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Abstract

LetG be a locally compact topological group and EG its universal space for the
family of compact subgroups. We give criteria for this space to be G-homotopy
equivalent to a d-dimensional G-CW -complex, a finite G-CW -complex or a
G-CW -complex of finite type. Essentially we reduce these questions to discrete
groups, and to the homological algebra of the orbit category of discrete groups with
respect to certain families of subgroups.
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Introduction

Throughout this paper we denote by G a locally compact topological group (where
locally compact always includes Hausdorff). We denote by G0 the component of the identity
element and by G = G/G0 its component group. Notice that G0 is locally compact and
connected and G is locally compact and totally disconnected, i.e. each component consists
of exactly one point. Subgroup will always mean closed subgroup. Sometimes we make the
additional assumption

(S)
For any closed subgroup H ⊂ G the projection p : G - G/H has a
local cross section, i.e. there is a neighborhood U of eH together with a
map s : U → G satisfying p ◦ s = idU .

Condition (S) is automatically satisfied if G is discrete, if G is a Lie group, or more generally,
if G is locally compact and second countable and has finite covering dimension [15]. The
metric needed in [15] follows under our assumptions, since a locally compact Hausdorff space
is regular and regularity in a second countable space implies metrizability.

A family F consists of a set of (closed) subgroups of G with the property that for
any H,K ∈ F and g ∈ G, the subgroups g−1Hg and H ∩ K belong to F . Notice that
we do not require that F is closed under taking subgroups. A universal space of G

∗David Meintrup is supported by the Graduiertenkolleg “Algebraische Geometrie und Zahlentheorie” in
Münster. Parts of this paper grew out of his Dissertation.
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for the family F is a G-CW -complex E(G,F) such that the fixed point set E(G,F)H

is weakly contractible for H ∈ F and all its isotropy groups belong to F . Recall that a
map f : X → Y of spaces is a weak homotopy equivalence if and only if the induced map
f∗ : πn(X, x) → πn(Y, f(x)) is an isomorphism for all base points x ∈ X and for all n ≥ 0
and that a space X is weakly contractible if and only if the projection X → {∗} onto the
space consisting of one point is a weak homotopy equivalence. The G-CW -complex E(G,F)
has the universal property that for any G-CW -complex X whose isotropy groups belong to
F , there is up to G-homotopy precisely one G-map X - E(G,F). In particular, E(G,F)
is unique up to G-homotopy. The notion of a G-CW -complex can be found for instance
in [10, Definition 1.2], the existence of E(G,F) follows for instance from [10, 2.2], and the
universal property of E(G,F) is a consequence of the Equivariant Whitehead Theorem [10,
Theorem 2.4]. If F is the family of compact subgroups COM, we will often abbreviate
E(G, COM) by EG. Notice that for a discrete group COM is the same as the family FIN
of finite subgroups.

In Section 1 we will explain our notion of E(G,F) and compare it with the similar
notion due to tom Dieck [4, section I.6]. We mention that these spaces E(G,F) and in
particular EG play an important role in the formulation of the Baum-Connes Conjecture
[3, Conjecture 3.15 on p. 254], the Isomorphism Conjecture in algebraic K- and L-theory
of Farrell and Jones [5], the generalization of the completion theorem of Atiyah and Segal
for finite groups to infinite discrete groups [12] and in the construction of classifying spaces
for equivariant bundles [4, Section I.8 and I.9]. More information about models for EG can
be found for instance in [3].

We call any G-CW -complex in the G-homotopy class of E(G,F) a G-CW -model
for E(G,F). In this paper, we investigate the type of E(G,F), i.e. whether
there is an m-dimensional G-CW -model, a finite G-CW -model or a G-CW -model
of finite type for E(G,F). A G-CW -complex X is finite if it is built by finitely many
equivariant cells or, equivalently, if G\X is compact. It is called of finite type if each skeleton
Xn is finite. For discrete groups the type of EG has been investigated in [9], [11] and [16]. In
Section 2, we will give a necessary and sufficient algebraic criterion which not only applies
to FIN but to any family F . Namely, in Section 2 we will explain and prove

Theorem 0.1 Let G be a discrete group and let d ≥ 3. Then we have:

(a) There is a d-dimensional G-CW -model for E(G,F) if and only if the constant
ZOr(G,F)-module Z has a d-dimensional projective resolution;

(b) There is a G-CW -model for E(G,F) of finite type if and only if E(G,F) has a G-CW -
model with finite 2-skeleton and the constant ZOr(G,F)-module Z has a projective
resolution of finite type;

(c) There is a finite G-CW -model for E(G,F) if and only if E(G,F) has a G-CW -model
with finite 2-skeleton and the constant ZOr(G,F)-module Z has a finite free resolution
over Or(G,F);

