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Abstract. The verification of the isomorphism conjectures of Baum and Connes and Farrell and
Jones for certain classes of groups is used to compute the alg&braiw L-theory and the topolo-
gical K -theory of cocompact planar groups €ocompact N.E.C-groups) and of groupsppearing

in an extension 1-» 7Z" — G — m — 1 wherex is a finite group and the conjugation
action onZ" is free outside Oc Z". These computations apply, for instance, to two-dimensional
crystallographic groups and cocompact Fuchsian groups.
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0. Introduction

The goal of this paper is to compute the algebiigroupskK ,(ZG) for p <1,

the algebraid.-groupsL ,(ZG) for p € Z (mostly after inverting 2) of the integral
group ringZG and the topologicak -groupsk ,(C;(G)) for p € Z of the reduced
C*-algebraC’(G) for certain infinite (discrete) grougs. Namely, we assume that

G is either a cocompact planar group or that there is an exact sequencé"l—

G — n — 1, wherer is a finite group and the conjugation actionofon Z"

is free outside Oc Z". A cocompact planar group is a discontinuous group of
isometries ofS?, R? or H? with compact quotient. More information about these
groups and the result of the explicit computations will be given in Section 4 (see
Theorems 4.4 and 4.9).

For our techniques to work it is crucial to have very good information on the
structure of the finite subgroups, as well as their normalizers, and the infinite
virtually cyclic subgroups of cocompact planar groups. More explicitly, we use
that all maximal finite subgroups are either cyclic or dihedral, and that a com-
mon subgroup of any two different maximal finite subgroups has at most two
elements. Furthermore, the normaliz€g M of a maximal finite subgroup/s
satisfiesNgM = M, except if M is generated by a single reflection, in which
caseNgM = 7 x 7Z/2. These exceptions are responsible for the summands in-
dexed byB and B” in Theorem 4.4, whereas the other maximal finite subgroups
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correspond to the summands indexeddoyFinally, we have a complete list of the
infinite virtually cyclic subgroups of a cocompact planar group; they are given as
subgroups of very simple amalgams. This will allow us to reduce the computations
in algebraicK - and L-theory from the family of virtually cyclic subgroups to the
family of finite subgroups. All the facts about cocompact planar groups mentioned
above will be recollected in Theorem 4.3 and Lemma 4.5 and 4.6.

Examples of cocompact planar groups are cocompact Fuchsian groups. Next
we give the result in this comparatively easy case as an illustration.

THEOREM 0.1. Let F be a cocompact Fuchsian group with presentation

_ n _
F={ay, by, ... ,aq,bg,c1,...,¢,|cy =---

=c/' =c;t ¢ ar bl - [ag, byl = 1)
for integersg,t >0andy; > 1. Then

(a) the inclusions of the maximal subgroupgy; = (c;) induce an isomorphism

t
@ wh, (z/y;) = Wh, (F)
i=1
for ¢ < 1. If the isomorphism conjecture for algebraic K-theory (see 1.9 and
Theorem 1.10) holds faF also in dimensiong > 2, then this is an isomorph-
ism for all ¢ € Z. (Information aboutWh,(Z/y;) is given in Theorem 3.2

(d);

(b) there are isomorphisms
L+ [5])-zly/2 g =04,

ot | 20 EL72] g =1,
L,(ZF)[1/2] = (1+Z§:1 [VTl]) -Z[1/2] q =2(4),
0 q =34,

where[r] for r € R denotes the largest integer less than or equai;to
(c) there are isomorphisms

* ~[@2+X_n—-D)-Z ¢q=0,
Kq(cr(F))={§2g).Z ) C]Il.

We will give more information about the algebrdietheory of cocompact Fuch-
sian groups without inverting 2 in Remark 4.10. The algebkaitheory in dimen-
sions < 1 of cocompact Fuchsian groups has been computed in [7].

Other examples of cocompact planar groups are two-dimensional crystallo-
graphic groups. TheiK- and L-theory is explicitly computed in Section 5. For
a two-dimensional crystallographic grodpthe algebraick -theory of ZG in di-
mensions< 1 has already been determined in [32], and the topolodicéheory
of C*(G) in [51].
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In Section 6 we will prove a result which is similar to that of Theorem 4.4 but
applies to certain virtually Abelian groups whose classifying space for the family
of finite subgroupsEG = E(G, FZN) is of higher dimension. (For an infinite
cocompact planar grou, a model forE G is R? or H? with the obviousG-action,
and for the groups; appearing belowR”" with a certainG-action is a model for
EG)

THEOREM 0.2.Letl — Z" — G — 7w — 1 be a group extension for a finite
group r such that the conjugation action afonZ" is free, i.e. the only element

in 7 with a fixed point inZ" different from zero is the identity elementsin Let

{M, | « € A} be a complete system of representatives of conjugacy classes of
maximal finite subgroups @f. Then

(a) the natural map induced by the inclusions of subgroups

@th(Ma) — Wh,(G)
acA
is an isomorphism fog < 1, and K, (ZG) is trivial for g < — 2.
If the isomorphism conjecture in algebrakt-theory (see 1.9 and Theorem 1.10)
holds also forg > 2, then the map above is an isomorphism forgat 7Z;
(b) there are short exact sequences

0 > P Ly(ZM[1/2] > Ly(ZG)[1/2]
a€A

— H,(G\EG:L(Z))[1/2] - O,

wherelL (Z) is the L-theory spectrum associated to the rifig H,.(—; L (Z))

is the associated homology theory and the first map is induced by the various
inclusionsM, — G.

If we invert2||, this sequence splits and we obtain isomorphisms

N 1 1= !
(@ L,@M,) [ﬂ) & e\ T L) 5 | 5 10E0) 7]

acA

where ther-action on7” is induced by the conjugation actionofon Z";
(c) there are short exact sequences

0— P K, (C; (M) — Ky(CF(G)) — Ky(G\EG) — O,
acA
whereK,(G\EG) is the topological compleX -homology ofG\EG and the
first map is induced by the various inclusiolg — G.
If we invert|r|, this sequence splits and we obtain isomorphisms

. 1 1 1
(@ K, (Cr (M) [—D ® K, (\T") [H} > K (CHG)) L—] .

ot || 7|

112
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We will present more detailed information on thetheory (without inverting
2) of groups as in Theorem 0.2 in Remark 6.4. Furthermore, we can generalize the
methods of Theorem 0.1 and 0.2 to yield similar results for groups which are given
as extensions of the form3 Z" — G — © — 1, wherer = D,,, is a dihedral
group of order & such that the subgroup/m acts freely or#Z". See Remark 6.5
for more information on this.

Our computations use the isomorphism conjecturek iand L-theory due to
Farrell and Jones and to Baum and Connes which are known to be true for the
groups we consider here. We exploit the unified treatment of these conjectures
of [15]. Thus the computation is reduced to the investigation of the homology
of certain spaces over the orbit category with coefficientXinand L-spectra
over the orbit category which will be carried out by homological methods, mainly
Mayer—Vietoris sequences. There are various spectral sequences to compute these
homology groups but they turn out to be too complicated even for the relatively
elementary groups we consider here. It seems to be very hard to comput&these
and L-groups integrally (or after inverting 2) for more general groups even if one
assumes in th& -theory case that one does know tkietheory of integral group
rings of finite subgroups. Rationally these computations can be done via Chern
characters and lead to rather general and explicit formulas, since the existence
of the Chern characters guarantees that the relevant spectral sequences collapses
[27]. The integral computations df - and L-groups presented here exploit the
explicit knowledge and special properties of the virtually cyclic and finite sub-
groups and their normalizers of the groups under consideration (see Lemma 4.5
and Lemma 6.3).

The paper is organized as follows:

(1) Review of the isomorphism conjectureskin and L-theory.

(2) Preliminaries about spaces over the orbit category.

(3) Preliminary computations d&€- andL-groups of finite groups.

(4) Cocompact planar groups.

(5) Two-dimensional crystallographic groups.

(6) Extensions of finite groups with a free Abelian group references.

1. Review of the Isomorphism Conjectures irK - and L-Theory

We want to review the isomorphism conjectureskinand L-theory as far as we
will need here. Since we want to do this in the language of spaces and spectra over
a category we give some basic facts about these notions. More information can be
found for instance in [15, 18].

Given a (discrete) groug, afamily 7 of subgroups is a set of subgroups of
G closed under taking subgroups and conjugates. Our main examples for famil-
ies will be the familiesTR, FZN, VC and ALL, respectively, consisting of the
trivial subgroup, finite subgroups, virtually cyclic subgroups and all subgroups,
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respectively. Recall thaf is virtually cyclic if G is finite or contain, as subgroup
of finite index. Theorbit categoryOr(G, F) of G with respect taF has as objects
homogeneous spacés/ H with H € F and as morphism&-maps. IfF is the
family ALL of all subgroups, we abbreviat@r(G, ALL) by Or(G).

A contravariant (pointed)Or(G)-spaceis a contravariant functor fror@r(G)
to the category of (pointed) spaces. A morphism between contravariant (pointed)
Or(G)-spaces is a natural transformation.GAspaceX defines a contravariant
Or(G)-space by assigning 6/ H its H-fixed point setX”? = map,(G/H, X). A
covariantOr(G)-spectrurmis a covariant functor from the categddy(G) into the
categorySpectra of spectra. An objeckE in Spectra is a sequence of spaces
(E,)nez together with structure maps,: XE, — E,., for eachn € Z. A
mapf: E — F of spectra is a sequenc¢,,: E, — F,).cz Of maps satisfying
fur100E = oFoXf, for all n € Z. Theqth homotopy groupr, (E) of a spectrum
E for ¢ € Z is the colimit colim,_, o, 7,4, (E,) with respect to the obvious maps
Tgn(En) = my4nt1(Eny1) induced by the structure maps and the suspension
homomorphisms. Next we review our main examples of covafafiG)-spectra.

Let Groupoids be the category of groupoids. L&troupoids™ be the subcat-
egory of Groupoids which has the same objects@soupoids and as morphisms
covariant functorsF': Gg — Gy which are faithful, i.e., for any two objects, y
in Go the induced map mgg(x, y) — morg, (F(x), F(y)) is injective. A leftG-
set S defines a groupoi@“(S), where OlGC(S)) = S and mots,t) = {g €
G | gs =t} for s, t € S. The composition law is given by group multiplication.
Obviously a map of lefG-sets defines a functor of the associated groupoids. The
categoryG(G/H) is equivalent to the groupoid associated wihwhich has one
object andH as set of morphisms, and hengéG/ H) can serve as a substitute for
the subgroup . Thus we obtain a covariant functor

G%: Or(G) — Groupoids™. (1.1)
In [15, section 2] covariant functors

K&9: Groupoids —> Spectra,

L: Groupoids —> Spectra,

KP: Groupoids™ — Spectra,

are constructed using [34] and [40] in the algebraic context. (Unfortunately there
is a problem in the actual construction Kf°P concerning the pairing in [15,

page 217] which will be corrected elsewhere. This does not affect the results of
this paper.) We denote their composition wii by the same letters or by the
following abbreviations and obtain covariant functors

K = K?;lg: Or(G) — Spectra, 1.2)
L = Lg: Or(G) — Spectra, (1.3)
K = thp: Or(G) — Spectra. (1.4)
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Notice thatr,(L(G/H)) = L,(ZH), n,(K¥(G/H)) = K,(ZH) and (K"
(G/H)) = K,(C}(H)), whereC}(H) is the reducedC*-algebra of the group
H and K,(C}(H)) denotes its topologicak -theory. Functoriality for aG-map
G/H — G/K, g'H — g'g~'K corresponds under this isomorphism to induction
with respect to the injective homomorphisth— K given byh — ghg™>.

