∼= C. Let RO(π) resp.R(π) be the
real resp. complex representation ring. For a positive integerm, we letZ/m denote
the cyclic group of orderm, andD2m is the dihedral group of order 2m.

THEOREM 3.2. For a finite groupπ , we have the following:

(a) There are isomorphismsRO(π) ∼= Zr(π) andR(π) ∼= Zc(π). The numberq(π)
is the number of conjugacy classes of cyclic subgroups inπ , the numberc(π)
is the number of conjugacy classes of elements inπ and the numberr(π) is
the number ofR-conjugacy classes of elements inπ , whereg1 andg2 in π are
R-conjugated ifg1 andg2 or g−1

1 andg2 are conjugated,

(b) Kq(C
∗
r (π))

∼=
{
R(π) ∼= Zc(π) q = 0,
0 q = 1.

In particular

K0(C
∗
r (Z/m)) ∼= Zm

K0(C
∗
r (D2m)) ∼=

{
Zm/2+3 m ≡ 0(2),
Z(m−1)/2+2 m ≡ 1(2),

(c) Lq(Zπ)[1/2] ∼= Lq(Rπ)[1/2] ∼=
 Z[1/2]r(π) q ≡ 0(4),
Z[1/2]rC(π) q ≡ 2(4),
0 q ≡ 1,3(4).

In particular,

L0(Z[Z/m])[1/2] ∼= Z[1/2][(m+2)/2],

L2(Z[Z/m])[1/2] ∼= Z[1/2][(m−1)/2],

L0(Z[D2m])[1/2] ∼=
{
Z[1/2]m/2+3 m ≡ 0(2),
Z[1/2](m−1)/2+2 m ≡ 1(2),

L2(Z[D2m])[1/2] ∼= 0.

(d) (i) Kq(Zπ) = 0 for q 6 − 2.
(ii) The rank ofWh(π) as an Abelian group isr(π)− q(π). We have

Wh(Z/m) ∼= Z[m/2]+1−δ(m),

whereδ(m) is the number of divisors ofm and[m/2] is the largest integer
less or equal tom/2.
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(iii) We haveWhq(π) = 0 for q 6 1 for the following finite groupsπ = {1},
Z/2, Z/3, Z/4, Z/2× Z/2, D6, D8. If l is a prime, thenK−1(Z[Z/ l]) =
K−1(Z[Z/ l × Z/ l]) = 0. We have

Whq(Z/6) ∼=
{

0 q = 0,1,
Z q = −1,

Whq(D12) ∼=
{

0 q = 0,1,
Z q = −1.

(iv) We have

Wh2(π) = 0, for π = {1},Z/2,Z/3,Z/4,
|Wh2(Z/6)|62,

Wh2(D6) = Z/2,
Wh2((Z/2)2)> (Z/2)2.

The assembly mapH2(BZ/2;K (Z))→ K2(Z[Z/2]) is an isomorphism.

(e) There are isomorphisms for an integern>0 and a prime numberl andq ∈ Z

Lq(Z[Zn × π ])[1/2] ∼=
n⊕
i=0

(
n

i

)
· Lq−i(Z[π ])[1/2],

Kq(C
∗
r (Z

n × π)) ∼=
n⊕
i=0

(
n

i

)
·Kq−i (C∗r (π)),

Kq(Z[Zn × Z/ l])
∼= Kq(Z[Z/ l])⊕ n ·Kq−1(Z[Z/ l])⊕

(
n

2

)
·Kq−2(Z[Z/ l]), q 6 2,

Whq(Zn × Z/ l)
∼=Whq(Z/ l)⊕ n ·Whq−1(Z/ l)⊕

(
n

2

)
·Whq−2(Z/ l) q 6 2,

Nil q(Z[Zn × Z/ l]) = 0, q 6 2.

Proof. (a) is proven in [42, Theorem 7 on page 19, Corollary 2 on page 96,
page 102, page 106]. (b) follows from Morita equivalence applied toC[π ] ∼=∏c(π)

i=1 M(ni, ni,C) and the computationK0(C) = Z andK1(C) = 0. (c) follows
from [40, Proposition 22.34 on page 253]. (d) The computations ofKq(Zπ) for
q 6 − 1 follow from [13]; thatK−1(Zπ) = 0 for π = Z/ l or Z/ l × Z/ l can also
be found in [4, Theorem 10.6, p. 695]. For information about Wh(π) we refer to
[31]. The vanishing of̃K0(Zπ) is proven forπ = D6 in [41, Theorem 8.2] and for
π = D8 in [41, Theorem 6.4]. The casesπ = Z/2,Z/3,Z/4,Z/6, and(Z/2)2 are
in [14, Corollary 5.17]. Finally,̃K0(ZD12) = 0 follows from [14, Theorem 50.29
on page 266] and the fact thatQD12 as aQ-algebra splits into copies ofQ and
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matrix algebras overQ, so its maximal order has vanishing class group by Morita
equivalence.

The claims about Wh2(Z/n) for n = 2,3,4,6 and for Wh2((Z/2)2) are taken
from [16, Proposition 5], [17, p.482] and [46, p. 218 and 221]. We getK2(ZD6) ∼=
3·Z/2 from [46, Theorem 3.1]. The assembly mapH2(BZ/2;K (Z))→ K2(Z[Z/2])
is an isomorphism by [17, Theorem on p. 482]. Now construct a commutative
diagram

H2(BZ/2;K (Z)) ∼=- H2(BD6;K (Z))

K2(Z[Z/2])

∼=
?

- K2(ZD6)
?

whose lower horizontal arrow is split injective and whose upper horizontal arrow
is an isomorphism by the Atiyah–Hirzebruch spectral sequence. Hence the right
vertical arrow is split injective and Wh2(D6) = Z/2.

(e) The claim forL-groups follows from the Shaneson splitting [44, Theorem
5.1] and for topologicalK-groups for instance from the more general Voiculescu–
Pimsner sequence [8, Theorem 10.2.1 on page 83]. The claim for the algebraic
K-groups follows forq 6 0 from [4, Theorem 10.6 on page 695]. To prove the
vanishing of the Nil1- and Nil2-terms, consider the following cartesian square of
rings:

Z[Z/ l × Zk] t 7→exp(2πi/ l)- Z[exp(2πi/ l)][Zk]

Z[Zk]

t 7→1

?
- Z/ l[Zk],

?

wheret is a generator ofZ/ l. Let ξ := exp(2πi/ l). By [30, Theorem 3.3 and 6.2]
and the methods of [46, Section 1], this diagram yields a long exact Mayer Vietoris
sequence

K3(Z/ l[Zk]) → K2(Z[Z/ l × Zk])→ K2(Z[Zk])⊕K2(Z[ξ ][Zk])
→ K2(Z/ l[Zk])→ K1(Z[Z/ l × Zk])
→ K1(Z[Zk])⊕K1(Z[ξ ][Zk]).

The ringsZ/ l, Z[ξ ] andZ are regular, so they have trivial Nil-terms in any di-
mension [37, Corollary to Theorem 8 on p. 122]. Furthermore, sinceZ/ l is a field,
its higher algebraicK-groups are finite [36, Theorem 8 on p. 583], and theK-
groups of a Dedekind ring (such asZ[ξ ]) are finitely generated [38, Theorem 1
on p. 179]. Therefore, the groupsKi(Z/ l[Zk]), Ki(Z[Zk]) andKi(Z[ξ ][Zk]) are
finitely generated fori = 1,2,3, and hence so isKi(Z[Z/ l × Zk]) for i = 1,2.
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Using the fact that the Nil-groups are either trivial or infinitely generated [35], we
conclude that Nili(Z[Z/ l × Zk−1]) = 0 for i = 1,2.

4. Cocompact Planar Groups

In this section we calculate theK- andL-theory of planar groups, giving explicit
formulas in terms of their signature (Theorem 4.4 and Theorem 4.9). We begin
with reviewing some facts about planar groups.

DEFINITION 4.1. A planar group (sometimes also called NEC group=Non-
Euclidean crystallographic group) is a discontinuous groupG of isometries of the
two-sphereS2, the Euclidean planeR2 or the hyperbolic planeH2. It is cocompact
if the quotient manifoldS which is the quotient ofS2,R2 orH2 under theG-action
is compact.

It is known (see, e.g. [48, Theorem 3 and 4], [52, Theorem 4.5.6 on page 119])
that a cocompact planar group has the following presentation. For fixed integers
ri >1, s> 0, t > 0, g> 0 andh>0 such thath = 0 org = h, generators are

(1) xi,j , 16 i6 s, 16 j 6 ri,
(2) ei, 16 i6 s,
(3) ck, 16 k6 t,
(4) ap, 16p6 g,
(5) bp, 16p6 h,

and relations are given by

(6) x2
i,j = 1,

(7) (xi,j xi,j+1)
ni,j = 1, 16 j < ri, ni,j > 2,

(8) xi,ri eixi,1e
−1
i = 1,

(9) cγkk = 1, γk > 2,
(10) e−1

1 · · · e−1
s c
−1
1 · · · c−1

t y = 1,

wherey = a2
1 · · · a2

g if h 6= g andy = [a1, b1] · · · [ag, bg ] if h = g. On the other
hand, it is also known [52, Theorem 4.7.1 on page 122] that every group with a
presentation as above is a cocompact planar group.

