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Abstract. We first construct a classifying space for defining equivariant K-theory for proper actions of
discrete groups. This is then applied to construct equivariant Chern characters with values in Bredon
cohomology with coefficients in the representation ring functor R(−) (tensored by the rationals). And this
in turn is applied to prove some versions of the Atiyah-Segal completion theorem for real and complex
K-theory in this setting.
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In an earlier paper [8], we showed that for any discrete group G, equivariant K-theory for finite proper
G-CW-complexes can be defined using equivariant vector bundles. This was then used to prove a version
of the Atiyah-Segal completion theorem in this situation. In this paper, we continue to restrict attention to
actions of discrete groups, and begin by constructing an appropriate classifying space which allows us to
define K∗G(X) for an arbitrary proper G-complex X. We then construct rational-valued equivariant Chern
characters for such spaces, and use them to prove some more general versions of completion theorems.

In fact, we construct two different types of equivariant Chern character, both of which involve Bredon
cohomology with coefficients in the system

(
G/H 7→ R(H)

)
. The first,

ch∗X : K∗G(X) −−−−−−→ H∗G(X;Q⊗R(−)),

is defined for arbitrary proper G-complexes. The second, a refinement of the first, is a homomorphism

c̃h
∗
X : K∗G(X) −−−−−−→ Q⊗H∗G(X;R(−)),

but defined only for finite dimensional proper G-complexes for which the isotropy subgroups on X have
bounded order. When X is a finite proper G-complex (i.e., X/G is a finite CW-complex), then H∗G(X;R(−))
is finitely generated, and these two target groups are isomorphic. The second Chern character is important
when proving the completion theorems. The idea for defining equivariant Chern characters with values in
Bredon cohomology H∗G(X;Q ⊗ R(−)) was first due to S lomińska [12]. A complex-valued Chern character
was constructed earlier by Baum and Connes [4], using very different methods.

The completion theorem of [8] is generalized in two ways. First, we prove it for real as well as complex
K-theory. In addition, we prove it for families of subgroups in the sense of Jackowski [7]. This means that
for each finite proper G-complex X and each family F of subgroups of G, K∗G(EF (G)×X) is shown to be
isomorphic to a certain completion of K∗G(X). In particular, when F = {1}, then EF (G) = EG, and this
becomes the usual completion theorem.

The classifying spaces for equivariant K-theory are constructed here using Segal’s Γ-spaces. This seems
to be the most convenient form of topological group completion in our situation. However, although Γ-spaces
do produce spectra, as described in [10], the spectra they produce are connective, and hence not what is
needed to define equivariant K-theory directly. So instead, we define K−nG (−) and KO−nG (−) for all n ≥ 0
using classifying spaces constructed from a Γ-space, then prove Bott periodicity, and use that to define the
groups in positive degrees. One could, of course, construct an equivariant spectrum (or an Or(G)-spectrum
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in the sense of [6]) by combining our classifying space KG with the Bott map Σ2KG → KG; but the approach
we use here seems the simplest way to do it.

By comparison, in [6], equivariant K-homology groups KG
∗ (X) were defined by using certain covariant

functors Ktop from the orbit category Or(G) to spectra. This construction played an important role in [6] in
reformulating the Baum-Connes conjecture. In general, one expects an equivariant homology theory to be
classified by a covariant functor from the orbit category to spaces or spectra, and an equivariant cohomology
theory to be classified by a contravariant functor. But in fact, when defining equivariant K-theory here, it
turned out to be simplest to do so via a classifying G-space, rather than a classifying functor from Or(G)
to spaces.

We would like in particular to thank Chuck Weibel for suggesting Segal’s paper and the use of Γ-spaces,
as a way to avoid certain problems we encountered when first trying to define the multiplicative structure
on KG(X).

The paper is organized as follows. The classifying spaces for K−nG (−) and KO−nG (−) are constructed in
Section 1; and the connection with G-vector bundles is described. Products are then constructed in Section
2, and are used to define Bott homomorphisms and ring structures on K∗G(X); and thus to complete the
construction of equivariant K-theory as a multiplicative equivariant cohomology theory. Homomorphisms in
equivariant K-theory involving changes of groups are then constructed in Section 3. Finally, the equivariant
Chern characters are constructed in Section 5, and the completion theorems are formulated and proved in
Section 6. Section 4 contains some technical results about rational characters.

1. A classifying space for equivariant K-theory

Our classifying space for equivariant K-theory for proper actions of an infinite discrete group is con-
structed using Γ-spaces in the sense of Segal. So we begin by summarizing the basic definitions in [10].

Let Γ be the category whose objects are finite sets, and where a morphism θ : S → T sends each
element s ∈ S to a subset θ(s) ⊆ T such that s 6= s′ implies θ(s) ∩ θ(s′) = ∅. Equivalently, if P(S) denotes
the set of subsets of S, one can regard a morphism in Γ as a map P(S)→ P(T ) which sends disjoint unions
to disjoint unions. For all n ≥ 0, n denotes the object {1, . . . , n}. (In particular, 0 is the empty set.) There
is an obvious functor from the simplicial category ∆ to Γ, which sends each object [n] = {0, 1, . . . , n} in ∆
to n, and where a morphism in ∆ — an order preserving map ϕ : [m] → [n] — is sent to the morphism
θϕ : m→ n in Γ which sends i to {j |ϕ(i−1) < j ≤ ϕ(i)}.

A Γ-space is a functor A : Γop → Spaces which satisfies the following two conditions:

(i) A(0) is a point; and

(ii) for each n > 1, the map A(n) −−→
∏n
i=1A(1), induced by the inclusions κi : 1→ n (κi(1) = {i}),

is a homotopy equivalence.

(In fact, Segal only requires that A(0) be contractible; but for our purposes it is simpler to assume it is always
a point.) Note that each A(S) has a basepoint: the image of A(0) induced by the unique morphism S → 0.
We write A = A(1), thought of as the “underlying space” of the Γ-space A. A Γ-space A : Γop → Spaces

can be regarded as a simplicial space via restriction to ∆, and |A| denotes its topological realization (nerve)
as a simplicial space.

If A is a Γ-space, then BA denotes the Γ-space BA(S) = |A(S × −)|; and this is iterated to define
BnA for all n. Thus, BnA = BnA(1) is the realization of the n-simplicial space which sends (S1, . . . , Sn) to
A(S1 × · · · × Sn). Since A(0) is a point, we can identify ΣA (= Σ(A(1))) as a subspace of BA ∼= |A|; and
this induces by adjointness a map A → ΩBA. Upon iterating this, we get maps Σ(BnA) → Bn+1A for all
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n; and these make the sequence A,BA,B2A, . . . into a spectrum. This is “almost” an Ω-spectrum, in that
BnA ' ΩBn+1A for all n ≥ 1 [10, Proposition 1.4].

Note that for any Γ-space A, the underlying space A = A(1) is an H-space: multiplication is defined to
be the composite of a homotopy inverse of the equivalence A(2) '−−→ A(1)×A(1) with the map A(2)→ A(1)
induced by m2 : 1 → 2 (m2(1) = {1, 2}). Then A ' ΩBA if π0(A) is a group; and ΩBA is the topological
group completion of A otherwise. All of this is shown in [10, §1].

We work here with equivariant Γ-spaces; i.e., with functors A : Γop → G-Spaces for which A(0) is a
point, and for which

(
A(n)

)
H →

∏n
i=1

(
A(1)

)
H is a homotopy equivalence for all H ⊆ G. In other words,

restriction to fixed point sets of any H ⊆ G defines a Γ-space AH ; and the properties of equivariant Γ-spaces
follow immediately from those of nonequivariant ones. For example, Segal’s [10, Proposition 1.4] implies
immediately that for any equivariant Γ-space A, BnA→ ΩBn+1A is a weak equivalence for all n ≥ 1 in the
sense that it restricts to an equivalence (BnA)H ' (ΩBn+1A)H for all H ⊆ G. This motivates the following
definitions.

If F is any family of subgroups of G, then a weak F-equivalence of G-spaces is a G-map whose restriction
to fixed point sets of any subgroup in F is a weak homotopy equivalence in the usual sense. The following
lemma about maps to weak equivalences is well known; we note it here for later reference.

Lemma 1.1. Fix a family F of subgroups of G, and let f : Y → Y ′ be any weak F-equivalence. Then for any
G-complex X all of whose isotropy subgroups are in F , the map

f∗ : [X,Y ]G
∼=−−−−−→ [X,Y ′]G

is a bijection. More generally, if A ⊆ X is any G-invariant subcomplex, and all isotropy subgroups of XrA
are in F , then for any commutative diagram

A
α0−−−−→ Yy f

y
X

α−−−−→ Y ′

of G-maps, there is an extension of α0 to a G-map α̃ : X → Y such that f◦α̃ ' α (equivariantly homotopic),
and α̃ is unique up to equivariant homotopy.

Proof. The idea is the following. Fix a G-orbit of cells
(
G/H × Dn → X

)
in X whose boundary is in A.

Then, since Y H → (Y ′)H is a weak homotopy equivalence, the map eH ×Dn → XH → (Y ′)H can be lifted
to Y H (up to homotopy), and this extends equivariantly to a G-map G/H ×Dn → Y . Upon continuing this
procedure, we obtain a lifting of α to a G-map α̃ : X → Y which extends α0. This proves the existence of a
lifting in the above square (and the surjectivity of f∗ in the special case); and the uniqueness of the lifting
follows upon applying the same procedure to the pair X×I ⊇ (X×{0, 1}) ∪ (A×I).

Now fix a discrete group G. Let E(G) be the category whose objects are the elements of G, and with
exactly one morphism between each pair of objects. Let B(G) be the category with one object, and one
morphism for each element of G. (Note that |E(G)| = EG and |B(G)| = BG; hence the notation.) When
necessary to be precise, ga will denote the morphism a → ga in E(G). We let G act on E(G) via right
multiplication: x ∈ G acts on objects by sending a to ax and on morphisms by sending ga to gax. Thus, for
any H ⊆ G, the orbit category E(G)/H is the groupoid whose objects are the cosets in G/H, and with one
morphism gaH : aH → gaH for each g ∈ G: a category which is equivalent to B(H). Note in particular that
B(G) ∼= E(G)/G.