If + denotes the trivial groupoid consisting of one morphism, there is for any
groupoid G the canonical projection pr§ — x. Denote byL(G) the homo-
topy fiber of the map of spectia(pr): L(G) — L (x). Thus we obtain covariant
functors

K = Kglg: Or(G) — Spectra, (1.5)
L=Lg: OrG) — Spectra, (1.6)
K = K&P: Or(G, FIN) — Spectra. 1.7)

Notice that we have definel>" only for Or(G, FZN). The problem is that
pr: G — x is not a morphism inGroupoids'™. However, if we replace the
reducedC*-algebra by the maximaC*-algebra, therK'°P is indeed a functor
on Groupoids, and for amenable groups such as all finite groups and virtually
Abelian groups the natural map from the maximal to the reducedlgebra is
an isomorphism [33, Theorem 7.3.9 on page 243]. Notice that we onlyKeed
Kt(‘;’p: Or(G, FIN) —> Spectra since it will be only applied in context with
Or(G)-spacesX for which X (G/H) is empty for infiniteH .

The homolongqG (X; E) of a contravarianOr(G)-spaceX with coefficients
in the covariantOr(G)-spectrumE is defined forg € Z in [15, section 4] using
Or(G)-CW-approximations. The above homology groups are functorial and
E. We get from [15, Lemma 4.4]

LEMMA 1.1. HI?(X, A; E) is an unreduced homology theory on pairs of con-
travariant Or(G)-spaces which satisfy the WHE-axiom and the disjoint union
axiom.

To be more precise, homology theory means that homotopic maps of pairs
of contravariantOr(G)-spaces induce the same maps on the homology groups,
that there are long exact sequences of p@airsA), and that for any commutative
diagram of contravariar®r(G)-spaces

X0L>X1

l lh

X2——X
J2

the map(jo, i1): (X2, Xo) —> (X, X4) induces an isomorphism on homology,
provided that the evaluation of the diagram at any objecH yields a pushout of
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spaces with a cofibration of spaces as upper horizontal arrow. We will frequently
use the associated long exact Mayer—Vietoris sequence

-5 HI(X0:E) » HO(X1:E) ® HS (X2 E) — HS (X E)
a
— HY (X E) > -+

The disjoint union axiom says that for an arbitrary disjoint union the obvious
map from the direct sum of the homology groups of the various summands to the
homology of the disjoint union is an isomorphism. The WHE-axiom requires that a
weak homotopy equivalence of contravari@ht(G)-spaces induces an isomorph-
ism on homology, where amafx. X — Y of Or(G)-spaces or spectra is called
connectedesp. aveak homotopy equivalendéthe mapf(G/H): X(G/H) —

Y (G/H) isn-connected resp. a weak homotopy equivalence for every abjeet

In order to guarantee the WHE-axio@r(G)-C W-approximations are used in the
definitions. Notice, however, that we will almost everywhere do calculations with
the Or(G)-spaceX itself and not with itS0r(G)-C W-approximations, which will

be quite convenient since ther(G)-spacesX we will deal with will very often

be very simple. Namely, we will consider tla&r(G)-spaces r associated to a
family F, which assigns to an object/H the spacex consisting of one point

if H belongs toF and the empty sefi otherwise. For these spaces it will be
comparatively easy to check whether the necessary conditions are satisfied for the
square above to get a Mayer—Vietoris sequence.

Notice in the sequel that for any covariadt(G)-spectrumk there is a canon-
ical isomorphism

HE (x6, 4221 E) = 4 (E(G/G)),

which comes from the fact that; 1., is anOr(G)-C W-complex. The isomorph-
ism conjecture for a grou@, a family of subgroups and anOr(G)-spectrume
says that the map induced by the inclusienr — *¢ . acc

H (x¢.7; E) = H[ (¢ Acc; E) = 1,(E(G/G)) (1.8)

is an isomorphism for aly € Z. The philosophy is to compute the groups of
interestr, (E(G/G)) by the values oE(G/H) on the groups inH € F. The
isomorphism conjectures of Farrell and Jones for algel¥aibeory andL-theory

are the special cases wheteis given by theOr(G)-spectraK and L of (1.2)

and (1.3) andF is the family VC of virtually cyclic subgroups of;. The Baum—
Connes conjecture is the special case wikeiggiven by theOr(G)-spectrak '°°

of (1.4) andF is the family #Z N of finite subgroups o;. The Farrell and Jones
isomorphism conjecture and the Baum—-Connes conjecture provide tools to com-
puterr, (K¥9(G/G)) = K,(ZG), 7,(L(G/G)) = L,(ZG) andr,(K"P(G/G)) =
K,(C}(G)) in terms of data given by the virtually cyclic subgroups or the finite
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subgroups of5. If G is torsion free, these conjectures predict thaijfar Z

Wh, (G) =0,
Ly(ZG) = Hy(BG; L(Z)),
Ky(CE(G)) = Ky (BG),

where H,(BG; L (Z)) is the homology of the classifying spad with respect

to the L-theory spectrum associated to the riig K,(BG) is the topological
complexK -homology of BG and Wh (G) denotes the reduced negative or zeroth
K-group K,(ZG) for ¢ <0, the ordinary Whitehead group W) for g = 1
and Waldhausen’s definition fgr> 1 in terms of the fiber of the assembly map
BG . ANK(Z) — K(ZG).

We mention that the assembly map appearing in the original conjectures of
Farrell and Jones and of Baum and Connes are different from the one presented
here. Their identification is discussed in [15, page 239, page 247-248] and based
on [11] and [39, Proposition 8.4 on page 421].

THEOREM 1.2. Let G be a planar group with compact orbit space or a virtually
finitely generated Abelian group. Then the assembly maps

HE (kg ye: K¥9) — HE (g acc: K9 = K, (ZG) forg <1,
HY (kg 7za7 L[1/2] > HY (6. acc: LI[L/2] = Ly (ZG)[1/2] for g € Z,
H (6,77 K'®) = HY (k. acc: K'P) = K, (CH(G)) forg € Z,

are isomorphisms. The first map is surjectivedog 2.

Here and in the sequed[l/m] for an integerm >1 meansA ®yz Z[1/m]
for Z[1/m] = {a-m® € Q | a,b € Z}. Thus A[1/m] is obtained fromA
by inverting m. The claim for algebraick- and L-theory is a consequence of
the results of [18, Proposition 2.3, Proposition 2.4 and Remark 2.1.3], [50] and
Theorem 2.3. Since we will invert 2 in (almost) all olirtheory calculations we
do not have to distinguish between the various decorations-grfoups such as
L", L* or L= as they differ by 2-torsion because of the Rothenberg sequences.
The Baum—-Connes-conjecture has been proven for a very large class of groups
including virtually finitely generated Abelian groups and cocompact planar groups
[21, Theorem 1.12].

2. Preliminaries About Spaces Over the Orbit Category

In this section we prove some facts about spaces over the orbit category and their
homology which will be needed later.

Given a homomorphism of groups H — G, there is an induced functor
I =1(@G): Or(H) — Or(G) sendingH/K to G x; H/K = G/i(K). Given a
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(covariant or contravarian)r(G)-spaceY, we obtain a (covariant or contravari-
ant) Or(H)-spacel*Y called the restriction ot with I by the compositior¥ 1.
Given a covarian©Or(H)-spaceX, its induction/, X is the covarianOr(G)-space
defined in [15, Definition 1.8]. Its value at the obj&gt K of Or(G) is the quotient
space

[I X@#H/L) x map;(G/K, G/i(L))/ ~.

H/LeOr(H)

where~ is the equivalence relation generated(®&(¢)(x), ) ~ (x, I(¢)oyr) for
aH-map¢: H/L — H/L',aG-mapy: G/K — G(i(L)) andx € X(H/L).
There is an adjunction homeomorphism for @n(G)-spaceX and anOr(G)-
spaceY (see [15, Lemma 1.9])

homo (6 (1.X, ¥) = homo. (X, I°Y). (2.1)

In the sequel we use the identification of the Weyl gréVipH = NgH/H with
the automorphism group a4tG/H, G/H) which sendsgH € NgH/H to the
G-mapR,-1: G/H — G/Hg'H ~ g'g~*H. Notice that au§(G/H, G/H) =
map; (G/H, G/H) holds for finiteH but not in general (see [26, Example 1.32 on
page 22]).

LEMMA 2.1. Let G be a group with subgroup#/, L C G. Let {H,|la € A}

be a complete system of representatived.-@onjugacy classes of subgroups of
L which areG-conjugated toH. To every indexx € A choose an isomorphism
we: G/H — G/H,. Letl = I(L) be the functor induced by the inclusi@én—

G. Then we have fokK C L:

(a) The following map is a natural equivalence of functors(L) — Sets

T(L/K): ]_[mapL(L/Ha,L/K) x

aeA

Xw, o, WeHy, — map,(G/H, G/K)
[¢, ¥] = (Idg x1.@)eYropie,
(b) There is a homeomorphism, natural X

[ [ X@/H) xw, 1, WeHoy — 1,X(G/H)

a€A

for every contravarianOr(L)-spaceX,
(c) There is a natural isomorphism

HE(1.X; E) = H[(X; E)
for E one of the spectra associated@and L in (1.2)—(1.7),
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(d) The map from{g € L\G/NgH | gHg™! C L} to the set ofL-conjugacy
classes of subgroups @f being G-conjugated toH which sendd.gNgH to
(gHg™Y, is bijective.

Proof. (a), (b) and (d) are elementary consequences of the definitions. (c) fol-
lows from the facts that induction with: Or(L) — Or(G) sends arOr(L)-
CW-approximation to arDr(G)-C W-approximation and that the canonical map
E. — I*E; is an equivalence ddr(L)-spectra together with the adjunction (2.1)
and [15, Lemma 4.6]. O

Sometimes we can use smaller families thahsuch as the familyFZN of
finite subgroups as explained in the next result. Notice that feroo andm = 1
it is just [18, Theorem A.10].

DEFINITION 2.2. LetG be a group, and leF be a family of subgroups af. For
a subgroupH of G, we defineH N F to be the family of subgroups @ given as
{(HNK |K e F).

THEOREM 2.3.Let F C G be families of subgroups of the group Letm > 1
andn be integers. Suppose for eveily< G that the assembly map
H, ep unrs TH) E)L/m] — H[ ey accs [(H)'E)[1/m]
is an isomorphism fog < n. Then the relative assembly map
Hy (v, 73 B)[1/m] — H; (x6,g; E)[1/m]
is an isomorphism fog < n.
Proof. In the sequel we use the identification

H¢ : E) = 7, (hocolimE
» (6. 75 E) nq(Or(G,]-‘) )

as explained in [15, section 3]. By assumption the map
( hocollm I(H)* E) [1/m] = 7, (E(G/H))[1/m]
Or(H,HNF

is an |somorph|sm foy <n and H € G. A standard spectral sequence argu-
ment applied to the Atiyah—Hirzebruch spectral sequence [15, Theorem 4.7] or the
Bousfield—Kan spectral sequence [9, XXII 5.7 on page 339] shows that the induced
map

hocolim hocolim 7 (H)*E ) [1 hocolimE)[1
q(oqt(:glgr)nmgg%r;g) (H) )[ /m] = my( 1ocolim )[1/m]

is an isomorphism fog < n. There is an equivalence of categories

Or(G,F) | (G/H) > Or(H,HNF) (G/F — G/H) > H/F,

where Or(G, F) | (G/H) denotes the category of objects oweyH. For
E'(G/F — G/H) := E(G/F) we get an isomorphism
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m,( hocolim  hocolim I(H)*E) _nq( hocolim hocolim E’)
G/HeOr(G,G) Or(H,HNF) G/HeOr(G,G) Or(G,F)|G/H

By [24, Theorem 2.4] the homotopy colimits commute, hence there is an isomor-
phism forg <n

T, (hocolimE) [1/m]

0r(G.9)

12

nq< hocolim  hocolim I(H)*E) [1/m]
G/HeOr(G,G) Or(H,HNF)

12

nq< hocolim  hocolim 7(H)* E) [1/m]
G/HeOr(G,G) Or(H,HNF)

12

7, | hocolim  hocolim E’)[1/m]
G/HeOr(G,G) Or(G,F)|G/H

I12

7, | hocolim  hocolim E’)[1/m]
G/HeO1(G,F)Or(G,G)|G/H

= m, <I‘(\)()T(E((;)|]|__r)nE) [1/m]. O

Recall that aclassifying spaceE (G, F) for a family F of subgroups of5 is
a G-CW-complex whoseH -fixed point set is contractible iH € F and empty
otherwise. Such &-space is unique up t6-homotopy. In particulak (G, 7R) is
a model forEG. We abbreviatt(EG = E(G, FIN) for the family FZN of finite
subgroups.