Associated to such a presentation is the so-calledsignaturewhich encodes the
presentation as follows:

(g,±, [γ1, γ2, . . . γt ], {(n1,1, n1,2, . . . , n1,r1−1), . . . (ns,1, ns,2, . . . ns,rs−1)}),
(4.1)

whereg>0 is an integer,± a sign, [γ1, γ2, . . . γt ] is an ordered set of integers
γi > 0 and (ni,1, ni,2, . . . ni,ri−1) is an ordered set of integersni,j > 2 for
i = 1,2, . . . , s. It is allowed that [γ1, γ2, . . . , γt ] consists of the empty symbol
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[ ], i.e. t = 0. Similarly (ni,1, ni,2, . . . , ni,ri−1) may consist of the empty sym-
bol ( ), i.e. ri = 1. It is also possible thats = 0, then the fourth entry in the
signature consists of the empty set{ }. It is clear how a presentation as above
defines a signature and vice versa, where of course the sign is positive ifS is
orientable, or equivalently,h = g in the presentation, and the sign is negative
if S is non-orientable, or equivalently,h 6= g in the presentation. In [28, Sec-
tion 9], we find necessary and sufficient conditions for two such presentations
or signatures respectively to describe isomorphic groups and the proof that two
planar groups are algebraically isomorphic if and only if they are geometrically
isomorphic.

As mentioned above, the quotient manifoldS of a cocompact planar group is
orientable if and only ifh = g. The number of boundary components iss, and
the genus isg. If G acts onR2 or the hyperbolic planeH2, then thisG-space is a
model forEG = E(G,FIN ) and in particularS is a model forG\EG. This can
be found in [52, Section 4.2] or follows from the more general result [3, Corollary
4.14]. A cocompact planar groupG is finite if and only if it acts onS2. One easily
computes using the Atiyah-Hirzebruch spectral sequence

H0(S;Z) = Z,

H1(S;Z) =


Z2g, if S is orientable ands = 0,
Z2g+s−1, if S is orientable ands > 0,
Z/2⊕ Zg−1, if S is non-orientable ands = 0,
Zg+s−1, if S is non-orientable ands > 0,

H2(S;Z) =
{
Z, if S is orientable ands = 0,
0, else,

K0(S) = H0(S,Z)⊕H2(S;Z),
K1(S) = H1(S;Z),
Hp(S;L (Z))[1/2] = Hp(S;Z)[1/2], for 06p6 3.

As was mentioned in the introduction, the following result yields complete
control over the structure of the finite subgroups of a cocompact planar group,
thus allowing us to compute itsK- andL-theory in terms of the maximal finite
subgroups.

THEOREM 4.2. LetG be an infinite cocompact planar group.

(a) The system{〈ck〉}∐{〈xi,j , xi,j+1〉} is a complete system of representatives of
the conjugacy classes of maximal finite subgroups with(M)G 6= (〈xi,j 〉)G.
(Note that ifri = 1 in the presentation ofG, then〈xi,1〉 is a maximal finite
subgroup isomorphic toZ/2, but we want to exclude these from the above
system). The group〈ck〉 is cyclic of orderγk and the group〈xi,j , xi,j+1〉 is the
dihedral groupD2ni,j of order 2ni,j . In particular any finite subgroup ofG is
cyclic or dihedral.
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(b) Every element of finite order is conjugate to an elementxi,j , c
q

k or (xi,j xi,j+1)
q

for someq ∈ Z. The subgroups〈cqk 〉 and 〈(xi,j xi,j+1)
q〉 are either trivial or

have finite normalizers.

(c) Among the non-trivial powers of theck and thexi,j xi,j+1 only (xi,j xi,j+1)
q and

(xi,j xi,j+1)
−q are conjugate, and none of these powers is conjugate to one of

thexi,j .

(d) If g ∈ G has infinite order, thenCG(g) is isomorphic to one of the following
groups:

Z, Z/2× Z, Z× Z, Z× (Z/2 ∗ Z/2), Z o Z, or Z ∗2Z (2Z× Z/2).

If s = 0 in the presentation ofG, then an elementg ∈ G of infinite order has a
centralizer isomorphic toZ,Z2, orZoZ. IfG is a cocompact Fuchsian group,
i.e. s = 0 andF acts orientation preserving onH2, then an elementg ∈ G of
infinite order has a centralizer isomorphic toZ.

(e) The centralizer of a reflection generatorxi,j is eitherZ/2×Z or Z/2× (Z/2∗
Z/2), where the first factorZ/2 is 〈xi,j 〉.

Proof. (b) follows from [23, Corollary 2 on p. 742] and (c) from [52, Theorem
4.8.1 on page 126]. Assertion (a) is a consequence of (c) and [23, Corollary 2 on
p. 742]. We conclude (d) from [22, Corollary 4 on p. 67], [23, Theorem 4 on p.
743] and the fact thatZ2 cannot be a subgroup of a cocompact Fuchsian group.
Assertion (e) is proven in [23, Theorem 4 on p. 743].

DEFINITION 4.3. LetG be a cocompact planar group with a presentation as
above. Let{Mα|α ∈ A} be a full system of representatives of the conjugacy classes
of maximal finite subgroups ofG with (Mα)G 6= (〈xi,j 〉)G, and let{Hβ | β ∈ B}
be a full system of representatives of conjugacy classes of subgroups generated by
a single reflection generatorxi,j . Forα ∈ A for whichMα is not cyclic, denote by
Cα ⊂ Mα the cyclic subgroup which is conjugated inG to a cyclic subgroup gener-
ated by an element of the formxi,j xi,j+1 (see Theorem 4.3 (a) and (c)). Forα ∈ A
with cyclicMα, putCα = Mα. LetB ′ = {β ∈ B | NGHβ ∼= Z/2× (Z/2 ∗ Z/2)}
andB ′′ = {β ∈ B | NGHβ ∼= Z/2×Z)}. ThenB = B ′∐B ′′ by Theorem 4.3. (e).

Define forα ∈ A a direct summandSL̃q(ZMα) of L̃q(ZMα) as the kernel of
the split-epimorphism

0: L̃q(ZMα)→ 0, Mα
∼= Z/k,

u∗ : L̃q(ZMα)→ L̃q(Z[Z/2]), Mα
∼= D2kk odd,

u∗ ⊕ v∗ : L̃q(ZMα)→ L̃q(Z[Z/2])⊕ L̃q(Z[Z/2]), Mα
∼= D2k k even,

whereu : Mα → Z/2 is the epimorphism withCα as kernel andv : Mα →
Z/2 is some homomorphism for whichv(Cα) = Z/2. Obviouslyu has a section
s : Z/2 → Mα so thatu∗ is split surjective. Since there are homomorphisms
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s1, s2 : Z/2 → Mα such thatu◦s1 and v◦s2 are the identity andv◦s1 is trivial,
(s1)∗ + (s2)∗ is a section ofu∗ ⊕ v∗. Explicitly we get from Theorem 3.2.

SL̃q(ZMα)[1/2] ∼=


Z[1/2][k/2] q ≡ 0(4) Mα

∼= Z/k,
Z[1/2][k/2] q ≡ 0(4) Mα

∼= D2k, k> 2,
Z[1/2][(k−1)/2] q ≡ 2(4) Mα

∼= Z/k,
0 otherwise.

Define the direct summandSK̃q(C∗r (Mα)) of K̃q(C∗r (Mα)) analogously to
SL̃q(Z[Mα]). We get explicitly from Theorem 3.2.

SK̃q(C
∗
r (Mα)) ∼=

 Z
k−1 q ≡ 0(2) Mα

∼= Z/k,
Z[k/2] q ≡ 0(2) Mα

∼= D2k, k> 2,
0 otherwise.

THEOREM 4.4. LetG be an infinite cocompact planar group with a presentation
as above and quotient manifoldS, and letMα andHβ be as in Definition 4.3. We
have

(a) The map induced by the inclusions⊕
α∈A

Whq(Mα)
∼=−→Whq(G)

is an isomorphism forq 6 1 and surjective forq = 2,
(b) We have split exact sequences

0 →
⊕
β∈B

Hq(BWGHβ;L (Z))⊕
⊕
α∈A

SL̃q(ZMα)

 [1/2]

→ Lq(ZG)[1/2]→ Hq(S;L (Z))[1/2]→ 0,

and

Hq(BWGHβ;L (Z))[1/2] ∼=
 Z[1/2], q ≡ 0 (4),
Z[1/2], β ∈ B ′′, q ≡ 1 (4),
0, else,

(c) We have split exact sequences

0 →
⊕
β∈B

K0(BWGH)⊕
⊕
α∈A

SK̃0(C
∗
r (Mα))

→ K0(C
∗
r (G))→ K0(S)→ 0,

0 →
⊕
β∈B ′′

K1(BZ)→ K1(C
∗
r (G))→ K1(S)→ 0,

and

K0(BWGHβ) ∼= Z for β ∈ B.
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If the isomorphism conjecture in algebraicK-theory (see 1.9 and Theorem 1.10)
holds also in dimension 2, the homomorphism appearing in Theorem 4.4 (a) is an
isomorphism also forq = 2. Furthermore, ifs = 0 and the isomorphism conjecture
is true in any dimension, then it is an isomorphism for anyq ∈ Z. Notice that in
the cases = 0 we haveB = ∅, so that the familiesE andEα appearing in the proof
of Theorem 4.4 are just the familiesT R.

