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1. The s-cobordism theorem
and Whitehead torsion

Theorem 1.1 (s-cobordism theorem) Let
Mgy be a closed connected oriented mani-
fold of dimension n > 5 with fundamental
group m = w1 (Mg). Then

1. Let (W; My, fo, M1, f1) be an h-cobordism
over Mg. Then W s trivial over Mg if
and only if its Whitehead torsion

(W, Mg) € Wh(r)

vanishes;

2. The function assigning to an h-cobordism
(W; Mo,fo,Ml,fl) over Mg its White-
head torsion yields a bijection from the
diffeomorphism classes relative Mgy of
h-cobordism over Mg to the Whitehead
group Wh(m).



Definition 1.2 An n-dimensional cobordism
(W My, fo, M1, f1) consists of a compact
oriented n-dimensional manifold W, closed
(n — 1)-dimensional manifolds Mgy and M,

a disjoint decomposition OW = ogW [[O1W
of the boundary OW of W and orientation
preserving diffeomorphisms fo : Mg — 0W)y
and f1: My — 0Wj.

We call a cobordism (W; My, fo, M1, f1) an
h-cobordism if the inclusions ;W — W for
1 = 0,1 are homotopy equivalences.

Theorem 1.3 (Poincaré conjecture) The
Poincaré Conjecture is true for a closed n-
dimensional manifold M with dim(M) > 5,
namely, if M is homotopy equivalent to S™,
then M is homeomorphic to S™.

Remark 1.4 The Poincaré Conjecture is
not true if one replaces homeomorphic by
diffeomorphic.



Remark 1.5 The s-Cobordism Theorem [ 1]

IS one step in a program to decide whether

two closed manifolds M and N are diffeo-
morphic. This is in general a very hard
question. The idea is to construct an h-
cobordism (W; M, f, N, g) with vanishing White-
head torsion and to apply the s-cobordism
theorem. So the surgery program is:

1. Construct a simple homotopy equiva-
lence f: M — N,

2. Construct a cobordism (W; M, N) and
a map (F,f,id) : (W;M,N) — (N X
[0,1], N x {O}, N x {1});

3. Modify W and F' relative boundary by
so called surgery such that F' becomes
a homotopy equivalence and thus W
becomes an h-cobordism. During these
processes one should make certain that
the Whitehad torsion of the resulting
h-cobordism is trivial.



In the sequel let W be an n-dimensional
manifold for n > 6 whose boundary is the
disjoint union oW = ggW [[ 01 W'.

Definition 1.6 The n-dimensional handle
of index q or briefly q-handle is D9 x D" 4,
Its core is DY x {0}. The boundary of the
core is S9~1 x {0}. Its cocore is {0} x D4
and its transverse sphere js {0} x S7—4—1,

Notation 1.7 If¢?: S9—1xpr—a-1 _ og;w
iIs an embedding, then we say that the
manifold W 4 (¢9) defined by W Ugq D7 x
D"~14 js obtained from W by attaching a
handle of index q by ¢%. Notice that OgW
is unchanged. Put

(W + (¢7))
O1(W + (¢%))

GOW;
OW + (¢%)) — BoW.



Lemma 1.8 Let W be a compact man-
ifold whose boundary OW is the disjoint
sum ogW [J01W. Then W possesses a han-
dlebody decomposition relative ogW, i.e.
W is up to diffeomorphism relative OgW =
JgW x {0} of the form

Po P1
W 2 gWx[0,1]4+ S D)+ 3 (61

Pn
+. 4 D@,

=1

Lemma 1.9 (Cancellation lemma) Let ¢?:
Si9—1x pn—4 — 9;W be an embedding. Let
patl . g9« pr=1-a _, 5.(W + (¢49)) be an
embedding. Suppose that ¢¥4171(57 x {0})
is transversal to the transverse sphere of
the handle (¢9) and meets the transverse
sphere in exactly one point. Then there is
a diffeomorphism relative ogW from W to

W+ (¢9) + (p711).



Definition 1.10 Let C«(W,9,W) be the
based free Zmw-chain complex whose qg-th
chain group is Hy(Wg, W,_1) and whose g-
th differential is given by the composition

e~ a
Hq(Wq, Wy—1) — Hq(Wy—1)

i ~— —————~—

— q—1(Wq—17Wq—2)>
where 9, is the boundary operator of the
long homclo\gl sequence associated to the
pair (Wp, W,_1) and iq is induced by the
inclusion.

Lemma 1.11 There is a CW-complex X
such that there is a bijection between the
qg-handles of W and the q-cells of X and
a homotopy equivalence f . W — X which
respects the filtrations. The cellular Zm-
chain complex Cy«(X) is based isomorphic
to the Zm-chain complex Cy(W).

Remark 1.12 Notice that one can never
get rid of one handle alone, there must
always be involved at least two handles si-
multaneously.



Lemma 1.13 The following statements are
equivalent

1. Theinclusion 9gW — W is 1-connected,

2. We can find a diffeomorphism relativ
oW
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P2 P35
W aW x (0,114 Y (63) + Y ()

=1 =1

Pn
.4 D (@)

=1



Lemma 1.14 (Homology lemma) Suppose
n>6. Fix2<qg<n—-3andig € {1,2,...pq}.
Let ST — O1W, be an embedding. Then
the following statements are equivalent

1. f is isotopic to an embedding g : S1 —
01Wq such that g meets the transverse
sphere of (qbgo) transversally and in ex-
actly one point and is disjoint from
transverse spheres of the handles (qﬁg)
for i #= i,

2. Let f: 81 — W, be a lift of f under
Pl W, — Wy. Let [f] be the image
q

of the class represented by f under the
obvious composition

e~

ra(Wg) — (s Wy 1)

— —

— Hq(WZ], Wy_1) = Cq(W).
Then there is v € m with

[f] = £v- 6]



Remark 1.15 Notice that in the proof of
the implication (2) = (1) of the Homol-
ogy Lemma [1.14 the Whitney trick comes
in and that the Whitney trick forces us
to assume n = dim(Mp) > 5 in the s-
cobordism Theorem I.1. For n = 4 the
s-cobordism theorem is false by results of
Donaldson in the smooth category and is
true for so called good fundamental groups
in the topological category by results of
Freedman. Counterexamples in dimension
n — 3 have been constructed by Cappell
and Shaneson.

Lemma 1.16 (Normal form lemma) Let
(W; 9gW, 01 W) be an n-dimensional oriented
compact h-cobordism for n > 6. Let q be
an integer with 2 < q <n —3. Then there
iIs a handlebody decomposition which has
only handles of index ¢ and (¢ + 1), i.e.
there is a diffeomorphism relative oW

Dq Pg+1
W= goW x 0,114 Y (¢D)+ 3 (ofTh).
1=1 1=1



Define the Whitehead group Wh(rw) as the
abelian group of equivalence classes of in-
vertible matrices A of arbitrary size with
entries in Zwx. We call A and B equivalent,
if we can pass from A to B by a sequence
of the following operations:

1. B is obtained from A by adding the k-
th row multiplied with z from the left
to the [-th row for x € Zm and k # [

2. B looks like the block matrix ( gl Cl) );

3. The inverse to operation (2)

4. B is obtained from A by multiplying the
i-th row from the left with an element
+~ for v € m,

5. B is obtained from A by interchanging
two rows or two columns.



Lemma 1.17 1. Let (W,00W,01W) be an
n-dimensional compact oriented h-cobordism
forn > 6 and A be the matrix defined
above. If [A] = 0 in Wh(x), then the
h-cobordism W is trivial relative oW ;

2. Consider an element uw € Wh(w), a closed
oriented manifold M of dimension n —
1 > 5 with fundamental group © and an
integer q with 2 < qg<n—3. Then we
can find an h-cobordism of the shape

Pq DPg4-1
W=Mx[0,1]14+ S N+ 3 (¢h
1=1 1=1

such that [A] = .

Lemma [1.17] (2) implies the s-Cobordism
Theorem Theorem [1.1. Beforehand we
have to define the Whitehead torsion

7(f) € Wh(m (V)

of a homotopy equivalence f : X — Y of
finite CW-complexes and to establish its
main properties listed below.



Theorem 1.18 1. Sum formula

Consider the commutative diagram of
finite CW-complexes

X X
D N
B oe—
l
Xo—— X 0
2& f |
YQ 2 Y

such that the back square and the front
square are cellular pushouts and fo, f1
and fo> are homotopy equivalences. Then
f is a homotopy equivalence and

7(f) = (1)«7(f1)+U2)«7(f2)—(lo)+7(f0);

2. Homotopy invariance

Let f ~ g . X — Y be homotopic.
Then f« = g« : Wh(n(X)) — Wh(xw(Y)).
If additionally f and g are homotopy
equivalences, then

m(9) = 7(f);



3. Composition formula

Let f : X — Y and g | 'Y — Z be
homotopy equivalences of finite CW -
complexes. Then

T(go f) = g«7(f) +71(9),

4. Product formula

Let f: X' - X andg:Y' — Y be ho-
motopy equivalences of connected fi-
nite CW-complexes. Then

T(fxg) = x(X)-5x7(9) +x(Y)-tx7(f);

5. Topological invariance

Let f: X — Y be a homeomorphism
of finite CW-complexes. Then

(f) = 0.



