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Abstract We discuss some open and interesting problems about aspherical closed
manifolds including topologically rigidity, Poincaré duality groups and L2-invariants.

0 Introduction

This article is devoted to aspherical closed manifolds and open conjectures, prob-
lems and questions about them. All the problems stated here are very interesting
and hard. Any progress towards an answer is welcome and valuable. We hope that
a reader may be motivated by this note to study them.

We will address the questions whether an aspherical closed manifold is topolog-
ically rigid, whether a finitely presented Poincaré duality group is the fundamental
group of an aspherical closed manifold, whether an aspherical closed manifold car-
ries an S1-action or a Riemannian metric with positive scalar curvature, and finally
state some conjectures about the possible values of L2-Betti numbers and L2-torsion
of the universal covering of an aspherical closed manifold and the homological
growth in a tower of finite coverings.

1 Basics about aspherical CW-complexes

A CW -complex X is called aspherical if it is connected and the nth homotopy
group πn(X) vanish for n ≥ 2, or, equivalently, it is connected and its universal
covering is contractible. Two aspherical CW -complexes are homotopy equivalent if
and only if their fundamental groups are isomorphic. This follows from the fact
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that for any connected CW -complex X and any aspherical CW -complex Y two
maps f0, f1 : π1(X)→ π1(Y ) are homotopic if and only if for one (and hence all
points) x ∈ X there exists path w from f0(x) to f1(x) such that the composite of
the obvious map cw : π1(X , f0(x))→ π1(Y, f1(x)) given by conjugation with w and
π1( f0,x) : π1(X ,x)→ π1(Y, f0(x)) is π1( f1,x) : π1(X ,x)→ π1(Y, f1(x)). So the ho-
motopy theory of aspherical CW -complexes is completely determined by their fun-
damental groups.

Given any group G, there exists a connected aspherical CW -complex X with
π1(X) ∼= G. Since X is unique up to homotopy, one often denotes such a space by
BG or K(G,1). One defines the homology H∗(G) of a group G by H∗(BG) and this
definition is independent of the choice of model BG by homotopy invariance.

2 Basics about aspherical closed manifolds

We are interested in aspherical closed (topological or smooth) manifolds. These
exists in abundance.

2.1 Non-positive curvature

Let M be a closed smooth manifold. Suppose that it possesses a Riemannian metric
whose sectional curvature is non-positive. Then the universal covering M̃ inher-
its a complete Riemannian metric whose sectional curvature is non-positive. The
Hadamard-Cartan Theorem (see [31, 3.87 on page 134]) implies that M̃ is diffeo-
morphic to Rn. Hence M is aspherical.

2.2 Low-dimensions

A connected closed 1-dimensional manifold is homeomorphic to S1 and hence as-
pherical.

Let M be a connected closed 2-dimensional manifold. Then M is either aspheri-
cal or homeomorphic to S2 or RP2. The following statements are equivalent: i.) M
is aspherical. ii.) M admits a Riemannian metric which is flat, i.e., with sectional
curvature constant 0, or which is hyperbolic, i.e., with sectional curvature constant
−1. iii) The universal covering of M is homeomorphic to R2.

A connected closed 3-manifold M is called prime if for any decomposition as a
connected sum M ∼= M0]M1 one of the summands M0 or M1 is homeomorphic to S3.
It is called irreducible if any embedded sphere S2 bounds an embedded disk D3.
Every irreducible closed 3-manifold is prime. A prime closed 3-manifold is either
irreducible or an S2-bundle over S1 (see [37, Lemma 3.13 on page 28]). A closed



Some open problems about aspherical closed manifolds 3

orientable 3-manifold is aspherical if and only if it is irreducible and has infinite
fundamental group. This follows from the Sphere Theorem [37, Theorem 4.3 on
page 40].

2.3 Torsionfree discrete subgroups of almost connected Lie groups

Let L be a Lie group with finitely many path components. Let K ⊆ L be a maximal
compact subgroup. Let G⊆ L be a discrete torsionfree subgroup. Then M = G\L/K
is an aspherical closed manifold with fundamental group G since its universal cov-
ering L/K is diffeomorphic to Rn for appropriate n (see [36, Theorem 1. in Chapter
VI]). Examples for M are hyperbolic manifolds.

2.4 Hyperbolization

A very important construction of aspherical manifolds comes from the hyperboliza-
tion technique due to Gromov [33]. It turns a cell complex into a non-positively
curved (and hence aspherical) polyhedron. The rough idea is to define this proce-
dure for simplices such that it is natural under inclusions of simplices and then define
the hyperbolization of a simplicial complex by gluing the results for the simplices
together as described by the combinatorics of the simplicial complex. The goal is
to achieve that the result shares some of the properties of the simplicial complexes
one has started with, but additionally to produce a non-positively curved and hence
aspherical polyhedron. Since this construction preserves local structures, it turns
manifolds into manifolds.