The proof of Theorem 4.4 needs some preparations. The following lemma will
ensure that the application of Lemma 2.1 yields tractable results.

LEMMA 4.5. LetG be an infinite cocompact planar group. Define for a maximal
finite subgroupM the cyclic subgroupCM as in Definition 4.3. Then

(a) if H ⊂ G is finite andM ⊂ G is maximal finite,(M)G 6= (〈xi,j 〉)G, with
H ∩ CM 6= 1, thenNG(H ∩ CM) andNGH are finite;

(b) letM ⊂ G be maximal finite,(M)G 6= (〈xi,j 〉)G, andH ⊂ M be a subgroup
withH ∩ CM 6= 1. Then

M = NGM = NG(H ∩ CM).

If M andN are maximal finite subgroups,(M)G, (N)G 6= (〈xi,j 〉)G, withCM∩
CN 6= 1, thenM = N ;

(c) letM ⊂ G be maximal finite,(M)G 6= (〈xi,j 〉)G. IfK1,K2 ⊂ M are subgroups
withKi ∩ CM 6= 1 and (K1)G = (K2)G, then(K1)M = (K2)M andNGK1 =
NMK1 andNGK2 = NMK2;

(d) let D2m = 〈s, t | sm = t2 = 1, tst = s−1〉 be the dihedral group of order
2m. If m is odd,D2m contains up to conjugacy precisely one subgroup of
order 2, namely〈t〉 with trivial Weyl group. Ifm is even, thenD2m has up
to conjugacy three subgroups of order2, namely,〈sm/2〉 with normalizerD2m,
〈st〉 with normalizer〈sm/2, st〉 and〈t〉 with normalizer〈sm/2, t〉. The subgroup
〈s〉 is a characteristic subgroup ofD2m if m> 3.

Proof.(a) By Theorem 4.2 (b),H ∩CM is conjugated inG to a non-trivial cyclic
subgroup generated by some power of an elementxi,j xi,j+1 or ck, andNG(H ∩CM)
is finite. Hence alsoNGH is finite since the centralizerCGH has finite index in
NGH and is contained inNG(H ∩ CM).

(b) We getM ⊂ NG(H ∩ CM) sinceH ∩ CM is normal inM. Obviously
M ⊂ NGM. As bothNG(H ∩ CM) andNGM are finite by assertion (a), we get
M = NGM = NG(H ∩ CM) from the maximality ofM. Applying this toH =
CM ∩ CN we concludeM = N .

(c) Chooseg ∈ G with gK1g
−1 = K2. ThenK2 ⊂ gMg−1 ∩ M and hence

gMg−1 = M by assertion (b). Again from assertion (b) we concludeg ∈ M. If we
apply this to the special caseK1 = K2, we concludeNGK1 = NMK1 andNGK2 =
NMK2. (d) is a direct calculation. This finishes the proof of Lemma 4.5.



COMPUTATIONS OFK-AND L-THEORY OF COCOMPACT PLANAR GROUPS 271

LEMMA 4.6. LetG be an infinite cocompact planar group. Let06G be infinite
virtually cyclic. Then0 is isomorphic to one of the following groups, whereD
denotes the infinite dihedral groupZ/2 ∗ Z/2:

Z, Z/2× Z, D, Z/2×D, Z/4 ∗Z/2 Z/4∼= Zo Z/4, Z/4 ∗Z/2 (Z/2)2.
If s = 0 in the presentation ofG, thenG only contains infinite virtually cyclic
subgroups isomorphic toZ or D.

Proof. It is known that for an infinite virtually cyclic group0 there is an exact
sequence 1→ π → 0 → Q→ 1 for finiteπ such thatQ is Z orD [19, Lemma
2.5]. First, suppose thats = 0. We have to show thatπ is trivial. SinceD contains a
normal subgroupQ′ isomorphic toZ, it suffices to treat the caseQ ∼= Z, otherwise
substitute0 by p−1(Q′). The subgroupp−1(|π |! · Z) of 0 is isomorphic toπ × Z
and hence contained inCG(g) for some elementg of infinite order. Henceπ is a
subgroup of a torsion free group by Theorem 4.2 (d) and hence trivial.

Now assume thats 6= 0. If Q = Z, i.e. 0 = π o Z with π finite, then0
containsπ × |π |! · Z, soπ is by Theorem 4.2 (d) a subgroup of a group whose
finite subgroups all have order6 2 [43, Corollary on page 36]. Henceπ is trivial
orZ/2. This means that0 is eitherZ orZ/2× Z.

It remains to treat the caseQ = D, i.e., where0 surjects ontoD with finite
kernelπ . Thenπ is either cyclic or dihedral by Theorem 4.2 (a). Supposeπ =
(Z/2)2. ThenD acts onπ , and0 contains an elementg of infinite order which
centralizesπ , i.e. (Z/2)2× 〈g〉6CG(g), which is a contradiction to Theorem 4.2
(d). If π is nonAbelian dihedral, thenπ contains a unique cyclic subgroup of order
> 3 by Lemma 4.5 (d) on whichD acts. Again, this implies that0 contains an
element of infinite order which is centralized by a cyclic group of order>3, which
contradicts Theorem 4.3 (d). By the same argument, we see thatπ cannot be cyclic
of order > 3. If π is trivial, 0 isD; if π is Z/2, 0 has to be one of the following
groups:Z/2×D, Z/4 ∗Z/2 Z/4, orZ/4 ∗Z/2 (Z/2)2 by [10, Theorem IV.3.12 on
page 93].

LEMMA 4.7. LetG be as in Theorem 4.4. There is a bijection of sets

f :
∐

α∈A,|Mα|≡0(4)

{(K)Mα
| K ⊂ Mα, K ∩ Cα = 1,K 6= 1}

∼=−→
∐
β∈B ′
{(U)WGHβ | |U | = 2}.

Proof. Given an element(K)Mα
in {(K)Mα

| K ⊂ Mα,K ∩ Cα = 1,K 6= 1}
for |Mα| ≡ 0(4), we can chooseβ ∈ B ′ with (K)G = (Hβ)G andg ∈ G with
gKg−1 = Hβ , andMα is dihedral because of Theorem 4.2 (a) and (c) Since|Mα| ≡
0 (4), we concludeβ ∈ B ′ from Theorem 4.2 (e) and Lemma 4.5 (d). There is a
unique elementuα of order 2 inCα, anduα is central inMα. We haveuαKu−1

α = K
and henceguαg−1 ∈ NGHβ . Notice thatguαg−1 /∈ Hβ because of Theorem 4.2
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(c). If pr : NGHβ → WGHβ is the canonical projection, putU = 〈pr(guαg−1)〉
and definef ((K)Mα

) = (U)WGHβ . This is independent of the choice ofg since any
other choice is of the shapeug for someu ∈ NGHβ .

Next we define the inversef −1. Givenβ ∈ B ′ and (U)WGHβ with |U | = 2,
pr−1(U)) containsHβ and has order 4. Chooseα ∈ A andg ∈ Gwith gpr−1(U)g−1

⊂ Mα. Then definef −1((U)WGHβ ) = (gHβg
−1)Mα

. This is independent of the
choice ofg, since any other choice is of the formug for u ∈ G such thatgpr−1

(U)g−1 ⊂ Mα ∩ u−1Mαu and henceu ∈ Mα by Lemma 4.5 (b).
One easily checks thatf −1 is indeed an inverse off .

Now we are ready to prove Theorem 4.4.

Proof. (a) Recall that{Mα|α ∈ A} is a full system of representatives of the
conjugacy classes of maximal finite subgroups ofG which are not conjugate to
some〈xi,j 〉. Denote byEα the family of subgroupsK 6Mα with (K)G6 (〈xi,j 〉)G
and byE the family of finite subgroups ofG with (K)G6 (〈xi,j 〉)G. Consider the
following diagram ofOr(G)-spaces:∐

α∈A
(Iα)∗(?Mα,Eα ) -

∐
α∈A
(Iα)∗(?Mα,ALL)

?G,E
?

- ?G,FIN
?

