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Preface
The Isomorphism Conjectures due to Baum and Connes and to Farrell and Jones aim
at the topological 𝐿-theory of reduced group "→-algebras and the algebraic 𝐿-and
#-theory of group rings. These theories are of major interest for many reasons. For
instance, the algebraic #-groups are the recipients for various surgery obstructions
and hence highly relevant for the classification of manifolds. Other important ob-
structions such as Wall’s finiteness obstruction and Whitehead torsion take values in
algebraic K-groups. The topological 𝐿-groups of "→-algebras play a central role in
index theory and the classification of "→-algebras.

In general these 𝐿- and #-groups are very hard to analyze for group rings or
group "→-algebras. The Isomorphism Conjectures identify them with equivariant
homology groups of classifying spaces for families of subgroups. As an illustration,
let us consider the special case that $ is a torsionfree group and % is a regular
ring (with involution). Then the Isomorphism Conjectures predict that the so-called
assembly maps

&! (𝑅$;K(%)) −→ 𝐿! (%$);
&! (𝑅$;L〈−∞〉 (%)) −→ # 〈−∞〉

! (%$);
𝐿! (𝑅$) −→ 𝐿! ("→

" ($)),

are isomorphisms for all 𝑆 ∈ Z. The target is the algebraic 𝐿-theory of the group ring
%$, the algebraic #-theory of %$ with decoration 〈−∞〉, or the topological𝐿-theory
of the reduced group "→-algebra "→

" ($). The source is the evaluation of a specific
homology theory on the classifying space 𝑅$, where &! ({•};K(%)) 𝐿! (%),
&! ({•};L〈−∞〉 (%)) # 〈−∞〉

! (%), and 𝐿! ({•}) 𝐿! (C) hold for all 𝑆 ∈ Z.
Since the sources of these assembly maps are much more accessible than the

targets, the Isomorphism Conjectures are key ingredients for explicit computations
of the 𝐿-and #-groups of group rings and reduced group "→-algebras. These often
are motivated by and have applications to concrete problems that arise, for instance,
in the classification of manifolds or "→-algebras.

The Baum-Connes Conjecture and the Farrell-Jones Conjecture implymany other
well-known conjectures. In a lot of cases these conjectures were not known to be
true for certain groups until the Baum-Connes Conjecture or the Farrell-Jones Con-
jecture was proved for them. Examples of such prominent conjectures are the Borel
Conjecture about the topological rigidity of aspherical closed manifolds, the (stable)
Gromov-Lawson-Rosenberg Conjecture about the existence of Riemannian metrics
with positive scalar curvature on closed Spin-manifolds, Kaplansky’s Idempotent
Conjecture and the Kadison Conjecture on the non-existence of non-trivial idempo-
tents in the group ring or the reduced group "→-algebra of torsionfree groups, the
Novikov Conjecture about the homotopy invariance of higher signatures, and the
conjectures about the vanishing of the reduced projective class group of Z$ and the
Whitehead group of $ for a torsionfree group $.

v



vi Preface

The Baum-Connes Conjecture and the Farrell-Jones Conjecture are still open
in general at the time of writing. However, tremendous progress has been made
on the class of groups for which they are known to be true. The techniques of
the sophisticated proofs stem from algebra, dynamical systems, geometry, group
theory, operator theory, and topology. The extreme broad scope of the Baum-Connes
Conjecture and the Farrell-Jones Conjecture is both the main challenge and the main
motivation for writing this book. We hope that, after having read parts of this
monograph, the reader will share the enthusiasm of the author for the Isomorphism
Conjectures.

The monograph is a guide to and gives a panorama of Isomorphism Conjectures
and related topics. It presents or at least indicates the most advanced results and
developments at the time of writing. It can be used by various groups of readers,
such as experts on the Baum-Connes Conjecture or the Farrell-Jones Conjecture,
experienced mathematicians, who may not be experts on these conjectures but want
to learn or just apply them, and also, of course, advanced undergraduate and graduate
students. References for further reading and information have been inserted.

We will give more information about the organization of the book and a user’s
guide in Section 1.11.

Bonn, May 2025 Wolfgang Luck¨
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9.17 Poincaré Duality Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
9.18 Boundaries of Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
9.19 The Stable Cannon Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
9.20 Product Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
9.21 Automorphisms of Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
9.22 Survey on Computations of #-Theory of Group Rings of Finite

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
9.23 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

10 Topological !-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
10.2 Topological 𝐿-Theory of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.2.1 Complex Topological 𝐿-Theory of Spaces . . . . . . . . . . . . . 277
10.2.2 Real Topological 𝐿-Theory of Spaces . . . . . . . . . . . . . . . . . 280
10.2.3 Equivariant Topological 𝐿-Theory of Spaces . . . . . . . . . . . 281

10.3 Topological 𝐿-Theory of "→-Algebras . . . . . . . . . . . . . . . . . . . . . . . . 286
10.3.1 Basics about "→-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
10.3.2 Basic Properties of the Topological 𝐿-Theory of

"→-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
10.4 The Baum-Connes Conjecture for Torsionfree Groups . . . . . . . . . . . 294

10.4.1 The Trace Conjecture in the Torsionfree Case . . . . . . . . . . 296
10.4.2 The Kadison Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.4.3 The Zero-in-the-Spectrum Conjecture . . . . . . . . . . . . . . . . . 298

10.5 Kasparov’s KK-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
10.5.1 Basic Properties of KK-theory for "→-Algebras . . . . . . . . . 299
10.5.2 The Kasparov’s Intersection Product . . . . . . . . . . . . . . . . . . 301

10.6 Equivariant Topological 𝐿-Theory and KK-Theory . . . . . . . . . . . . . 302
10.7 Comparing Algebraic and Topological 𝐿-theory of "→-Algebras . . 306



Contents xiii

10.8 Comparing Algebraic #-Theory and Topological 𝐿-theory of
"→-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

10.9 Topological 𝐿-Theory for Finite Groups . . . . . . . . . . . . . . . . . . . . . . 308
10.10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Part II: The Isomorphism Conjectures
11 Classifying Spaces for Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
11.2 Definition and Basic Properties of $-"𝑋-Complexes . . . . . . . . . . . 312
11.3 Proper $-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
11.4 Maps between $-"𝑋-Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
11.5 Definition and Basic Properties of Classifying Spaces for Families 317
11.6 Models for the Classifying Space for Proper Actions . . . . . . . . . . . . 319

11.6.1 Simplicial Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
11.6.2 Operator Theoretic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
11.6.3 Discrete Subgroups of Almost Connected Lie Groups . . . . 320
11.6.4 Actions on Simply Connected Non-Positively Curved

Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
11.6.5 Actions on Trees and Graphs of Groups . . . . . . . . . . . . . . . 321
11.6.6 Actions on CAT(0)-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 321
11.6.7 The Rips Complex of a Hyperbolic Group . . . . . . . . . . . . . 321
11.6.8 Arithmetic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
11.6.9 Mapping Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
11.6.10 Outer Automorphism Groups of Finitely Generated Free

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
11.6.11 Special Linear Groups of (2,2)-Matrices . . . . . . . . . . . . . . . 324
11.6.12 Groups with Appropriate Maximal Finite Subgroups . . . . 324
11.6.13 One-Relator Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

11.7 Models for the Classifying Space for the Family of Virtually
Cyclic Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
11.7.1 Groups with Appropriate Maximal Virtually Cyclic

Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
11.8 Finiteness Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

11.8.1 Review of Finiteness Conditions on 𝑅$ . . . . . . . . . . . . . . . 328
11.8.2 Cohomological Criteria for Finiteness Properties in

Terms of Bredon Cohomology . . . . . . . . . . . . . . . . . . . . . . . 330
11.8.3 Finite Models for the Classifying Space for Proper Actions 330
11.8.4 Models of Finite Type for the Classifying Space for

Proper Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
11.8.5 Finite-Dimensional Models for the Classifying Space for

Proper Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331



xiv Contents

11.8.6 Brown’s Problem about Virtual Cohomological
Dimension and the Dimension of the Classifying Space
for Proper Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

11.8.7 Finite-Dimensional Models for the Classifying Space for
the Family of Virtually Cyclic Subgroups . . . . . . . . . . . . . . 334

11.8.8 Low Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
11.8.9 Finite Models for the Classifying Space for the Family of

Virtually Cyclic Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . 337
11.9 On the Homotopy Type of the Quotient Space of the Classifying

Space for Proper Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
11.10 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

12 Equivariant Homology Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.2 Basics about $-Homology Theories . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.3 Basics about Equivariant Homology Theories . . . . . . . . . . . . . . . . . . 344
12.4 Constructing Equivariant Homology Theories Using Spectra . . . . . 347
12.5 Equivariant Homology Theories Associated to 𝐿- and #-Theory . . 352
12.6 Two Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

12.6.1 The Equivariant Atiyah-Hirzebruch Spectral Sequence . . . 355
12.6.2 The 𝑌-Chain Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . 356

12.7 Equivariant Chern Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
12.7.1 Mackey Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
12.7.2 The Equivariant Chern Character . . . . . . . . . . . . . . . . . . . . . 359

12.8 Some Rational Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
12.8.1 Green Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
12.8.2 Induction Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
12.8.3 Rational Computation of the Source of the Assembly Maps 367

12.9 Some Integral Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
12.10 Equivariant Homology Theory over a Group and Twisting with

Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

13 The Farrell-Jones Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.2 The Farrell-Jones Conjecture with Coefficients in Rings . . . . . . . . . 378

13.2.1 The 𝐿-Theoretic Farrell-Jones Conjecture with
Coefficients in Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

13.2.2 The #-Theoretic Farrell-Jones Conjecture with
Coefficients in Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

13.3 The Farrell-Jones Conjecture with Coefficients in Additive
Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
13.3.1 The 𝐿-Theoretic Farrell-Jones Conjecture with

Coefficients in Additive $-Categories . . . . . . . . . . . . . . . . . 381



Contents xv

13.3.2 The #-Theoretic Farrell-Jones Conjecture with
Coefficients in Additive $-Categories with Involution . . . 383

13.4 The 𝐿-Theoretic Farrell-Jones Conjecture with Coefficients in
Higher Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

13.5 Finite Wreath Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
13.6 The Full Farrell-Jones Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
13.7 Inheritance Properties of the Farrell-Jones Conjecture . . . . . . . . . . . 387
13.8 Splitting the Assembly Map from FIN to VCY . . . . . . . . . . . . . . 390
13.9 Rationally Splitting the Assembly Map from TR to FIN . . . . . . . 391
13.10 Reducing the Family of Subgroups for the Farrell-Jones Conjecture 392

13.10.1 Reducing the Family of Subgroups for the Farrell-Jones
Conjecture for 𝐿-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

13.10.2 Reducing the Family of Subgroups for the Farrell-Jones
Conjecture for #-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

13.11 The Full Farrell-Jones Conjecture Implies All Its Variants . . . . . . . . 401
13.11.1 List of Variants of the Farrell-Jones Conjecture . . . . . . . . . 401
13.11.2 Proof of the Variants of the Farrell-Jones Conjecture . . . . 405

13.12 Summary of the Applications of the Farrell-Jones Conjecture . . . . . 407
13.13 $-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.14 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

14 The Baum-Connes Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
14.2 The Analytic Version of the Baum-Connes Assembly Map . . . . . . . 415
14.3 The Version of the Baum-Connes Assembly Map in Terms of

Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
14.4 The Baum-Connes Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
14.5 Variants of the Baum-Connes Conjecture . . . . . . . . . . . . . . . . . . . . . . 419

14.5.1 The Baum-Connes Conjecture for Maximal Group
"→-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

14.5.2 The Bost Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
14.5.3 The Strong and the Integral Novikov Conjecture . . . . . . . . 422
14.5.4 The Coarse Baum-Connes Conjecture . . . . . . . . . . . . . . . . . 422

14.6 Inheritance Properties of the Baum-Connes Conjecture . . . . . . . . . . 424
14.7 Reducing the Family of Subgroups for the Baum-Connes Conjecture 426
14.8 Applications of the Baum-Connes Conjecture . . . . . . . . . . . . . . . . . . 427

14.8.1 The Kadison Conjecture and the Trace Conjecture for
Torsionfree Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

14.8.2 The Novikov Conjecture and the Zero-in-the-Spectrum
Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

14.8.3 The Modified Trace Conjecture . . . . . . . . . . . . . . . . . . . . . . 428
14.8.4 The Stable Gromov-Lawson-Rosenberg Conjecture . . . . . . 429
14.8.5 #2-Rho-Invariants and #2-Signatures . . . . . . . . . . . . . . . . . 431

14.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433



Contentsxvi

15 The (Fibered) Meta- and Other Isomorphism Conjectures . . . . . . . . . . 435
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
15.2 The Meta-Isomorphism Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
15.3 The Fibered Meta-Isomorphism Conjecture . . . . . . . . . . . . . . . . . . . . 437
15.4 The Farrell-Jones Conjecture with Coefficients in Additive or

Higher Categories is Fibered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
15.5 Transitivity Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
15.6 Inheritance Properties of the Fibered Meta-Isomorphism Conjecture 443
15.7 Actions on Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
15.8 The Meta-Isomorphism Conjecture for Functors from Spaces to

Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
15.9 Proof of the Inheritance Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
15.10 The Farrell-Jones Conjecture for *-Theory, Pseudoisotopy, and

Whitehead Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
15.11 The Farrell-Jones Conjecture for Topological Hochschild and

Cyclic Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
15.11.1 Topological Hochschild Homology . . . . . . . . . . . . . . . . . . . 464
15.11.2 Topological Cyclic Homology . . . . . . . . . . . . . . . . . . . . . . . 465

15.12 The Farrell-Jones Conjecture for Homotopy 𝐿-Theory . . . . . . . . . . 466
15.13 The Farrell-Jones Conjecture for Hecke Algebras . . . . . . . . . . . . . . . 468
15.14 Relations among the Isomorphism Conjectures . . . . . . . . . . . . . . . . . 469

15.14.1 The Farrell-Jones Conjecture for 𝐿-Theory and for
*-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

15.14.2 The Farrell-Jones Conjecture for *-Theory,
Pseudoisotopy, and Whitehead Spaces . . . . . . . . . . . . . . . . . 470

15.14.3 The Farrell-Jones Conjecture for 𝐿-Theory and for
Topological Cyclic Homology . . . . . . . . . . . . . . . . . . . . . . . 471

15.14.4 The #-Theoretic Farrell-Jones Conjecture and the
Baum-Connes Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

15.14.5 Mapping Surgery to Analysis . . . . . . . . . . . . . . . . . . . . . . . . 474
15.14.6 The Baum-Connes Conjecture and the Bost Conjecture . . 476
15.14.7 The Farrell-Jones Conjecture for 𝐿-Theory and for

Homotopy 𝐿-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
15.15 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

16 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
16.2 Status of the Full Farrell-Jones Conjecture . . . . . . . . . . . . . . . . . . . . . 481
16.3 Status of the Farrell-Jones Conjecture for Homotopy 𝐿-Theory . . . 484
16.4 Status of the Baum-Conjecture (with Coefficients) . . . . . . . . . . . . . . 486
16.5 Injectivity Results in the Baum-Connes Setting . . . . . . . . . . . . . . . . . 489
16.6 Injectivity Results in the Farrell-Jones Setting . . . . . . . . . . . . . . . . . . 492
16.7 Status of the Novikov Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
16.8 Review of and Status Report for Some Classes of Groups . . . . . . . . 496

16.8.1 Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496



Contents xvii

16.8.2 Lacunary Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . 496
16.8.3 Hierarchically hyperbolic groups . . . . . . . . . . . . . . . . . . . . . 497
16.8.4 Relatively Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . 497
16.8.5 Systolic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
16.8.6 Finite-Dimensional CAT(0)-Groups . . . . . . . . . . . . . . . . . . 498
16.8.7 Limit Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
16.8.8 Fundamental Groups of Complete Riemannian Manifolds

with Non-Positive Sectional Curvature . . . . . . . . . . . . . . . . 499
16.8.9 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
16.8.10 𝑊-Arithmetic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
16.8.11 Linear Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
16.8.12 Subgroups of Almost Connected Lie Groups . . . . . . . . . . . 501
16.8.13 Virtually Solvable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
16.8.14 A-T-menable, Amenable and Elementary Amenable

Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
16.8.15 Three-Manifold Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
16.8.16 One-Relator Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
16.8.17 Self-Similar Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
16.8.18 Virtually Torsionfree Hyperbolic by Infinite Cyclic Groups 504
16.8.19 Countable Free Groups by Infinite Cyclic Groups . . . . . . . 504
16.8.20 Strongly Poly-Surface Groups . . . . . . . . . . . . . . . . . . . . . . . . 505
16.8.21 Normally Poly-Free Groups . . . . . . . . . . . . . . . . . . . . . . . . . 506
16.8.22 Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
16.8.23 Right-Angled Artin groups . . . . . . . . . . . . . . . . . . . . . . . . . . 506
16.8.24 Artin groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
16.8.25 Braid Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
16.8.26 Mapping Class Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
16.8.27 Out(/!) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
16.8.28 Thompson’s Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
16.8.29 Helly Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
16.8.30 Groups Satisfying Homological Finiteness Conditions . . . 509

16.9 Open Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510
16.10 How Can We Find Counterexamples? . . . . . . . . . . . . . . . . . . . . . . . . . 511

16.10.1 Is the Full Farrell-Jones Conjecture True for All Groups? . 511
16.10.2 Exotic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
16.10.3 Infinite Direct Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
16.10.4 Exotic Aspherical Closed Manifolds . . . . . . . . . . . . . . . . . . 513
16.10.5 Some Results Which Hold for All Groups . . . . . . . . . . . . . . 515

16.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

17 Guide for Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
17.2 𝐿- and #-Groups for Finite Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
17.3 The Passage from FIN toVCY . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
17.4 Rational Computations for Infinite Groups . . . . . . . . . . . . . . . . . . . . . 518



xviii Contents

17.4.1 Rationalized Algebraic 𝐿-Theory . . . . . . . . . . . . . . . . . . . . . 519
17.4.2 Rationalized Algebraic #-Theory . . . . . . . . . . . . . . . . . . . . . 521
17.4.3 Rationalized Topological 𝐿-Theory . . . . . . . . . . . . . . . . . . . 521
17.4.4 The Complexified Comparison Map from Algebraic to

Topological 𝐿-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
17.4.5 Rationalized Topological 𝐿-Theory of Virtually Z! Groups 522

17.5 Integral Computations for Infinite Groups . . . . . . . . . . . . . . . . . . . . . 529
17.5.1 Groups Satisfying Conditions (M) and (NM) . . . . . . . . . . . 529
17.5.2 Torsionfree One-Relator Groups . . . . . . . . . . . . . . . . . . . . . . 531
17.5.3 One-Relator Groups with Torsion . . . . . . . . . . . . . . . . . . . . . 535
17.5.4 Fuchsian Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
17.5.5 Torsionfree Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . 542
17.5.6 Hyperbolic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
17.5.7 #-Theory of Torsionfree Groups . . . . . . . . . . . . . . . . . . . . . . 544
17.5.8 Cocompact NEC-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
17.5.9 Crystallographic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
17.5.10 Virtually Z! Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
17.5.11 Mayer-Vietoris Sequences and Wang Sequences . . . . . . . . 551
17.5.12 SL2 (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
17.5.13 SL3 (Z) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
17.5.14 Right Angled Artin Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 554
17.5.15 Right Angled Coxeter Groups . . . . . . . . . . . . . . . . . . . . . . . . 556
17.5.16 Fundamental Groups of 3-Manifolds . . . . . . . . . . . . . . . . . . 556

17.6 Applications of Some Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 558
17.6.1 Classification of Some "→-algebras . . . . . . . . . . . . . . . . . . . 558
17.6.2 Unstable Gromov-Lawson Rosenberg Conjecture . . . . . . . 558
17.6.3 Classification of Certain Manifolds with Infinite Not

Torsionfree Fundamental Groups . . . . . . . . . . . . . . . . . . . . . 559
17.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

18 Assembly Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
18.2 Homological Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
18.3 Extension from Homogenous Spaces to $-"𝑋-Complexes . . . . . . . 562
18.4 Homotopy Colimit Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
18.5 Universal Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
18.6 Identifying Assembly Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
18.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571



Contents xix

Part III: Methods of Proofs
19 Motivation, Summary, and History of the Proofs of the Farrell-Jones

Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
19.2 Homological Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
19.3 Constructing Detection maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
19.4 Controlled Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

19.4.1 Two Classical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
19.4.2 The Strategy of Gaining Control . . . . . . . . . . . . . . . . . . . . . 576
19.4.3 Controlled Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
19.4.4 Controlled Algebra Defined Using the Open Cone . . . . . . 581
19.4.5 Continuous Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

19.5 Gaining Control by Using Flows and Transfers . . . . . . . . . . . . . . . . . 584
19.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

20 Conditions on a Group Implying the Farrell-Jones Conjecture . . . . . . 589
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
20.2 Farrell-Hsiang Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
20.3 Strictly Transfer Reducible Groups – Almost Equivariant Version . 592
20.4 Strictly Transfer Reducible Groups – Cover Version . . . . . . . . . . . . . 594
20.5 Transfer Reducible Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
20.6 Strongly Transfer Reducible Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 600
20.7 Finitely F -Amenable Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
20.8 Finitely Homotopy F -Amenable Groups . . . . . . . . . . . . . . . . . . . . . . 604
20.9 Dress-Farrell-Hsiang Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
20.10 Dress-Farrell-Hsiang-Jones Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 608
20.11 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

21 Controlled Topology Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
21.2 The Definition of a Category with $-Support . . . . . . . . . . . . . . . . . . 613
21.3 The Additive Category O# (0;B) . . . . . . . . . . . . . . . . . . . . . . . . . . . 614

21.3.1 The Definition of O# (0;B) . . . . . . . . . . . . . . . . . . . . . . . . . 614
21.4 Functoriality of O# (0;B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 619
21.5 The TOD-Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
21.6 The Definition for Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
21.7 The Proof of the Axioms of a $-Homology Theory . . . . . . . . . . . . . 623

21.7.1 The Long Exact Sequence of a Pair . . . . . . . . . . . . . . . . . . . 623
21.7.2 Some Eilenberg Swindles on O# (0) . . . . . . . . . . . . . . . . . 624
21.7.3 Excision and $-Homotopy Invariance . . . . . . . . . . . . . . . . . 633
21.7.4 The Disjoint Union Axiom . . . . . . . . . . . . . . . . . . . . . . . . . . 640

21.8 The Computation of 𝐿! (D# ($/&)) . . . . . . . . . . . . . . . . . . . . . . . . . 640
21.8.1 Reduction to 𝐿! (B($/&)) . . . . . . . . . . . . . . . . . . . . . . . . . . 640
21.8.2 Assembly and Controlled $-homology . . . . . . . . . . . . . . . . 643



xx Contents

21.8.3 The Definition of a Strong Category with $-Support . . . . 644
21.8.4 Reduction to 𝐿! (B〈&〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

21.9 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
21.10 The Version with Zero Control over N . . . . . . . . . . . . . . . . . . . . . . . . 650

21.10.1 Control Categories with Zero Control in the N-Direction . 650
21.10.2 Relating the 𝐿-Theory of D# and D#

0 . . . . . . . . . . . . . . . . 652
21.11 The Proof of the Axioms of a $-Homology Theory for D#

0 . . . . . . 663
21.12 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

22 Coverings and Flow Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
22.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
22.2 Flow Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672
22.3 The Flow Space Associated to a Metric Space . . . . . . . . . . . . . . . . . 672
22.4 The Flow Space Associated to a CAT(0)-Space . . . . . . . . . . . . . . . . 675

22.4.1 Evaluation of Generalized Geodesics at Infinity . . . . . . . . . 675
22.4.2 Dimension of the Flow Space . . . . . . . . . . . . . . . . . . . . . . . . 676
22.4.3 The Example of a Complete Riemannian Manifold with

Non-Positive Sectional Curvature . . . . . . . . . . . . . . . . . . . . . 676
22.5 The Dynamical Properties of the Flow Space Associated to a

CAT(0)-Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
22.5.1 The Homotopy Action on 𝑅$ (1) . . . . . . . . . . . . . . . . . . . . . 677
22.5.2 The Flow Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679

22.6 The Flow Space Associated to a Hyperbolic Metric Complex . . . . . 679
22.7 Topological Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 680
22.8 Long and Thin Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
22.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

23 Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685
23.2 The Geometric Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
23.3 The Algebraic Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688
23.4 The Down-Up Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
23.5 Transfer for Finitely Dominated Z-Chain Complexes with

Homotopy $-Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 690
23.6 Transfer for Finitely Dominated Spaces with Homotopy $-Action . 692
23.7 Proof of Surjectivity of the Assembly Map in Dimension 1 . . . . . . . 693

23.7.1 Basic Strategy of the Proof of Proposition 23.24 . . . . . . . . 694
23.7.2 The Width Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695
23.7.3 Self-Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
23.7.4 Self-Torsion and Width Functions . . . . . . . . . . . . . . . . . . . . 699
23.7.5 Finite Domination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
23.7.6 Finite Domination and Width Functions . . . . . . . . . . . . . . . 704
23.7.7 Comparing Singular and Simplicial Chain Complexes . . . 704
23.7.8 Taking the Group Action on 0 into Account . . . . . . . . . . . . 707
23.7.9 Passing to 2 = $ × 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 710



xxiContents

23.8 The Strategy Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714
23.9 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

24 Higher Categories as Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717
24.2 Strategy of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 718
24.3 Introducing the Geometric Variable . . . . . . . . . . . . . . . . . . . . . . . . . . 719
24.4 The Transfer Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 729

24.4.1 Discrete Transfer Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
24.4.2 Transfer Spaces with Homotopy Coherent Actions . . . . . . 739
24.4.3 The General Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

24.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 742

25 Analytic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
25.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
25.2 The Dirac-Dual Dirac Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
25.3 Banach KK-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745
25.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 745

26 Solutions of the Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 807

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 857



 

    Chapter 1
Introduction

The Isomorphism Conjectures due to Paul Baum and Alain Connes and to Tom
Farrell and Lowell Jones are important conjectures, which have many interesting
applications and consequences. However, they are not easy to formulate and it is a
priori not clear why the actual versions are the most promising ones. The current
versions are the final upshot of a longer process, which has led to them step by
step. They have been influenced and steered by various new results that have been
proved during the last decades and given new insight into the objects, problems, and
constructions at which these conjectures aim.