(d) There is a G-CW -model with finite 2-skeleton for EG = E(G,FIN ) if and only if
there are only finitely many conjugacy classes of finite subgroups H ⊂ G and for any
finite subgroup H ⊂ G its Weyl group WH := NH/H is finitely presented.
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In Section 3 we will reduce the case of a totally disconnected group to the one of a
discrete group, as summarized in Theorem 0.2. Throughout the paper we will denote
the discretization of a topological group G by Gd, i.e. the same group but now with the
discrete topology. Given a family F of (closed) subgroups of G, denote by Fd the same set
of subgroups, but now in connection with Gd. Notice that Fd is again a family.

Theorem 0.2 Let G be a locally compact totally disconnected group and let F be a family
of subgroups of G. Then there is a G-CW -model for E(G,F) that is d-dimensional (resp.
finite, resp. of finite type) if and only if there is a Gd-CW -model for E(Gd,Fd) that is
d-dimensional (resp. finite, resp. of finite type).

The case of an almost connected group G, i.e. G is compact, has already been treated
by Abels [2, Corollary 4.14]. Namely, for an almost connected (locally compact) group G
there is a model for EG consisting of one equivariant cell G/K. Notice that K is then
necessarily a maximal compact subgroup of G and uniquely determined by this property up
to conjugation. In Section 4 we use this result to reduce the case of a locally compact group
G to a totally disconnected group. We show

Theorem 0.3 Let G be a locally compact group satisfying (S) and let G := G/G0. Then
there is a G-CW -model for EG that is d-dimensional (resp. finite, resp. of finite type) if
and only if EG has a G-CW -model that is d-dimensional (resp. finite, resp. of finite type).

If we combine Theorem 0.1, Theorem 0.2 and Theorem 0.3 we get

Theorem 0.4 Let G be a locally compact group satisfying (S). Denote by COM the family
of compact subgroups of its component group G and let d ≥ 3. Then

(a) There is a d-dimensional G-CW -model for EG if and only if the constant
ZOr(Gd, COMd)-module Z has a d-dimensional projective resolution;

(b) There is a G-CW -model for EG of finite type if and only if E(Gd, COMd) has a Gd-
CW -model with finite 2-skeleton and the constant ZOr(Gd, COMd)-module Z has a
projective resolution of finite type;

(c) There is a finite G-CW -model for EG if and only if E(Gd, COMd) has a Gd-CW -
model with finite 2-skeleton and the constant ZOr(Gd, COMd)-module Z has a finite
free resolution.

In particular we see from Theorem 0.3 that, for a Lie group G, type questions about EG
are equivalent to the corresponding type questions of Eπ0(G), since π0(G) = G is discrete
(cf. [11, Problem 7.1]). In this case the family COMd appearing in Theorem 0.4 is just the
family FIN of finite subgroups of π0(G).
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1 Review of the Universal Space for a Family of Sub-

groups Comment: Headline changed.

Recall from the introduction the G-CW -complex E(G,F). In particular, notice that we
only assume that the fixed point sets E(G,F)H for H ∈ F are weakly contractible,
and not necessarily contractible. If G is discrete, then each fixed point set E(G,F)H

has the homotopy type of a CW -complex and is contractible for H ∈ F . If G is discrete
and F = COM, then E(G,F)H is contractible for H ∈ COM by Proposition 4.3. In general
E(G,F)H need not be contractible as the following example shows.

Let G be totally disconnected and let F be the trivial family TR consisting of one
element, namely the trivial group. We claim that then E(G, TR) is contractible if and
only if G is discrete. If G is discrete, we already know that E(G, TR) is contractible.
Suppose now that E(G, TR) is contractible. We obtain a numerable G-principal bundle
G→ E(G, TR)→ G\E(G, TR) by the Slice Theorem [10, Theorem 1.37] and the fact that
the quotient G\E(G, TR) is a CW -complex and hence paracompact. This implies that it is
a fibration by a result of Hurewicz [17, Theorem on p. 33]. Since E(G, TR) is contractible,
G and the loop space Ω(G\E(G, TR)) are homotopy equivalent [17, 6.9∗ on p. 137, 6.10∗ on
p. 138, Corollary 7.27 on p. 40]. Since G\E(G, TR) is a CW -complex, Ω(G\E(G, TR)) has
the homotopy type of a CW -complex [13]. Let f : G→ X be a homotopy equivalence from
G to a CW -complex X. Then the induced map π0(G) → π0(X) between the set of path
components is bijective. Hence any preimage of a path component of X is a point since G is
totally disconnected. Since X is locally path-connected each path component of X is open
in X. We conclude that G is the disjoint union of the preimages of the path components of
X and each of these preimages is open in G and consists of one point. Hence G is discrete.