For the reader’s convenience we briefly sketch a different more geometric proof
of Theorem 2.3. Namely, given a model #B(G, G), one can construct a model for
E(G, F) by replacing each celt /Hx D" in E(G,G)byGxy E(H, HNF)x D"
and then use Mayer-Vietoris sequences. Notice that the assumption in Theorem 2.3
implies that for eacti € G the projection induces an isomorphism

H (kg unrs 1H) B)[1/m] = HJ (G xy E(H, HNF); B)[1/m]
= HO(G/H; E)[1/m] = H (xpg.acc: I (H)'E)[1/m],

where we interpret &-space as &r(G)-space by assigning t6/L its L-fixed
point set.

The next result follows from the definitions of WG) in [47, Definition 15.6
on page 228 and Proposition 15.7 on page 229], from the definitiéfok, A; E)
in [15, Section 4] and from [15, Lemma 7.6].

LEMMA 2.4. For a groupG there is an isomorphism

Wh, (G) q =2,
Wh(G) =Whi(G) ¢ =1,
G . walgy vy
Hq (*G,Aﬁﬁv *G,TR7 K ) - KO(ZG) — WhO(G) q — 0’
K,(ZG) =Wh,(G) ¢< —1,

which is natural inG.
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LEMMA 2.5. The assembly map

or(G = ;076G
HY" O (xg r7a: K) = HY O (xgazc: K)

is an isomorphism for any € Z if G = Z or Z/2 x 7Z,/2, and an isomorphism

forq<2if G=7/2x7Z,2/2x (Z]2%7]2), L|4%7,2 Z]4, OF L] 47,2 (Z]2)>.
Proof. We begin with the cas& = Z. A model for EG = E(G, FIN) is

the universal covering of*. Therefore, the source of the assembly map above

reduces toK,(Z) & K,_1(Z) and the assembly map itself is the restriction of the

Bass—Heller-Swan isomorphism (see [4, Chapter XII], [5] and [37, Corollary to

Theorem 8 on p. 114])

Ky(Z) ® K4-1(Z) ® Nil((Z) & Nil ,(Z) — K,(Z[Z])

to the first two summands. Since the riidgs regular and hence all its Nil-groups
are trivial, the assembly map is an isomorphism@ot Z.

ForG =7/2%7/2 =7 % Z/2 there is a model foE G with R as underlying
space such tha®\ EG is the unit interval. Then the assembly map in question can
be identified with the obvious map WZ/2) & Wh,(Z/2) — Wh,(Z/2 x Z./2)
which is bijective by a result of Waldhausen [47, Corollary 11.5 and the following
remark].

By Theorem 3.2 (e) the Nil-groups @{Z,/2 x Z'] are trivial forg < 2 andl > 0.

So the claim follows folG = Z x 7Z/2 from the Bass—Heller—Swan Theorem [4,
Chapter Xll], [5] and [37, Corollary to Theorem 8 on p. 114].

In the remaining cases is of the shap&s = G1 *z,» G» for finite groupsG;
such that WR(G;) = 0 for g <1 (see Theorem 3.2 (div)). The claim fgr< — 1
follows from [19, Theorem 2.1]. We obtain from [47, Theorem 1 on page 137] the
exact sequence

Why(Z/2) — Why(G1) & Why(G2) — Why(G) — Wh(Z/2)
— Wh(G1) ® Wh(G3) — Wh(G) — Ko(Z[Z/2])
— Ko(ZG1) ® Ko(ZG2) — Ko(ZG) — 0

where it is not clear a priori why the last map is surjective. This follows from
the exact sequence, obtained by applying the same arguménitd@ = (G, x
L) x7,2x7, (G2 X 7),

Wh(G1 x Z) ® Wh(G, x Z) — Wh(G x Z) — Ko(Z[Z/2 x 7)),

the computatlonKo(Z/Z x Z) = 0 from Theorem 3.2 (diii) and (e) and the fact

that Ko(ZG1) ® Ko(ZG,) — Ko(ZG) is a natural direct summand in Wi, x

7) ® Wh(G, x Z) — Wh(G x Z) by the Bass—Heller—Swan decomposition. In
order to get the claim fog = 0, 1, 2, one constructs an exact sequence as above
but now witthG(*G,fIN; K 29 instead of Wh(G), together with a map between

these exact sequences, and uses the five-lemma. The last exact sequence is the
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Mayer—Vietoris sequence associated to th& W-model for EG which has one
1-cell with isotropy grougZ/2 and two O-cells with isotropy groups; and G,
[43, Theorem 7 on page 32 and Corollary on page 36]. O

LEMMA 2.6. Let G be a group and le. ¢ G be a normal subgroup such
that there is an epimorphisri: G — L inducing the identity orl.. Denote by
SUB(L) the family of subgroups @ which consists of the subgroupsiof Then
there is an isomorphism

HY (xg.suBw)y: L) = Hy(B(G/L); L(ZL)),

and analogously for both versions &ftheory and all the reduced versions K#f
and L-theory.

Proof. We only treat the case of thie-theory spectruni., the others are com-
pletely analogous. We get from the definitions and [15, section 7] an isomorphism

HqG(*G,SuB(L); L) = n,(E(G/L)+ Agj L(G/L)),

sinceEG/L regarded as &-space via the projectiof — G/L is a model for the
classifying spacé (G, SUB(L)) of G for the familySU/B(L). From f we obtain
a morphism inGroupoids‘™

fe: G9(G/L) = GH(L/L).

Notice thatG/L = aul;(G/L, G/L) acts onG%(G/L) in the obvious way and
that this action induces a non-trivial action biG®(G/L)) although it induces a
trivial action on the homotopy groups. If we eqp (L /L) with the trivial G/L-
action, the maypy, is L-equivariant. Sincef,, is an equivalence of categories, the
induced mapr, (L(G°(G/L))) — =,(L(G*(L/L))) is an isomorphism. Hence
the induced map

nq(E;(G/L)+ NGy L(G/L))
— 7, (E(G/L)+ Agy L(GH(L/L))) = Hy(B(G/L); L(ZL))
is an isomorphism [15, Lemma 4.6]. O

DEFINITION 2.7. If E is a spectrum, we denote the generalized homology of a
spaceX which is associated t& by H.(X; E). If E is the topologicalK -theory
spectrunK = K (C), then we also writ&K.(X) = H.(X; K).

LEMMA 2.8. Let G be a discrete group. Let be aring withZ ¢ A c Q such
that the order of any finite subgroup 6fis invertible inA.

(a) Let H, be any generalized homology theory. Then we obtain a natural iso-
morphism

H.(BG) ®z A = H,(G\EG) ®z A.
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(b) There is a long exact sequence

- > Hy(G\EG; L(2)) — HE (x¢.7zni L) > HE (6. rza7i L)
— Hy(G\EG:L(Z)) > -+~

whereL (Z) is the L-theory spectrum associated to the rifig This sequence
splits after tensoring with, yielding isomorphisms

Hy(G\EG: L(Z)) ®z A ® HE (x¢.7zn: L)

®zA = HS (x¢.rzni L) ®z A
(c) For topological K -theory we obtain the long exact sequence

- > K 1(G\EG) — HE (x¢ 7zn: K) > HE (%6 7107 K)
— K,(G\EG) — ---.

This sequence splits after tensoring wittyielding isomorphisms
K (G\EG)®z A @ HY (x¢.7zn: K) ®2 A > HE (xg rrni K) @z A.

Proof. (a) By the Atiyah—Hirzebruch spectral sequence it suffices to check the
claimed isomorphism in the special case whkfeis the cellular homology..
The claim follows from the fact that the projection induces a homology equivalence
of projective AG-chain complexe€,(EG) ®7 A — C.(EG) ®7 A which is
then anAG-chain homotopy equivalence and hence induces a chain homotopy
equivalenceC,(EG) ®zg A — C.(EG) ®z¢ A.

(b) There are natural maps 6fr(G)-spectra. — L — L (Z), whereL (Z) de-
notes the constar@®r(G)-spectrum with valud (Z) = L (x). Since its evaluation
at an objecG/H is a fibration of spectra, it induces a long exact sequence

8, ~
o= HOL (X L(@) —5 HE(X; D) - HE(X; L) —> HE(X;L(2) — -

’

for any contravarianOr(G)-spaceX. Notice that it suffices to check exactness
for any Or(G)-C W-complexX and hence for an@r(G)-space of the form map
(G/?, G/K) for any fixed objeciG/K in Or(G), where the claim reduces to the
exactness of the long homotopy sequence associated to a fibration. We get from
[15, Lemma 7.6] an identificatiol,” (x¢, 7z7; L (2)) with H,(G\EG; L(Z)) and
thus the desired long exact sequence by talking . rzy -

The composition

H,(BG;L(Z)) = H; (x¢.7r; L) = Hy(x6 rzn; L) = Hy(G\EG; L(Z))

becomes an isomorphism after tensoring withy assertion (a) and thus induces
the splitting of the long exact sequence after tensoring with

The proof of (c) is analogous to that of assertion (b) taking into account that
K,(Y) = H,(Y; K"(C)) holds by definition. O
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3. Preliminary Computations of K- and L-Groups of Finite Groups

In this section we state some computations aédw@nd L-groups for finite groups
which we will use later in the computations for infinite groups.

DEFINITION 3.1. Letr be a finite group. By (), r(;r) andc(r), we denote the
number of irreducible rational, real respective complex representations loft
rc(r) be the number of isomorphisms classes of irreduciblere@presentations
V which are of complex type, i.e. ayt(V) = C. Let RO () resp.R(r) be the
real resp. complex representation ring. For a positive integeve letZ/m denote
the cyclic group of ordem, andD,,, is the dihedral group of orden2

THEOREM 3.2. For a finite groupr, we have the following:

(a) There are isomorphismBO (7)) = Z'™ and R () = Z<™. The numbey ()
is the number of conjugacy classes of cyclic subgroups, itthe numbe ()
is the number of conjugacy classes of elements and the number () is
the number oR-conjugacy classes of elementsinwhereg; andg, in 7 are
R-conjugated ifg; and g, or gIl and g, are conjugated,

>~ () —
(b) K, (Cm) = { A

In particular

Ko(Cr(Z/m)) = Z"
1243 = 02
Ko(Ci(D2y)) = {Z(m—l)/2+2 ZE 1§2;’
Z[1/2Y™ g =0(4),
(©) L,(Zm)[1/2]1 = L,Rm)[1/2] = { Z[1/2]<™ ¢ = 2(4),
0 g =134).

In particular,
Lo(Z[Z/m))[1/2] = Z[1/2]l"+2/2],
Ly(Z[Z/m])[1/2] = Z[1/2]1" =D/,

| z[1/21m/2+3 = 002,
Lo(Z[D2,D[1/2] = { ZElﬁz%(m—l)/Z—i-Z Z _ 152;’
Lo(Z[D2,])[1/2] = 0.