In order to deal simultaneously with real and complex K-theory, we let F denote one of the fields C or
R. Set F∞ =

⋃∞
n=1 F

n: the space of all infinite sequences in F with finitely many nonzero terms. Let F -mod
be the category whose objects are the finite dimensional vector subspaces of F∞, and whose morphisms
are F -linear isomorphisms. The set of objects of F -mod is given the discrete topology, and the space of
morphisms between any two objects has the usual topology.
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For any finite set S, an S-partitioned vector space is an object V of F -mod, together with a direct sum
decomposition V =

⊕
s∈S Vs. Let F 〈S〉-mod denote the category of S-partitioned vector spaces in F -mod,

where morphisms are isomorphisms which respect the decomposition. In particular, F 〈0〉-mod has just one
object 0 ⊆ F∞ and one morphism. A morphism θ : S → T induces a functor F 〈θ〉 from F 〈T 〉-mod to
F 〈S〉-mod, by sending V =

⊕
t∈T Vt to W =

⊕
s∈SWs where Ws =

⊕
t∈θ(s) Vt.

Let VecFG be the Γ-space defined by setting

VecFG(S) def=
∣∣func(E(G), F 〈S〉-mod)

∣∣
for each finite set S. Here, func(C,D) denotes the category of functors from C to D. We give this the G-action
induced by the action on E(G) described above. This is made into a functor on Γ via composition with the
functors F 〈θ〉.

By definition, VecFG(0) is a point. To see that VecFG is an equivariant Γ-space, it remains to show for
each n and H that the map

(
VecFG(n)

)
H →

∏n
i=1

(
VecFG(1)

)
H is a homotopy equivalence. The target is the

nerve of the category of functors from E(G)/H to n-tuples of objects in F -mod, while the source can be
thought of as the nerve of the full subcategory of functors from E(G)/H to n-tuples of vector subspaces
which are independant in F∞. And these two categories are equivalent, since every object in the larger one
is isomorphic to an object in the smaller (and the set of objects is discrete).

For all finite H ⊆ G,
(
VecFG

)
H is the disjoint union, taken over isomorphism classes of finite dimensional

H-representations, of the classifying spaces of their automorphism groups. We will see later that VecFG
classifies G-vector bundles over proper G-complexes. So it is natural to define equivariant K-theory using
the its group completion KFG

def= ΩBVecFG, regarded as a pointed G-space.

In the following definition, [−,−]G and [−,−]·G denote sets of homotopy classes of G-maps, and of
pointed G-maps, respectively.

Definition 1.2. For each proper G-complex X, set

KG(X) = [X,KCG]G and KOG(X) = [X,KRG]G.

For each proper G-CW-pair (X,A) and each n ≥ 0, set

K−nG (X,A) = [Σn(X/A),KCG]·G and KO−nG (X,A) = [Σn(X/A),KRG]·G.

The usual cohomological properties of the KF−nG (−) follow directly from the definition. Homotopy
invariance and excision are immediate; and the exact sequence of a pair and the Mayer-Vietoris sequence of
a pushout square are shown using Puppe sequences to hold in degrees ≤0. Note in particular the relations

KF−nG (X) ∼= Ker
[
KFG(Sn ×X) −−→ KFG(X)

]
KF−nG (X,A) ∼= Ker

[
KF−nG (X ∪A X) −−→ KF−nG (X)

]
,

(1.3)

for any proper G-CW-pair (X,A) and any n ≥ 0.

The following lemma will be needed in the next section. It is a special case of the fact that VecFG and
KFG (at least up to homotopy) are independent of our choice of category of F -vector spaces.

Lemma 1.4. For any monomorphism α : F∞ → F∞, the induced map α∗ : VecFG → VecFG, defined by

composition with F -mod
α(−)−−−→ F -mod, is G-homotopic to the identity. In particular, α∗ induces the identity

on KG(X).

Proof. The functor
(
V 7→ α(V )

)
is naturally isomorphic to the identity.

In [8], we defined KG(X), for any proper G-complex X, to be the Grothendieck group of the monoid
of vector bundles over X. We next construct natural homomorphisms KG(X) → KG(X), for all proper
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G-complexes X, which are isomorphisms if X/G is a finite complex (this is the situation where the K∗G(X)
form an equivariant cohomology theory).

For each n ≥ 0, let Fn-mod ⊆ F -mod be the full subcategory of n-dimensional vector subspaces in
F∞. Let Fn-frame denote the category whose objects are the pairs (V, b), where V is an object of Fn-mod
and b is an ordered basis of V ; and whose morphisms are the isomorphisms which send ordered basis to
ordered basis. The set of objects is given the topology of a disjoint union of copies of GLn(F ) (one for each
V in Fn-mod). Note that there is a unique morphism between any pair of objects in Fn-frame. Set

VecF,nG =
∣∣func(E(G), Fn-mod)

∣∣ and ṼecF,nG =
∣∣func(E(G), Fn-frame)

∣∣,
with the action of G × GLn(F ) on ṼecF,nG induced by the G-action on E(G) and the GLn(F )-action on
the set of ordered bases of each n-dimensional V . Let τn : ṼecF,nG → VecF,nG be the G-map induced by the
forgetful functor Fn-frame→ Fn-mod. Then GLn(F ) acts freely and properly on ṼecF,nG . And τn induces
a G-homeomorphism ṼecF,nG /GLn(F ) ∼= VecF,nG , since for any ϕ : V → V ′ in F -mod, a lifting of V or V ′ to
Fn-frame determines a unique lifting of the morphism.

Let H ⊆ G×GLn(F ) be any subgroup. If H ∩ (1×GLn(F )) 6= 1, then (ṼecF,nG )H = ∅, since GLn(F )
acts freely on ṼecF,nG . So assume H ∩ (1 × GLn(F )) = 1. Then H is the graph of some homomorphism
ϕ : H ′ → GLn(F ) (H ′ ⊆ G), and (ṼecF,nG )H is the nerve of the (nonempty) category of ϕ-equivariant
functors E(G) → Fn-frame, with a unique morphism between any pair of objects (since there is a unique
morphism between any pair of objects in Fn-frame). In particular, this shows that (ṼecF,nG )H is contractible.

Thus, ṼecF,nG is a universal space for those (G×GLn(F ))-complexes upon which GLn(F ) acts freely (cf.
[8, §2]). The frame bundle of any n-dimensional G-F -vector bundle over a G-complex X is such a complex,
and hence n-dimensional G-F -vector bundles over X are classified by maps to VecF,nG = ṼecF,nG /GLn(F ). It
follows that

EVecF,nG = ṼecF,nG ×GLn(F ) F
n −−−−−−−→ VecF,nG

is a universal n-dimensional G-F -vector bundle. And [X,VecF,nG ]G ∼= VectF,nG (X): the set of isomorphism
classes of n-dimensional G-F -vector bundles over X.

If E is any G-F -vector bundle over X, we let [[E]] ∈ KFG(X) = [X,KFG]G be the composite of the
classifying map X → VecFG for E with the group completion map VecFG → ΩBVecFG = KFG. Any pair E,E′

of vector bundles over X is induced by a G-map

X −−−−−→ VecFG ×VecFG = | func(E(G), F -mod× F -mod)| ' | func(E(G), F 〈2〉-mod)|;

and upon composing with the forgetful functor F 〈2〉-mod→ F -mod we get the classifying map for E ⊕E′.
The direct sum operation on VectFG(X) is thus induced by the H-space structure on VecFG, and [[E ⊕ E′]] =
[[E]] + [[E′]] for all E,E′.

Proposition 1.5. The assignment
(
[E] 7→ [[E]]

)
defines a homomorphism

γX : KFG(X) −−−−−→ KFG(X),

for any proper G-complex X. This extends to natural homomorphisms γ−nX,A : KF−nG (X,A)→ KF−nG (X,A),
for all proper G-CW-pairs (X,A) and all n ≥ 0; which are isomorphisms when restricted to the category of
finite proper G-CW-pairs.

Proof. By the above remarks,
(
[E] 7→ [[E]]

)
defines a homomorphism of monoids from VectFG(X) to KFG(X),

and hence a homomorphism of groups

γX : KFG(X) −−−−−−→ KFG(X).

Homomorphisms γ−nX,A (for all proper G-CW-pairs (X,A)) are then constructed via the definitions

KF−nG (X) def= Ker[KFG(Sn ×X)→ KFG(X)]
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and KF−nG (X,A) def= Ker[KF−nG (X∪AX) → KF−nG (X)] used in [8], together with the analogous relations
(1.3) for K∗G(−). These homomorphisms clearly commute with boundary maps.

It remains to check that γ−nX is an isomorphism whenever X is a finite proper G-complex. Since KFG(−)
and KFG(−) are both cohomology theories in this situation, it suffices, using the Mayer-Vietoris sequences
for pushout squares

G/H × Sm−1 −−−−→ G/H ×Dm

ϕ

y y
X −−−−→ (G/H ×Dm) ∪ϕ X,

to do this when X = G/H × Sm for finite H ⊆ G and any m ≥ 0. Using (1.3) again, it suffices to show that
γX = γ0

X is an isomorphism whenever X = G/H × Y for any finite complex Y with trivial G-action. By
definition,

KFG(G/H × Y ) =
[
G/H × Y,KFG

]
G
∼= [Y, (KFG)H ];

while KFG(G/H × Y ) is the Grothendieck group of the monoid

VectFG(G/H × Y ) ∼=
[
G/H × Y,VecFG

]
G
∼=
[
Y, (VecFG)H

]
.

Since π0((VecFG)H) is a free abelian monoid (the monoid of isomorphism classes of H-representations), [10,
Proposition 4.1] applies to show that [−, (KFG)H ] is universal among representable functors from compact
spaces to abelian groups which extend VectFG(G/H×−) ∼= VectFH(−). And since KH is representable as a
functor on compact spaces with trivial action (H is finite), it is the universal functor, and so [Y, (KFG)H ] ∼=
KH(Y ) ∼= KG(G/H × Y ).

2. Products and Bott periodicity

We now want to construct Bott periodicity isomorphisms, and define the multiplicative structures on
K∗G(X) and KO∗G(X). Both of these require defining pairings of classifying spaces; thus pairings of Γ-spaces.
A general procedure for doing this was described by Segal [10, §5], but a simpler construction is possible in
our situation.

Fix an isomorphism µ : F∞ ⊗ F∞ → F∞ (F = C or R), induced by some bijection between the
canonical bases. This induces a functor

µ∗ : F 〈S〉-mod× F 〈T 〉-mod −−−−−→ F 〈S×T 〉-mod,

and hence (for any discrete groups H and G)

µ∗ : VecFH(S) ∧VecFG(T ) −−−−−→ VecFH×G(S×T ). (2.1)

This is an (H×G)-equivariant map of bi-Γ-spaces, and after taking their nerves (and loop spaces) we get
maps

ΩBVecFH ∧ ΩBVecFG
= KFH ∧KFG

−−−−→ Ω2
(
BVecFH ∧BVecFG

) Ω2|µ∗|−−−−−→ Ω2B2VecFH×G ' ΩBVecFH×G
= KFH×G

. (2.2)

By Lemma 1.4, these maps are all independent (up to homotopy) of the choice of µ : F∞ ⊗ F∞ → F∞.