In this introduction we want to motivate these conjectures by explaining how one
can be led to them by general considerations and certain facts. We present brief
surveys about applications of these conjectures, their status, and the methods of
proof. We give information about the contents of this monograph including a user’s
guide.

1.1 Why Should we Care about Isomorphism Conjectures in
!- and "-Theory?

In this section we give some background and motivation for the reader who has
no previous knowledge about the Baum-Connes Conjecture and the Farrell-Jones
Conjecture. An expert may skip this section.

The Baum-Connes Conjecture aims at the topological 𝐿-theory of the reduced
group 𝑀→-algebra of a group, whereas the Farrell-Jones Conjecture is devoted to the
algebraic 𝐿- and 𝑁-theory of the group ring of a group. 𝐿- and 𝑁-theory are rather
sophisticated theories. Group rings are very difficult rings, for instance, they are in
general not commutative, are not Noetherian or regular, and may have zero-divisors.
So studying the algebraic 𝐿-theory and 𝑁-theory of group rings is hard and seems
at first glance to be a very special problem. So why should one care?

The answer to this question is that information about the 𝐿- or 𝑁-theory of group
rings or the topological 𝐿-theory of group 𝑀→-algebras have many applications to
algebra, geometry, group theory, topology, and operator algebras and that meanwhile
these conjectures are known for a large class of groups.
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2 1 Introduction

1.1.1 Projective Class Group

Let us illustrate this by considering the most prominent and easy to define 𝐿-group,
the projective class group 𝐿0 ($) of a ring $. It is the abelian group which we obtain
from theGrothendieck construction applied to the abelian semigroup of isomorphism
classes of finitely generated projective $-modules under direct sum. Equivalently,
it can be described as the abelian group whose generators are isomorphism classes
[𝑃] of finitely generated projective $-modules 𝑃 and for every exact sequence
0 → 𝑃0 → 𝑃1 → 𝑃2 → 0 of finitely generated projective $-modules we require the
relation [𝑃1] = [𝑃0] + [𝑃2]. The reduced projective class group 𝐿0 ($) of a ring $ is
obtained from 𝐿0 ($) by dividing out the subgroup generated by all finitely generated
free $-modules. Any finitely generated projective $-module 𝑃 defines an element
[𝑃] in 𝐿0 ($) and hence also a class [𝑃] in 𝐿0 ($). The decisive property of 𝐿0 ($)
is that [𝑃] = 0 holds in 𝐿0 ($) if and only if 𝑃 is stably free, i.e., there are natural
numbers & and 𝑅 satisfying 𝑃 ⊕ $𝐿 " $#. So roughly speaking, [𝑃] ∈ 𝐿0 ($)
measures the deviation of a finitely generated projective $-module 𝑃 from being
stably free.

Why are we especially interested in the case $ = 𝑆𝑇, where 𝑆 is a ring, 𝑇 is
a group, and 𝑆𝑇 is the group ring? (The precise definition of 𝑆𝑇 can be found in
Subsection 2.8.) One reason is that a representation of 𝑇 with coefficients in 𝑆 is
the same as an 𝑆𝑇-module. Another reason is that for a connected manifold or 𝑀*-
complex its universal covering comes with an action of the fundamental group 𝑉 and
the cellular Z-chain complex of the universal covering is actually a free Z𝑉-chain
complex. The latter observation opens the door to connections of algebraic 𝐿-theory
to topological problems, as described next.

A 𝑀*-complex 𝑊 is called finitely dominated if there is a finite 𝑀*-complex 𝑋
and maps 𝑌 : 𝑊 → 𝑋 and / : 𝑋 → 𝑊 such that / ◦ 𝑌 is homotopic to id$. Often one can
construct a finitely dominated𝑀*-complex with interesting properties but one needs
to know whether it is homotopy equivalent to a finite 𝑀*-complex. This problem
is decided by the finiteness obstruction of Wall. A finitely dominated connected
𝑀*-complex 𝑊 with fundamental group 𝑉 determines an element 0(𝑊) ∈ 𝐿0 (Z𝑉),
which vanishes if and only if 𝑊 is homotopy equivalent to a finite 𝑀*-complex,
see Theorem 2.39. So it is interesting to know whether 𝐿0 (Z𝑉) vanishes because
then 0(𝑊) is automatically trivial. One can actually show for a finitely presented
group 𝑇 that 𝐿0 (Z𝑇) vanishes if and only if every finitely dominated connected
𝑀*-complex with fundamental group isomorphic to 𝑇 is homotopy equivalent to
a finite 𝑀*-complex. So we have an algebraic assertion and a topological assertion
for a group 𝑇 which turn out to be equivalent.

The question whether a finitely dominated 𝑀*-complex is homotopy equivalent
to a finite 𝑀*-complex appears naturally in the construction of closed manifolds
with certain properties, since a closed manifold is homotopy equivalent to a finite
𝑀*-complex, and one may be able to construct a finitely dominated𝑀*-complex as
a first approximation up to homotopy. This is explained in Section 2.5. The Spherical
Space Form Problem 9.205 is a prominent example. It aims at the classification of
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closed manifolds whose universal coverings are di”eomorphic or homeomorphic to
the standard sphere.

If 𝑆 is a field and the group 𝑇 is torsionfree, then the Idempotent Conjecture of
Kaplansky predicts that the group ring 𝑆𝑇 has only trivial idempotent, namely, 0
and 1. Roughly speaking, non-trivial idempotents in a ring can be used to decompose
the ring into smaller pieces; think for instance of the theorems of Wedderburn and
Maschke which imply that for a finite group 𝑇 and a field 1 of characteristic zero
the group ring 1𝑇 is a product of matrix algebras over skew-fields. The Idempotent
Conjecture shows that this does not apply to torsionfree groups. On the other hand,
the non-existence of non-trivial idempotents gives hope that one can embed the
group ring 1𝑇 of a torsionfree group and a field 1 into a skew-field as conjectured
byMalcev, which opens the door to many applications in group theory and topology,
see Remark 2.85. This ring theoretic conjecture due to Kaplansky is related to the
projective class group, since it is known to be true if 𝐿0 (𝑆𝑇) vanishes. There are
many instances of groups where no algebraic proof is known for the Idempotent
Conjecture, but one can show with geometric, homotopy theoretic, and 𝐿-theoretic
methods that 𝐿0 (𝑆𝑇) vanishes.

A special version of the Farrell-Jones Conjecture, see Conjecture 2.60, predicts
that 𝐿0 (𝑆𝑇) vanishes if 𝑇 is torsionfree and 𝑆 is Z or a field.

All of this is explained in detail in Chapter 2.

1.1.2 The Whitehead Group

Here is another example of a nice connection between algebraic 𝐿-theory and
topology. One can define 𝐿1 ($) of a ring $ as the abelianization of the general
linear group GL($) or, equivalently, as the abelian group generated by conjugacy
classes of automorphisms of finitely generated projective $-modules with relations
concerning exact sequences and composites of such automorphisms. Given a group
𝑇, theWhitehead groupWh(𝑇) is the quotient of𝐿1 (Z𝑇) by the subgroup generated
by trivial units. For more details we refer to Definition 3.1, Theorem 3.12, and
Definition 3.23. This is related to topology as follows.

Given a closed manifold 2 , an 𝑑-cobordism * over 2 is a compact manifold
* such that its boundary 𝑒* can be written as a disjoint union 𝑒* = 𝑒0* & 𝑒1* ,
there is a preferred identification of 2 with 𝑒0* , and the inclusions 𝑒𝑅* → *
are homotopy equivalences for 𝑓 = 0, 1. The set of isomorphism classes relative
2 of 𝑑-cobordisms over 2 can be identified with Wh(𝑉) if 2 is connected, has
dimension ≥ 5, and 𝑉 denotes its fundamental group, see Theorem 3.47. This is
remarkable since the set of isomorphism classes of 𝑑-cobordism relative 2 over 2
a priori depends on 2 , whereas Wh(𝑉) depends only on the fundamental group.
In the classification of closed manifolds it is often a key step to decide whether an
𝑑-cobordism * over 2 is trivial, i.e., isomorphic relative 2 to 2 × [0, 1], since
this has the consequence that 2 and 𝑒1* are isomorphic. It is not hard to show
that Wh({1}) is trivial which, together with the results above, implies the Poincaré
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Conjecture in dimensions ≥ 5, see Theorem 3.51. One can show for a finitely
presented group 𝑇 and any natural number 𝑅 ≥ 5 that Wh(𝑇) is trivial if and only
if for every connected 𝑅-dimensional closed manifold 2 with fundamental group
isomorphic to 𝑇 every 𝑑-cobordism over 2 is trivial. So we have again an algebraic
assertion and a topological assertion for a group 𝑇 which turn out to be equivalent.

A special version of the Farrell-Jones Conjecture, see Conjecture 3.110, predicts
thatWh(𝑇) vanishes if𝑇 is torsionfree. All of this is explained in detail in Chapter 3.

1.1.3 The Borel Conjecture and the Novikov Conjecture

One of the author’s favorite conjectures is the Borel Conjecture. It predicts that
an aspherical closed manifold is topologically rigid. Aspherical means that the
universal covering is contractible and topologically rigidmeans that every homotopy
equivalence from a closed manifold to 2 is homotopic to a homeomorphism. In
particular it implies that two aspherical closed manifolds are homeomorphic if and
only if their fundamental groups are isomorphic. One may view the Borel Conjecture
as the topological counterpart of Mostow rigidity, see Remark 9.169.

If𝑇 denotes the fundamental group of an aspherical closedmanifold of dimension
≥ 5, then the Borel Conjecture for 2 holds if 𝑇 satisfies both the 𝐿-theoretic and
the 𝑁-theoretic Farrell-Jones Conjecture for Z𝑇, see Theorem 9.171. Moreover,
all proofs of the Borel Conjecture in dimensions ≥ 4 are based on the Farrell-
Jones Conjecture. So we see again that the Farrell-Jones Conjecture has interesting
applications to topology.
𝑁-theory, which one may think of as the algebraic 𝐿-theory of quadratic forms

over finitely generated projective modules, is an important ingredient in the so-
called Surgery Program 3.53, whose highlight is the Surgery Exact Sequence, see
Theorem 9.127. It aims at the classification of closed manifolds, see Remark 3.53,
and was initiated by the classification of exotic spheres, see Remark 3.52.

All this is explained in Chapter 9. In particular, we refer to Sections 9.12, 9.14,
and 9.15.

Note that both the Baum-Connes Conjecture and the Farrell-Jones Conjecture
imply the prominent Novikov Conjecture about the homotopy invariance of higher
signatures, see Remark 9.143 and Theorem 14.29. The Novikov Conjecture and its
link to both the Baum-Connes Conjecture and the Farrell-Jones Conjecture triggered
a lot of interesting interactions and transfer of methods and techniques between
topology and operator theory.

1.1.4 Further Applications

There are many more striking applications of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture to algebra, geometric group theory, geometry, topology,
and operator algebras, which are listed in Sections 13.12 and 14.8. We hope that, by
browsing through these sections, the reader will be convinced of the great interest
of these conjectures.
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1.1.5 Status of the Full Farrell-Jones Conjecture and the Baum-Connes
Conjecture with Coefficients

The Full Farrell-Jones Conjecture 13.30 implies all the variants of the Farrell-Jones
Conjecture scattered in this monograph, see Theorem 13.65. A list of all the versions
of the Farrell-Jones Conjecture can be found in Subsection 13.11.1.

The Baum Connes Conjecture with coefficients 14.11 is the most general variant
in the Baum-Connes setting.

The class of groups for which the Full Farrell-Jones Conjecture 13.30 is known
to be true is discussed in Theorem 16.1, whereas the class of groups for which the
Baum Connes Conjecture with coefficients 14.11 is known to be true is discussed
in Theorem 16.7. The question whether the Full Farrell-Jones Conjecture 13.30
might be true for all groups and how one might find counterexamples is treated in
Section 16.10. This should convince the reader that in many interesting cases one
knows that these conjectures are known to be true. Roughly speaking, in “daily life”
one can expect that the Farrell-Jones Conjecture is known to be true and one can just
apply it.

If one wants to figure out quickly whether a specific class of groups satisfies one
of these conjectures, one should take a look at Section 16.8. Open cases are discussed
in Section 16.9.

At the time of writing, no counterexamples to the Full Farrell-Jones Conjec-
ture 13.30 are known. This is also true for the Baum-Connes Conjecture 14.11
(without coefficients). Counterexamples to the Baum Connes Conjecture with coef-
ficients 14.11 are discussed in Remark 14.12.

