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Abstract

We extend the notion of the symmetric signature �(MM , r)3¸�(R) for a compact n-dimensional manifold
M without boundary, a reference map r :MPBG and a homomorphism of rings with involutions � : �GPR

to the case with boundary �M, where (MM , �M)P(M, �M) is the G-covering associated to r. We need the

assumption that C
H

(�M) ���
R is R-chain homotopy equivalent to a R-chain complex D

H
with trivial mth

di!erential for n"2m resp. n"2m#1. We prove a glueing formula, homotopy invariance and additivity for
this new notion. Let Z be a closed oriented manifold with reference map ZPBG. Let FLZ be a cutting
codimension one submanifold FLZ and let FM PF be the associated G-covering. Denote by �

�
(FM ) the mth

Novikov}Shubin invariant and by b���
�

(FM ) the mth ¸�-Betti number. If for the discrete group G the
Baum}Connes assembly map is rationally injective, then we use �(MM , r) to prove the additivity (or cut and
paste property) of the higher signatures of Z, if we have �

�
(FM )"R� in the case n"2m and, in the case

n"2m#1, if we have �
�

(FM )"R� and b���
�

(FM )"0. This additivity result had been proved (by a di!erent
method) in (On the Homotopy Invariance of Higher Signatures for Mainfolds with Boundary, preprint, 1999,
Corollary 0.4) when G is Gromov hyperbolic or virtually nilpotent. We give new examples, where these
conditions are not satis"ed and additivity fails.

We explain at the end of the introduction why our paper is greatly motivated by and partially extends
some of the work of Leichtnam et al. (On the Homotopy Invariance of Higher Signatures for Mainfolds with
Boundary, preprint, 1999), Lott (Math. Ann., 1999) and Weinberger (Contemporary Mathematics, 1999,
p. 231). � 2002 Elsevier Science Ltd. All rights reserved.
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0. Introduction

Let M be an oriented compact n-dimensional manifold possibly with boundary. Let G be
a (discrete) group and r :MPBG be a (continuous) reference map to its classifying space. Fix an
(associative) ring R (with unit and) with involution and a homomorphism � : �GPR of rings with
involution. Let �MP�M and MM PM be the G-coverings associated to the maps r�

/�
: �MPBG

and r :MPBG. Following [10, Section 4.7] and [9, Assumption 1 and Lemma 2.3], we make an
assumption about (�M, r�

/�
).

Assumption 0.1. Let m be the integer for which either n"2m or n"2m#1. Let C
H

(�M) be the
cellular �G-chain complex. Then we assume that the R-chain complex C

H
(�M) ���

R is R-chain
homotopy equivalent to a R-chain complex D

H
whose mth diwerential d

�
:D

�
PD

���
vanishes.

We will discuss this assumption later (see Lemma 3.1).
We "rst consider the easier and more satisfactory case n"2m. Under Assumption 0.1 we will

assign (in Section 2) for n"2m to (M, r) the element

�(MM , r)3¸��(R), (0.2)

which we will call the symmetric signature, in the symmetric ¸-group ¸��(R). (Here and in
the sequel we are considering the projective version and omit in the standard notation ¸��

�
(R) the

index p.)
This element �(MM , r) agrees with the symmetric signature in the sense of [18, Proposition 2.1],

[19, p. 26], provided that �M is empty. If �M is non-empty and D
�

"0 then �(MM , r) was previously
considered in [23] and [11, Appendix A].

The main properties of this invariant will be that it occurs in a glueing formula, is a homotopy
invariant and is related to higher signatures as explained in Theorems 0.3, 0.5 and Corollary 0.7. Given
an oriented manifold M, we will denote by M� the same manifold with the reversed orientation.

Theorem 0.3. (a) Glueing formula: Let M and N be two oriented compact 2m-dimensional mani-
folds with boundary and let � : �MP�N be an orientation preserving diweomorphism. Let
r :M�

(
N�PBG be a reference map. Suppose that (�M, r�

/�
) satisxes Assumption 0.1. Then

�(M�
(
N�, r)"�(MM , r�

�
)!�(NM , r�

�
).

(b) Additivity: Let M and N be two oriented compact 2m-dimensional manifolds with boundary
and let �, � : �MP�N be orientation preserving diweomorphisms. Let r :M�

(
N�PBG and

s :M��N�PBG be reference maps such that r�
�

Ks�
�
and r�

�
Ks�

�
holds, where K means

homotopic. Suppose that (�M, r�
/�

) satisxes Assumption 0.1. Then �(M�
(
N�, r)"�(M��N�, s).

(c) Homotopy invariance: Let M
�
and M

�
be two oriented compact 2m-dimensional mani-

folds possibly with boundaries together with reference maps r
	

:M
	
PBG for i"0,1. Let

( f, �f ) : (M
�

, �M
�

)P(M
�

, �M
�

) be an orientation preserving homotopy equivalence of pairs with
r
�

� fKr
�

. Suppose that (�M
�

, r
�
�
/��

) satisxes Assumption 0.1. Then

�(M
�

, r
�

)"�(M
�

, r
�

).
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Next, we consider the case n"2m#1. Then we need besides Assumption 0.1 the following
additional input. Assumption 0.1 implies that H

�
(C

H
(�M) �� �

R) is a "nitely generated projective
R-module and that we get from PoincareH duality the structure of a (non-degenerate) (!1)�-
symmetric form � on it. Following [9, Section 3], we will assume that we have speci"ed a stable
Lagrangian ¸LH

�
(C

H
(�M) ���

R). The existence of a stable Lagrangian follows automatically if
2 is a unit in R (see Lemma 2.4). Under Assumption 0.1 and after the choice of a stable Lagrangian
¸ we can assign for n"2m#1 to (M, r, ¸) an element, which we will call the symmetric signature,
in the symmetric ¸-group ¸����(R) (see Section 2)

�(MM , r, ¸)3¸����(R). (0.4)

It agrees with the symmetric signature in the sense of [18, Proposition 2.1], [19, p. 26], provided
that �M is empty.

Theorem 0.5. (a) Glueing formula: Let M and N be oriented compact (2m#1)-dimensional mani-
folds with boundary and let � : �MP�N be an orientation preserving diweomorphism. Let
r :M�

(
N�PBG be a reference map. Suppose that (�M, r�

/�
) satisxes Assumption 0.1. Suppose that

we have xxed two stable Lagrangians KLH
�

(C
H

(�M) ���
R) and ¸LH

�
(C

H
(�N) ���

R) such
that the isomorphism H

�
(C

H
(�M) ���

R) "P H
�

(C
H

(�N) ���
R) of (!1)�-symmetric forms induced

by � sends K to L stably. Then

�(M�
(
N�, r)"�(MM , r�

�
,K)!�(NM , r�

�
, ¸).

(b) Additivity: Let M and N be oriented compact (2m#1)-dimensional manifolds with boundary and
let �,� : �MP�N be two orientation preserving diweomorphisms. Let r :M�

(
N�PBG and

s :M��N�PBG be reference maps together with homotopies h
�

: r�
�

Ks�
�
and h

�
: r�

�
Ks�

�
.

Suppose that (�M, r�
/�

) satisxes Assumption 0.1. Fix a stable Lagrangian KLH
�

(C
H

(�M) ���
R).

The restriction of the homotopies h
�
and h

�
to �M and �N induce a homotopy k: r�

/�
������Kr�

/�
.

We get from ����� and k an automorphism of the (!1)�-symmetric form (H
�

(C
H

(�M) ���
R), �).

Let ¸LH
�

(C
H

(�M) ���
R) be the stable Lagrangian which is the image of K under this automor-

phism. Thus we get a formation (H
�

(C
H

(�M) ���
R), �,K, ¸) which dexnes an element in

[H
�

(C
H

(�M) ���
R), �,K, ¸]3¸����(R) by suspension. Then

�(M�
(
N�, r)!�(M��N�, s)"[H

�
(C

H
(�M) ���

R), �,K, ¸].

