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Preface

This manuscript is not finished. Most of it is
in nearly final form, whereas Chapters 8 and 25
are still under construction. Comments are very
welcome.

The Isomorphism Conjectures due to Baum and Connes and to Farrell and
Jones aim at the topological K-theory of reduced group C∗-algebras and the
algebraic K-and L-theory of group rings. These theories are of major interest
for many reasons. For instance, the algebraic L-groups are the recipients for
various surgery obstructions and hence highly relevant for the classification of
manifolds. Other important obstructions such as Wall’s finiteness obstruction
and Whitehead torsion take values in algebraic K-groups. The topological K-
groups of C∗-algebras play a central role in index theory and the classification
of C∗-algebras.

In general these K- and L-groups are very hard to analyze for group rings
or group C∗-algebras. The Isomorphism Conjectures identify them with equi-
variant homology groups of classifying spaces for families of subgroups. As
an illustration, let us consider the special case that G is a torsionfree group
and R is a regular ring (with involution). Then the Isomorphism Conjectures
predict that the so-called assembly maps

Hn(BG; K(R))
∼=−→ Kn(RG);

Hn(BG; L〈−∞〉(R))
∼=−→ L〈−∞〉n (RG);

Kn(BG)
∼=−→ Kn(C∗r (G)),

are isomorphisms for all n ∈ Z. The target is the algebraic K-theory of
the group ring RG, the algebraic L-theory of RG with decoration 〈−∞〉,
or the topological K-theory of the reduced group C∗-algebra C∗r (G). The
source is the evaluation of a specific homology theory on the classifying space

BG, where Hn({•}; K(R)) ∼= Kn(R), Hn({•}; L〈−∞〉(R)) ∼= L
〈−∞〉
n (R), and

Kn({•}) ∼= Kn(C) hold for all n ∈ Z.
Since the sources of these assembly maps are much more accessible than the

targets, the Isomorphism Conjectures are key ingredients for explicit compu-
tations of the K-and L-groups of group rings and reduced group C∗-algebras.
These often are motivated by and have applications to concrete problems that
arise, for instance, in the classification of manifolds or C∗-algebras.

The Baum-Conjecture and the Farrell-Jones Conjecture imply many other
prominent conjectures. In a lot of cases these conjectures were not known to
be true for certain groups until the Baum-Connes Conjecture or the Farrell-
Jones Conjecture was proved for them. Examples for such prominent con-
jectures are the Borel Conjecture about the topological rigidity of aspherical
closed manifolds, the (stable) Gromov-Lawson-Rosenberg Conjecture about
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the existence of Riemannian metrics with positive scalar curvature on closed
Spin-manifolds, the Kaplansky’ Idempotent Conjecture and the Kadison Con-
jecture on the non-existence of non-trivial idempotents in the group ring or
the reduced group C∗-algebra of torsionfree groups, the Novikov Conjec-
ture about the homotopy invariance of higher signatures, and the conjectures
about the vanishing of the reduced projective class group of ZG and the
Whitehead group of G for a torsionfree group G.

The Baum-Connes Conjecture and the Farrell-Jones Conjecture are still
open in general (at the time of writing). However, tremendous progress has
been made on the class of groups for which they are known to be true. The
techniques of the sophisticated proofs stem from algebra, dynamical systems,
geometry, group theory, operator theory, and topology. The extreme broad
scope of the Baum-Connes Conjecture and the Farrell-Jones Conjecture is
both the main challenge and main motivation for writing this book. We hope
that, after having read parts of this monograph, the reader will share the
enthusiasm of the author for the Isomorphism Conjectures.

The monograph is a guide for and gives a panorama of Isomorphism Con-
jectures and related topics. It presents or at least indicates the (at the time of
writing) most advanced results and developments. It can be used by various
groups of readers, such as experts on the Baum-Connes Conjecture or the
Farrell-Jones Conjecture, experienced mathematicians, who may not be ex-
perts on these conjectures but want to learn or just apply them, and also, of
course, advanced undergraduate and graduate students. References for fur-
ther reading and information have been inserted.

We will give more information about the organization of the book and a
user’s guide in Section 1.10.

Bonn, April 2023 Wolfgang Lück
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Chapter 1

Introduction

The Isomorphism Conjectures due to Paul Baum and Alain Connes and to
Tom Farrell and Lowell Jones are important conjectures, which have many
interesting applications and consequences. However, they are not easy to
formulate and it is a priori not clear why the actual versions are the most
promising ones. The current versions are the final upshot of a longer process,
which has led to them step by step. They have been influenced and steered
by various new results that have been proved during the last decades and
given new insight into the objects, problems, and constructions at which
these conjectures aim.

In this introduction we want to motivate these conjectures by explaining
how one can be led to them by general considerations and certain facts. We
present brief surveys about applications of these conjectures, their status, and
the methods of proof. We give information about contents of this monograph
including a user’s guide.