There is another variant of the universal space of a group G for a family F which we
review next ([4, Theorem 6.6. on p. 47]. The assumption that G is a compact Lie group is
not needed). We denote the space considered there by J(G,F) since it is constructed by a
variant of Milnor’s infinite join construction. Namely, a model for J(G,F) is ∗∞n=1Z, where
Z is a disjoint union of homogeneous spaces G/Hi such that each G/Hi is G-isomorphic
to G/H for one H ∈ F and each H ∈ F occurs this way. This is an F -numerable G-
space with the universal property that for any F -numerable G-space X there is up to
homotopy precisely one G-map X → J(G,F). Again J(G,F) is unique up to G-homotopy.
In contrast to E(G,F) the H-fixed point set J(G,F)H is always contractible for H ∈ F .
Since E(G,F) is a G-CW -complex and hence an F -numerable G-space, there is a G-map
f : E(G,F) → J(G,F) unique up to G-homotopy. Obviously f is a weak G-homotopy
equivalence, i.e. fH : E(G,F)H → J(G,F)H is a weak homotopy equivalence for each
H ⊂ G. In other words, E(G,F) is a G-CW -approximation of J(G,F). We know that
f cannot be a G-homotopy equivalence in general since E(G,F)H is not contractible in
general. Hence these concepts are different. However, for any G-CW -complex X whose
isotropy groups belong to F , any G-map X → J(G,F) lifts uniquely up to G-homotopy
over the G-map f : E(G,F) → J(G,F). Moreover, if G is discrete or if G is a Lie group
and F is contained in COM, then f : E(G,F)→ J(G,F) is a G-homotopy equivalence and
these concepts agree. This can be seen as follows.

Under the assumptions on G and F , ∗kn=0Z has the G-homotopy type of a G-CW -
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complex and hence ∗∞n=1Zweak has theG-homotopy type of aG-CW -complex, where ∗∞n=1Zweak

is equipped with the weak topology with respect to the filtration by the subspaces ∗kn=0Z for
k = 1, 2, . . .. This follows for instance from [10, section 7]. (See also [8].) One checks that
for a G-space X with a G-invariant G-covering and locally finite G-invariant subordinate
partition of unity, the G-map X → J(G,F) constructed in [4, Lemma 6.13 on p. 49 and
Lemma 6.9 on p. 48] actually factorizes through ∗∞n=1Zweak, since locally this map takes val-
ues in one of the subspaces ∗kn=0Z. In particular we obtain a G-map J(G,F)→ ∗∞n=1Zweak.
Since ∗∞n=1Zweak is a G-CW -complex we obtain a G-map h : J(G,F) → E(G,F). By the
universal properties both compositions h ◦ f and f ◦ h are G-homotopic to the identity.

In the case F = COM there is another model for the universal space of G, well known
from harmonic analysis, described in [2, §2]. Denote by C0(G) the space of complex-valued
continuous functions on G vanishing at infinity, endowed with the sup-norm-topology. By
g · f(x) := f(g−1x), g ∈ G, f ∈ C0(G), G acts isometrically on C0(G). Denote by PC0(G)
the subspace of real-valued functions f 6= 0 that only take non-negative values. Then
PC0(G) is a final object in the homotopy category of numerably proper G-spaces. As [2]
and [4] work over the same category ([2, Prop. 3.9]), the models PC0(G) and J(G, COM)
are G-homotopy equivalent.

2 Discrete Groups

Throughout this section G denotes a discrete group. Finiteness conditions for E(G,F)
focussing on the family F = FIN of finite subgroups have already been studied in [9], [11]
and [16]. In this section we translate type questions about E(G,F) for G and a family of
subgroups F to homological algebra of modules over the associated orbit category Or(G,F).
We begin by recalling some basic definitions.

The orbit category Or(G) of G is the small category whose objects are homogeneous
G-spaces G/H and whose morphisms are G-maps. Let Or(G,F) be the full subcategory of
Or(G) consisting of those objects G/H for which H belongs to F . A ZOr(G,F)-module
is a contravariant functor from Or(G,F) to the category of Z-modules. A morphism of
such modules is a natural transformation. The category of ZOr(G,F)-modules inherits
the structure of an abelian category from the standard structure of an abelian category
on the category of Z-modules. In particular the notion of a projective ZOr(G,F)-module
is defined. The free ZOr(G,F)-module Zmap(G/?, G/K) based at the object G/K is the
ZOr(G,F)-module that assigns to an object G/H the free Z-module ZmapG(G/H,G/K)
generated by the set mapG(G/H,G/K). The key property of it is that for any ZOr(G,F)-
module N there is a natural bijection of Z-modules