(4.2)

where the horizontal maps are given by inclusions and the vertical maps are the
adjoints under the homeomorphism (2.1) of the obvious maps ofOr(Mα)-spaces
for the obvious functorIα : Or(Mα) → Or(G). Its evaluation at an objectG/H
gives pushouts of spaces with a cofibration as upper horizontal map since we get
for this evaluation from Lemma 2.1 (b) and Lemma 4.5 (c) for appropriateY

Y
Id−−−→ Yy y

∗ Id−−−→ ∗

∅ −−−→ ∗
Id

y Id

y
∅ −−−→ ∗,

∅ Id−−−→ ∅
Id

y Id

y
∅ Id−−−→ ∅,

if H ∈ E , if H ∈ FIN ,H /∈ E , else.

Hence we obtain from Lemma 1.1, Lemma 2.1 (c) and (4.2) the isomorphism for
q ∈ Z⊕

α∈A
HMα
q

(
?Mα,ALL, ?Mα,Eα ;K

) ∼=−→HG
q

(
?G,FIN , ?G,E;K

)
(4.3)
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and the long exact Mayer–Vietoris sequence

· · · →
⊕
α∈A

HMα
q

(
?Mα,Eα ;K

)→ HG
q (?G,E;K )

⊕
α∈A

Kq(C
∗
r (Mα))

→ HG
q (?G,FIN ;K )→ · · · . (4.4)

If L is Z/2, then the assembly mapHL
q (?L,TR;K ) → HL

q (?L,ALL;K ) is an iso-
morphism forq 6 2 by Theorem 3.2 (div) and Lemma 2.4. Hence the following
maps are isomorphisms by Lemma 1.1 and Theorem 2.3 forq 6 2

HMα
q

(
?Mα,ALL, ?Mα,TR;K

) ∼=−→HMα
q

(
?Mα,ALL, ?Mα,Eα ;K

)
, (4.5)

HG
q

(
?G,FIN , ?G,TR;K

) ∼=−→HG
q

(
?G,FIN , ?G,E ;K

)
. (4.6)

Combining (4.3), (4.4) and (4.5) yields an isomorphism forq 6 2⊕
α∈A

HMα
q

(
?Mα,ALL, ?Mα,TR;K

) ∼=−→ HG
q

(
?G,FIN , ?G,TR;K

)
. (4.7)

By Lemma 2.5 and Lemma 4.6 the assumptions in Theorem 2.3 are satisfied.
Thus Theorem 2.3 and Lemma 1.1 imply that the inclusion?G,FIN , ?G,TR →
?G,VC, ?G,TR induces an isomorphism

HG
q

(
?G,FIN , ?G,TR;K

) ∼=−→HG
q

(
?G,VC, ?G,TR;K

)
. (4.8)

Now the assertion (a) follows from the Isomorphism Conjectures (see Theorem 1.2),
Lemma 2.4 and the isomorphisms (4.7) and (4.8). (b) is proven analogously to
assertion (c), only easier because we invert 2. (c) We get from Theorem 4.2 (e)

WGHβ ∼=
{
Z o Z/2, if β ∈ B ′,
Z, if β ∈ B ′′, (4.9)

whereZ/2 acts onZ by − Id. The induced action ofZ/2 onKq(S1) is by Id if
q = 0 and by− Id if q = 1. Hence we obtain the following isomorphisms from
the Atiyah–Hirzebruch spectral sequence, applied to the obvious fibrationS1 →
BWGHβ → BZ/2:

K0(BWGHβ) ∼= K0(S
1) ∼= Z, (4.10)

K1(BWGHβ)[1/2] ∼= K0(S
1)[1/2] ∼= Z[1/2]. (4.11)

We obtain a long exact sequence

· · · → Kq+1(S)→ HG
q (?G,FIN ; K̃ )→ Kq(C

∗
r (G))→ Kq(S)→ · · · (4.12)
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and its rational splitting into short split-exact sequences from Theorem 1.2 and
Lemma 2.8 (c). Define a diagram ofOr(G)-spaces∐

β∈B
I (Hβ)∗?NGHβ,TR -

∐
β∈B

I (Hβ)∗?NGHβ,SUB(Hβ)

?G,TR
?

- ?G,E
?

whereI (Hβ) : Or(NGHβ) → Or(G) is the functor induced by the inclusion,
SUB(Hβ) is the family of subgroups ofNGHβ consisting of the subgroups of
Hβ, the horizontal maps are induced by inclusions and the vertical maps by the
obvious maps ofOr(NGHβ)-spaces and the adjunction (2.1). One easily checks
using Lemma 2.1 (b) that evaluation of this diagram at any object inOr(G) is a
push-out of spaces with a cofibration as upper horizontal map. SinceK̃(G/1) has
trivial homotopy groups, we get from this diagram, Lemma 1.1 and Lemma 2.1 (c)
an isomorphism⊕

β∈B
H
NGHβ
q (?NGHβ,SUB(Hβ ); K̃ )

∼=−→HG
q (?G,E ; K̃ ).

By Theorem 4.2 (e),Hβ is a direct factor ofNGHβ . Hence we get from Lemma 2.6

H
NGHβ
q (?NGHβ,SUB(Hβ ); K̃ )

∼=−→Hq(BWGHβ; K̃ (C∗r (Z/2))). (4.13)

The ring homomorphismC[Z/2] → C sendinga + bt to a − b induces a map
of spectraK̃ (C∗r (Z/2)) → K (C) which induces an isomorphism on homotopy
groups. Hence it yields an isomorphism [15, Lemma 4.6]

Hq(BWGHβ; K̃ (C∗r (Z/2)))
∼=−→Kq(BWGHβ). (4.14)

Thus we obtain isomorphisms⊕
β∈B

Kq(BWGHβ) ∼= HG
q (?G,E; K̃ ), (4.15)

⊕
(K)Mα , K∈E\{1}

Kq(BWMα
K) ∼= HMα

q (?Mα,Eα ; K̃ ), (4.16)

where the construction of the second isomorphism is analogous to the one forG,
just replaceG byMα andE by Eα. The long exact Mayer–Vietoris sequence (4.4)
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becomes under the isomorphisms (4.15) and (4.16)

· · · →
⊕
α∈A

⊕
(K)Mα , K∈E\{1}

Kq(BWMα
K)

→
⊕
β∈B

Kq(BWGHβ)⊕
⊕
α∈A

K̃q(C
∗
r (Mα))

→ HG
q (?G,FIN ; K̃ )→

⊕
α∈A

⊕
(K)Mα , K∈E

Kq−1(BWMαK)→ · · · . (4.17)

The composition of the homomorphism induced by the inclusions⊕
(K)Mα , K∈E\{1}

K̃q(C
∗
r (K))→ K̃q(C

∗
r (Mα))

with the homomorphism appearing in the definition ofSK̃q(ZMα) is an isomorph-
ism since it can be identified with Id : 0→ 0, Id : K̃q(Z[Z/2]) → K̃q(Z[Z/2])

or

(
1 0
1 1

)
: K̃q(Z[Z/2])⊕ K̃q(Z[Z/2])→ K̃q(Z[Z/2])⊕ K̃q(Z[Z/2]), respect-

ively. We obtain a commutative diagram with split exact columns and an isomorph-
ism as lower horizontal map:

0 0

⊕
(K)Mα , K∈E\{1}

K̃q(BWMα
K)

?
- SK̃q(C

∗
r (Mα))

?

⊕
(K)Mα , K∈E\{1}

Kq(BWMα
K)

?
- K̃q(C

∗
r (Mα))

?

⊕
(K)Mα , K∈E\{1}

Kq(∗)
? ∼=- K̃q(C

∗
r (Mα))/SK̃q(C

∗
r (Mα))

?

0
?

0.
?
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Hence the sequnce (4.17) reduces to the long exact sequence

· · · →
⊕
α∈A

⊕
(K)Mα , K∈E\{1}

K̃q(BWMα
K)

εq−→
⊕
β∈B

Kq(BWGHβ)⊕
⊕
α

SK̃q(C
∗
r (Mα))

→ HG
q (?G,FIN ; K̃ )→

⊕
α∈A

⊕
(K)Mα , K∈E\{1}

K̃q−1(BWMα
K)

εq−1−−→ · · · .

(4.18)

SinceWMα
K is trivial orZ/2 forK ∈ E \{1} by Theorem 4.2 (e),̃Kq(BWMα

K)

[1/2] is trivial for all q ∈ Z by the Atiyah–Hirzebruch spectral sequence. From
(4.12) and (4.18), we therefore get the long exact sequence

Kq+1(S)[1/2]
δq+1−−→

⊕
β∈B

Kq(BWGHβ)[1/2]⊕
⊕
α∈A

SK̃q(C
∗
r (Mα))[1/2]

−−→ Kq(C
∗
r (G))[1/2]→ Kq(S)[1/2]

δq−→ · · · , (4.19)

which splits into short split-exact sequences rationally. Since the boundary map
δq+1 in (4.19) is rationally zero and its target does not contain torsion (see (4.10)
and (4.11)),δq+1 itself is zero. Hence the long exact sequence (4.19) reduces to
short exact sequences

0 →
⊕
β∈B

Kq(BWGHβ)[1/2]⊕
⊕
α∈A

SK̃q(C
∗
r (Mα)[1/2]

→ Kq(C
∗
r (G))[1/2]→ Kq(S)[1/2]→ 0.