1.1.6 Proofs

The proofs of the Farrell-Jones Conjecture or the Baum-Connes Conjecture are
sophisticated and require a lot of di”erent techniques. The proof of inheritance
properties, such as the passage to subgroups, are usually based on homotopy theoretic
methods. The proofs for specific classes of groups, such as hyperbolic groups, are
based on transfer methods in the Farrell-Jones setting and on𝐿𝐿-theory in the Baum-
Connes setting and for both conjectures require additional geometric input, which
is the interesting and surprising part. For instance flow spaces play a prominent
role in the proof of the Farrell-Jones Conjecture for hyperbolic groups or finite-
dimensional CAT(0)-groups. It is intriguing and astonishing that the proofs of the
Idempotent Conjecture of Kaplansky, which is a purely ring theoretic statement, are
based for many groups on the proof of the Farrell-Jones Conjecture and thus use
geometric input such as flows and compactifications of certain spaces on which the
group in question acts. Often purely algebraic methods are not sufficient to prove the
Idempotent Conjecture.

The reader who wants to get a first impression about the proofs should consult
Chapter 19.
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1.2 The Statement of the Baum-Connes Conjecture and of the
Farrell-Jones Conjecture

Next we record the statements of the Baum-Connes Conjecture and Farrell-Jones
Conjecture. Explanations andmotivations will follow. The versions stated belowwill
be generalized later.

Conjecture 1.1 (Baum-Connes Conjecture). Let 𝑇 be a group. Then there is for
every 𝑅 ∈ Z an isomorphism, called an assembly map,

𝐿𝑆# (𝑔𝑇) −→ 𝐿# (𝑀→
) (𝑇)).

Conjecture 1.2. (Farrell-Jones Conjecture for 𝐿→ (𝑆𝑇)). Let 𝑇 be a group. Let
𝑆 be an associative ring with unit. Then there is for every 𝑅 ∈ Z an isomorphism,
called an assembly map,

7𝑆# (𝑔𝑇;K*) −→ 𝐿# (𝑆𝑇).

Conjecture 1.3. (Farrell-Jones Conjecture for 𝑁 〈−∞〉
→ (𝑆𝑇)). Let 𝑇 be a group.

Let 𝑆 be an associative ring with unit and involution. Then there is for every 𝑅 ∈ Z
an isomorphism, called an assembly map,

7𝑆# (𝑔𝑇;L〈−∞〉
* ) −→ 𝑁 〈−∞〉

# (𝑆𝑇).

The general pattern is that the target of the assembly map is what we want to
understand or to compute, namely, the 𝐿- and 𝑁-theory of group rings and group
𝑀→-algebras, and that the source is a homological expression, which is much more
accessible than the source and depends only on the values of the 𝐿- or 𝑁-groups
under considerations for finite subgroups or for virtually cyclic subgroups of 𝑇. The
spaces 𝑔𝑇 and 𝑔𝑇 are classifying spaces for the family of finite subgroups and
the family of virtually cyclic subgroups, which are inserted in specific 𝑇-homology
theories.

1.3 Motivation for and Evolution of the Baum-Connes
Conjecture

Wewill start with the IsomorphismConjecture that is the easiest andmost convenient
to state and motivate, the Baum-Connes Conjecture for the topological 𝐿-theory of
reduced group 𝑀→-algebras. Then we will pass to the Farrell-Jones Conjecture for
the algebraic 𝐿- and 𝑁-theory of group rings, which is more complicated due to the
appearance of Nil-terms.
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1.3.1 Topological !-Theory of Reduced Group #∗-Algebras

The target of the Baum-Connes Conjecture is the topological𝐿-theory of the reduced
group𝑀→-algebra𝑀→

) (𝑇) of a group𝑇. We will consider discrete groups𝑇 only. One
defines the topological 𝐿-groups 𝐿# (𝑖) for any Banach algebra 𝑖 to be the abelian
group 𝐿# (𝑖) = 𝑉#−1 (GL(𝑖)) for 𝑅 ≥ 1. The famous Bott Periodicity Theorem gives
a natural isomorphism 𝐿# (𝑖) −→ 𝐿#+2 (𝑖) for 𝑅 ≥ 1. Finally one defines 𝐿# (𝑖)
for all 𝑅 ∈ Z so that the Bott isomorphism theorem is true for all 𝑅 ∈ Z. It turns
out that 𝐿0 (𝑖) is the same as the projective class group of the ring 𝑖, which is
the Grothendieck group of the abelian monoid of isomorphism classes of finitely
generated projective 𝑖-modules with the direct sum as addition. The topological
𝐿-theory of C = 𝑀→

) ({1}) is trivial in odd dimensions and isomorphic to Z in even
dimensions. More generally, for a finite group 𝑇 the topological 𝐿-theory of 𝑀→

) (𝑇)
is the complex representation ring 𝑆C (𝑇) in even dimensions and is trivial in odd
dimensions.

Let 𝑃 be an appropriate elliptic di”erential operator (or more generally an elliptic
complex) on a closed 𝑅-dimensional Riemannian manifold 2 , for instance the Dirac
operator or the signature operator. Then one can consider its index in 𝐿# (C), which
is dimC (ker(𝑃)) − dimC (coker(𝑃)) ∈ Z for even 𝑅 and is zero for odd 𝑅. If 2 comes
with an isometric𝑇-action of a finite group𝑇 and 𝑃 is compatible with the𝑇-action,
then ker(𝑃) and coker(𝑃) are complex finite-dimensional𝑇-representations and one
obtains an element in 𝐿# (𝑀→

) (𝑇)) = 𝑆C (𝑇) by [ker(𝑃)] − [coker(𝑃)] for even 𝑅.
Suppose that 𝑇 is an arbitrary discrete group and that 2 is a (not necessarily com-
pact) 𝑅-dimensional smooth manifold without boundary with a proper cocompact
𝑇-action, a 𝑇-invariant Riemannian metric, and an appropriate elliptic di”erential
operator 𝑃 compatible with the 𝑇-action. An example is the universal covering
2 = 𝑗 of an 𝑅-dimensional closed Riemannian manifold 𝑗 with 𝑇 = 𝑉1 (𝑗) and
the lift 𝑃 to 𝑗 of an appropriate elliptic di”erential operator 𝑃 on 𝑗 . Then one can
define an equivariant index of 𝑃 which takes values in 𝐿# (𝑀→

) (𝑇)). Therefore the
interest in 𝐿→ (𝑀→

) (𝑇)) comes from the fact that it is the natural recipient for indices
of certain equivariant di”erential operators. All this will be explained in Chapter 10.

1.3.2 Homological Aspects

A first basic problem is to compute 𝐿→ (𝑀→
) (𝑇)) or to identify it with more familiar

terms. The key idea comes from the observation that 𝐿→ (𝑀→
) (𝑇)) has some homolog-

ical properties. More precisely, if𝑇 is the amalgamated free product𝑇 = 𝑇1 →𝑆0 𝑇2
for subgroups 𝑇+ ⊆ 𝑇, then there is a long exact sequence



8 1 Introduction

(1.4) · · · ,!+1−−−→ 𝐿# (𝑀→
) (𝑇0))

%! (𝑋→
" (+1 ) )⊕%! (𝑋→

" (+2 ) )−−−−−−−−−−−−−−−−−−−→ 𝐿# (𝑀→
) (𝑇1)) ⊕ 𝐿# (𝑀→

) (𝑇2))
%! (𝑋→

" ( .1 ) )−%! (𝑋→
" ( .2 ) )−−−−−−−−−−−−−−−−−−−−→ 𝐿# (𝑀→

) (𝑇))
,!−−→ 𝐿#−1 (𝑀→

) (𝑇0))
%!−1 (𝑋→

" (+1 ) )⊕%!−1 (𝑋→
" (+2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐿#−1 (𝑀→

) (𝑇2)) ⊕ 𝐿#−1 (𝑀→
) (𝑇1))

%!−1 (𝑋→
" ( .1 ) )−%!−1 (𝑋→

" ( .2 ) )−−−−−−−−−−−−−−−−−−−−−−−→ 𝐿#−1 (𝑀→
) (𝑇))

,!−1−−−→ · · ·

where 𝑌1,𝑌2, 𝑘1, and 𝑘2 are the obvious inclusions, see [812, Theorem 18 on page
632]. If ; : 𝑇 → 𝑇 is a group automorphism and𝑇!/ Z is the associated semidirect
product, then there is a long exact sequence

(1.5)

· · · ,!+1−−−→ 𝐿# (𝑀→
) (𝑇))

%! (𝑋→
" (/) )−id−−−−−−−−−−−−→ 𝐿# (𝑀→

) (𝑇))
%! (𝑋→

" (𝑅 ) )−−−−−−−−−→ 𝐿# (𝑀→
) (𝑇 !/ Z))

,!−−→ 𝐿#−1 (𝑀→
) (𝑇))

%!−1 (𝑋→
" (/) )−id−−−−−−−−−−−−−→ 𝐿#−1 (𝑀→

) (𝑇))
%!−1 (𝑋→

" (𝑅 ) )−−−−−−−−−−→ · · ·

where 𝑓 is the obvious inclusion, see [811, Theorem 3.1 on page 151] or more
generally [812, Theorem 18 on page 632].

We compare this with group homology in order to explain the analogy with
homology. Recall that the classifying space 𝑚𝑇 of a group 𝑇 is an aspherical 𝑀*-
complexwhose fundamental group is isomorphic to𝑇 and that asphericalmeans that
all higher homotopy groups are trivial, or, equivalently, that the universal covering
is contractible. The classifying space 𝑚𝑇 is unique up to homotopy. If one has
an amalgamated free product 𝑇 = 𝑇1 →𝑆0 𝑇2, then one can find models for the
classifying spaces such that 𝑚𝑇+ is a𝑀*-subcomplex of 𝑚𝑇 and 𝑚𝑇 = 𝑚𝑇1∪𝑚𝑇2
and 𝑚𝑇0 = 𝑚𝑇1 ∩ 𝑚𝑇2. Thus we obtain a pushout of inclusions of 𝑀*-complexes

𝑚𝑇0
0+1

0+2

𝑚𝑇1

0 .1

𝑚𝑇2 0 .2
𝑚𝑇 .

It yields a long Mayer-Vietoris sequence for the cellular or singular homology

(1.6) · · · ,!+1−−−→ 7# (𝑚𝑇0)
1! (0+1 )⊕1! (0+2 )−−−−−−−−−−−−−−−→ 7# (𝑚𝑇1) ⊕ 7# (𝑚𝑇2)

1! (0 .1 )−1! (0 .2 )−−−−−−−−−−−−−−−→ 7# (𝑚𝑇)
,!−−→ 7#−1 (𝑚𝑇0)

1!−1 (0+1 )⊕1!−1 (0+2 )−−−−−−−−−−−−−−−−−−→ 7#−1 (𝑚𝑇2) ⊕ 7#−1 (𝑚𝑇1)
1!−1 (0 .1 )−1!−1 (0 .2 )−−−−−−−−−−−−−−−−−−→ 7#−1 (𝑚𝑇)

,!−1−−−→ · · · .
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If ; : 𝑇 → 𝑇 is a group automorphism, then a model for 𝑚(𝑇 !/ Z) is given by the
mapping torus of 𝑚; : 𝑚𝑇 → 𝑚𝑇, which is obtained from the cylinder 𝑚𝑇 × [0, 1]
by identifying the bottom and the top with the map 𝑚;. Associated to a mapping
torus, there is the long exact sequence

(1.7) · · · ,!+1−−−→ 7# (𝑚𝑇)
1! (0/)−id−−−−−−−−−→ 7# (𝑚𝑇)

1! (0𝑅 )−−−−−−→ 7# (𝑚(𝑇 !/ Z))
,!−−→ 7#−1 (𝑚𝑇)

1!−1 (0/)−id−−−−−−−−−−−→ 7#−1 (𝑚𝑇)
1! (0𝑅 )−−−−−−→ · · ·

where 𝑓 is the obvious inclusion of 𝑚𝑇 into the mapping torus.

1.3.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (1.4) and (1.6) and the se-
quences (1.5) and (1.7). On the other hand we get for the trivial group 𝑇 = {1}
that 7# (𝑚{1}) = 7# ({•}) is Z for 𝑅 = 0 and trivial for 𝑅 ≠ 0 so that the group
homology of 𝑚𝑇 cannot be the same as the topological 𝐿-theory of 𝑀→

) ({1}). But
there is a better candidate, namely take the topological 𝐿-homology of 𝑚𝑇 instead
of the singular homology. Topological 𝐿-homology is a homology theory defined
for 𝑀*-complexes. At least we mention that for a topologist its definition is routine,
namely, it is the homology theory associated to the 𝐿-theory spectrum which de-
fines the topological 𝐿-theory of𝑀*-complexes, i.e., the cohomology theory which
comes from considering vector bundles over 𝑀*-complexes. In contrast to singular
homology, the topological 𝐿-homology of a point 𝐿# ({•}) is Z for even 𝑅 and is
trivial for 𝑅 odd. So we still get exact sequences (1.6) and (1.7) if we replace 7→ by
𝐿→ everywhere and we have 𝐿# (𝑚{1}) 𝐿# (𝑀→

) ({1}) for all 𝑅 ∈ Z. This leads to
the following conjecture.

Conjecture 1.8 (Baum-Connes Conjecture for torsionfree groups). Let 𝑇 be a
torsionfree group. Then there is for every 𝑅 ∈ Z an isomorphism, called an assembly
map,

𝐿# (𝑚𝑇) −→ 𝐿# (𝑀→
) (𝑇)).