(c) Homotopy invariance: Let M
�
and M

�
be oriented compact (2m#1)-dimensional mani-

folds possibly with boundaries together with reference maps r
	

:M
	
PBG for i"0,1. Let

( f, �f ) : (M
�

, �M
�

)P(M
�

, �M
�

) be an orientation preserving homotopy equivalence of pairs together
with a homotopy h: r

�
� fKr

�
. Suppose that (�M

�
, r

�
�
/��

) satisxes Assumption 0.1. Suppose that we
have xxed stable Lagrangians ¸

�
LH

�
(C

H
(�M

�
) ���

R) and ¸
�
LH

�
(C

H
(�M

�
) ���

R). Let ¸	
�
be

the image of ¸
�
under the isomorphism of (!1)�-symmetric forms (H

�
(C

H
(�M

�
)���

R) , �
�

) "P

(H
�

(C
H

(�M
�

) ���
R), �

�
) induced by �f and the restriction of the homotopy h to �M

�
.We get a stable

formation (H
�

(C
H

(�M
�

) ���
R), �

�
, ¸	

�
, ¸

�
) and thus by suspension an element

[H
�

(C
H

(�M
�

)���
R),�

�
, ¸	

�
, ¸

�
]3¸����(R).
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Then

�(MM
�

, r
�

, ¸
�

)!�(MM
�

, r
�

, ¸
�

)"[H
�

(C
H

(�M
�

)���
R), �

�
, ¸	

�
, ¸

�
].

Of particular interest is the case, where R is the real reduced group CH-algebra CH



(G, �) or the
complex reduced group CH-algebra CH



(G) and � is the canonical map. Then Assumption 0.1 is

equivalent to the assertion that the mth Novikov}Shubin invariant of �M is R� in the sense of [12,
De"nitions 1.8, 2.1 and 3.1] (see Lemma 3.1), and the symmetric ¸-groups are 2-periodic.
Moreover, the invariant �(MM , r) is linked to higher signatures as follows, provided that �M is
empty.

Recall that the higher signature sign
�
(M, r) of a closed oriented manifold M with a reference map

r :MPBG for a given class u3H�(BG; �) is the rational number 
L(M)�rHu, [M]�, where
L(M)3�

	��
H�	(M; �) is the ¸-class of M, [M]3H

������
(M; �) is the homological fundamental

class of M and 
 , � is the Kronecker pairing. We will consider the following commutative square of
�/4-graded rational vector spaces:

Some explanations are in order. We denote by � the �-graded vector space which is � in each
dimension divisible by four and zero elsewhere. It can be viewed as a graded module over the
�-graded ring �

H
(*) by the signature. Then the �-graded �-vector space �

H
(BG)��

H �H�
� is

four-periodic (by crossing with [���]) and hence can be viewed as a �/4-graded vector space. The
map DM is induced by the �-graded homomorphism

D: �
�
(BG)PKO

�
(BG),

which sends [r :MPBG] to the K-homology class of the signature operator of the covering
MM PM associated to r. The homological Chern character is an isomorphism of �/4-graded
rational vector spaces

ch: KO
�
(BG)��� "P �

���
H

����
(BG; �).

By the Atiyah}Hirzebruch index theorem the image ch�D([M,id :MPM]) of the K-homology
class of the signature operator of M in K

������
(M) under the homological Chern character ch is

L(M)�[M]. This implies for any class u3H�(BG; �)

sign
�
(M, r) :"
L(M)�rHu, [M]�

"
rHu,L(M)�[M]�

"
u, r
H

(L(M)�[M])�

"
u, ch �D([M, r])�. (0.6)

Hence, the composition ch �DM : (�
H

(BG)��
H �H�

�)
�
P�

���
H

����
(BG; �) sends [r :MPBG]�1

to the image under H
H

(r) :H
H

(M; �)PH
H

(BG; �) of the PoincareH dual L(M)�[M]3�
	��

H
�	�������

(M; �) of the ¸-class L(M).
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The map DM is an isomorphism since it is a transformation of homology theories [8, Example 3.4]
and induces an isomorphism for the space consisting of one point. The map � assigns to [M, r] the
associated symmetric PoincareH CH



(G; �)-chain complex C

H
(MM )���

CH



(G; �). The map A� resp.
A are assembly maps given by taking the index with coe$cients in CH



(G; �) resp. CH



(G). The map

sign is in dimension n"0 mod 4 given by taking the signature of a non-degenerate symmetric
bilinear form. Notice that the map sign is bijective by results of Karoubi (see [21, Theorem 1.11]).
The maps induc. are given by induction with the inclusion �P� and are injective. Obviously, the
right square commutes. In order to show that the diagram commutes it su$ces to prove this for the
outer square. Here the claim follows from the commutative diagram in [5, p. 81].

The Novikov Conjecture says that sign
�
(M, r) is a homotopy invariant, i.e. if r :MPBG

and s :NPBG are closed orientable manifolds with reference maps to BG and f :MPN is
a homotopy equivalence with s � fKr, then sign

�
(M, r)"sign

�
(N, s). Since the homological Chern

character is rationally an isomorphism for C=-complexes, one can say by (0.6) that D(M, r) is
rationally the same as the collection of all higher signatures. Moreover, the Novikov Conjecture
is equivalent to the statement that two elements [M, r] and [N, s] in �

�
(BG) represent the

same element in (�
H

(BG)��
H �H�

�)
�

resp. KO
�
(BG)��� resp. K

�
(BG)��� , if they are homotopy

equivalent.
Notice that the Baum}Connes Conjecture for CH



(G) implies that A and hence A� are rationally

injective by the following argument (see [1, Section 7] for details). The map A can be written as the
composition of the map K

�
(BG)"K�

�
(EG)PK

�
(E

M
G)�, which is given by the canonical map

from EG to the classifying space E
M
G of proper G-actions and is always rationally injective, and

the Baum}Connes index map K�
H

(E
M
G)PK

H
(CH



(G)), which is predicted to be bijective by the

Baum}Connes Conjecture. Notice that � is injective if and only if A� is injective and that
the injectivity of A implies the injectivity of A� and hence of �. Since for a closed oriented manifold
M with reference map r :MPBG the image of [r :MPBG] under � (and sign��) is a homotopy
invariant of r :MPBG, the commutativity of the diagram above and the rational injectivity of
A� implies the homotopy invariance of (0.6) and thus the Novikov Conjecture. Moreover, if A� is
rationally injective, D([M, r]) contains rationally the same information as �([M, r]). We mention
that the Baum}Connes Conjecture and thus the rational injectivity of A is known for a large class
of groups, namely for all a-¹-menable groups [3]. The rational injectivity of A is also known for all
Gromov-hyperbolic groups [24].

From Theorems 0.3(b) and 0.5(b), we obtain the following corollary which extends [9, Corollary
0.4] to more general groups G. Notice that the hypothesis of Corollary 0.7 implies those of
Theorems 0.3(b) and 0.5(b) because of Lemma 3.1.

Corollary 0.7. Let M and N be two oriented compact n-dimensional manifolds with boundary
and let �,� : �MP�N be orientation preserving diweomorphisms. Let r :M�

(
N�PBG and

s :M��N�PBG be reference maps such that r�
�

Ks�
�
and r�

�
Ks�

�
holds. Denote by �MP�M

the G-covering associated to r�
/�

: �MPBG. If n"2m, we assume for the mth Novikov}Shubin
invariant �

�
(�M)"R� in the sense of [12]. If n"2m#1, we assume �

�
(�M)"R� and for the mth

¸�-Betti number b���
�

(�M)"0. (We could replace the condition b���
�

(�M)"0 by the weaker but harder
to check assumption that the automorphism in Theorem 0.5(b) induced by ��� �� and the homotopy
k preserve (stably) a Lagrangian of H

�
(C

H
(�M)���

CH



(G).) Suppose furthermore that the map
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A� :KO
�
(BG)PK

�
(CH



(G; �) is injective. Then all the higher signatures are additive in the sense that

we have for all u3HH(BG, �)

sign
�
(M�

(
N�, r)"sign

�
(M��N�, s). (0.8)

We will construct in Example 1.10 many new examples (especially for odd dimensional mani-
folds) of pairs of cut and paste manifolds [M�

(
N�, r] and [M��N�, s] (even with �M connected)

such that r�
�

Ks�
�

and r�
�

Ks�
�

holds and for which there exist higher signatures which do not
satisfy (0.8), i.e. are not additive. There, the assumptions of Corollary 0.7, are not fully satis"ed. The
fact that, in general, higher signatures of closed manifolds are not cut and paste invariant over BG
in the sense of [4], was known before (see, for instance, [11, Section 4.1]). The relationship to
symmetric signatures of manifolds-with-boundary, and to the necessity of Assumption 0.1, was
pointed out by Weinberger (see [11, Section 4.1]). The problem was raised in [11, Section 4.1] of
determining which higher signatures of closed manifolds are cut and paste invariant; we refer to
[11, Section 4.1] for further discussion. It is conceivable that our Lemma 2.8 might help to provide,
in the future, an answer to this problem.