In the case ofL-theory, we are done at this point becauseHq(S;L (Z))[1/2] is free.
It remains to show the claim for topologicalK-theory without inverting 2.

To do this, we further investigate the homomorphismεq appearing in the long
exact sequence (4.18). Forβ ∈ B ′′, Kq(BWGH) = Kq(S

1) is torsion free, and
so isSK̃q(C∗r (Mα)). SinceK̃q(BWMα

H) is 2-torsion, it suffices to determine the
kernel and cokernel of the part denoted in the same way:

εq :
⊕
α∈A

⊕
(K)Mα , K∈E\{1}

K̃q(BWMα
K)→

⊕
β∈B ′

Kq(BWGHβ). (4.20)

Fix α ∈ A, (K)Mα
,K ∈ E \{1} andβ ∈ B ′. The part ofεq going from the summand

in the source belonging to(K)Mα
to the summand in the target belonging toβ is

denoted by

εq(α, (K), β) : K̃q(BWMα
K)→ Kq(BWGHβ). (4.21)
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If (Hβ)G 6= (K)G, thenεq(α, (K), β) is trivial. If Hβ = K, thenεq(α, (K), β) is
induced by the obvious inclusionWMα

K → WGK.
Using the bijectionf in Lemma 4.7 and the facts that forK ⊂ Mα, K 6= 1,

|Mα| ≡ 0 (4) the conditionK ∩ Cα = 1 is equivalent to(K)G = (xi,j )G for
appropriatei, j and thatWMα

K = 1 and hencẽKq(BWMα
K) = 0 if |Mα| ≡ 2(4),

one easily constructs a commutative diagram with isomorphisms as vertical maps⊕
α∈A

⊕
(K)Mα , K∈E\{1}

K̃q(BWMα
K)

εq - ⊕
β∈B ′

Kq(BWGHβ)

⊕
β∈B ′

⊕
(U)WGHβ ,|U |=2

K̃q(BU)

∼=

? ⊕
β∈B′ µ(Hβ)q- ⊕

β∈B ′
Kq(BWGHβ)

Id

?

whereµ(Hβ)q :
⊕

(U)WGHβ ,|U |=2 K̃q(BU)→ Kq(BWGHβ) is induced by the vari-

ous inclusionsU → WGHβ . Since we getK̃0(BZ/2) = 0 and K̃1(BZ/2) =
Z[1/2]/Z = Z/2∞ from the Atiyah–Hirzebruch spectral sequence and [25, Pro-
position 2.11], the long exact sequence (4.25) becomes under this identification

0→
⊕
β∈B

K0(BWGHβ)⊕
⊕
α∈A

SK̃0(C
∗
r (Mα))→ HG

0 (?G,FIN ; K̃ )

→
⊕
β∈B ′

⊕
(U)WGHβ ,|U |=2

K̃1(BU)

⊕
β∈B′ µ(Hβ)1⊕0−−−−−−−−−→

⊕
β∈B ′

K1(BWGHβ)⊕×

×
⊕
β∈B ′′

K1(BWGHβ)→ HG
1 (?G,FIN ; K̃ )→ 0. (4.22)

Now the mapK̃1(BZ/2)2 → K1(B(Z/2 ∗ Z/2) induced by the inclusion of two
nonconjugatedZ/2 is an isomorphism by the Mayer–Vietoris sequence, so the
exact sequence (4.22) reduces to the isomorphisms⊕

β∈B
K0(BWGHβ)⊕

⊕
α∈A

SK̃0(C
∗
r (Mα))

∼=−→HG
0 (?G,FIN ; K̃ ),⊕

β∈B ′′
K1(S

1)
∼=−→HG

1 (?G,FIN ; K̃ ).
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This shows that the Abelian groupsHG
q (?G,FIN ; K̃ ) are free, so from the rationally

split exact sequence (4.18), we get exact sequences

0 →
⊕
β∈B ′′

K1(S
1)→ K1(C

∗
r (G))→ K1(S)→ 0,

0 →
⊕
β∈B

K0(BWGHβ)⊕
⊕
α∈A

SK̃0(C
∗
r (Mα))→ K0(C

∗
r (G))→ K0(S)→ 0.

It remains to show that the exact sequences above split. The groupK0(S) is always
free Abelian. Ifs = 0 andh 6= g, then the quotient space is a closed non-orientable
surface, soK1(S) is not free but contains a direct summandZ/2. On the other hand,
in this caseB and henceB ′′ is empty, soK1(C

∗
r (G))

∼= K1(S). If h = g or s > 0,
thenK1(S)) is free, so the claim follows.

Next we state theK-groups andL-theory explicitly in terms of the signature.

DEFINITION 4.8. LetG be an infinite cocompact planar group with signature

(g,±, [γ1, γ2, . . . γt ], {(n1,1, n1,2, . . . n1,r1−1), . . . (ns,1, ns,2, . . . ns,rs−1)}).
Defineb′ to be the number of elementsni,j which are even andb′′ to be the number
of integersi ∈ {1,2, . . . s} for which ri = 1 or eachni,j for j = 1,2, . . . , ri − 1 is
odd. (With this definition,b′ = b′′ = 0 if s = 0).

THEOREM 4.9. LetG, b′ andb′′ be given as in Definition 4.8. Recall that for a
real numberr we denote by[r] the largest integer which is less than or equal tor.
Then

L0(ZG)[1/2] =
b′ + b′′ + 1+

t∑
k=1

[γk/2]+
s∑
i=1

ri−1∑
j=1

[ni,j /2]

 · Z[1/2],

L1(ZG)[1/2] =
 (b′′ + 2g) · Z[1/2], for +, s = 0,
(b′′ + 2g + s − 1) · Z[1/2], for +, s > 0,
(b′′ + g + s − 1) · Z[1/2], for −,

L2(ZG)[1/2] =
{ (

1+∑t
k=1[(γk − 1)/2]

) · Z[1/2], for +, s = 0,(∑t
k=1[(γk − 1)/2]

) · Z[1/2], otherwise,

L3(ZG)[1/2] = 0,

K0(C
∗
r (G))

=

(
b′ + b′′ + 2+∑t

k=1(γk − 1)+∑s
i=1

∑rs−1
j=1 [ni,j /2]

)
· Z, for +, s = 0,(

b′ + b′′ + 1+∑t
k=1(γk − 1)+∑s

i=1

∑rs−1
j=1 [ni,j /2]

)
· Z, otherwise,
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K1(C
∗
r (G)) =


(b′′ + 2g) · Z for +, s = 0,
(b′′ + 2g + s − 1) · Z for+, s > 0,
Z/2⊕ (b′′ + g − 1) · Z for −, s = 0,
(b′′ + g + s − 1) · Z for −, s > 0.

Proof. This follows from Theorem 4.4 and the computation ofKq(S) and
Hp(S;L (Z))[1/2] stated above as soon as we know thatb′ andb′′, respectively, is
the cardinality ofB ′ andB ′′, respectively. (The setsB ′ andB ′′ have been introduced
in Definition 4.3). This follows forb′ from Theorem 4.2 (e) and Lemma 4.7 since
the sets{(K)Mα

| K ∩ Cα = 1} for α ∈ A with |Mα| ≡ 0 (4) and the sets
{(U)WGHβ | |U | = 2} for β ∈ B ′ appearing in Lemma 4.7 all have cardinality 2.

Notice thatxi,j is conjugated toxi,j+1 if ni,j is odd by Lemma 4.5 (d),xi,1
is always conjugated toxi,ri andNG〈xi,j 〉 cannot be isomorphic toZ/2× Z for
evenni,j by Lemma 4.5 (d). This shows for anyβ ∈ B ′′ that there is an index
i ∈ {1,2, . . . s} such that〈xi,j 〉 is conjugated toHβ for eachj ∈ {1,2, . . . , ri}.
Hence it remains to show that for two elementsxi,j andxi′,j ′ which are conjugated,
i = i′ holds. This follows from the geometric descriptions in terms of fundamental
polygons (see e.g. [28, 48, 52]). Namely, a conjugating elementg ∈ G maps the
fixed point set of the reflectionsxi,j andxi′,j ′ to one another. Hence the images of
their fixed point set under the quotient map ontoS agree. This shows thatxi,j and
xi′,j ′ belong to the same boundary component ofS and thusi = i′.

Remark4.10. A cocompact Fuchsian group is a planar groups acting isometric-
ally on the hyperbolic plane withs = 0, h = g, i.e. the quotient space is a closed
orientable surface of genusg. Hence Theorem 4.4 implies Theorem 0.1 mentioned
in the introduction.