We Driefly give the definition of White-
head torsion. Let C«(f) : Cx(X) — Cx(Y)
be the Zm-chain homotopy equivalence in-
duced by the lift f of f to the universal
covering for # = m(X) = w1 (Y). Let
conex be its mapping cone. This is a con-
tractible based free Zn-chain complex. Let

v« be a chain contraction. Then

(c+ Y)odd : CONeggq — CONeey

is bijective. Its matrix A is an invertible
matrix over Zmn. Define

(f) = [A] Wh(x). (1.19)

Given an h-cobordism (W; My, fo, M1, f1)
over Mgy, we define its Whitehead torsion
(W, M) by the Whitehead torsion of the
inclusion 9gW — W. Notice that we get
C'W-structures on 9gW and W from any
smooth triangulation and the choice of tri-
angulation does not affect the Whitehad
torsion. This is the invariant appearing
in the s-Cobordism Theorem [OI.1 and in
Lemma 1 17.



Definition 1.20 A homotopy equivalence
f X — Y of finite CW-complexes is called
simple if 7(f) = 0.

We have the inclusion of spaces Sn—2
S_I_ c S 1 ¢ D", where S+ c sn1is
the upper hemisphere. The pair (D", Si‘l)
carries an obvious relative CW-structure.
Namely, attach a (n — 1)-cell to Sn 1 py
the attaching map id ;: S 2 — §n— 2 to ob-
tain S*"~1. Then we attach to S 1 an n-
cell by the attaching map id : s7—1 — gn—1
to obtain D"™. Let X be a CW-complex.
Let q : S?I__l —» X be a map satisfying
g(S"72) C Xp_p and q(ST1) C X,_1. Let
Y be the space D" U4 X, i.e. the push out

sn-t 4, x

_|_

zl lj

D" — 'Y
g

where 7 is the inclusion. Then Y inherits

a CW-structure by putting Y, = j(X;) for

k<n-—2, Y,_1=j(X,_1)Ug(5" 1) and
= j(X) Ug(D™) for k > n.



We call the homotopy equivalence 5 an ele-
mentary expansion Thereisamapr:Y —
X with roj = idx. We call any such map
an elementary collaps.

Theorem 1.21 Let f: X — Y be a map
of finite CW-complexes. It is a simple ho-
motopy equivalence if and only if there is
a sequence of maps

f

X =x[0] L% xS xp =y

such that each f; is an elementary expan-
sion or elementary collaps and f is homo-
topic to the composition of the maps f;.



Finally we give some information about the
Whitehead group Wh(mx).

e The Whitehead group Wh(G) is known
to be trivial if G is the free abelian
group Z™ of rank n or the free group
*1_1/Z of rank n;

e The Whitehead group satisfies Wh(G
H) =Wh(G) @ Wh(H);

e There is the conjecture that Wh(G)
vanishes for any torsionfree group G.
This has been proven by Farrell and
Jones for a large class of groups. This
class contains any subgroup G C G,
where G’ is a discrete cocompact sub-
group of a Lie group with finitely many
path components, and any group G
which is the fundamental group of a
non-positively curved closed Rieman-
nian manifold or of a complete pinched
negatively curved Riemannian manifold.



e If GG is finite, then Wh(G) is very well
understood. Namely, Wh(GQG) is finitely
generated, its rank as abelian group is
the number of conjugacy classes of un-
ordered pairs {g,¢g~ 1} in G minus the
number of conjugacy classes of cyclic
subgroups, and its torsion subgroup is
isomorphic to the kernel SK1(G) of the
change of coefficient homomorphism
K1 (ZG) — K1(QG).

For a finite cyclic group G the White-
head group Wh(G) is torsionfree. The
Whitehead group of the symmetric group
Sy, is trivial;

e The Whitehead group of Z2xZ/4 is not
finitely generated as abelian group;



e For a ring R the first K-group Kq1(R)
is defined to be the abelianization of
the general linear group

GL(R) := colimp—ccGL(n, R).

For R = ZG the Whitehead group Wh(G)
is the quotient of K1(ZG) by the sub-
group generated by all (1,1)-matrices
of the shape (+g) for g € G.

Remark 1.22 Given an invertible matrix
A over ZG, let A* be the matrix obtained
from A by transposing and applying the
involution

Z—7G, Y A-g = > Ag-g L.
geG geG

We obtain an involution

*x . Wh(G) — Wh(G), [A] — [A%].

It corresponds on the level of h-cobordisms
to

(W, M) = (—1)4mMMo) (7 (W, My)).



2. Poincaré spaces, normal
maps and the surgery step

Problem 2.1 Let X be a topological space.
When is X homotopy equivalent to a closed
manifold?

The cap-product vields a Z-homomorphism

N:Hp(X;Z) — [ C"*(X),Ce(X)]zx
r — ?Nz:C"HX) — Cu(X).

Definition 2.2 A connected finite n-dimensional
Poincaré complex is a connected finite CW -
complex of dimension n together with an
element [X] € Hn(X;Z) called fundamen-
tal class such that the Zmw-chain map ? N
[X] : C"*(X) — Cx«(X) is a Zm-chain ho-
motopy equivalence. We will call it the
Poincaré Zm-chain homotopy equivalence.

We call X simple if the Whitehead torsion
of the Poincaré Zm-chain homotopy equiv-
alence vanishes.



Theorem 2.3 Let M be a connected ori-

ented closed manifold of dimensionn. Then
M carries the structure of a simple con-

nected finite n-dimensional Poincaré com-

plex.

Remark 2.4 The analytic version of Poincaré
duality is the fact that the space HP(M) of
harmonic p-forms on a closed connected
oriented Riemannian manifold is canoni-
cally isomorphic to HP(M;R) and the Hodge-
star-operator induces an isomorphism

«  HP(M) — HIM)=p(ppy.

From a Morse theoretic point of view Poincaré
duality corresponds to the dual handlebody
decomposition of a manifold which comes
from replacing a Morse function f by —f.

T his corresponds simplicially to the so called
dual cell decomposition associated to a tri-
angulation.



Definition 2.5 Let X be a finite connected
Poincaré complex of dimension n = 4k.
Define its intersection pairing to be the
symmetric bilinear nhon-degenerate pairing

I:H%(X:R)®p H(X;R) = H"(X;R)
<_7[X]R>/ R

Define the signature sign(X) to be the sig-
nature of the intersection pairing.

Remark 2.6 The notion of a Poincaré com-
plex can be extended to pairs. One re-
quires the existence of a fundamental class

[ X, A] € Hy(X, A;Z) such that the Zx-chain
maps ? N [X, A] : C**(X,A) — C«(X) and
?7N[X,A] : C"*(X) — C«(X,A) are Zn-
chain equivalences. Also the signhature can
be defined for Poincaré pairs.



Lemma 2.7 1. Bordism invariance
Let (X,A) be a (4k 4+ 1)-dimensional
oriented finite Poincaré pair. Then

> sign(C) = 0.

CET&'o(A)

2. Additivity

Let M and N be compact oriented man-
ifolds and f : OM — ON be an orien-
tation reversing diffeomorphism. Then
MUy N inherits an orientation from M
and N and

sign(M Uy N) = sign(M) + sign(N);

3. Multiplicativity

Let p: M — M be a finite covering
with d sheets of closed oriented mani-
folds. Then

sign(M) = d-sign(N).



Example 2.8 Wall has constructed a fi-
nite connected Poincaré space X together
with a finite covering with d sheets X — X
such that the signature does not satisfy
sign(X) = d - sign(X) Hence X cannot be
homotopy equivalent to a closed manifold
by Lemma 2.7].

Next we briefly recall the Pontrjagin-Thom
construction. Let ¢ : E — X be a k-
dimensional vector bundle over a CW-complex
X. Denote by Q,(X, &) the set of bordism
classes of closed n-dimensional manifolds
M together with an embedding 72 : M —
R" % and a bundle map 7 : v(i) — £ cov-
eringamap f: M — X. Let Th(¢) be the
Thom space. Denote the collapse map by

c:S"TE  Thw(M))



Theorem 2.9 (Pontrjagin-Thom construc-
tion) The map

Pu(€) : Qn(X,8) = mpyn(Th(E)),

which sends the class of (M,i, f, f) to the
class of the composite

s7 k2 Thiu () 229 Thee

is bijective. Its inverse is given by making
a map f : S"Tk — Th(¢) transversal to
the zero section X C FE and taking the
restriction to f~1(X).

Example 2.10 Let ©Q,(X) be the bordism
group of oriented closed manifolds M with
reference map M — X. Let Er — BSO(k)
be the universal bundle and define v : X X
Ep — X x BSO(k). There is an obvious
bundle map i : 7 ®R — ~vp41. We obtain
a canonical bijection.

Thus we get an isomorphism of abelian
groups natural in X

P Qn(X> = CO|imk_>OO 7Tn—|—k(Th(7k))



Remark 2.11 Notice that this is the be-
ginning of the theory of spectra and stable
homotopy theory. A spectrum E consists
of a sequence of spaces (Ej).cz together
with so called structure maps s; : 2 E; —
Ep41. The n-th stable homotopy group is
defined by

m(E) = colimg_ o 4k (Ex)

with respect to the directed system given
by the composites

Tnt+k(Er) = Tpprt1(ZEp)
Tntk+1(5k)

Tn4k+1(Er+1)-

Example 2.12 Let Q" be the bordism ring
of stably framed manifolds, i.e. manifoIst
together with stable trivializations v(M) —
R™*k. This is the same as colimy_. ., 2, (R¥).
Thus we get an isomorphism

QI =, 78 1= colimy_, o0 Tt (S™).



Next we deal with the Spivak spherical fi-
bration which is the analogue of the nor-
mal sphere bundle of a closed manifold for
a finite Poincaré complex.