Lemma 2.3. For any discrete groups H and G, any H-space X, and any G-space Y , the following square
commutes:

KFH(X)⊗KFG(Y )
γX×γY−−−−−→ KFH(X)⊗KFG(Y )

⊗
y µ∗

y
KFH×G(X × Y )

γX×Y−−−−−→ KFH×G(X × Y )
where µ∗ is the homomorphism induced by (2.2).



Chern characters for the equivariant K-theory of proper G-CW-complexes 7

Proof. The pullback of the universal bundle EVecFH×G, via the pairing VecFH ∧ VecFG → VecFH×G of (2.1), is
isomorphic to the tensor product of the universal bundles EVecFH and EVecFG. This is clear if we identify
EVecFG ∼=

∣∣func(E(G), F -Bdl)
∣∣ (and similarly for the other two bundles), where F -Bdl is the category of pairs

(V, x) for V in F -mod and x ∈ V .

We now consider case where H = 1, and hence where KFH = Z × BU or Z × BO. The product map
(2.2), after composition with the Bott elements in π2(BU) or π8(BO), induces Bott maps

βC∗ : Σ2KG −−−−−→ KG and βR∗ : Σ8KOG −−−−−→ KOG. (2.4)

Proposition 2.5. For any proper CW-pair (X,A), the Bott homomorphisms

bCX,A : K−nG (X,A) −−−−−→ K−n−2
G (X,A) and bRX,A : KO−nG (X,A) −−−−−→ KO−n−8

G (X,A)

are isomorphisms; and commute with the homomorphisms

γ−nX,A : KF−nG (X,A)→ KF−nG (X,A).

Proof. The last statement follows immediately from Lemma 2.3.

By Lemma 1.1, it suffices to prove that the adjoint maps

KG −−−−→ Ω2KG and KOG −−−−→ Ω8KOG

to the pairings in (2.4) are weak homotopy equivalences after restricting to fixed point sets of finite subgroups
of G. In other words, it suffices to prove that bCX : KG(X) → K−2

G (X) and bRX : KOG(X) → KO−8
G (X)

are isomorphisms when X = G/H × Sn for any n ≥ 0 and any finite H ⊆ G. And this follows since the
Bott maps for KG and KOG are isomorphisms [8, Theorems 3.12 & 3.15], since KF−nG (X) ∼= KF−nG (X)
(Proposition 1.5), and since these isomorphisms commute with the Bott maps.

The K−nG (X) and KO−nG (X) can now be extended to (additive) equivariant cohomology theories in the
usual way. But before stating this explicitly, we first consider the ring structure on KG(X). This is defined
to be the composite

[X,KFG]G × [X,KFG]G −−−−−→ [X,KFG×G]G
∆∗−−−−−→ [X,KFG]G,

where the first map is induced by the pairing in (2.2), and the second by restriction to the diagonal subcat-
egory E(G) ⊆ E(G×G).

Before we can prove the ring properties of this multiplication, we must look more closely at the homotopy
equivalence ΩBVecFG

'−→ Ω2B2VecFG which appears in the definition of the product. In fact, there is more
than one natural map from ΩnBnVecFG to Ωn+1Bn+1VecFG. For each n ≥ 0 and each k = 0, . . . , n, let
ιkn : ΩnBnVecFG → Ωn+1Bn+1VecFG denote the map induced as Ωn(f), where f is adjoint to the map
ΣBnVecFG → Bn+1VecFG, induced by identifying BnVecFG(S1, . . . , Sn) with Bn+1VecFG(. . . , Sk−1,1, Sk, . . . ).

By a weak G-equivalence f : X → Y is meant a map of G-spaces which restricts to a weak equivalence
fH : XH → Y H for all H ⊆ G; i.e., a weak F-equivalence in the notation of Lemma 1.1 when F is the family
of all subgroups of G. Since we are interested equivariant Γ-spaces only as targets of maps from G-complexes,
it suffices by Lemma 1.1 to work in a category where weak G-equivalences are inverted.

Lemma 2.6. Let A be any G-equivariant Γ-space. Then for any n ≥ 1, the maps ιkn : ΩnBnA→ Ωn+1Bn+1A
(for 0 ≤ k ≤ n) are all equal in the homotopy category of G-spaces where weak G-equivalences are inverted.

Proof. For any σ ∈ Σn, let σ∗ : ΩnBnA→ ΩnBnA be the map induced by permuting the coordinates of BnA
as an n-simplicial set, and by switching the order of looping. Then any two of the ιkn−1 differ by composition
with some appropriate σ∗, and so it suffices to show that the σ∗ are all homotopic to the identity.
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Consider the following commutative diagram

ΩBA
ϕ−−−−→ Ωn+1Bn+1A

ιnn←−−−− ΩnBnA

Id

y (1×σ)∗

y σ∗

y
ΩBA

ϕ−−−−→ Ωn+1Bn+1A
ιnn←−−−− ΩnBnA,

for any σ ∈ Σn ⊆ Σn+1, where ϕ = ι0n◦ · · · ◦ι01 is induced by identifying A(S) with A(S,1, . . . ,1). The
diagram commutes, and all maps in it are weak G-equivalences by [10, Proposition 1.4]. So (1× σ)∗ and σ∗
are both homotopic to the identity after inverting weak G-equivalences.

We are now ready to show:

Theorem 2.7. For any discrete group and any proper G-complex X, the pairings µX define a structure of
graded ring on K∗G(X) and on KO∗G(X), which make K∗G(−) and KO∗G(−) into multiplicative cohomology
theories. The Bott isomorphisms

bCX : K−nG (X)→ K−n−2
G (X) and bRX : KO−nG (X)→ KO−n−8

G (X)

are KG(X)- or KOG(X)-linear. And the canonical homomorphisms

γCX : K∗G(X)→ K∗G(X) and γRX : KO∗G(X)→ KO∗G(X)

are homomorphisms of rings.

Proof. As usual, set F = C or R. We first check that µX makes KFG(X) into a commutative ring — i.e.,
that it is associative and commutative and has a unit.

To see that there is a unit, let [F 1] ∈ VecFG denote the vertex for the constant functor E(G) 7→ F 1 ∈
F 〈1〉-mod, and set [F 1]Ω = ι00([F 1]) ∈ ΩBVecFG. The following diagram commutes:

ΩBVecFG
[F 1]∧−−−−−−−−→ VecFG ∧ ΩBVecFG

µ∗−−−−−−−→ ΩBVecFG

Id

y ι00∧Id

y' ι01

y'
ΩBVecFG

[F 1]Ω∧−−−−−−−−→ ΩBVecFG ∧ ΩBVecFG
µ∗−−−−−−−→ Ω2B2VecFG;

and the composite in the top row is homotopic to the identity by Lemma 1.4. So the element 1 ∈ KFG(X),
represented by the constant map X 7→ [F 1]Ω ∈ KFG, is an identity for multiplication in KFG(X).

The commutativity of KFG(X) follows from Lemma 2.6 (the uniqueness of the map ΩBA → Ω2B2A
after inverting weak G-equivalences); together with the fact that the pairing

µ∗ : BVecFG ∧BVecFG −−−−−→ B2VecFG

commutes up to homotopy using Lemma 1.4. And associativity follows since the triple products are induced
by maps (

ΩBVecFG
)∧3 −−−−−→ Ω3

(
(BVecFG)∧3

) Ω3|µ∗◦(µ∗∧Id)|−−−−−−−−−−→−−−−−−−−−−→
Ω3|µ∗◦(Id∧µ∗)|

Ω3B3VecFG
'←−−−−− ΩBVecFG;

where the two maps in the middle are homotopic by Lemma 1.4, and the last could be any of the three
possible maps by Lemma 2.6.

The extension of the product to negative gradings is straightforward, via the identifications of (1.3).
For any n,m ≥ 0, the composite

KFG(Sn ×X)⊗KFG(Sm ×X)
proj∗−−−−−→ KFG(Sn × Sm ×X)⊗KFG(Sn × Sm ×X)

µ−−−−−→ KFG(Sn × Sm ×X)
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restricts to a product map KF−nG (X)⊗KF−mG (X)→ KF−n−mG (X). To see that the product has image in
KF−n−mG (X), just note that

KF−n−mG (X) ∼= Ker
[
KFG(Sn+m ×X) −−→ KFG(X)

]
= Ker

[
KFG(Sn × Sm ×X) −−→ KFG(Sn ×X)⊕KFG(Sm ×X)

]
.

This product is clearly associative, and graded commutative (where the change in sign comes from the degree
of the switching map Sn+m → Sm+n).

We next check that this product commutes with the Bott maps in the obvious way, so that it can be
extended to Ki

G(X) for all i. This means showing that the two maps

KF (Sn)⊗KFG(X)⊗KFG(X) −−−−−−−→−−−−−−−→ KFG(Sn ×X)

induced by the products constructed above are equal. And this follows from the same argument as that used
to prove associativity of the internal product on KFG(X).

Finally, γ : KF ∗G(X)→ KF ∗G(X) is a ring homomorphism by Lemma 2.3.

3. Induction, restriction, and inflation

In this section we explain how the natural maps defined on KG(X) and KOG(X) by induction and
restriction carry over to KG(X) and KOG(X). Namely, we want to construct for any pair H ⊆ G of discrete
groups, any F = C or R, any G-complex X, and any H-complex Y , natural induction and restriction maps

IndGH : KF ∗H(Y )
∼=−−−−→ KF ∗G(G×HY ) and ResGH : KF ∗G(X) −−−−→ KF ∗H(X|H).

Furthermore, when H C G is a normal subgroup, we construct an inflation homomorphism

InflGG/H : KF ∗G/H(X/H) −−−−−−→ KF ∗G(X),

which is an isomorphism whenever H acts freely on X. These maps correspond under the natural homomor-
phism KF ∗G(X)→ KF ∗G(X) to the obvious homomorphisms induced by induction, restriction, and pullback
of vector bundles. They are all induced using the following maps between classifying spaces for equivariant
K-theory.