We want to briefly sketch the computation ofLεn(ZG) without inverting 2 for a
Fuchsian groupF as in Theorem 0.1. For this purpose we will need forLε for ε =
−∞,p,h or s that the isomorphism conjecture is true forGwith respect to the fam-
ily of virtually cyclic subgroups. Notice that Farrell and Jones [18] formulate their
Isomorphism Conjecture only forL−∞ and that they have shown that it cannot be
true simultaneously forε = h andε = s in the caseG = Z2×Z/5 [20]. However,
using the various Rothenberg sequences together with the explicit computations of
the lower and middleK-theory and the five lemma one can show in this particular
case that the isomorphism conjecture with respect toVC and without inverting 2
is true for all of the decoratedL-groupsL−∞, Lp, Lh, Ls if it holds for one of
them. Since it is known forL−∞ for F [18, Theorem 2.1 and Remark 2.1.3], the
computations below are true without any assumptions.

LetV be any subgroup ofF isomorphic toZ/2∗Z/2. Its commutator [V, V ] is
an infinite cyclic subgroup which is characteristic inV . The centralizerCG[V, V ]
is again an infinite cyclic subgroup by Theorem 4.2 (d). This implies thatVmax :=
NG[V, V ] containsV and is isomorphic toZ/2∗Z/2. Since [V, V ] is a character-
istic subgroup ofV , we concludeNGV ⊂ Vmax. Let V ⊂ W ⊂ G be subgroups
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such that bothV andW are isomorphic toZ/2 ∗ Z/2. Then [V, V ] ⊂ [W,W ] ⊂
CG[W,W ] ⊂ CG[V, V ]. SinceCG[V, V ] is Abelian, we getCG[V, V ] ⊂ CG
[W,W ]. This impliesCG[V, V ] = CG[W,W ] and henceVmax= Wmax.

Let {Vδ | δ ∈ D} be a full system of representatives of the conjugacy classes of
subgroupsV ⊂ G which are maximal among the subgroups ofG isomorphic to
Z/2∗Z/2. Hence each subgroupV ⊂ G with V ∼= Z/2∗Z/2 is subconjugated to
precisely oneVδ, namely the one with(Vδ) = (Vmax), and we haveNGV = NVmaxV .

Using these facts one easily verifies that the following diagram is a pushout of
contravariantOr(G)-spaces with a cofibration as upper horizontal map:∐

δ∈D
(Iδ)∗(?Vδ,FIN ) -

∐
δ∈D
(Iδ)∗(?Vδ,ALL)

?G,FIN
?

- ?G,VC.
?

Hence this diagram yields a long exact sequence

· · · →
⊕
δ∈D

UNilq+1→ HF
q (?F,FIN ;L ε)→ Lεq(ZF)→

⊕
δ∈D

UNilq → · · · ,

whereUNilq ∼= HG
q (?Vδ,ALL, ?Vδ,FIN ;L ) is theUNil-term appearing in the

splitting

L̃εq(Z[Z/2])⊕ L̃εq(Z[Z/2])⊕ UNilq → L̃εq(Z[Z/2∗ Z/2])

due to [12, Theorem 10] and

· · · → Hq+1(S;L (Z))→
t⊕
i=1

L̃εq(Z[Z/γi])→ HF
q (?F,FIN ;L ε)

→ Hq(S;L (Z))→ · · · ,
where the last sequence splits after inverting the least common multiplem of the
γi ’s. The first exact sequence splits, too; a splitting is given by the obvious map⊕

δ∈D
UNilq →

⊕
δ∈D

Lεq(ZVδ)→ Lεq(ZF).

Hence we obtain an exact sequence which splits after invertingm

· · · → Hq+1(S;L (Z))→
t⊕
i=1

L̃εq(Z[Z/γi])⊕
⊕
δ∈D

UNilq

→ Lεq(ZF)→ Hq(S;L (Z))→ · · · .
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From now on suppose that eachγi is odd. Then the numberm above is odd. Since
Hq(S;L (Z)) and

⊕t
i=1 L̃

ε
q(Z[Z/γi]) (see Theorem 3.2 (c)) contain no odd torsion,

we obtain isomorphisms forq ∈ Z
t⊕
i=1

L̃εq(Z[Z/γi])⊕Hq(S;L (Z)) ∼= Lεq(ZF).

Explicitly, we get from the computations of̃Lεq(Z/γi) in [1, Theorem 1, 3 and 5]
and [2, Corollary 4.3 on page 58] forε = p ands

Lεq(ZF) ∼=



Z/2
⊕(

1+∑t
i=1

γi − 1

2

)
· Z q ≡ 0(4),

(2g) · Z q ≡ 1(4),

Z/2
⊕(

1+∑t
i=1

γi − 1

2

)
· Z q ≡ 2 (4),

(2g) · Z/2 q ≡ 3(4).

For ε = h, there is no general formula known for the 2-torsion contained in
L̃h2q(Z[Z/m]), m odd, since it is given by the term̂H 2(Z/2; K̃0(Z[Z/m])), see
[1, Theorem 2].

5. Two-Dimensional Crystallographic Groups

In this section we give a complete description of the algebraicK- andL-groups of
the integral group ring and the topologicalK-theory of the reducedC∗-algebra of
all two-dimensional crystallographic groups. The algebraicK-theory in dimension
6 1 has been determined in [32], and theC∗-K-theory has been computed in [51].
Note the difference between the groupK0(C

∗
r (Cmm)) given here and in [51, page

102]. We believe that this difference comes from a fixed point which has been
overlooked in [51]. If we use the methods of [51], we getZ6, as in the following
table. As far as we know, this is the first computation of theL-groups of two-
dimensional crystallographic groups.

A two-dimensional crystallographic group is the same as a cocompact planar
groupG acting onR2. The signatures of crystallographic groups have been listed
in [28, page 1204]. Hence the results for theL-theory and the topologicalK-theory
below follow directly from Theorem 4.9. In the computation of theL-theory of the
groupsP3 andPg we do not have to invert 2 because these two groups only contain
infinite virtually cyclic groups which are isomorphic toZ. Hence the isomorphism
conjecture for the family of finite subgroups without inverting 2 is true in this case,
and a careful analysis as in the proof of Theorem 4.5 (c) shows our results. In
the case ofP3, note that̃K0(Z[Z/3]) = 0 by Theorem 3.2 (diii), so there is no
2-torsion coming from the maximal finite subgroups for any decorationε.

The computations of Whq(ZG) for q 61 follow directly from Theorem 3.2 (d),
Theorem 4.2 (a) and Theorem 4.4 (a). Forq = 2 we assume that the the isomor-
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phism conjecture in algebraicK-theory (see (1.8) and Theorem 1.2) holds also in
Dimension 2. In some cases we can drop this assumption for the computation of
Wh2(ZG). Since the assembly map is surjective in dimension 2, we can at least
conclude Wh2(G) = 0 if the second Whitehead groups of all finite subgroups
vanish. Furthermore, in some cases (likeP6 or P31m), there is only one finite
subgroup with (possibly) non-trivial Wh2 which splits off fromG, allowing us to
compute Wh2(G).

Our notation for the two-dimensional crystallographic groups follows that of
[28].

Group Signature Whq 6= 0, q 6 2 Lq(ZG) Kq(C
∗
r (G))

P1 (1,+, [ ] , { }) L0 = Z⊕ Z/2 K0 = Z2

L1 = Z2 K1 = Z2

L2 = Z⊕ Z/2
L3 = (Z/2)2

P2 (0,+, [2,2, 2,2], { }) L0

[
1
2

]
= Z

[
1
2

]5
K0 = Z6

L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= Z

[
1
2

]
L3

[
1
2

]
= 0

P3 (0,+, [3,3, 3], { }) L0 = Z4⊕ Z/2 K0 = Z8

L1 = 0 K1 = 0

L2 = Z4⊕ Z/2
L3 = 0

P4 (0,+, [2,4, 4], { }) L0

[
1
2

]
= Z

[
1
2

]6
K0 = Z9

L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= Z

[
1
2

]3

L3

[
1
2

]
= 0

P6 (0,+, [2,3, 6], { }) K−1 = Z L0

[
1
2

]
= Z

[
1
2

]6
K0 = Z10

Wh2 =Wh2(Z/6) L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= Z

[
1
2

]4

L3

[
1
2

]
= 0



COMPUTATIONS OFK-AND L-THEORY OF COCOMPACT PLANAR GROUPS 283

Group Signature Whq 6= 0, q 6 2 Lq(ZG) Kq(C
∗
r (G))

Cm (1,−, [ ] , {( )}) L0

[
1
2

]
= Z

[
1
2

]2
K0 = Z2

L1

[
1
2

]
= Z

[
1
2

]2
K1 = Z2

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

Pm (0,+, [ ] , {( ), ( )}) L0

[
1
2

]
= Z

[
1
2

]3
K0 = Z3

L1

[
1
2

]
= Z

[
1
2

]3
K1 = Z3

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

Pg (2,−, [ ] , { }) L0 = Z⊕ Z/2 K0 = Z
L1 = Z⊕ Z/2 K1 = Z⊕ Z/2
L2 = Z/2
L3 = (Z/2)2

Cmm (0,+, [2], {(2,2)}) Wh2 =Wh2(D4)
2 L0

[
1
2

]
= Z

[
1
2

]6
K0 = Z6

L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

Pmm (0,+, [ ] , {(2,2,2, 2)}) Wh2 =Wh2(D4)
4 L0

[
1
2

]
= Z

[
1
2

]9
K0 = Z9

L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

Pmg (0,+, [2,2], {( )}) L0

[
1
2

]
= Z

[
1
2

]4
K0 = Z4

L1

[
1
2

]
= Z

[
1
2

]
K1 = Z

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

Pgg (1,−, [2,2], { }) L0

[
1
2

]
= Z

[
1
2

]3
K0 = Z3

L1

[
1
2

]
= 0 K1 = Z/2

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0
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Group Signature Whq 6= 0, q 6 2 Lq(ZG) Kq(C
∗
r (G))