Finally, we explain why our paper is greatly motivated by and related to the work of Leichtnam
et al. [9], Lott [11] and Weinberger [23].

The relevance of a gap condition in the middle degree on the boundary, when considering
topological questions concerning manifolds with boundary, comes from Section 4.7 of Lott's paper
[10]. This leads to Assumption 1 in the paper of Leichtnam et al. [9] which, from [9, Lemma 2.3], is
virtually identical to our Assumption 0.1 and was the motivation for our Assumption 0.1. Our
construction of the invariant �(MM , r) by glueing algebraic PoincareH bordisms is motivated
by and extends the one of Weinberger [23] (see also [11, Appendix A]) who uses the more
restrictive assumption that C

H
(�M)���

R is R-chain homotopy equivalent to a R-chain complex
D

H
with D

�
"0. Notice that Weinberger's assumption implies both our Assumption 0.1 and

H
�

(C
H

(�M)���
R)"0 so that there is only one choice of Lagrangian, namely ¸"0. The idea

of using a Lagrangian subspace, instead of assuming the vanishing of the relevant middle
(co-)homology group, is taken from Section 3 of [9].

In the case when R"CH



(G) and under Assumption 0.1, an analog of our symmetric signature
�(MM , r) was previously constructed in [9] as a conic index class �

��	��
3K

�
(CH



(G)). The homotopy

invariance of �
��	��

, i.e. the analog of our Theorem 0.3(c), was demonstrated in [9, Theorem 6.1].
Furthermore, the analog on the right-hand-side of the equation in our Theorem 0.5(c) previously
appeared in [9, Proposition 3.7].

If B	 is a smooth subalgebra of CH



(G), the authors of [9] computed the Chern character
ch(�

��	��
)3HM

H
(B	) of their conic index explicitly in terms of the ¸-form of M and a higher eta-form

of �M. They identi"ed ch(�
��	��

) with the HM
H

(B	)-valued higher signature of M introduced in [10].
From this the authors of [9] deduced their main result [9, Theorem 0.1], namely, the homotopy
invariance of the HM

H
(B	)-valued higher signature of a manifold with boundary, as opposed to just

the homotopy invariance of the `symmetric signaturea �
��	��

. (In fact, this was the motivation for
the use of �

��	��
in [9], instead of �(MM , r).)

As an immediate consequence of its main result, the paper [9] deduced the additivity of ordinary
higher signatures of closed manifolds under Assumption 0.1, i.e. our Corollary 0.7, in the case when
G is Gromov-hyperbolic or virtually nilpotent, or more generally when CH



(G) admits a smooth

subalgebra B	 with the property that all of the group cohomology of G extends to cyclic cocycles
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on B	 [9, Corollary 0.4]. It is known that the Baum}Connes assembly map is rationally injective
for such groups G.

What is new in our paper is the direct and purely algebraic approach to the cut and paste
problem of higher signatures of closed manifolds, through the construction of symmetric signatures
for manifolds with boundary under Assumption 0.1. This leads to the main goal of the present
paper, namely, to the proof of the additivity of higher signatures under Assumption 0.1 in
Corollary 0.7, provided that the Baum}Connes assembly map is rationally injective. In this way,
our main result, Corollary 0.7, is an extension of [9, Corollary 0.4].

1. Additivity and mapping tori in the bordism group

Throughout this section X is some topological space. Denoted by �
�
(X) the bordism group of

closed oriented smooth n-dimensional manifolds M together with a reference map r :MPX.
Consider quadruples (F, h, r,H) consisting of a closed oriented (n!1)-dimensional manifold
F together with an orientation preserving self-di!eomorphism h :FPF, a reference map r :FPX
and a homotopy H: F�[0,1]PX such that H(!,0)"r and H(!, 1)"r � h. The mapping torus
¹


is obtained from the cylinder F�[0,1] by identifying the bottom and the top by h, i.e.

(h(x), 0)&(x,1). This is again a closed smooth manifold and inherits a preferred orientation. The
map r and the homotopy H yield a reference map r

�
: ¹


PX in the obvious way. Hence, we can

associate to such a quadruple an element

[F, h, r,H] :"[¹

, r

�
]3�

�
(X). (1.1)

Given two quadruples (F, h[0], r[0],H[0]) and (F, h[1], r[1],H[1]) with the same underlying
manifold, a homotopy between them is given by a family of such quadruples (F, h[t], r[t],H[t]) for
t3[0,1] such that the family h[t] :FPF is a di!eotopy. One easily checks that for two homotopic
quadruples (as above) we have in �

�
(X)

[F, h[0], r[0],H[0]]"[F, h[1], r[1],H[1]]. (1.2)

The required cobordism has as underlying manifold F�[0,1]�[0,1]/&, where & is the equiva-
lence relation generated by (x,0, t)&(h��[t](x),1, t).

Given two quadruples of the shape (F, h, r,H) and (F, g, r,G), we can compose them to a quadru-
ple (F, g � h, r,H*G), where H*G is the obvious homotopy rKr � g � h obtained from stacking
together H and G�(h�id


����
). One easily checks that in �

�
(X)

[F, g � h, r,H*G]"[F, h, r,H]#[F, g, r,G]. (1.3)

The desired cobordism has as underlying manifold F�[0,1]�[0,1]/&, where & is generated by
(x,0, t)&(h��(x),1, t) for t3[0,�

�
] and (x,1, t)&(g��(x),0, t) for t3[�

�
,1]. We recognize the mapping

torus of g�h as the part of the boundary which is the image under the canonical projection of the
union of F�0��[�

�
,�
�
], F�[0,1]��

�
�, F�1��[�

�
,�
�

] and F�[0,1]��
�
�.

Notice that the class of a quadruple in �
�
(X) does depend on the choice of the homotopy.

Namely, consider two quadruples (F, h, r,H) and (F, h, r,G) which di!er only in the choice of the
homotopy. Let u :F�S�PX be the obvious map induced by r and composition of homotopies
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H*G�: rKr. Then we get from (1.2) and (1.3) in �
�
(X)

[F, h, r,H]![F, h, r,G]"[u :F�S�PX]. (1.4)

The right-hand side of (1.4) is not zero in general. Take, for instance, F"��� and X"S� and let
u
�

:F�S�PS� be the composition of the projection F�S�PS� with a map S�PS� of degree
k3�. Then in this situation the right-hand side of (1.4) becomes [u

�
: ����S�PS�] for

r : ���PS� a constant map. This element [u
�
: ����S�PS�] is mapped under the isomorphism

�


(S�)��
�

(*)��


(*)"���/2 to (k,0).
Let M and N be compact oriented n-dimensional manifolds and let �,� : �MP�N be two

orientation preserving di!eomorphisms. By glueing we obtain closed oriented n-dimensional
manifolds M�

(
N� and M��N�. Let r :M�

(
N�PX and s :M�

(
N�PX be two reference maps

such that there exists two homotopies H: r�
�

Ks�
�

and G: r�
�

Ks�
�

. By restriction we obtain
homotopies H�

/�
: r�
/�

Ks�
/�

and G�
/�

: r�
/�

Ks�
/�

. Notice that (by construction) r�
/�

� �"r�
/�

and s�
/�

� �"s�
/�

. Thus, H�
/�

and G��
/�

� (��id) can be composed to a homotopy K: r�
/�

K

r�
/�

���� ��. Thus we obtain a quadruple (�M, ��� � �, r�
/�

,K) in the sense of (1.1).

Lemma 1.5. We get in �
�
(X)

[r :M�
(
N�PX]![s :M��N�PX]"[�M, ��� ��, r�

/�
,K].

