arXiv:1109.1440v1 [math.AT] 7 Sep 2011

TOPOLOGICAL K-THEORY OF THE GROUP C*-ALGEBRA OF
A SEMI-DIRECT PRODUCT Z" xZ/m FOR A FREE
CONJUGATION ACTION

MARTIN LANGER AND WOLFGANG LUCK

ABSTRACT. We compute the topological K-theory of the group C*-algebra
Cx(T') for a group extension 1 — Z® — I' — Z/m — 1 provided that the
conjugation action of Z/m on Z™ is free outside the origin.

INTRODUCTION

Throughout this paper let 1 — Z" — I' — Z/m — 1 be a group extension
such that conjugation action of Z/m on Z" is free outside the origin. Our main
goal is to compute the topological K-theory of the group C*-algebra C*(T"). This
generalizes results of Davis-Liick [7], where m was assumed to be a prime. Except
ideas from that paper, the proof of a Conjecture due to Adem-Ge-Pan-Petrosyan in
Langer-Liick [11] is a key ingredient. The calculation and its result are surprisingly
complicated. It will play an important role in a forthcoming paper by Li-Liick [12].
There the computation of the topological K-theory of a C*-algebra associated to
the ring of integers in an algebraic number field will be carried out in general, thus
generalizing the work of Cuntz and Li [6] who had to assume that +1 and —1 are
the only roots of unity.

0.1. Main Result. Our main result is the following theorem. In the sequel C*(G)
is the reduced group C*-algebra of a group G. We denote by EG the classifying
space of proper actions of a group G and by BG its quotient space G\EG. Let
H* (G; M) be the Tate cohomology of a group G with coefficients in a ZG-module
M. Denote by A'Z™ the i-th exterior power.

Theorem 0.1 (Computation of the topological K-theory). Consider the extension
of groups 1 = Z™ — T — Z/m — 1 such that the conjugation action of Z/m on Z"
is free outside the origin 0 € Z™. Let M be the set of conjugacy classes of mazimal
finite subgroups of T'.

(i) We obtain an isomorphism
wi: K1(C*(T)) = K1 (BT).
Restriction with the inclusion k: Z™ — T induces an isomorphism
k1 Ky (CF(D)) = K (CF(2)"m,
Induction with the inclusion k yields a homomorphism
ki Z @gizym) K1 (CE(Z")) = K1 (Cr(T)).
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It fits into an exact sequence
0= HH(Z/m, Ky(CF(Z")) = Z Gappymy Kr(CF(Z7) 25 Ki(C () = 0.

In particular k, is surjective and its kernel is annihilated by multiplication
with m;
(i) There is an exact sequence

0 @ Re(m) S92 g (0r(1) £ Ko(BT) -0,
(M)eM

where Re(M) is the kernel of the map Re(M) — Z sending the class [V] of

a complex M -representation V' to dime(C ®cpr V') and the map in comes

from the inclusion M — T and the identification Re(M) = Ko(C}(M)).
We obtain a homomorphism

k. & @ iv L ®gzym) Ko(CF (Z7)) & @ Re(M) — Ko(Cj(T)).
(M)emM (M)em
It is injective. It is bijective after inverting m;
(i1i) We have
Ki(Cr () =2

where

6 — (Z(M)GM(|M| - 1)) + D iz YkZ((A2lZ")Z/m) if i even;
L s ke ((AHHZ )R ifi odd:

(iwv) If m is even, then s1 =0 and
K, (Cx(T)) = {0}

Another interesting result is Theorem 3.3 where we will address the cohomology
of I and of the associated toroidal quotient BI' = I'\R™.

0.2. Organization of the paper. We will compute K,(C(G)) in a more general
setting in Section 1, where we consider groups G for which each non-trivial finite
subgroup is contained in a unique maximal finite subgroup. In Section 2 we consider
the special case where we additionally assume that the normalizer of every maximal
finite subgroup is the maximal finite subgroup itself. The groups I' appearing in
Theorem 0.1 will satisfy this assumption.

In Sections 3 and 4 we deal with the cohomology and the topological K-theory
of the spaces BT and BI', and, finally complete the proof of Theorem 0.1.

The rest of the paper is devoted to the computation of the numbers s; appearing
in Theorem 0.1. Recall that Z™ becomes a Z[Z/m]-module by the conjugation
action. Sometimes we write Z instead of Z" to emphasize the Z[Z/m]-module
structure. Notice that the numbers s; are determined by the set M of conjugacy
classes of maximal finite subgroups of I' and the two numbers - rkZ((AlZ;})Z/ ™)
and 37,54(—1)! rkZ((AlZZ)Z/m)-

Section 5 is devoted to compute the partial ordered set of conjugacy classes of
finite subgroups of I', directed by subconjugation, in terms of group cohomology.
This yields also a computation of the set M.

In Section 6 we will compute M and the numbers »~,- rkZ((AlZ;})Z/m) in the
case, where m is a prime power.

The general case is treated in Section 7. The calculation of M is explicit. The
numbers ), rkZ((AlZg)Z/ ™) will be computed explicitly provided that m is even.
For m odd our methods yield at least a recipe for a case by case computation, the
problem is to determine ), rkz((AlZ;})Z/m). Since the roots of unity in an
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algebraic number field is always a finite cyclic group of even order, the case, where
m is even, is the most interesting for us.

In Section 8 we compute the equivariant Z/m-Euler characteristic of Z™\ET
which takes values in the Burnside ring of Z/m. This will determine explicitly the
numbers >, (—1)! -rkZ((AlZ;})Z/m).

The actual answers to the computations of the set M and the numbers s; are
interesting but also very complicated. As an illustration we state and explain some
examples already here in the introduction. The group I' and the numbers m and
n are the ones appearing in Theorem 0.1. Here and in the sequel we will use the
convention that a sum of real numbers indexed by the empty set is understood to
be zero, e.g., 23:2 a; is defined to be zero.

0.3. m is a prime. Suppose that m = p for a prime number p. We have Z} @z
Q =gpz/p QI¢)* for ¢, = exp(2mi/p) and some natural number k. The natural
number k is determined by the property n = (p — 1) - k. All non-trivial finite
subgroups of I' are cyclic of order p and are maximal finite. We obtain from
Theorem 6.18, Lemma 6.28 and Theorem 8.7 (ii)

M| = p";
So(Ml-1) = pFp-1);
(M)eM
m 14 2=t #+2;
%Z:sz((AlL)Z/) = {le 3 2:2;
> (=D kg ((A'zmPmy = pPh(p—1).

IeZ

This implies (and is consistent with [7])

pk-(p—1)+2+p 1+pk1(p 1) p # 2 and i even;

2p
n _ k—1 .
. 2J££1_p 2(P 9] p # 2 and i odd;
3. 9k—1 p =2 and ¢ even;
0 p =2 and i odd.

0.4. m is a prime power p” for r > 2. Next we consider the case, where m is
a prime power, let us say m = p”. Since we have treated the case r = 1 already
in Example 0.3, we will assume in the sequel r > 2. There exists precisely one
natural number k satisfying n = (p — 1) - p"~' - k. We obtain from Theorem 6.18
and Remark 8.9

> (IM]-1) Z > -

(M)eM J=1 (M)eM(Gy)

r—1
= PP =)+ Y (T T T ) (- 1),
=1

We get from Lemma 6.28
2" —1
> rkg(A'L)PMY) = 14— ifp#2.
1>0 p
If p = 2, Lemma 6.28 yields

2k—2 k—1 : __ .
S kg (ALYP™ = Qk ) +i2r T it ifr =2
=0 2 +2 -+l 4 9 -+ Z 2 —rti— if r > 3.
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We get from Theorem 6.18, Theorem 8.7 (ii) and Remark 8.9

r—1

Z(—l)l rkg (ALLYE™Y = pk -1 I Z(pka*jfrJrj _pka7j717r+j) v - 1
1>0 p =1 P’
r—1 ) v
—r =1 _p 7‘7]—17,'0 .
= pP ) (- )- (@ =1).
=1

We leave it to the reader to combine these results to determine the numbers s;.
Example 0.2 (m = 4). We get for m =4, i.e.,p=2and r =2

3-22k=2 13.2F 4 even;
Si = .
0 i odd.

Example 0.3 (m =9). We get for m =9, ie,p=3and r =2

{—64f8+8 +23-3571 1 7.3%2 j even;
S =9 64548  ok—1 _ o3k—2 .
> =3 -3 7 odd.

0.5. m is square-free and even. Next we consider the case, where m is square-
free and even. The case m = 2 has already been treated in Example 0.3. Hence
we will assume in the sequel that m = py - ps - - - - ps for pairwise distinct prime
numbers pi,pa,...,ps with p; =2 and s > 2. Then we get from Example 7.7 and
Remark 8.9

~pi o= 1) () )

S M- = me1e Y e

(M)eM j=1

From Lemma 7.9 we get (AQZHL)Z/m = {0} for every [ > 0. We conclude from
Example 7.7, Theorem 8.7 (ii) and Remark 8.9

s n j—1
m—1 (pj —1)- (/7Y —1)

S (1) ek (ALY ™) = — + -

lez j=1

Hence we get for ¢ even

s n/(p;—1) s n/(pj—1)
pj-(pj — 1) (p; -1) m-1 (pj — 1) (p; -1
i = -1
s m +Z - +— +Z "
Jj=1 j=1
s n ;i —1 n i —1
—m+(m—1)+37_, (pj-(pj—l)-(pj/(p O R (I DR (A R
= m+
m
5 2 n/(p;—1)
_ m+*1+2j:1(pj*1)'(pj ! *1).
m
Thus we have computed
. s 21y, 7/(?;*1)7
g — d M+ 435 (2 7172 (; ) 1 even,
0 1 odd.
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1. GROUPS SATISFYING CONDITION (M7icriv)

Let G be a group. A group H C G is called maximal finite if H is finite and
for every finite subgroup K C G with H C K we have H = K. In this section
we will make the assumption (M7icrin) appearing in [20, Notation 2.7], i.e., every
non-trivial finite subgroup of G is contained in a unique maximal finite subgroup.

Let M be the set of conjugacy classes of maximal finite subgroups of G. Let
NgM be the normalizer of M C G. Put WgM = NgM /M. Denote by pas: NaM —
WaM the canonical projection. Notice that the group Wg M contains no torsion
since M C @ is maximal finite. Let p}, EWgM the NgM-space obtained from the
WagM-space EWgM by restriction with pys. Denote by EG the classifying space
for proper G-action. For more information about these spaces we refer for instance
to [3] and [15]. Put BG = G\EG.

We will suppose that G satisfies the Baum-Connes Conjecture (see for example [3]
and [18]), i.e., the assembly map

(1.1) asmb: K& (EG) — K;(CHQ))

is bijective for all i« € Z. Induction with the projection G — {1} yields a map
(see [18, Chapter 6 on pages 732ft])

indg_(1y: K (EG) —  Ki(BG).
Its composite with the inverse of the assembly map asmb of (1.1) is denoted by
wi: Ki(CH(G)) —  Ki(BG).
Define
mi: Ki(BG)  —  Ki(CH(G))
to be the composite

indg_, 111) " G asm
) Wdem) g6 pagy K1Y, g6 (RG) 20, k(0 (G)),

K;(BG
where f: EG — EG is the up to G-homotopy unique G-map. Let

inrs ker((par): Ki(CE(NaM)) — Ki(CHWGM))) — Ki(CH(G))
be the map induced by the inclusion Ng¢M — G. The main result of this section is

Theorem 1.2. Suppose that G satisfies condition (Mr.crin) appearing in [20,
Notation 2.7], i.e., every non-trivial finite subgroup of G is contained in a unique
maximal finite subgroup. Assume that the Baum-Connes Conjecture holds for G

and for WaM and NgM for all (M) € M.

(i) Then there is a long exact sequence

2 @D ker((par).: Ki(CH(NGM)) = Ki(C (W M)))

(M)eM
ey Ki(CHE) 2 KiBG)
% @D ker((pa)e: Kio1(CFH(NGM)) = Ki_1(C}(WeM)))
(M)eM

@(M)GM ti—1 Wi—1
_—

Ki1(Cr(G)) — -5

(i) For every i € Z the map w;: K;(C}(GQ)) — K;(BG) is split surjective after
inverting the orders of all finite subgroups of G.
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For every i € Z the homomorphism

@& @@ in: Ki(BG® @ ker((pa).: Ki(Cy(NaM)) — Ki(C;(WeM)))
(M)eM (M)em
— Ki(C[(G))

is bijective after inverting the orders of all finite subgroups of G.

The rest of this section is devoted to the proof of Theorem 1.2

Proof of Theorem 1.2. We have a G-pushout of G-CW-complexes (see [20, Corol-
lary 2.10])

(1.3) H(M)GMGXNGM ENcM —' , pa
]—I(M)EMidG ><NGMfM[ [f
H(]W)EM G XNem Dy EWeM TEG

where fa: ENgM — py EWgM is some cellular NgM-map, f: EG — EG is
some G-map, and 7 and j are inclusions of G-CW -complexes.
Dividing out the G-action yields a pushout of C'W-complexes

l |
H(M)eM BWeM —— BG

The associated Mayer-Vietoris sequences yield a commutative diagram whose columns
are exact and whose horizontal arrows are given by induction with the projec-
tion G — {1}

(1.5)

SYRYY KNM(ENGM) @D e Ki( BN M)

KZ(EG) @ D rnem KM (py EWgM) ——— Ki(BG) & D ryem Ki(BWaM)

KE(EG) K;(BG)

K2

Baner K15 (BN M) D yem Ki-1(BNeM)

KE (BEG) ® @ em KNG (ph EWeM) —— Ki1(BG) & @ (1pye s Kiz1 (BWeM)
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Since G acts freely on EG and NgM acts freely on ENg M, the maps given by
induction with the projection to the trivial group

KS(EG) =
KNeM(ENgM) =
are bijective for all i € Z and (M) € M.
Define the map
ke @ KYMpyEWeM) » KF(EG) & D Ki(BWeM)
(M)em (M)em

(BG);

K;
Ki(BNgM),

to be the product of the map
P K (um)oindnorsa: KN (py EWeM) — KE (EG)
(M)eM
for the up to G-homotopy unique G-map ups: G X Nom Py EWeM — EG and the
map
P indyorspy: @ ENMeuEWeM) - P Ki(BWeM).
(M)eM (M)eM (M)eM
Define the map
ji: KS(EG) @ EB K;(BWgM) — K;(BG)
(M)eM
to be the direct sum of the map
indg_ g1y KZG(EG) — Ki(BG)
and (—1)-times the map
@ Ki(G\uas): @ K;(BWaM) — K;(BG).
(M)em (M)em
Define the map
0 Ki(BG) ~ P K'Yy EWeM)
(M)eM
to be the composite of the three maps

-1
ind 1
Ki(BG) 2 @ K;_1(BNgM) By (indngrroiny) EB KNeM(ENGM)

(M)em (M)eM

@ KﬁciM (P EWeM),
(M)eM

@(M)GM Ki—1(famr)

where §; is the boundary map appearing in the right column of the diagram (1.5)
and fa: ENgM — py,EWgM is the up to NgM-homotopy unique NgM-map.

The exact columns in the diagram (1.5) can be spliced together to the following
long exact sequence.

(1.6) - = @ KNM(py, EWeM) S KE(EG) © @) Ki(BWeM)
(M)eM (M)eM
7 kuBa) % B &M EWeM)
(M)eM

k/ 1 z 1
Mo kG BG) e @ K (BWeM) 12
(M)eM
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We will need the following lemmas.

Lemma 1.7. Consider any group G and any i € Z. Let f: EG — EG be the up
to G-homotopy unique G-map. Denote by f: BG — BG the induced map on the
G-quotients. Then the composite

Ky(BG) W) k6 (m6) L k8 (BG) MY, K (BG)

agrees with the map

This map is bijective after inverting the order of all finite subgroups of G.

Proof. Because induction is natural, we obtain the commutative diagram

indg_, 11
KS(BG) ——Y_ K,(BG)
Jf* l(G\f)*_?*
indg_, 11
KS(EG) L Ki(BG)

The upper horizontal arrow is bijective since G acts freely on EG. It remains to
show that the right vertical arrow is bijective after inverting the orders of all finite
subgroups of G.

Let A be the ring Z C A C Q obtained from Z by inverting the orders of all
finite subgroups of G. By a spectral sequence argument it suffices to show that
f.: H(BG,\) — H(BG;A) is bijective for all | € Z. This follows from the
fact that the AG-chain map C.(f): Cx(EG) ®z A — C.(EG) ®z A is a homology
equivalence of projective AG-chain complexes and hence a AG-chain homotopy
equivalence. (I

Let p: G — H be an epimorphism with finite kernel. Then restriction defines
for every H-C'W-complex X and every i € Z a natural map

res,(X): K (X) — KE(res,(X))
where res,(X) is the G-CW-complex whose underlying space is X and for which
g € G acts on X by multiplication with p(g). This follows from the methods
developed in [18, Chapter 6 on pages 732ff]. The maps res,(X) above define a

transformation of H-homology theories. Notice that we obtain for every H-C'W-
complex a natural H-homeomorphism

a(X): ind,res,(X) =X

that is the adjoint of the identity id: res,(X) — res,(X). Explicitly it sends
(h,xz) € H xgresp(X) to h-x. The inverse sends z to (1,z). We leave it to the
reader to check the proof of the next lemma which is just a direct inspection of the
definitions.

Lemma 1.8. Let p: G — H be an epimorphism with finite kernel. Then for every
H-CW -complex X the composite

ind,

K7 (X) 222 KC(resy(X)) —2 K (ind, ores, (X))
1s the identity.

H
KEO)), e (x)

3

Lemma 1.8 applied to the projection N¢M — WgM and the WgM-space
EWgM implies that indygarswenr: KM (ph EWeM) — KV¢M(EWgM) is
split surjective. Since indy ar—q1y: K)VeM(EWaM) — Ki(BWgM) is bijective,
the map

indyg i1y KN (py EWeM) — K;(BWaM)
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is split surjective. Now assertion (i) of Theorem 1.2 follows from the long exact
sequence (1.6) and the fact that EWgM is a model for EWgM and pi, EWgM is
a model for ENgM because W M is the torsion-free quotient of NgM by a finite
group. We obtain assertion (ii) from assertion (i) and Lemma 1.7. This finishes the
proof of Theorem 1.2. O

Example 1.9 (Groups satisfying property (Mricrin)). Consider an extension of

groups 1 — Z" & G % A — 1 such that A is finitely generated abelian. Suppose
that tors(A) acts freely on Z" outside the origin 0 € Z".

Then G satisfies condition (M7icrin) by the following argument. Put H =
q~!(tors(A)). We obtain an exact sequence 1 — Z" — H — tors(A) — 1 such that
the conjugation action of the finite group tors(A) on Z" is free outside the origin.
Then H satisfies by [19, Lemma 6.3] the condition (NMyicrin) appearing in [20,
Notation 2.7], i.e., every non-trivial finite subgroup of H is contained in a unique
maximal finite subgroup and NgyM = M holds for any maximal finite subgroup

M C H. We also obtain an exact sequence 1 — H — G % A/ tors(A) — 1. Hence
any finite subgroup of G belongs to H. This implies that G satisfies (M7ic Fin)-
Consider any maximal finite subgroup M C G. Then M C H and have NgM N
Z" = {1} and NeM NH = M. Hence q induces an isomorphism NgM — q(NgM).
Since A is abelian, Ng M is abelian. We get an exact sequence 1 - M — NgM —
g(NgM) — 1, where g(NgM) is a finitely generated free abelian group. This
implies that NoM = M x WM and WgM is a finitely generated free abelian
group. Let Rg(M) be the kernel of the split surjection Re(M) — Re({1}) sending
the class of an M-representation V' to dimc(C ®cas V). An easy calculation shows

ker((par)«: Ki(CFH(NaM)) — Ki(CH(WaM))) = Ki{(WgM) @z Re(M).
In particular ker((par)«: Ki(CF(NgM)) — K;(C;(WgM))) is torsionfree. Now
Theorem 1.2 yields for every m € Z a short exact sequence

0= P Ki(BWeM)@z Re(M) — Ki(CH(G)) = Ki(BG) — 0
(M)eM

which splits after inverting | tors(A)].

A prototype for this example is G = R x R* for an integral domain R such
that the underlying abelian group of R is finitely generated free and the abelian
group R* is finitely generated, where R* acts on R by multiplication. The ring

of integers in an algebraic number field is an example by Dirichlet’s Unit Theorem
(see for instance [21, Theorem 7.4 in Chapter I on page 42]).

2. GROUPS SATISFYING CONDITION (NM7icrix)

Let G be a group. In this section we will make the assumption (NMric 7in) ap-
pearing in [20, Notation 2.7], i.e., every non-trivial finite subgroup of G is contained
in a unique maximal finite subgroup and NgM = M holds for any maximal finite
subgroup M C G.

2.1. On the topological K-theory of the group C*-algebra.

Let Rc(M) be the kernel of the split surjection Re(M) — Re({1}) sending
the class of an M-representation V' to dimc(C ®cpr V). It corresponds under the
identifications Rc(M) = K} (pt) and Re({1}) = Kél}(pt) to the homomorphism
indy 1y KM (pt) — KM (pt). Notice that Ko(C#(M)) = Re(M) and Re(M)
are finitely generated free abelian groups and K1 (C;f(M)) = 0 for every finite group
M.

The next result is a direct consequence of Theorem 1.2.
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Corollary 2.1. Suppose that G satisfies condition (NMyrcrin) appearing in [20,
Notation 2.7], i.e., every non-trivial finite subgroup of G is contained in a unique
maximal finite subgroup and for every mazximal finite subgroup M we have NoM =
M. Suppose that G satisfies the Baum-Connes Conjecture.

(i) We obtain an isomorphism
wi: K1(CH(G)) = K1(BG);

(i) We obtain a short exact sequence

0= P Ry S0 g (02(6)) £ Ko(BG) — 0,
(M)em

where the map iy comes from the inclusion M — G and the identification
Rc(M) = Ko(CrH(M)). 1t splits if one inverts the orders of all finite
subgroups of G.

The homomorphisms

no & @ in: Ko(BG) © @ Re(M) — Ko(CH(G))
(M)emM (M)eM
m: Ki(BG) — K1(C(G))

are bijective after inverting the orders of all finite subgroups of G.

3. THE COHOMOLOGY OF I' AND OF THE ASSOCIATED TOROIDAL ORBIFOLD
QUOTIENT

In this section we compute the cohomology of BI' and BI" which is also called
the associated toroidal orbifold quotient. We need some preliminaries.

Lemma 3.1. Let 1 - Z" - T — Z/m — 1 be an extension such that the conjuga-
tion action of Z/m on Z™ is free outside the origin. Then the extensions splits, the
group T is a crystallographic group of rank n and possesses a finite n-dimensional

I'-CW -model for ET .

Proof. Let v € T be an element in I" which is mapped under I' — Z/m to a generator
of Z/m. Then 4™ belongs to Z" and yy™y~! = ™. Since v is non-trivial and the
conjugation action of Z/m on Z"™ is free outside the origin, ™ is the origin in Z".
This implies v =1 in I'.

The subgroup Z" of T" is normal and its own centralizer in I'. Hence T is a
crystallographic group of rank n and has a finite n-dimensional G-CW-model for
ET, namely R™ with the associated I-action, by [5, Propositions 1.12]. O

One key ingredient for the sequel is the following result from Langer-Liick [11,
Theorem 0.1 and Theorem 0.5].

Theorem 3.2 (Tate cohomology). Suppose that the Z/m-action on Z™ is free
outside the origin. Then:

(i) We get for the Tate cohomology
HY(Z/m; M (Z2)) =0
for all i, 5 for which i+ j is odd;
(i) The Lyndon-Serre sequence associated to the extension 1 — Z" — T' —
Z/m — 1 collapses in the strongest sense, i.e., all differentials in the E,.-

term are trivial for all r > 2, and all extension problems at the E-level
are trivial.

The main result of this section is
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Theorem 3.3 (Cohomology of BI' and BT'). Consider the extension of groups
1 =7" =T 5 Z/m — 1. Assume that the conjugation action of Z/m on Z™ is
free outside the origin 0 € Z™. Put for i >0

ri = tkg (NZ2)P/™) = rkg (HU(Z2)P™).

Then
(i) Fori>0
Zr o @y H=(Z/m, A'ZR) i even;
H'(D) = (7" i odd,i > 3;
0 i =1.

(i) The map induced by the various inclusions

o' H'(T)—» @ H'(M)

(M)em
is bijective for i > n;
(i1i) Fori >0
7ri i even;
HY(BT) = { zr & @, H(Z/m,\'Z}) i odd,i > 3;
0 i =1.

Proof. (i) follows directly from Theorem 3.2 since r; = 0.

(ii) The pushout (1.4) reduces to the following pushout of CW-complexes since I'
satisfies the condition (NM7icFin) by [19, Lemma 6.3].

(3.4) H(M)eM BM —— Br

L]

I ryepm Pt —— BU

Since H**1(M) = 0 for all i and all (M) € M, the associated Mayer-Vietoris
sequence yields the long exact sequence

(3.5) 0 H*(BT) L B¥(T) S @ HY(M)
(M)eM

21 . T .
O qEH(Br) L HEHY(T) - 0
where ¢? is the map induced by the various inclusions M — I'. Since there exists

a n-dimensional model for ET" by Lemma 3.1, assertion (ii) follows.

(iii) In the sequel let ¢ be an integer with ¢ > 1. Recall that the Lyndon-Serre
spectral sequence associated to the extension 1 — Z" — I' — Z/m — 1 yields a
descending filtration

H'T)=F" > F" 5.5 OS5 Ll =0
such that Fri=r/Frebi-r=1 o pri=r  Tet 3 € H%(Z/m) be a fixed generator.
Recall that E3° = H2(Z/p; H°(Z})) = H?*(Z/p) so that we can think of § as

an element in E5°. We conclude E5’ = E%J from Theorem 3.2 (ii). From the
multiplicative structure of the spectral sequence we see that the image of the map

—U W*(ﬂ)ni H2i(r) N H2i+2n(F)
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lies in F?™? and the following diagram commutes

(3.6) 0 0

o

1,2i—1 =
F —urr(B)"

F2n+1,2i-1

H?i (1’\) W) F2n,2i

E02 — 22
0 0

where the columns are exact.
Next we show that the upper horizontal arrow is bijective. Namely, we prove by
induction over r = —1,0,1,...,2¢ — 1 that the map

—ux* (ﬂ)n F2i—r,7‘ N F2i—7“+2"a7"

is bijective. The induction beginning r = —1 is trivial since then both the source
and the target are trivial, and the induction step from r — 1 to r follows from the
Five-Lemma and the fact that the map

_ Uﬂni Ezéfr,r —_ H2i7T(Z/m;HT(ZZ)) — EzéfrJrQn,r — H2i7r+2n(Z/m;HT(Zg))

is bijective for 1 < 2i —r
The bottom horizontal map in diagram (3.6) can be identified with the compo-
sition of the canonical quotient map

(AHZ)*/™ = HO(Z/m; H*(Z)) — HO(Z/m; H* (Z))
with the isomorphism
— U™ HYZ/m; H¥(ZY)) = H*™(Z/m; H¥(ZV)).

We conclude from the Snake-Lemma that the middle map in diagram (3.6) is an
epimorphism and that its kernel fits into an exact sequence

(3.7) 0= ker(—Um*(B)": H*(T) — H*>"(T)) — (A¥Z1)%/™
— H°(Z/m; H¥(Z1)) — 0.

We have the following commutative diagram

217

(3.8) H%(F) L’@(M)e/\/l H21(M)
_UW*(B)T[
F2n.2i = | D (aryem (—U(moing)* ™)

LJ/
2i+2n

H2i+2n(F) ‘PT 69(1\/1)6/\/1 H2i+2n(M)

where ¢ is the inclusion, the lower horizontal map is bijective because of (3.5)
and the existence of a m-dimensional model for ET" by Lemma 3.1, and the left
vertical map is bijective since the map H?(Z/m) — H?(M) induced by the injection
moin: M — Z/m sends § to a generator.
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Since H(Z/m; H? (7)) is finite and
ker(— U™ (8)": H*(T') — H* () = ker(¢*) = H*(BT)
by the exact sequence (3.5) and the commutative diagram (3.8) we conclude for
i>1
H?*(BT) = 7%
From exact sequence (3.5) and the commutative diagram (3.8) we obtain the exact
sequence

0 — cok(c: F*™*" — H*™2™(I')) — H**1(BI') — H**!(I') — 0.

Since H**1(T") = Z"+1, this sequence splits. We conclude from Theorem 3.2 (ii)

2n—1
cok(r) = @ El2itnl

=0
2n—1

o~ @ HZ(Z/m,A2Z+2n_lZZ)
=0
2n—1

= P H'(Z/m Ny
[=2i4+n

1%

@ H2i+2n—l(z/m’Alzz)
1=21+1

P H'(z/m Az

1=2i+1

1

We conclude for 4 > 1.

H* Y By =z e @ H'(Z/m, AZ}).
1=2i+1
Obviously H(BT') = Z™ holds. Since H'(I') = 0 by assertion (i) , we conclude
HY(BT') = 0 from the exact sequence (3.5). This finishes the proof of Theorem 3.3.
O

For a computation of the cohomology of I' and BT in the case where m is a
prime and the conjugation action of Z/m on Z™ is not required to be free outside
the origin, we refer to [2] and [1].

Remark 3.9 (Homology). By the universal coefficient theorems one can figure
out the homology as well. It is easier to determine the cohomology because of the
multiplicative structure coming from the cup product.

4. TOPOLOGICAL K-THEORY OF CLASSIFYING SPACES

4.1. Comparing K! for classifying spaces.

For later purpose we prove

Lemma 4.1. Suppose that the group G satisfies the condition (NMy.c Fin) appear-
ing in [20, Notation 2.7] and that there exists a finite G-CW -model for EG.
Then the canonical map

KL(EG) — KY(BG)

is bijective.



14 MARTIN LANGER AND WOLFGANG LUCK

Proof. Let Rc(M) be the cokernel of the homomorphism Rc({1}) — Rc(M)
given by restriction with M — {1}. It corresponds under the identifications
Rc({1}) = K?l}(pt) and Rc(M) = K$,(pt) to the induction homomorphism
indpro 1y 0 K¢y (pt) — K3, (pt). (Notice that we are using the notation of [14,
Section 1], in [17] this map is called inflation.) Define

0 (br indili>
iar: Re(M) = K (pt) 2P0 g0 (papy 224200 g0 (B),

Let K°(X) be the cokernel of the map K°(pt) — K°(X) induced by the projection
X — pt. The map ¢js induces an homomorphism

Ta: Re(M) — K°(BM).

We obtain from the Mayer-Vietoris sequences for K% and K* applied to the G-
pushout (1.3) and to the pushout (1.4) the commutative diagram with exact rows
(compare [7, Proof of Theorem 7.1 on page 30])

D inem Re(M) —— KY(BG) —— KL(EG) —— 0

D ayem LMl id[ |

D inem K°(BM)—— KY(BG) —— KY(BG) —— 0

By the Five-Lemma it remains to show that the obvious map
ker(K'(BG) = K4 (EG)) — ker(K'(BG) — K'(BG))

is surjective. The group K!(BGQ) is finitely generated since there is a finite G-
CW-model for EG. Hence also K!(BG) is finitely generated. For any non-trivial
element of finite order g € G its centralizer C(g) is finite because the condition
(NMricFin) is satisfied. Hence the rank of the finitely generated group K'(BG)
is X ez dimg(H* ! (BG;Q)) by [16, Theorem 0.1]. The rank of the finitely gen-
erated group K'(BG) is )¢, dimg(H**1(BG;Q)) since BG is finite and there
exists a rational Chern character. Since the obvious map BG — BG induces iso-
morphisms H’(BG); Q) = HI(BG;Q) for all j € Z, the ranks of the finitely
generated abelian groups K'(BG) and K!(BG) agree. Hence the kernel of the
epimorphism K'(BG) — K'(BG) is finite. This implies that there is an integer
such that multiplication with [ annihilates the kernel. Therefore it remains to show
for every integer [ > 0 that the obvious composite

D RC(M)M D K°(BM)
(M)em (M)em

— | P K'(BM) /z- P K(BM)

(M)em (M)eM
is surjective. Obviously it suffices to show for every (M) € M that the composite
Re(M) 2% K°(BM) — K°(BM) /1- K°(BM)

is surjective.

Let I; be the augmentation ideal, i.e., the kernel of the ring homomorphism
Rc(M) — Z sending [V] to dime (V). If M, C M is a p-Sylow subgroup, restriction
defines a map Ips — Ip7,. Let I,(M) be the quotient of I(M) by the kernel of
this map. This is independent of the choice of the p-Sylow subgroup since two
p-Sylow subgroups of M are conjugate. There is an obvious isomorphism from

o

Hp(M) — 1m(HM — ]I]\/[p).
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Then there is an isomorphism of abelian groups (see [16, Theorem 0.3])

KE'BM) SZx [[ L(M) ez,
p prime
The map Rc(M) 2% K°(BM) can be identified under this isomorphism with the
obvious composite

o~

Re(M) = ZxIy —»Zx [ LM)=Zx [[ L(M) ez,

p prime p prime

The map Z x I(M) — Z X [], ,1ime Lp(M) is surjective by [16, Lemma 3.4]. Hence

it suffices to show that the map

Zx ] L) —(zx ] LM ezZ; /l~ zZx ] M) ezZ;

p prime p prime p prime

is surjective. Since I,(M) can be non-trivial only for finitely many primes, namely
those which divide n, it suffices to show for every prime p that the canonical map

id T ~ e
Ip(M) ®z 2 225 1,(M) @z (Zp/1 - )

is onto. This follows from the fact that the composite
L — Ly —Lp/l- Ty
is surjective. (I

4.2. Comparing K° for classifying spaces and group C*-algebras. Through-
out this subsection we fix an extension of groups
1-2"—>G—-F—1

such that F' is a finite group.
We prove some general results in this setting under assumption that the conju-
gation action of F' on Z" is free outside the origin 0 € Z".

Theorem 4.2. Suppose that the conjugation action of F' on Z™ is free outside the
origin 0 € Z"™. Then

(i) We obtain an isomorphism
wi: K1(CH(G)) = K1(BG);

(i) We obtain a short exact sequence

0 @ Re(M) Boosm ™ e 05(@)) £ Ko(BG) — 0

It splits zf we invert |F|.
Consider the map

ke @ in:Zozr Ko(CHZM) & P Re(M) — Ko(CH(G)),
(M)eM MeMm

where ky is the homomorphism induced by the inclusion k: Z" — G. It
becomes a bijection after inverting |F|.

Proof. The group G satisfies by [19, Lemma 6.3] the condition (NM7ic rin) appear-
ing in [20, Notation 2.7]. Hence the claim follows from Corollary 2.1 except that
the map

o P in:Zowr Ko(CHZ) & P Re(M) = Ko(Cr(G)).
(M)eM (M)eM
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becomes bijective after inverting |F|. To prove this, it suffices to show that wg ok, is
bijective after inverting |F|. Using the induction structure on equivariant K-theory
(see [13, page 198]) one checks that this map agrees with the composite

n uxoindzn _, indg {1 7*
Z @pp K" (BZM) 20m =6, (G pay 20920, pBa) Lo Ko(BG)

where u: G Xzn FZ™ — EG is the up to G-homotopy unique G-map. Because of
Lemma 1.7 it is enough to show that the composite

usoindzn g

n indg_,
Z @z K& (EZ™) K§(BEG) —= Ky(BG)
is bijective after inverting |F'|. Consider the commutative diagram

idz ®zp indzn_, 1}

Z®zr K (EZ™)

7. ®zr Ko(BZ")

Ja

Ko(BG)

lu* oindzn _, g

indg {1}

K§(EQ)

where kA* is induced by the inclusion k: Z™ — G. The upper horizontal arrow is
bijective since Z" acts freely on EZ". The lower horizontal arrow is bijective since
G acts freely on EG. The right vertical arrow is bijective after inverting |F'| because
of the Leray-Serre spectral sequence applied to the fibration BZ" — BG — BF.
This finishes the proof of Theorem 4.2. Il

4.3. Topological K-theory of classifying spaces. Throughout this subsection
we consider an extension 1 — Z" — I' — Z/m — 1 and assume that the Z/m-
action on Z7 is free outside the origin. We want to compute K'(BT') and K°(BT).
These turn out to be finitely generated free abelian groups.

We will use the Leray-Serre spectral sequence for topological K-theory (see [23,
Chapter 15]) of the fibration BZ" — BI' — BZ/m associated to the extension 1 —
7" - T — Z/m — 1. Recall that its Ep-term is Ey? = H*(Z/m; KI(BZ")) and
it converges to Kt7(BT') with no lim'-term since the inverse system {K*(BT'(") |
n > 0} given by the inclusions of skeletons of BT satisfies the Mittag-Leffler condi-
tion because of [17, Theorem 6.5].

Lemma 4.3. Suppose that the Z/m-action on Z" is free outside the origin. Then
(i) All differentials in the Leray-Serre spectral sequence for topological K-

theory associated to the extension are trivial;
(i) The canonical map
K'(BT) = K'(BZ")*/™
18 byective. In particular
KY(BI') = 7%,
where
s1= Y dimg (H* 1z Q)%™ ) = > kg ((A%H12)%™).
i€z i€Z

Proof. (i) The proof is analogous to the proof of [7, Lemma 3.5 (iii)] but now using
Theorem 3.2. instead of [7, Lemma 3.5 (ii)].
(i) The argument is analogous to the one of the proof of [7, Theorem 3.3 (iii)] using
assertion (i) and Theorem 3.2. O
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Lemma 4.4. (i) We have
K°(BT) = 7',
where
to = Zdim@ (H%(ZT;@)Z/"L) = Zrkz ((AQiZT)Z/m) ;
i€z i€Z
(i) We have
K2(ET) = 7.
where sg = to + (Z(M)GM(|M| -1)).

Proof. (i) We first show that K°(BT') is a finitely generated free abelian group.
There is a finite CW-complex model for BI" since I' can be mapped with a finite
kernel onto a crystallographic group. This implies that K°(BI) is finitely generated
abelian. Next we show that K°(BT) is isomorphic to Z. We explain how one has
to modify arguments in [7] to prove this.

The Atiyah-Hirzebruch spectral sequence (see [23, Chapter 15]) for topological
K-theory N

Ey? = H'(BI; K (pt)) = K™ (BI)
converges since BI" has a model which is a finite dimensional CW-complex. Because
of the computations of H(BT') of Theorem 3.3 (iii), the E%-term in the Atiyah-
Hirzebruch spectral sequence converging to K*(BI') looks like
Zdimo(H'(Z™Q)"™) 1 even, J even,

ZdimQ(Hi (ZH§Q)Z/m) @ A; Z Odd,'L’ Z 3,.7 even;
0 1 =1,7 even;
0 j odd.

0 o
B =

where each A/ is a finite abelian group. The argument in the proof of [7, Lemma 3.4]
carries over and shows

7dime(H (Z™:Q)"/™) i even, j even;
i Zdime(H' ZQ™™) gy A, 4 odd,i > 3, even;
o 0 1 =1,j even;
0 7 odd.

where each A; is a finite abelian group. Now assertion (i) follows by inspecting the
Atiyah-Hirzebruch spectral sequence.

(ii) The group I satisfies by [19, Lemma 6.3] the condition (NM7ic rin). Hence the
I-pushout (1.3) reduces to the I'-pushout

(4.5) Honem T Xnenr EM —— pr

L |

H(M)eM /M —>j ET

We obtain from the Mayer-Vietoris sequences for K} and K* applied to the I'-
pushout (4.5) and to the pushout (3.4) analogous to the construction in [7, Lemma 7.2 (i)]
the long exact sequence

0— K°(BT') — KR(ET) » @ Re(M) — K'(BI) — KL(ET) =0,
(M)eMm

where Rc(M) is the cokernel of the homomorphism Rc({1}) — Rc(M) given by
restriction with M — {1}. We have already checked in the proof of Lemma 4.1
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that the kernel of the map K*(BT) — KL(ET) is finite. Since Re(M) = ZIMI=1
the claim follows from assertion (i). O

Define for i € Z

5 — (Z(M)GM(|M| - 1)) + ez I"kZ((A2lZ")Z/m) if ¢ even;
L ienrka((AFHZR)Em) if i odd.

Lemma 4.6. Consider m € Z. Then
(i) The abelian group K;(C} (ZM)%™ s finitely generated free of rank
5 e e (AP 27 2/
(i1) The abelian group Ki(ET) is finitely generated free of rank s;;
(iii) The abelian group K} (ET) is finitely generated free of rank s;;
(iv) The abelian group KL (C*(T)) is finitely generated free of rank s;.
Proof. (i) Obviously K;(C*(Z"))%/™ is finitely generated free since K;(C*(Z"))
is finitely generated free. By the Baum-Connes Conjecture KZ-(C:(Z"))Z/’” ~
Ki(BZ")Z/m. For every CW-complex X, e.g., X = BZ", the Chern character
yields a natural isomorphism
P Hirar(X;Q) = Ki(X) @2 Q.
keZ
Now the claim follows from the isomorphisms

Hi(BZ" Q)%™ = H'(BZ"; Q)%™ 2 (AZ") 27, Q)™

(ii) This follows from Lemma 4.1, Lemma 4.3 and Lemma 4.4.

(iii) This follows from assertion (ii) and the universal coefficient theorem for equi-
variant K -theory as explained in [7, Theorem 8.3 (ii)].

(iv) This follows from assertion (iii) and the Baum-Connes Conjecture which holds
for T' (see [10]). O

Now we can give the proof of Theorem 0.1.

Proof of Theorem 0.1.
(i) The map wy: K1(Cx(T")) 5K (BI') is bijective by Theorem 4.2 (i). The
composite

L @iz pm) K1 (CF(27) £ K1 (C (D) 25 Ko (CF (2™
is multiplication with the norm element Nz, by the Double Coset Formula (see [9,
Lemma 3.2]). The kernel of this map is H=1(Z/m; K1(C*(Z™))) and its cokernel of
this map is H(Z/m; K1(C;(Z™))). The group H(Z/m; K1(C;(Z™))) vanishes by
Theorem 3.2 and H'(Z/m; K1(C;(Z™))) is annihilated by m. Hence the composite
above and therefore k*: K, (C(T)) — K1 (C#(Z"))*/™ are surjective. The abelian
group K7 (C*(T)) is a finitely generated free abelian group by Lemma 4.6. Obviously
this is also true for K, (C(Z"))%/™. They have the same rank by Lemma 4.6. Hence
the epimorphism k*: K1 (C}(T")) — K1 (C}(Z™))%/™ must be bijective. This implies
that the map k.: Z ®zz/m) K1(C;(Z") — K1(C;(T')) is surjective and its kernel is
H=N(Z/m; Ky(CF(Z):
(ii) The composite

k*ok,: 7 ®2z(z/m] I}O(C: z")) — I}O(C: (zn))%/m

is by given by multiplication with the norm element N7/, of Z/m by the Double
Coset Formula (see [9, Lemma 3.2]). Since HY(Z/m, Ko(C*(Z")) vanishes by
Theorem 3.2, we conclude that it is injective. Hence Z ®zz/m) Ko(Cr(Zm)) is
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finitely generated free. Now apply Theorem 4.2 (ii).
(iii) This follows from Lemma 4.6 (iv).

(iv) Since m is even, Z/2 is a subgroup of Z/m. Since the Z/m-action on Z™ is free
outside the origin, the Z/2-action on Z™ must be given by — id. Hence the induced
7,/2-action on A'Z" is given by —id for odd i. Hence (A*Z™)%/™ vanishes for odd
i. This implies s; = 0. Now the claim follows from assertion (iii). This finishes the
proof of Theorem 0.1 O

5. CONJUGACY CLASSES OF FINITE SUBGROUPS AND COHOMOLOGY

Consider the group extension 1 — Z" — I' 5 Z/m — 1 as it appears in
Theorem 0.1. In particular we assume that the conjugation action of Z/m on Z™ is
free outside the origin. For the remainder of this paper we will abbreviate L = Z"
and G =Z/m.

Lemma 5.1.
(i) Let H C T be a non-trivial finite subgroup. Then there is a subgroup
Hppax C T which is uniquely determined by the properties that H C Hpax
and Hpax 18 a mazximal finite subgroup, i.e., for every finite subgroup K C
' with Hpax € K we have K = Hypax;
(i) If H is a maximal finite subgroup of T', then NpH = H;
(i1i) If H C T is a non-trivial finite subgroup of T, then Huyax = NrH.
Proof. Assertions (i) and (ii) follow from [19, Lemma 6.3]. They imply assertion (iii)

since the action of G on L is free outside the origin and therefore NrH N L = {0}
and hence |[NTH| < co. O

Notation 5.2. Define for a subgroup C' C G
C(C) = {(H) | H CT,x(H) = C},
where (H) denotes the conjugacy class of the subgroup H C I" within I". Define
M(C):={(H) e C(C)| H is a maximal finite subgroup of I'}.

Put
M :={(H)| H is a maximal finite subgroup of I'}.

We haVe M - H{l}gch M(C).
If K C G is a subgroup, then we will abbreviate H'(K;resZ L) by HY(K;L)
when it is clear from the context to which subgroup the G-action on L is restricted.

Lemma 5.3. Let t be a generator t € G. Consider a non-trivial subgroup C C G.
Put k =[G : C]. Then t* is a generator of C and there are bijections

HY(C;L)/G =5 cok((tF —1): L — L)/G = ¢(0),

where the G-operation on the first and second term above comes from the G-action
on L.

Proof. By definition H'(C; L) is the quotient of the kernel of the map N: L — L
coming from multiplication with the norm element No = > gec 9 by the image
of the map (t* — 1): L — L. For any I € L the element N¢ - [ lies in LE. Since
the G-action on L is free outside the origin and C' is non-trivial, L = {0}. We
conclude that Ng: L — L is the trivial map. This explains the first isomorphism.

Fix an element v € T' of order m = |G| with w(y) = ¢t. The second map sends the
class of [ to the conjugacy class of the subgroup (y~% -1) of I generated by y~% - I.
We have to show that it is well-defined. We compute (y~%-1)I¢l = 4y=FICl (Ng-1) =
4~IGl = 1. Hence (y~*-1) is a finite subgroup of I whose image under the projection
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m: ' = G is C. Now suppose for two elements ly,l; € L that they yield the same
class in cok((t* — 1): L — L)/G. Then there exists j € Z/m and I' € L with
b=t -lo+ " —1)-1'. Put I” =¢J-1'. Then t/ - ((tF —1)-1" +ly) = l; and
hence (77 - 1")(y~*lo) (77 - 1)~ = v~ *I;. This implies that (y~*l) and (y~*1;) are
conjugated in T.

The second map is surjective since any finite subgroup H C I' with n(H) = C
can be written (y~* .[) for an appropriate element [ € L.

Finally we prove injectivity. Notice for the sequel that any element in I'" can
be written uniquely in the form ~7 - I’ for some j € Z/m and I’ € L. Suppose
that (y~*ly) and (y~*I;) are conjugated in T for ly,l; € L. Then there exists a
natural number i € Z/|C|* such that for appropriate j € Z/m and I’ € L we have
(7 - 1) (v *lo) (7 - 1)t = (y~*11)?. Applying 7 to this equation, yields t =% = ¢=+
and hence i = 1 mod |C|. Hence get (v7-1')(y"*lo) (77 -1")~! = v~*I;. We conclude
A3 (Y*U'~~klo(I') 1)y 79 = 1. This yields, when we use in L the additive notation,
- ((tF = 1) +1o) = ly. If we put I” =7 - I, we conclude

llztj-lo—l—(tk—l)-l”.

This means that Iy and /; define the same class in cok((t* — 1): L — L)/G.
O

Let C € D C G be subgroups of G. Since 7=1(C) C T is normal in T, we can
define a map

(5.4) iccp: C(D) = C(C)  (H)~ (Hnz YC)).
Lemma 5.5. The map iccp: C(D) — C(C) is injective if C' is non-trivial.

Proof. Consider (H;) and (Hs) such that iccp((H1)) = iccp((Hz)) holds. This
means (H; N7~ 1(C)) = (Ha N7~ 1(C)). We can choose the representatives H; and
Hs such that Hy N7~ 1(C) = Hy N~ Y(C). Since 7 maps Hy N7~ *(C) onto C and
C is non-trivial, H; N7~1(C) is non-trivial. Let K be the maximal finite subgroup
uniquely determined by the property H; N7~ 1(C) C K. The existence of K and
the fact that K contains both H; and Hs as subgroups follows from Lemma 5.1 (i).
Hence H; = K N7~ 1(D) = Hy. This implies (H;) = (Ha). O

Notation 5.6. For subgroups C C D C G put
C(C,D) = im(ich: C(D) — C(C))

Lemma 5.7. Let C, Dy, Dy be subgroups of G with C # {1}, C C Dy and C C Ds.
Then
C(C;D1) NC(C, D2) = C(C; (D1, D2)).

Proof. Consider (H) € C(C;D1) NC(C, D3). Choose (Hy) € C(D;) and (Hz) €
C(Dy) with (Hy N7 1(C)) = (Hy N7 1(C)) = (H). We can choose the represen-
tatives H, H; and Hy such that Hy N7~ 1(C) = Hy N7 1(C) = H. The group H
is non-trivial because of 7(H) = C. We conclude from Lemma 5.1 (i) that there
exists a maximal finite subgroup K which contains H, H; and Hs as subgroup. In
particular K contains (Hq, Ho). Hence (H;, Hs) is a finite subgroup of I". It satisfies
7({(Hy, Ha)) = (D1, D). This implies that (Hy, Ho) N7~ 1(C) = H and hence that
(H) belongs to C(C; (D1, D3)). We conclude C(C; D1)NC(C; Dy) C C(C; (D1, D3)).
Since C(C;D1) N C(C;D2) 2 C(C; (D1, Dg)) is obviously true, Lemma 5.7 fol-
lows. g

Theorem 5.8 (The order of C(M)). Let C C G be a non-trivial subgroup. Let
P1,D2,---,Ds be the prime numbers dwiding |G : C] for i = 1,2...,s. Denote
by D; C G the subgroup such that C C D and [D : C| = p;. For a non-trivial
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subset I C {1,2,...,s} denote by Dy the subgroup of G uniquely determined by
[D:Cl=Tl,crpi- Then
(i) M(C) =C(C)\ (Ui=; C(C; Dy)) ;
(ii) |M(C)| = 1C(O) + Xrcqua....spa0 (DI CDD)]-
(i1i) We have
C(C)] = [HN(C; L)/(G/C)| = [eok((t" —1): L — L) /(G/C)|,
where t is a generator of G, k =[G : C] and the G/C-action comes from

the G-action on L;
(i) Putk =[G :C]|. For I C{1,2,...,s},]#0 define kr := ’“I,,,-
i€ o
M(O) = [HY(C;L)/(G/O)]
+ (~)M-|HY(Dr; L)/(G/ D)
I1C{1,2,...,s},1#£0
= |cok((t" —1): L= L)/(G/O)|
+ > (—1)!!- |eok((t" —1): L — L)/(G/Dy)].
IC{1,2,...,s},1#£0
Proof. (i) If D C G is any subgroup with C' C D, then there is i € {1,2,...,s}
with C C D; C D. Since M(C) is the complement in C(C) of the union of the
subsets C(C; D) for all D with C' C D, assertion (i) follows.

(ii) Obviously

Then

IM(O)] = le©)] - | ee, Dy
i=1
By the classical Inclusion-Exclusion Principle we get
Jc byl = > (=D e(e; byl -
i=1 I1C{1,2,...,s},1#0 il

Since ;¢; C(C; D;) = C(C; Dr) by Lemma 5.7 and C(C; Dy) = C(Dy) by Lemma 5.5,
assertion (ii) follows.
(iii) This is a direct consequence of Lemma 5.3.

(iv) This follows directly from assertions (ii) and (iii). O

Remark 5.9. Theorem 5.8 gives an explicit formula how one can determine |[M(C)|
for all subgroups C' C G if one knows the numbers

\HY(C; L)/(G/C)| = ‘cok((t[G:C] 1)L L)/(G/C)‘

for all subgroups C' C G. One can even identify M(C) for all subgroups C' C G if
one knows the sets

HY(C;L)/(G/C) = cok((t!%“) —1): L — L) /(G/C)
for all subgroups C' C G.
6. THE PRIME POWER CASE

The situation simplifies if one considers the case where m = |G| is a prime power.
We conclude from Theorem 5.8:

Example 6.1. Suppose that |G| = p” for some prime p and some natural number
r. Let G; C G be the subgroup of order p? for j =1,2,...r. Then

N — |C(Gj)|_|C(Gj+1)| ifl1<j<mr
el {|C<G>| ifj=r,
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and we have

C(Gy)| = |H(G3: L)/(G/Gy)| = |eok((# = 1): L L) /(G/Gy)

Lemma 6.2. Suppose that m = |G| is a prime power p". Put ( = exp(2mi/p").
Let G; C G be the subgroup of order p/ for j =1,2,...,r.

(i) There is an isomorphism
H' (G5 Z[¢]) = Z/plG/Gj],

which is compatible with the G/Gj-action on the source coming from the
G-action on L = Z[(] and the G/G;-permutation action on the target;
(ii) We get for all j =1,2,...,r and natural numbers k

|HY (G ZIC)*) [(G/Gy)| = |2/pIG/G;1" ) (G/G),

where Z[C)¥ and Z/p|G/G ;] denote the k-fold direct sum, or, equivalently,
k-fold direct product.
Proof. (i) There is an exact sequence of ZG-modules 0 — Z[|G/G1] — ZG —
Z[¢] — 0 which comes from the G-isomorphism ZG/T - ZG = Z[(], where ¢ € G is
a generator and T =1+ +¢2" 4...4t=DP""" € 7@ The associated long
exact cohomology sequence induces an isomorphism, compatible with the G/G,-
actions coming from the G-actions on Z[G/G1] and Z[(],

H'(Gj;Z[¢)) = H?(Gy; ZIG/G4)).

Let ¢: G/G1 — G/C; be the projection. Fix a map of sets 0: G/G; — G/G1
such that eG; is sent to eG; and g oo =id. Next we define to one another inverse
Gj/Gl—maps

¢: G/G1 %—) H Gj/Gl;
G/G;

v ] Gi/Gi = GG
G/G;

The map ¢ sends gG; to the element g - o0 ¢(gG1)~! € G;/G; in the summand
belonging to ¢(¢G1). The map ¢ sends the element uG; € G; /G in the summand
belonging to gG; to uo(gG;). There is an obvious G-action on G/G;y. There
is precisely one G-action on [[, /G, G;/G; for which ¢ and 1 become G-maps.
Namely, given go € G and an element uG1 € G;/G1 in the summand belonging to
gGj, the action of gg on uGy € G, /G yields the element ug - uGy in the summand
belonging to gogG; for the element ug = go - 0(9G;) - 0(q(go) - gCpi) ™" in G;. The
map H?(G;,Z[G;/G1]) — H?*(G;,Z[G;/G1]) induced by multiplication with ug on
Z]|G;/Gh] is the identity since for a projective Z[G;]-resolution P, the Z[G,]-chain
map P, — P, given by multiplication with ug induces the identity on homology and
hence is Z[G,]-chain homotopic to the identity. Hence the isomorphism induced by

¢
H*(G; ZIG/Gh)) = P H?(G}: ZIG;/Gh))
G/G;

is compatible with the G/G;-actions if we use on the source the one coming from
the G-action on Z[G/G,] and on the target the G/G;-permutation action. By
Shapiro’s lemma (see [4, (5.2) in VL5 on page 136])

H?*(G;;Z|G;/G4)) = H*(G1;Z) = H?|Z/p) = Z/p.

Now assertion (i) follows.
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(ii) We get from assertion (i) bijection of G/Gj-sets
HY (G Z[)Y) = 1 (G 2)" = 2/p[G/ 6]
It induces a bijection
H' (G ZIG) /(G/Gy) = 2/p[G/G]"/(G/Gy).
(I

Lemma 6.3. Let p be a prime. Put P ={0,1,...,(p—1)}. Let H be a finite cyclic
group of order p” for r > 1. Let k be a natural number. Define for a set T

map(T, P)ey = {f: T — P| Z f(h) =0 mod 2};
heH

map(T, P)oad = {f T— P| Z f(h)=1 mod 2}.
heH

Denote by H; the subgroup of H of order p’ for j =0,1,2,...,r. Then
(i) We get in the Burnside ring A(H) for p # 2

(map(H, P)ey — map(H, P)oaa)” = [H/H],
and for p =2

([map(H, P)ey] — [map(H, P)oaa])"

r—1
— 2k . [H/H] o 2k2T71 r + Z 2k2T717T+’L' o 2k2T71717T+’L’) . [H/H»L],

i=1
(ii) We get for all primes p in A(H
r—1
[map(H, P)*] = p*-[H/H]+ ) (p"" = = p ) [H/H),
i=0

Moreover, we have for all primes p the equality of integers

r—1
lmap(H, P)*/H| =p*+ > (p™" ' —pt" ),
i=0
Proof. For i =0,1,2,...,r we have the ring homomorphism
Chii A(H) — Z,
Consider the element in A(H)
x =Y a;-[H/H,.
j=0
Then we get chi(z) = Y75_; a; -p"/ for i =0,1,2,...,r. This implies
ch;(z) j=r
6.4 a; = T Y chs
(6.4) J {W j=0,1,2,...,(r—1).
One easily checks for a set T' by induction over its cardinality
p T+ .
_ 5 PFZ
(6.5) map(7T, P)ey {2|T|1 o2,

ITI _q
_ 5 p#2;
(6.6) map(T, P)odd {2|T|_1 D=2
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Let pr;: H — H/Hj be the projection. It induces a bijection

(6.7) prj: map(H/Hj, P) = map(H, P)H
Given f: H/H; — P, we get
(Hil- > f(hHy) = pri(f)(h)
hH]‘GH/Hj heH

Hence pr} induces bijections

(6.8) map(H/Hj, Pey = (map(H, P)e);
H;
(69) map(H/Hj, P)odd = (map(H, P)odd) y
provided that p #£ 2. If p = 2, we get for j > 1
H;
(6.10) (map(H, P)oqa) ' = 0.
We conclude from (6.5) and (6.8) for p # 2
(6.11) chj([map(H, P)ey]) = |map(H,P)[
= [map(H/Hj, P)ey|
_ o+l
5
Analogously we conclude from (6.6) and (6.9) for p # 2
1
(6.12) ch; ([map(H, P)oad]) = —
We conclude from (6.7) for all primes p
(6.13) chy ([map(H, P)*)) = p*"".
We conclude from (6.10) for p =2 for j > 1
(6.14) ch;(map(H, P)oaa) = 0.

Now we are ready to prove assertion (i). We conclude from (6.11) and (6.12) for
p#2and j=0,1,...,7

chj (([map(H, P)e] — [map(H, P)oad])")

- ( ( Hlap H P ev]) — Chj (l[map(H, P)odd]))

—3J -3 k
B PP +1 pp —1
- 2 2

k

= 1
Hence we obtain from (6.4) for p # 2 the equation in A(H)
([map(H, P)ev] — [map(H, P)oaa)* = [H/H].
We conclude from (6.13) and (6.14) for p=2 and j > 1
k
(6.15) chy (([map(H, P)es] — [map(H, P)oaa])")

= ch; (([map(H, P)] — 2 [map(H, P)Odd])k)

= (ch;([map(H, P)]) — 2 - ch; ([map(H, P)oad]))"
= chj([map(H,P)k])
2k
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For p =2 and j = 0 we conclude from (6.5) and (6.6)

(6.16) chg (([map(H, P)eyv] — [map(H, P)odd])k)
= (‘map(H, P)eV’ — ’map(H, P)Odd’)k
= 0oF

0.

Equations (6.4), (6.15) and (6.16) imply for p =2

k
([map(H, P)eV] - [map(H, P)odd])
r—1
= 2% [H/H) = 2% [H] 4 Y28 o) (),
i=1
This finishes the proof of assertion (i).
Finally we prove assertion (ii). We conclude from (6.4) and (6.13)

7 r i—1

mH+2“T‘p A/

(6.17) [map(H, P)¥]

pwmm+zwfuﬂww+”ﬂwmm.

The last equation implies

r—1
lmap(H, P)*/H| =p*+ (pkp“u’”” —p ””) :
i=0
This finishes the proof of Lemma 6.3. (]

Theorem 6.18 (Prime power case). Suppose that m = |G| is a prime power p" for
r>1. Let Gj C G be the subgroup of order p’ for j =0,1,2...,7.

Then there is natural number k uniquely determined byn =p"~1-(p—1)-k. We
obtain for j =1,2,...,r in A(G)

r—j—1
1 . p" I T A S A
[HY (G L)) =p* - [G/GI+ Y (p —p ) - [G/Givg],
=0

and _ _
)| = {pkp”‘fﬂ‘ —pTT =120 (- 1),

IM(G)) -
j=r.
Proof. We get from Theorem 5.8 (iii),
(6.19) C(Gy)| = [H (G} L)/ (G/Gy)].
Choose k such that the Z,)[G]-module L, is isomorphic to (Z[(],))*. Then

n=1kz(L) = kg, (L)) = tkz,,, (Z[C]f,)) = tkz(Z[(]*)
=k-tkg(Z[) =k-p" - (p— 1)

We obtain from [4, Theorem 10.3 in ITI.10. on page 84] an isomorphism of Z[G /G-
modules

H'(Gj; L) = HY(Gj; ZI)).

Hence we conclude from (6.19)

(6.20) G| = [HY(GHZI")/(G/G),
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and we get in A(G/G,)
(6.21) [HY (G )] = [H'G5Z[N)].

From Lemma 6.2 (i) and Lemma 6.3 (ii) applied to H = G/G; we obtain the
equation in A(G/Gj) for j =1,2,...,r

(6.22)
[HY(GZI))] = [HN(GZI)']
map(G/G;,Z/p) }
= " [(G/G )/(G/G;)]

T—

Jj—
+
=0

From (6.21) and (6.22) we obtain the following equality in A(G) for j = 1,2,...,r

rI3t j—i o r—j—i—1 "
[HY(Gj; L)) = 9" [G/G]+ Y (o7 T T G/ Gisg)-

=0
This together with (6.19) implies for j =1,2,...,r

r—j—1 o o o N
}C(GJ)} = pk+ Z pkafj 77~+]+17ka j 1*T+J+1.

=0

Now the claim follows from Example 6.1 by the following calculation for j =
1,2,...,(r=1)

r—j—1
k Ep" It —rj4i Ep" il gt
PP+ > (v -p )
i=0
r—j—2
k Ep” Il 4144 Epm Il e 14
"= > (p -p )
=0
r—j—1
_ kp" I g4 Ep" I gt
= (p -p )
1=0
r—j—2
kp" I T e+ 14 kp =T i eyt 14
- (» —p )
1=0
r—j—1
_ kp" I i kpm—I7 i e
— (p P J —p D J )
i=0

kp" I Tl 44 kp" I T et
(p 12 J —p D J )

N e kpr=I=l—pr4j
P P J P P 7.

U kT ) (G G) )Gy /G
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Notation 6.23. Given a commutative ring R and an R-module M, denote by
A M = A% M its j-th exterior power. Define R-modules

Aeddpr . @AQZJrlM;
>0

AYM = PAM;
>0

MM = PAM.
j=20

Define for a rational G-representation V' classes in Rg(G)
[AV] = Y [NV
j=>0
[AaltV] = Z(—l)j . [AjV];
j=0

Lemma 6.24. Suppose that m = p" for a prime p and an integer r > 1. Let k
be a natural number. Put & = exp(2mi/m). Let Q be the trivial QG-module of
dimension one.

(i) If p # 2, we get in Ro(G)
B(p—1-p" ! _
[A(QKY] = [0)+ ———— -[Qcl;
(i) Suppose p=2. If r = 1, we get in Ry(G)
[A(@[¢]M)] = 2" - [QG).
If r > 2, we get in Ro(Q)

[AQ[IM)] = 2% - [Q] - 2¥ "~ [QIG/ G|

S g ) [QIG/G] + 27 Q)

=2

(i) We get in Rg(G)
[A™(QI¢)F)] = p* - [@] - p™ " [Q6]

-1 i . r—i—1 .
FY T T ) (UGG
i=1

Proof. (i) and (ii) Consider an integer j > 1. We conclude from [11, (1.5) and
Lemma 1.6] (using the notation of this paper) that there exists a sequence of QG-
modules

0— @ VQ[G/G1]y = F1 — Fy — -+ — F; = AMQ[¢(] — 0
0cES<p
where each Fj is a finitely generated free QG-module and S, is the subset of §
consisting of elements represented by functions f: Z/p"~! — {0,1,...,(p—1)} and

the G-action on G/G; comes from the canonical projection G — G/G;. Hence we
get for some a; € Z in Rg(G)

[AQE] = (1Y - | @ IYQIG/Gils | +a; - [QG].

cES<p
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Thus we get for an appropriate integer o’ in Rg(G)

P P rrec/cil,

>0 U€S<p

[AQI] = @ @ r#HQIG/Gi]. | +d - [QG).

>0 U€S<p

Fix a generator ¢ € G. Denote by [t°] the class of t* in G/G1. A Z-basis for
D, cs_, ['Q[G/G1], is given by the set

r—1_4

p

[ — 5

][P g €0, €1,...,€epr—1 € P, E € =]
i=0

r—1_q

[to][eo] [tl][el] [P

Hence a Z-basis for -, D I'2Q[G/G4], is given by the set

0€ES<y

r—1
p —1
][epr—l] €0,€1,---, epT,I c P, Z e = 0 mod 2
=0

r—1_q

[t0]leol [g1]len] | eP

We can identify this set with map(G/G1, P)ey in the obvious way. There is an
obvious G/G1-action on map(G/G1, P)ey which yields a G-action by the projection
G — G/G;. Thus we get in Rg(G)

D @ rQ6/Gil,| = [Qmap(G/Gi,P)u);
1>0 o€S<p i
B P relc/cl,| = [Q@map(G/Gr, Pload]:
>0 0€S<yp -

Hence we obtain the following equation in Rg(H) for some integer a’

(6.25) [Aa“@[gﬂ = [Qmap(G/G1, P)ev] — [Qmap(G/G1, P)oad] + a’ - [QG].

By the exponential law we get an isomorphism of QG-modules

k
AMQITM) = ) A QI
=1

and hence we get in Rg(G)
k

[A(@[¢)")] = J[[A™l¢]]-

=1
For every QG-module V' the QG-module V ®g QG is a free QG-module. Hence

we obtain in Rg(G) for an appropriate integer a
(6.26) [A™(Q[¢]*)]
= ([Qmap(G/G1, P)ev] — [Qmap(G/G1, Poaa])” + a - [QG].
Next we consider the case p # 2. Lemma 6.3 (i) and (6.26) imply
[A*NQETM] = [Q+a- QG
Since

Y dimg (A7Q()F) = 28me(@dY) = gk -1
Jj=0

dimQ(QG) = pT,
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we conclude )
.

ok-(p—1)-p""" _1
p’l‘

a =

This finishes the proof of assertion (i).
Next we treat assertion (ii), i.e., the case p = 2. We begin with the case r = 1,
Then G/G; is trivial and (6.26) implies

[A*N(QM)] = a-QG.
Taking rational dimensions yields 2k = 24 and hence a = 2¥~1. Hence we get
[AMQIE")] = 28! [QQ] ifr=1.

If r > 2, then G/G; is non-trivial and hence Lemma 6.3 (i) and (6.26) imply for
some integer a

(6.27)
[AQIM)] = 2F-[Q] -2 [QIG/G]]

%
|
N

N (2k2r71477ﬂ+1+i _ 2k2T*2’i7T+1+i) . [Q[G/GerlH +a - [QG]
1

— o9k, [@] _ 2k2T*277~+1 . [Q[G/Gl]]

.
Il

r—1 ) i )
+Z(2kzrﬂfr+z‘ _ogk2"" 7r+z) . [Q[G/Gl]] +a-[QG)].
i=2

If r = 2, then taking rational dimensions in (6.27) yields
22k:2k72k71.2+22.a

and hence a = 22¢=2, If r > 3, taking rational dimension in (6.27) yields

r—1

2k'2r71 _ 2k B 2k2r—2_T+1 . 2T—1 + Z(kaui_ﬂ.i _ 2k2r717¢_T+i) . 27‘—i a2
1=2
72 r—1 . L
= ok _ok2"7 4 2(2’” B
=2

r—1 r—1
— 2k _ 2k27‘72 +a- or + Z 2k2T7'L _ Z 2k27‘717i
=2 =2

r—1 T
— 2k - 2](:27«72 +a- or 4 Z 2]627“71 o Z 2](:27«71
i=2 =3

r—1 r—1
— 2k‘ _ 2]627‘72 +a- or + 2k2T72 _ 2k + Z 2k2T7'L _ Z 2k2r7i
=3 =3

= a-2"
and hence »
a=2M2""" ifr>2.
This together with (6.27) implies for r > 2

[AQI¢)F)] =28 - [Q] — 2L [QIG/G]]

r—1

+ Z(Ql&rii—rﬁ-i _ 2k2T717i—7‘+i) . [@[G/GZ]] + 2k»2T71—7‘ . [@G]

=2

This finishes the proof of assertion (ii).
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(iii) One shows analogously to (6.25) for some integer b’

[AMQI)] = [Qmap(G/Gr, Pev] + [Qmap(G/G1, Ploaa] +1' - [QG].
= [Qmap(G/G1,P)] +V - [QG].

Again by the exponential law, we get

k
[Aalt H Adlt@
=1
Hence we get for some appropriate integer b € Z in Rg(G).
[AM(QEM] = [Qmap(G/Gi, P)*] +b-[QG].
This implies by Lemma 6.3 (ii) applied to H = G/G1
r—2
[AMQEM] = P [QI+ D (T T T ) L[QIG/Gi]] + b [QG]
r—1
- pF kp™~t—r+i kp il —rtd
= " QI+ (p -p ) - [QIG/Gi]] +b-[QG].
i=1
Since
> (=17 -dimg (A(Q[]*) = 0,
Jj=0
we get
r—1
b= _pk—r _Z(pkpr L— _pkpr -1 7‘) — _pkpr 1_p
i=1
This finishes the proof of Lemma 6.24. (]
Lemma 6.28. Suppose that m = p” for a prime p and an integer r > 1. Let k be
a natural number uniquely determined by n =k-(p—1)-p L. Then
14+ 21 ifp# 2
k-1 ifp=2r=1;
kz(A'L)E = o
2 ra(AL) 92k=2 4 gk-1 ifp=2,r="2

1>0

ok— 1+2k27‘ 2—7‘+1+2k 97— 1_T+Zr 12k27‘ pi—1 ifp=2,7“23.

Proof. Notice that L®7Q is isomorphic as QG-module to Q[¢]* for ¢ = exp(27i/m).
This implies

n = k-(p—1)- T_l;
L7\G : g )anp N
> rke(WD) = dimg ((A™(Q[H)7).

>0

Now the case p # 2 follows from Lemma 6.24 (i). Next we treat the case p = 2.
Then the claim follows for r = 1 directly and for » = 2 and for » > 3 by the
following calculations from Lemma 6.24 (ii). Namely, if » = 2, we get

Z rkZ(AlL)G) — ok _ ok2"7-241 4 ok:2?71-2
1>0

— 2k _ 2k—1 + 22k—2

= 92k=2 4 k-1



TOPOLOGICAL K-THEORY 31

Suppose r > 3. Then

r—1
r—2 r—1 r—1i . r—1—1i .
§ rkZ(AlL)G) —_ 2k _ 2k2 —r+1 + 2k~2 -4 § (2k2 —r4i 2k2 7r+z)
1>0 i=2
r—1 ) r—1 )
— ok _ 2k2T*2—r+1 + 2k»2T*1—r + Z ok2" T —rti Z 2k2T*1*1—r+i
i=2 i=2
r—1 ) T )
— 9k _ 2k2T’27T+1 + 2k-2T’17T + Z ok2" T —rti _ Z k2" —r4i-1
i=2 i=3

— gk _ok2" ?—r41 + gk-2" "t —r + gk2" 2 —r42 _ gk—1

r—1 ) r—1 )
+ E 2]627“717’)“4*1- _ E 2]627“717’)“4*1-71
i=3 i=3
r—1
_ 2k—1+2k2rfz—r+1+2k‘2rfl—r+22k2rﬂ'—r+i—1
i=3

7. THE GENERAL CASE

In this section we consider the general case, where m is not necessarily a prime
power.

Notation 7.1. We write

m:|G|:p71‘1p§2 ..... p";s,
for distinct primes p1, pa, ..., ps and integers s, 71,79, ..., s, all of which are greater
or equal to 1. If C' C G is a subgroup, denote by C[i] the p;-Sylow subgroup.

Given a subgroup H C G[j], we denote in the sequel by H' the subgroup of
G=G[]x--xGlj—1] x G[j] x Gl +1] x --- x G[s] given by

H :={1} x -+ x {1} x Hx {1}--- x {1},
and analogously we define H' C C for a subgroup H of C[i]. (Obviously H = H'.)
Lemma 7.2. Let C C G and H C G be subgroups. Then we have
HY(C; L) = {0}

unless there exists i € {1,2,...,s} such that C[j] = H[j] = {0} holds for all
je{1,2,...,s} with j #1.
Proof. Suppose that H'(C; L) # {0}. Since H'(C; L) is annihilated by multi-
plication with m (see [4, Corollary 10.2 in III.10 on page 84]), there exists ¢ €
{1,2,...,s} with
. TVH

(H'(C; L)), #0.

We conclude for all j € {1,2...,s} because of H[j]' C H

(Hl(c; L)H[ﬂ’)(p_) £0.

Assume in the sequel j # i. Then p; and |H|[j]’| are prime to one another and we
conclude using [4, Theorem 10.3 in IT1.10 on page 84]

(Hl(c; L)H[ﬂ’) >~ (HY(C;L)

HI)
(p) )

(pi

1

(Hl(C[z‘]; L)C/CW)HW .
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In particular
N\ HU
(E(Cli); )°°m) " {0},

This implies H'(C[i]; L)°W" # 0 and H'(C[i]; L)V + 0. Since |C[j)’| and |C[i]|

are prime to one another, we get
HY(CLiJ; )7V = 1 (CLi); L7T).
This implies H'(C[i]; L°Y)') # {0} and hence LEV)" # {0}. Since the G-action on

L is free outside the origin, we conclude C[j] = 0.
Since |H|[j]| and |C[é]| are prime to one another, we have

HY(Cli]; L)V = g (C[i); LH9V).

This implies H'(C[i]; L"1)") # {0} and hence L1 2 0. Since the G-action on L
is free outside the origin, we conclude H[j] = 0. O

Let C' C G be a subgroup. Let
[H'(C[i}; )] € A(GL))
be the class of the finite G[i]-set H'(C[i]; L), and let
[H'(C;L)] € AG)

be the class of the finite G-set H*(C; L), where the actions come from the G-action
on L. Denote by

indg : A(Gli]) — A(G)
the homomorphism of abelian groups coming from induction with the inclusion of

groups G[i] — G.

Lemma 7.3. Suppose that there exists i € {1,2,...,s} such that C[j] = {0} holds
forall j € {1,2,...,8} with j #i. Then we get in A(Q)

indgyy ([H'(C[i); L)] - [Gli)/Gli]]) =

m
T
[

o (G D) - [6/6]).
Proof. We have the isomorphism of G-sets
indg, (H'(C[i]; L))
~G] x---xGli—1] x HY(C[i];L) x G[i +1] x --- x G[r].

Consider a subgroup H C G. If H[j] = {0} for each j € {1,..., s} with j # 4, then
we get for every finite G[i]-set S

ch (indg;;([9]))

(ind€ )|
- ’G[l] oo x Gli— 1] x SHI % Gli +1] x -+ x Gr]
..... |G[i —1]| - ‘SH[i]’ AGE+1]] - |G

I
Q
=
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and hence because of C = C[i] and H = H[ ]
(7.4) enf; (inafy ([H' (Ll )] - [Gl/GT)))

- . Leom: IYEE| — @l Gl El
o (!H (Clil )10 - |61/ Gl

= (| nmi| 1)

= (e - 6/6M))

= pﬁ -ch ([HY(C; 1)) - [G/G)).

Suppose that there exists j € {1,...,s} with j # ¢ and H[j] # {0}. Then we
get for every finite GJi]-set S

Chg (indg[i] ([S]))

= |(indG S)H’

= ‘G[l]H[” x oo x Gli — 101 5 §HED s Gli 4+ 1) HEF o q[r)HIT)

= 0]
= O’
and we compute using Lemma 7.2
(7.5) ch& (indgm ([HY(C[i); L)] - [Gli] /G[z‘]]))
0
m
= o5 (|H (C; )" —1).
= pﬂ -eh§ ([HY(C; L)) - [G/G)).
Since the character map
ch®: AG) = [[ 2z (81157
HCG
is injective, Lemma 7.3 follows from (7.4) and (7.5). O

Theorem 7.6 (General case). Then we get using Notation 7.1:

(i) There exists an natural number k uniquely determined by the property

S
n=k [[i-1)-p""
=1

(i) Suppose that there exists i € {1,2,...,s} such that C[j] = {0} holds for
all j € {1,2, oy 8} with j 7é 1. Define the natural numbers r; and c; by
|G[i]| = p;* and |Ci]| = pi*. Let k[i] be the integer uniquely determined
byn = (p; —1)-pi*~' - k[i]. (Its existence follows from assertion (i).) Let
G[i]; be the subgroup of G[i] of order p'.

Then we get in A(G)

k[i] T
(p; ml) P (GGl

ri—ci—l—

ri—ci—1 k[] i +ci+l_ k[]pZ 1+ci+l

+ Z : [G/GLL 45

m

[H'(C: )] =[G/ +
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(iii) Suppose that there exists no i € {1,2,...,s} such that C[j] = {0} holds
forall j €{1,2,...,8} with j #i. Then we get in A(G).

[H'(C;L)] = [G/G].

(i)
(a) If C = G, we have

ks =1;

> 2;

- )

IM(C)| = [e(©)] = {fj

(b) If C is different from G and is not a p-group, then

el = 5
M(@)] = 0

(c) If C is different from G and |C| = pg for some i € {1,2,...,s} and
je{1,2,...,r;}, then

@ —1)-p
IM(C)| = k[i]p?’jﬂ klalpyi I T gy
i L j<mr—1
Proof. (i) The rational G-representation L ®z Q has by assumption the property
that (L ®z Q)¢ = {0} for all subgroups C' C G with C' # {0}. Hence the exists a
natural number k such that L ®7 Q is QG-isomorphic to Q[exp(2mi/m)]* (see [22,
Exercise 13.1 on page 104]). Since n = dimg(L ®z Q) and dimg (Q[exp(2mi/m)]) =

[T (pi —1)-pji~", assertion (i) follows.

J = Ti;

(ii) From Lemma 7.3 we obtain the following equality in A(G)

[H'(C;L)] = [G/G] - % -indy, ([Glil/Glil]) + fn -indGp, ([H'(C[i); L)]) -

We get from Theorem 6.18 applied to G[i] the following equation in A(GJi])

ri—c;—1 k[i]p:rCrl_ ].C[i]pziiciilil
[ i) =0 Gtet)+ 3 Bl [G1}/Gey 1]
=0 i

Since indgm ([Glil/Ge;41]) = G/Glil.. ,,, assertion (i) follows.
(iii) By Lemma 7.2 we have H'(C; L) = {0} and hence [H'(C; L)] = [G/G].
(iv) Claim (iv)a follows from Theorem 6.18 if G is a p-group. If G is not a p-
group, claim (iv)a follows from Theorem 5.8 (iv) since |H'(G;L)| = 1 holds by
assertion (iii). The claim (iv)b from Theorem 5.8 (i) and (iii) since |H*(C;L)| =1
holds by assertion (iii).

It remains to prove claim (iv)c. We begin with the case j = r;. Then we get
from Theorem 5.8 (iii) and assertions (ii), (iv)a and (iv)b

k[i] _ 4y, Ti
CO) = 14 BT

m

IC(D) = 1 forC C D CQG.

Now apply Theorem 5.8 (i). Finally we consider the case j < r; — 1. Let D
be an subgroup of G with C € D. If D is not a p-group, we get |C(D)| = 1
from Theorem 5.8 (iii) and assertion (iii). Hence the image of C(D) — C(C) is
contained in the image of C(G) — C(C). Let C; C G be the subgroup of order pl
for I =0,1,2,...,r;. Then for every subgroup D C G with C' C D the image of
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C(D) — C(C) is contained in the image of C(Cj+1) — C(C). We conclude from
Theorem 5.8 (i) and (iii) and assertion (ii)

IM(C)| = [C(C)] —|C(Cj+1)]
ki) roori—d=1 K[pl T g K[l T T T
;= 1) P} Py — p P

= 1 =7 " Z 1 [

m P m
k[i ; i—i—2 , K[dplt T T T 1 E[pTt 7T T
L (pi [{] 1) ,pzn - ri—Jj (pi [i]p; +i+1+ —p [i]p; +j+1+

m =0 m

. 0 ors—d—l . qori—g—l—1 .
ri—j =1 _k[i]p]t 7T i+ k[ilp;* +i+l
p; P

m
=0

ri—j—=1 K[ilp, 7 4 _pk[ﬂp?””’lﬂﬂ
i

b;
,Z -

O

Example 7.7 (m square-free). Suppose that m is square-free, or, equivalently,
rr =19 = --- =1, = 1. Let k be the natural number uniquely determined by
n==k- Hj‘:1 (p; —1). If s = 1, then every non-trivial finite subgroup of T" is cyclic of
order p and maximal among finite subgroups and we conclude from Theorem 6.18

M| =p".
If s > 2, then
1 C =aG;
IM(C) =<0 C # G and C # G[i] for every i€ {1,2,...,s};
pi-(p]/ 17V 1)

C = GJi] for some i € {1,2,...,s}.

m

Remark 7.8. It follows from the proof that all fractions appearing Theorem 7.6
are indeed natural numbers. As an illustration we check this in Example 7.7. We
have to show that for every j € {1,2,..., s} with j # i the prime number p; divides

k'ng{1,2 ..... s},j;éi(pj_l)
b;

from pfj_l =1 mod p;.

— 1. Now the claim follows from Fermat’s little theorem, i.e.,

Lemma 7.9. Suppose that m is even. Then

(A4Q[]) =o.
Proof. Since G is even, it contains an element g of order 2. This elements acts by
—id in Q[¢,]. Hence it acts by —id on A2F1Q[(,,] for every I > 0. This implies
A2H1Q[¢n]) = {0} for every [ > 0 and hence (AOdd@[gm])G =0. O

Remark 7.10 (Computing s; for even m). Lemma 7.9 implies for even m that

Zrkz((A2l+1Zn)Z/m) = 0

lez
Zrkz((AmZn)Z/m) = Z(—l)l -tk (A'Z™)2™).
leZ ez

The alternating sum >, ., (—1)"rkg ((A'Z™)2/™) will be computed in terms of M in
Theorem 8.7 (ii) (see Remark 8.9). Hence we will be able to compute the numbers
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s; appearing in Theorem 0.1 (iii) explicitly using Theorem 7.6 (iv) provided that
m is even.

8. EQUIVARIANT EULER CHARACTERISTICS

Recall that we are considering the extension 1 — Z" — I' 5 Z/m — 1 as it
appears in Theorem 0.1 and we will abbreviate L = Z" and G = Z/m.
Given a finite G-CW-complex, define its G-Fuler characteristic

(8.1) XX) = ) (-D)M[G/G] € AG)

C
where ¢ runs over the equivariant cells G/G. x D),

Theorem 8.2 (Equivariant Euler characteristic of L\ET).
We get in the Burnside ring A(G)

XY(I\ET) =a-[G]+ > [G/m(M))],
(M)eM

where the integer a is given by — Z(M)e/\/l ﬁ
Proof. Since the G-action on L is free outside the origin, we obtain from Lemma 5.1
and [20, Corollary 2.11] a cellular T-pushout

Hanem T xu EM —— Er

lH(M)eM Pras |f

H(M)e/vt r/M—" . x

such that X is a model for EI". There exists a finite I-CW-model Y for ET" by
Lemma 3.1. Choose a I'-homotopy equivalence f: Y — X. Let Z be defined by
the I'-pushout

y>{1} —— Y

b

x>} — 7

Then Z is a finite [-CW-model for ET with Z>{1} = x> =]\, T/M. In
the sequel we write ET for Z. Then L\ET is a finite G-CW-complex with

(\er)”" W= I &/
(M)eM

Hence we get for some integer a in A(G)

G(L\ED) =a-[G]+ Y [G/n(b)].

(M)eM

Let ch?l} : A(G) — Z be the map sending the class of a finite G-set to its cardinality.
It sends x“(L\ET) to the (non-equivariant) Euler characteristic of L\ ET" which is
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zero since L\ ET" is homotopy equivalent to the n-torus. Hence we get

0 = chyy (x“(L\ED))

I
IS
Q
_|_
Q
~
A
=

(M)em
= |G| <a+ Z L)
mera M|
This implies a = — Z(M)GM |_1\14\ -

Theorem 8.3 (Rational permutation modules).
(i) Sending a finite G-set to the associated QG-permutation module defines
an isomorphism of rings
perm: A(G) — Rg(G);
(i) If X is a finite G-CW -complez, then
perm(x¥(X)) = Y (~1)" - [Hi(X; Q)] = [Ko(X) @2 Q] — [K1(X) @z Q.
i>0
We have
perm(x%(L\ET)) = (—1)"- [A'L ®7 Q).
i>0
Proof. (i) The map perm is surjective by [22, Exercise 13.1 (¢) on page 105]. Since

the source and target of perm are finitely generated free abelian groups of the same
rank, perm is bijective.

(ii) We compute in Rg(G), where C,.(X) is the cellular Z-chain complex of X

perm(x“(X)) =Y _(~1)" - [Ci(X) ®2 Q]

i>0

=Y (-1 [Hi(C(X) 22,Q)] = (1) [Hi(X; Q).

i>0 i>0

The homological Chern character [8] yields an isomorphism of QG-modules
(8.4) @Hi-i-Qj(X; Q = Ki(X)®zQ
JEZ
The cup product induces natural isomorphisms
oH'(L\ET,Q) = H'(L\ET,Q),

since L\ ET is homotopy equivalence to the n-torus. There are natural isomorphisms
L®zQ — Hi(L\ET;Q), Ay((L ®z Q)*)) — (AL ®2Q)* and Hy(L\ET; Q)" —
H(L\ET; Q). For every finitely generated QG-module M there is a canonical QG-
isomorphism M —» (M*)*. This implies that the QG-modules H;(L\ET'; Q) and
AL ®7 Q are isomorphic. (]

Lemma 8.5. Let X be a finite G-CW -complex. The map of abelian groups
quot: A(G) = Z, [S]+— |G\S]
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sends the G-Euler characteristic X%(X) to the Euler characteristic x(G\X) of the
quotient. We have

x(G\X) = dimg (Ko(G\X) ®z Q) — dimg (K1(G\X) ®z Q).

Proof. We get quot(x%(X)) = x(G\X) by inspecting the definitions of the Euler
characteristics in terms of counting (equivariant) cells. The second claim follows
from the homological Chern character (8.4). O

Lemma 8.6. Let X be a finite G-CW -complex. The map of abelian groups
kg: A(G) = Z, [G/H]w~ |H|
satisfies
kg(x“ (X)) = dimg (K (X) ®7 Q) — dimg (KT (X) @7 Q).
Proof. The expression
X (X) 1= dimg (K (X) @7 Q) — dimg (KF(X) @2 Q)
depends only on the G-homotopy type of X and is additive under G-pushouts of
finite G-CW-complexes. The latter follows from the Mayer-Vietoris sequence asso-
ciated to such a G-pushout and Bott periodicity. Hence yxc(X) can be computed

by counting equivariant cells, where the contribution of an equivariant cell of the

type G/H x D4 is

XKS(G/H X Dd) = (_1)d : XKE(G/H)

(—1)*- (dimg(K§ (G/H) ®z Q) — dimg (KT (G/H) ®2 Q))

= (-1)?- (dimg(K' (pt) @z Q) — dimg (K7’ (pt) @2 Q))
(—1)%- (dimg(Re(H) ®z Q) — dimg ({0} @z Q))
(—1)?-|H|.

Theorem 8.7 (A priori estimates).
(i) We obtain the following identity in Rg(Q)

S ) ea+ Y Qs = -1 WL ez

(M)eM |M] (M)eM 1>0
(ii) We have the following identity of integers

M| -1
Z | |]|\4| = X(EF)
(M)eM

dimg (Ko(BT) ©7 Q) — dimg (K1(BT) ©7 Q)

= Y (-1)'-rkg((A'L)Y);

leZ

(i1i) We have the following identity of integers

MP?—1 . ,
) % = dimg(Kg (L\EI)) @z Q) — dimg (K (L\ET)) @z Q)
(M)eM
= dimg (Ko(C7(I") ®2 Q) — dimg (K1 (C](T")) @2 Q).
Proof. (i) This follows from Theorem 8.2 and Theorem 8.3
(ii) This follows from Theorem 8.2, Theorem 8.3 and Lemma 8.5 as soon as we have
shown

(8.8) dimg(Ko(BT) ®z Q) — dimg (K, (BT) ®2Q) = Z(*l)l -rkz ((A'L)9).
=
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Since G acts properly on L\ET', there is an isomorphism of Q-modules

K;(BT') ®7 Q = (K;(L\ET) ®z @)G

Now (8.8) follows from Theorem 8.3 (ii).

(iii) The first equation follows from Theorem 8.2 and Lemma 8.6. The second
equation is a direct consequence of the Baum-Connes Conjecture, which is known
to be true for I' (see [10]), and from the isomorphism K[ (EI") = KE(L\ET)
coming from the fact that L acts freely on ET. O

Remark 8.9. Recall that we can write M as the disjoint union

M= T M)

{11coca

This implies

1 IM(C)|.
2 [M] 2 cl

(M)em {13ccoca
doQe/mM)] = > MO [QIG/C);
(M)eM {1ycoca
M|—-1 Cl—-1
2: ||A4| - E: |A4“7N'LT%T—;
(M)eM {1yccca
MPZ -1 CP? -1
2: ||k4| = E: |A4«7N'L—%§r—-
(M)eM {13ccca

Hence one can compute the sums of the right sides of the equations above if one
knows all the numbers |[M(C)|. These have been computed explicitly in Theo-
rem 7.6 (iv).
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