homZOr(G,F)(ZmapG(G/?, G/K), N)
∼=- N(G/K), φ 7→ φ(G/K)(idG/K)

which is an application of the Yoneda Lemma. A ZOr(G,F)-module is free if it is isomorphic
to a direct sum ⊕i∈IZmap(G/?, G/Ki) for appropriate choice of objects G/Ki and index set
I. A ZOr(G,F)-module is called finitely generated if it is a quotient of a ZOr(G,F)-module
of the shape ⊕i∈IZmap(G/?, G/Ki) with a finite index set I. Notice that a lot of standard
facts for Z-modules carry over to ZOr(G,F)-modules. For instance, a ZOr(G,F)-module is
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projective or finitely generated projective respectively if and only if it is a direct summand
in a free ZOr(G,F)-module or a finitely generated free ZOr(G,F)-module respectively.
The notion of a projective resolution P∗ of a ZOr(G,F)-module is obvious. We call P∗ of
finite type if each Pn is finitely generated projective. We call P∗ finite if P∗ is both of finite
type and finite-dimensional. Each ZOr(G,F)-module has a projective resolution.

Definition 2.1 Let G be a discrete group and (X,A) a relative G-CW -complex whose
isotropy groups belong to the family F . The contravariant functor

Cc
∗(X,A) : Or(G,F) - Z− Chain complexes

G/H 7−→ Cc
∗(X

H , AH)

is called the cellular ZOr(G,F)-chain complex of (X,A).

Functoriality comes from the fact that XH = mapG(G/H,X). Notice that (XH , AH) is
canonically a CW -complex, hence we can speak of its cellular chain complex Cc

∗(X
H , AH).

As in the nonequivariant situation the chain modules are free with basis given by the (equiv-
ariant) cells. Namely, we have

Lemma 2.2 For any n ∈ Z the n-th chain module Cc
n(X) : Or(G,F) - Z −Modules

is a free ZOr(G,F)-module.

Proof: Let the n-skeleton of X be given by a pushout∐
In

G/Hi × Sn−1 - Xn−1

∐
In

G/Hi ×Dn

id×i
?

∩

- Xn.
?

Since id×i is a cofibration, we get by excision in G/H natural isomorphisms

Cc
n(X,A)(G/H) ∼= Hn(XH

n , X
H
n−1) ∼= Hn(

∐
In

(G/Hi)
H × (Dn, Sn−1))

∼=
⊕

In
Hn((G/Hi)

H × (Dn, Sn−1)) ∼=
⊕

In
H0((G/Hi)

H) ∼=
⊕

In
Z[(G/Hi)

H ]
∼=
⊕

In
Z[mapG(G/H,G/Hi)]. (2.3)

Corollary 2.4 Let X be a G-CW -complex whose isotropy groups belong to the family F .
Then X is d-dimensional (resp. finite, resp. of finite type) if and only if its cellular
ZOr(G,F)-chain complex Cc

∗(X) is d-dimensional (resp. finite, resp. of finite type).

Proposition 2.5 Let h : Z - Y be a G-map between G-CW -complexes such that both
ZH and Y H are simply-connected for H ∈ F and all their isotropy groups belong to the
family F . Let r ≥ 2, r ≥ dimZ and a free ZOr(G,F)-chain complex (D∗, d∗) be given.
Finally, suppose that there is a chain homotopy equivalence f∗ : D∗ - Cc

∗(Y,B) such that
D∗|r = Cc

∗(Z)|r and f∗|r = Cc
∗(h)|r.

Then there is a G-CW -complex X with Xr = Z and a cellular G-homotopy equivalence
g : X - Y such that:
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i) g|Z = h;

ii) D∗ = Cc
∗(X);

iii) Cc
∗(g) = f∗.

Proof: The proof is exactly the same as in [10, Theorem 13.19 on p. 268]. There only
proper actions are considered but the same methods go through because here we are dealing
with the easy case where all fixed point sets are simply connected, the isotropy groups
belong to F , and G is discrete.

Lemma 2.6 If G is a discrete group and E is a G-CW -model for E(G,F), then Cc
∗(E) is

a free resolution over the orbit category Or(G,F) of the constant Or(G,F)-module Z with
value Z.

Proof: The modules are free by Lemma 2.2. It remains to show that Cc
∗(E

H), H ∈ F has
the homology of a point. But this follows from the fact that for discrete H the space EH has
a canonical CW -structure whose n-skeleton in exactly EH

n and EH is weakly contractible
and hence contractible.