This is indeed a formulation which will turn out to be equivalent to the Baum-
Connes Conjecture 1.1, provided that 𝑇 is torsionfree. Conjecture 1.8 cannot hold
in general as the example of a finite group 𝑇 already shows. Namely, if 𝑇 is finite,
then the obvious inclusion induces an isomorphism 𝐿# (𝑚{1}) ⊗Z Q −→ 𝐿# (𝑚𝑇) ⊗Z
Q for every 𝑅 ∈ Z, whereas 𝐿0 (𝑀→

) ({1}) → 𝐿0 (𝑀→
) (𝑇)) agrees with the map

𝑆C ({1}) → 𝑆C (𝑇), which is rationally bijective if and only if 𝑇 itself is trivial.
Hence Conjecture 1.8 is not true for non-trivial finite groups.
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1.3.4 The Baum-Connes Conjecture

What is going wrong? The sequences (1.4) and (1.5) exist regardless of whether the
groups are torsionfree or not. More generally, if 𝑇 acts on a tree, then they can be
combined to compute the 𝐿-theory 𝐿→ (𝑀→

) (𝑇)) of a group 𝑇 by a certain Mayer-
Vietoris sequence from the stabilizers of the vertices and edges, see Pimsner [812,
Theorem 18 on page 632]). In the special case where all stabilizers are finite, one
sees that 𝐿→ (𝑀→

) (𝑇)) is built by the topological 𝐿-theory of the finite subgroups of𝑇
in a homological fashion. This leads to the idea that 𝐿→ (𝑀→

) (𝑇)) can be computed in
a homological way, but the building blocks do not only consist of 𝐿→ (𝑀→

) ({1})) alone
but of 𝐿→ (𝑀→

) (7)) for all finite subgroups 7 ⊆ 𝑇. This suggests to study equivariant
topological 𝐿-theory. It assigns to every proper 𝑇-𝑀*-complex 𝑊 a sequence of
abelian groups 𝐿𝑆# (𝑊) for 𝑅 ∈ Z such that𝑇-homotopy invariance holds andMayer-
Vietoris sequences exist. A proper 𝑇-𝑀*-complex is a 𝑀*-complex with 𝑇-action
such that for every 𝑛 ∈ 𝑇 and every open cell 𝑜with 𝑜∩𝑛 ·𝑜 ≠ ∞we have 𝑛𝑝 = 𝑝 for all
𝑝 ∈ 𝑜 and all isotropy groups are finite. Two interesting features are that 𝐿𝑆# (𝑇/7)
agrees with 𝐿# (𝑀→

) (7)) for every finite subgroup 7 ⊆ 𝑇 and that for a free 𝑇-𝑀*-
complex 𝑊 and 𝑅 ∈ Z we have a natural isomorphism 𝐿𝑆# (𝑊) −→ 𝐿# (𝑇\𝑊). Recall
that 𝑔𝑇 is a free𝑇-𝑀*-complexwhich is contractible and that 𝑔𝑇 → 𝑇\𝑔𝑇 = 𝑚𝑇
is the universal covering of 𝑚𝑇. We can reformulate Conjecture 1.8 by stating an
isomorphism

𝐿𝑆# (𝑔𝑇) −→ 𝐿# (𝑀→
) (𝑇)).

Now suppose that 𝑇 acts on a tree @ with finite stabilizers. Then the computation of
Pimsner [812, Theorem 18 on page 632]) mentioned above can be rephrased to the
statement that there is an isomorphism

𝐿𝑆# (@) −→ 𝐿# (𝑀→
) (𝑇)).

In particular the left-hand side is independent of the tree @ , on which𝑇 acts by finite
stabilizers. This can be explained as follows. It is known that for every finite subgroup
7 ⊆ 𝑇 the 7-fixed point set @ is again a non-empty tree and hence contractible.
This implies that two trees @1 and @2, on which 𝑇 acts with finite stabilizers, are
𝑇-homotopy equivalent and hence have the same equivariant topological 𝐿-theory.
The same remark applies to 𝐿# (𝑚𝑇) and 𝐿𝑆# (𝑔𝑇), namely, two models for 𝑚𝑇
are homotopy equivalent and two models for 𝑔𝑇 are 𝑇-homotopy equivalent and
therefore 𝐿# (𝑚𝑇) and 𝐿𝑆# (𝑔𝑇) are independent of the choice of a model. This leads
to the idea to look for an appropriate proper𝑇-𝑀*-complex 𝑔𝑇 = 𝑔FIN (𝑇), which
is characterized by a certain universal property and is unique up to 𝑇-homotopy,
such that for a torsionfree group 𝑇 we have 𝑔𝑇 = 𝑔𝑇, for a tree on which 𝑇 acts
with finite stabilizers, we have 𝑔𝑇 = @ , and there is an isomorphism

𝐿𝑆# (𝑔𝑇) −→ 𝐿# (𝑀→
) (𝑇)).
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In particular for a finite group we would like to have 𝑔𝑇 = 𝑇/𝑇 = {•} and then the
desired isomorphism above is true for trivial reasons. Recall that 𝑔𝑇 is characterized
up to𝑇-homotopy by the property that it is a𝑇-𝑀*-complex such that 𝑔𝑇1 is empty
for 7 ≠ {1} and is contractible for 7 = {1}. Having the case of a tree on which
𝑇 acts with finite stabilizers in mind, we define the classifying space for proper
𝑇-actions 𝑔𝑇 to be a 𝑇-𝑀*-complex such that 𝑔𝑇1 is empty for |7 | = ∞ and is
contractible for |7 | < ∞. Indeed, two models for 𝑔𝑇 are 𝑇-homotopy equivalent, a
tree on which 𝑇 acts with finite stabilizers is a model for 𝑔𝑇, we have 𝑔𝑇 = 𝑔𝑇 if
and only if 𝑇 is torsionfree, and 𝑔𝑇 = 𝑇/𝑇 = {•} if and only if 𝑇 is finite. This
leads to the Baum-Connes Conjecture, stated already as Conjecture 1.1. Classifying
spaces for families will be treated in detail in Chapter 11.

The Baum-Connes Conjecture 1.1 makes sense for all groups, and no counterex-
amples are known at the time of writing. The Baum-Connes Conjecture 1.1 reduces
in the torsionfree case to Conjecture 1.8 and is consistent with the result of Pim-
sner [812, Theorem 18 on page 632] for𝑇 acting on a tree with finite stabilizers. It is
obviously true for finite groups 𝑇. Pimsner’s result holds more generally for groups
acting on trees with not necessarily finite stabilizers. So one should get the analo-
gous result for the left-hand side of the isomorphism appearing in the Baum-Connes
Conjecture 1.1. Essentially this boils down to the question whether the analogs of the
long exact sequences (1.4) and (1.5) hold for the left side of the isomorphism appear-
ing in the Baum-Connes Conjecture 1.1. This follows for (1.4) from the fact that for
𝑇 = 𝑇1 →𝑆0 𝑇2 one can find appropriate models for the classifying spaces for proper
𝑇-actions such that there is a 𝑇-pushout of inclusions of proper 𝑇-𝑀*-complexes

𝑇 ×𝑆0 𝑔𝑇0 𝑇 ×𝑆1 𝑔𝑇1

𝑇 ×𝑆2 𝑔𝑇2 𝑔𝑇

and for a subgroup 7 ⊆ 𝑇 and a proper 7-𝑀*-complex 𝑊 there is a natural
isomorphism

𝐿1# (𝑊) −→ 𝐿𝑆# (𝑇 ×1 𝑊).
Thus the associated long exact Mayer-Vietoris sequence yields the long exact se-
quence

· · · ,!+1−−−→ 𝐿𝑆0
# (𝑔𝑇0) → 𝐿𝑆1

# (𝑔𝑇1) ⊕ 𝐿𝑆2
# (𝑔𝑇2) → 𝐿𝑆# (𝑔𝑇) ,!−−→

𝐿𝑆0
#−1 (𝑔𝑇0) → 𝐿𝑆1

#−1 (𝑔𝑇1) ⊕ 𝐿𝑆2
#−1 (𝑔𝑇2) → 𝐿𝑆0

#−1 (𝑔𝑇) → · · ·

which corresponds to (1.4). For (1.5) one uses the fact that for a group automorphism
; : 𝑇 −→ 𝑇 the 𝑇 !/ Z-𝑀*-complex given by the bilaterally infinite mapping
telescope of the ;-equivariant map 𝑔; : 𝑔𝑇 → 𝑔𝑇 is a model for 𝑔 (𝑇 !/ Z).
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In general 𝐿𝑆# (𝑔𝑇) is much bigger than 𝐿𝑆# (𝑔𝑇) 𝐿# (𝑚𝑇) and the canonical
map 𝐿𝑆# (𝑔𝑇) → 𝐿𝑆# (𝑔𝑇) is rationally injective but not necessarily integrally
injective.

1.3.5 Reduced versus Maximal Group #∗-Algebras

All the arguments above also apply to the maximal group 𝑀→-algebra, which has
even better functorial properties than the reduced group 𝑀→-algebra. So a priori one
may think that one should use the maximal group 𝑀→-algebra instead of the reduced
one. However, the version for the maximal group 𝑀→-algebra is not true in general
and the version for the reduced group𝑀→-algebra seems to be the right one. This will
be discussed in more detail in subsection 14.5.1.

If one considers instead of the reduced group𝑀→-algebra the Banach group algebra
𝑁1 (𝑇), one obtains the Bost Conjecture 14.23.

1.3.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 1.1 has an index-
theoretic interpretation. An element in 𝐿𝑆0 (𝑔𝑇) can be represented by a pair
(2 , 𝑃→) consisting of a cocompact proper smooth 𝑅-dimensional 𝑇-manifold 2
with a 𝑇-invariant Riemannian metric together with an elliptic 𝑇-complex 𝑃→ of
di”erential operators of order 1 on 2 and its image under the assembly map is a
certain equivariant index ind𝑋→

" (𝑆) (2 , 𝑃→) in 𝐿# (𝑀→
) (𝑇)). There are many impor-

tant consequences of the Baum-Connes Conjecture such as the Kadison Conjecture,
see Subsection 10.4.2, the stable Gromov-Lawson-Rosenberg Conjecture, see Sub-
section 14.8.4, the Novikov Conjecture, see Section 9.14, and the (Modified) Trace
Conjecture, see Subsections 10.4.1 and 14.8.3.

A summary of the applications of the Baum-Connes Conjecture is given in
Section 14.8.

1.4 Motivation for and Evolution of the Farrell-Jones Conjecture
for !-Theory

Next we want to deal with the algebraic 𝐿-groups 𝐿# (𝑆𝑇) of the group ring 𝑆𝑇.
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1.4.1 Algebraic !-Theory of Group Rings

For an associative ring with unit 𝑆 one defines 𝐿0 (𝑆) to be the projective class
group of 𝑆 and 𝐿1 (𝑆) to be the abelianization of GL(𝑆) = colim#→∞ GL# (𝑆).
The higher algebraic 𝐿-groups 𝐿# (𝑆) for 𝑅 ≥ 1 are the homotopy groups of a
certain 𝐿-theory space associated to the category of finitely generated projective
𝑆-modules. One can define negative 𝐿-groups 𝐿# (𝑆) for 𝑅 ∈ −1 by a certain
contracting procedure applied to 𝐿0 (𝑆). Finally there exists a 𝐿-theory spectrum
K(𝑆) such that 𝑉# (K(𝑆)) = 𝐿# (𝑆) holds for every 𝑅 ∈ Z. If Z → 𝑆 is the obvious
ring map sending 𝑅 to 𝑅 · 1*, then one defines for 𝑅 ∈ 1 the reduced 𝐿-groups to be
the cokernel of the induced map 𝐿# (Z) → 𝐿# (𝑆). The Whitehead group Wh(𝑇)
of a group 𝑇 is the quotient of 𝐿1 (Z𝑇) by elements given by (1, 1)-matrices of the
shape (±𝑛) for 𝑛 ∈ 𝑇.

The reduced projective class group 𝐿0 (Z𝑇) is the recipient for the finite-
ness obstruction of a finitely dominated 𝑀*-complex 𝑊 with fundamental group
𝑇 = 𝑉1 (𝑊). Finitely dominated means that there is a finite 𝑀*-complex 𝑋 and
maps 𝑌 : 𝑊 → 𝑋 and / : 𝑋 → 𝑊 such that / ◦ 𝑌 is homotopic to the identity on 𝑊 .
The Whitehead group Wh(𝑇) is the recipient of the Whitehead torsion of a ho-
motopy equivalence of finite 𝑀*-complexes and of a compact 𝑑-cobordism over
a closed manifold, where 𝑇 is the fundamental group. An 𝑑-cobordism * over 2
consists of a manifold * whose boundary is the disjoint union 𝑒* = 𝑒0* 𝑒1*
such that both inclusions 𝑒+* → * are homotopy equivalences, together with an
isomorphism 2 −→ 𝑒0* . The finiteness obstruction and the Whitehead torsion are
very important topological obstructions whose vanishing has interesting geometric
and topological consequences. The finiteness obstruction vanishes if and only if the
finitely dominated 𝑀*-complex under consideration is homotopy equivalent to a
finite 𝑀*-complex. The Whitehead torsion of a compact 𝑑-cobordism* over 2 of
dimension ≥ 6 vanishes if and only if * is trivial, i.e., is isomorphic to a cylinder
2 × [0, 1] relative 2 = 2 × {0}. This explains why topologists are interested in
𝐿# (Z𝑇) for groups 𝑇.