Lemma 3.1. Let f : G′ → G be any homomorphism of discrete groups. Then composition with the induced
functor E(f) : E(G′) → E(G) induces an G′-equivariant map f∗ : VecFG → VecFG′ of Γ-spaces, and hence
a G′-equivariant map f∗ : KFG → KFG′ of classifying spaces. And for any subgroup L ⊆ G′ such that
L ∩Ker(f) = 1, f∗ restricts to a homotopy equivalence (KFG)f(L) ' (KFG′)L.

Proof. This is immediate, except for the last statement. And if L ⊆ G′ is such that L ∩ Ker(f) = 1,
then L ∼= f(L), the categories E(G′)/L and E(G)/f(L) are both equivalent to the category B(L) with one
object and endomorphism group L; and thus (VecFG)f(L)(S) = | func(E(G)/f(L), F 〈S〉-mod)| is homotopy
equivalent to (VecFG′)

L(S) = | func(E(G′)/L, F 〈S〉-mod)| for each S in Γ.

We first consider the restriction and induction homomorphisms.

Proposition 3.2. Fix F = C or R, and let H ⊆ G be any pair of discrete groups. Let i∗ : KFG → KFH be
the map of Lemma 3.1.

(a) For any proper G-CW-pair (X,A), i∗ induces a homomorphism of rings

ResGH : KF ∗G(X,A) −−−−−−→ KF ∗H(X,A).
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(b) For any proper H-CW-pair (Y,B), i∗ induces an isomorphism

IndGH : KF ∗H(Y,B)
∼=−−−−−−→ KF ∗G(G×HY,G×HB),

which is natural in (Y,B), and also natural with respect to inclusions of subgroups.

The restriction and induction maps both commute with the maps between KFG(−) and KFH(−) induced by
induction and restriction of equivariant vector bundles.

Proof. It suffices to prove this when A = ∅ = B and ∗ = 0. The fact that i∗ : KFG → KFH commutes with
the Bott homomorphisms and the products follows directly from the definitions. So part (a) is clear.

The inverse of the homomorphism in (b) is defined to be the composite

[G×H Y,KFG]G ∼= [Y,KFG]H
i∗◦−−−−−−−−→ [Y,KFH ]H .

And since i∗ restricts to a homotopy equivalence (KFG)L → (KFH)L for each finite L ⊆ H (Lemma 3.1),
this map is an isomorphism by Lemma 1.1.

The last statement is clear from the construction and the definition of γ : KFG(−)→ KFG(−).

We next consider the inflation homomorphism.

Proposition 3.3. Fix F = C or R. Let G be any discrete group, and let N C G be a normal subgroup. Then
for each proper G-CW-pair (X,A), there is an inflation map

InflGG/N : KF ∗G/N (X/N,A/N) −−−−−−→ KF ∗G(X,A),

which is natural in (X,A), which is a homomorphism of rings (if A = ∅), and which commutes with the
homomorphism KFG/N (X/N,A/N) → KFG(X,A) induced considering G/N -vector bundles as G-vector
bundles. And if N acts freely on X, then InflGG/N is an isomorphism.

Proof. Let f : G → G/N denote the natural homomorphism, and let f∗ : KFG/N → KFG be the induced
map of Lemma 3.1. Define InflGG/N to be the composite

[X/N,KFG/N ]G/N ∼= [X,KFG/N ]G
f∗◦−−−−−−→ [X,KFG]G.

If N acts freely on X, then for each isotropy subgroup L of X, L∩N = 1, so (f∗)L : (KFG/N )L → (KFG)L

is a homotopy equivalence by Lemma 3.1, and the inflation map is an isomorphism by Lemma 1.1. The other
statements are clear.

Another type of natural map will be needed when constructing the equivariant Chern character. Fix
a discrete group G and a finite normal subgroup N C G, and let Irr(N) be the set of isomorphism classes
of irreducible complex N -representations. Let X be any proper G/N -complex. For any V ∈ Irr(N) and
any G-vector bundle E → X, let HomN (V,E) denote the vector bundle over X whose fiber over x ∈ X
is HomN (V,Ex) (each fiber of E is an N -representation). If H ⊆ G is any subgroup which centralizes N ,
then we can regard HomN (V,E) as an H-vector bundle by setting (hf)(x) = h·f(x) for any h ∈ H and any
f ∈ HomN (V,E). We thus get a homomorphism

Ψ : KG(X) −−−−−−→ KH(X)⊗R(N),

where Ψ([E]) =
∑
V ∈Irr(N)[HomN (V,E)]⊗ [V ]. We need a similar homomorphism defined on K∗G(X).

Proposition 3.4. Let G be a discrete group, let N C G be any finite normal subgroup, and let H ⊆ G be any
subgroup such that [H,N ] = 1. Then for any proper G/N -complex X, there is a homomorphism of rings

Ψ = ΨX
G;N,H : K∗G(X) −−−−−−−→ K∗H(X)⊗R(N),

which is natural in X and natural with respect to the degree-shifting maps K∗G(X) → K∗+nG (Sn×X), and
which has the following properties:
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(a) For any (complex) G-vector bundle E → X,

Ψ([[E]]) =
∑

V ∈Irr(N)

[[HomN (V,E)]]⊗ [V ].

(b) For any G′ ⊆ G, N ′ ⊆ N∩G′, and H ′ ⊆ H∩G′, the following diagram commutes:

K∗G(X)
ΨXG;N,H−−−−−−−−→ K∗H(X)⊗R(N)

ResG
G′

y ResH
H′

y⊗ResN
N′

K∗G′(X)
ΨX
G′;N′,H′−−−−−−−−→ K∗H′(X)⊗R(N ′).

Proof. Fix G, H, and N . For any irreducible N -representation V and any surjective homomorphism p :
C[N ] −� V , composition with p defines a monomorphism

HomN (V,W )
−◦p−−−−−→ HomN (C[N ],W ) = W

for any N -representation W ; and thus allows us to identify HomN (V,W ) as a subspace of W . In particular,
there is a functor

p∗ : func(Or(G)/N,C〈S〉-mod) −−−−−→ func(Or(H),C〈S〉-mod)

which sends any α to the functor h 7→ HomN (V, α(hN)) ⊆ α(hN). If p′ : C[N ] −� V ′ is another surjection of
N -representations, where V ∼= V ′, then any isomorphism V

∼=−→ V ′ defines a natural isomorphism between
p∗ and (p′)∗. We thus get a map of Γ-spaces

ψp : VecCG −−−−−−→ VecCH

which is unique (independant of the projection p) up to H-equivariant homotopy. So this induces homo-
morphisms ψV : K−nG (X) → K−nH (X), for all proper G/N -complex X (and all n ≥ 0), which depend only
on V and not on p. The ψV clearly commute with the Bott maps, and thus extend to homomorphisms
ψV : K∗G(X) → K∗H(X). So we can define Ψ by setting Ψ(x) =

∑
V ∈Irr(N) ψV (x) ⊗ [V ]. Point (a) is imme-

diate; as is naturality in X and naturality for restriction to G′ ⊆ G or H ′ ⊆ H. Naturality with respect to
the degree-shifting maps holds by construction.

We next show that Ψ is natural in N ; i.e., that point (b) holds when G′ = G and H ′ = H. Let ψV be
the homomorphisms defined above, for each irreducible N -representation V ; and let ψ′W : K∗G(X)→ K∗H(X)
be the corresponding homomorphism for each irreducible N ′-representation W . For each V ∈ Irr(N) and
each W ∈ Irr(N ′), set

nVW = dimC
(
HomN ′(W,V )

)
= dimC

(
HomN (IndNN ′(W ), V )

)
.

Thus, nVW is the multiplicity of W in the decomposition of V |N ′ , as well as the multiplicity of V in the
decomposition of IndNN ′(W ). So for any x ∈ K∗G(X),

(Id⊗ResNN ′)(ΨG;N,H(x)) =
∑

V ∈Irr(N)

ψV (x)⊗ [V |N ′ ] =
∑

W∈Irr(N ′)

( ∑
V ∈Irr(N)

nVW ·ψV (x)
)
⊗ [W ];

and we will be done upon showing that ψ′W =
∑
V n

V
W ·ψV for each W ∈ Irr(N ′). Fix a surjection p0 :

C[N ′] −�W , and a decomposition IndNN ′(W ) =
∑k
i=1 Vi (where the Vi are irreducible and k =

∑
V n

V
W ).

For each 1 ≤ i ≤ k, let pi : C[N ] −� Vi be the composite of IndNN ′(p0) followed by projection to Vi. Then

ψp0 =
k⊕
i=1

ψpi :
(
VecCG

)N −−−−−−→ VecCH

as maps of Γ-spaces, and so ψW '
∑k
i=1 ψVi as maps K∗G(X)→ K∗H(X).



12 by Wolfgang Lück and Bob Oliver

It remains to show that Ψ is a homomorphism of rings. Since it is natural in N , and since R(N) is
detected by characters, it suffices to prove this when N is cyclic. For any x, y ∈ KG(X),

Ψ(x)·Ψ(y) =
∑

V,W∈Irr(N)

(
ψV (x)·ψW (y)

)
⊗ [V ⊗W ] and Ψ(xy) =

∑
U∈Irr(N)

ψU (xy)⊗ [U ].

And thus Ψ(x)·Ψ(y) = Ψ(xy) since

ψU ◦µ∗ =
⊕

V,W∈Irr(G)
V⊗W∼=U

µ∗◦(ψV ∧ ψW ) :
(
VecCG

)N ∧ (VecCG
)N −−−−−−→ VecCH ,

as maps of Γ-spaces, for each U ∈ Irr(N).

4. Characters and class functions

Throughout this section, G will be a finite group. We prove here some results showing that certain
class functions are characters; results which will be needed in the next two sections.

For any field K of characteristic zero, a K-character of G means a class function G → K which is
the character of some (virtual) K-representation of G. Two elements g, h ∈ G are called K-conjugate if g is
conjugate to ha for some a prime to n = |g| = |h| such that (ζ 7→ ζa) ∈ Gal(Kζ/K), where ζ = exp(2πi/n).
For example, g and h are Q-conjugate if 〈g〉 and 〈h〉 are conjugate as subgroups, and are R-conjugate if g is
conjugate to h or h−1.

Proposition 4.1. Fix a finite extension K of Q, and let A ⊆ K be its ring of integers. Let f : G→ A be any
function which is constant on K-conjugacy classes. Then |G|·f is an A-linear combination of K-characters
of G.