To shorten the next proof we start with the following lemma. Its proof is purely technical
and hence left out. Details of the proof can be found in [10, p. 279-280]. All modules are
supposed to be over the orbit category.

Lemma 2.7 Let C∗ be a free, 2-dimensional chain complex, D∗ a free chain complex and
f∗ : C∗ - D∗ a chain map with Hi(cone(f∗)∗) = 0, i ≤ 2. Then there is a free chain
complex C ′∗ and a chain homotopy equivalence g∗ : C ′∗ - D∗ with C ′∗|2 = C∗ and g∗|2 = f∗.
If C∗ is finite and D∗ is homotopic to a finite free chain complex, resp. a free complex of
finite type, then C ′∗ can be chosen to be finite, resp. of finite type. If D∗ is homotopic to a
finite-dimensional free complex, then C ′∗ can be chosen to be finite-dimensional.

Proof of Theorem 0.1: The “only if”-case is clear for the first three assertions by Lemma
2.6 and Corollary 2.4. In the “if”-case for the first three assertions, let P∗ be the given
projective resolution of the constant ZOr(G,F)-module Z and let E = E(G,F) be a G-
CW -model with finite 2-skeleton in the second and third case. By adding elementary chain
complexes, i.e. complexes concentrated in two consecutive dimensions with the identity as
only non-trivial differential, we can get P∗ to be a free resolution. (In the d-dimensional
case we use the Eilenberg trick for the last module. Notice that in the finite case P∗ is
assumed to be free.) Since Cc

∗(E) also gives a free resolution of Z by Lemma 2.6, we
have a homotopy equivalence g∗ : P∗ - Cc

∗(E). Using Lemma 2.7, we get a new free
complex Q∗ with inherited finiteness property of P∗ and a chain homotopy equivalence
f∗ : Q∗ - Cc

∗(E) which induces the identity in dimensions 0,1 and 2. Therefore we can
apply Proposition 2.5 to the inclusion i : E2

⊂ - E and f∗. The result is a G-CW -complex
X with X2 = E2 together with a Comment: here we forgot the G. G-homotopy
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equivalence k : X - E and with Cc
∗(X) = Q∗. So X is a G-CW -model for E(G,F) and

has the desired properties by Corollary 2.4.

The same proof as that of [11, Theorem 4.2], replacing the words “of finite type” by
“with finite 2-skeleton”, yields the last assertion of Theorem 0.1.

3 Totally Disconnected Groups

Recall that a topological space X is totally disconnected if any component consists of exactly
one point. In this section we want to show that there is a close relation between universal
spaces of a totally disconnected group G and those of its discretization Gd. The reason for
this is that homotopy does not see the difference between a totally disconnected group G and
Gd, i.e. the canonical map Gd/Hd

- resGdG G/H is a weak Gd-homotopy equivalence. The
different topologies will only appear in the family of subgroups that has to be considered.
We start by collecting some elementary facts about totally disconnected spaces.

Let X be a topological space. Consider the following 3 conditions.

(T) X is totally disconnected;

(D) The covering dimension of X is 0;

(FS) Any element of X has a fundamental system of open and compact neighborhoods.

Lemma 3.1 For a locally compact group the conditions (T), (D) and (FS) are equivalent.

Proof: The implications (T )⇒ (D)⇒ (FS) are shown in [7, Theorem 7.7 on p. 62]. The
implication (FS)⇒ (T ) is done as follows: Let U be a set containing two distinct points x
and y. We show that U is disconnected. Let V be an open and compact neighborhood of x,
not containing y. Then (V ∩ U) q (V c ∩ U) = U is a disjoint union of two nonempty open
subsets of U .

The elementary proofs of the next two lemmas are left to the reader.

Lemma 3.2 Let f : X - Y be a surjective and open map . If X is locally compact,
then Y is locally compact. If X has property (FS), then so does Y . In particular, if G is a
totally disconnected locally compact group, then (G/H)K is totally disconnected and locally
compact for all (closed) subgroups H,K ⊂ G.

Lemma 3.3 Let f : X - Y be a map. If f−1(y) is weakly contractible for all y ∈ Y and
Y is totally disconnected, then f is a weak homotopy equivalence. If f−1(y) is contractible
for all y ∈ Y and Y is discrete, then f is a homotopy equivalence.
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Lemma 3.4 Let G be a totally disconnected locally compact group and X be a Gd-CW -
complex whose isotropy groups are all closed when viewed as subgroups of G. Then the
map

iX : X - resGdG G×Gd X, x 7→ [e, x]

is a weak Gd-homotopy equivalence.