We briefly explain what the orientable hyperbolization procedure gives. Further
expositions of this construction can be found in [16, 20, 21, 22]. We start with a
finite-dimensional simplicial complex Σ and assign to it a cubical cell complex h(Σ)
and a natural map c : h(Σ)→ Σ with the following properties:

1. h(Σ) is non-positively curved and in particular aspherical;
2. The natural map c : h(Σ)→ Σ induces a surjection on the integral homology;
3. π1( f ) : π1(h(Σ))→ π1(Σ) is surjective;
4. If Σ is an oriented closed manifold, then

a. h(Σ) is an oriented closed manifold;
b. The natural map c : h(Σ)→ Σ has degree one;
c. There is a stable isomorphism between the tangent bundle T h(Σ) and the

pullback c∗T Σ ;

One can deduce from this construction that the condition aspherical does not im-
pose any restrictions on the characteristic numbers of a manifold or on its bordism
class, see [20, Remarks 15.1] and [22, Theorem B]. Moreover, it can be used to con-
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struct aspherical closed manifolds with rather exotics properties, for instance exam-
ples which do not possess a triangulation, whose universal covering is not homeo-
morphic to Rn, whose fundamental group contains an infinite divisible abelian group
or has an unsolvable word problem. For such exotic examples and more information
about aspherical closed manifolds we refer for instance to [9, 20, 22, 47].

3 The Borel Conjecture

In this section we deal with

Conjecture 1 (Borel Conjecture for a group G). If M and N are aspherical closed
manifolds with π1(M) ∼= π1(N) ∼= G, then M and N are homeomorphic and any
homotopy equivalence M→ N is homotopic to a homeomorphism.

The main tool to attack the Borel Conjecture is surgery theory and the Farrell-
Jones Conjecture. We consider the following special version of the Farrell-Jones
Conjecture.

Conjecture 2 (Farrell-Jones Conjecture for torsionfree groups and integer coeffi-
cients). Let G be a torsionfree group Then:

1. Kn(ZG) = 0 for n≤−1;
2. The reduced projective class group K̃0(ZG) vanishes;
3. The Whitehead group Wh(G) vanishes;
4. For any homomorphism w : G→ {±1} the w-twisted L-theoretic assembly map

Hn(BG;w L〈−∞〉)
∼=−→ L〈−∞〉

n (RG,w) is bijective.

The relevance of the Conjecture 2 for the Borel Conjecture comes from the next
theorem whose proof is based on surgery theory.

Theorem 1 (The Farrell-Jones Conjecture and the Borel Conjecture). Suppose
that G satisfies the version of the Farrell-Jones Conjecture stated in Conjecture 2.

Then the Borel Conjecture is true for aspherical closed manifolds of dimension
≥ 5 with G as fundamental group. It is true for aspherical closed manifolds of di-
mension 4 with G as fundamental group if G is good in the sense of Freedman
(see [29], [30]).

Remark 1 (The Borel Conjecture in low dimensions). The Borel Conjecture is true
in dimension ≤ 2 by the classification of closed manifolds of dimension ≤ 2. It is
true in dimension 3 if Thurston’s Geometrization Conjecture is true. This follows
from results of Waldhausen (see Hempel [37, Lemma 10.1 and Corollary 13.7]) and
Turaev (see [61]) as explained for instance in [42, Section 5]. A proof of Thurston’s
Geometrization Conjecture is given in [50] following ideas of Perelman.
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Remark 2 (The Borel Conjecture does not hold in the smooth category). The Borel
Conjecture 1 is false in the smooth category, i.e., if one replaces topological man-
ifold by smooth manifold and homeomorphism by diffeomorphism. The torus T n

for n≥ 5 is an example (see [62, 15A]). Other counterexample involving negatively
curved manifolds are constructed by Farrell-Jones [24, Theorem 0.1].

Remark 3 (The Borel Conjecture versus Mostow rigidity). A version of Mostow
rigidity says for two closed hyperbolic manifolds N0 and N1 that they are isometri-
cally diffeomorphic if and only if π1(N0)∼= π1(N1) and any homotopy equivalence
N0→ N1 is homotopic to an isometric diffeomorphism.