(d) () K,(Zz) =0forg< —2.
(i) The rank oWh(sr) as an Abelian group i8(r) — g (). We have

Wh(Z/m) ~ Z[m/2]+1—5(m)’

whereé (m) is the number of divisors af and[m /2] is the largest integer
less or equal tan /2.
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(iif) We haveWh, () = 0 for g < 1 for the following finite groupsr = {1},
7/2,72/3,7)4,7]2 x 7/2, Dg, Dg. If | is a prime, thenK_1(Z[Z/1]) =
K_1(Z[Z]1 x Z/1]) = 0. We have

0 ¢g=0,1,
Z g=-1,

~]J0 ¢=01,
th(Dlz) = { 7 Z — _1

Wh, (Z/6) = {

(iv) We have

Why(r) = 0, for & = {1}, Z/2, 7./3, 7./ 4,
| Why(Z/6)] < 2,

Wha(De) = Z/2,

Wha((Z/2)?) > (Z/2)2.

The assembly maH,(BZ/2; K(Z)) — K»(Z[Z/2]) is an isomorphism.

(e) There are isomorphisms for an integeg= 0 and a prime numbetrandqg € Z

L,(Z[Z" x 7]D[L/2] = P (’f) - Lyi(Z[xD[1/2],
i=0
K (CHZ' x ) =P (’Z) - K, (Cr (),
i=0
K, (Z[Z" x Z/1])

~ K, Z/ 1) @ n - Ky (Z[Z/1]) & (2> Ky 2T, g<2.
Wh, (Z" x Z/1)

=~ Wh, (Z/1) ® n - Wh,_1(Z/1) & (’;) “Wh,_(Z/1) ¢<2,
Nil,(Z[Z" x Z/1]) =0, q<2.

Proof. (a) is proven in [42, Theorem 7 on page 19, Corollary 2 on page 96,
page 102, page 106]. (b) follows from Morita equivalence applie€jta] =
[15%) M(n;, n;, C) and the computatioko(C) = Z and K1(C) = 0. (c) follows
from [40, Proposition 22.34 on page 253]. (d) The computation& aZ) for
q < — 1 follow from [13]; thatK _1(Zzx) = 0form = Z/lorZ/l x Z/l can also
be found in [4, Theorem 10.6, p. 695]. For information about(jhwe refer to
[31]. The vanishing oo(Zx) is proven forr = Dg in [41, Theorem 8.2] and for
m = Dgin [41, Theorem 6.4]. The cases= 7Z/2, Z/3, Z/4, Z./6, and(Z/2)? are
in [14, Corollary 5.17]. Finally,Ko(ZD1,) = 0 follows from [14, Theorem 50.29
on page 266] and the fact th@D;, as aQQ-algebra splits into copies @ and
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matrix algebras ove®, so its maximal order has vanishing class group by Morita
equivalence.

The claims about WA{(Z/n) for n = 2, 3,4, 6 and for Wh((Z/2)?) are taken
from [16, Proposition 5], [17, p.482] and [46, p. 218 and 221]. Welg&¥Z.Ds) =
3-7Z/2from [46, Theorem 3.1]. The assembly midg(BZ/2; K(Z)) — K»(Z[Z/2)])
is an isomorphism by [17, Theorem on p. 482]. Now construct a commutative
diagram

Hy(BZ/2; K(Z)) — Hy(BDg; K (Z))

~

K2 (Z[Z/2))

K>(ZDg)

whose lower horizontal arrow is split injective and whose upper horizontal arrow
is an isomorphism by the Atiyah—Hirzebruch spectral sequence. Hence the right
vertical arrow is split injective and WDg) = Z/2.

(e) The claim forL-groups follows from the Shaneson splitting [44, Theorem
5.1] and for topologicaK -groups for instance from the more general Voiculescu—
Pimsner sequence [8, Theorem 10.2.1 on page 83]. The claim for the algebraic
K-groups follows forg <0 from [4, Theorem 10.6 on page 695]. To prove the
vanishing of the Nil- and Nib-terms, consider the following cartesian square of
rings:

ZIZ)1 x 7} 2222 rexn 2mi ) D[ Z4]
t—1
yAV/d Z/1[ZM,

wherer is a generator of./1. Let& := exp(2ri/l). By [30, Theorem 3.3 and 6.2]
and the methods of [46, Section 1], this diagram yields a long exact Mayer Vietoris
sequence

K3(Z/U[ZY) — Ko(ZIZ]/1 x Z']) — Ko(Z[Z']) & Ko(ZIENZY])
— Ko(Z/I[Z") — K1(Z[Z]] x ZF])
— Ki(Z[ZM) @ K1(Z[E][Z)).

The ringsZ/1, Z[&] and Z are regular, so they have trivial Nil-terms in any di-
mension [37, Corollary to Theorem 8 on p. 122]. Furthermore, sfdds a field,
its higher algebraid -groups are finite [36, Theorem 8 on p. 583], and ke
groups of a Dedekind ring (such @$£]) are finitely generated [38, Theorem 1
on p. 179]. Therefore, the grougs (Z/([Z*]), K;(Z[ZF]) and K, (Z[£][Z*]) are
finitely generated foi = 1, 2, 3, and hence so i&;(Z[Z/] x Z*]) fori = 1, 2.
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Using the fact that the Nil-groups are either trivial or infinitely generated [35], we
conclude that NjKZ[Z/1 x ZF1]) = 0fori = 1, 2. O

4. Cocompact Planar Groups

In this section we calculate th€- and L-theory of planar groups, giving explicit
formulas in terms of their signature (Theorem 4.4 and Theorem 4.9). We begin
with reviewing some facts about planar groups.

DEFINITION 4.1. A planar group (sometimes also called NEC grogpNon-
Euclidean crystallographic group) is a discontinuous gréugf isometries of the
two-spheres?, the Euclidean plan®? or the hyperbolic plangl?. It is cocompact
if the quotient manifolds which is the quotient of?, R? or H? under theG-action
is compact.

It is known (see, e.g. [48, Theorem 3 and 4], [52, Theorem 4.5.6 on page 119])
that a cocompact planar group has the following presentation. For fixed integers
r,=>1,5>0,1>0,g>0andh >0 such thak = 0 org = h, generators are

D xj, 1<i<s, 1<j<r,
@ e, 1<i<s,
) a, 1<k,
4 ap, 1<p<g,
(5 by, 1l<p<h,

and relations are given by

6) x2, =1,

(D) (xijxijy)" =1, 1<j<ri, nij=2,

€)] xi,r;eixi,le,'_l =1

O =1 n=z2

(10 el_l e es_ch1 ceely =1,
wherey = af---aZif h # g andy = [a1, b1] - - - [a,. b,] if h = g. On the other
hand, it is also known [52, Theorem 4.7.1 on page 122] that every group with a
presentation as above is a cocompact planar group.

Associated to such a presentation is the so-caigdaturewhich encodes the

presentation as follows:

(gv :tv [J/l, VZ! .. Vt], {(nl,l’ nl,27 et nl,rlfl)’ o (ns,lv nS,Zv .. ns,rsfl)})’
(4.1)

whereg >0 is an integer a sign, 1, v2, ... y:] is an ordered set of integers
vi=0 and (n;1,n;2,...n;,-1) is an ordered set of integers; ; >2 for
i =1,2,...,s. Itis allowed that {1, y», ..., y:] consists of the empty symbol
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[ ], i.e.t = 0. Similarly (n;1,n;2,...,n;,-1) may consist of the empty sym-
bol (), i.e.r; = 1. It is also possible that = 0, then the fourth entry in the
signature consists of the empty def. It is clear how a presentation as above
defines a signature and vice versa, where of course the sign is positives if
orientable, or equivalentlyy = g in the presentation, and the sign is negative
if S is non-orientable, or equivalently, # g in the presentation. In [28, Sec-
tion 9], we find necessary and sufficient conditions for two such presentations
or signatures respectively to describe isomorphic groups and the proof that two
planar groups are algebraically isomorphic if and only if they are geometrically
isomorphic.

As mentioned above, the quotient manifddf a cocompact planar group is
orientable if and only ifi = g. The number of boundary componentssjsand
the genus ig. If G acts onR? or the hyperbolic planl?, then thisG-space is a
model forEG = E(G, FIN) and in particularS is a model forG\ EG. This can
be found in [52, Section 4.2] or follows from the more general result [3, Corollary
4.14). A cocompact planar grou@ is finite if and only if it acts ons?. One easily
computes using the Atiyah-Hirzebruch spectral sequence

Ho(S;Z) = Z,
728, if Sis orientable and = 0,
72sts=1 if Sis orientable and > 0,
H(S;Z) = 1 . . _
Z/2@® 78+, if Sis non-orientable ang = 0,
7sts=1if Sis non-orientable ang > O,
Z, if Sis orientable and = 0,
H>(S; Z) = 0. else

Ko(S) = Ho(S, Z) ® Ha(S; Z),
K1(S) = H1(S; Z),
H,(S; L(Z)[1/2] = H,(S; Z)[1/2], forO< p<3.

As was mentioned in the introduction, the following result yields complete
control over the structure of the finite subgroups of a cocompact planar group,
thus allowing us to compute it& - and L-theory in terms of the maximal finite
subgroups.

THEOREM 4.2. Let G be an infinite cocompact planar group.

(@) The systenf(c)} [ [{(xi;, x; j+1)} is a complete system of representatives of
the conjugacy classes of maximal finite subgroups WM # ((x;;))c.
(Note that ifr; = 1 in the presentation o6, then(x; ) is a maximal finite
subgroup isomorphic t&/2, but we want to exclude these from the above
system). The groufry) is cyclic of ordery, and the group(x; ;, x; j+1) is the
dihedral groupD,, ; of order 2»; ;. In particular any finite subgroup of is
cyclic or dihedral.
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(b) Every element of finite order is conjugate to an elementc{ or (x; jx; j+1)7
for someg € Z. The subgroupsc{) and ((x; jx; j+1)7) are either trivial or
have finite normalizers.

(c) Among the non-trivial powers of the and thex; ;x; ;.1 only (x; jx; j+1)? and
(x; jxi j+1)~7 are conjugate, and none of these powers is conjugate to one of
thEX,-’j .

(d) If g € G has infinite order, therC; (g) is isomorphic to one of the following
groups:

Z, Z)2x T, Zx T, Zx (Z)2%7)2), Zx L, OF Z % (2Z x Z,/2).

If s = 0in the presentation of7, then an elemerng € G of infinite order has a
centralizer isomorphic t&, Z?, or Z x Z. If G is a cocompact Fuchsian group,
i.e.s = 0 and F acts orientation preserving oH?, then an elemeng € G of
infinite order has a centralizer isomorphic ¥

(e) The centralizer of a reflection generatoy; is eitherZ/2 x Z or Z/2 x (Z/2x
Z/2), where the first factoZ/2 is (x; ;).

Proof. (b) follows from [23, Corollary 2 on p. 742] and (c) from [52, Theorem
4.8.1 on page 126]. Assertion (a) is a consequence of (c) and [23, Corollary 2 on
p. 742]. We conclude (d) from [22, Corollary 4 on p. 67], [23, Theorem 4 on p.
743] and the fact thaZ? cannot be a subgroup of a cocompact Fuchsian group.
Assertion (e) is proven in [23, Theorem 4 on p. 743]. O

DEFINITION 4.3. LetG be a cocompact planar group with a presentation as

above. Lef{M,|x € A} be a full system of representatives of the conjugacy classes

of maximal finite subgroups af with (M,)s # ((xi j))g, and let{Hg | B € B}

be a full system of representatives of conjugacy classes of subgroups generated by

a single reflection generatey ;. Fora € A for which M, is not cyclic, denote by

C, C M, the cyclic subgroup which is conjugateddnto a cyclic subgroup gener-

ated by an element of the form ;x; ;11 (see Theorem 4.3 (a) and (c)). Foe A

with cyclic My, putCy, = M,.LetB' = {f € B | NoHg = 7/2 x (/2% Z]2)}

andB” = {B € B | NoHy =7Z/2x Z)}. ThenB = B'[ ] B” by Theorem 4.3. (e).
Define fora € A a direct summandL,(ZM,) of L,(ZM,) as the kernel of

the split-epimorphism

0: L,(ZM,) - 0, M, =7/k,

e Ly(ZMy) — L,(Z[Z/2]), M, = Dyk odd,

u, ® v, Ly(ZMy) — L (Z[Z)2]) ® L,(Z[Z/2]), M, = Dy k even
whereu: M, — 7Z/2 is the epimorphism witlC, as kernel andv: M, —

7./2 is some homomorphism for whia(C,) = Z/2. Obviouslyu has a section
s: Z/2 — M, so thatu, is split surjective. Since there are homomorphisms
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s1,82. Z/2 — M, such thatu.s; and v.s, are the identity ands; is trivial,
(s1)« + (52)4 IS a section oft, @ v,. Explicitly we get from Theorem 3.2.