Proof: We begin with the case where X is a homogeneous space Gd/Hd for a closed
subgroup H ⊂ G. Then the map

G×Gd Gd/Hd
- G/H, [g, g′Hd] 7→ gg′H

is a G-homeomorphism. The obvious map Gd/Hd → resGdG G/H is a weak Gd-homotopy
equivalence by Lemma 3.2 and Lemma 3.3. Hence iGd/Hd : Gd/Hd

- resGdG G×Gd Gd/Hd

is a weak Gd-homotopy equivalence.

Next we prove the claim for all skeleta Xn by induction over n. The base case n ≤ 0 of
the induction follows from the case of a homogeneous space since X0 is a disjoint union
of homogeneous spaces. In the induction step from n− 1 to n one chooses a Gd-pushout∐

In

Gd/Hi × Sn−1 - Xn−1

∐
In

Gd/Hi ×Dn

?

∩

- Xn

?

and checks, using the fact that G is locally compact, that the induced diagram is a Gd-
pushout ∐

In

resGdG G×Gd Gd/Hi × Sn−1 - resGdG G×Gd Xn−1

∐
In

resGdG G×Gd Gd/Hi ×Dn

?

∩

- resGdG G×Gd Xn.

?

Notice that in both diagrams the left vertical arrows are Gd-cofibrations and the various
maps iY for Y =

∐
In
Gd/Hi × Sn−1, Y =

∐
In
Gd/Hi × Dn, Y = Xn−1 and Y = Xn map

the two diagrams to one another. By the induction hypothesis the first three are weak
Gd-homotopy equivalences. Hence iXn is a weak Gd-homotopy equivalence [10, Lemma 2.13
on p. 38].

Let K ⊂ Gd be a subgroup. Since XK has the weak topology with respect to the

filtration given by the subspaces XK
n and G is locally compact,

(
resGdG G×Gd X

)K
has the

weak topology with respect to the filtration given by the subspaces
(

resGdG G×Gd Xn

)K
.

Since (iXn)K is a weak homotopy equivalence for n ≥ 0, the same follows for (iX)K .
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Corollary 3.5 Let G be a totally disconnected locally compact group and F a family of
subgroups of G. If E(Gd,Fd) is a Gd-CW -model for the universal space of Gd for the
family Fd, then G×Gd E(Gd,Fd) is a G-CW -model for E(G,F).

Proof: We have for any K ∈ F by Lemma 3.4:

(G×Gd E(Gd,Fd))K = (resGdG G×Gd E(Gd,Fd))K 'w E(Gd,Fd)Kd 'w {∗}.

Proposition 3.6 Let G be totally disconnected and let X be a G-CW -complex that is d-
dimensional (resp. finite, resp. of finite type). Then resGdG X has a Gd-CW -approximation
Y that is d-dimensional (resp. finite, resp. of finite type) and whose isotropy groups are the
same as those of X. If X is a G-CW -model for E(G,F), then Y is a Gd-CW -model for
E(Gd,Fd).

Proof: For n ≥ −1 we construct by induction a Gd-CW -complex Yn together with a Gd-
approximation fn : Yn - resGdG Xn such that Yn−1 is a subcomplex of Yn and fn|Yn−1 = fn−1.
The base case n = −1 of the induction is given by the empty set. For the induction
step from n− 1 to n we proceed as follows. Choose a pushout∐

In

G/Hi × Sn−1 r
- Xn−1

∐
In

G/Hi ×Dn

?

∩

- Xn

?

for the n-skeleton of Xn. Let i :
∐

In
Gd/(Hi)d →

∐
In

resGdG G/Hi be the obvious weak Gd-
homotopy equivalence (see Lemma 3.4). Since by the induction hypothesis fn−1 is a weak
Gd-homotopy equivalence, we can find using [10, Proposition 2.3 on p. 35] and a version of
the Cellular Approximation Theorem (see for instance [10, Theorem 2.1 on p. 32]) a cellular
Gd-map g :

∐
In
Gd/(Hi)d×Sn−1 - Yn−1 and aGd-homotopy h :

∐
In
Gd/(Hi)d × Sn−1 × I

- resGdG Xn−1 between fn−1 ◦ g and r ◦ (i × idSn−1). Let f ′n−1 : cyl(g) - resGdG Xn−1

be the obvious map given by h and fn−1. Its restriction to Yn−1 ⊂ cyl(g) is fn−1 and to∐
In
Gd/(Hi)d × Sn−1 is r ◦ (i× idSn−1). Thus we obtain a commutative diagram∐

In

Gd/(Hi)d ×Dn � ⊃
∐
In

Gd/(Hi)d × Sn−1 ⊂ - cyl(g)

∐
In

resGdG G/Hi ×Dn

i× id

?