One may view the Borel Conjecture as the topological version of Mostow rigid-
ity. The conclusion in the Borel Conjecture is weaker, one gets only homeomor-
phisms and not isometric diffeomorphisms, but the assumption is also weaker, since
there are many more aspherical closed topological manifolds than hyperbolic closed
manifolds.

The following is known about the Farrell-Jones Conjecture, see for instance [3,
4, 5, 6, 7, 39, 59, 63].

Theorem 2. Let C be the smallest class of groups satisfying:

• Every hyperbolic group belongs to C ;
• Every group that acts properly, isometrically and cocompactly on a complete

proper CAT(0)-space belongs to C ;
• Every lattice in an almost connected Lie group belongs to C ;
• Every virtually solvable group belongs to C ;
• Every arithmetic groups belongs to C ;
• The fundamental group of any 3-manifold (possibly with boundary and possibly

non-compact) belongs to C ;
• If G1 and G2 belong to C , then both G1 ∗G2 and G1×G2 belong to C ;
• If H is a subgroup of G and G ∈ C , then H ∈ C ;
• Let {Gi | i ∈ I} be a directed system of groups (with not necessarily injective

structure maps) such that Gi ∈ C for every i ∈ I. Then the directed colimit
colimi∈I Gi belongs to C .

Then every group G in C satisfies the K- and L-theoretic Farrell-Jones Conjec-
ture with coefficients in additive categories and with finite wreath products, and in
particular the version of the Farrell-Jones Conjecture stated in Conjecture 2.

For more information about the Borel and the Farrell-Jones Conjecture and liter-
ature about them we refer for instance to [25, 46, 49].

4 Poincaré duality groups

The following definition is due to Johnson-Wall [38].
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Definition 1 (Poincaré duality group).
A group G is called a Poincaré duality group of dimension n if the following

conditions holds:

1. The group G is of type FP, i.e., the trivial ZG-module Z possesses a finite-
dimensional projective ZG-resolution by finitely generated projective ZG-modules;

2. We get an isomorphism of abelian groups

H i(G;ZG)∼=
{
{0} for i 6= n;
Z for i = n.

If G is the fundamental group of an aspherical closed manifold of dimension n,
then it is finitely presented and a Poincaré duality group of dimension n. This leads
to

Conjecture 3 (Poincaré duality groups). A finitely presented group is a n-dimensional
Poincaré duality group if and only if it is the fundamental group of an aspherical
closed n-dimensional topological manifold.

Conjecture 3 is known to be true if n = 1,2. This is obvious for n = 1 and for
n = 2 proved in [23, Theorem 2].

A topological space X is called an absolute neighborhood retract or briefly ANR
if for every normal space Z, every closed subset Y ⊆ Z and every (continuous) map
f : Y → X there exists an open neighborhood U of Y in Z together with an extension
F : U → Z of f to U . A compact n-dimensional homology ANR-manifold X is a
compact absolute neighborhood retract such that it has a countable basis for its
topology, has finite topological dimension and for every x ∈ X the abelian group
Hi(X ,X−{x}) is trivial for i 6= n and infinite cyclic for i= n. A closed n-dimensional
topological manifold is an example of a compact n-dimensional homology ANR-
manifold (see [19, Corollary 1A in V.26 page 191]).

The disjoint disk property says that for any ε > 0 and maps f ,g : D2→M there
are maps f ′,g′ : D2 → M so that the distance between f and f ′ and the distance
between g and g′ are bounded by ε and f ′(D2)∩g′(D2) = /0.

Theorem 3. Let G be a finitely presented group and n ≥ 6 be a natural number.
Suppose that G satisfies the version of the Farrell-Jones Conjecture 2.

Then G is the fundamental group of a compact homology ANR-manifold of di-
mension n satisfying the disjoint disk property if and only if G is an n-dimensional
Poincaré duality group.

Proof. See [13, Main Theorem on page 439 and Section 8], [14, Theorem A and
Theorem B], and [57, Remark 25.13 on page 297].

One would prefer if in the conclusion of Theorem 3 one could replace “com-
pact homology ANR-manifold” by “closed topological manifold”. The remaining
obstruction is the resolution obstruction of Quinn which takes values in 1+ 8 ·Z.
Any element in 1 + 8 · Z can be realized by an appropriate compact homology
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ANR-manifold as its resolution obstruction. There are compact homology ANR-
manifolds that are not homotopy equivalent to closed manifolds. But no example of
an aspherical compact homology ANR-manifold that is not homotopy equivalent to
a closed topological manifold is known. So we could replace in the conclusion of
Theorem 3 “compact homology ANR-manifold” by “closed topological manifold”
if the following question has a positive answer.