All these definitions and results will be explained in Chapters 2, 3, 4, 5, and 6.

1.4.2 Appearance of Nil-Terms

The situation for the algebraic 𝐿-theory of 𝑆𝑇 is more complicated than the one
for the topological 𝐿-theory of 𝑀→

) (𝑇). As a special case of the sequence (1.5) we
obtain an isomorphism

𝐿# (𝑀→
) (𝑇 × Z)) = 𝐿# (𝑀→

) (𝑇)) ⊕ 𝐿#−1 (𝑀→
) (𝑇)).

For algebraic 𝐿-theory the analog is the Bass-Heller-Swan decomposition

𝐿# (𝑆[Z]) 𝐿# (𝑆) ⊕ 𝐿#−1 (𝑆) ⊕ 𝑗𝐿# (𝑆) ⊕ 𝑗𝐿# (𝑆)
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where certain additional terms, the Nil-terms 𝑗𝐿# (𝑆), appear, see Subsection 6.3.4.
If one replaces 𝑆 by 𝑆𝑇, one gets

𝐿# (𝑆[𝑇 × Z]) 𝐿# (𝑆𝑇) ⊕ 𝐿#−1 (𝑆𝑇) ⊕ 𝑗𝐿# (𝑆𝑇) ⊕ 𝑗𝐿# (𝑆𝑇).

Such correction terms in the form of Nil-terms also appear when one wants to get
analogs of the sequences (1.4) and (1.5) for algebraic 𝐿-theory, see Section 6.9.

1.4.3 The Farrell-Jones Conjecture for !∗($%) for Regular Rings and
Torsionfree Groups

Let 𝑆 be a regular ring, i.e., it is Noetherian and every 𝑆-module possesses a
finite-dimensional projective resolution. For instance, any principal ideal domain is a
regular ring. Then one can prove inmany cases for torsionfree groups that the analogs
of the sequences (1.4) and (1.5) hold for algebraic 𝐿-theory, see Waldhausen [974]
and [977]. The same reasoning as in the Baum-Connes Conjecture for torsionfree
groups leads to the following conjecture.

Conjecture 1.9. (Farrell-Jones Conjecture for 𝐿→ (𝑆𝑇) for torsionfree groups
and regular rings). Let 𝑇 be a torsionfree group and let 𝑆 be a regular ring. Then
there is for every 𝑅 ∈ Z an isomorphism

7# (𝑚𝑇;K(𝑆)) −→ 𝐿# (𝑆𝑇).

Here 7→ (−;K(𝑆)) is the homology theory associated to the 𝐿-theory spectrum of 𝑆.
It is a homology theory with the property that7# ({•};K(𝑆)) = 𝑉# (K(𝑆)) = 𝐿# (𝑆)
holds for every 𝑅 ∈ Z.

1.4.4 The Farrell-Jones Conjecture for !∗($%) for Regular Rings

If one drops the condition that 𝑇 is torsionfree but requires that the order of every
finite subgroup of 𝑇 is invertible in 𝑆, then in many cases one can still prove that
the analogs of the sequences (1.4) and (1.5) hold for algebraic 𝐿-theory. The same
reasoning as in the Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.10. (Farrell-Jones Conjecture for 𝐿→ (𝑆𝑇) for regular rings). Let
𝑇 be a group. Let 𝑆 be a regular ring such that |7 | is invertible in 𝑆 for every finite
subgroup 7 ⊆ 𝑇. Then there is for every 𝑅 ∈ Z an isomorphism

7𝑆# (𝑔𝑇;K*) −→ 𝐿# (𝑆𝑇).
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Here 7𝑆# (−;K*) is an appropriate 𝑇-homology theory with the property that
7𝑆# (𝑇/7;K*) 71# ({•};K*) 𝐿# (𝑆7) holds for every subgroup 7 ⊆ 𝑇
and every 𝑅 ∈ Z, and the isomorphism above is induced by the 𝑇-map 𝑔𝑇 → {•}.
Conjecture 1.10 reduces to Conjecture 1.9 if 𝑇 is torsionfree.

1.4.5 The Farrell-Jones Conjecture for !∗($%)

Conjecture 1.9 can be applied in the case 𝑆 = Z, which is not true for Conjecture 1.10.
So what is the right formulation for arbitrary rings 𝑆? The idea is that one not only
needs to take all finite subgroups into account but also all virtually cyclic subgroups.
A group is called virtually cyclic if it is finite or contains Z as subgroup of finite
index. Namely, let 𝑔𝑇 = 𝑔VCY (𝑇) be the classifying space for the family of
virtually cyclic subgroups, i.e., a𝑇-𝑀*-complex 𝑔𝑇 such that 𝑔𝑇1 is contractible
for every virtually cyclic subgroup 7 ⊆ 𝑇 and is empty for every subgroup 7 ⊆ 𝑇
which is not virtually cyclic. The 𝑇-space 𝑔𝑇 is unique up to 𝑇-homotopy. These
considerations lead to the Farrell-Jones Conjecture for 𝐿→ (𝑆𝑇) stated already as
Conjecture 1.2.

Conjecture 1.2 makes sense for all groups and rings, and no counterexamples
are known at the time of writing. We have absorbed all the Nil-phenomena into the
source by replacing 𝑔𝑇 by 𝑔𝑇. There is a certain price to pay since often there
are nice small geometric models for 𝑔𝑇, whereas the spaces 𝑔𝑇 are much harder
to analyze and are in general huge. There are up to 𝑇-homotopy unique 𝑇-maps
𝑔𝑇 → 𝑔𝑇 and 𝑔𝑇 → 𝑔𝑇 which yield maps

7# (𝑚𝑇;K(𝑆)) 7𝑆# (𝑔𝑇;K*) → 7𝑆# (𝑔𝑇;K*) → 7𝑆# (𝑔𝑇;K*).

We will later see that there is a splitting, see Theorem 13.36,

7𝑆# (𝑔𝑇;K*) 7𝑆# (𝑔𝑇;K*) ⊕ 7𝑆# (𝑔𝑇, 𝑔𝑇;K*)(1.11)

where 7𝑆# (𝑔𝑇;K*) is the comparatively easy homological part and all Nil-type
information is contained in 7𝑆# (𝑔𝑇, 𝑔𝑇;K*). If 𝑆 is regular and the order of any
finite subgroup of𝑇 is invertible in 𝑆, then7𝑆# (𝑔𝑇, 𝑔𝑇;K*) is trivial and hence the
natural map 7𝑆# (𝑔𝑇;K*) −→ 7𝑆# (𝑔𝑇;K*) is bijective. Therefore Conjecture 1.2
reduces to Conjecture 1.9 and Conjecture 1.10 when they apply.

In the Baum-Connes setting the natural map 𝐿𝑆# (𝑔𝑇) −→ 𝐿𝑆# (𝑔𝑇) is always
bijective.
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1.4.6 Applications of the Farrell-Jones Conjecture for !∗($%)

We have 𝐿# (Z) = 0 for 𝑅 ∈ −1. Both the map Z −→ 𝐿0 (Z) that sends 𝑅 to 𝑅 · [Z]
and the map {±1} → 𝐿1 (Z) that sends ±1 to the class of the (1, 1)-matrix (±1) are
bijective. Therefore an easy spectral sequence argument shows that Conjecture 1.9
implies

Conjecture 1.12. (Farrell-Jones Conjecture 𝐿# (Z𝑇) in dimensions 𝑅 ∈ 1). Let
𝑇 be a torsionfree group. Then 𝐿# (Z𝑇) = 0 for 𝑅 ∈ Z, 𝑅 ∈ 0 and Wh(𝑇) = 0.

In particular, the finiteness obstruction and the Whitehead torsion are always
zero for torsionfree fundamental groups. This implies that every 𝑑-cobordism over
a simply connected 𝑟-dimensional closed manifold for 𝑟 ≥ 5 is trivial and thus
the Poincaré Conjecture in dimensions ≥ 6 (and with some extra e”ort also in
dimension 𝑟 = 5). Thiswill be explained in Section 3.5. The Farrell-JonesConjecture
for 𝐿-theory, see Conjecture 1.2, implies the Bass Conjecture, see Section 2.10.
Kaplansky’s Idempotent Conjecture follows from the Farrell-Jones Conjecture for
𝐿-theory for torsionfree groups and regular rings, see Conjecture 1.9, as explained
in Section 2.9. Further applications of the Conjecture 1.9, e.g., to pseudoisotopy and
to automorphisms of manifolds, will be discussed in Section 9.21.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.5 Motivation for and Evolution of the Farrell-Jones Conjecture
for "〈−∞〉

∗ ($%)

Next we want to deal with the algebraic 𝑁-groups 𝑁 2# (𝑆𝑇) of the group ring 𝑆𝑇 of
a group 𝑇 with coefficients in an associative ring 𝑆 with unit and involution.

1.5.1 Algebraic "-Theory of Group Rings

Let 𝑆 be an associative ring with unit. An involution of rings 𝑆 → 𝑆, / ↦→ / on
𝑆 is a map satisfying / + 𝑠 = / + 𝑠, /𝑠 = 𝑠 / , 0 = 0, 1 = 1, and / = / for all
/, 𝑠 ∈ 𝑆. Given a ring with involution, the group ring 𝑆𝑇 inherits an involution by
3∈𝑆 /3 · 𝑛 = 3∈𝑆 / · 𝑛−1. If the coefficient ring 𝑆 is commutative, we usually

use the trivial involution / = / . Given a ring with involution, one can associate to
it quadratic 𝑁-groups 𝑁ℎ# (𝑆) for 𝑅 ∈ Z. The abelian group 𝑁ℎ0 (𝑆) can be identified
with the Witt group of non-degenerate quadratic forms on finitely generated free 𝑆-
modules, where every hyperbolic quadratic form represents the zero element and the
addition is given by the orthogonal sum of hyperbolic quadratic forms. The abelian
group 𝑁ℎ2 (𝑆) is essentially given by the skew-symmetric versions. One defines
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𝑁ℎ1 (𝑆) and 𝑁ℎ3 (𝑆) in terms of automorphism of quadratic forms. The 𝑁-groups are
four-periodic, i.e., there is a natural isomorphism 𝑁ℎ# (𝑆) −→ 𝑁ℎ#+4 (𝑆) for 𝑅 ∈ Z. If
one uses finitely generated projective 𝑆-modules instead of finitely generated free
𝑆-modules, one obtains the proper quadratic 𝑁-groups 𝑁 5# (𝑆) for 𝑅 ∈ Z. For every
𝑘 ∈ {−∞} & { 𝑘 ∈ Z | 𝑘 ∈ 1} there are versions 𝑁 〈 . 〉

# (𝑆), where 〈 𝑘〉 is called a
decoration. The decorations 𝑘 = 0, 1 correspond to the decorations C, 𝑑. If 𝑆 is Z𝑇,
one uses finitely generated based free Z𝑇-modules and takes the Whitehead torsion
into account, then one obtains the simple quadratic 𝑁-groups 𝑁𝑔# (Z𝑇) = 𝑁 〈2〉

# (Z𝑇)
for 𝑅 ∈ Z.

The relevance of the 𝑁-groups comes from the fact that they are the recipients
for various surgery obstructions. The fundamental surgery problem is the following.
Consider a map D : 2 → 𝑊 from a closed manifold 2 to a finite Poincaré complex
𝑊 . We want to know whether we can change it by a process called surgery to a map
𝑛 : 𝑗 → 𝑊 with a closed manifold 𝑗 as source and the same target such that 𝑛 is
a homotopy equivalence. This may answer the question whether a finite Poincaré
complex 𝑊 is homotopy equivalent to a closed manifold. Note that a space which
is homotopy equivalent to a closed manifold must be a finite Poincaré complex, but
not every finite Poincaré complex is homotopy equivalent to a closed manifold. If
D comes with additional bundle data and has degree 1, we can find 𝑛 if and only if
the so-called surgery obstruction of D vanishes, which takes values in 𝑁ℎ# (Z𝑇) for
𝑅 = dim(𝑊) and 𝑇 = 𝑉1 (𝑊). If we want 𝑛 to be a simple homotopy equivalence,
the obstruction lives in 𝑁𝑔# (Z𝑇). We see that, analogous to the finiteness obstruction
in 𝐿0 (Z𝑇) and the Whitehead torsion in Wh(𝑇), the algebraic 𝑁-groups are the
recipients for important obstructions whose vanishing has interesting geometric
and topological consequences. Also the question whether two closed manifolds are
di”eomorphic or homeomorphic can be decided via surgery theory, of which the
𝑁-groups are a part.

More explanations about 𝑁-groups and surgery theory will be given in Chapter 9.