A spherical (k — 1)-fibration p : E — X is
a fibration, i.e. a map having the homo-
topy lifting property, whose typical fiber is
homotopy equivalent to S¥—1. Define its
associated disc fibration by

Dp: DE = cyl(p) — X.
Define its Thom space to be the pointed
space
Th(p) := cone(p) = DE/E.

We call & orientable if the fiber transport
is trivial. Denote by &xn the fiberwise join.
There are canonical homeomorphisms

Th(§ xn) Th(§) A Th(n),
Th(e+RF 1) = sF-1Th(e).

112



Theorem 2.13 (Thom isomorphism) Let
p. E — X bean orientable (k—1)-spherical
fibration. Then there exists a so called
Thom class U, € H*(DE, E;Z) such that
the composite

+k
mrtexezy 20y p g7

?UU.
— 2, HPTH(DE,SE;7)

is bijective.

Definition 2.14 A Spivak normal fibration

for an n-dimensional connected finite Poincaré
complex X is a (k — 1)-spherical fibration
p=px - E — X together with a pointed

map ¢ = cx : S"tk — Th(p) such that for

some choice of Thom class U, € H*(DE, E; Z)
the fundamental class [X] € Hp(X;7Z) and

the image h(c) € H,4(Th(p)) = H,4(DE,E, Z)
of [c] under the Hurewicz homomorphism

h w4k, (Th(p)) — Hyy ik (Th(p),Z) are re-
lated by the formula

[X] = Hn(p)(Up N h(c)).



Remark 2.15 A closed manifold M ad-
mits a Spivak normal fibration.

Theorem 2.16 (Existence and unique-
ness of the Spivak normal fibration)
Let X be a connected finite n-dimensional
Poincaré complex. Then for k > n there
exists a Spivak normal (k — 1)-fibration for
X. It is unique up to strong fiber homo-
topy equivalence after stabilization.

Definition 2.17 Let X be a connected fi-
nite n-dimensional Poincaré complex. A
normal k-invariant (§,c¢) consists of a k-
dimensional vector bundle &€ : E — X to-
gether with an element c € m,4;(Th(&))
such that for some choice of Thom class
Uy, € H*(DE, SE; w%) the equation

[X] = Hn(p)(Up N h(c))

holds. The set of normal k-invariants 7,(X, k)
is the set of equivalence classes of normal
k-invariants of X. Define the set of normal
invariants



Let BO(k) be the classifying space for k-
dimensional vector bundles and BG(k) be
the classifying space for (k — 1)-spherical
fibrations. Let J(k) : BO(k) — BG(k) be
the canonical map. Put

BO := colim;_ ., BO(k)

BG colimy_, ., BG(k)
J colimg_, . J(k).

Remark 2.18 A necessary condition for a
connected finite n-dimensional Poincaré com-
plex to be homotopy equivalent to a closed
manifold is that 7,,(X) # 0, or equivalently,
that the classifying map s : X - BG(k)
lifts along J : BO — BG. There is a fi-
bration BO — BG — BG/0O. Hence this
condition is equivalent to the statement
that the composition X - BG — BG/O
is homotopic to the constant map. There
exists a finite Poincaré complex X which
do not satisfy this condition.

Let G/O be the homotopy fiber of J :
BO — BG. This is the fiber of the fibra-
tion J : E; — BG associated to J. Then
the following holds



Theorem 2.19 Let X be a connected fi-
nite n-dimensional Poincaré complex. Sup-
pose that 7T,(X) is non-empty. Then there
iIs a canonical group structure on the set
[ X, G/O] of homotopy classes of maps from
X to G/O and a transitive free operation
of this group on T,(X).

Notice that Theorem [2.19 vields after a
choice of an element in 7,(X) a bijection

of sets [X,G/O] =, Tn(X).

Definition 2.20 Let X be a connected fi-
nite n-dimensional Poincare complex to-
gether with a k-dimensional vector bundle
¢ FE — X. A normal k-map (M,i, f, f)
consists of a closed manifold M of dimen-
sion n together with an embedding : : M —
Rk and a bundle map (f,f) : v(M) — €.
A normal map of degree one is a normal
map such that the degree of f : M — X is
one.



Definition 2.21 Denote by N,(X,k) the
set of normal bordism classes of normal k-
maps to X. Define the set of normal maps
to X

Nn(X) = colimg_, . Nn(X, k).

Theorem 2.22 The Pontrjagin-Thom con-
struction yields for each a bijection

P(X) : Nu(X) = Tn(X).

Remark 2.23 In view of the Pontrjagin
Thom construction it is convenient to work
with the normal bundle. On the other
hand one always needs an embedding and
one would prefer an intrinsic definition. This
is possible if one defines the normal map in
terms of the tangent bundle. Namely one
requires bundle data of the form (f,f) :
TM ®R*— £ Both approaches are equiv-
alent.



Problem 2.24 Suppose we have some nor-
mal map (f, f) from a closed manifold M
to a finite Poincaré complex X. Can we
change M and f leaving X fixed to get a
normal map (g,qg) such that g is a homo-
topy equivalence?

Remark 2.25 Consider a normal map of
degree one f : TM ® R® — ¢ covering f :
M — Y. It is a homotopy equivalence if
and only if . (f) = 0 for all k. Consider
an element w € mp41(f) represented by a
diagram

sk L m

]l lf

DTl _, vy
Q

We can get rid of it by attaching a cell to
M according to this diagram. But this de-
stroys the manifold structure on M. Hence
we have to find a similar procedure which
keeps the manifold structure. This will
lead to the surgery step. Here also the
bundle data will come in.



Theorem 2.26 (Immersions and bundle
monomorphisms) Let M be a m-dimensional
and N be a n-dimensional closed manifold.
Suppose that 1 < m < n and that M has

a handlebody decomposition consisting of
q-handles for ¢ < n — 2. Then taking the
differential of an immersion yields a bijec-
tion

T : mog(Imm(M, N)) =,
colimg— oo mgp(Mono(TM & R*, TN @& R%)).

Example 2.27 An easy computation shows
that mo(Imm(S2,R3)) consist of one ele-
ment. Hence one turn the sphere inside
out by a regular homotopy.



Theorem 2.28 (The surgery step) Consider
a normal map

(f,f):TM&Re —¢

and an element w € 4 1(f) for k <mn —2
forn =dim(M).

1. We can find a commutative diagram
of vector bundles

T(Sk x D *F)gRatt L, 7prrgpRetD
TjonDidya4p—1 l lf

T(Dk—|—1 ¢ Dn—k) D Ra—l—b—l — é- D Kb
Q

covering a commutative diagram

Sk x pr—k L M

il |7

Dk+1  pn—k __, x
Q

such that the restriction of the last di-
agram to DFT1 x {0} represents w and
q: Sk x D"k _ M is an immersion;



2. Suppose that the regular homotopy class
of the immersion q appearing in ({1])
contains an embedding. Then one can
arrange q in assertion ([1)) to be an em-
bedding. If 2k < n, one can always find
an embedding in the regular homotopy
class of q;

3. Suppose that the map q appearing in
assertion ([1]) is an embedding.

Let W be the manifold obtained from
M x [0, 1] by attaching a handle DFt1x
D"k py q: Skx Dk o M = M x {1}.
Let FF: W — X be the map induced

bny[O,l]iMLX and Q : DF x

Dkl . X After possibly stabilizing
f the bundle maps f and Q induce a
bundle map F : TW @ R+t _ ¢ o R?
covering F : W — X. Thus we get a
normal map

(F,F): TW R0 . ¢ R?

which extends (f & (f xidgs), f) : TM &
RITE — ¢ p R,



4. The normal map (f, ) : TM'@Rtb
¢ R obtained by restricting (F, F) to
OW — M x {0} =: M’ appearing in as-
sertion (3) is a normal map of degree
one which is normally bordant to (f, f)
and has as underlying manifold

M' = M—int(q(S¥x D" k) )u,DFx g7 k1,

We will the result of surgery on (f, f)
and w.

Theorem 2.29 Let X be a connected fi-
nite n-dimensional Poincaré complex. Let
f:TM ®R®* — ¢ be a normal map of de-
gree one covering f . M — X. Then we
can carry out a finite sequence of surgery
steps to obtain a normal map of degree
oneg: TN @Rl _ ¢ Rb covering g :
N — X such that (f, f) and (g, g) are nor-
mally bordant and g is k-connected, where
n=2k orn=2k-+ 1.



Problem 2.30 (Surgery problem) Suppose
we have some normal map (f,f) from a
closed manifold M to a finite Poincaré com-
plex X. Can we change M and f leaving X
fixed by finitely many surgery steps to get

a normal map (g,g) from a closed man-
ifold N to X such that g is a homotopy
equivalence?

Remark 2.31 Suppose that X appearing
in Problem is orientable and of dimen-
sion n = 4k. Then we see an obstruction
to solve the Surgery Problem 2.30, namely
sign(M) — sign(X) must be zero.



3. The surgery obstruction
groups and the surgery exact
sequence

We summarize what we have done so far.

e [ he s-cobordism Theorem;

e [ he surgery program;

e \Whitehead torsion;

e Problem: When is a CW-complex ho-
motopy equivalent to a closed oriented
manifold;

e Finite Poincaré complexes;

e Pontrjagin-Thom construction;

e Spivak normal fibration;



The set 7,,(X) of reductions of the Spi-
vak normal fibration to vector bundles;

The set M, (X) of normal bordism classes
of normal maps (f,f) : TM ® R? — ¢
covering a map f : M — X of degree
one;

Construction of bijections

Mn(X) = To(X) = [X,G/0];

The surgery step and bundle data;

Making a normal map highly connected
by surgery;

Formulation of the surgery problem;

The signature is a surgery obstruction.