1.1 The Statement of the Baum-Connes Conjecture and
of the Farrell-Jones Conjecture

Next we record the statements of the Baum-Connes Conjecture and Farrell-
Jones Conjecture. Explanations and motivations will follow. The versions
stated below will be generalized later.

Conjecture 1.1 (Baum-Connes Conjecture). Let G be a group. Then
there is for every n ∈ Z an isomorphism, called assembly map,

KG
n (EG)

∼=−→ Kn(C∗r (G)).

Conjecture 1.2. (Farrell-Jones Conjecture for K∗(RG)). Let G be a
group. Let R be an associative ring with unit. Then there is for every n ∈ Z
an isomorphism, called assembly map,

HG
n (EG; KR)

∼=−→ Kn(RG).

Conjecture 1.3. (Farrell-Jones Conjecture for L
〈−∞〉
∗ (RG)). Let G be

a group. Let R be an associative ring with unit and involution. Then there
is for every n ∈ Z an isomorphism, called assembly map,

1



2 1 Introduction

HG
n (EG; L

〈−∞〉
R )

∼=−→ L〈−∞〉n (RG).

The general pattern is that the target of the assembly map is what we
want to understand or to compute, namely K-and L-theory of group rings
and group C∗-algebras, and that the source is a homological expression, which
is much more accessible than the source and depends only the values of the
K- or L-groups under considerations on finite subgroups or on virtually cyclic
subgroups of G. The spaces EG and EG are classifying spaces for the family
of finite subgroups and the family of virtually cyclic subgroups.

1.2 Motivation for the Baum-Connes Conjecture

We will start with the easiest and most convenient to state and motivate
Isomorphism Conjecture, the Baum-Connes Conjecture for the topological
K-theory of reduced group C∗-algebras. Then we will pass to the Farrell-
Jones Conjecture for the algebraic K- and L-theory of group rings, which is
more complicate due to the appearance of Nil-terms.

1.2.1 Topological K-Theory of Reduced Group C∗-Algebras

The target of the Baum-Connes Conjecture is the topological K-theory of the
reduced C∗-algebra C∗r (G) of a group G. We will consider discrete groups G
only. One defines the topological K-groups Kn(A) for any Banach algebra A
to be the abelian group Kn(A) = πn−1(GL(A)) for n ≥ 1. The famous Bott

Periodicity Theorem gives a natural isomorphism Kn(A)
∼=−→ Kn+2(A) for

n ≥ 1. Finally one defines Kn(A) for all n ∈ Z so that the Bott isomorphism
theorem is true for all n ∈ Z. It turns out that K0(A) is the same as the
projective class group of the ring A, which is the Grothendieck group of the
abelian monoid of isomorphism classes of finitely generated projective A-
modules with the direct sum as addition. The topological K-theory of C =
C∗r ({1}) is trivial in odd dimensions and isomorphic to Z in even dimensions.
More generally, for a finite group G the topological K-theory of C∗r (G) is the
complex representation ring RC(G) in even dimensions and is trivial in odd
dimensions.

Let P be an appropriate elliptic differential operator (or more generally
an elliptic complex) on a closed n-dimensional Riemannian manifold M , for
instance the Dirac operator or the signature operator. Then one can consider
its index in Kn(C) which dimC(ker(P )) − dimC(coker(P )) ∈ Z for even n
and is zero for odd n. If M comes with an isometric G-action of a finite
group G and P is compatible with the G-action, then ker(P ) and coker(P )
are complex finite dimensional G-representations and one obtains an element
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in Kn(C∗r (G)) = RC(G) by [ker(P )] − [coker(P )] for even n. Suppose that
G is an arbitrary discrete group and that M is a (not necessarily compact)
n-dimensional smooth manifold without boundary with a proper cocompact
G-action, a G-invariant Riemannian metric, and an appropriate elliptic differ-
ential operator P compatible with the G-action. An example is the universal
covering M = Ñ of an n-dimensional closed Riemannian manifold N with
G = π1(N) and the lift P̃ to Ñ of an appropriate elliptic differential operator
P on N . Then one can define an equivariant index of P which takes values in
Kn(C∗r (G)). Therefore the interest in K∗(C

∗
r (G)) comes from the fact that it

is the natural recipient for indices of certain equivariant differential operators.
All this will be explained in Chapter 10.