1.5.2 The Farrell-Jones Conjecture for "∗($%)[1/2]

If we invert 2, i.e., if we consider the localization 𝑁 〈− . 〉
# (𝑆𝑇) [1/2], then there is no

di”erence between the various decorations and the analogs of the sequences (1.4)
and (1.5) are true for 𝑁-theory, see Cappell [204]. The same reasoning as for the
Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.13. (Farrell-Jones Conjecture for 𝑁→ (𝑆𝑇) [1/2]). Let𝑇 be a group.
Let 𝑆 be an associative ring with unit and involution. Then there is for every 𝑅 ∈ Z
and every decoration 𝑘 an isomorphism

7𝑆# (𝑔𝑇;L〈 . 〉
* ) [1/2] −→ 𝑁 〈 . 〉

# (𝑆𝑇) [1/2] .
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Here 7𝑆# (−;L〈 . 〉
* ) is an appropriate 𝑇-homology theory with the property that

7𝑆# (𝑇/7;L〈 . 〉
* ) 71# ({•};L〈 . 〉

* ) 𝑁 〈 . 〉
# (𝑆7) holds for every subgroup 7 ⊆ 𝑇

and every 𝑅 ∈ Z and the isomorphism above is induced by the 𝑇-map 𝑔𝑇 → {•}.

1.5.3 The Farrell-Jones Conjecture for "〈−∞〉
∗ ($%)

In general the 𝑁-groups 𝑁 〈 . 〉
# (𝑆𝑇) depend on the decoration and often the 2-torsion

carries sophisticated information and is hard to handle. Recall that as a special case
of the sequence (1.5) we obtain an isomorphism

𝐿# (𝑀→
) (𝑇 × Z)) = 𝐿# (𝑀→

) (𝑇)) ⊕ 𝐿#−1 (𝑀→
) (𝑇)).

The 𝑁-theory analog is given by the Shaneson splitting [913]

𝑁 〈 . 〉
# (𝑆[Z]) 𝑁 〈 .−1〉

#−1 (𝑆) ⊕ 𝑁 〈 . 〉
# (𝑆).

Here for the decoration 𝑘 = −∞ one has to interpret 𝑘 −1 as −∞. Since $1 is a model
for 𝑚Z, we get an isomorphism

7# (𝑚Z;L〈 . 〉 (𝑆)) 𝑁 〈 . 〉
#−1 (𝑆) ⊕ 𝑁

〈 . 〉
# (𝑆).

Therefore the decoration −∞ shows the right homological behavior and is the right
candidate for the formulation of an isomorphism conjecture.

The analog of the sequence (1.4) does not hold for 𝑁 〈 . 〉
→ (𝑆𝑇), certain correction

terms, the UNil-terms come in, which are independent of the decoration 〈 𝑘〉 and
are always (not necessarily finitely generated) 2-primary abelian groups, see Cap-
pell [203], [204]. As in the algebraic 𝐿-theory case this leads to the Farrell-Jones
Conjecture for 𝑁 〈−∞〉

→ (𝑆𝑇), stated already as Conjecture 1.3. The analog of the
sequence (1.5) holds for 𝑁 〈−∞〉

→ (𝑆𝑇), see Theorem 13.60.
𝑆 〈−∞〉In Conjecture 1.3 the term 7# (−;L* ) is an appropriate 𝑇-homology theory

such that 7𝑆# (𝑇/7;L〈−∞〉
* ) 71# ({•};L〈−∞〉

* ) 𝑁 〈−∞〉
# (𝑆7) holds for every

subgroup 7 ⊆ 𝑇 and every 𝑅 ∈ Z, and the assembly map is induced by the map
𝑔𝑇 → {•}. Conjecture 1.3 makes sense for all groups and rings with involution,
and no counterexamples are known at the time of writing.

After inverting 2 Conjecture 1.3 is equivalent to Conjecture 1.13.
There is an 𝑁-theory version of the splitting (1.11)

7𝑆# (𝑔𝑇;L〈−∞〉
* ) 7𝑆# (𝑔𝑇;L〈−∞〉

* ) ⊕ 7𝑆# (𝑔𝑇, 𝑔𝑇;L〈−∞〉
* ),(1.14)

provided that there exists an integer 𝑌0 such that 𝐿+ (𝑆E) = 0 holds for all virtually
cyclic subgroups E ⊆ 𝑇 and 𝑌 ∈ 𝑌0.
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1.5.4 Applications of the Farrell-Jones Conjecture for "〈−∞〉
∗ ($%)

For applications in geometry and topology the simple 𝑁-groups 𝑁𝑔# (Z𝑇) are the most
interesting ones. The di”erence between the various decorations is measured by the
so-called Rothenberg sequences and given in terms of the Tate cohomology of Z/2
with coefficients in 𝐿# (Z𝑇) for 𝑅 ∈ 0 and Wh(𝑇) with respect to the involution
coming from the standard involution on the group ring Z𝑇 sending 3∈𝑆 F3 · 𝑛
to 3∈𝑆 F3 · 𝑛−1. Hence the decorations do not matter if 𝐿# (Z𝑇) for 𝑅 ∈ 0 and
Wh(𝑇) vanish. In view of Conjecture 1.12, this leads to the following version of
Conjecture 1.3 for torsionfree groups

Conjecture 1.15. (Farrell-Jones Conjecture for 𝑁→ (Z𝑇) for torsionfree groups).
Let 𝑇 be a torsionfree group. Then there is for every 𝑅 ∈ Z and every decoration 𝑘
an isomorphism

7# (𝑚𝑇;L〈 . 〉 (Z)) −→ 𝑁 〈 . 〉
# (Z𝑇).

Moreover, the source, target, and the map itself are independent of the decoration 𝑘 .

Here 7# (−;L〈 . 〉 (Z)) is the homology theory associated to the 𝑁-theory spectrum
L〈− . 〉 (Z) and satisfies 7# ({•};L〈 . 〉 (Z)) 𝑉# L〈 . 〉 (Z) 𝑁 〈 . 〉

# (Z).
The 𝑁-theoretic assembly map appearing in Conjecture 1.15 has a topological

meaning. It appears in the so-called Surgery Exact Sequence, which we will discuss
in more detail in Section 9.12. Let L𝑔 (Z)〈1〉 be the 1-connected cover L𝑔 (Z)〈1〉 of
L𝑔 (Z). There is a canonical map 𝑥 : 7# (𝑚𝑇;L𝑔 (Z)〈1〉) → 7# (𝑚𝑇;L𝑔 (Z)). Let 𝑗
be an aspherical oriented closedmanifoldwith fundamental group𝑇, i.e., an oriented
closed manifold homotopy equivalent to 𝑚𝑇. Then 𝑇 is torsionfree, the source of
the composite 7# (𝑚𝑇;L𝑔 (Z)〈1〉) → 𝑁𝑔# (𝑆𝑇) of the assembly map appearing in
Conjecture 1.15 with 𝑥 consists of bordism classes of normal maps 2 → 𝑗 with 𝑗
as target, and the composite sends such a normal map to its surgery obstruction. This
is analogous to the Baum-Connes setting where the assembly map can be described
by assigning to an equivariant index problem its index.

The third term in the Surgery Exact Sequence is the so-called structure set of 𝑗 .
It is the set of equivalence classes of simple homotopy equivalences D0 : 20 → 𝑗
with a closed topological manifold as source and 𝑗 as target where D0 : 20 → 𝑗 and
D1 : 21 → 𝑗 are equivalent if there is a homeomorphism 𝑛 : 20 → 21 such that
D1 ◦ 𝑛 and D0 are homotopic. Conjecture 1.15 implies that this structure set is trivial
provided that the dimension of 𝑗 is greater or equal to five. Hence Conjecture 1.15
implies in dimensions ≥ 5 the following famous conjecture if 𝑇 is isomorphic to the
fundamental group.

Conjecture 1.16 (Borel Conjecture). Let 2 and 𝑗 be two aspherical closed topo-
logical manifolds whose fundamental groups are isomorphic. Then they are home-
omorphic, and every homotopy equivalence from 2 to 𝑗 is homotopic to a homeo-
morphism.
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The Borel Conjecture is a topological rigidity theorem for aspherical closed mani-
folds and analogous to theMostow Rigidity Theorem, which says that two hyperbolic
closed Riemannianmanifolds with isomorphic fundamental groups are isometrically
di”eomorphic. The Borel Conjecture is false if one replaces topological manifold
by smooth manifold and homeomorphism by di”eomorphism. Its connection to the
Borel Conjecture is one of the main features of the Farrell-Jones Conjecture. More
details will be given in Subsections 9.15.2 and 9.15.3.

The Farrell-Jones Conjecture for 𝑁-theory 1.3 implies theNovikov Conjecture, see
Section 9.14. It also has applications to the problemwhether Poincaré duality groups
or torsionfree hyperbolic groups with spheres as boundary are fundamental groups
of aspherical closed manifolds, see Sections 9.17 and 9.18. Product decompositions
of aspherical closed manifolds are treated in Section 9.20.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.6 More General Versions of the Farrell-Jones Conjecture

We will also treat versions of the Farrell-Jones Conjecture in equivariant additive
categories, or more generally, in equivariant higher categories, see Sections 13.3
and 13.4. There will be versions with finite wreath products, see Section 13.5. The
most general version is the Full Farrell-Jones Conjecture 13.30, see Section 13.6,
which implies all other variants of the Farrell-Jones Conjecture, see Section 13.11.

1.7 Status of the Baum-Connes and the Farrell-Jones Conjecture

A detailed report on the groups for which these conjectures have been proved will
be given in Chapter 16. For example, the Baum-Connes Conjecture 1.1 is known for
a class of groups which includes amenable groups, hyperbolic groups, knot groups,
fundamental groups of compact 3-manifolds (possibly with boundary), and one-
relator groups, but is open for SL# (Z) for 𝑅 ≥ 3, where for a commutative ring 𝑆
we write SL# (𝑆) for the group of invertible (𝑅, 𝑅)-matrices with det(𝑖) = 1. The
class of groups for which the Farrell-Jones Conjectures 1.2 and 1.3 have been proved
contains hyperbolic groups, finite-dimensional CAT(0)-groups, fundamental groups
of (not necessarily compact) 3-manifolds (possibly with boundary), solvable groups,
lattices in almost connected Lie groups, and arithmetic groups, but they are open
for amenable groups in general. If one allows coefficients, one can prove inheritance
properties for the Baum-Connes Conjecture and the Farrell-Jones Conjecture, e.g.,
the class of groups for which they are true is closed under taking subgroups, finite
direct products, free products, colimits over directed sets whose structure map are
injective in the Baum-Connes case and can be arbitrary in the Farrell-Jones case.
This will be explained in Sections 13.7 and 14.6.
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The Full Farrell-Jones Conjecture 13.30, which implies all other variants of the
Farrell-Jones Conjecture, is known to be true for some groups with unusual prop-
erties, e.g., groups with expanders, Tarski monsters, lacunary hyperbolic groups,
subgroups of finite products of hyperbolic groups, self-similar groups, see Theo-
rem 16.1. At the time of writing we have no specific candidate of a group or of a
general property of groups such that the Full Farrell-Jones Conjecture 13.30, or one
of its consequences, e.g., the Novikov Conjecture and the Borel Conjecture, might
be false. So we have no good starting point for a search for counterexamples, see
Section 16.10.

At the time of writing no counterexample to the Baum-Connes Conjecture is
known to the author. There exist counterexamples to the Baum-Connes Conjecture
with coefficients, as explained in Section 16.10.

1.8 Structural Aspects

1.8.1 The Meta-Isomorphism Conjecture

The formulations of the Baum-Connes Conjecture 1.1 and of the Farrell-Jones Con-
jecture 1.2 and 1.3 are very similar in the homological picture. It allows a formulation
of the followingMeta-IsomorphismConjecture, ofwhich both conjectures are special
cases and which also has other very interesting specializations, e.g., for pseudoiso-
topy, 𝑖-theory, topological Hochschild homology, and topological cyclic homology,
see Section 15.2.

Meta-Isomorphism Conjecture 1.17. Given a group𝑇, a𝑇-homology theoryH𝑆
→ ,

and a family F of subgroups of 𝑇, we say that theMeta-Isomorphism Conjecture is
satisfied if the 𝑇-map 𝑔F (𝑇) → {•} induces for every 𝑅 ∈ Z an isomorphism

𝑖F : H𝑆
# (𝑔F (𝑇)) → H𝑆

# ({•}).

This general formulation is an excellent framework to construct transformations
between the assembly maps appearing in di”erent Isomorphism Conjectures. For
instance, the cyclotomic trace relates the 𝐿-theoretic Farrell-Jones Conjecture with
coefficients in Z to the Isomorphism Conjecture for topological cyclic homology,
see Subsection 15.14.3, and via symmetric signatures one can link the Farrell-Jones
Conjecture for algebraic 𝑁-theory with coefficient in Z to the Baum-Connes Con-
jecture, see Subsection 15.14.4. Moreover, basic computational tools and techniques
for equivariant homology theories apply both to the Baum-Connes Conjecture 1.1
and the Farrell-Jones Conjectures 1.2 and 1.3.
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1.8.2 Assembly

One important idea is the assembly principle, which leads to assembly maps in a
canonical and universal way by asking for the best approximation of a homotopy
invariant functor from 𝑇-spaces to spectra by an equivariant homology theory. It is
an important ingredient for the identification of the various descriptions of assembly
maps appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture.
For instance, the assembly map appearing in the Baum-Connes Conjecture 1.1
can be interpreted as assigning to an appropriate equivariant elliptic complex its
equivariant index, and the assembly map appearing in the 𝑁-theoretic Farrell-Jones
Conjecture 1.3 is related to the map appearing in the Surgery Exact Sequence, which
assigns to a surgery problem its surgery obstruction.We have already explained above
that these identifications are the basis for some of applications of the Isomorphism
Conjectures, and we will see that they are also important for proofs. There is a
homotopy-theoretic approach to the assembly map based on homotopy colimits over
the orbit category, which motivates the name assembly. Roughly speaking, the name
assembly refers to assembling the values of the 𝐿-and 𝑁-groups of the reduced group
𝑀→-algebra or the group ring of a group 𝑇 from their values on finite or virtually
cyclic subgroups of 𝑇. All this will be explained in Chapter 18.