Proof. Set n = |G|, for short. Let V1, . . . , Vk be the distinct irreducible K[G]-representations, let χi be the
character of Vi, set Di = EndK[G](Vi) (a division algebra over K), and set di = dimK(Di). Then by [11,
Theorem 25, Cor. 2],

|G|·f =
k∑
i=1

riχi where ri =
1
di

∑
g∈G

f(g)χi(g−1);

and we must show that ri ∈ A for all i. This means showing, for each i = 1, . . . , k, and each g ∈ G with
K-conjugacy class conjK(g), that |conjK(g)|·χi(g) ∈ diA.

Fix i and g; and set C = 〈g〉, m = |g| = |C|, and ζ = exp(2πi/m). Then Gal(K(ζ)/K) acts freely on
the set conjK(g): the element (ζ 7→ ζa) acts by sending h to ha. So [K(ζ):K]

∣∣|conjK(g)|.

Let Vi|C = W a1
1 ⊕ · · · ⊕W

at
t be the decomposition as a sum of irreducible K[C]-modules. For each

j, Kj
def= EndK[C](Wj) is the field generated by K and the r-th roots of unity for some r|m (m = |C|),

and dimKj (Wj) = 1. So dimK(Wj)
∣∣[K(ζ):K]. Also, di

∣∣ dimK(W aj
j ), since W aj

j is a Di-module; and thus
di
∣∣aj ·|conjK(g)|. So if we set ξj = χWj

(g) ∈ A, then

|conjK(g)|·χi(g) = |conjK(g)|·
t∑

j=1

ajξj ∈ diA,

and this finishes the proof.

For each prime p and each element g ∈ G, there are unique elements gr of order prime to p and gu of
p-power order, such that g = grgu = gugr. As in [11, §10.1], we refer to gr as the p′-component of g. We say
that a class function f : G→ C is p-constant if f(g) = f(gr) for each g ∈ G. Equivalently, f is p-constant if
and only if f(g) = f(g′) for all g, g′ ∈ G such that [g, g′] = 1 and g−1g′ has p-power order.
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Lemma 4.2. Fix a finite group G, a prime p, and a field K of characteristic zero. Then a p-constant class
function ϕ : G→ K is a K-character of G if and only if ϕ|H is a K-character of H for all subgroups H ⊆ G
of order prime to p.

Proof. Recall first that G is called K-elementary if for some prime q, G = Cm o Q, where Cm is cyclic of
order m, q|-|m, Q is a q-group, and the conjugation action of Q on K[Cm] leaves invariant each of its field
components. By [11, §12.6, Prop. 36], a K-valued class function of G is a K-character if and only if its
restriction to any K-elementary subgroup of G is a K-character. Thus, it suffices to prove the lemma when
G is K-elementary.

Assume first that G is q-K-elementary for some prime q 6= p. Fix a subgroup H ⊆ G of p-power index
and order prime to p, and let α : G� H be the surjection with α|H = Id. Set pa = |Ker(α)|. Then

Aut(Ker(α)) ∼= (Z/pa)∗ ∼= (1 + pZ/pa)× (Z/p)∗,

where the first factor is a p-group. Hence for any g ∈ H and x ∈ Ker(α), either [g, x] = 1 and hence g = (gx)r;
or gxg−1 = xi for some i 6≡ 1 (mod p) and hence g is conjugate to gx. In either case, ϕ(gx) = ϕ(g). Thus,
ϕ = (ϕ|H)◦α, and this is a K-character of G since ϕ|H is by assumption a K-character of H.

Now assume G is p-K-elementary. Write G = Cm oP , where p|-|m and P is a p-group. Let S be the set
of primes which divide m. For each I ⊆ S, let CI ⊆ Cm be the product of the Sylow p-subgroups for p ∈ I,
set GI = CIoP , and let αI : G� GI be the homomorphism which is the identity on GI .

For each I ⊆ S, we can consider K[CI ] as a G-representation via the conjugation action of P ; and
each CI -irreducible summand of K[CI ] is P -invariant and hence G-invariant. Thus, each irreducible K[CI ]-
representation can be extended to a K[GI ]-representation upon which P ∩CG(CI) acts trivially. Hence, since
ϕ|CI is a K-character of CI ; there is a K-character χI of GI such that χI(gx) = χI(x) = ϕ(x) for all x ∈ CI
and g ∈ P such that [g, CI ] = 1.

Now set
χ =

∑
J⊆I⊆S

(−1)|IrJ|(χI◦αJ),

a K-character of G. We claim that ϕ = χ. Since both are class functions, it suffices to show that ϕ(gx) =
χ(gx) for all commuting g ∈ P and x ∈ Cm = CS . Fix such g and x, and let X ⊆ S be the set of all primes
p
∣∣|x|. Then [g, CX ] = 1, and so

χ(gx) =
∑

J⊆I⊆S

(−1)|IrJ|χI(αJ(gx)) =
∑

J⊆I⊆S

(−1)|IrJ|χI(g·αJ(x))

=
∑

J⊆I⊆X

(−1)|IrJ|ϕ(αJ(x)) +
∑

J⊆I 6⊆X

(−1)|IrJ|χI(g·αJ(x))

= ϕ(x) = ϕ(gx).

Note, in the second line, that all terms in the second sum cancel since αJ(x) = αJ′(x) if J = J ′ ∩X, and all
terms in the first sum cancel except that where J = I = X.

When A = Z and K = Q, Proposition 4.1 and Lemma 4.2 combine to give:

Corollary 4.3. Fix a finite group G and a prime p. Let f : G→ Z be any function which is p-constant, and
constant on Q-conjugacy classes in G. Set |G| = m·pr where p|-|m. Then m·f is a Q-character of G.

5. The equivariant Chern character

We construct here two different equivariant Chern characters, both defined on the equivariant complex
K-theory of proper G-complexes. The first is defined for arbitrary X (with proper G-action), and sends
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K∗G(X) to the Bredon cohomology group H∗G(X;Q⊗ZR(−)). The second is defined only when X is finite
dimensional and has bounded isotropy, and takes values in Q⊗ZH∗G(X;R(−)).

We first fix our notation for dealing with Bredon cohomology [5]. Let Or(G) denote the orbit category:
the category whose objects are the orbits G/H for H ⊆ G, and where MorOr(G)(G/H,G/K) is the set of
G-maps. A coefficient system for Bredon cohomology is a functor F : Or(G)op → Ab. For any such functor
F and any G-complex X, the Bredon cohomology H∗G(X;F ) is the cohomology of a certain cochain complex
C∗G(X;F ), where CnG(X;F ) is the direct product over all orbits of n-cells of type G/H of the groups F (G/H).
This can be expressed functorially as a group of morphisms of functors on Or(G):

CnG(X,F ) = HomOr(G)

(
Cn(X), F

)
,

where Cn(X) : Or(G)op → Ab is the functor Cn(X)(G/H) = Cn(XH).

Clearly, the coefficient system F need only be defined on the subcategory of orbit types which occur in
the G-complex X. In particular, since we work here only with proper actions, we restrict attention to the full
subcategory Orf (G) of orbits G/H for finite H ⊆ G. Let R(−) denote the functor on Orf (G) which sends
G/H to R(H): a functor on the orbit category via the identification R(H) ∼= K0

G(G/H). More precisely, a
morphism G/H → G/K in Orf (G), where gH 7→ gaK for some a ∈ G with a−1Ha ⊆ K, is sent to the
homomorphism R(K)→ R(H) induced by restriction and conjugation by a.

Since R(−) is a functor from the orbit category to rings, there is a pairing

C∗G(X;R(−))⊗ C∗G(X;R(−)) −−−−−−→ C∗G(X ×X;R(−))

for any proper X, and hence a similar pairing in cohomology. Via restriction to the diagonal subspace
X ⊆ X ×X this defines a ring structure on H∗G(X;R(−)).

The equivariant Chern character will be constructed here by first reinterpreting H∗G(X;Q⊗R(−)) as
a certain group of homomorphisms of functors, and then directly constructing a map from KG(X) to such
homomorphisms. This will be done with the help of another category, Subf (G), which is closely related to
Orf (G). The objects of Subf (G) are the finite subgroups of G, and

MorSubf (G)(H,K) ⊆ Hom(H,K)/ Inn(K)

is the subset consisting of those monomorphisms induced by conjugation and inclusion in G. There is a
functor Orf (G) → Subf (G) which sends an orbit G/H to the subgroup H, and which sends a morphism(
xH 7→ xaK

)
in Orf (G) to the homomorphism

(
x 7→ a−1xa

)
from H to K. Via this functor, we can think

of Subf (G) as a quotient category of Orf (G).

Let Cqt
∗ (X),Hqt

∗ (X) : Subf (G)op −−→ Ab be the functors

Cqt
∗ (X)(H) = C∗(XH/CG(H)) and Hqt

∗ (X)(H) = H∗(XH/CG(H)). (5.1)

For any functor F : Subf (G)op → Ab, regarded also as a functor on Orf (G)op,

HomOrf (G)(C∗(X), F ) ∼= HomSubf (G)(C
qt
∗ (X), F ), (5.2)

since
HomCG(H)(C∗(XH), F (H)) ∼= Hom(C∗(XH/CG(H)), F (H))

for each H (and CG(H) is the group of automorphisms of G/H in Orf (G) sent to the identity in Subf (G)).
In particular, (5.2) will be applied when F = R(−), regarded as a functor on Subf (G) as well as on Orf (G).

As noted above, for any coefficient system F , the cochain complex C∗G(X;F ) can be identified as a
group of homomorphisms of functors on Or(G). The following lemma says that the Bredon cohomology
groups H∗G(X;Q⊗R(−)) have a similar description, but using functors on Subf (G)op.

Lemma 5.3. Fix a discrete group G and a proper G-complex X. Then (5.2) induces an isomorphism of rings

ΦX : H∗G(X;Q⊗R(−))
∼=−−−−−→ HomSubf (G)

(
Hqt
∗ (X),Q⊗R(−)

)
.
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Proof. Since

C∗G(X;Q⊗R(−)) ∼= HomOrf (G)(C∗(X),Q⊗R(−)) ∼= HomSubf (G)(C
qt
∗ (X),Q⊗R(−)),

this will follow immediately once we show that Q⊗R(−) is injective as a functor Subf (G)op → Ab. It suffices
to prove this after tensoring with C; i.e., it suffices to prove that Cl(−) (complex valued class functions) is
injective. And this holds since for any F : Subf (G)op → Ab,

HomSubf (G)(F,Cl(−)) ∼=
∏
g

HomSubf (G)(F,Clg(−)) ∼=
∏
g

Hom(F (〈g〉),C);

where both products are taken over any set of conjugacy class representatives for elements of finite order in
G, and where Clg(H) denotes the space of class functions on H which vanish on all elements not G-conjugate
to g.

We are now ready to define the Chern character

ch∗X : K∗G(X) −−−−−−−→ H∗G(X;Q⊗R(−))

for any proper G-complex X. Here and in the following theorem, we regard K∗G(−) as being Z/2-graded; so
that ch∗X sends K0

G(X) to Hev
G (X;Q ⊗ R(−)) and sends K1

G(X) to Hodd
G (X;Q ⊗ R(−)). By Lemma 5.3, it

suffices to define homomorphisms

chHX : K∗G(X) −−−−−−→ Hom
(
H∗(XH/CG(H)) , Q⊗R(H)

)
,

for each finite subgroup H ⊆ G, which are natural in H in the obvious way. We define chHX to be the following
composite:

K∗G(X) Res−−−→ K∗NG(H)(X
H) Ψ−−−→ K∗CG(H)(X

H)⊗R(H)
(proj)∗−−−−−→ K∗CG(H)(EG×X

H)⊗R(H)

Infl−1

−−−−−→∼= K∗(EG×CG(H)X
H)⊗R(H) ch⊗ Id−−−−→ H∗

(
EG×CG(H)X

H ;Q
)
⊗R(H)

(proj)∗←−−−−−∼= H∗
(
XH/CG(H);Q

)
⊗R(H) ∼= Hom

(
H∗(XH/CG(H)),Q⊗R(H)

)
. (5.4)

Here, Ψ is the homomorphism defined in Proposition 3.4, ch denotes the ordinary Chern character, and
(proj)∗ in the bottom line is an isomorphism since all fibers of the projection from EG ×CG(H) X

H to
XH/CG(H) are Q-acyclic (classifying spaces of finite groups). By the naturality properties of Ψ shown in
Proposition 3.4,

∏
H chHX takes values in HomSubf (G)

(
Hqt
∗ (X),Q⊗R(−)

)
, and hence (via Lemma 5.3) defines

an equivariant Chern character

ch∗X : K∗G(X) −−−−−−→ H∗G(X;Q⊗R(−)) ∼= HomSubf (G)

(
Hqt
∗ (X),Q⊗R(−)

)
.

All of the maps in (5.4) are homomorphisms of rings, and hence ch∗X is also a homomorphism of rings. Also,
the ch∗X commute with degree-changing maps K∗G(X)→ K∗+m(Sm×X) (i.e., product with the fundamental
class of Sm) and similarly in cohomology, since all maps in (5.4) do so. They are thus natural with respect
to boundary maps in Mayer-Vietoris sequences.

Theorem 5.5. For any finite proper G-complex X, the Chern character ch∗X extends to an isomorphism of
rings

Q⊗ ch∗X : Q⊗K∗G(X)
∼=−−−−−−→ H∗G(X;Q⊗R(−)).

Proof. For any finite subgroup H ⊆ G,

K0
G(G/H) ∼= R(H) ∼= H0

G(G/H;R(−)), and K1
G(G/H) = 0 = H 6=0

G (G/H;R(−)).

From the definition in (5.4) (and since the non-equivariant Chern character K(pt)→ H0(pt) is the identity
map), we see that Q ⊗ ch∗G/H is the identity map under the above identifications. The Chern characters
for G/H×Dn and G/H×Sn−1) are thus isomorphisms for all n. The theorem now follows by induction on
the number of orbits of cells in X, together with the Mayer-Vietoris sequences for pushouts X = X ′ ∪ϕ
(G/H×Dn) (and the 5-lemma).
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Theorem 5.5 means that the Q-localization of the classifying space KG splits as a product of
equivariant Eilenberg-Maclane spaces. Hence for any proper G-complex X, there is an isomorphism
K∗G(X;Q)

∼=−−−→ H∗G(X;Q⊗R(−)), where the first group is defined via the localized spectrum (and is not in
general isomorphic to Q⊗K∗G(X,A)).

The coefficient system Q⊗R(−), and hence its cohomology, splits in a natural way as a product indexed
over cyclic subgroups of G of finite order. For any cyclic group S of order n < ∞, we let Z[ζS ] ⊆ Q(ζS)
denote the cyclotomic ring and field generated by the n-th roots of unity; but regarded as quotient rings of
the group rings Z[S∗] ⊆ Q[S∗] (S∗ = Hom(S,C∗)). In other words, we fix an identification of the n-th roots of
unity in Q(ζS) with the irreducible characters of S. The kernel of the homomorphism R(S) ∼= Z[S∗]� Z[ζS ]
is precisely the ideal of elements whose characters vanish on all generators of S.

Lemma 5.6. Fix a discrete group G, and let S(G) be a set of conjugacy class representatives for the cyclic
subgroups S ⊆ G of finite order. Then for any proper G-complex X, there is an isomorphism of rings

H∗G(X;Q⊗R(−)) ∼=
∏

S∈S(G)

(
H∗(XS/CG(S);Q(ζS))

)N(S)
,

where N(S) acts via the conjugation action on Q(ζS) and translation on XS/CG(S). If, furthermore, the
isotropy subgroups on X have bounded order, then the homomorphism of rings

H∗G(X;R(−)) −−−−−→
∏

S∈S(G)

H
((
C∗(XS/CG(S);Z[ζS ])

)N(S)
)

−−−−−→
∏

S∈S(G)

(
H∗(XS/CG(S);Z[ζS ])

)N(S)
, (1)

induced by restriction to cyclic subgroups and by the projections R(S) −� Z[ζS ], has kernel and cokernel of
finite exponent.

Proof. By (5.2),

C∗G(X;R(−)) ∼= HomOrf (G)(C∗(X), R(−)) ∼= HomSubf (G)(C
qt
∗ (X), R(−)).

For each S ∈ S(G), let χS ∈ Cl(G) be the idempotent class function: χS(g) = 1 if 〈g〉 is conjugate to
S, and χS(g) = 0 otherwise. By Proposition 4.1, for each finite subgroup H ⊆ G, (χS)|H is the character of
an idempotent eHS ∈ Q⊗R(H). Set QRS(H) = eHS ·(Q⊗R(H)), and let RS(H) ⊆ QRS(H) be the image of
R(H) under the projection. This defines a splitting Q⊗R(−) =

∏
S∈S(G)QRS(−) of the coefficient system.

For each S and H,

QRS(S) = Q(ζS) and so QRS(H) ∼= mapN(S)

(
MorSubf (G)(S,H) , Q(ζS)

)
.

It follows that

C∗G(X;QRS(−)) ∼= HomSubf (G)(C
qt
∗ (X),QRS(−)) ∼= HomQ[N(S)]

(
C∗(XS/CG(S)),Q(ζS)

)
;

and hence H∗G(X;QRS(−)) ∼=
(
H∗(XS/CG(S));Q(ζS)

)N(S).

Now assume there is a bound on the orders of isotropy subgroups on X, and let m be the least common
multiple of the |Gx|. By Proposition 4.1 again, meHS ∈ R(H) for each S ∈ S(G) and each isotropy subgroup
H. So there are homomorphisms of functors

R(−)
i−−−−−−→←−−−−−−
j

∏
S∈S(G)

RS(−),

where i is induced by the projections R(H) � RS(H) and j by the homomorphisms RS(H)
meHS ·−−−→ R(H)

(regarding RS(H) as a quotient of R(H)); and i◦j and j◦i are both multiplication by m. For each S, the
monomorphism

C∗G(X;RS(−)) ∼= HomZ[N(S)]

(
C∗(XS/CG(S)),Z[ζS ]

)
−−−−→ C∗(XS/CG(S);Z[ζS ])
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is split by the norm map for the action of N(S)/CG(S), and hence the kernel and cokernel of the induced
homomorphism

H∗G(X;RS(−)) −−−−−→
(
H∗(XS/CG(S);Z[ζS ])

)N(S)

have exponent dividing ϕ(m) (since |N(S)/CG(S)|
∣∣|Aut(S)|

∣∣ϕ(m)). The composite in (1) thus has kernel
and cokernel of exponent m·ϕ(m).

By the first part of Proposition 5.6, the equivariant Chern character can be regarded as a homomorphism

ch∗X : K∗G(X) −−−−−−→
∏

S∈S(G)

(
H∗(XS/CG(S);Q(ζS))

)N(S)
,

where S(G) is as above. This is by construction a product of ring homomorphisms.

We now apply the splitting of Lemma 5.6 to construct a second version of the equivariant rational Chern
character: one which takes values in Q⊗H∗G(X;R(−)) rather than in H∗G(X;Q⊗R(−)). The following lemma
handles the nonequivariant case.

Lemma 5.7. There is a homomorphism n!ch : K∗(X) → H≤2n(X;Z), natural on the category of CW-
complexes, whose composite to H∗(X;Q) is n! times the usual Chern character truncated in degrees greater
than 2n. Furthermore, n!ch is natural with respect to suspension isomorphisms K∗(X) ∼= K̃∗+m(Σm(X+)),
and is multiplicative in the sense that

(
n!ch(x)

)
·
(
n!ch(y)

)
= n!·

(
n!ch(xy)

)
for all x, y ∈ K(X) (in both cases

after restricting to the appropriate degrees).

Proof. Define n!ch : K0(X)→ Hev,≤2n(X;Z) to be the following polynomial in the Chern classes:

n!·
n∑
i=1

(
1 + xi +

x2
i

2!
+ · · ·+ xni

n!

)
∈ Z[c1, . . . , cn] = Z[x1, x2, . . . , xn]Σn .

Here, as usual, ck is the k-th elementary symmetric polynomial in the xi. This is extended to K−1(X) ∼=
K̃(Σ(X+)) in the obvious way. The relations all follow from the usual relations between Chern classes in the
rings H∗(BU(m)).

We are now ready to construct the integral Chern character. What this really means is that under
certain restrictions on X, some multiple of the rational Chern character ch∗X of Theorem 5.5 can be lifted
to the integral Bredon cohomology group H∗G(X;R(−)).

Proposition 5.8. Let G be a discrete group, and let X be a finite dimensional proper G-complex whose isotropy
subgroups have bounded order. Then there is a homomorphism

c̃h∗X : K∗G(X) −−−−−→ Q⊗H∗G(X;R(−)),

natural in such X, whose composite to H∗G(X;Q⊗R(−)) is the map ch∗X of Theorem 5.5. Furthermore, c̃h∗X
induces an isomorphism of rings Q ⊗K∗G(X)

∼=−→ Q ⊗H∗G(X;R(−)). And for any finite subgroup K ⊆ G,
c̃h0
G/K is the identity map under the identifications KG(G/K) ∼= R(G/K) ∼= H0

G(G/K;R(−)).

Proof. Fix X, and choose any integer n ≥ dim(X)/2. Set m = lcm
{
|Gx|

∣∣x ∈ X} and N = n!·m4n. For each
S ∈ G of finite order, let c̃hSX be the following composite:

K∗G(X) Res−−−→ K∗NG(S)(X
S) Ψ−−−→ K∗CG(S)(X

S)⊗R(S)
(proj)∗−−−−−→ K∗CG(S)(EG×X

S)⊗R(S)

Infl−1

−−−−−→∼= K∗(EG×CG(S)X
S)⊗R(S) n!ch−−−−→ H≤2n

(
EG×CG(S)X

S
)
⊗R(S)

m4n(proj∗)−1

−−−−−−−−−−→ H∗
(
XS/CG(S)

)
⊗R(S) −−−−−→ H∗(XS/CG(S);Z[ζS ]).

Here, Ψ is the homomorphism of Lemma 3.4, and Infl is the inflation isomorphism of Proposition 3.3. The

first map in the bottom row is well defined since H∗(XS/C(S);Z[ζS ])
proj∗−−−−→ H∗(EG×C(S) X

S ;Z[ζS ]) has
kernel and cokernel of exponent m2n (this follows from the spectral sequence for the projection, all of whose
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fibers are of the form BGx for x ∈ X). The last map is induced by the projection R(S) −� Z[ζS ]. All of
these maps are homomorphisms of rings (up to the obvious integer multiples).

Now let S(G) be any set of conjugacy class representatives for cyclic subgroups S ⊆ G of finite order.
Define c̃h∗X to be the composite

c̃h∗X : K∗G(X)
1
N

Q echSX−−−−−−−→ Q⊗
( ∏
S∈S(G)

(
H∗(XS/CG(S);Z[ζS ])

)N(S)
)
∼= Q⊗H∗G(X;R(−)),

where the isomorphism is that of Lemma 5.6. The naturality of c̃h∗X , its independence of the choice of n,
and its relation with ch∗X , are immediate from the construction. Also, c̃h∗X is natural with respect to the
degree-changing maps K∗(X) → K∗+m(Sm×X) (and similarly in cohomology). In particular, this means
that it commutes with all maps in Mayer-Vietoris sequences.

It remains to prove that c̃h∗X induces an isomorphism on Q ⊗ K∗G(X). This is done by induction on
dim(X), using the obvious Mayer-Vietoris sequences. So it suffices to show it for (possibly infinite) disjoint
unions

∐
i∈I G/Hi of orbits. Both groups are zero in odd degrees. And in even degrees,

Q⊗KG

(∐
i∈I G/Hi

)
∼= Q⊗

(∏
iR(Hi)

) ech0
X−−−−−−→ Q⊗Hev

G

(∐
i∈I G/Hi;R(−)

)
∼= Q⊗

(∏
iR(Hi)

)
is the identity map under these identifications.

6. Completion theorems

Throughout this section, G is a discrete group. We want to prove completion theorems for finite proper
G-complexes: theorems which show that K∗G(E × X), when E is a “universal space” of a certain type, is
isomorphic to a certain completion of K∗G(X). The key step will be to construct elements of K∗G(X) whose
restrictions to orbits in X are sufficiently “interesting”. And this requires a better understanding of the
“edge homomorphism” for K∗G(X).

For any finite dimensional proper G-complex X, the skeletal filtration of K∗G(X) induces a spectral
sequence

Ep,2∗2
∼= Hp

G(X;R(−)) =⇒ K∗G(X).

If X also has bounded isotropy, the Chern character c̃hX of Proposition 5.8 is an isomorphism (after tensoring
with Q) from the limit of this spectral sequence to its E2-term. It follows that the spectral sequence collapses
rationally; i.e., that the images of all differentials in the spectral sequence consist of torsion elements.

Of particular interest is the edge homomorphism of the spectral sequence. This is a homomorphism

εX : K∗G(X) −−−−−−→ H0
G(X;R(−)),

which is induced by restriction to the 0-skeleton of X under the identification

H0
G(X;R(−)) = Ker

[
KG(X(0)) −−−→ K1

G(X(1), X(0))
]

= Im
[
KG(X(1)) −−−→ KG(X(0))

]
.

Alternatively, H0
G(X;R(−)) can be thought of as the inverse limit, taken over all isotropy subgroups H of

X and all connected components of XH , of the representation rings R(H); and the edge homomorphism
sends an element of K∗G(X) to the collection of its restrictions to elements of K∗G(Gx) ∼= R(Gx) at all points
x ∈ X.

As an application of the integral Chern character of Proposition 5.8, we get:
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Proposition 6.1. Let X be any finite dimensional proper G-complex whose isotropy subgroups have bounded
order. Then for any ξ ∈ H0

G(X;R(−)), there is k > 0 such that k·ξ and ξk lie in the image of the edge
homomorphism

εX : KG(X) −−−−−−→ H0
G(X;R(−)).

Similarly, for any ξ ∈ H0
G(X;RO(−)), there is k > 0 such that k·ξ and ξk lie in the image of the edge

homomorphism
εX : KOG(X) −−−−−−→ H0

G(X;RO(−)).

Proof. The usual homomorphisms between R(−) and RO(−), and between K∗G(−) and KO∗G(−), induced
by (C⊗R) and by forgetting the complex structure, show that up to 2-torsion, KO∗G(X) and H0

G(X;RO(−))
are the fixed point sets under complex conjugation of the groups K∗G(X) and H0

G(X;R(−)), respectively. So
the edge homomorphism in the orthogonal case is also surjective modulo torsion. The rest of the argument
is identical in the real and complex cases; we restrict to the complex case for simplicity.

By Proposition 5.8, the integral Chern character for X(0) is the identity under the usual identifications
KG(G/K) ∼= R(K) ∼= H0

G(G/K;R(−)) for an orbit G/K (K finite). So by the naturality of c̃hX , the
composite

Q⊗KG(X)
ech0
X−−−−→∼= Q⊗Hev

G (X;R(−)) −−−� Q⊗H0
G(X;R(−)) ⊆ Q⊗KG(X(0))isjustthemapinducedbyrestrictionto

X(0). So rationally, the edge homomorphism is just the projection of the integral Chern character c̃h onto
H0
G(X;R(−)), and is in particular surjective. And hence, for any ξ ∈ H0

G(X;R(−)), there is some k > 0
such that k·ξ ∈ εX(KG(X)).

It remains to show that ξk ∈ Im(εX) for some k. If we knew that the Atiyah-Hirzebruch spectral
sequence

Ep,2∗2
∼= Hp

G(X;R(−)) =⇒ K∗G(X)
were multiplicative (i.e., that the differentials were derivations), then the result would follow directly. As
we have seen, all differentials in the spectral sequence have finite order. Hence, for each r ≥ 2 and each
η ∈ E0,2∗

r , there is some k > 0 such that

k·dr(η) = 0, and hence dr(ηk) = k·dr(η)ηk−1 = 0.

Upon iteration, this shows that for any ξ ∈ H0
G(X;R(−)) = E0,0

2 , there exists k > 0 such that k·ξ and ξk

both survive to E0,0
∞ ; and hence lie in the image of the edge homomorphism.

Rather than prove the multiplicativity of the spectral sequence, we give the following more direct
argument. Identify

ξ ∈ H0
G(X;R(−)) = Im

[
KG(X(1)) −−→ KG(X(0))

]
.

Assume, for some r ≥ 2, that ξ lies in the image of KG(X(r−1)); we prove that some power of ξ lies in the
image of KG(X(r)).

Fix ξ̃ ∈ KG(X(r−1)) such that resX(0)(ξ̃) = ξ. Since r ≥ 2,

Im
[
H0
G(X(r−1);R(−)) −−→ H0

G(X(0);R(−))
]

= Im
[
H0
G(X(r);R(−)) −−→ H0

G(X(0);R(−))
]
.

Hence, since the Chern character is rationally an isomorphism, there exists k such that k·ξ lies in the image
of KG(X(r)), or equivalently such that

k·ξ̃ ∈ Ker
[
KG(X(r−1)) −−−→ KG(X(0)) d−−−→ K1

G(X(r), X(0))
]

= Ker
[
KG(X(r−1)) d−−−→ K1

G(X(r), X(r−1)) −−−→ K1
G(X(r), X(0))

]
. (1)

In Lemma 6.2 below, we will show that there is a KG(X(r−1))-module structure on the relative group
K1
G(X(r), X(r−1)) which makes the boundary map d : KG(X(r−1)) → K1

G(X(r), X(r−1)) into a derivation.
Then d(ξ̃k) = k·ξ̃k−1·d(ξ̃), so ξ̃k lies in the kernel in (1), and hence ξk = resX(0)(ξ̃k) lies in the image of
KG(X(r)).
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It remains to prove:

Lemma 6.2. Let X be any proper G-complex. Then, for any r ≥ 2, one can put a KG(X(r−1))-module
structure on K1

G(X(r), X(r−1)) in such a way that for any α, β ∈ KG(X(r−1)),

d(αβ) = α·dβ + β·dα ∈ K1
G(X(r), X(r−1)).

Proof. We can assume X = X(r). Write Y = X(r−1), for short. Fix a map ∆ : X → Z
def= X × Y ∪ Y ×X

which is homotopic to the diagonal, and such that ∆|Y is equal to the diagonal map. Since Z contains the
r + 1-skeleton of X ×X, ∆ is unique up to homotopy (rel Y ). In particular, if T : Z → Z is the map which
switches coordinates, then T ◦∆ ' ∆ (rel Y ).

Now, for α ∈ KG(Y ) and x ∈ K1
G(X,Y ), let α·x ∈ K1

G(X,Y ) be the image of α×x under the following
composite

α× x ∈ K1
G(Y ×X,Y × Y ) ∼= K1

G(Z,X × Y ) incl∗−−−−→ K1
G(Z, Y × Y ) ∆∗−−−−→ K1

G(X,Y ).

Here, the external product α×x is induced by the pairing KG∧KG → KG×G → KG of (2.2); or equivalently
is defined to be the internal product of proj∗1(α) ∈ KG(Y ×X) and proj∗2(x) ∈ K1

G(Y ×X,Y × Y ). We can
thus consider KG(X,Y ) as a KG(Y )-module. In particular, the relation (αβ)·x = α·(β·x) follows since the
two composites (∆× IdX)◦∆ and (IdX ×∆)◦∆ are homotopic as maps from X to

(X×Y×Y ) ∪ (Y×X×Y ) ∪ (Y×Y×X).

Now consider the following commutative diagram:

KG(Y × Y ) d−−−−→ K1
G(Z, Y × Y )

∼=−−−−→ K1
G

(
(X,Y )× Y

)
⊕K1

G

(
Y × (X,Y )

)
∆∗
y ∆∗

y ∼=
x

KG(Y ) d−−−−→ K1
G(X,Y ) ←−−−− K1

G

(
Z, Y ×X

)
⊕K1

G

(
Z,X × Y

)
where the isomorphisms hold by excision. For any α, β ∈ KG(Y ), the external product α× β ∈ KG(Y × Y )
is sent, by the maps in the top row, to the pair (dα × β, α × dβ). This follows from the linearity of the
differential (which holds in any multiplicative cohomology theory). And since T ◦∆ ' ∆, as noted above, we
have

d(αβ) = ∆∗(d(α× β)) = β·dα+ α·dβ.

As an immediate consequence of Proposition 6.1, we now get:

Corollary 6.3. Assume that G is discrete. Fix any family F of finite subgroups of G of bounded order, and
let

V =
(
VH
)
∈ lim←−
H∈F

R(H) or V′ =
(
V ′H
)
∈ lim←−
H∈F

RO(H)

be any system of compatible (virtual) representations. Then for any finite dimensional proper G-complex
X all of whose isotropy subgroups lie in F , there is an integer k > 0, and elements α, β ∈ KG(X) (or
α′, β′ ∈ KOG(X)), such that α|x = k·VGx and β|x = (VGx)k (or α′|x = k·V ′Gx and β′|x = (V ′Gx)k) for all
x ∈ X.

Proof. Let ξ be the image of V under the ring homomorphism

lim←−
H∈F

R(H) −−−−→ H0
G(X;R(−))

(or similarly in the orthogonal case); and apply Proposition 6.1.

Corollary 6.3 can be thought of as a generalization of [8, Theorem 2.7]. It was that result which was
the key to proving the completion theorem in [8], and Corollary 6.3 plays a similar role in proving the more
general completion theorems here.
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In what follows, a family of subgroups of a discrete group G will always mean a set of subgroups closed
under conjugation and closed under taking subgroups.

Lemma 6.4. Let X be a proper n-dimensional G-complex. Set

I = Ker[K∗G(X) res−−−→ K∗G(X(0))].

Then In+1 = 0.

Proof. Fix any elements x ∈ In and y ∈ I. By induction, we can assume that x vanishes in K∗G(Xn−1), and
hence that it lifts to an element x′ ∈ K∗G(X,X(n−1)). Recall that K∗G(X,X(n−1)) is a K∗G(X)-module, and
the map K∗G(X,X(n−1)) → K∗G(X) is K∗G(X)-linear. But I·K∗G(X,X(n−1)) = 0, since I vanishes on orbits;
so yx′ = 0, and hence yx = 0 in K∗G(X).

As in earlier sections, in order to handle the complex and real cases simultaneously, we set F = C or
R, and write KF ∗G(−) and RF (−) for the equivariant K-theory and representation rings over F .

Fix any finite proper G-complex X, and let f : X → L be any map to a finite dimensional proper
G-complex L whose isotropy subgroups have bounded order. Let F be any family of finite subgroups of G.
Regard KF ∗G(X) as a module over the ring KFG(L). Set

I = IF,L = Ker
[
KFG(L) res−−−−→

∏
H∈F

KFH(L(0))
]
.

For any n ≥ 0, the composite

In·KF ∗G(X) ⊆ KF ∗G(X)
proj∗−−−−→ KF ∗G(EF (G)×X) res−−−−→ KF ∗G((EF (G)×X)(n−1))

is zero, since the image is contained in IKF ∗G((EF (G)×GX)(n−1))n = 0 which vanishes by Lemma 6.4. This
thus defines a homomorphism of pro-groups

λX,fF :
{
KF ∗G(X)

/
In·K∗G(X)

}
n≥1
−−−−−−→

{
KF ∗G

(
(EF (G)×X)(n−1)

)}
n≥1

.

Theorem 6.5. Fix F = C or R. Let G be a discrete group, and let F be a family of subgroups of G closed
under conjugation and under subgroups. Fix a finite proper G-complex X, a finite dimensional proper G-
complex Z whose isotropy subgroups have bounded order, and a G-map f : X → Z. Regard KF ∗G(X) as a
module over KFG(Z), and set

I = IFF,Z = Ker
[
KFG(Z) res−−−−→

∏
H∈F

KFH(Z(0))
]
.

Then
λX,fF :

{
KF ∗G(X)

/
In·KF ∗G(X)

}
n≥1
−−−−−−→

{
KF ∗G

(
(EF (G)×X)(n−1)

)}
n≥1

is an isomorphism of pro-groups. Also, the inverse system
{
KF ∗G

(
(EF (G)×X)(n)

)}
n≥1

satisfies the Mittag-
Leffler condition. In particular,

lim←−
1KF ∗G

(
(EF (G)×X)(n)

)
= 0;

and λX,fF induces an isomorphism

KF ∗G(X)Î
∼=−−−−−−→ KF ∗G(EF (G)×X) ∼= lim←−KF

∗
G

(
(EF (G)×X)(n)

)
.

Proof. Assume that λX,fF is an isomorphism. Then the system
{
KF ∗G

(
(EF (G)×X)(n)

)}
n≥1

satisfies the
Mittag-Leffler condition because

{
KF ∗G(X)/In

}
does. In particular,

lim←−
1KF ∗G

(
(EF (G)×X)(n)

)
= 0, and so KF ∗G(EF (G)×X) ∼= lim←−KF

∗
G

(
(EF (G)×X)(n)

)
(cf. [3, Proposition 4.1]).

It remains to show that λX,fF is an isomorphism.
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Step 1 Assume first that X = G/H, for some finite subgroup H ⊆ G. Let F|H be the family of
subgroups of H contained in F , and consider the following commutative diagram:

KFG(Z)
f∗−−−−→ KF ∗G(G/H)

pr1−−−−→ KF ∗G(EF (G)×G/H)

eveH

y∼= q

y∼=
RF (H) −−−−→∼= KF ∗H(pt)

pr2−−−−→ KF ∗H(EF|H(H)).

Here, pr2 induces an isomorphism of pro-groups{
KF ∗H(∗)/IF (H)n·KF ∗H(∗)

}
n≥1
−−−−−→

{
KF ∗

(
(BH)(n−1)

)}
n≥1

by the theorem of Jackowski [7, Theorem 5.1], where

IF (H) = Ker
[
RF (H) −−−→

∏
L∈F|H

RF (L)
]
⊇ I ′ def= evf(eH)(I).

(The theorem in [7] is stated only for complex K-theory, but as noted afterwards, the proof applies equally
well to the real case.) We want to show that pr1 induces an isomorphism of pro-groups{

KF ∗G(G/H)/In·KF ∗G(G/H)
}
n≥1
−−−−−→

{
KF ∗G

(
(EF (G)×G/H)(n−1)

)}
n≥1

.

So we must show that for some k, IF (H)k ⊆ I ′.

This means showing that the ideal IF (H)/I ′ is nilpotent; or equivalently (since R(H) is noetherian)
that it is contained in all prime ideals of R(H)/I ′ (cf. [2, Proposition 1.8]). In other words, we must show
that every prime ideal of R(H) which contains I ′ also contains IF (H). Fix any prime ideal P ⊆ R(H) which
does not contain IF (H). Set ζ = exp(2πi/|H|) and A = Z[ζ]. By a theorem of Atiyah [1, Lemma 6.2], there
is a prime ideal p ⊆ A and an element s ∈ H such that

P = {v ∈ R(G) |χv(s) ∈ p}.

(This is stated in [1] only in the complex case, but the same arguement applies to prime ideals in the real
representation ring.) Also, s is not an element of any L ∈ F , since P 6⊇ IF (H). Set p = char(A/p) (possibly
p = 0).

For any g ∈ G of finite order, we let gr represent its p-regular component: the unique gr ∈ 〈g〉 such
that p|-||gr| and |(gr)−1g| is a power of p (gr = g if p = 0). By [1, Lemma 6.3], we can replace s by sr without
changing the ideal P; and can thus assume that p|-||s|.

Let m′ be the least common multiple of the orders of isotropy subgroups in Z, and let m be the largest
divisor of m′ prime to p (m = m′ if p = 0). Define ϕ : tors(G) → Z by setting ϕ(g) = 0 if gr ∈ L for some
L ∈ F , and ϕ(g) = m otherwise. By Corollary 4.3, ϕ|L is a rational character of L for each L ∈ Isotr(Z). So
by Corollary 6.3, there is k > 0 and an element ξ ∈ KG(Z) whose restriction to any orbit has character the
restriction of ϕk. In other words, ξ ∈ I = IFF,Z , and so ϕk|H is the character of an element v ∈ I ′. But then
χv(s) = ϕ(s)k 6∈ p, so v 6∈ P, and thus P 6⊇ I ′.

Step 2 By Step 1, the theorem holds when dim(X) = 0. So we now assume that dim(X) = m > 0. Assume
X = Y ∪ϕ

(
G/H×Dm

)
, for some attaching map ϕ : G/H×Sm−1 → Y . We can assume inductively that the

theorem holds for Y , G/H×Sm−1, and G/H×Dm ' G/H.

All terms in the Mayer-Vietoris sequence

−−−−→ KF ∗G(X) −−−−→ KF ∗G(Y )⊕KF ∗G(G/H×Dm) −−−−→ KF ∗G(G/H×Sm−1) −−−−→

are KFG(X)-modules and all homomorphisms are KFG(X)-linear; and the KFG(Z)-module structure on
each term is induced from the KFG(X)-module structure. So if we let I ′ ⊆ KFG(X) be the ideal generated
by the image of I; then dividing out by (I ′)n is the same as dividing out by In for all terms. In addition,
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KFG(X) is noetherian (in fact, a finitely generated abelian group), and so this Mayer-Vietoris sequence
induces an exact sequence of pro-groups

−−−−−→
{
KF ∗G(X)/In

}
n≥1
−−−−−→

{
KF ∗G(Y )/In ⊕KF ∗G(G/H×Dm)/In

}
n≥1

−−−−−→
{
KF ∗G(G/H×Sm−1)/In

}
n≥1
−−−−−→

by [8, Lemma 4.1]. There is a similar Mayer-Vietoris exact sequence of the pro-groups{
KF ∗G

(
(EF (G)×−)(n−1)

)}
n≥1

;

and the theorem now follows from the 5-lemma for pro-groups together with the induction assumptions.
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