Question 1 (Vanishing of the resolution obstruction in the aspherical case). Is every
aspherical compact homology ANR-manifold having the DDP homotopy equivalent
to a closed manifold?

We refer for instance to [13, 26, 55, 56, 57] for more information about this topic.
The question which hyperbolic groups arise as fundamental groups of aspherical

closed manifolds of dimension n and which torsionfree hyperbolic groups have a
sphere Sn−1 as boundary is answered by Bartels-Lück-Weinberger [8] in dimension
n≥ 6.

5 S1-actions

Let M be a closed aspherical manifold with a non-trivial S1-action. Then the S1-
action has only finite isotropy groups, the inclusion of any orbit induces an injec-
tion on the fundamental group and the center of π1(X) contains an infinite normal
cyclic subgroup. A proof can be found for instance in [17] or [44, Corollary 1.43
on page 48]. Conner-Raymond [17] conjectured that an aspherical closed manifold
whose fundamental group has a non-trivial center admits a non-trivial S1-action.
This conjecture has been disproved Cappell-Weinberger-Yan [15]. One may still
ask the following question

Question 2 (S1-actions). If M is an aspherical closed manifold whose fundamental
group has a non-trivial center, is there a finite covering which admits a non-trivial
S1-action?

6 Fiber bundles

Question 3 (Fiber bundles). Let f : M→ N be a map of aspherical closed manifolds
which induces a surjection on fundamental groups.

Under which conditions is it homotopy equivalent to the projection of a locally
trivial topological fiber bundle (or to a Manifold Approximate Fibration)?

A necessary condition for a positive answer is that the homotopy fiber has the
homotopy type of a finite CW -complex. If the homotopy fiber is a point, or equiv-
alently, if f is a homotopy equivalence, a positive answer (for a locally trivial fiber
bundle) is equivalent to the statement that f is homotopic to a homeomorphism, in
other words Question 3 becomes the Borel Conjecture 1.
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7 L2-invariants

Next we mention some prominent conjectures about aspherical closed manifolds
and L2-invariants. For more information about these conjectures and their status we
refer to [10, 44, 45]. We denote by b(2)p (M̃) the p-th L2-Betti number and by ρ(2)(M̃)

the L2-torsion of the universal covering M̃ of a closed manifold M.

7.1 The Hopf and the Singer Conjecture

Conjecture 4 (Hopf Conjecture). If M is an aspherical closed manifold of even di-
mension, then

(−1)dim(M)/2 ·χ(M)≥ 0.

If M is a closed Riemannian manifold of even dimension with sectional curvature
sec(M), then

(−1)dim(M)/2 ·χ(M) > 0 if sec(M) < 0;
(−1)dim(M)/2 ·χ(M) ≥ 0 if sec(M) ≤ 0;

χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.

Conjecture 5 (Singer Conjecture). If M is an aspherical closed manifold, then

b(2)p (M̃) = 0 if 2p 6= dim(M).

If M is a closed connected Riemannian manifold with negative sectional curvature,
then

b(2)p (M̃)

{
= 0 if 2p 6= dim(M);
> 0 if 2p = dim(M).

7.2 L2-torsion and aspherical closed manifolds

Conjecture 6 (L2-torsion for aspherical closed manifolds). If M is an aspherical
closed manifold of odd dimension, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 ·ρ(2)(M̃)≥ 0.

If M is a closed connected Riemannian manifold of odd dimension with negative
sectional curvature, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 ·ρ(2)(M̃)> 0.
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If M is an aspherical closed manifold whose fundamental group contains an amenable
infinite normal subgroup, then M̃ is det-L2-acyclic and

ρ
(2)(M̃) = 0.

7.3 Simplicial volume and L2-invariants

Conjecture 7 (Simplicial volume and L2-invariants). Let M be an aspherical closed
orientable manifold. Suppose that its simplicial volume ||M|| vanishes. Then M̃ is
of determinant class and

b(2)p (M̃) = 0 for p≥ 0;

ρ
(2)(M̃) = 0.

7.4 Zero-in-the-Spectrum Conjecture

Conjecture 8 (Zero-in-the-spectrum Conjecture). Let M̃ be a complete Riemannian
manifold. Suppose that M̃ is the universal covering of an aspherical closed Rie-
mannian manifold M (with the Riemannian metric coming from M). Then for some
p≥ 0 zero is in the Spectrum of the minimal closure

(∆p)min : dom
(
(∆p)min

)
⊂ L2

Ω
p(M̃)→ L2

Ω
p(M̃)

of the Laplacian acting on smooth p-forms on M̃.