�⊃
∐
In

resGdG G/Hi × Sn−1

i× id

?
r
- resGdG Xn−1.

f ′n−1

?

Taking the pushout of the upper row yields a n-dimensional Gd-CW -complex Yn which
contains Yn−1 as Gd-CW -subcomplex and which is finite if Xn is finite. Moreover, we get
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by the pushout property a Gd-map fn : Yn → resGdG Xn which extends fn−1 : Yn−1 →
resGdG Xn−1 and is a weak Gd-homotopy equivalence, since all vertical maps are weak Gd-
homotopy equivalences ([10, Lemma 2.13 on p. 38]). Now put Y := colim

n→∞
Yn. Then

f := colim
n→∞

fn : Y → resGdG X is the Gd-CW -approximation we look for.

Proof of Theorem 0.2: Follows from Corollary 3.5 and Proposition 3.6.

4 Locally Compact Groups

The strategy of our study of locally compact groups is the following. Any locally compact

group G gives rise to a short sequence of the form 1 - G0
- G

p- G - 1 with
G0 locally compact and connected and with G locally compact and totally disconnected.
This reduces the study of G to the study of locally compact connected groups, which are
very similar to Lie groups by the solution of Hilbert’s fifth problem (cp. [6]), and to locally
compact totally disconnected groups, which are similar to their discrete underlying group,
as we saw in the preceding section. We start with some remarks on locally compact groups
G which are almost connected, i.e. whose component group G is compact.

Theorem 4.1 Let G be a almost connected locally compact group. Then G has a maximal
compact subgroup K which is unique up to conjugacy and G/K is a model for both EG and
JG := J(G, COM).

Proof: [1, Appendix, Theorem A.5], [2, Corollary 4.14].

We now turn our attention to locally compact groups that are not necessarily almost
connected. From now on any locally compact group G is assumed to satisfy the condition
(S) defined in the introduction.

Lemma 4.2 Let L be an almost connected subgroup of G and let K be a maximal compact
subgroup of L. If G/L is totally disconnected, then for any compact H ⊂ G the projection
prH : (G/K)H - (G/L)H is a weak homotopy equivalence. If G/L is discrete, then for
any compact H ⊂ G the projection prH : (G/K)H - (G/L)H is a homotopy equivalence.

Proof: If H is not subconjugated to L, all spaces are empty. So, let H be subconjugated
to L. Since we assumed the existence of local cross sections, we know that G - G/L is a
principal L-bundle. Let Y be any L-space. Fix an element w ∈ G. Then in the associated

fiber bundle Y ⊂ - G×L Y
pr- G/L, the typical fiber maps homeomorphically onto the

preimage p−1(wL) of wL ∈ G/L by sending y to the class of (w, y). If wL is in (G/L)H then
this implies wHw−1 ⊂ L and we get an induced homeomorphism Y wHw−1 - (prH)−1(wL)
for prH : (G ×L Y )H - G/LH . Now let Y be L/K, which is a model for J(L, COM)
by Theorem 4.1. Therefore Y wHw−1

is contractible. Hence by Lemma 3.3 the map prH

is a weak homotopy equivalence if G/L and hence (G/L)H is totally disconnected, and a
homotopy equivalence, if G/L and hence (G/L)H is discrete.
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Proposition 4.3 Given a G-CW -model EG, there is a G-CW -model EG and a G-map
f : EG - p∗EG with the following properties (where p∗EG is EG viewed as a G-space
by the projection p : G - G):

(a) If EG is d-dimensional (resp. finite, resp. of finite type), then EG is d-dimensional
(resp. finite, resp. of finite type);

(b) If G is discrete, then EGH is contractible for all compact H ⊂ G;

(c) G0\f : G0\EG - EG is a G-homotopy equivalence.

Proof: We will construct for each n ≥ −1 an n-dimensional G-CW -complex Xn and a
G-map fn : Xn

- p∗EGn to the n-skeleton of p∗EG Comment: Here we had the

same statement as in (c). with the following properties:

(a) fHn : XH
n

- (p∗EGn)H is a weak homotopy equivalence for all compact H ⊂ G.
If G is discrete, fHn : XH

n
- (p∗EGn)H is a homotopy equivalence for all compact

H ⊂ G;

(b) The isotropy groups of Xn are all compact;

(c) Xn−1 is the (n− 1)-skeleton of Xn and fn|Xn−1 = fn−1. There is a bijective correspon-
dence between the equivariant n-dimensional cells of Xn and of EGn;

(d) G0\fn : G0\Xn
- EGn is a G-homotopy equivalence.

Notice that we then can define EG := colim
n→∞

Xn and f := colim
n→∞

fn, and check that EG and

f have the desired properties.