Theorem 3.1 (Surgery obstruction theorem)
There are L-groups Lyn(Z7w) which are de-

fined algebraically in terms of forms and
formations over Zmw, and for any normal

map (f,f) : TM ® R* — ¢ there is an ele-

ment called surgery obstruction

0-(77 f) S Ln(Zﬂ)

forn =dim(M) > 5 and = = m1(X) such
that the following holds:

1. Suppose n > 5. Then o(f,f) = 0 in
Ln(Zm,w) if and only if we can do a fi-
nite number of surgery steps to obtain
a normal map (f',f) : TM' @ Retb
¢ ®R® which covers a homotopy equiv-
alence f': M' — X;

2. The surgery obstruction o(f, f) depends
only on the normal bordism class of

(f, 1)



Remark 3.2 We will only give some de-
tails in even dimensions n = 2k. There the
essential problem is to figure out whether
an immersion f : S¥ — M is regular ho-
motopic to an embedding. This problem
will lead to the notion of quadratic form
and the L-group Ln(Zm) and the surgery
obstruction in a natural way.

We fix base points s € S¥ and b €¢ M
and assume that M is connected and k >
2. We will consider pointed immersions
(f,w), i.e. an immersion f : S¥ — M to-
gether with a path w from b to f(s). De-
note by

Ii,(M)

the set of pointed homotopy classes of
pointed immersions from S* to M. It in-
herits the structure of a Zm-module.

Next we want to define the intersection
pairing

A L(M) x (M) — Zr. (3.3



Consider ag = [(fo,wo)] and a1 = [(f1,w1)]
in I, (M). Choose representatives (fg, wg)
and (f1,w1). We can arrange without chang-
ing the pointed regular homotopy class that
D =im(fp)Nnim(fy) is finite, for any y € D
both the preimage fo_l(y) and the preim-
age fl_l(y) consists of precisely one point
and for any two points zg and z1 in S* with
fo(zo) = fi(z1) we have Ty fo(TzeS™) +
Ty f1(Twy S¥) = T, ()M . Consider d € D.
Let xg and z7 In Sk be the points uniquely
determined by fo(xg) = f1(x1) = d. Let
u; be a path in S*¥ from s to z;. Then we
obtain an element ¢g(d) € © by w1 * f1(uq) *
fo(upg)™ *wy. Define e(d) = 1 if the iso-
morphism of oriented vector spaces

Trofo ® Ty f1 1 TuoS™ ® Ty S¥ = Ty;M

respects the orientations and e(d) = -1
otherwise. Define

Mag,1) == ) e(d) - g(d).

deD



Remark 3.4 One can describe the inter-
section pairing in terms of algebraic inter-
section numbers:

)\(O{0,0é]_) — Z AZ(}:C/)alg—l O E) " g.
gem

Remark 3.5 A necessary condition for an
immersion f: Sk — M to be regularily ho-
motopic to an embedding is

(S, f) = 0.

This condition is only sufficient. In order
to get a necessary and sufficient condi-
tion we have to deal with selfintersections
which will give a refinement of the inter-
section pairing. Algebraically this corre-
sponds to refine a symmetric form to a
quadratic form. In this step the bundle
data of a normal map will actually be used.



Let o € I..(M) be an element. Let (f,w) be
a pointed immersion representing «. We
can assume without loss of generality that
f is in general position, i.e. there is a finite
subset D of im(f) such that f~1(y) con-
sists of precisely two points for y € D and
of precisely one point for y € im(f)—D and
for two points zg and z1 in S¥ with zg # x1
and f(zo) = f(z1) we have Ty, f(TryS*) +
Ty f (T, S®) = Ty ()M . Now fix for any
d € D an ordering zg(d),z1(d) of f~1(d).
Analogously to the construction above one
defines e(xpg(d),x1(d)) € {£1} and g(xg(d),z1(d)) €
7. Define the abelian group

Q_yy(Zm) 1= Zm/{u—(-1)"-u|u € Zr}.
Define the selfintersection element
(o) = | Y e(zo(d), z1(d)) - g(zo(d), z1(d))

deD



Remark 3.6 The passage from Zmr to Q(_l)k(Zw)
ensures that the definition is independent

of the choice of the order on f~1(d) for

de D.

Theorem 3.7 For dm(M) = 2k > 6 a
pointed immersion (f,w) of Sk in M is
pointed homotopic to a pointed immersion
(g,v) for which g : S¥ — M is an embed-
ding, if and only u(f) = 0.

Fix a normal map of degree one (f,f) :
TM ®d R* — & covering f: M — X.

Definition 3.8 Let K.(M) be the kernel
of the Zm-map H(f) : Hp(M) — H.(X).
Denote by K¥(M) be the cokernel of the
Zm-map H*(f) : H(X) — HF(M) .



Lemma 3.9 1. The cap product with [M]
induces isomorphisms

70 [M] : K" R = K, (M):

2. Suppose that f is k-connected. Then
there is the composition of natural Zm-
iIsomorphisms

hi @ m+1(f) =, Tr41(f)
= Hypy1(f) = Kp(M);

3. Suppose that f is k-connected and n =
2k. Then there is a natural Zm-homomophism

ty T (f) — I (M).



The Kronecker product induces a pairing
(, ) KMM) x Kp(M) — Znr.
Together with the isomorphism

70 [M] - KR = K, (M):

of Theorem 3.9 ([I]) it induces the pairing

S . Kk(M) X Kk(M) — .

Lemma 3.10 The following diagram com-
mutes

K (M) x Kp(M) = Zn

o e

Ik(M)XIk(M) 7 i

In the sequel we will sometimes identify
P and (P*)* by the canonical isomorphism

e(P) : P = (P*)*.



Definition 3.11 An e-symmetric form (P, ¢)
over an associative ring R with unit and
involution is a finitely generated projec-
tive R-module P together with a R-map
¢ . P — P* such that the composition

P = (P")* — P agrees with ¢ - ¢. We
call (P,¢) non-degenerate if ¢ is an iso-
morphism.

We can rewrite (P, ¢) as pairing

AN:PxP—Zr, (pq)— o(»)(q).

Example 3.12 Let P be a finitely gener-
ated projective R-module. The standard
hyperbolic e-symmetric form H¢(P) is given
by the Zm-module P P* and the R-isomorphism

<() 1)
e O
o (P@PY)

If we write it as a pairing we obtain

» PP = (P& P")".

(PP )Yx (PO P") — R
((p,®), (P, ¢)) — o) +e-¢'(p).



Example 3.13 An example of a non-degenerate
(—1)k-symmetric form over Zx with the w-
twisted involution is K(M) with the pair-

ing s above, provided that f is k-connected

and n = 2k. This uses the fact that K (M)

is stably finitely generated free and hence

in particular finitely generated projective.

For a finitely generated projective R-module
P define an involution of R-modules

T :homp(P, P*) — hom(P, P*) f— f*
and put

Q(P) = ker(l—€-T);

Qe(P) = coker(l—e¢-T).

Definition 3.14 A e-quadratic form (P, )
is a finitely generated projective R-module
P together with an element ¢ € Qc(P). It
is called non-degenerate if the associated
e-symmetric form (P,(14+¢-T)(v)) is non-
degenerate, i.e. (1+¢-T)(y) : P — P* s
bijective.



An e-quadratic form (P, ¢) is the same as
a triple (P, A\, u) consisting of pairing

AN PxP—R

satisfying

Ap,r1-91+7r2-q2,) = r1-AD,q1) + 12 A(p,q2);

Ar1-p1+72-02,9) = Ap1,9) -T1 + A(p2,q) - 72;
Mg, p) = €e-A(p,q).

and a map

p:P—Q(R)=R/{r—€e-7|r e R}
satisfying

p(rp) ru(p)T;
pe+q) —plp) —ple) = pr(i(p,q9));

A(p, p) (1 +e-T)(u(p)),
where pr: R — Q<(R) is the projection and
(L+e€e-T): Q(R) — R the map sending
the class of » to » 4+ €-7. Namely, put

Ap,g) = ((Q4e-T)W))(p)) (q);
u(p) = ¥(p)p).



Example 3.15 Let P be a finitely gener-
ated projective R-module. The standard
hyperbolic e-quadratic form H¢(P) is given
by the Zm-module P & P* and the class in
Qe(P @ P*) of the R-homomorphism

(() 1)
O O
¢ (P@P")

The e-symmetric form associated to He(P)
is HE(P).

P*®P = (P®P*)*

Example 3.16 An example of a non-degenerate
(—1)k-quadratic form over Zx with the w-
twisted involution is given as follows, pro-
vided that f is k-connected and n = 2k.
Namely, take K.(M) with the pairing s
above and the map

t: Kk(M) & Ik(M) & Q(_l)k(Zw,w).

Example 3.17 The effect of doing surgery
on 0 € mp4-1(f) is to replace M by the con-
nected sum M#(S* x S*) and to replace
Ky(M) by Ky(M) & H_yy(Zr).



Remark 3.18 Supposethat 1/2 € R. Then
the homomorphism

(1+eT) : Qe(P) = Q(P) [¥] — [+eT(y)]

is bijective. The inverse sends [u] to [u/2].
Hence any e-symmetric form carries a unique
e-quadratic structure.

Theorem 3.19 Consider the normal map

(f, f) : TM®R®* — ¢ covering the k-connected

map of degree one f . M — N of closed
connected n-dimensional manifolds forn =

2k. Suppose that k > 3 and that for the
non-degenerate (—1)*-quadratic form (K, (M), s, t)
there are integers u,v > 0 together with

an isomorphism of non-degenerate (—1)k-
quadratic forms

(Kp(M),s,)OH _1ye(Ze") 2 H_jy(ZrY).