Proof. The underlying manifold of the required bordism is obtained by glueing parts of the
boundary of M�[0,1] and of N��[0,1] together as described as follows. Identify
(x, t)3�M�[0,1] with (�(x), t) in �N�[0,1] if 0)t)1/3, and with (�(x), t) in �N if
2/3)t)1. �

Corollary 1.6. Suppose in the situation of Lemma 1.5 that X"BG for a discrete group G and that the
image H of the composition

�
�

(�M)P�
�

(M)�

� �HP �
�

(BG)"G

satisxesH
	
(BH; �)"0 for i*1. Then the higher signatures of r :M�

(
N�PX and s :M��N�PX

agree.

Proof. In view of Lemma 1.5, we have to show that the higher signatures of (�M,��� ��, r�
/�

,K)
vanish. The homotopy K yields an element g3G such that the composition of
c(g) :GPGg	C gg	g�� with �

�
(r�
/�

) agrees with the composition of �
�

(r�
/�

) with the automor-
phism �

�
(��� � �). Obviously, c(g) induces an automorphism of H. Denote the associated semi-

direct product by H��. There is a group homomorphism from H�� to G which sends h3H to
h3G and the generator of � to g3G. Let p :H��P� be the canonical projection. Then the
reference map from the mapping torus ¹

(�� � � to BG factorizes as a map
¹

(�� � �
�P B(H��)PBG and the composition ¹

(��� �
�P B(H��) ��P B�"S� is homotopic to

the canonical projection pr: ¹
(�� � �PS�. Notice that Bp induces an isomorphism

HH(B�; �)PHH(B(H��; �)) since H	(BH; �)"0 for i*1. Hence, it remains to show that all
higher signatures of pr: ¹

(�� � �PS� vanish. If 13H�(S�; �)�Q and u3H�(S�; �)�� are the
obvious generators, it remains to prove that sign

�
(pr : ¹

(�� � �PS�) and sign
�
(pr : ¹

(�� � �PS�) are
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trivial. (Recall that sign
�

has been de"ned in the introduction.) These numbers are given by
ordinary signatures of ¹

(�� � � and �M. Since ¹
(�� � � "bers over S� and �M is nullbordant, these

numbers are trivial. �

Example 1.7. Consider the situation of Lemma 1.6 in the special case, where �M looks like
��� � ����N for a simply connected oriented closed (n!3)-dimensional manifold N for n*6
such that H

���
(N; �) or H

���
(N; �) is non-trivial and the map �

�
(�M)P�

�
(M) is injective. Recall

that m is the integer satisfying n"2m resp. n"2m#1. The fundamental group of the connected
sum ������� is the in"nite dihedral group D

	
"�/2*�/2"���/2. Notice that there is

a two-fold covering S��S�P��� � ��� and the universal covering (��� � ���)� of ��� ���� is
��S�. Hence, H

���
((���� ����N)�; �)�H

���
(N; �)�H

���
(N; �) is a non-trivial direct sum

of "nitely many copies of the trivial D
	

-representation �. Since �
�

((��� � ����N)�)"
�
�

((S��S��N)�) [12, Remark 3.9] we conclude that �
�

((��� � ����N)�) is di!erent from
R� (see [13, Example 4.3, Theorem 5.4] or [14, Theorem 8.7(9)]). Hence, Assumption 0.1 is not
satis"ed because of Lemma 3.1 and we cannot conclude the additivity of the higher signatures from
Corollary 0.7. But we can conclude the additivity of the higher signatures from Corollary 1.6 since
H

	
(BD

	
; �)�H

	
(B�/2); �)�H

	
(B�/2); �)"0 holds for i*1.

More generally one can consider glueing tuples (M, r
�

,N, r
�

,�,H), which consist of two compact
oriented n-dimensional manifolds M and N with boundaries with reference maps r

�
:MPX and

r
�

:NPX, an orientation preserving di!eomorphism � : �MP�N and a homotopy
H : �M�[0,1]PX between r

�
�
/�

and r
�
�
/�

� �, i.e. r
�

�
/�

&r
�
�
/�

��. To such a glueing tuple one
can associate an element

[M, r
�

,N, r
�

,�,H] :"[M�
/����(�M�[0,1])�

(
N�, r]3�

�
(X), (1.8)

where r is constructed from r
�

, H and r
�

in the obvious way. One gets

Lemma 1.9. Let (M, r
�

,N, r
�

,�,H) and (N, r
�

,P, r
�

, �,G) be two glueing tuples. They can be
composed to a glueing tuple (M, r

�
,P, r

�
, � ��,K), where K is the composition of the homotopies

H and G � (��id). Then we get in �
�
(X)

[M, r
�

,P, r
�

, � � �,K]"[M, r
�

,N, r
�

,�,H]#[N, r
�

,P, r
�

, �,G].

Proof. The required bordism has the following underlying manifold. Take the disjoint union of
M�[0,1], N�[0,1] and P�[0,1] and identify (x, t)3�M�[0,�

�
] with (�(x), t)3�N�[0,�

�
] and

(y, t)3�N�[�
�
,1] with (�(y), t)3�P�[�

�
,1]. �

Example 1.10. In odd dimensions additivity of the higher signatures (sometimes also called the
cut-and-paste property) fails as badly as possible in the following sense. Let us consider m*2,
a "nitely presented group G and any element �3�

����
(BG). Then using the last (surjective) map of

Theorem 3.2 of [15] and also the isomorphism given at the bottom of page 57 of [15] (or see the
Theorem in the appendix by Matthias Kreck), one can "nd a quadruple (F, h, r,H) for a 2m-
dimensional closed oriented manifold F with reference map r :FPBG such that [F, h, r,H]"� in
�

����
(BG) and [F, r]"0 in �

��
(BG) holds. Fix a nullbordism R :=PBG for r :FPBG. In the
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sequel we identity F"�=. Since F admits a collar neighborhood in =, the inclusion FP= is
a co"bration and thus we can extend the homotopy H: rKr � h to a homotopy H	: RKR	 for
some map R	 :=PBG such that R	


/�
"r�h. Thus we obtain elements R	�


R :=�


=PBG and

R�
��
R :=�

��
=PBG such that R	KR. We conclude from Lemma 1.5

[R	�

R :=�


=PBG]![R�

��
R :=�

��
=PBG]"�. (1.11)

The theorem of Matthias Kreck which he proves in the appendix shows that for m*2 one can
arrange in the situation above that the reference map r :FPBG is 2-connected, provided that BG
has "nite skeleta. (Since we only want to have 2-connected it su$ces that BG has "nite 2-skeleton.)
Consider the special case m"2 and G"�. Choose in (1.11) a quadruple (F, h, r,H) such that
r :FPB� is 2-connected. Then FM is the universal covering of F. We conclude from [12, Lemma
3.3] that �

�
(FM )"�

�
( S

�

��)"R�. Therefore, Assumption 0.1 is satis"ed for �=M "FM by Lemma 3.1.
Notice that there are elements �3�


(B�) whose higher signatures do not all vanish, for instance

[�P��S�, r] where r : �P��S�PB�"S� is the projection onto the second factor. Hence ( for
such an example), if we set [M

�
, r

�
]"[=,R] and [M

�
, r

�
]"[=,R	], then formula of (1.11) and

Theorem 0.5 show that the right-hand side of the formula of Theorem 0.5(b) is not zero. Thus,
Assumption 0.1 is not enough in the case n"2m#1 (in contrast to the case n"2m) as proven in
Theorem 0.3(b) to ensure the additivity of the higher signatures.

Counterexamples to additivity in odd dimensions yield also counterexamples in even dimensions
by crossing with S�. In the situation of (1.11) with �3�

����
(BG), we get in �

����
(B(G��))"

�
����

(BG�S�)

[R	�id
�
��

�����
R�id

�
� :=�S��

�����
=�S�PBG�S�]

![R�id
�
��

��/����
R�id

�
� :=�S��

��/����
=�S�PBG�S�]

"��[id
�
�]

and, since the ¸-class of ��S� may be identi"ed to the one of �, for any u3HH(BG; �) we have
sign

��
���
(��[id

�
�])"sign

�
(�) where [S�]3H�(S�; �) is the fundamental class. Hence, if

�3�
����

(BG) admits at least a higher signature which is not zero, then=�S��
���
=�S� admit

a higher signature which is not cut and paste invariant.

2. Computations in symmetric ¸-groups

In this section, we carry out some algebraic computations and constructions of classes in
symmetric ¸-groups which correspond on the geometric side to de"ning higher signatures of
manifolds with boundaries (under Assumption 0.1) and to glueing processes along boundaries.

We brie#y recall some basic facts about (symmetric) PoincareH chain complexes and the (symmet-
ric) ¸-groups de"ned in terms of bordism classes of such chain complexes. For details we refer the
reader to [17] and to the Section 1 of [19].

Let R be a ring with involution RPR : rC r� . Two important examples are the group ring �G
with the involution given by g� "g�� and the reduced CH-algebra CH



(G) of a group G. Given a left

R-module<, let the dual <H be the (left) R-module hom
�

(<,R) with the R-multiplication given by
(rf )(x)"f (x)r� . Given a chain complex C

H
"(C

H
, c

H
) of (left) R-modules, de"ne C��H to be the
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R-chain complex whose ith chain module is (C
��	

)H and whose ith di!erential is cH
��	��

:CH
��	

P

CH
��	��

. We call C
H
"nitely generated projective if C

	
is "nitely generated projective for all i3� and

vanishes for i)0. An n-dimensional ( "nitely generated projective symmetric) PoincareH R-chain
complex (C

H
, �) consists of an n-dimensional "nitely generated projective R-chain complex

C
H

together with a R-chain homotopy equivalence ��
H

:C��HPC
H

which the part for s"0 of
a representative �� � s*0� of an element in � in the hypercohomology group Q�(C

H
)"

H�(�/2; hom(CH,C
H

)). The element �� is a chain homotopy (��)��HK��
H

, where (��)��H is
obtained from �� in the obvious way using the canonical identi"cation PP(PH)H for a "nitely
generated projective R-module P. The elements ���� are higher homotopies for ��

H
K(��)��H.

Consider a connected "nite C=-complex X with universal covering XI and fundamental group
�. It is an n-dimensional PoincareH complex if the (up to ��-chain homotopy well-de"ned) ��-chain
map !�[X]: C��H(XI )PC

H
(XI ) is a ��-chain homotopy equivalence. Then for any normal

covering XM PX with group of deck transformations G, the fundamental class [X] determines an
element in �3Q�(C

H
(XM )), for which ��

H
is the �G-chain map induced by !�[X] and (C

H
(XM ), �) is

an n-dimensional PoincareH �G-chain complex [18, Proposition 2.1, p. 208].
The (symmetric) ¸-group ¸�(R) is de"ned by the algebraic bordism group of n-dimensional "nitely

generated projective PoincareH R-chain complexes. The algebraic bordism relation mimics the
geometric bordism relation. The general philosophy, which we will frequently use without writing
down the details, is that any geometric construction for geometric PoincareH pairs, such as glueing
along a common boundary with a homotopy equivalence, or taking mapping tori or writing down
certain bordisms, can be transferred to the category of algebraic PoincareH chain complexes.

However, there is one important di!erence between the geometric bordism group �
�
(X) and the

¸-group ¸�(R) concerning homotopy invariance. Let G be a group and let M,N be two closed
oriented n-dimensional manifolds with reference maps r :MPBG and s :NPBG. Suppose that
f :MPN is a homotopy equivalence such that s � fKr. Then this does not imply that the bordism
classes [M, r] and [N, s] agree. But the PoincareH �G-chain complexes C

H
(MM ) and C

H
(NM ) are

�G-chain homotopy equivalent, and this does imply that their classes in ¸�(�G) agree [17,
Proposition 3.2, p. 136].

The following lemma explains the role of Assumption 0.1. Its elementary proof is left to the
reader.

Lemma 2.1. Let C
H
be a projective R-chain complex. Then the following assertions are equivalent.

(a) C
H
is R-chain homotopy equivalent to a R-chain complex D

H
with trivial mth diwerential;

(b) im(c
�

) is a direct summand in C
���

where c
�

:C
���

PC
�
is the diwerential;

(c) There is a xnitely generated projective R-subchain complex D
H

LC
H
with D

�
"ker(c

�
),

D
���

�im(c
���

)"C
���

and D
	
"C

	
for iOm, m!1 such that the mth diwerential of D

H
is

zero and the inclusion D
H

PC
H
is a R-chain homotopy equivalence.

Fix a non-negative integer n. Let m be the integer for which either n"2m or n"2m#1. Next,
we give an algebraic construction which allows to assign to a ("nitely generated projective
symmetric) PoincareH pair (i

H
:C

H
PCM

H
, (��, �)) of n-dimensional R-chain complexes an element in

¸�(R), provided that C
H

is chain homotopy equivalent to a R-chain complex with trivial mth
di!erential. In geometry this would correspond to assign to an inclusion i : �MPM of a manifold
M with boundary �M together with a reference map r :MPX an element in �

�
(X), where C

H
resp.
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CM
H

resp. i
H

plays the role of C
H

(�M), C
H

(M) and C
H

(i). The idea would be to glue some preferred
nullbordism to the boundary. This can be carried out in the more #exible algebraic setting under
rather weak assumptions.

We begin with the case n"2m. Recall that we assume that C
H

is chain homotopy equivalent to
an R-chain complex D

H
such that d

�
:D

�
PD

���
is trivial. Notice that we can arrange that D

H
is

(2m!1)-dimensional "nitely generated projective by Lemma 2.1. Fix such a chain homotopy
equivalence u

H
:C

H
PD

H
. Equip D

H
with the PoincareH structure � induced by � on C

H
and u

H
.

De"ne DM
H

as the quotient chain complex of D
H

for which DM
	
"D

	
if 0)i)m!1 and DM

	
"0

otherwise. Let j
H

:D
H

PDM
H

be the canonical projection. Notice that it is indeed a chain map since
d
�

vanishes. There is a canonical extension of the PoincareH structure � on D
H

to a PoincareH
structure (��, �) on the pair j

H
:D

H
PDM

H
, namely, take �� to be zero. Now we can glue the

PoincareH pairs (i
H

:C
H

PCM
H

, (��, �)) and (j
H

:D
H

PDM
H

, (��, �)) along the R-chain homotopy
equivalence u

H
:C

H
PD

H
[17, Section 3], [19, 1.7]. We obtain a 2m-dimensional PoincareH R-chain

complex which presents a class in ¸��(R). Since chain homotopy equivalent PoincareH R-chain
complexes de"ne the same element in the (symmetric) ¸-groups, this class is independent of the
choice of u

H
:C

H
PD

H
. We denote it by

�(i
H

:C
H

PCM
H

, (��, �))3¸��(R). (2.2)

Notice that a chain homotopy equivalence u
H

:D
H

PE
H

of (2m!1)-dimensional chain complexes
with trivial mth di!erential induces a chain equivalence u�

H
:DM

H
PEM

H
such that u

H
and u�

H
are

compatible with the maps D
H

PDM
H

and E
H

PEM
H

constructed above. Since chain homotopy
equivalent PoincareH R-chain complexes de"ne the same element in the (symmetric) ¸-groups, the
class de"ned in (2.2) is independent of the choice of u

H
:C

H
PD

H
.

The proof of the next lemma is straightforward in the sense that one has to "gure out the
argument for the corresponding geometric statements, which is easy, and then to translate it into
the algebraic setting (see also [19, Proposition 1.8.2ii]).

Lemma 2.3. (a) Let (i
H

:C
H

PCM
H

,(��, �)) and (j
H

:D
H

PDM
H

,(��, �)) be 2m-dimensional ( xnitely
generated projective symmetric) Poincare& pairs. Let u

H
:C

H
PD

H
be a R-chain equivalence such that

Q����(u
H

) :Q����(C
H

)PQ����(D
H

) maps � to �. Denote by (E
H

, �) the 2m-dimensional PoincareH
chain complex obtained from i

H
and j

H
by glueing along u

H
. Suppose that C

H
is R-chain homotopy

equivalent to a R-chain complex with trivial mth diwerential. Then we get in ¸��(R)

�(E
H

,�)"�(i
H

:C
H

PCM
H

, (��, �))!�(j
H

:D
H

PDM
H

, (��, �)).