Z[1/2]k/2 g=04) M,=7Z/k,
Z[1/2]k/2 g=04) M,=Dy, k=2,
Z[1/2] 6D/ g =24 M, =7Z/k,

0 otherwise

SL,(ZM,)[1/2] =

Define the direct summandk,(C:(M,)) of K,(C;(M,)) analogously to
SL,(Z[M,]). We get explicitly from Theorem 3.2.

_ 7t g =02 M, =7Z/k,
SK,(C}(My)) = § ZHA ¢ =02) My = Dy, k>2,
0 otherwise

THEOREM 4.4. Let G be an infinite cocompact planar group with a presentation
as above and quotient manifolj and letAM, and Hg be as in Definition 4.3. We
have

() The map induced by the inclusions
P Wh, (M.) = Wh,(G)
acA

is an isomorphism fog < 1 and surjective fog = 2,
(b) We have split exact sequences

0> (P H,BWH: LZ) o P qu(ZMa)) [1/2]

BeB a€A
— Lq(ZG)[l/Z] — Hq(S; L(Z))[l/Z] — 0,
and

Z[1/2], q=0(4),
H,(BWgHg, L(Z))[1/2] = { Z[1/2], B e B", q=1(4),
0, else

(c) We have split exact sequences
0 — P Ko(BWoH) & ) SKo(C;(M,))

BeB aEA
— Ko(C:(G)) — Ko(S) — 0,

0 — P Ki(BZ) > K1(C}(G)) — Ka(S) > O,

ﬂEB”
and
Ko(BWgHg) =7 for f € B.
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If the isomorphism conjecture in algebrakt-theory (see 1.9 and Theorem 1.10)
holds also in dimension 2, the homomorphism appearing in Theorem 4.4 (a) is an
isomorphism also fog = 2. Furthermore, if = 0 and the isomorphism conjecture
is true in any dimension, then it is an isomorphism for gng Z. Notice that in
the case = 0 we haveB = (J, so that the familieg and&,, appearing in the proof
of Theorem 4.4 are just the famili@sRk.

The proof of Theorem 4.4 needs some preparations. The following lemma will
ensure that the application of Lemma 2.1 yields tractable results.

LEMMA 4.5. LetG be an infinite cocompact planar group. Define for a maximal
finite subgroupV the cyclic subgrou,, as in Definition 4.3. Then

(@) if H C G is finite andM C G is maximal finite,(M)s # ((x;;))g, With
HNCy # 1,thenNg(H N Cy) and NgH are finite;

(b) let M C G be maximal finite(M)s # ((x;;))¢, and H C M be a subgroup
with H N Cy # 1. Then

M = NgM = Ng(H N Cy).

If M and N are maximal finite subgroupsM)g, (N)g # ({(xi ;) g, WithCy N
Cy # 1,thenM = N;

(c) letM C G be maximal finite(M)¢ # ((x; ;))g. If K1, Ko C M are subgroups
with K; N Cy # 1and(K1)g = (K2)g, then(Kqy)y = (K2)y and NgK, =
NyKq anngKz = NyKy;

(d) let Dy, = (s,t | s = t?> = 1,tst = s~1) be the dihedral group of order
2m. If m is odd, D,,, contains up to conjugacy precisely one subgroup of
order 2, namely(¢) with trivial Weyl group. Ifm is even, thenD,, has up
to conjugacy three subgroups of ord&rnamely,(s"/2) with normalizerD,,,,

(st) with normalizer(s™/2, st) and (t) with normalizer(s”/?, t). The subgroup
(s) is a characteristic subgroup db,,, if m > 3.

Proof. (a) By Theorem 4.2 (b} N C,, is conjugated irG to a non-trivial cyclic
subgroup generated by some power of an elemgnt ;11 or cx, andNg (HNCy)
is finite. Hence alsaV; H is finite since the centralize€; H has finite index in
NgH and is contained itNg (H N Cy).

(b) We getM C Ng(H N Cy) since H N Cy, is normal in M. Obviously
M C NgM. As bothNg(H N Cy) and NgM are finite by assertion (a), we get
M = NgM = Ng(H N Cy) from the maximality ofM. Applying this toH =
Cy N Cy we concludeM = N.

(c) Chooseg € G with gK1g7! = K». ThenK, C gMg~' N M and hence
gMg~! = M by assertion (b). Again from assertion (b) we conclgde M. If we
apply this to the special cagg, = K,, we concludeVNgK; = Ny K1 andNg K, =
Ny K. (d) is a direct calculation. This finishes the proof of Lemma 4.5. O
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LEMMA 4.6. LetG be an infinite cocompact planar group. LBt G be infinite
virtually cyclic. ThenI" is isomorphic to one of the following groups, whdpe
denotes the infinite dihedral grody2 « 7/ 2:

Z, 2/2x L, D, ZJ2x D, L|4%z,, ZJA= 7. x TJ4, T/4xz, (Z]2)%

If s = 0in the presentation o, then G only contains infinite virtually cyclic
subgroups isomorphic t@ or D.

Proof. It is known that for an infinite virtually cyclic group' there is an exact
sequence >  — I' - Q — 1 for finite x such thatQ is Z or D [19, Lemma
2.5]. First, suppose that= 0. We have to show that is trivial. SinceD contains a
normal subgrou’ isomorphic tdz, it suffices to treat the cage = Z, otherwise
substitutel’ by p~1(Q’). The subgrougp (|7 |! - Z) of I is isomorphic tar x Z
and hence contained i (g) for some elemeng of infinite order. Hencer is a
subgroup of a torsion free group by Theorem 4.2 (d) and hence trivial.

Now assume that # 0. If Q = Z, i.e.T" = = x Z with & finite, thenl’
containse x ||! - Z, sox is by Theorem 4.2 (d) a subgroup of a group whose
finite subgroups all have ordeg 2 [43, Corollary on page 36]. Heneeis trivial
orZ/2. This means thdt is eitherZ or Z/2 x Z.

It remains to treat the case = D, i.e., wherel surjects ontoD with finite
kernel. Thenx is either cyclic or dihedral by Theorem 4.2 (a). Suppase-
(Z/2)?. ThenD acts onx, andI" contains an element of infinite order which
centralizesr, i.e. (Z/2)? x (g) < Cs(g), which is a contradiction to Theorem 4.2
(d). If 7 is nonAbelian dihedral, them contains a unique cyclic subgroup of order
>3 by Lemma 4.5 (d) on whiclD acts. Again, this implies thadf contains an
element of infinite order which is centralized by a cyclic group of orged, which
contradicts Theorem 4.3 (d). By the same argument, we seg ttatnot be cyclic
of order > 3. If w is trivial, I" is D; if 7 isZ/2, T has to be one of the following
groups:Z/2 x D, Z/4xz2 /4, Ot Z /4 %7, (Z,/2)? by [10, Theorem 1V.3.12 on
page 93]. O

LEMMA 4.7. LetG be as in Theorem 4.4. There is a bijection of sets

fi I ®u KMy, KNCo=1K #1
a€A,|My|=0(4)
> 1 (@wen, 11U1=2).
BeB’

Proof. Given an elementk )y, in {(K)y, | K C My, KNCy = 1, K # 1}
for [M,| = 0(4), we can choosg € B’ with (K); = (Hp)g andg € G with
g¢Kg~ = Hy, andM, is dihedral because of Theorem 4.2 (a) and (c) Sittg =
0 (4), we concludeg € B’ from Theorem 4.2 (e) and Lemma 4.5 (d). There is a
unique element,, of order 2inC,, andu, is central inM,,. We haveu, Ku;! = K
and hencgu,g™! € NgHg. Notice thatgu,g™* ¢ Hg because of Theorem 4.2
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(c). If pr: NgHg — WgHp is the canonical projection, plf = (pr(gusg=))
and definef ((K)um,) = (U)w,n,- This is independent of the choice g&ince any
other choice is of the shapg for someu € N Hp.

Next we define the invers¢g—1. Givenpg € B’ and (U)w,u, With |U| = 2,
pr-1(U)) containsHy and has order 4. Chooasec A andg € G with gpr-(U)g~?
C M,. Then definef‘l((U)WGH/,) = (gHgg Y m,. This is independent of the
choice ofg, since any other choice is of the formg for u € G such thatgpr?
U)g™* c My Nu=*M,u and hence: € M, by Lemma 4.5 (b).

One easily checks that~! is indeed an inverse of. O

Now we are ready to prove Theorem 4.4.

Proof. (a) Recall thafM,|a € A} is a full system of representatives of the
conjugacy classes of maximal finite subgroupsGofvhich are not conjugate to
some(x; ;). Denote by&, the family of subgroupk < M, with (K)¢ < ((x;;)¢
and by¢& the family of finite subgroups o with (K)g < ((x; ;))¢. Consider the
following diagram ofOr(G)-spaces:

[T sGoagg.e,) — 1 Uo)sGomy AL)

aEA aEA

(4.2)

*G.E *G,FIN

where the horizontal maps are given by inclusions and the vertical maps are the
adjoints under the homeomorphism (2.1) of the obvious maji3rod,, )-spaces

for the obvious functod,,: Or(M,) — Or(G). Its evaluation at an object/H

gives pushouts of spaces with a cofibration as upper horizontal map since we get
for this evaluation from Lemma 2.1 (b) and Lemma 4.5 (c) for appropiiate

y 4.y f — * g4 g

[ L

Id Id
x ——> % — = b — 0,

if Hek, if He FIN,H ¢ &, else.