This parallel treatment of the Baum-Connes Conjecture and the Farrell-Jones
Conjecture and of other variants is one of the topics of this book. However, the
geometric interpretations of the assembly maps in terms of indices, surgery obstruc-
tions, or forget control are quite di”erent. Therefore the methods of proof for the
Farrell-Jones Conjecture and the Baum-Connes Conjecture use di”erent input. Al-
though there are some similarities in the proofs, it is not clear how to export methods
of proof from one conjecture to the other.

1.9 Computational Aspects

In general the target 𝐿# (𝑀→
) (𝑇)) of the assembly map appearing in the Baum-Connes

Conjecture 1.1 is very hard to compute, whereas the source 𝐿𝑆# (𝑔𝑇) is much more
accessible because one can apply standard techniques from algebraic topology such
as spectral sequences and equivariant Chern characters and there are often nice
small geometric models for 𝑔𝑇. For the Farrell-Jones Conjectures 1.2 and 1.3,
this applies also to the parts 7𝑆# (𝑔𝑇;K*) and 7𝑆# (𝑔𝑇;L〈−∞〉

* ) respectively ap-
pearing in the splittings (1.11) and (1.14). The other parts 7𝑆# (𝑔𝑇, 𝑔𝑇;K*) or
7𝑆# (𝑔𝑇, 𝑔𝑇;L〈−∞〉

* ) are harder to handle, since they involve Nil- or UNil-terms and
the 𝑇-𝑀*-complex 𝑔𝑇 is not proper and in general huge. Most of the known com-
putations of 𝐿# (𝑀→

) (𝑇)), 𝐿# (𝑆𝑇), and 𝑁
〈 . 〉
# (𝑆𝑇) are based on the Baum-Connes

Conjecture 1.1 and the Farrell-Jones Conjectures 1.2 and 1.3.
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Classifications of manifolds and of𝑀→-algebras rely on and thus motivate explicit
calculations of 𝐿- and 𝑁-groups. In this context it is often important not only to
determine the 𝐿- and 𝑁-groups abstractly, but to develop detection techniques so
that one can identify or distinguish specific elements associated to the original clas-
sification problem or give geometric or index-theoretic interpretations to elements
in the 𝐿- and 𝑁-groups.

A general guide for computations and a list of known cases including applications
to classification problems will be given in Chapter 17.

1.10 Are the Baum-Connes Conjecture and the Farrell-Jones
Conjecture True in General?

The title of this section is the central and at the time ofwriting unsolved question. One
motivation forwriting thismonograph is to stimulate somevery clevermathematician
towork on this problem and finally find an answer. Let us speculate about the possible
answer.

We are skeptical about the Baum-Connes Conjecture for two reasons: there are
counterexamples for the version with coefficients, and the left side of the Baum-
Connes assembly map is functorial under arbitrary group homomorphisms, whereas
the right side is not. The Bost Conjecture, which predicts an isomorphism

𝐿𝑆# (𝑔𝑇) → 𝐿# (𝑁1 (𝑇)),

has a much better chance to be true in general. The possible failure of the Baum-
Connes Conjecture may come from the possible failure of the canonical map
𝐿# (𝑁1 (𝑇)) → 𝐿# (𝑀)→ (𝑇)) to be bijective.

In spite of the Baum-Connes Conjecture, we do not see an obvious flaw with the
Bost Conjecture or the Farrell-Jones Conjecture. As explained in Section 1.7 above,
we have no starting point for the construction of a counterexample, and all abstract
properties we know for the right side do hold for the left side of the assembly map
and vice versa. In particular for the Bass Conjecture and for the Novikov Conjecture
which follow from the Farrell-Jones Conjecture, the class of groups for which they
are known to be true is impressive. There are some conclusions from the Farrell-
Jones Conjecture which are not trivial and true for all groups. These are arguments
in favor of a positive answer

The following arguments are in favor of a negative answer. The universe of groups
is overwhelmingly large. We have Gromov’s saying on our neck that a statement
which holds for all groups is either trivial or false. We have no philosophical reason
why the Bost Conjecture or the Farrell-Jones Conjecture should be true in general.
Finding a counterexample will probably require some new ideas, maybe from logic
or random groups.
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The upshot of this discussion is that the author is skeptical about the Baum-
Connes Conjecture, but does not dare to make any predictions about the chances
for the other conjectures, in particular for the Novikov Conjecture, to be true for all
groups.

We will elaborate on this discussion in Section 16.10.

1.11 The Organization of the Book and a User’s Guide

We have written the text in a way such that one can read small units, e.g., a single
chapter, independently from the rest, concentrate on certain aspects, and extract easily
and quickly specific information. Hopefully we have found the right mixture between
definitions, theorems, examples, and remarks so that reading the book is entertaining
and illuminating. We have successfully used parts of this book, sometimes a single
chapter, for seminars, reading courses, and advanced lecture courses.

The book consists of three parts and a supplement, which we briefly review next.
We will also give some further information on how to use the book.

Note that not all of the proofs are included in full. At least we convey the basic
ideas and include references to sources.

1.11.1 Introduction to !- and "-Theory (Part I)

In the first part “Introduction to 𝐿- and 𝑁-Theory”, which encompasses Chapters 2
to 10, we introduce and motivate the relevant theories, namely, algebraic 𝐿-theory,
algebraic 𝑁-theory, and topological 𝐿-theory. In these chapters we present some ap-
plications and more accessible special versions of the Baum-Connes and the Farrell-
Jones Conjecture. They are rather independent of one another and one can start
reading each of them without having gone though the others. If a reader just wants
to get some information, for instance about Wall’s finiteness obstruction, Whitehead
torsion, or the projective class group, she or he can directly start reading the relevant
chapter, learn the basics about these invariants, and understand the relevant special
versions of the Baum-Connes Conjecture or the Farrell-Jones Conjecture without
going through the other chapters. Each of these chapters is eligible for a lecture
course, seminar, or reading course.

1.11.2 The Isomorphism Conjectures (Part II)

In the second part “The Isomorphism Conjectures”, which consists of Chapters 11
to Chapter 18, we introduce the Baum-Connes Conjecture and the Farrell-Jones
Conjecture in their most general form, namely, for arbitrary groups and with coef-
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ficients. We discuss further applications and in particular how they can be used for
computations. We give a report about the status of these conjectures and discuss
open problems.

Note that the Farrell-Jones Conjecture comes in di”erent levels. It can be con-
sidered for rings (with involution) as coefficients and hence aims at the algebraic
𝐿-theory and 𝑁-theory of group rings. This is the most relevant version for applica-
tions, where it often suffices to treat lower and middle 𝐿-theory, torsionfree groups,
and Z or a field as coefficients. One may twist the group rings and allow orientation
characters. The next level is to pass to equivariant additive categories (with involu-
tion) as coefficients, which has the advantage that it automatically leads to useful
inheritance properties of the Farrell-Jones Conjecture and encompasses the case of
rings as coefficients. For algebraic 𝐿-theory one can even allow higher categories
as coefficients. This contains the version of additive categories as coefficients and
also the versions of the Farrell-Jones Conjecture for Waldhausen’s 𝑖-theory, for
pseudoisotopy, and for Whitehead spaces as special cases. There are also versions
“with finite wreath product”, where the passage to overgroups of finite index is built
in.

So there are many variations of the Farrell-Jones Conjecture, but the Full Farrell-
Jones Conjecture 13.30 implies all of them.

We also state Meta-Conjectures, which reduce to the Baum-Connes Conjecture,
the Farrell-Jones Conjecture, or other types of Isomorphism Conjectures if one feeds
the right theory into them. There are versions of the Farrell-Jones Conjecture for
Waldhausen’s 𝑖-theory, pseudoisotopy, Whitehead spaces, topological Hochschild
homology, topological cyclic homology, and homotopy 𝐿-theory.

We also briefly discuss the Farrell-Jones Conjecture for totally disconnected
groups and Hecke Algebras, where for the first time a version of the Farrell-Jones
Conjecture for topological groups is considered. The Baum-Connes Conjecture has
already been intensively studied for topological groups. However, in this monograph
we will confine ourselves to discrete groups.

1.11.3 Methods of Proofs (Part III)

In the third part “Methods of Proofs”,which ranges fromChapter 19 toChapter 25,we
give a survey on the background, history, philosophy, strategies, and some ingredients
of the proofs. We will concentrate on the Farrell-Jones Conjecture in this part III.

The reader, who is interested in proofs, should first go through Chapter 19. There
motivations for the proofs of the Farrell-Jones Conjecture and some information
about their long history is given without getting lost in technical details. So it will
be a soft introduction to the methods of proofs conveying ideas only. Mainly we
explain why controlled topology, flows, and transfers come in, which one would not
expect at first glance in view of the homotopy-theoretic nature of the Farrell-Jones
Conjecture.
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In Chapter 20 we isolate some conditions about a group which guarantee that it
satisfies the Full Farrell-Jones Conjecture or some special version of it. Note that
here 𝐿- or 𝑁-theory do not yet play any role and one can use the results of this section
without any previous knowledge about them. This will be interesting for someone
who is already familiar with geometric group theory but has no background in 𝐿- or
𝑁-theory.

Depending on how ambitious the reader is, she or he should go through the other
chapters. We recommend to read Section 23.7, where details of the proof of the
Farrell-Jones Conjecture for the surjectivity of the 𝐿-theoretic assembly map in
dimension 1 is given, which does not use much knowledge about algebraic 𝐿-theory
but uses all the basic ideas appearing in the proof of the Full Farrell-Conjecture.

The reader who wants to understand the proof in the most advanced setting,
namely the one for higher categories as coefficients, and for the largest class of
groups, namely the class of Dress-Farrell-Hsiang-Jones groups, is recommended to
read through Chapter 24. For this some background in higher category theory is
necessary.

We give a very brief overview of the methods of proof for the Baum-Connes
Conjecture in Chapter 25.

1.11.4 Supplement

The book contains a number of exercises. They are not needed for the exposition of
the book, but give some illuminating insight. Moreover, the reader may test whether
she or he has understood the text or improve her or his understanding by trying to
solve the exercises. Hints to the solutions of the exercises are given in Chapter 26.

If one wants to find a specific topic, the extensive index of the monograph can
be used to find the right spot for a specific topic. The index contains an item
“Theorem”, under which all theorems with their names appearing in the book are
listed, and analogously there is an item “Conjecture”.

1.11.5 Prerequisites

We require that the reader is familiar with basic notions in topology (𝑀*-complexes,
chain complexes, homology, homotopy groups, manifolds, coverings, cofibrations,
fibrations, . . . ), functional analysis (Hilbert spaces, bounded operators, di”erential
operators, . . . ), algebra (groups, modules, group rings, elementary homological
algebra, . . . ), group theory (presentations, Cayley graphs, hyperbolic groups, . . . ),
and elementary category theory (functors, transformations, additive categories, . . . ).
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1.12 Notations and Conventions

Here is a briefing on our main conventions and notations. Details are of course
discussed in the text.

• Ring will mean (not necessarily commutative) associative ring with unit unless
explicitly stated otherwise;

• Module always means left module unless explicitly stated otherwise;
• Group means discrete group unless explicitly stated otherwise;
• We will always work in the category of compactly generated spaces, com-
pare [927] and [1006, I.4]. In particular every space is automatically Hausdor”;

• For our conventions concerning spectra see Section 12.4. Spectra are denoted
by boldface letters such as E;

• We use the standard symbols Z,Q,R,C, Z5 , andQ5 for the integers, the rational
numbers, the real numbers, the complex numbers, the C-adic numbers, and the
C-adic rationals;

• We use the following symbols to denote various groups:

symbol name
Z/𝑅 finite cyclic group of order 𝑅
$# symmetric group of permutations of the set {1, 2, . . . 𝑅}
𝑖# alternating group of even permutations of the set {1, 2, . . . , 𝑅}
H∞ infinite dihedral group
H2# dihedral group of order 2𝑅
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1.14 Notes

Further information about the Baum-Connes Conjecture and the Farrell-Jones Con-
jecture can be found in the survey articles [67, 88, 109, 366, 426, 484, 659, 673, 742,
846, 963].