7.5 Homological growth

Here is a generalization of a conjecture due to Bergeron-Venkatesh [10, Conjec-
ture 1.3].

Conjecture 9 (Homological growth and L2-torsion for aspherical closed manifolds).

Let M be an aspherical closed manifold of dimension d and fundamental group
G = π1(M). Let G = G0 ⊇ G1 ⊇ ·· · be a descending sequence of in G normal
subgroups [G : Gi] with trivial intersection

⋂
i≥0 Gi = {1}. Put M[i] = Gi\M̃, where

M̃ is the universal covering. Let F be an field. Then

1. We get for any p≥ 0

b(2)p (M̃) = lim
i→∞

bn(M[i];F)

[G : Gi]
;
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2. We get for any natural number p with 2p+1 6= d

lim
i→∞

ln
(∣∣tors

(
Hp(M[i])

)∣∣)
[G : Gi]

= 0,

and we get in the case d = 2p+1

lim
i→∞

ln
(∣∣tors

(
Hn(M[i])

)∣∣)
[G : Gi]

= (−1)p ·ρ(2)(M̃).
Some evidence for Conjecture 9 comes from [10] and [48].

8 Positive scalar curvature

Conjecture 10. An aspherical closed smooth manifold does not admit a Riemannian
metric of positive scalar curvature.

Some evidence comes from the following fact. Let M be an aspherical closed
smooth manifold whose fundamental group π = π1(M) satisfies the strong Novikov
Conjecture, i.e., the assembly map Kn(Bπ)→ Kn(C∗r (π)) from the K-homology of
BG to the topological K-theory of the reduced group C∗-algebra is rationally injec-
tive for all n ∈ Z. Then M carries no Riemannian metric of positive scalar curva-
ture, see [58, Theorem 3.5]. Moreover, M satisfies the Zero-in-the-Spectrum Con-
jecture 8, see [43, Corollary 4]. We refer to [49, Section 5.1.3] for a discussion
about the large class of groups for which the assembly map Kn(BG)→ Kn(C∗r (G))
is known to be injective or rationally injective. More information about the Novikov
Conjecture can be found in for instance in [27, 28, 41].

9 Random closed manifolds

The idea of a random group has successfully been used to construct groups with
certain properties, see for instance [2, 32, 34, 35, 51, 52, 53, 60, 64]. For exam-
ple, in a precise statistical sense almost all finitely presented groups are torsionfree
hyperbolic and in particular have a finite model for their classifying space.

It is not clear what it means in a precise sense to talk about a random closed
manifold. Nevertheless, the author’s intuition is that almost all closed manifolds are
aspherical. (A related question would be whether a random closed smooth manifold
admits a Riemannian metric with non-positive sectional curvature.) It is certainly
true in dimension 2 since only finitely many closed surfaces are not aspherical. The
characterization of closed 3-dimensional manifolds in Subsection 2.2 seems to fit as
well.
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A closed manifold M is called asymmetric if every finite group which acts ef-
fectively on M is trivial. This is equivalent to the statement that for any choice
of Riemannian metric on M the group of isometries is trivial (see [40, Introduc-
tion]). A survey on asymmetric closed manifolds can be found in [54]. The first con-
structions of asymmetric aspherical closed manifolds are due to Connor-Raymond-
Weinberger [18]. The first simply-connected asymmetric manifold has been con-
structed by Kreck [40] answering a question of Raymond and Schultz [12, page 260]
which was repeated by Adem and Davis [1] in their problem list. Raymond and
Schultz expressed also their feeling that a random manifold should be asymmet-
ric. Borel has shown that an aspherical closed manifold is asymmetric if its funda-
mental group is centerless and its outer automorphism group is torsionfree (see the
manuscript “On periodic maps of certain K(π,1)” in [11, pages 57–60]).

This leads to the intuitive assertion:
Almost all closed manifolds are aspherical, topologically rigid in the sense of the
Borel Conjecture 1 and asymmetric.
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High dimensional manifold theory, number 9 in ICTP Lecture Notes, pages 371–404. Ab-
dus Salam International Centre for Theoretical Physics, Trieste, 2002. Proceedings of the
summer school “High dimensional manifold theory” in Trieste May/June 2001, Number 2.
http://www.ictp.trieste.it/˜pub off/lectures/vol9.html.

21. M. W. Davis. The geometry and topology of Coxeter groups, volume 32 of London Mathe-
matical Society Monographs Series. Princeton University Press, Princeton, NJ, 2008.

22. M. W. Davis and T. Januszkiewicz. Hyperbolization of polyhedra. J. Differential Geom.,
34(2):347–388, 1991.
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