1.2.2 Homological Aspects

A first basic problem is to compute K∗(C
∗
r (G)) or to identify it with more

familiar terms. The key idea comes from the observation that K∗(C
∗
r (G))

has some homological properties. More precisely, if G is the amalgamated
free product G = G1 ∗G0 G2 for subgroups Gi ⊆ G, then there is a long exact
sequence

(1.4)

· · · ∂n+1−−−→ Kn(C∗r (G0))
Kn(C∗r (i1))⊕Kn(C∗r (i2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G1))⊕Kn(C∗r (G2))

Kn(C∗r (j1))−Kn(C∗r (j2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G))
∂n−→ Kn−1(C∗r (G0))

Kn−1(C∗r (i1))⊕Kn−1(C∗r (i2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G2))⊕Kn−1(C∗r (G1))

Kn−1(C∗r (j1))−Kn−1(C∗r (j2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G))
∂n−1−−−→ · · ·

where i1,i2, j1, and j2 are the obvious inclusions, see [796, Theorem 18 on
page 632]. If φ : G→ G is a group automorphism and GoφZ is the associated
semidirect product, then there is a long exact sequence

(1.5)

· · · ∂n+1−−−→ Kn(C∗r (G))
Kn(C∗r (φ))−id−−−−−−−−−→ Kn(C∗r (G))

Kn(C∗r (k))−−−−−−−→ Kn(C∗r (GoφZ))

∂n−→ Kn−1(C∗r (G))
Kn−1(C∗r (φ))−id−−−−−−−−−−−→ Kn−1(C∗r (G))

Kn−1(C∗r (k))−−−−−−−−→ · · ·

where k is the obvious inclusion, see [795, Theorem 3.1 on page 151] or more
generally [796, Theorem 18 on page 632].

We compare this with group homology in order to explain the analogy
with homology. Recall that the classifying space BG of a group G is an as-
pherical CW -complex whose fundamental group is isomorphic to G and that
aspherical means that all higher homotopy groups are trivial, or, equivalently,
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that the universal covering is contractible. The classifying space BG is unique
up to homotopy. If one has an amalgamated free product G = G1 ∗G0

G2,
then one can find models for the classifying spaces such that BGi is a CW -
subcomplex of BG and BG = BG1 ∪BG2 and BG0 = BG1 ∩BG2. Thus we
obtain a pushout of inclusions of CW -complexes

BG0
Bi1 //

Bi2

��

BG1

Bj1

��
BG2

Bj2

// BG.

It yields a long Mayer-Vietoris sequence for the cellular or singular homology

(1.6) · · · ∂n+1−−−→ Hn(BG0)
Hn(Bi1)⊕Hn(Bi2)−−−−−−−−−−−−→ Hn(BG1)⊕Hn(BG2)

Hn(Bj1)−Hn(Bj2)−−−−−−−−−−−−→ Hn(BG)
∂n−→ Hn−1(BG0)

Hn−1(Bi1)⊕Hn−1(Bi2)−−−−−−−−−−−−−−−→ Hn−1(BG2)⊕Hn−1(BG1)

Hn−1(Bj1)−Hn−1(Bj2)−−−−−−−−−−−−−−−→ Hn−1(BG)
∂n−1−−−→ · · · .

If φ : G → G is a group automorphism, then a model for B(G oφ Z) is
given by the mapping torus of Bφ : BG → BG, which is obtained from the
cylinder BG× [0, 1] by identifying the bottom and the top with the map Bφ.
Associated to a mapping torus, there is the long exact sequence

(1.7) · · · ∂n+1−−−→ Hn(BG)
Hn(Bφ)−id−−−−−−−→ Hn(BG)

Hn(Bk)−−−−−→ Hn(B(Goφ Z))

∂n−→ Hn−1(BG)
Hn−1(Bφ)−id−−−−−−−−−→ Hn−1(BG)

Hn(Bk)−−−−−→ · · ·

where k is the obvious inclusion of BG into the mapping torus.

1.2.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (1.4) and (1.6) and the
sequences (1.5) and (1.7). On the other hand we get for the trivial group
G = {1} that Hn(B{1}) = Hn({•}) is Z for n = 0 and trivial for n 6= 0 so that
the group homology of BG cannot be the same as the topological K-theory
of C∗r ({1}). But there is a better candidate, namely take the topological K-
homology of BG instead of the singular homology. Topological K-homology
is a homology theory defined for CW -complexes. At least we mention that
for a topologist its definition is a routine, namely, it is the homology theory
associated to the K-theory spectrum which defines topological K-theory of
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CW -complexes, i.e., the cohomology theory which comes from considering
vector bundles over CW -complexes. In contrast to singular homology, the
topological K-homology of a point Kn({•}) is Z for even n and is trivial for
n odd. So we still get exact sequences (1.6) and (1.7) if we replace H∗ by K∗
everywhere and we have Kn(B{1}) ∼= Kn(C∗r ({1}) for all n ∈ Z. This leads
to the following conjecture.

Conjecture 1.8 (Baum-Connes Conjecture for torsionfree groups).
Let G be a torsionfree group. Then there is for every n ∈ Z an isomorphism,
called assembly map,

Kn(BG)
∼=−→ Kn(C∗r (G)).

This is indeed a formulation which will turn out to be equivalent to
the Baum-Connes Conjecture 1.1, provided that G is torsionfree. Conjec-
ture 1.8 cannot hold in general as already the example of a finite group
G shows. