
“Counterexamples to the Kneser Conjecture in
Dimension Four”

by

Matthias Kreck, Wolfgang Lück
and Peter Teichner

Abstract: We construct a connected closed orientable smooth four-manifold whose fundamental
group is the free product of two non-trivial groups such that it is not homotopy equivalent to
M0]M1 unless M0 or M1 is homeomorphic to S4. Let N be the nucleus of the minimal elliptic
Enrique surface V1(2, 2) and put M = N ∪∂N N . The fundamental group of M splits as Z/2 ∗Z/2.
We prove that M]k(S2 × S2) is diffeomorphic to M0]M1 for non-simply connected closed smooth
four-manifolds M0 and M1 if and only if k ≥ 8. On the hand we show that M is homeomorphic to
M0]M1 for closed topological four-manifolds M0 and M1 with π1(Mi) = Z/2.
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Introduction

If M is a closed connected three-manifold and α : π1(M) −→ Γ0 ∗ Γ1 is an isomorphism
then there are closed connected three-manifolds M0 and M1 with Γi = π1(Mi) together with
a diffeomorphism f : M −→M0]M1 inducing α on the fundamental groups. This theorem
is known as Kneser’s conjecture. It fails in dimension ≥ 5 by results of Cappell [1],[2].
Recently it has been shown that Kneser’s conjecture holds in dimension four stably, i.e. if
one allows additional connected sums with copies of S2 × S2 [8], [11]. In this article we give
counterexamples to the unstable version of Kneser’s conjecture in dimension four. The first
example does not split up to homotopy, the second splits topologically but not smoothly.
We prove in section 1

Theorem 0.1 For distinct prime numbers p0 and p1 there exists a connected closed smooth
orientable four-manifold M such that π1(M) is (Z/p0 × Z/p0) ∗ (Z/p1 × Z/p1) and if M is
homotopy equivalent to a connected sum M0]M1, then M0 or M1 is homeomorphic to S4.

In section 2 we assign to a closed oriented smooth four-manifold M together with
an isomorphism α : π1(M)→ Γ0 ∗ Γ1 an invariant σ(M,α) ∈ Z/16× Z/16, provided that its
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universal covering is Spin. Namely, we split M as M0 ∪S M1 according to α. Then S inherits
a Spin-structure from M̃ and we define σ(M,α) = (sign(M0)−R(S), sign(M1) +R(S)) for
sign(Mi) the signature and R(S) the Rohlin invariant. This invariant depends only on the
stable oriented diffeomorphism type of M and we investigate its dependency on α.

Let N be the nucleus of the minimal elliptic Enriques surface V1(2, 2) in the notation
of Gompf [7]. Put M = N ∪∂N N−. The fundamental group of M is Z/2 ∗ Z/2. In section
3 we show using Freedman’s topological s-cobordism theorem in dimension four [6] and
Donaldson’s result about definite intersection forms of smooth four-manifolds [4] and the
invariant of section 2

Theorem 0.2 M is homeomorphic to M0]M1 for two closed topological four-manifolds M0

and M1 with π1(Mi) = Z/2 but M ] k(S2 × S2) is diffeomorphic to M0]M1 for non-simply
connected closed smooth four-manifolds M0 and M1 if and only if k ≥ 8.

1. Examples not Splitting Homotopically

In this section we construct closed orientable four-manifolds whose fundamental group
is a non-trivial free product and which are not homotopy equivalent to a non-trivial connected
sum M0]M1 (see Theorem 1.4). As a preliminary we need the following Lemma which is
taken from [9, Theorem 3 on page 162] whose proof we enclose for the reader’s convenience.

Lemma 1.3 Suppose that mi, ri, ni and qi for i = 0, 1 are integers satisfying

ri > 1, rmii − 1 = niqi, ri ≡ 1 mod ni, (mi, ni) 6= 1 (q0, q1) = 1.

Then the group
π = (Z/m0 × Z/n0) ∗ (Z/m1 × Z/n1)

has the presentation of deficiency −1

π = 〈a0, b0, a1, b1 | am0
0 = 1, [a0, b0] = br0−1

0 , am1
1 = 1, [a1, b1] = br1−1

1 , bn0
0 = bn1

1 〉.

Proof : Obviously it suffices to show that the relation bn0
0 = 1 follows from the other

relations. We start with proving inductively for k = 1, 2, . . . the relation aki bia
−k
i = b

−rk1
i for

i = 0, 1. The induction step follows from the calculation:

ak+1
i bia

−(k+1)
i = aia

k
i bia

−k
i a−1

i = aib
rk1
i a
−1 =

(
aibia

−1
i

)rki = (brii )r
k
i = b

rk+1
i
i .
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This implies for k = mi and i = 0, 1

(bnii )qi = b
r
mi
i −1
i = 1.

Since bn0
0 = bn1

1 holds we conclude

(bn0
0 )q0 = (bn0

0 )q1 = 1.

Since q0 and q1 are prime, we get bn0
0 = 1.

We mention that for distinct primes p0 and p1 one can find the numbers mi, ri, ni and
qi as required in Theorem 1.4 so that it applies to π = (Z/p0 × Z/p0) ∗ (Z/p1 × Z/p1) [9,
page 163].

Theorem 1.4 Let M be the boundary of a regular neighborhood of an embedding into R5 of
a 2-dimensional CW -complex X which realizes a presentation of

π = (Z/m0 × Z/n0) ∗ (Z/m1 × Z/n1)

of deficiency −1. Then M is not homotopy equivalent to a connected sum M0]M1 unless M0

or M1 is homeomorphic to S4.

For the proof we need the following well-known Lemma.

Lemma 1.5 Let M be a connected closed orientable four-manifold with fundamental group
π and classifying map f : M −→ Bπ. Denote by bp(π;F ) the p-th Betti number of Bπ with
coefficients in the field F . If f∗([M ]) = 0 in H4(Bπ;F ), then

2 · (b2(π;F )− b1(π;F ) + b0(π;F )) ≤ χ(M).

Proof : Since the classifying map is 2-connected, the map fp : Hp(Bπ;F ) −→ Hp(M ;F ) is
bijective for p = 0, 1 and injective for p = 2. Because of f∗([M ]) = 0 its image for p = 2 is
a totally isotropic subspace of H2(M ;F ) with respect to the intersection form. If we write
the intersection form as an isomorphism b : H2(M ;F ) −→ H2(M ;F )∗, this is equivalent to
the fact that the composition i∗ ◦ b ◦ i for the inclusion i : im(f 2) −→ H2(M ;F ) is zero.
Hence H2(M ;F ) contains a subspace which is isomorphic to the direct sum of two copies
of H2(Bπ;F ). This shows bp(M ;F ) = bp(π;F ) for p = 0, 1 and b2(M ;F ) ≥ 2 · b2(π;F ).
From Poincaré duality, χ(M) = b2(M ;F )− 2 · b1(M ;F ) + 2 · b0(M ;F ) and the claim follows.

Now we are ready to prove Theorem 1.4. We first explain the construction of M which
depends on the presentation of π given in Lemma 1.3. Let X be a 2-dimensional CW -
complex given by this presentation. Embed X into R5 and let M be the boundary of a
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regular neighboorhood N of X. The resulting manifold M comes with a reference map f to
Bπ which induces an isomorphism on the fundamental groups. Obviously we have [M, f ] = 0
in Ω4(Bπ), a nullbordism is given by the regular neighborhood N . This implies f∗([M ]) = 0
in H4(π;Z). One easily checks χ(M) = 2 · χ(N) = 2 · χ(X) = 4.

Choose for i = 0, 1 a prime number pi dividing both mi and ni. Let Fpi be the field of
pi elements. One easily checks bk(Z/p

l
i;Fpi) = 1 for k ≥ 0 and l ≥ 1 and computes using the

Künneth fromula

b2(Z/mi × Z/ni;Fpi)− b1(Z/mi × Z/ni;Fpi) + b0(Z/mi × Z/ni;Fpi) = 2.

Assume that M is homotopy equivalent to M0]M1. By Kurosh subgroup theorem [12,
Theorem 1.10 on page 178]) (and possible renumbering M0 and M1) it suffices to treat the
two cases where π1(Mi) = Z/mi×Z/ni for i = 0, 1 or where M0 is simply connected. In the
first case we get χ(Mi) ≥ 4 from Lemma 1.5 and hence χ(M0]M1) ≥ 6. This contradicts the
assumption χ(M) = 4. In the second case we have π1(M1) = π1(M) and again by Lemma 1.5
and the additivity of k-th Betti number bk(π;F ) for k ≥ 1 under free products we conclude
χ(M1) ≥ 4. This implies χ(M0) ≤ 2. Hence M0 is a homotopy sphere and by Freedman’s
result [5, Theorem 1.6, page 280] homeomorphic to S4. This finishes the proof of Theorem
1.4.

2. A stable diffeomorphism invariant

We introduce a stable diffeomorphism invariant for a connected closed oriented smooth
four-manifold M whose universal covering possesses a Spin-structure together with an iso-
morphism α : π1(M) −→ Γ0 ∗ Γ1. We will surpress base points in the context of fundamen-
tal groups since all the group theoretic conditions we will give are invariant under inner
automorphisms. Let K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1) be obtained by the disjoint union of the
Eilenberg-MacLane spaces and [0, 1] by identifying {i} with the base point of K(Γi, 1) for
i = 0, 1. Choose a map

α : M −→ K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1)

which is transversal to 1/2 ∈ [0, 1] and up to homotopy determined by the property that
it induces on the fundamental groups the isomorphism α up to inner automorphisms if
we identify the fundamental group of K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1) for the base point 1/2 with
Γ0∗Γ1 in the obvious way. We orient [0, 1] by the direction from 0 to 1. We get a trivialization
of the normal bundle of 1/2 in [0, 1]. This induces by transversality a trivialization of the
normal bundle ν(S,M) of S in M where S is the preimage of 1/2. In particular S splits
M into the pieces M0 and M1, i.e. M = M0 ∪S M1 where M0 respectively M1 is mapped by
α to K(Γ0, 1) ∪ [0, 1/2] respectively [1/2, 1] ∪K(Γ1, 1). The inclusion j : S −→M induces

the trivial map on the fundamental groups and lifts to a map j̃ : S −→ M̃ . The unique
Spin-structure on M̃ restricts to a Spin-structure on j̃∗TM̃ = TS ⊕ ν(S,M). Since we have
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already fixed a trivialization of ν(S,M), this induces a Spin-structure on S. Denote by
R(S) ∈ Z/16 the Rohlin invariant of the closed three-dimensional Spin-manifold S which is
the signature modulo 16 of any smooth Spin-nullbordism of S. Our invariant is defined by

Definition 2.1 σ(M,α) = (sign(M0)−R(S), sign(M1) +R(S)) ∈ Z/16× Z/16

Next we show that this invariant is well-defined and examine its dependency on α. Recall
that a finitely generated group Γ is called indecomposable if Γ is non-trivial and Γ ∼= Γ′ ∗ Γ′′

implies that Γ′ or Γ′′ is trivial. Finite non-trivial groups are obviously indecomposable. We
want to show

Lemma 2.2 Let M and M ′ be connected closed oriented smooth four-manifolds, whose uni-
versal coverings possess Spin-structures, together with isomorphisms α : π1(M) −→ Γ0 ∗ Γ1

and α′ : π1(M ′) −→ Γ′0 ∗ Γ′1. Suppose Γ0, Γ1, Γ′0 and Γ′1 are indecomposable and not infinite
cyclic. Assume that there is an oriented diffeomorphism

f : M ] k(S2 × S2) −→M ′ ] k′(S2 × S2).

Then we get
σ(M,α) = σ(M ′, α′).

where we may have to interchange the order of the summands Z/16×Z/16 in the case where
Γ0 and Γ1 are isomorphic.

Proof : In the first step we show the existence of isomorphisms βi : Γi −→ Γ′i such that the
composition α′ ◦ f∗ ◦ α−1 is (β0 ∗ β1) up to inner automorphisms after possibly renumbering
Γ0 and Γ1. By Kurosh Subgroup Theorem [12, Theorem 1.10 on page 178] and after possibly
renumbering Γ0 and Γ1 the composition α′ ◦ f∗ ◦ α−1 sends Γ0 respectively Γ1 to a conjugate
of Γ′0 respectively Γ′1. Hence there are isomorphisms βi : Γi −→ Γ′i and an automorphism
ε of Γ0 ∗ Γ1 sending γ0 ∈ Γ0 to γ0 and γ1 ∈ Γ1 to δγ1δ

−1 for some δ ∈ Γ0 ∗ Γ1 such that
α′ ◦ f∗ ◦ α−1 is mboxε◦(β0∗β1) up to inner automorphisms. Without destroying this property
one can change δ, β0 and β1 such that δ is trivial or δ begins with a non-trivial letter in Γ1

and ends with a non-trivial letter in Γ0. In the second case no element of Γ1 can lie in the
image of ε and hence the surjectivity of ε forces ε to be the identity and the claim follows.

In the next step we show that the choice of α does not matter. Suppose we have
two choices of maps α and α′ : M −→ K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1) which are transversal to
1/2. Let M = M ′

0 ∪S′ M ′
1 be the splitting induced by α′. Since α and α′ induce up to inner

automorphisms the same homomorphism on the fundamental groups, they are homotopic.
Hence there is a map h : M × [0, 1] −→ K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1) which is transveral to 1/2
and h0 = α and h1 = α′. As explained above h induces a splittingM × [0, 1] = W0 ∪Z W1 and
Z inherits a Spin structure (and in particular an orientation) from h. The orientation of M
induces orientations onM×[0, 1], W0 andW1. We use the convention for an oriented manifold
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V with boundary ∂V that ∂V inherits the orientation determined by the decomposition
TV |∂V = T∂V ⊕ ν(∂V, V ) and the orientation on the normal bundle ν(∂V, V ) given by the
outward normal field. Notice that the orientations on S and Z coming from the Spin-
structures as described above agree with the ones coming from S = ∂M0 and Z = ∂W0

and are the opposites of the orientations coming from S = ∂M1 and Z = ∂W1. We laim
that the orientation of S ⊂ ∂Z agrees with the one coming from S = ∂M0. Namely, the
decompositions TW0|Z = TZ ⊕ ν(Z,W0) and TZ|S = TS ⊕ ν(S, Z) induce a decomposition

TW0|S = TS ⊕ ν(S, Z)⊕ ν(S,M0).

The orientation of S given by S ⊂ ∂Z is compatible with this decomposition if one uses the
outward normal fields on ν(S, Z) and ν(S,M0). The decompositions TM0|S = TS ⊕ ν(S,M0)
and TW0|M0 = TM0 ⊕ ν(M0,W0) yield

TW0|S = TS ⊕ ν(S,M0)⊕ ν(S, Z).

The orientation of S given by S = ∂M0 is compatible with this decomposition if one uses
the outward respectively inward normal field on ν(S,M0) respectively ν(S, Z). One treats
the other component S ′ similiarly and gets ∂Z = S

∐
(S ′)−. This implies

sign(Z) = R(S)−R(S ′) ∈ Z/16× Z/16.

The boundary of W0 is M−
0 ∪ Z ∪M ′

0 and of W1 is M−
1 ∪ Z− ∪M ′

1. This shows

−sign(M0) + sign(Z) + sign(M ′
0) = 0 and − sign(M1)− sign(Z) + sign(M ′

1) = 0.

and hence

(sign(M0)−R(S), sign(M1)+R(S)) = (sign(M ′
0)−R(S ′), sign(M ′

1)+R(S ′)) ∈ Z/16×Z/16.

In the final step we can assume that f is an oriented diffeomorphism from M to M ′.
Choose base point preserving maps βi : K(Γi, 1) −→ K(Γ′i, 1) inducing βi on the groups for
i = 0, 1. By our first step α′ is homotopic to the composition

M ′ f−1

−→M
α−→ K(Γ0, 1) ∪ [0, 1] ∪K(Γ1, 1)

β0∪id∪β1−→ K(Γ′0, 1) ∪ [0, 1] ∪K(Γ′1, 1)

Obviously the invariant for the splitting of M ′ with respect to this composition is the same
as the one for the splitting of M with respect to α and the claim follows.

3. Examples Splitting Topologically but not Smoothly

In this section we give an example which splits topologically but not smoothly. Let us
recall from [7] that every minimal elliptic surface Vn(p1, p2, . . . pk) (whose elliptic fibration
with base CP 1 has 6n cusp fibers and k multiple fibers with multiplicities pi) can be de-
composed as a union Nn(p1, p2, . . . pk)∪Σ Φn along the Seifert fibered homology three-sphere
Σ(2, 3, 6n−1) which as the link of a singularity bounds the Milnor fiber Φn of Σn. The piece
Nn(p1, p2, . . . , pk) is called nucleus of Vn(p1, p2, . . . pk).
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Theorem 3.1 Let N = N1(2, 2) be the nucleus of the Enriques surface V = V1(2, 2). Put
M = N ∪∂N N−.

1. M is homeomorphic to M0]M1 for two closed topological four-manifolds M0 and M1

with π1(Mi) = Z/2 for i = 0, 1.

2. M ] k(S2×S2) is diffeomorphic to M0]M1 for non-simply connected closed smooth four-
manifolds M0 and M1 if and only f k ≥ 8. In fact, M ] 8(S2× S2) is diffeomorphic to
V ]V −.

Proof : First recall from [7] that the nucleus of a minimal elliptic surface is constructed
by taking a regular neighborhood of one cusp fiber and a section of the elliptic fibration.
This gives a four-manifold in the homotopy type of S2 ∨ S2. Then one performs all t he
logarithmic transformations inside this neighborhood. The following properties of N are easy
consequences from this construction, for details see [7, Section 3]. We also remind the reader
that the Enriques surface V has even intersection form E8 ⊕H and its universal covering is
the Kummer surface which is Spin.

1. sign(N) = 0 and χ(N) = 3.

2. The inclusion N −→ V induces an isomorphism on the fundamental groups and
π1(N) = Z/2. Since the Milnor fiber Φn is simply connected this implies that Σ
is π1-null in N , i.e. the inclusion of Σ = Σ(2, 3, 5) = ∂N into N induces the trivial
map on the fundamental groups.

3. The intersection form of N is even and Ñ is Spin.

The first assertion of our theorem follows directly from the following lemma by setting
X = X ′ = N .

Lemma 3.2 Let X and X ′ be two topological four-manifolds with the same boundary Σ,
a homology three-sphere. Assume that Σ is π1-null in X and that X has a good funda-
mental group. Let C be a contractible four-manifold with boundary Σ. Then there exists a
homeomorphism

X ∪Σ X
′ ≈ (X ∪Σ C) ] (X ′ ∪Σ C).

Proof : Recall that a good fundamental group is one for which the topological s-cobordism
theorem holds. By [6] examples of good groups are poly-finite or -cyclic groups. Also, by [5,
Theorem 1.4’ on page 367] a manifold C as in the lemma exists.
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By taking the connected sum inside the contractible parts C, we obtain a homeomor-
phism

(X ∪Σ C) ] (X ′ ∪Σ C) ≈ (X ∪Σ (C]C)) ∪Σ X ′.

Hence it suffices to show that X and (X ∪Σ (C]C)) are homeomorphic relative boundary.
By assumption, the topological s-cobordism theorem holds for this fundamental group and
thus it remains to construct an s-cobordism between X and X ∪Σ (C]C) relative boundary.

Note that C ∪Σ C is a simply connected closed topological four-manifold with the same
integral homology as S4 and hence by [5, Theorem 1.6 page 371] is homeomorphic to S4.
Let C0 be a complement of the interior of an embedded disk D4 ⊂ int(C). Then we obtain
a homeomorphism

(C]C) ∪Σ×{0,1} Σ× [0, 1] −→ C0 ∪Σ C0 ∪S3×{0,1} S
3 × [0, 1] −→ S3 × S1.

This gives an embedding j : Σ× [0, 1] −→ ∂(S3 ×D2). Let f : Σ× [0, 1] −→ X × [0, 1] be
the inclusion. Define W by S3 ×D2 ∪f X × [0, 1], i.e. by the push out

Σ× [0, 1]
j
−→ S3 ×D2

f ↓ ↓

X × [0, 1]
j
−→ W

We want to show that j : X × [0, 1] −→ W is a simple homotopy equivalence. Since the
simple homotopy type of W relative X × [0, 1] depends only on the homotopy class of f [3,
II.5.5] and Σ is π1-null in X, we can assume that j factorizes as

f : Σ× [0, 1]
f1−→ Z

f2−→ X × [0, 1]

where Z is obtained from Σ× [0, 1] by collapsing the 1-skeleton to a point. Define Y by the
push out Y = S3 ×D2 ∪f1 Z. Then W is also the push out

Z
j
−→ Y

f2 ↓ ↓

X × [0, 1]
j
−→ W

The map j : Z −→ Y is a homology equivalence as j : Σ× [0, 1] −→ S3 ×D2 is. Since Z and

S3 × D2 are simply connected, j and hence j are simple homotopy equivalences [3, II.8.5.
and I.5.9]. This shows that the inclusion of X into W is a simple homotopy equivalence.
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Similarly, one verifies that the inclusion of the other part X ∪Σ (C]C) of the boundary of
W into W is a homotopy equivalence. Hence W is a s-cobordism. This finishes the proof
the lemma and thus also of the first assertion.

2.) Suppose that f : M ] k(S2 × S2) −→M0]M1 is a diffeomorphism for connected smooth
four-manifolds M0 and M1 which are non-simply connected. By Kurosh Subgroup Theorem
cite[Theorem 1.10 on page 178]Lyndon-Schupp (1977) π1(Mi) = Z/2 for i = 0, 1. There is an
obvious choice of isomorphisms α : π1(M) −→ Z/2 ∗ Z/2 and α′ : π1(M0]M1) −→ Z/2 ∗ Z/2
such that

σ(M,α) = (sign(N)−R(Σ), sign(N−) +R(Σ)) = (8, 8) ∈ Z/16× Z/16

and
σ(M0]M1, α) = (sign(M0), sign(M1)) ∈ Z/16× Z/16.

From Lemma 2.2 we get σ(M,α) = σ(M0]M1, α
′). This shows for i = 0, 1

|sign(Mi)| ≥ 8.

The intersection form of N is even and hence its signature is divisible by eight and its rank
is even cite[Corollary 1 on page 53]Serre (1970). Suppose that b2(Mi) ≤ 9. Then the rank
of the intersection orm must be eight and its signature must be ±8. Hence we can find an
orientation such that the intersection form on the smooth oriented closed four-manifold Mi

is he definite form E8. This is impossible by Donaldson’s result [4, Theorem 1 on page 397]
hat a definite intersection form of a smooth closed oriented 4-manifold is equivalent up to
sign to the standard Euclidean form. Therefore b2(Mi) ≥ 10 for i = 0, 1. Since π1(Mi) is
finite, we conclude

χ(Mi) = 2 + b2(Mi) ≥ 12.

Since χ(N) = 3, we have χ(M) = 6. Now we get

6 + 2k = χ(M ] k(S2 × S2)) = χ(M0]M1) = χ(M0) + χ(M1)− 2 ≥ 12 + 12− 2 ≥ 22

and hence
k ≥ 8.

It remains to prove that M ] 8(S2 × S2) s diffeomorphic to V ]V −. Since M = N ∪Σ N
−,

V = N ∪Σ Φ and he connected sum of V and V − may be taken inside the Milnor fibers Φ, it
suffices to show that N ] 8(S2 × S2) is diffeomorphic (relative boundary) to N ∪Σ (Φ]Φ−).
Here we take the connected sum always in the interior of the manifolds.
It was shown in [7, Fig. 27] (we are in the case n = 1) that Φ has a handle decomposition
with one 0-handle and eight 2-handles. Therefore, inside Φ]Φ− we find eight disjointly em-
bedded 2-spheres with trivial normal bundle. These are given by gluing together in pairs
the cores of corresponding 2-handles. It is easy to check that after doing 2-surgeries on these
eight 2-spheres, i.e. cutting out S2 ×D2 and eplacing it by D3 × S1, one gets the product
∂Φ× [0, 1] = Σ× [0, 1].
Reversing this procedure, we see that one can do eight 1-surgeries on (the collar of) =
N ∪Σ (Σ× [0, 1]) to obtain N ∪Σ (Φ]Φ−). We point out that by [7, Fig. 27] all framings for
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the 2-handles in Φ are even and thus N ∪Σ (Φ]Φ−) has an even intersection form.
Changing slightly our point of view, we see that since all the surgered circles are nullho-
motopic in N , each of these 1-surgeries has the effect of taking a connected sum with an
oriented S2-bundle over S2. But the nontrivial bundle cannot occure because the resulting
manifold must have an even intersection form. Hence we do end up with N ] 8(S2 × S2)
which finishes the proof of our last claim in Theorem 3.1.
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