We proceed by induction over n. The base case n = −1 of the induction is given by
X−1 := ∅. For the induction step from n− 1 to n we choose a G-pushout∐

In

G/Hi × Sn−1

∐
In
qi
- EGn−1

∐
In

G/Hi ×Dn

?

∩

- EGn.
?

Put Li := p−1(Hi) ⊂ G for i ∈ In. Obviously Li is almost connected. Let Ki be a maximal
compact subgroup of Li for i ∈ In (see Theorem 4.1). Since the projection p : G - G

induces a homeomorphism G/Li
∼=- G/Hi, G/Li is totally disconnected. Hence Lemma

4.2 implies that prHi : (G/Ki)
H - (G/Li)

H is a weak homotopy equivalence for all
compact subgroups H of G and is a homotopy equivalence for all compact subgroups H
of G, provided that G is discrete. The same is true for fn−1 by the induction hypothesis.
Therefore we have a bijection induced by fn−1 ([10, Prop. 2.3 on p.35])

[G/Ki × Sn−1, Xn−1]G
(fn−1)∗- [G/Ki × Sn−1, p∗EGn−1]G.
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Using the Equivariant Cellular Approximation Theorem [10, Theorem 2.1 on p. 32] we get a
cellularG-map ri : G/Ki×Sn−1 → Xn−1 together with aG-homotopy hi : G/Ki × Sn−1 × [0, 1]
→ p∗EGn−1 from fn−1 ◦ ri to qi ◦ (pri × idSn−1). Consider the following commutative G-
diagram

∐
In

p∗(G/Hi)×Dn � ⊃
∐
In

p∗(G/Hi)× Sn−1

∐
In
qi

- p∗EGn−1

∐
In

G/Ki ×Dn

∐
In
pri × idDn

6

� ⊃
∐
In

G/Ki × Sn−1

∐
In
pri × idSn−1

6

∐
In
qi ◦ (pri × idSn−1)

- p∗EGn−1

id

6

∐
In

G/Ki ×Dn × [0, 1]

i1

?

�⊃
∐
In

G/Ki × Sn−1 × [0, 1]

i1

? ∐
In
hi

- p∗EGn−1

id

?

∐
In

G/Ki ×Dn

i0
6

� ⊃
∐
In

G/Ki × Sn−1

i0
6

∐
In
ri

- Xn−1.

fn−1

6

Notice that the pushout of the first row is p∗EGn. Denote the pushout of the second,
third and fourth row respectively by X ′n, X ′′n and Xn. The diagram above together with the
pushout property inducesG-maps f ′n : X ′n - p∗EGn, f ′′n : X ′n - X ′′n and f ′′′n : Xn → X ′′n.
The map f ′′n is a G-homotopy equivalence and the maps (f ′n)H and(f ′′′n )H are weak homotopy
equivalences (homotopy equivalence if G is discrete) for each compact subgroup H ⊂ G
([10, Lemma 2.13 on p. 38]). We can choose a G-map (f ′′n)−1 : X ′′n → X ′n which induces the
identity on p∗EGn−1 and is a G-homotopy inverse of f ′′n . Now define fn : Xn

- p∗EGn

by the composition f ′n ◦ (f ′′n)−1 ◦ f ′′′n . By construction fHn is a weak homotopy equivalence
(homotopy equivalence if G is discrete) for all compact subgroups H ⊂ G and Xn is a
G-CW -complex with Xn−1 as its (n− 1)-skeleton and has only compact isotropy groups.

It remains to show that G0\fn : G0\Xn → EGn is a G-homotopy equivalence. Since Li
inherits the property (S) from G, we get a locally trivial fiber bundle Ki

- Li - Li/Ki

which is automatically a Serre fibration and hence induces a long exact homotopy sequence
[14, Theorem 2.11 on p. 60, Theorem 3.6 on p. 65 and Corollary 3.11 on p. 67]. Thus we
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get the following diagram

Ki

1 = π1(Li/Ki) - π0(Ki)

?? ∼= - π0(Li) - π0(Li/Ki) = 1.

G0\Li = Hi

??

We conclude that p(Ki) = Hi holds for all i ∈ In. Hence G0\pri : G0\G/Ki
- G/Hi is a

G-homeomorphism. Therefore G0\f ′n is a G-homeomorphism. G0\(f ′′n)−1 is a G-homotopy
equivalence, since (f ′′n)−1 is a G-homotopy equivalence, and G0\(f ′′′n ) is a G-homotopy equiv-
alence, since G0\fn−1 is a G-homotopy equivalence by the induction hypothesis. Hence
G0\fn is a G-homotopy equivalence.

Proof of Theorem 0.3: Is implied by Proposition 4.3.
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