(b) Let (i
H

:C
H

PCM
H

, (��, �)) and (j
H

:D
H

PDM
H

, (��, �)) be two 2m-dimensional ( xnitely generated
projective symmetric) Poincare& pairs. Let ( fM

H
, f

H
) : i

H
Pj

H
be a chain homotopy equivalence of pairs,

i.e. R-chain homotopy equivalences fM
H

:CM
H

PDM
H
and f

H
:C

H
PD

H
with fM

H
� i

H
"j

H
� f

H
such that

Q�( fM
H

, f
H

) maps (��, �) to (��, �). Suppose that C
H
is R-chain homotopy equivalent to a R-chain

complex with trivial mth diwerential. Then we get in ¸��(R)

�(i
H

:C
H

PCM
H

, (��, �))"�(j
H

:D
H

PDM
H

, (��, �)).

Now, the invariant (0.2) is obtained from the invariant (2.2) applied to the PoincareH pair given by
the associated chain complexes. Theorem 0.3(a) and (c) follow from Lemma 2.3(a) and (b). Theorem
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0.3(b) follows directly from Theorem 0.3(a) and (c) because the right-hand side of the formula
appearing in Theorem 0.3(a) does not involve the glueing di!eomorphism. Notice that the
geometric version of Lemma 2.3(a) has been considered in Lemma 1.9.

Next, we deal with the case n"2m#1. Recall that we are considering a (2m#1)-dimensional
"nitely generated projective PoincareH R-pair (i

H
:C

H
PCM

H
, (��, �)) and that we assume that C

H
is

R-chain homotopy equivalent to a R-chain complex D
H

with trivial mth di!erential. Since
C

H
KC���HKD���H holds by PoincareH duality, C

H
is also R-chain homotopy equivalent to

a R-chain complex, namely, D���H whose (m#1)-th di!erential is trivial. We conclude from
Lemma 2.1 that we can "x a R-chain homotopy equivalence u

H
:C

H
PD

H
to a 2m-dimensional

"nitely generated projective R-chain complex D
H

such that both d
���

and d
�

vanish. This implies
also that H

�
(C

H
)�H

�
(D

H
)�D

�
is a "nitely generated projective R-module and the PoincareH

structure on C
H

induces the structure of a (!1)�-symmetric (non-degenerate) form � on H
�

(C
H

).
Recall that a (!1)�-symmetric (non-degenerate) form (P, �) consists of a "nitely generated
projective R-module P together with an isomorphism � :PPPH such that the composi-
tion P "P (PH)H �H

P P of �H with the canonical isomorphism PP(PH)H is (!1)� ) �. The
standard (!1)�-symmetric hyperbolic form H(Q) for a "nitely generated projective R-module Q is
given by

�
0 1

(!1)� 0� :H(Q)"QH�QP(QH�Q)H"Q�QH.

A Lagrangian for a (!1)�-symmetric form (P, �) is a direct summand ¸LP with inclusion
j : ¸PP such that the sequence 0P¸

�
P P�H��

P ¸HP0 is exact. Any inclusion j : ¸PP of a Lagran-
gian extends to an isomorphism of (!1)�-symmetric forms H(¸)P(P, �). A stable Lagrangian for
(P, �) is a Lagrangian in (P, �)�H(Q) for some "nitely generated projective R-module Q. A forma-
tion (P, �,K, ¸) consists of a (!1)�-symmetric (non-degenerate) form (P, �) together with two
Lagrangians K, ¸LP. A stable formation (P, �,K, ¸) on (P, �) is a formation on (P, �)�H(Q) for
some "nitely generated projective R-module Q. For more informations about these notions we
refer to [17, Section 2].

There are natural identi"cations of ¸�(R, (!1)�) with the Witt groups of equivalence classes of
(!1)�-symmetric forms and of ¸�(R, (!1)�) with the Witt group of equivalence classes of (!1)�-
symmetric formations [17, Section 5]. There are suspension maps ¸�(R, (!1)�)P¸��(R) and
¸�(R, (!1)�)P¸����(R). These suspension maps are in contrast to the quadratic ¸-groups not
isomorphism for all rings with involutions, but they are bijective if R contains �

�
[17, p. 152]. The

class of (C
H

, �) vanishes in ¸��(R), an algebraic nullbordism is given by (i
H

:C
H

PCM
H

, (��, �)). Let
u
H

:C
H

PD
H

be a R-chain homotopy equivalence to a 2m-dimensional "nitely generated projective
R-chain complex with trivial mth and (m!1)th di!erential. Equip D

H
with the PoincareH structure

� induced by the given PoincareH structure � on C
H

and u
H

. By doing surgery on the projection
onto the quotient R-chain complex D

H
�
���

whose ith chain module is D
	

for i)m!1 and zero
otherwise, in the sense of [17, Section 4], one sees that the class of (C

H
, �) in ¸��(R) is the image

under suspension of the element given by the (!1)�-symmetric form on H
�

(C
H

). If R contains �
�

, the
suspension map is bijective. Hence, the (!1)�-symmetric (non-degenerate) form on H

�
(C

H
)

represents zero in the Witt group of equivalence classes of (!1)�-symmetric forms. This shows
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Lemma 2.4. Suppose that (M, r) satisxes Assumption 0.1 and that �
�
3R. Then there exists a stable

Lagrangian ¸LH
�

(C
H

(�M)���
R).

Now suppose that we have "xed a stable Lagrangian ¸LH
�

(C
H

). By adding the m-fold
suspension of H(Q) for some "nitely generated projective R-module Q to C

H
, we can arrange that

¸LH
�

(C
H

) is a (unstable) Lagrangian. Equip D
H

with the PoincareH structure � induced by � and
u
H

. Let KLH
�

(D
H

) be the Lagrangian given by ¸ and H
�

(u
H

). Let DM
H

be the quotient R-chain
complex of D

H
such that DM

	
"D

	
for i)m!1, DM

�
"KH, DM

	
"0 for i*m#1, the ith di!erential

is d
	

:D
	
PD

	��
for i)m!1 and all other di!erentials are zero. Let j

H
:D

H
PDM

H
be the R-chain

map which is the identity in dimensions i)m!1 and given by the obvious composition
D

�
"H

�
(D

H
) "P H

�
(D���H)"H

�
(D

H
)HPKH. There is a canonical extension of the PoincareH

structure � on D
H

to a structure (��,�) of a PoincareH pair on j
H

:D
H

PDM
H

, namely, put �� to be
zero. Now we can glue the pairs i

H
:C

H
PCM

H
and j

H
:D

H
PDM

H
along u

H
to get a (2m#1)-

dimensional PoincareH R-chain complex. Its class in ¸����(R) does not depend on the choice of Q,
D

H
and u

H
and is denoted by

�(i
H

:C
H

PCM
H

, (��, �), ¸)3¸����(R). (2.5)

Again the proof of the next lemma is straightforward in the sense that one has to "gure out the
argument for the corresponding geometric statements, which is easy, and then to translate it into
the algebraic setting (see also [19, Proposition 1.8.2ii]).

Lemma 2.6. (a) Let (i
H

:C
H

PCM
H

, (��, �)) and ( j
H

:D
H

PDM
H

, (��, �)) be (2m#1)-dimensional ( xnite-
ly generated projective symmetric) Poincare& pairs. Let u

H
:C

H
PD

H
be a R-chain equivalences such

that Q��(u
H

) :Q��(C
H

)PQ��(D
H

) maps � to �. Suppose that C
H
is R-chain homotopy equivalent to

a R-chain complex with trivial mth diwerential. Let KLH
�

(C
H

) and ¸LH
�

(D
H

) be stable Lagran-
gians such that H

�
(u

H
) :H

�
(C

H
)PH

�
(D

H
) respects them stably. Let (E

H
,�) be the 2m-dimensional

PoincareH chain complex obtained from i
H
and j

H
by glueing along u

H
. Then we get in ¸��(R)

�(E
H

,�)"�(i
H

:C
H

PCM
H

, (��, �),K)!�(j
H

:D
H

PDM
H

, (��, �), ¸).