P3m1 (0,+, [3], {(3)}) Wh2 = Z/2 L0

[
1
2

]
= Z

[
1
2

]4
K0 = Z5

L1

[
1
2

]
= Z

[
1
2

]
K1 = Z

L2

[
1
2

]
= Z

[
1
2

]
L3

[
1
2

]
= 0

P31m (0,+, [ ] , {(3,3, 3)}) Wh2 = (Z/2)3 L0

[
1
2

]
= Z

[
1
2

]5
K0 = Z5

L1

[
1
2

]
= Z

[
1
2

]
K1 = Z

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

P6m (0,+, [ ] , {(2,3, 6)}) Wh2 =Wh2(D4)⊕ Z/2 L0

[
1
2

]
= Z

[
1
2

]8
K0 = Z8

⊕Wh2(D12) L1

[
1
2

]
= 0 K1 = 0

K−1 = Z L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

P4m (1,+, [ ] , {(2,4, 4)}) Wh2 =Wh2(D4) L0

[
1
2

]
= Z

[
1
2

]9
K0 = Z9

⊕Wh2(D8)
2 L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= 0

L3

[
1
2

]
= 0

P4g (0,+, [4], {(2)}) Wh2 =Wh2(D4) L0

[
1
2

]
= Z

[
1
2

]5
K0 = Z6

L1

[
1
2

]
= 0 K1 = 0

L2

[
1
2

]
= Z

[
1
2

]1

L3

[
1
2

]
= 0

6. Extensions of Finite Groups with a Free Abelian Group

In this section we give the proof of Theorem 0.2. Some preparations are needed.

LEMMA 6.1. LetG be as in Theorem 0.2. Then

(a) every finite subgroup ofG is isomorphic to a subgroup ofπ . For a non-trivial
finite subgroupH ⊂ G its normalizerNGH := {g ∈ G | gHg−1 = H } is
finite;

(b) every infinite virtually cyclic subgroup ofG is either cyclic and contained in
Zn or isomorphic toZ/2 ∗ Z/2.
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Proof. (a) LetH ⊂ G be finite. Thenp|H has trivial kernel, since it is a finite
subgroup ofZn. HenceH embeds intoπ .

Considerg ∈ NGH . The mapcg on H given by conjugation withg is an
automorphism of the finite groupH and therefore of finite order itself, so there is a
natural numberk with (cg)k = cgk = Id. Thus we havegkhg−k = h for all h ∈ H .
Hence we getgkm ∈ Zn andhgkmh−1 = gkm for all h ∈ H andm = |π |. Since
H is non-trivial andπ acts freely onZn, we getgkm = 1. Thus, every element of
NGH has finite order and cannot lie in the kernel ofp. HenceNGH is isomorphic
to a subgroup ofπ , which is finite.

(b) Let C ⊂ G be infinite virtually cyclic. There is an extension 1→ Z →
C

q−→ F → 1 with a finite groupF . Restrictingp to C, we get an extension
1 → Z → C → p(C) → 1 whereZ is a nontrivial subgroup ofZn. Its image
underq is a subgroup of the finite groupF and henceZ∩ker(q) has finite index in
Z. Therefore,Z must be infinite cyclic. Denote a generator ofZ by z. As aut(Z) ∼=
Z/2 and the action ofp(C) onZ is free, we must have an injectionp(C)→ Z/2.
If p(C) = 1,C ∼= Z. If p(C) = Z/2, chooset ∈ C whose image generatesp(C).
Then we must havet2 = zk for somek ∈ Z sincep(t)2 = 1. Thus,

z2k = t4 = tzkt = t t (t−1zkt) = zkz−k = 1 ⇒ k = 0,

andC is a nontrivial semi-direct productZ o Z/2∼= Z/2 ∗ Z/2.
LEMMA 6.2. Letπ be a finite group acting linearly onRn such that the action is
free outside the origin. If|π | is odd, there exists to every prime divisorp of |π | a
unique subgroup ofπ of orderp. If |π | is even, there is a unique (and therefore
central) element of order2 in π .

Proof. If |π | is even,π contains exactly one non-trivial element of order two
[29, Remark on page 624]. Hence it remains to treat the case where|π | is odd.

By [49, Theorems 5.3.1, 5.3.2 and 5.4.1],π is generated by two elementsA,B
such that form and n the order ofA and B, respectively, one has(m, n) =
1, BAB−1 = Ar with rn ≡ 1 (m), and if d is the multiplicative order ofr in
Z/m, then for every primep dividing d one hasp|n/d andp2|n. In particular
there is a split extension 1→ 〈A〉 → π → 〈B〉 → 1. Any elementx ∈ π can be
written uniquely asAaBb for a ∈ Z/m andb ∈ Z/n.

Suppose thatxp = 1. Sincexp can be written asx = AcBpb for some integer
c ∈ Z/m, we concludepb = 0(n). Suppose thatp does not dividen. Then this
impliesBb = 1 and hencex = Aa with ap = 0(m). Hencex lies in the subgroup
〈Am/p〉. Therefore,〈Am/p〉 is the unique subgroup ofπ of orderp if p does not
dividen. Suppose thatp dividesn. Thenp does not dividem andpb = 0(n), and
hence we can writeb = kn/p. We havep|n/d, and so

Bn/pAB−(n/p) = Ar(n/p) = Ard(n/pd) = A.
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Therefore,xp = AapBpb = 1 which impliesx ∈ 〈Bn/p〉. Hence〈Bn/p〉 is the
unique subgroup ofπ of orderp if p dividesn.

LEMMA 6.3. LetG be as in Theorem 0.2. Then

(a) the intersection of any two different maximal finite subgroups ofG is trivial;

(b) for H ⊂ G a non-trivial finite subgroup there is precisely oneG-conjugacy
class of subgroups(M) withM ⊂ G maximal finite such that(H)6 (M);

(c) letM ⊂ G be a maximal finite subgroup andK,L ⊂ M. ThenNMK = NGK
and(K)M = (L)M ⇔ (K)G = (L)G.

Proof. We give only the proof of assertion (a), the other assertions are direct
consequences using the conclusion from Lemma 6.1 (a) thatNGM = M holds for
a maximal finite subgroupM ⊂ G.

Let M,N ⊂ G be maximal finite groups with non-trivial intersectionH :=
M ∩ N . If |M| and |N | are odd,H contains a unique (normal) subgroupU of
orderp for anyp dividing |H | by Lemma 6.2. SinceM andN contain exactly one
subgroup of orderp, they both normalizeU , so we must haveNGU = M = N ,
sinceM andN are maximal andNGU is finite by Lemma 6.1 (a).

If |M| and|N | are even,M andN contain exactly one element of order 2, say
tM andtN , respectively. These are central inM resp.N , so they are both contained
in the finite groupNGH . SinceNGH is finite and acts freely onZn as well by
Lemma 6.1 (a), it contains a unique element of order 2, sotM = tN =: t . Again,
we haveNG〈t〉 = M = N because of the maximality ofM andN and the finiteness
of NG〈t〉.

Suppose|M| is even,|N | is odd. ThenH contains a subgroupU of prime order
with NGU = N . On the other hand,H ⊂ M is centralized by the unique element
of order 2 inM, sot ∈ NGU = N which is a contradiction.

Now we can give the proof of Theorem 0.2.
Proof. (a) Consider the commutative diagram of contravariantOr(G)-spaces∐
α∈A
(Iα)∗(?Mα,TR) -

∐
α∈A
(Iα)∗(?Mα,ALL)

?G,TR
?

- ?G,FIN
?

(6.1)

where the horizontal maps are given by inclusions and the vertical maps are the
adjoints under the adjunction homeomorphism (2.1) of the inclusions ofOr(Mα)-
spaces for the obvious functorIα : Or(Mα) → Or(G). The evaluation of the
diagram ofOr(G)-spaces above at an objectG/H gives pushouts of spaces with
a cofibration as upper horizontal map. We get for this evaluation from Lemma 2.2
(b) and Lemma 6.3 (b) and (c)
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∐
α∈A
∗ ×Mα

G
Id- ∐

α∈A
∗ ×Mα

G

∗? Id - ∗?

∅ - ∗

∅

Id

?
- ∗

Id

?

∅ Id - ∅

∅

Id

?
Id - ∅

Id

?