Then we can perform a finite number of
surgery steps resulting in a normal map
of degree one (g,q) : TM' ® Retl ., ¢ @
RY such that g : M' — X is a homotopy
equivalence.



Proof: Without loss of generality we can
choose a Zmn-basis {b1,bp,...by,c1,¢p,...Cv}
for K. (M) such that

s(bj,c;) = 1 S {1,2,...’0};

s(bj,c;) = 0O i,7 €4{1,2,...v}, i # 7,
s(bi,b;) = O ije{1,2,.. v}
s(ci,cj) = 0 i,7 € {1,2,...v};

t(b;) = 0O ie{1,2,... v}

Notice that f is a homotopy equivalence if
and only if the number v is zero. Hence

it suffices to explain how we can lower the
number v to (v—1) by a surgery step on an
element in w4 1(f). Of course our candi-
date is the element w in 74 1 (f) which cor-
responds under the isomorphism h : 7Tk:-|—1(f) —
K;.(M) to the element b,.

Definition 3.20 Let R be an associative
ring with unit and involution. For n = 2k
define L,(R) to be the abelian group of
stable isomorphism classes [(F, )] of non-
degenerate (—1)k-quadratic forms (F, ) whose
underlying R-module F' is a finitely gener-
ated free R-module.



Definition 3.21 Consider a normal map
of degree one (f,f) : TM ® R* — ¢ cov-
ering f . M — X for n = 2k = dim(M).
Make f k-connected by surgery. Define
the surgery obstruction

o(f,f) € Ln(Zm)

by the class of the (—1)%-quadratic non-
degenerate form (Ki(M), s,t).

Theorem 3.22 1. The signature defines
an isomorphism

1 - 1
é.Sign . Lo(Z) — Z, [P, y] — é'Sigﬂ(R@)ZP, A).

The surgery obstruction is given by
_ 1 , .
o(F.f) = 5 - (sign(X) —sign(11));
2. The Arf invariant defines an isomor-
phism

Arf : Lo(Zn) — 7,)2:

3. L1(Z) and L3(Z) vanish.



Theorem 3.23 Let X be a simply con-
nected finite Poincarée complex of dimen-
sion n.

1. Suppose n = 4k > 5. Then X is ho-
motopy equivalent to a closed manifold
if and only if the Spivak normal fibra-
tion has a reduction to a vector bundle
¢ . E — X such that

(L)1 [X]) = sign(X);

2. Supposen =4k +2 > 5. Then X is
homotopy equivalent to a closed man-
ifold if and only if the Spivak normal
fibration has a reduction such that the
Arf invariant of the associated surgery
problem vanishes;

3. Supposen =2k+1 >5. Then X is
homotopy equivalent to a closed man-
ifold if and only if the Spivak normal
fibration has a reduction.



Remark 3.24 One can define the surgery
obstruction also for a normal map f : TM&
R* — & coveringamap (f,0f) : (M;0M) —
(X,0X) of degree one provided that df is
a homotopy equivalence. Then the ob-
struction vanishes if and only if one can
change f into a homotopy equivalence by
surgery on the interior of M. There are
also simple versions of the L-groups and
the surgery obstruction, where 9f is re-
quired to be a simple homotopy equiva-
lence and the goal is to change f into a
simple homotopy equivalence.

Definition 3.25 Let (X,0X) be a com-
pact oriented manifold of dimension n with
boundary 0X. Define the set of normal
maps to (X,0X)

Nn(X,0X)

to be the set of normal bordism classes of
norma/ maps of degree one (f,f) : TM &

— & with underlying map (f,0f) : (M,0M) —
(X 0X) for which 0f : OM — 0X is a dif-
feomorphism.



Definition 3.26 Let X be a closed ori-
ented manifold of dimension n. We call
two orientation preserving simple homo-
topy equivalences f; . M; — X from closed
oriented manifolds M; of dimension n to
X for ¢+ = 0,1 equivalent if there exists
an orientation preserving diffeomorphism
g . Mg — My such that f1 og is homotopic
to fo. The simple structure set

Sp(X)

of X is the set of equivalence classes of ori-
entation preserving simple homotopy equiv-
alences M — X from closed oriented man-
ifolds of dimension n to X. This set has a
preferred base point, namely the class of
the identity id : X — X.



Let
n:Sp(X) — Nj(X)

be the map which sends the class [f] €
S>(X) represented by a simple homotopy
equivalence f : M — X to the normal bor-
dism class of the following normal map ob-
tained from f by covering it with bundle
data of the form TM — ¢ := (f~1H)*TM.

Next we define an action of the abelian
group LfH_l(Zw,w) on the structure set
S (X)

p:Lyy1(Zr,w) X Sp(X) — Sp(X).

Fix z € L}, 1(Zm,w) and [f] € N3(X) rep-
resented by a simple homotopy equivalence
f: M — X. We can find a normal map
(F, F) covering a map of triads (F; OgF, 01 F) :
(W; 0oW,04W) — (M x [0,1], M x {0}, M X
{1}) such that g F is a diffeomorphism and
01 F is a simple homotopy equivalence and
o(F,F) = u. Then define p(x, [f]) by the
class [foO1F : 01 W — X].



Theorem 3.27 (The surgery exact sequence)
The so called surgery sequence

n_|_1(X><[O 1] XX{O 1}) —>L _|_1<Z7T ’LU)
9, S (X) L N(X) S Ly (Zm,w)

is exact for n > 5 in the following sense.
An element z € Np(X) lies in the image of
n if and only if 0(z) = 0. Two elements
y1,y2 € S3(X) have the same image un-
der np if and only if there exists an element
x € L5+1(Z7r w) with p(x,y1) = y>. For
two elements xq1,xo in Ln+1(Z7r) we have
p(xq,[id: X — X]) = p(ao, [id : X — X]) if
and only if there isu € N4 1(X x[0,1], X x
{0,1}) with o(u) = x1 — x>.

Remark 3.28 The surgery sequence of The-
orem [(3.27] can be extended to infinity to
the left.



4. Homotopy spheres

Definition 4.1 A homotopy n-sphere > s
a closed oriented n-dimensional smooth man-
ifold which is homotopy equivalent S™.

Remark 4.2 The Poincaré Conjecture says
that any homotopy n-sphere > is oriented

homeomorphic to S™ and is known to be

true for all dimensions except n = 3.

Definition 4.3 Define the n-th group of
homotopy spheres @™ as follows. Elements
are oriented h-cobordism classes [3_] of ori-
ented homotopy n-spheres >. The addi-
tion is given by the connected sum. The
zero element is represented by S™. The
inverse of [X] is given by [>~], where >~
is obtained from > by reversing the orien-
tation.



Remark 4.4 Since in the sequel all spaces
are simply connected, we do not have to
worry about Whitehead torsion. In dimen-
sion n > 5 the s-cobordim theorem im-
plies that ©, is the abelian group of ori-
ented diffeomorphism classes of homotopy
n-spheres.

Lemma 4.5 There is a natural bijection

oz:Sn(Sn)iQn [f : M — S"] — [M].

Definition 4.6 Let bP"tl C ©" be the
subset of elements [3] for which X is ori-
ented diffeomorphic to the boundary OM
of a stably parallizable compact manifold
M.

Lemma 4.7 The subset bP*"t1 c ©" js a
subgroup of @™, It is the preimage under
the composition
-1
O" & 5,(8™) L Np(S™)
of the base point [id : T'S" — TS"] in
Nn(S™).



Definition 4.8 A stable framing of a closed
oriented manifold M of dimension n is a

Y

(strong) bundle isomorphismu : TM®R* —
R"t2 for some a > 0 which is compatible

with the given orientation. An almost sta-

ble framing of a closed oriented manifold

M of dimension n is a choice of a point

x € M together with a (strong) bundle iso-

morphism @ : TM |y ¢, ® R =, R for

some a > 0 which is compatible with the

given orientation on M — {z}.

Definition 4.9 Let Q' be the abelian group
of stably framed bordism classes of sta-
bly framed closed oriented manifolds of di-
mension n.

Let Q3lM pe the abelian group of almost
stably framed bordism classes of almost
stably framed closed oriented manifolds of
dimension n. This becomes an abelian
group by the connected sum at the pre-
ferred base points.



Lemma 4.10 There are canonical bijec-
tions of pointed sets

B Nn(S™) =, Q%lm;

Y1 N1 (S % [0,11, 8" x {0,1})
i Nn—l—l(sn—l_l)-

Theorem 4.11 The long sequence of abelian
groups which extends infinitely to the left
- dm L @2 Len Lgam
%2y L Qam 2, 1 (7)

IS exact.

Proof: One easily checks that the maps are
compatible with the abelian groups struc-
tures. Now use the identifications above
and the general surgery sequence.



Recall that there are isomorphisms

1 o~
g sign : Lo(Z) — Z

and
Arf 1 Lo(Z) = 7,/2
and that Ly;41(Z) = 0 for i € Z.

Corollary 4.12 There are for 1 > 2 and
7 > 3 short exact sequences of abelian
groups

sign
8

O @4’& n Qalm N Z a\ bP4’L N O

and
0 %21, Qa|m A—”C>Z/2ibP4i_2—>O
and
0 —bpP% - 0% 11 oim o
We have
ppP>"tl =0



There is an obvious forgetful map
foQfr - q@alm, (4.13)
Define the group homomorphism

o.M _ 1, 1(50) (4.14)

as follows. Given r € Q%lm choose a repre-
sentative (M, z, @ : TM|y;_, &R — Rn+ay,
Let D™ C M be an embedded disk with ori-
gin . Since D" is contractible, we obtain
a strong bundle isomorBhism unique up to
isotopy T : TM|pn®R* = R4T™ The com-
position of the inverse of the restriction of
u to S"~1 = 9D" and of the restriction
of 7 to S™ 1 is an orientation preserving
bundle automorphism of the trivial bundle
Ra+n over S7—1  This is the same as a
map S 1 — SO(n 4+ a). It composition
with the canonical map SO(n + a) — SO
represents an element in m,,_1(SO) which
is defined to be the image of r under 0O :
QM — m,_1(50).




Let

J:m™(S0) — Qf{ (4.15)

be the group homomorphism which assigns
to the element r € m,(SO) represented by
a map u : S"™ — SO(n + a) the class of S™
with the stable framing T'S" & R® = Ratn
coming from r. One easily checks

Lemma 4.16 The following sequence is a
long exact sequence of abelian groups

2 r(s0) Loafr Logam 2, 1 (50)
Loalr L

Theorem 4.17 The Pontrjagin Thom con-
struction yields an isomorphism

fr = _s
Q, — m,.



The Hopf construction defines for spaces
X,Y and Z a map

H:[XxY,Z] — [X*Y,2Z](4.18)

as follows. Recall that the join X %Y is
defined by X x Y x [0,1]/ ~ and that the
(unreduced) suspension > 7 is defined by
Z x [0,1]/ ~. Given f : X xY — Z, let
H(f): XxY — XZ be the map induced by
fxid:Y x[0,1] — Z x [0,1]. Consider the
following composition

[S™, SO(k)] — [S™, aut(SF—1)] — [smxsk—1 gk—1]

i [Sn % Sk—l)zsk—l] — [STL—ijsk]

Definition 4.19 The composition above
induces for n,k > 1 homomorphisms of
abelian groups

Jn,k i (SO(k)) — 7Tn—|—k(5k)-

Taking the colimit for k — oo induces the
so called J-homomorphism



Lemma 4.20 T he J-homomorphism is the
composite

J :m(SO) = erer — T,
It corresponds to the map induced by J :

BO — BG on the homotopy groups m,, 4 1(BO) =
Wn(SO) and 7Tn_|_1(BG) = 7'('%.

The homotopy groups of O are 8-periodic
and given by

1 mod38| O 1 [2/3|4(5|/6]|7
m;(O) Z7/2|7/2|0|Z|0|0|0|Z

Notice that =;(SO) = 7«;(O) for i > 1 and
m0(SO) = 1. The first stable stems are
given by

n(Ol 1| 2| 3 |4|/5 6 | 7 | 8

S [ ZZ/2Z]2|Z/24 00| Z/2|Z/240 | Z/2

The Bernoulli numbers B, for n > 1 are
defined by

2 ~-1)»t1l. B
= ——+Z( ) DL(2)2
e? — 1 n>1 (2n)!
The first values are given by
n|(|1]2]3|4]|5 6 |7| 8
B | I L L L5691 [7[3617
n|6130142 130166127301 61 510




The next result is a deep theorem due to
Adams.

Theorem 4.21 1. If n # 3 mod 4, then
the J-homomorphism J, : m™(SO) —
o IS injective,

2. The order of the image of the J-homomorphism

Jag—1: 74,-1(SO) — 741
isdenominator(By/4k), where By, is the
k-th Bernoulli number.

The boundary operator in the long homo-
topy sequence vields an isomorphism

[

§ ™ (BSO) — m,_1(S0). (4.22)
Define a map

v Nn(S™) — m(BSO) (4.23)

by sending the class of the normal map of
degree one (f,f) : TM @ R* — £ covering
a map f : M — S™ to the the class rep-
resented by the classifying map fg ;ST —
BSO(n 4+ k) of &.



Lemma 4.24 The following diagram com-
mutes

Qam 2, 5 1(SO)

o

Nn(sn) 7 Tn(BSO)

The Hirzebruch signature formula says

sign(M) = (£(M),[M]). (4.25)

The L-class is a cohomology class which
is obtained from inserting the Pontrjagin
classes p,(T'M) into a certain polynomial

L(xq1,x2,...2). The L-polynomial L(xq1, x>, ...

is the sum of s; -z, and terms which do
not involve z;, where s; is given in terms
of the Bernoulli numbers B by

22k ) (22k—1 . 1) . Bk
(2k)!

s (4.26)



Lemma 4.27 Let n = 4k. Then there is
an isomorphism

b7, _1(SO) = 7.

Define a map

pp  T(BSO) — Z

by sending the element x € m,(BSO) rep-
resented by a map f : S®™ — BSO(m) to
(pr(f*ym), [S"]) for ym — BSO(m) the uni-
versal bundle. Leté : m7p(BSO) — m,_1(S0)
be the canonical isomorphism. Put

te =3CD" (o —1)1  (4.28)
Then

t-¢od Pk

Lemma 4.29 The following diagram com-
mutes for n = 4k

sign
Q%Im 8

Z.
al Ts’fétk’-id

T-1(S0) = 7




Proof: Let M be almost stably parallizable.
Then for some point x € M the restriction
of the tangent bundle TM to M — {z} is
stably trivial and hence has trivial Pontr-
jagin classes. Hence (4.25) implies for a
closed oriented almost stably parallizable
manifold M of dimension 4k

sign(M) = si - (pp(TM),[M]).

Now apply Lemma 4.27.

Theorem 4.30 Let kK > 2 be an integer.
Then bP** is a finite cyclic group of order

Sk'tk

: |im (J4k_1 L mak—1(S0) — Wik—lﬂ

3-(—1F 02k=2  (p2k—1 _ 1)
2

-numerator(By/(4k)).

Proof: bP4 = coker (Si% . Qalm _, Z).



et

be the composition of the inverse of the
Pontrjagin-Thom isomorphism 7 : QIf =,
7$, the forgetful homomorphism f : erk—l—z -
Qi'k”jl_z and the map Arf : Q?lenlz — 7./2

Theorem 4.32 Let k > 3. Then P42
is a trivial group if the homomorphism Arf :
Tkt — Z7,/2 of (4.31]) is surjective and is
Z/2 if the homomorphism Arf @ w3, ,» —
Z,/2 of (4.31)) is trivial.

Proof: We conclude from Adam’'s compu-
tations of the J-homomorphism that the
forgetful map f : Q4k+2 N Qi'k”_lz is sur-
jective. Now the claim follows from the
exact sequence

0— @421 qgam AT 7,50 ,p4i-2 o



The next result is due to Browder

Theorem 4.33 The homomorphism Arf :
Tkt — Z7,/2 of (B.31]) is trivial if 2k+1 #
ol 1

The homomorphism Arf : wjk+2 — Z./2
of (4.31) is also known to be non-trivial
for 4k+4+2 € {6,14,30,62} Hence Theorem

4.32 and Theorem 4.33 imply

Corollary 4.34 The group bP*+2 s triy-
ial or isomorphic to Z/2. We have

pph2 _ | Z)2 4k +2 A2 -2 k> 1;
10 4k 4+ 2 € {6,14,30,62}.

We have already shown

Theorem 4.35 We have for k > 3

pp2ktl — o



Theorem 4.36 For n > 1 any homotopy
n-sphere 2_ is stably parallizable.

For an almost parallizable manifold M the
image of its class [M] € Q3™ under the
homomorphism 8 : Q3M — 7,,(SO(n — 1))
is exactly the obstruction to extend the
almost stable framing to a stable fram-
ing. Recall that any homotopy n-sphere
is almost stably parallizable. The map 0
is trivial for n = 0 mod 4 by Adam’s re-
sult about the J-homomorphism. If n =20
mod 4, the claim follows from sign(M) =
0.

Theorem 4.37 1. If n = 4k 4+ 2, then
there is an exact sequence

0 — @"/ppntl
— coker (Jp, : mp(SO) — 7)) — Z/2;

2. If n =2 mod 4 or if n = 4k + 2 with
2k +1#2—1, then

" /bP" Tl 2 coker (Jp : mr(SO) — 73).



Proof: Adam’s result about the J-homomorphism
implies for 9 : Q3M — 7, _1(SO)

ker (9) = alm n#0 mod 4;
ker (0) = ker <5'9” Qalm Z) n=0 mod 4;
ker (0) = coker (Jp : m(SO) — w)).

Now use the exact sequences

sign
8

O N 642 N Qalm N Z a\ bP4’L N O

0 @421, qgalm AT 7,59 p,p4i-2 _, g
and

0O — bP2I @2j—1 a, lejnll — 0.



Theorem 4.38 Classification of homo-
topy spheres

1. Let k > 2 be an integer. Then bP* s
a finite cyclic group of order

3-(—1F 02k-2  (p2k=1 _ 1)
2

- numerator (B /(4k));

2. Let k> 1 be an integer. Then bP*k+2
is trivial or isomorphic to Z./2. We have

ppit2 _ | Z/2 4k +2 #£20—2 k> 1;
R e Ak + 2 € {6,14,30,62}.

3. If n=4k+ 2 for kK > 2 , then there is
an exact sequence

0 — @" — coker(Jp) — Z/2.

If n =4k for k> 2 or n = 4k + 2 with
4k 4+ 2 #= 2 — 2, then

" = coker(Jp);



4. Let n > 5 be odd. Then there is an
exact sequence

0 — bP"T1 . ©" — coker(J,) — O.
If n #= 2! — 3, the sequence splits.

n 1[2[3]4]5]6] 7 [8]9]10
on 1/1]?]1]1]1]28]2|8] 6
ppnTl 1/1/?/1/1]1]28[112] 1
en/pPrTl 111|111 1[2|4]6




Theorem 4.39 (The Kervaire-Milnor braid)
T he following two braids are exact and iso-
morphic to one another for n > 5.

Y RN

NN (Z)\@n el
n+1({' \ / >1(S{ \ -1

\/\/\/

and

OON TN TN

7 (O) ™ (G) ™ (G/PL) n—1(PL/O)
mn(PL) ™ (G/O) mn_1(PL)
Tnt1(G/PL) T (PL/O) Tn-1(0) mnh-1(Q)

D N



Example 4.40 Let W2"1(d) be the sub-

set of C"t1 consisting of those points (20,21, - -

which satisfy the equations 2d4-294...22 =
0 and |lzol|? + [lz1ll* 4+ ... + llznl[? = 1
These are smooth submanifolds and called
Brieskorn varieties. Suppose that d and n
are odd, Then W2""1(q) is a homotopy
(2n — 1)-sphere. It is diffeomorphic to the
standard sphere S27"~1 if d = +1 mod 8
and it is an exotic sphere representing the
generator of bP2" if d = +£3 mod 8.

Theorem 4.41 (Sphere theorem) Let M
be a complete simply connected Rieman-

nian manifold whose sectional curvature is

pinched by 1 > sec(M) > %. Then M is

homeomorphic to the standard sphere.

Theorem 4.42 (Differentiable sphere the-

orem) There exists a constant 6 with
1 > § > % with the following property: if
M is a complete simply connected Rieman-
nian manifold whose sectional curvature is
pinched by 1 > sec(M) > §. then M is
diffeomorphic to the standard sphere.



Remark 4.43 Let > be a homotopy n-
sphere for n > 5. Let Dy — 2 and D} —
2 be two disjoint embedded discs. Then
W = X — (int(Dg) [1int(DY)) is a simply-
connected h-cobordism. By the h-cobordism
there is a diffeomorphism (F,id, f) : 0Dj x
[0,1],0D5x{0},0D§*x{1}) — (W,0D§,0D?T).
Hence 2 is oriented diffeomorphic to
D" U gn-1_,gn-1 (D")~ for some orienta-
tion preserving diffeomorphism f: s7—1 —
sn=1 If f is isotopic to the identity,
is oriented diffeomorphic to S™. Hence
the existence of exotic spheres shows the
existence of selfdiffeomorphisms of Sn—1
which are homotopic but not isotopic to
the identity.



5. Assembly maps,
Isomorphism Conjectures and
the Borel Conjecture

T he results of this lecture are partially joint
with Jim Davis.

Let C be a small category.

Example 5.1 Our main example will be
the orbit category Or(G) of a group G.
It has as objects homogeneous (G-spaces
G/H. Morphisms are G-maps.

We define the category SPECTRA of spec-
tra as follows. A spectrum

E = {(E(n),o(n)) | n € Z}

is a sequence {FE(n) | n € Z} of pointed
spaces together with pointed (structure)
maps o(n) : E(n) A S - E(n4+1). A
map of spectra f : E — E’ is a sequence
of maps of pointed spaces f(n) : E(n) —
E’(n) compatible with the structure maps.



The homotopy groups of a spectrum are
defined by

mi(E) 1= colimy_, o mi4i(E(k)).
A weak homotopy equivalence of spectra

isa map f: E — F of spectra inducing an
isomorphism on all homotopy groups.

Definition 5.2 A covariant C-space is a
covariant functor from C to the category of
topological spaces. Morphisms are natural
transformations. Define analogously co-
variant pointed space, covariant spectrum
and the contravariant notions.

Example 5.3 For a G-space X we get a
contravariant Or(G)-space mapqg (7?7, X) by

G/H — mapg(G/H,X) = X!
and a covariant Or(G)-space ? xo X by

G/H — X xoG/H = H\X.

Remark 5.4 Coproduct, product, pushout,
pullback, colimit and limit exist in the cat-
egory of C-spaces.



Definition 5.5 Let X be a contravariant
andY be a covariant C-space. Define their
tensor product to be the space

X®cY = [T X(@)xY(c)/~
ceob(C)
where ~ s the equivalence relation gener-
ated by (x¢,y) ~ (x,py) for all morphisms
¢ . c— din C and points x € X(d) and
y € Y(c). Here x¢ stands for X(¢)(xz) and

¢y for Y (¢)(y).

Definition 5.6 Given C-spaces X and Y,
denote by homg(X,Y) the space of maps
of C-spaces from X to Y with the sub-
space topology coming from the obvious
inclusion into [].cop(c) map(X(c),Y (c)).



Lemma 5.7 Let X be a contravariant C-
space, Y be a covariant C-space and Z be
a space. Denote by map(Y,Z) the con-
travariant C-space whose value at an ob-
ject ¢ is the mapping space map(Y (c¢), Z).
Then — ®cY and map(Y,—) are adjoint,
i.e. there is a homeomorphism natural in
X,Y and Z

T=T(X,Y,Z) :map(X ®cY,Z)
=, home (X, map(Y, Z2)).

Lemma 5.8 Let X be a space and let' Y
and Z be covariant (contravariant) C-spaces.
Let X xY be the obvious covariant (con-
travariant) C-space. Then there is an ad-
junction homeomorphism

T(X,Y,Z) : homg(X XY, Z)
=, map(X, homeg(Y, 72)).



Remark 5.9 We have introduced the no-
tion of a tensor product and of the map-
ping space for C-spaces. They can anal-
ogously be defined for pointed C-spaces,
just replace disjoint unions J[ and carte-
sian products [] by wedges VvV and by smash
products A. All the adjunction properties
carry over.

Consider the set ob(C) as a small cate-
gory in the trivial way, i.e. the set of
objects is ob(C) itself and the only mor-
phisms are the identity morphisms. A map
of two ob(C)-spaces is a collection of maps
{f(c) : X(c) = Y(c) | ceob(C)}. There is
a forgetful functor

F:C-SPACES — o0b(C)-SPACES.

Define a functor

B :ob(C)-SPACES — (C-SPACES

by sending a contravariant ob(C)-space X
to [eeon(c) more(?,c) X X(c). In the co-
variant case one uses morg(c,?).



Lemma 5.10 The functor B is the left
adjoint of F.

Proof: We have to specify a homeomor-
phisms

T(X,Y) : homg(B(X),Y)
— homob(c) (X, F(Y))

for all ob(C)-spaces X and for all C-spaces
Y. For

F(?)B(X)= J] more(?,)xX(e) — Y(?)
ceob(C)

define T(X,Y)(f) by restricting f to X(?) =
{id>} x X(?). The inverse T(X,Y) 1 as-

signs to a map ¢g(?) : X(?) — Y(?) of

ob(C)-spaces the transformation

B(X)= ] more(?,¢) x X(c) — Y(?)
ceob(C)

given by B(X)(¢,z) =Y (¢) o g(c)(x).



Definition 5.11 A G-CW-complex X is a
G-space X together with a filtration

l=X_1CXgCX1C...CXpC...CX

such that X = colimp—oo Xn, and for any
n > 0 the n-skeleton X, is obtained from
the (n—1)-skeleton X,,_1 by attaching equiv-
ariant cells, i.e. there exists a pushout of
C-spaces of the form

licr, G/H; x S" 1 — X, 4

J l

HiEIn G/HZ x D™ — Xn



Definition 5.12 A contravariant C-CW-complex
X Is a contravariant C-space X together
with a filtration

=X 1CXpCX7C...CXpC...CX

such that X = colimp,—o X5, and for any

n > 0 the n-skeleton X, is obtained from
the (n—1)-skeleton X,,_1 by attaching con-
travariant C-n-cells, i.e. there exists a pushout
of C-spaces of the form

HiEIn morC(?7C’i) X S’I’L—l E— Xn—l

J |

[licr, more(?,¢;) x D" — Xy

Lemma 5.13 If X is a G-CW-complex,
then mapg(7,X) is a Or(G)-CW-complex.

Definition 5.14 A map f . X — Y of C-
spaces is a weak homotopy equivalence if
for all objects ¢ the map of spaces f(c) :
X(c) — Y(c) is a weak homotopy equiva-
lence.



Theorem 5.15 Let f:Y — Z be a map
of C-spaces and X be a C-space. Then f is

a weak homotopy equivalence if and only
it

f«  [X, Y] - [X, 216, lg]— lgof]
is bijective for any C-CW-complex X.

Corollary 5.16 A weak homotopy equiv-
alence between C-CW-complexes is a ho-
motopy equivalence.

Definition 5.17 A C-C'W-approximation u :
X" — X of a C-space X consists of a
C-CW-complex X' together with a weak
equivalence u.



Theorem 5.18 1. There exists a functo-
rial construction of a C-C'W -approximation;

2. Given a map f : X — Y of C-spaces
and C-CW -approximations u : X' — X
and v :Y' — Y, there exists a map f’
making the following diagram commu-
tative up to homotopy

x4 X
f’l lf
y % vy

The map f' is unique up to homotopy;

Definition 5.19 Let E be a covariant C-
spectrum. Define for a contravariant C-
space X its homology with coefficients in

E by
HS(X;E) = mp(X), ®cE)

for any CW-approximation u : X' — X.



Theorem 5.20 H.(—,E) is a generalized
homology theory for contravariant C-spaces
satisfying the disjoint union axiom and the
WHE-axiom

Homology theory means that homotopic
maps induce the same homomorphism on
H.(—,E), there is a long exact a sequence
of a pair and we have a Mayer-Vietoris se-
quence for any commutative diagram

Xo L X4

.