(b) Let (i
H

:C
H

PCM
H

, (��, �)) and (j
H

:D
H

PDM
H

, (��, �)) be two (2m#1)-dimensional ( xnitely
generated projective symmetric) Poincare& pairs. Let (fM

H
, f

H
) : i

H
Pj

H
be a chain homotopy equivalence

of pairs, i.e. R-chain homotopy equivalences fM
H

:CM
H

PDM
H
and f

H
:C

H
PD

H
with fM

H
� i

H
"j

H
� f

H
such

that Q����( fM
H

, f
H

) maps (��, �) to (��, �). Suppose that C
H
is R-chain homotopy equivalent to

a R-chain complex with trivial mth diwerential. Let KLH
�

(C
H

) and ¸LH
�

(D
H

) be stable Lagran-
gians. Denote byK	LH

�
(D

H
) the image ofK underH

�
( f

H
). Then we obtain a stable equivalence class

of formations (H
�

(D
H

),�,K	, ¸). Let [H
�

(D
H

),�,K	, ¸]3¸����(R) be the image of the element which is
represented in the Witt group of equivalence classes of formations under the suspension homomor-
phism. Then we get in ¸����(R)

�(i
H

:C
H

PCM
H

, (��, �),K)!�(j
H

:D
H

PDM
H

, (��, �), ¸)"[H
�

(D
H

),�,K	, ¸].
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Now the invariant (0.4) is obtained from the invariant (2.5) applied to the PoincareH pair given by
the associated chain complexes. Theorem 0.5 follows from Lemma 2.6.

The next example shall illustrate that the choice of the homotopies h
�

and h
�

in Theorem 0.5(b)
and of the homotopy h in Theorem 0.5(c) do a!ect the terms given by the formations. We are
grateful to Michel Hilsum who pointed out to us that in an earlier version we did not make this
point clear enough.

Example 2.7. Put R"�[�]. Consider (D�,S�) with the following two di!erent reference
maps c, e :D�"[!1,1]PB�"S�, namely, c(s)"exp(0) and e(s)"exp(�i(s#1)). Let h :D��
[0,1]PB�"S� be the homotopy eKt sending (s, t) to exp(�it(s#1)). Notice that cHE��

�
� and

tHE��
�
� agree and that we can choose therefore for both the same Lagrangian ¸LH

�
(S�).

Obviously, Assumption 0.1 is satis"ed. We want to show that �(D�, t, ¸) and �(D�, e, ¸) are not the
same elements in ¸�(�[�]). Their di!erence �(D�, t, ¸)!�(D�, e, ¸) is given by the class of the
formation [H

�
(C

H
(S�)), �

�
, ¸	

�
, ¸

�
]. From Theorem 0.5(c) applied to ( f,�f )"id : (D�, S�)P(D�,S�)

and h, we can identify the form (H
�

(S�), �) with

�
1 0

0 !1� : �[�]��[�]P�[�]��[�]

and choose ¸"(x,x)�x3�[�]�L�[�]��[�]. The homotopy h and the identity on S� induce
the �-automorphism of cHE��

�
�"tHE��

�
�"S��� which is the identity on !1��� and

multiplication with t on 1���. The automorphism of the form (H
�

(S�),�) induced by �f"id and
h�

�
� is

�
1 0

0 t� : �[�]��[�]P�[�]��[�].

Hence, the di!erence �(D�, t, ¸)!�(D�, e, ¸) is represented by the formation

��[�]��[�],�
1 0

0 !1�, ¸	, ¸�
for ¸	"(x, tx)�x3�[�]�L�[�]��[�]. But the class of this formation under the isomorphism
¸�(�[�])[1/2]�¸�(�)[1/2]�¸�(�)[1/2]��[1/2]�0"�[1/2] is the generator.

Similarly, one can see from Theorem 0.5(b) that �(S�, id) and �(S�, c) are di!erent for the reference
maps id"S�PS�"B� and the constant map c : S�PB� by cutting S� open along the embedded
S�LS�. One has to choose homotopies h

�
: i
�

Kc : S�
�

PB� and h
�

: i
�

Kc :S�
�

PB� for
S�


the upper and lower hemispheres and i


:S�


PB�"S� the inclusion. Then the term describ-
ing �(S�

�
�

��
S�
�

, id)!�(S�
�

�
��
S�
�

, c) is given again by a formation which does not represent zero in
¸�(�[�]). By crossing with ���� one gets also examples in dimensions 4n#1 of this type because
crossing with ���� induces an isomorphism ¸�(�[�])[1/2]P¸����(�[�])[1/2].

The next lemma is the algebraic version of Lemma 1.5 (see also [19, Proposition 1.8.2ii]).
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Lemma 2.8. Let n be any positive integer. Let (i
H

:C
H

PCM
H

, (��, �)) and (j
H

:D
H

PDM
H

, (��, �)) be two
n-dimensional (xnitely generated projective symmetric) Poincare& pairs. Let u

H
, v

H
:C

H
PD

H
be

a R-chain equivalences such that both Q�(u
H

) and Q�(v
H

) map (��, �) to (��, �). Let w
H

:C
H

PC
H
be

a R-chain map with u
H

�w
H

Kv
H

. Let (E
H

(u
H

), (��, �)(u
H

)) and (E
H

(v
H

), (��, �)(v
H

)), respectively, be the
n-dimensional PoincareH chain complexes obtained from i

H
and j

H
by glueing along u

H
and v

H
,

respectively. Let (¹(w
H

),�) be the algebraic mapping torus of w
H

. Its underlying R-chain complex is the
mapping cone of cone(id!w

H
) (cf. [20, p. 264]). Then we get in ¸�(R)

�(E
H

(u
H

), (��, �)(u
H

))!�(E
H

(v
H

), (��, �)(v
H

))"�(¹(w
H

), �).

In general, symmetric signatures and higher signatures are not additive (see Example 1.10). In the
situation of Lemma 1.5 the di!erence of symmetric signatures (and thus of higher signatures) is
measured by the symmetric signature of the corresponding mapping torus. If we want to see the
di!erence in ¸�(CH



(G)), we only have to consider the algebraic mapping torus as explained in

Lemma 2.8. To detect the image of the class of the mapping torus in ¸�(CH



(G)) under the
isomorphism sign : ¸�(CH



(G))PK

�
(CH



(G)) the formula [17, Proposition 4.3] is useful. It reduces

the computation of the di!erence of the element [r :M�
(
N�PX]![s :M��N�PX] under the

composition �
�
(BG) �

P K
�
(BG) �

P K
�
(CH



(G)) to an expression which only involves the chain

complex of C
H

(�M) and the map induced by the automorphism ��� �� in a rather close range
around the middle dimension.

Remark 2.9. Let Z be a closed oriented n-dimensional manifold with a reference map r :ZPBG.
Suppose that we have for the mth Novikov}Shubin invariant �

�
(ZM )"R� in the case n"2m!1

and, in the case n"2m, we have �
�

(ZM )"R� and for the mth ¸�-Betti number b���
�

(ZM )"0. Then we
conclude from the arguments above and Lemma 3.1 that � : �

�
(BG)P¸�(CH



(G; �)) maps [Z, r] to

zero. Namely, we have constructed an explicit algebraic nullbordism above. Hence, we conclude
that all higher signatures of [Z, r] vanish if the assembly map A� :KO

�
(BG)���PKO

�
(CH



(G; �))

is injective. This follows from the discussion in the Introduction.

3. Novikov}Shubin invariants

Next we reformulate ( following [9]) the condition that the middle di!erential vanishes in terms
of spectral invariants.

Let N(G) be the von Neumann algebra associated to G. Let M be a closed Riemannian manifold
with normal covering MM PM with deck transformation group G. Let � be the #at CH



(G)-bundle

over M whose total space is MM �
�
CH



(G). Let H�(M; �) and HM �(M; �) resp. be the unreduced and

reduced mth cohomology of M, i.e. ker(d�)/im(d���) and ker(d�)/im(d���) resp. for d the di!erential
in the deRham complex �H(M; �) of Hilbert CH



(G)-modules. The next lemma is contained in

Lemmas 2.1 and 2.3 of [9].