H = 1, H ∈ FIN ,H 6= 1, else.

Lemma 1.1, Theorem 1.2, Lemma 2.1 (c), Theorem 2.3, Lemma 2.5 and Lemma 6.1
(b) show that each map in the following composition is an isomorphism⊕

α∈A
HG
q (?Mα,ALL, ?Mα,TR;K )

∼=−→HG
q (?G,FIN , ?G,TR;K )

∼=−→HG
q (?G,VC, ?G,TR;K )

∼=−→HG
q (?G,ALL, ?G,TR;K ).

The assertions now follow from Lemma 2.4 and the fact thatKq(ZK) = 0 for a
finite groupK andq 6 − 2 [13].

(b) Lemma 1.1 and Lemma 2.1 (c) applied to (6.4) andL̃ yield an isomorphism⊕
α∈A

HMα
q (?Mα,ALL; L̃ )

∼=−→HG
q (?G,FIN ; L̃ ).

Together with Theorem 1.2 and Lemma 2.8 (b) we obtain an exact sequence which
splits into short exact sequences after tensoring withZ[1/2|π |]

· · · → Hq+1(G\EG;L (Z))[1/2]
δq+1−−→

⊕
α∈A

L̃q(ZMα)[1/2]→ Lq(ZG)[1/2]

→ Hq(G\EG;L (Z))[1/2]
δq−→ · · · .

Sinceδq ⊗ Q is trivial and its target
⊕

α∈A L̃q−1(ZMα)[1/2] is free as aZ[1/2]-
module by Theorem 3.2 (c),δq is trivial for all q ∈ Z. Hence assertion (b) follows
if we can find an isomorphism

Hq(G\EG;L (Z))
[

1

2|π |
]
∼= Hq(π\T n;L (Z))

[
1

2|π |
]
.

SinceZn is torsion free and therefore, acts freely onEG, Zn\EG is a model
for BZn. Choose a homotopy equivalencef : Zn\EG → T n which induces on
π1 = H1 the obvious mapH1(Zn\E(G,FIN )) ∼= Zn ∼= H1(Rn/Zn) = H1(T

n).
This mapf respects the obviousπ = Zn\G-operation onZn\EG and theπ -
action onT n by conjugation up to homotopy since the isomorphismH1(f ) is π -
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equivariant. Thusf induces aZπ -isomorphismHp(f ) : Hp(Zn\EG)
∼=−→Hp(T

n)

for p> 0. By the Atiyah–Hirzebruch spectral sequencef induces an isomorphism

Hp(Zn\EG;L (Z))⊗Zπ Z
[

1
2|π |
] ∼=−→Hp(T

n;L (Z))⊗Zπ Z
[

1
2|π |
]
. Now the claim

follows since the projections induce isomorphisms

Hp(Zn\EG;L (Z))⊗Zπ Z
[

1

2|π |
] ∼=−→Hp(G\EG;L (Z))

[
1

2|π |
]
,

Hp(T
n;L (Z))⊗Zπ Z

[
1

2|π |
] ∼=−→Hp(π\T n;L (Z))

[
1

2|π |
]
,

(c) is proven analogously to assertion (b). This finishes the proof of Theorem 0.2.

Remark6.4. LetG be as in Theorem 0.2. We want briefly sketch the compu-
tation ofLεn(ZG) without inverting 2. For this purpose we will need forLε for
ε = −∞, p, h or s that the isomorphism conjecture is true forG with respect to
the family of virtually cyclic subgroups. Notice that Farrell and Jones [18] formu-
late their Isomorphism Conjecture only forL−∞ and that they have shown that it
cannot be true simultaneously forε = h andε = s in the caseG = Z2 × Z/5
[20]. However, using the various Rothenberg sequences together with the explicit
computations of the lower and middleK-theory and the five lemma one can show in
this particular case that the isomorphism conjecture with respect toVC and without
inverting 2 is true for all of the decoratedL-groupsL−∞, Lp, Lh, Ls if it holds for
one of them. Since it is known forL−∞ for G as in Theorem 0.2 [18, Theorem
2.1 and Remark 2.1.3], the computations below are true without any assumptions.
Notice thatZ2× Z/5 does not fall under the groups appearing in Theorem 0.2.

Let {Vδ | δ ∈ D} be a full system of representatives of the conjugacy classes of
subgroupsV ⊂ G which are maximal among the subgroups ofG isomorphic to
Z/2 ∗ Z/2. Notice for any virtually cyclic subgroupV ⊂ G with V ∼= Z/2 ∗ Z/2
thatNGV is subconjugated to precisely oneVδ. One can show by the same methods
as before that one obtains long exact sequences

· · · →
⊕
δ∈D

UNilq+1→ HG
q (?G,FIN ;L ε)→ Lεq(ZG)→

⊕
δ∈D

UNilq → · · · ,

whereUNilq is theUNil-term appearing in [12, Theorem 10] and

· · · → Hq+1(G\EG;L (Z))→
⊕
α

L̃εq(ZMα)→ HG
q (?G,FIN ;L ε)

→ Hq(G\EG;L (Z))→ · · · ,
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where the last sequence splits after inverting|π |. The first exact sequence splits,
too; a splitting is given by the obvious map⊕

δ∈D
UNilq →

⊕
δ∈D

L̃εq(ZVδ)→ Lεq(ZG).

Hence we obtain an exact sequence which splits after inverting|π |
· · · → Hq+1(G\EG;L (Z))→

⊕
α

L̃εq(ZMα)⊕
⊕
δ∈D

UNilq → Lεq(ZG)

→ Hq(G\EG;L (Z))→ · · · .
From now on suppose that|π | is odd. Since

⊕
α L̃

ε
q(ZMα) contains no odd torsion

(see Theorem 3.2 (c) andG contains no subgroup of order 2, we obtain a short
exact sequence which splits after inverting|π |

0→
⊕
α

L̃εq(ZMα)→ Lεq(ZG)→ Hq(G\EG;L (Z))→ 0.

Remark6.5. A variation of the proofs of Theorems 4.4 and 0.2 yield a similar

result in the case of an extension 1→ Zn → G
p−→ π → 1, whereπ is now a

dihedral groupD2m = 〈s, t | sm = t2 = (st)2 = 1〉 (note that by Lemma 6.2,π
cannot act freely onZn if m > 1) such that the cyclic subgroup〈s〉 of orderm
acts freely onZn. We only have to replace the system{Hβ} in Theorem 4.4 by a
full system of representatives of conjugacy classes of subgroupsH of order 2 with
p(H) ∩ 〈s〉 = 1 and to replace the system{Mα} by a full system of conjugacy
classes of maximal finite subgroupsM of G with p(M) ∩ 〈s〉 6= 1. PutB ′ = {β ∈
B | p(NGHβ) 6= p(Hβ)} andB ′′ = B\B ′. Then the claims and proofs for algebraic
K- andL-theory are the same as in Theorem 4.4. Letm(t) andm(β), respectively
be the non-negative integer satisfyingZm(t) ∼= (Zn)〈t〉 andZm(β) ∼= (Zn)p(Hβ),
respectively. For instance for the topologicalK-theory, we get

(a) Suppose thatm is odd. ThenB = B ′′ and we obtain short exact sequences

0 → |B| ·Kq(T m(t))⊕
⊕
α

SK̃q(C
∗
r (Mα))

→ Kq(C
∗
r (G))→ Kq(G\EG)→ 0,

(b) Supposem is even. Then we obtain the long exact sequence

· · · → Kq+1(G\EG)→ HG
q (?G,FIN ; K̃ )→ Kq(C

∗
r (G))

→ Kq(G\EG)→ · · · ,
the short exact sequence
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0→
⊕
β∈B

K0(T
m(β))⊕

⊕
α

SK̃0(C
∗
r (Mα))→ HG

0 (?G,FIN ; K̃ )

→
⊕
β∈B ′

coker
(
K0(T

m(β))→ K0(Z/2\T m(β))
)→ 0

and the isomorphism⊕
β∈B ′′

K1(T
m(β))

∼=−→HG
1 (?G,FIN ; K̃ ),

whereZ/2 acts onZm(β) by− Id and thus onT m(β).
If we invert 2, these exact sequences reduce to short exact sequences

0 →
⊕
β∈B

Kq(BWGHβ)[1/2]⊕
⊕
α∈A

SK̃q(C
∗
r (Mα))[1/2]

→ Kq(C
∗
r (G))[1/2]→ Kq(G\EG)[1/2]→ 0.

(c) If we invertm, the short exact sequences above split into short exact sequences
and isomorphisms respectively and we obtain isomorphisms

Kq(D2m\T n)[1/m] ⊕
⊕
β∈B

Kq(BWGH)[1/m] ×

×⊕
⊕
α∈A

SK̃q(C
∗
r (Mα)[1/m]

∼=−→ Kq(C
∗
r (G))[1/m].

Form(β) > 1, the group coker
(
K0(T

m(β))→ K0(Z/2\T m(β))
)

is nontrivial.

For the proof of the above results cf. [45].
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