Hence we obtain from Lemma 1.1, Lemma 2.1 (c) and (4.2) the isomorphism for
qe’

@ HYe (s, az0 %06, K) = H; (x6. 71N *c.6: K) (4.3)

acA
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and the long exact Mayer—Vietoris sequence

N @qu (*Mp.£,: K) = HE (xg K)@Kq(c;"(Ma))

a€A a€A

— H(xgrzniK) —> -+ . (4.4)

If LisZ/2,then the assembly mdpqL(*L,TR; K) — HqL(*L,Al;l;; K) is an iso-
morphism forg <2 by Theorem 3.2 (div) and Lemma 2.4. Hence the following
maps are isomorphisms by Lemma 1.1 and Theorem 2.3 {02

HY (s, ac0 *u,. 775 K) = HYe (s Ac0 *uta.6: K) (4.5)
HY (x6. 77N> *c.7r: K) > HY (x¢. 7z 6.1 K) . (4.6)

Combining (4.3), (4.4) and (4.5) yields an isomorphismdget 2

@HqMa (*Ma,AELZ’*Ma.,TR; K) - HqG (*GfIN’ *G, TR K)‘ (4.7)

aeA

By Lemma 2.5 and Lemma 4.6 the assumptions in Theorem 2.3 are satisfied.
Thus Theorem 2.3 and Lemma 1.1 imply that the inclusignezar, *g. 77 —
*G.ve, *g. 7r Induces an isomorphism

HE (x6. 715 %6,70: K) = HE (xG.ve, %6.1x: K) - (4.8)

Now the assertion (a) follows from the Isomorphism Conjectures (see Theorem 1.2),
Lemma 2.4 and the isomorphisms (4.7) and (4.8). (b) is proven analogously to
assertion (c), only easier because we invert 2. (c) We get from Theorem 4.2 (e)

7Z.x7/2, ifpeB,

Z. if g B, (4.9)

Wo Hj ;{

whereZ/2 acts onZ by — Id. The induced action oZ/2 on K, (S*) is by Id if
g = 0and by—Id if ¢ = 1. Hence we obtain the following isomorphisms from
the Atiyah—Hirzebruch spectral sequence, applied to the obvious fibrstion
BWGHg — BZ/2:
Ko(BWg Hg) = Ko(SY) = Z, (4.10)
K1(BWg Hp)[1/2] = Ko(SH[1/2] = Z[1/2]. (4.11)

We obtain a long exact sequence

o Kg1a(S) = HE (x6.7733 K) = Ky (CHG)) — K (S) — -+ (4.12)
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and its rational splitting into short split-exact sequences from Theorem 1.2 and
Lemma 2.8 (c). Define a diagram Ofr(G)-spaces

]_[ I(Hp)*Ng 1y TR — ]_[ I (Hg)s*Ng 1y SUB(Hp)
BeB BeB

| |

*G, TR *G,E

where I (Hg): Or(NgHg) — Or(G) is the functor induced by the inclusion,
SUB(Hp) is the family of subgroups oNgHp consisting of the subgroups of
Hg, the horizontal maps are induced by inclusions and the vertical maps by the
obvious maps oOr(Ng Hg)-spaces and the adjunction (2.1). One easily checks
using Lemma 2.1 (b) that evaluation of this diagram at any obje@n(G) is a
push-out of spaces with a cofibration as upper horizontal map. 8in6¢1) has
trivial homotopy groups, we get from this diagram, Lemma 1.1 and Lemma 2.1 (c)
an isomorphism

NG H ~ = ~
B Hy O ngny.susny); K) = HE (x¢.6: K).
BeB

By Theorem 4.2 (e)H; is a direct factor oV Hg. Hence we get from Lemma 2.6
Hy "™ (g iy susciy): K) = Hy(BWg Hg: R (CH(Z/2))). (4.13)

The ring homomorphisnt[Z/2] — C sendinga + bt to a — b induces a map
of spectraK (C(Z/2)) — K(C) which induces an isomorphism on homotopy
groups. Hence it yields an isomorphism [15, Lemma 4.6]

H,(BWgHy: K(C*(Z/2))) = K,(BWg Hp). (4.14)

Thus we obtain isomorphisms

P K (BWGHp) = HE (x¢.6: K), (4.15)
BeB

P K BWuK) = HY (o, z,: K), (4.16)
(Ko, KE\(1)

where the construction of the second isomorphism is analogous to the ofie for
just replaceG by M, and& by &,. The long exact Mayer—Vietoris sequence (4.4)
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becomes under the isomorphisms (4.15) and (4.16)

P Pp kBWyK

a€A (K)py, Ke€N{1}

—~ Pk, (BWsHy) & P K, (C}(M,))

BeB a€A

- Hierin:K)> P P KeaBWix) > . (417)

acA (K)my, Ke€

The composition of the homomorphism induced by the inclusions

P K(CHEK) > K (CF (M)
(K)my» K€€}

with the homomorphism appearing in the definitiog&’(ﬁq (ZM,,) is an isomorph-
ism since it can be identified with Id: 6> 0, Id: K,(Z[Z/2]) — K,(Z[Z/2])

10 ~ ~ ~ ~
or ( 1 1) : K,(Z|Z/2) ® K,(Z|Z/2)) — K,(Z[Z/2)) & K,(Z|Z/2)), respect-
ively. We obtain a commutative diagram with split exact columns and an isomorph-
ism as lower horizontal map:

0 0

|

K, (BWy, K)
(K)my» KeEN(1}

SK,(Cr(My))

D K,(BWy, K)
(K)o KeENL)

K, (C*(My))

~

P K, (%) K, (C*(My))/SK,(C*(M,))

(K)me» KeE\{1}
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Hence the sequnce (4.17) reduces to the long exact sequence

> P P KBWyK)

a€A (K)m,, KeE\(1)

=% P K, (BWsHp) & €D SK,(C; (M)

peB o

- N -
- HlsoriniK)> @ P KaBWyK) 5 o
aed (K, KeE\(1)
(4.18)

SinceWy,, K is trivial or Z/2 for K € £\ {1} by Theorem 4.2 (e)KNq(BWMaK)
[1/2] is trivial for all ¢ € Z by the Atiyah—Hirzebruch spectral sequence. From
(4.12) and (4.18), we therefore get the long exact sequence

$ ~
Ka(OL/2] =5 P K, (BWeHp[L/2] & @D SK,(C;(Mo))[1/2]

BeB a€A
s K (CHON[L/2] = K, (S)1/2] S .-, (4.19)

which splits into short split-exact sequences rationally. Since the boundary map
84+1 In (4.19) is rationally zero and its target does not contain torsion (see (4.10)
and (4.11)) 6,41 itself is zero. Hence the long exact sequence (4.19) reduces to
short exact sequences

0 > P K, (BWsHp)[1/2] & EP SK,(C;(M,)[1/2]
BeB acA
— K, (CHG)[1/2] — K,(S)[1/2] — O.

In the case of.-theory, we are done at this point becadggs; L (Z))[1/2] is free.
It remains to show the claim for topologic&l-theory without inverting 2.

To do this, we further investigate the homomorphigyrappearing in the long
exact sequence (4.18). Fre B”, K,(BWgH) = K, (S is torsion free, and
S0 isSK,(C}(M,)). SinceK,(BWy, H) is 2-torsion, it suffices to determine the
kernel and cokernel of the part denoted in the same way:

& P P K ®BWyK) —> P K, (BWsHy). (4.20)

acA (K)m,, Ke€\{1} BeB’

Fixa € A, (K)u,, K € £\{1}andp € B’. The part ok, going from the summand
in the source belonging t0X),,, to the summand in the target belongingAas
denoted by

e,(@, (K), B): K,(BWy,K) — K,(BWgHp). (4.21)
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If (Hg)g # (K)g, thene, (o, (K), B) is trivial. If Hy = K, thene, (o, (K), B) is
induced by the obvious inclusioi,,, K — WgK.

Using the bijectionf in Lemma 4.7 and the facts that f&f ¢ M,, K # 1,
|IM,| = 0 (4) the conditionk N C, = 1 is equivalent taK)c = (x; ;)¢ for
appropriate, j and thatWy, K = 1 and henc&,(BWy, K) = 0 if [M,| = 2(4),
one easily constructs a commutative diagram with isomorphisms as vertical maps

€q

<) @ K, BWyK) @ K,(BWgHp)
acA (K)m,, KeE\{1} BeB’

112
a

= @ € ’/’L(Hﬁ)
&b K,(BU) _ DB TP D K,(BWgHp)
BeB (Nwghg,IUI=2 BeB’
wherew(Hg)g: B )y, =2 K,(BU) — K,(BWg Hp) is induced by the vari-

ous inclusionsU — WgHpg. Since we geU%VO(BZ/Z) = 0 and El(BZ/Z) =
Z[1/2))7Z = 7/2* from the Atiyah—Hirzebruch spectral sequence and [25, Pro-
position 2.11], the long exact sequence (4.25) becomes under this identification

0— P Ko(BWGHp) & €D SKo(C; (Ma)) — H (x6.777: K)

BeB a€A

~ Ppcpr n(Hp)180
P P KU " PKBWH) D x

BEB' (g |UI=2 feB!
x @ K1(BWgHg) — HE (x¢.71x7: K) — 0. (4.22)
ﬁeBH

Now the mapK1(BZ/2)? — K1(B(Z/2 % Z/2) induced by the inclusion of two
nonconjugatedZ/2 is an isomorphism by the Mayer—Vietoris sequence, so the
exact sequence (4.22) reduces to the isomorphisms

P Ko(BWG Hy) & @D SKo(C;(Ma)) — H§ (v 7z K),
BeB aEA

P Ki(sH = HY (x6.rza; K.
,BEB”
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This shows that the Abelian grou%?(*G,HN; K) are free, so from the rationally
split exact sequence (4.18), we get exact sequences

0 — P Ku(SYH — Ki(C}(G)) > Ki(S) = 0,

/BEBN
0 — P Ko(BWsHy) & ) SKo(C} (My)) — Ko(C;(G)) — Ko(S) — 0.
BeB acA

It remains to show that the exact sequences above split. The grg§p is always
free Abelian. Ifs = 0 andh # g, then the quotient space is a closed non-orientable
surface, s&(S) is not free but contains a direct summaty®. On the other hand,

in this caseB and henceB” is empty, soK1(C(G)) = Ki(S). If h =gors > 0,
thenK(S)) is free, so the claim follows. O

Next we state th& -groups and.-theory explicitly in terms of the signature.
DEFINITION 4.8. LetG be an infinite cocompact planar group with signature

(g, £ [yi vo .. .vil A, nao, oo ony 1), .o (M5 1, R 2, . B 1) )).

Defined’ to be the number of elements; which are even antl’ to be the number
ofintegersi € {1, 2,...s} forwhichr; = 1oreach; ;forj=1,2,... ,r, —1is
odd. (With this definitionp’ = b” = 0 if s = 0).

THEOREM 4.9. Let G, b’ andb” be given as in Definition 4.8. Recall that for a
real number we denote byr] the largest integer which is less than or equalkto
Then

s ri—1
LoZG)[1/2] = (b +b"+1+ Z[yk/z +y > ,/2]) - 2[1/2],
i=1 j=1
" +2¢)-2[1/2], for+,s =0,
Li(ZG)[1/)2] = {3 b"+2¢g+s—1)-Z[1/2], for+,s >0,
b +g+s—1)-7Z[1/2], for —
| A+ in = D/2]) - Z[1/2],  for+,s =0,
LaZOR/2 =\ (vt [or—1y2)-2[1/2.  otherwise

L3(ZG)[1/2] = 0,

Ko(C7(G))
(b + 6"+ 2+ X tr = D + X X35 i /21) -2, for+,5 =0,
(b/ H0 1+ Y — D+ Y Y /2 ) otherwise
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b"+2¢)-Z for+, s =0,
b"+2¢+s—-1-7Z for+, s >0,
Z/2® (b +¢g—1)-Z for—, s =0,
b +g+s—-1-Z for—, s>0.

K1(C}(G)) =

Proof. This follows from Theorem 4.4 and the computation K§(S) and
H,(S; L(Z))[1/2] stated above as soon as we know #iandb”, respectively, is
the cardinality ofB’ andB”, respectively. (The se® andB” have been introduced
in Definition 4.3). This follows fow’ from Theorem 4.2 (e) and Lemma 4.7 since
the sets{(K)y, | K N C, = 1} for « € A with [M,| = 0 (4) and the sets
{(U)wgny | U] =2} for B € B’ appearing in Lemma 4.7 all have cardinality 2.

Notice thatx; ; is conjugated tox; ;.1 if n;; is odd by Lemma 4.5 (d); 1
is always conjugated to; ,, and Ng (x; ;) cannot be isomorphic té&/2 x Z for
evenn; ; by Lemma 4.5 (d). This shows for any € B” that there is an index
i € {1,2,...s} such that(x; ;) is conjugated taHg for eachj € {1,2,...,r;}.
Hence it remains to show that for two elements andx;: ;; which are conjugated,

i =i’ holds. This follows from the geometric descriptions in terms of fundamental
polygons (see e.g. [28, 48, 52]). Namely, a conjugating elementG maps the
fixed point set of the reflections ; andx;/ ; to one another. Hence the images of
their fixed point set under the quotient map ofitagree. This shows that ; and
xy, i belong to the same boundary componens a@ind thus = i’. O

Remarlk4.10. A cocompact Fuchsian group is a planar groups acting isometric-
ally on the hyperbolic plane with = 0, 2 = g, i.e. the quotient space is a closed
orientable surface of gengs Hence Theorem 4.4 implies Theorem 0.1 mentioned
in the introduction.