Lemma 3.1. The following assertions are equivalent for an integer m.
(a) The canonical projection H�(MM ; �)PHM �(MM ; �) is bijective.

740 E. Leichtnam et al. / Topology 41 (2002) 725}744



(b) The CH



(G)-chain complex C
H

(MM )���
CH



(G) is CH



(G)-chain homotopy equivalent to a xnitely

generated projective CH



(G)-chain complex D
H
whose mth diwerential d

�
:D

�
PD

���
is trivial.

(c) The N(G)-chain complex C
H

(MM )���
N(G) is N(G)-chain homotopy equivalent to a xnitely

generated projectiveN(G)-chain complex D
H
whose mth diwerential d

�
:D

�
PD

���
is trivial.

(d) The Novikov}Shubin invariant �
�

(MM ) is R� (see [12]).
(e) The Laplacian acting on ¸�(MM , ����)/ker(d���) has a strictly positive spectrum.

Proof. (a) � (b) We can interprete the (a priori purely algebraic) CH



(G)-cochain complex
hom��

(C
H

(MM ),CH



(G) as cochain complexes of Hilbert CH



(G)-chain complexes with adjointable
morphisms as di!erentials by the identi"cation of each cochain module with the direct sum of
"nitely many copies of C


H
(G) using cellular �G-basis. There is a CH



(G)-chain homotopy equiva-

lence (by bounded chain maps and homotopies) �H(M; �)Phom��
(C

H
(MM ),CH



(G)). Hence, the

image of the (m!1)th di!erential in �H(M; �) is closed if and only if the same is true for the one in
hom��

(C
H

(MM ),CH



(G)). The image of a di!erential in hom��
(C

H
(MM ),CH



(G)) is closed if and only if

the image is a direct summand in the purely algebraic sense [22, Corollary 15.3.9]. But this is
equivalent to the assertion that hom��

(C
H

(MM ),CH



(G)) is CH



(G)-chain homotopy equivalent to
a "nitely generated projective CH



(G)-cochain complex whose (m!1)th codi!erential is trivial by

Lemma 2.1. This is true if and only if C
H

(MM )���
CH



(G) is CH



(G)-chain homotopy equivalent to

CH



(G)-chain complex with trivial mth di!erential.
(b) N (c) is obvious.
(c) � (d) follows directly from the interpretation of Novikov}Shubin invariants in terms of the

homology of C
H

(MM )���
N(G) [13].

(d) � (e) follows from the fact that the dilatational equivalence class of the spectral density
function of the simplicial mth codi!erential and the analytic mth codi!erential agree [2].

(e) � (a). Assertion (a) can be reformulated to the statement that the spectrum of (d���)Hd��� for
d��� (m!1)th di!erential in �H(M; �) has a gap at zero. But this spectrum is the same as the
spectrum of (d���)Hd��� for d��� the (m!1)th di!erential in the deRham complex ¸��H(MM ) of
Hilbert spaces which has a gap at zero if and only if (e) is true. �

Appendix. Mapping tori of special di4eomorphisms

In this appendix, we consider the image of the bordism group of di!eomorphisms on smooth
manifolds over a C=-complex X with "nite skeleta under the mapping torus construction. By
a di!eomorphism over X we mean a quadruple (M, f, g, h), where M is a closed oriented smooth
manifold, g an orientation preserving di!eomorphism on M, f :MPX a continuous map and
h a homotopy between f and f � g. The role of the homotopy h becomes clear if we consider the
mapping torus M

�
: "M�[0,1]/

��������������
, which is by projection to the second factor a smooth

"bre bundle over S�. Then h allows an extension of f on the "bre over 0 to a map hM ([(x, t)]) : "h(x, t)
and any such extension gives a homotopy h with the properties above.

Following [6] we denote the bordism group of these quadruples by �
�
(X). Let �

���
(X) be the

bordism group of oriented smooth manifolds with reference map to X. The mapping torus
construction above gives a homomorphism �

�
(X)P�

���
(X). It was shown in [6] for X simply
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connected and in [15] for general X that for n even this map is surjective. Recently Wolfgang LuK ck
and Eric Leichtnam asked whether the same statement holds if we only allow quadruples where the
map f is 2-connected and (M, f ) represents zero in �

�
(X). We call such a quadruple a special

diweomorphism over X and the subset of �
�
(X) represented by special di!eorphisms by S�

�
(X) (it is

not clear to the author whether this subset forms a subgroup). For X simply connected one can
conclude from [6, Section 9], that S�

��
(X)P�

����
(X) is surjective. In this note we generalize this

to arbitrary complexes X.

Theorem A.1. Let X be a C=-complex with xnite skeleta. For n*2 the mapping torus construction
gives a surjection S�

��
(X)P�

����
(X).

Proof. Let (N, g) be an element of �
����

(X). Consider a representative (M, r) of 0 in �
��

(X). We use
the language and results from [7]. We consider the "bration p

�
:X�BSOPBSO and denote it by

B. The map r�� :MPB, where � is the normal Gauss map, is a normal B-structure. By [7,
Corollary 1] we can replace (M, r��) up to bordism by a n-equivalence r	��	 :M	PX�BSO
giving a normal (n!1)-structure on M	. In particular r	 :M	PX is 2-connected.

Now we form the disjoint union (M	�I)#N and consider the map q : (M	�I)#NPX given
by r	p

�
and g, where p

�
:M	�IPM	 is the projection. We want to replace this manifold by

a manifold= di!eomorphic to M�I which is bordant relative boundary over X to (M	�I)#N.
If this is possible we are "nished since then we glue the two boundary components of= and the
maps together to obtain a mapping torus and a map to X. This is bordant over X to (N, g) since it is
bordant to ((M	�S�)#N, r	p

�
#g) (note that (M	�S�, r	p

�
) is zero bordant over X).

This idea does not work directly. What we will prove is that there is a bordism = between
M	�m(S��S�) and M	�m(S��S�) for some m equipped with a map to X which on the two
boundary components is the composition of the projection from M�m(S��S�) to M and r	, such
that= is di!eomorphic to (M	�m(S��S�))�I. We further achieve that the manifold obtained by
glueing the boundary components of = together is over X bordant to (N, g). This is by the
considerations above enough to prove the theorem, since our map from M�m(S��S�) to X�BSO
is again a n-equivalence.

That this indirect way works follows from [7, Theorem 2], which says that we can replace
(M	�I)#N by a sequence of surgeries over X�BSO and compatible subtractions of tori by an
s-cobordism= between M	�m(S��S�) and M	�m(S��S�) (the fact that the number of S��S�'s
one has to add by Theorem 2 to the boundary components of= is equal follows from the equality
of the Euler characteristic of the two boundary components). If n'2 the s-cobordism theorem
implies= di!eomorphic to (M	�m(S��S�))�I. If n"2 the same is true by the stable s-cobordism
theorem of [16] after further stabilization of = by forming k times a `connected suma between
(S��S�)�I and= along an embeded arc joining the two boundary components of=. To "nish
the argument one has to note from the de"nition of compatible subtraction of tori that this process
does not a!ect the bordism class over X for the manifold obtained by glueing the two boundary
components together.

To see this we recall the de"nition of subtraction of tori. Consider two disjoint embeddings
of S��D��� into = such that the map to X is constant on both S��0's. Join each of these
embedded tori by an embedded I�D�� with the two boundary components and subtract the
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interior of these embedded submanifolds to obtain =	. This is the subtraction of a pair of tori
used in [7, Theorem 2]. The boundary of = consists of two copies of M�(S��S�). There
is an obvious bordism over X between the manifold obtained from = by identifying the two
boundary components and the manifold obtained from =	 by identifying the two boundary
components. �

Remark A.1. In general, it is di$cult to say much about a special di!eomorphism whose mapping
torus is bordant to a given pair (N, g). The main di$culty is the determination of the di!eomor-
phism. One can obtain some information on M	. For example, if X"S� and n"2 the proof above
shows that we can take for M	 the following manifold : S��S��������M � and thus the special
di!eomorphism lives on S��S��������M ��m(S��S�) for some unknown integer m. More
generally, in dimension 4 for an arbitrary X one can use instead of S��S� the boundary of any
thickening of the 2-skeleton of X in �.
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