X, 22, x

whose evaluation at each object is a pushout
of spaces with a cofibration as left verti-
cal arrow. The WHE-axiom means that a
weak equivalence of contravariant C-spaces
induce isomorphisms on homology. The
disjoint union axiom says that there is a
natural isomorphism

®ic  HS (X E) = HS([] X4 E).
=yl



Lemma 5.21 Letf : E — F be a weak
equivalence of covariant C-spectra. It in-
duces a natural isomorphism

f, : HS(X;E) — HS(X:F).

Definition 5.22 Let E be a covariant Or(G)-
spectrum. Define for a G-space X

HS(X:E) = Hy' 9 (mapg(?,X); E).

Theorem 5.23 HS(—,E) is a generalized
homology theory for (G-spaces satisfying
the disjoint union axiom and the WHE-
xiom. We have

HS /H,E) = mp(E(G/H)).



Theorem 5.24 The exist covariant Or(G)-
spectra

K:Or(G) — Q-SPECTRA;
L:Or(G) — Q-SPECTRA;
K©P : Or(G) — Q-SPECTRA

satisfying for all p € Z

mp(K(G/H)) =2 Kp(ZH);
mp(L(G/H)) 2 LS/ (zH):;
mp(K©P(G/H)) 2 K °P(Cy(H)).

Definition 5.25 Let E be a covariant Or(G)-
spectrum and X be a G-space. Then the
associated assembly map is the map in-
duced by the projection X — G/G

asmb : HE(X; E)
— HY({+}, E) = mp(E(G/G)).

Definition 5.26 Let G be a group and F
be a family of subgroups, i.e. a set of sub-
groups closed under conjugation and tak-
ing subgroups. A classifying space E(G; F)
of G with respect to F is a left G-CW-
complex such that E(G, F)H is contractible
for H € F and empty otherwise.



Theorem 5.27 1. There is a functorial
construction of E(G,F);

2. Forany G-CW-complex X whose isotropy

groups do belong to F there is up to
G-homotopy precisely one G-map X —
E(G; F). In particular E(G; F) is unique
up to G-homotopy;

Remark 5.28 Given a covariant Or(G)-
spectrum E and a family F of subgroups,
we obtain an assembly map

asmb : HE(E(G;]—"); E)
— HY({+}, E) = mp(E(G/G)).

The Isomorphism Conjecture for E and F
says that it is an isomorphism.

The point is to find F as small as possi-
ble. If we take F to be the family of all
subgroups, the map above is an isomor-
phism but this is a trivial and useless fact.
The philosophy is to express m,(E(G/G)),
which is the group we are interested, in
by the groups n,(E(G/H)) for ¢ < p and
H e F, which we hopefully understand.



Let FZN be the family of finite subgroups
and VC be the family of virtually cyclic sub-
groups.

Conjecture 5.29 (Baum-Connes Conjecture)
TakeE = K°P gnd X = E(G,FIN). Then
the assembly map

asmb : Hy(E(G; FIN); K*P) — K°P(CH(G))

IS an isomorphism.

Conjecture 5.30 (Farrell-Jones Isomor-
phism Conjecture) Take E =K or L and
X = E(G;VC). Then the assembly maps

asmb : Hy(E(G;VC); K — Kyp(ZG)
and
asmb : Hy(E(G;VC); L) — L, (ZG)

are isomorphisms.

Remark 5.31 If one replaces in the Farrell-
Jones Isomorphism Conjecture the decora-
tion (—oo) by other decorations such as p,
h or s, it becomes false (see Farrell-Jones-
L.).



Remark 5.32 The Farrell-Jones Conjec-
ture makes also sense for any coefficient
ring R instead of Z. If R is a field F
of characteristic zero, one may replace VC
by FZN in the Farrell-Jones Isomorphism
Conjecture for K-theory. In particular it
reduces for Kg to the statement that the
canonical map

coliMp g |H|<oo Ko(FH) — Ko(FG)

IS bijective.

One has to use VC in general to take Nil-
terms into account which appear for in-
stance in the Bass-Heller-Swan decompo-
sition

K{(Z[G X 7]) = Ko(ZG) @ K1(ZG)
& Nil(ZG) @ NiIl(ZG).



Remark 5.33 Suppose GG is torsionfree. Then
the Baum-Connes Conjecture reduces to
an isomorphism

KP(BG) — KI°PP(CH(@).

The Farrell-Jones Isomorphism Conjecture
for p < 1 is equivalent to the statement
that K;(ZQ) fori < —1, Ko(ZG) and Wh(G)
vanish.

Conjecture 5.34 (Borel Conjecture) Let
M and N be closed aspherical manifolds.
Then any homotopy equivalence f : M —
N is homotopic to a homeomorphism. In
particular M and N are homeomorphic if
and only if they have isomorphic funda-
mental groups.

Theorem 5.35 Ifthe Farrell-Jones Isomor-
phism Conjecture holds for G, then the

Borel Conjecture holds for closed aspheri-

cal manifolds M and N of dimension > 5

and mq(M) = m(N) Ed.



Sketch of proof: The Borel Conjecture
IS equivalent to the claim

SOP(AM) = {id : M — M},

We have the surgery exact sequence

... = [EM,G/TOP] — L5 1 (Zr) — SIPP(M)
— [M,G/O) — Lp(Zr)°.

The K-theory part of the Farrell-Jones Iso-
morphism Conjecture ensures that we do
not have to take care of the decorations
for the L-groups. The assembly map in
the L-theory part in dimension p and p+1
can be identified with the first map and
last map appearing in the part of surgery
sequence above.



Remark 5.36 The assembly map for a co-
variant Or(G)-spectrum E in the special
case X = E(G,F) can be identified with
the homomorphism induced on homotopy
groups by the canonical map

hocolimor (g, 7) Elor(c,7)

Remark 5.37 Thereis an Atiyah-Hirzebruch
spectral sequence convering to p+q(X E)

whose EZ-term is given by the Bredon ho-
mology

B2, = HY"O (X ry(B(G/H)).

There is another spectral sequence due to
Davis-L. which comes from a filtration by
chains of subgroups {1} = Hg C Hi1 C
Ho C ...Hqy C G with H; # Hi—|—1 and H;
a subgroup of an isotropy group of X.

Remark 5.38 The assembly maps in the

conjectures above were originally defined

differently, for instance in the Baum-Connes
Conjecture by an index map. The identifi-

cations of the various versions of assembly

maps is non-trivial.



A covariant functor

E:G-F-CW-COMPLEXES — SPECTRA

is called (weakly) F-homotopy invariant if
it sends G-homotopy equivalences to (weak)
homotopy equivalences of spectra. The
functor E is (weakly) F-excisive if it has
the following four properties

1. it is (weakly) F-homotopy invariant;

2. E(0) is contractible;

3. it respects homotopy pushouts up to
(weak) homotopy equivalence;

4. E respects countable disjoint unions up
to (weak) homotopy;

Remark 5.39 E is weakly F-excisive if and
only if m¢(E(X)) defines a homology the-
ory on the category of G-F-CW-complexes
satisfying the disjoint union axiom for count-
able disjoint unions.



Lemma 5.40 Let T : E — F be a trans-
formation of (weakly) F-excisive functors

E,F:G-F-CW-COMPLEXES — SPECTRA

sothat T(G/H) is a (weak) homotopy equiv-
alence of spectra for all H € F. Then
T(X) is a (weak) homotopy equivalence
of spectra for all G-F-CW-complexes X.

Theorem 5.41 Consider a covariant func-
tor

E:Or(G;F) - SPECTRA.
Define

Eo, : G=F—-CW-COMPLEXES — SPECTRA

by sending X to mapq(?,X) Qor(g:r) E-
Then:



1. E% is F-excisive;

2. For any (weakly) F-homotopy invari-
ant functor

E:G-F-CW-COMPLEXES — SPECTRA

there is a (weakly) F-excisive functor

E”:G—F—CW — COMPLEXES
— SPECTRA

and natural transformations

Ag: E® E:;

Bp:E” — (E lora,7)) %
which induce (weak) homotopy equiv-
alences of spectra Ag(G/H) for all H €
F and (weak) homotopy equivalences
of spectra Bg(X) for all G-F-CW-complexes
X. Given a family F' c F, E is (weakly)
F'-excisive if and only if Ag(X) is a
(weak) homotopy equivalence of spec-
tra for all G-F'-CW-complexes X.



Remark 5.42 The theorem above char-
acterizes the assembly map in the sense
that

Ap:E”? —E

IS the universal approximation from the left

by a (weakly) F-excisive functor of a (weakly)
F-homotopy invariant functor E from G-
F-CW-COMPLEXES to SPECTRA. Namely,
let

T:F—E

be a transformation of functors from G-
F-CW-COMPLEXES to SPECTRA such
that F is (weakly) F-excisive and T(G/H)
is a (weak) homotopy equivalence for all
H ¢ F. Then for any G-F-CW-complex X
the following diagram commutes

F7(X)

Ap(X) F(X)

T%(X)J2 lT(X)

E(X)

and Agp(X) and T7%(X) are (weak) ho-
motopy equivalences. Hence one may say
that T(X) factorizes over Ar(X).



Remark 5.43 We can apply the construc-
tion above to the the weakly F-homotopy
invariant functor

E:G-—-F-CW-COMPLEXES — SPECTRA
which sends X to
K®©P(C(m(EG xg X))

K(7m(EG xg X))
L(7(EG xa X))

Then the assembly map appearing in the
Isomorphism Conjectures above is given by

mp(AE(X)) : mp(E? (X)) — mp(B(X))
ifone puts X = E(G,FIN) or X = E(G;VC).