We want to briefly sketch the computation ©f(ZG) without inverting 2 for a
Fuchsian groug as in Theorem 0.1. For this purpose we will needf6ffor ¢ =
—00, p, h or s that the isomorphism conjecture is true €wvith respect to the fam-
ily of virtually cyclic subgroups. Notice that Farrell and Jones [18] formulate their
Isomorphism Conjecture only far—>° and that they have shown that it cannot be
true simultaneously for = 1 ande = s in the cases = Z? x Z/5 [20]. However,
using the various Rothenberg sequences together with the explicit computations of
the lower and middl&K -theory and the five lemma one can show in this particular
case that the isomorphism conjecture with respedt@aand without inverting 2
is true for all of the decorated-groupsZ=>°, L”, L", L* if it holds for one of
them. Since it is known foL. > for F [18, Theorem 2.1 and Remark 2.1.3], the
computations below are true without any assumptions.

Let V be any subgroup af isomorphic taZ /2« 7Z/2. Its commutatorV¥, V] is
an infinite cyclic subgroup which is characteristiclin The centralizelCs[V, V]
is again an infinite cyclic subgroup by Theorem 4.2 (d). This implies ¥ha} :=
Ng[V, V] containsV and is isomorphic t& /2« Z/2. Since |V, V] is a character-
istic subgroup ofV, we concludeNgV C Vpax Let V. ¢ W C G be subgroups
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such that boti/ and W are isomorphic t&/2 « Z/2. Then [V, V] C [W, W] C
Cg[W, W] C Cg[V, V]. Since Cg[V, V] is Abelian, we getCs[V, V] C Cg
[W, W]. This impliesCg[V, V] = Cg[W, W] and henc&max = Wmax
Let{V;s | 86 € D} be a full system of representatives of the conjugacy classes of
subgroupsV C G which are maximal among the subgroupsisomorphic to
7/2x7/2. Hence each subgroup C G with V = 7Z/2x7Z/2 is subconjugated to
precisely ond/s, namely the one witVs) = (Vimax, and we haveVgV = Ny, . V.
Using these facts one easily verifies that the following diagram is a pushout of
contravarianOr(G)-spaces with a cofibration as upper horizontal map:

L1 Us)Govy, 7zar) — 1] s) (v, ALr)
seD seD

|

*G,FIN

*G,VC-
Hence this diagram yields a long exact sequence
N @ UNilgy — H epponi L) — LS(ZF) — @ UNil, — -,
seD seD

where UNil, = HqG(*VE,AM,*V&HN; L) is the UNil-term appearing in the
splitting
Le(z[2/2) ® LS(Z[Z/2)) & UNil, — L(Z[Z/2* Z,/2))

due to [12, Theorem 10] and

- > Hpa(S:L(2) > @ LYZZ/v]) — H (kprza L)
i=1
— H,(S;L(Z) — ---,

where the last sequence splits after inverting the least common muitipfethe
y;'s. The first exact sequence splits, too; a splitting is given by the obvious map

P unil, - P LLZVs) > LE(ZF).
seD seD

Hence we obtain an exact sequence which splits after inverting

© = Hya(S:L(@) — P Ly@Z/v]) @ P UNil,
i=1 seD
— L;(ZF) — H,(S;L(Z) — ---.
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From now on suppose that eaghis odd. Then the numbex above is odd. Since
H,(S; L(Z)) and®;_, L (Z[Z/v:]) (see Theorem 3.2 (c)) contain no odd torsion,
we obtain isomorphisms far € Z

P Lo @lZ/v)) & Hy(S: L(Z)) = LS (ZF).

i=1

Explicitly, we get from the computations OYA};(Z/)/,») in[1, Theorem 1, 3 and 5]
and [2, Corollary 4.3 on page 58] fer= p ands

Z/ZEB(HZE:l ”2_1) ‘L q=00),
LE(LF) = (28) - Z - q =14,
Z/2@(1+Z§:1 ’2 >-Z g=2 (4),
(28)-7Z/2 q =3(4).

Eor € = h, there is no general formula known t(\)r the 2;torsion contained in
LY (Z[Z/m]), m odd, since it is given by the terfl*(Z/2; Ko(Z[Z/m))), see
[1, Theorem 2].

5. Two-Dimensional Crystallographic Groups

In this section we give a complete description of the algebkaiand L-groups of

the integral group ring and the topologidéttheory of the reduced*-algebra of

all two-dimensional crystallographic groups. The algebf&itheory in dimension

< 1 has been determined in [32], and & K -theory has been computed in [51].
Note the difference between the groKp(C;(Cmm)) given here and in [51, page
102]. We believe that this difference comes from a fixed point which has been
overlooked in [51]. If we use the methods of [51], we @&t as in the following
table. As far as we know, this is the first computation of fivgroups of two-
dimensional crystallographic groups.

A two-dimensional crystallographic group is the same as a cocompact planar
groupG acting onR?. The signatures of crystallographic groups have been listed
in [28, page 1204]. Hence the results for ftwtheory and the topologic# -theory
below follow directly from Theorem 4.9. In the computation of th¢heory of the
groupsP 3 andPg we do not have to invert 2 because these two groups only contain
infinite virtually cyclic groups which are isomorphic # Hence the isomorphism
conjecture for the family of finite subgroups without inverting 2 is true in this case,
and a careful analysis as in the proof of Theorem 4.5 (c) shows our results. In
the case ofP3, note thatko(Z[Z/3]) = 0 by Theorem 3.2 (diii), so there is no
2-torsion coming from the maximal finite subgroups for any decoration

The computations of WRZG) for ¢ <1 follow directly from Theorem 3.2 (d),
Theorem 4.2 (a) and Theorem 4.4 (a). ko= 2 we assume that the the isomor-
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phism conjecture in algebraik-theory (see (1.8) and Theorem 1.2) holds also in
Dimension 2. In some cases we can drop this assumption for the computation of
Wh,(ZG). Since the assembly map is surjective in dimension 2, we can at least
conclude Wh(G) = 0 if the second Whitehead groups of all finite subgroups
vanish. Furthermore, in some cases (liRé or P31m), there is only one finite
subgroup with (possibly) non-trivial Whwhich splits off fromG, allowing us to
compute Wh(G).

Our notation for the two-dimensional crystallographic groups follows that of
[28].

Group Signature Wh#0,¢<2 Ly(ZG) K4(CH(G))

Pl @+ [1.{H Lo=Z&Z/2  Ko=17?
L1=172 Kq =172
Ly=Z®7Z/2
L3 = (Z/2?

P2 (0,+.[2.222.(} Lo[%] :Z[%]S Ko =178
Lq I:%:I =0 K1=0
w3]-24]

L3 [%] -

P3 (0,+.13,3, 3, {} Lo=7*®7/2 Ko=178
L1=0 K1=0
Ly=7Z*®7/2
L3=0

P4 (0.+.[2.4.4.0) Lo[3]=z[3] Ko=z°
Lq I:%:I =0 K1=0
ra[3] == 3]

L3 [%] =0
P6  (0,+.[2.36.{) K. 1=% Lo[%] :Z[%]G Ko = 710
Why = Why(Z/6) L1 [%] -0 K1=0
ra[3] == 4]
L3 [%] =0
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Group Signature

Wh#0,¢<2

L,(ZG)

Ky (CEH(G))

Cm

Pg

Cmm

Pmm

Pmg

Pgg

(lv ) []’ {( )})

0, +.[1.{O. O

(27_’[]’{})

0. +.[2].{2. 2}

Why = Why(D4g)?

(0, +.[1.{(22,2,2)}) Whp =Why(Dg)*

0. +.12.2].{OD

(11 ) [27 2]! { })

3]

~
=
NI NI

Il
N
—

~
N
Il
o o

~
w
| T s B e I s B s B s |

Nl NI NI NI Nl Nl NI

—_ 0

~
N
Il
o o o

~
w

tof3] =[5
ufi]-2[i]
L3[ ] -0
Lo=Z®7Z/2
Li=2&7Z/2
Ly=17/2
L3 = (2/2)?
o[3] =2 (3]
L1[3]=0
L[§] =0
Ls[§] =0
toft] -2[3]
L1[3]=0
Lz[%] -0
L3[%] -0
ro[3] =2 (3]’
uft] -=[3
L[§] =0
L3[%] =0
o[3] =2 [3]
u[i]-

H

H

KOZZZ

K1 =172

Ko:Zs

Ki=173

Ko=7%7

K1=Z®7/2

K0=Z6
K1=0
Ko:Zg
K1=0

K0=Z4
K1=272
Ko:Z‘?’
K1=172/2
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Group Signature WH+£0, g <2 L,(ZG) Kq(CH(G))
P3m1 (0, +.[3], {3} Why = 7,2 Lo [%] -7 [%]4 Ko =175
] -7[1] K-
fi)-=[1
L3[§]=0
P3Im  (0,+.[1.{(3,3.3)) Why = (Z/2)3 Lo [%] -7 [%]5 Ko =175
ult]=2ft) mez
Ly[3]=0
L3 [%] -0
Pem  (0.+.[1.((23.6)) Why=Why(D) ®Z/2 Lo|§] =2 [%]8 Ko =178
®Why(D1p) Ly [%] =0 K1=0
K1=7 Ly [%] -0
L3[§] =0
Pam (L +[1.{244) Why=Why(Dy) Lo [%] -z [%]9 Ko =2°
SWhy(Dg)?2 Ly [%] -0 K1=0
L5[§]=0
L3[§] =0
Pag  (O.+.[41.{D)  Why=Why(Dy) Lo[3]=z[3]" Ko=2z8
L1[4]=0 K1=0
Lo[3]=2[3]
L3 [%] -0

6. Extensions of Finite Groups with a Free Abelian Group

In this section we give the proof of Theorem 0.2. Some preparations are needed.

LEMMAG6.1. LetG be as in Theorem 0.2. Then

(a) every finite subgroup af is isomorphic to a subgroup af. For a non-trivial
finite subgroupH C G its normalizerNgH = {g € G | gHg™* = H} is
finite;

(b) every infinite virtually cyclic subgroup @ is either cyclic and contained in
Z"" or isomorphic toZ /2 x 7/ 2.
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Proof. (a) Let H c G be finite. Thenp|y has trivial kernel, since it is a finite
subgroup ofZ". HenceH embeds intor.

Considerg € NgH. The mapc, on H given by conjugation withg is an
automorphism of the finite groufi and therefore of finite order itself, so there is a
natural numbek with (c,)* = ¢« = Id. Thus we havg*hg™ = hforallh € H.
Hence we geg'” e Z" andhg""h=t = g™ for all h € H andm = |r|. Since
H is non-trivial andr acts freely orZ”, we getg"” = 1. Thus, every element of
Ng H has finite order and cannot lie in the kernelpofHenceNg H is isomorphic
to a subgroup ofr, which is finite.

(b) Let C C G be infinite virtually cyclic. There is an extension-+ 7Z —

c L F — 1 with a finite groupF. Restrictingp to C, we get an extension
1—- Z—> C — p(C) - 1whereZ is a nontrivial subgroup of”. Its image
underg is a subgroup of the finite group and henceZ Nker(g) has finite index in
Z. Therefore,Z must be infinite cyclic. Denote a generatorbby z. As au(Z) =
7./2 and the action op(C) on Z is free, we must have an injectignC) — Z/2.
If p(C)=1,C=Z.If p(C) =7Z/2, choose € C whose image generategC).
Then we must have? = z* for somek € Z sincep(1)? = 1. Thus,

ZF=tt=tr=u)=7>% =1=k=0,

andC is a nontrivial semi-direct produ@ x Z/2 = 7/2 x 7./ 2. O

LEMMA 6.2. Letx be a finite group acting linearly oR” such that the action is
free outside the origin. Ifr| is odd, there exists to every prime divisoof || a
unique subgroup of of order p. If || is even, there is a unique (and therefore
central) element of orde2 in .

Proof. If || is even,r contains exactly one non-trivial element of order two
[29, Remark on page 624]. Hence it remains to treat the case Whieiseodd.

By [49, Theorems 5.3.1, 5.3.2 and 5.4 4]is generated by two elements B
such that form and n the order ofA and B, respectively, one haén,n) =
1, BAB™! = A" with " = 1 (m), and ifd is the multiplicative order of in
Z/m, then for every primep dividing d one hasp|n/d and p?|n. In particular
there is a split extension & (A) — 7 — (B) — 1. Any elementx € = can be
written uniquely asA B fora € Z/m andb € Z/n.

Suppose that? = 1. Sincex? can be written as = A°BP” for some integer
¢ € Z/m, we concludepb = 0(n). Suppose thap does not divide:. Then this
implies B® = 1 and henca: = A“ with ap = 0(m). Hencex lies in the subgroup
(A™'Py. Therefore,(A™/?) is the unique subgroup of of order p if p does not
divide n. Suppose thagp dividesn. Thenp does not dividen and pb = 0(n), and
hence we can writé = kn/p. We havep|n/d, and so

d(n/pd)

BYPAB~0/P) = AT = AT = AL
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Therefore,x? = A BP* = 1 which impliesx € (B"/?). Hence(B"/?) is the
unique subgroup of of orderp if p dividesn. O

LEMMA 6.3. LetG be as in Theorem 0.2. Then

(a) the intersection of any two different maximal finite subgroups & trivial;

(b) for H c G a non-trivial finite subgroup there is precisely ofeconjugacy
class of subgroup&M) with M c G maximal finite such thatH) < (M);

(c) let M c G be a maximal finite subgroup arid, L ¢ M. ThenNy K = NgK
and(K)y = (L)u & (K)¢ = (L)g-

Proof. We give only the proof of assertion (a), the other assertions are direct
consequences using the conclusion from Lemma 6.1 (a)MgaZ = M holds for
a maximal finite subgroup/ C G.

Let M, N C G be maximal finite groups with non-trivial intersectidh :=
M N N.If M| and|N| are odd,H contains a unigue (normal) subgrodp of
orderp for any p dividing | H| by Lemma 6.2. Sinca/ andN contain exactly one
subgroup of ordep, they both normalizé/, so we must hav&/gU = M = N,
sinceM andN are maximal anaVg U is finite by Lemma 6.1 (a).

If |M| and|N| are evenM andN contain exactly one element of order 2, say
ty andey, respectively. These are centraldhresp.N, so they are both contained
in the finite groupNg H. Since N H is finite and acts freely of” as well by
Lemma 6.1 (a), it contains a unique element of order 2,s6- ry =: . Again,
we haveNg (t) = M = N because of the maximality @f andN and the finiteness
of Ng(1).

SupposeM | is even,|N| is odd. ThenH contains a subgrouf of prime order
with NgU = N. On the other handd C M is centralized by the unique element
of order 2 inM, sot € NoU = N which is a contradiction. O

Now we can give the proof of Theorem 0.2.
Proof. (a) Consider the commutative diagram of contravar@ntG)-spaces

]_[ (Ia)*(*Ma,TR) - ]_[ (Ia)*(*Ma,AEL)

aeA a€A

(6.1)

*G,TR *G, FIN

where the horizontal maps are given by inclusions and the vertical maps are the
adjoints under the adjunction homeomorphism (2.1) of the inclusioiso#7,, )-
spaces for the obvious functdy: Or(M,) — Or(G). The evaluation of the
diagram ofOr(G)-spaces above at an obje&y H gives pushouts of spaces with

a cofibration as upper horizontal map. We get for this evaluation from Lemma 2.2
(b) and Lemma 6.3 (b) and (c)
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— % ) ———
]_[*XMQGLd» [ *xm, G
a€A a€A
Id Id Id Id
* d *
7 «  p— .y
H=1, H e FIN,H #1, else.

Lemmal.1l, Theorem 1.2, LemmaZ2.1(c), Theorem 2.3, Lemma 2.5 and Lemma 6.1
(b) show that each map in the following composition is an isomorphism

G .
P HE v acc. *ut.7r: K)

a€cA
S HE (w6, 7280 %6.7%5 K) = HE (x6.v¢. %6.7x: K)
= H, (%6, Acc, *6.1x; K).
The assertions now follow from Lemma 2.4 and the fact igtZK) = 0O for a

finite groupK andg < — 2 [13]. N
(b) Lemma 1.1 and Lemma 2.1 (c) applied to (6.4) angleld an isomorphism

@ HY eyt azc; 0 = HE (v 7705 D).

aeA

Together with Theorem 1.2 and Lemma 2.8 (b) we obtain an exact sequence which
splits into short exact sequences after tensoring &jily 2| |]
8q+1 ~
—  Hy1(G\EG; L(2))[1/2] = D L (ZM)[1/2] - Ly(ZG)[1/2]

aEA
—~ Hy(G\EG:LZ)[1/2] % ..

Sinced, ® Q is trivial and its targetp,_, Zq_l(ZMa)[l/Z] is free as &[1/2]-
module by Theorem 3.2 (c), is trivial for all ¢ € Z. Hence assertion (b) follows
if we can find an isomorphism

1 . 1
H,(G\EG; L(Z)) [ﬁ} = H,(7w\T"; L(Z)) [%] .
SinceZ" is torsion free and therefore, acts freely 817, Z"\EG is a model
for BZ". Choose a homotopy equivalenge Z"\EG — T" which induces on
w1, = H, the obvious magf,(Z"\E(G, FIN)) = Z" = H{(R"/Z") = Hy(T").
This map f respects the obvious = 7Z"\G-operation onZ"\EG and ther-
action onT™ by conjugation up to homotopy since the isomorphi&ht /) is -
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equivariant. Thug' induces & -isomorphismH,(f): H,(Z"\EG) 5 H,(T")
for p > 0. By the Atiyah—Hirzebruch spectral sequentmduces an isomorphism
H,(Z"\EG: L(Z)) ®z, 7 [ﬁ] 5 H,(T"; L(2) @z L [ﬁ] . Now the claim
follows since the projections induce isomorphisms

. . 1] = ) 1
H,(Z'"\EG; L(2)) ®zx Z [ﬁ] = Hp(G\EG; L(Z) [2|n|] ’

0 1 = n. i
H,(T"; L(Z)) @%Z[%] = Hym\IT L(@2) [2|n|]

(c) is proven analogously to assertion (b). This finishes the proof of Theorem 0.2.
O

Remark6.4. LetG be as in Theorem 0.2. We want briefly sketch the compu-
tation of L¢ (ZG) without inverting 2. For this purpose we will need faf for
€ = —o0, p, h or s that the isomorphism conjecture is true f@rwith respect to
the family of virtually cyclic subgroups. Notice that Farrell and Jones [18] formu-
late their Isomorphism Conjecture only far> and that they have shown that it
cannot be true simultaneously fer= 1 ande = s in the caseG = Z2 x 7Z/5
[20]. However, using the various Rothenberg sequences together with the explicit
computations of the lower and middie-theory and the five lemma one can show in
this particular case that the isomorphism conjecture with respét sind without
inverting 2 is true for all of the decoratdd-groupsL=>, L?, L", L* if it holds for
one of them. Since it is known fat~>° for G as in Theorem 0.2 [18, Theorem
2.1 and Remark 2.1.3], the computations below are true without any assumptions.
Notice thatZ? x Z/5 does not fall under the groups appearing in Theorem 0.2.
Let{Vs | 6 € D} be a full system of representatives of the conjugacy classes of
subgroupsV C G which are maximal among the subgroupsisomorphic to
7./2 % 7./2. Notice for any virtually cyclic subgroup c G with V = 7Z/2x7./2
that NV is subconjugated to precisely okig One can show by the same methods
as before that one obtains long exact sequences

c > @ UNilypy - HE (x¢.770: L) — LY(ZG) > @) UNily — -+,
seD seD

whereU Nil, is theU Nil-term appearing in [12, Theorem 10] and
—  Hy1(G\EG; L(Z)) > @ L5 (ZM,) — HY (x¢.71n7 L)

— Hy(G\EG;L(Z)) —> -,
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where the last sequence splits after inverting. The first exact sequence splits,
too; a splitting is given by the obvious map

P unil, —» P LZVs) > LEZG).

seD seD

Hence we obtain an exact sequence which splits after invepting

— H,11(G\EG;L(Z)) — @Z;(ZMQ) ® @ UNil, — L(ZG)
o seD
— H(G\EG;L(Z)) — ---

From now on suppose that| is odd. Sincep, Z;(ZMQ) contains no odd torsion
(see Theorem 3.2 (c) an@d contains no subgroup of order 2, we obtain a short
exact sequence which splits after inverting

0— P L@M,) — LLZG) — Hy(G\EG: L(Z)) — .

Remark6.5. A variation of the proofs of Theorems 4.4 and 0.2 yield a similar
result in the case of an extensiont Z" — G %> 7 — 1, wherer is now a
dihedral groupD,,, = (s,t | s = t?> = (st)?> = 1) (note that by Lemma 6.2;
cannot act freely oiZ” if m > 1) such that the cyclic subgroup) of orderm
acts freely orZ". We only have to replace the systdtt} in Theorem 4.4 by a
full system of representatives of conjugacy classes of subgriupfsorder 2 with
p(H) N (s) = 1 and to replace the systef,} by a full system of conjugacy
classes of maximal finite subgroups of G with p(M) N (s) # 1. PutB’ = {B €
B | p(NgHg) # p(Hg)}andB” = B\ B'. Then the claims and proofs for algebraic
K- andL-theory are the same as in Theorem 4.4./két) andm(8), respectively
be the non-negative integer satisfyifg'® = (Z")" andzZ"® = (7")rHp,
respectively. For instance for the topologid&ltheory, we get

(a) Suppose that is odd. ThenB = B” and we obtain short exact sequences

0 — [B|- K,(T") & P SK,(C;(M.))
— K,(C}(G)) - K,(G\EG) — 0,
(b) Supposen is even. Then we obtain the long exact sequence
—  K,11(G\EG) — HE (xg.rzn: K) = K, (C}(G))
— K, (G\EG) - ---,

the short exact sequence
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0— P Ko(T"?) & EP SKo(C} (Ma)) — H§ (k6. rzavi K)
BeB o
N @coker(Ko(TW)) — Ko(Z/2\T™#)) — 0
BeB’

and the isomorphism

P k(1) S HY (x¢.725: K,
,BEB”

whereZ/2 acts orZ"® by — Id and thus or7"™™®),
If we invert 2, these exact sequences reduce to short exact sequences

0 - PK,BWcHpI1/2]® @D SK,(C;(M,))[1/2]
BeB acA

— K, (C/(G)[1/2] - K,(G\EG)[1/2] — O.

(c) If we invertm, the short exact sequences above split into short exact sequences
and isomorphisms respectively and we obtain isomorphisms

Ky (D2,\T"[1/m] & EP K, (BWg H)[1/m] x
BeB

x & @P SK,(C;(M)[L/m] > K, (CHG)[L/m].

a€A
Form(B) > 1, the group cokefKo(T™®) — Ko(Z/2\T™P)) is nontrivial.

For the proof of the above results cf. [45].
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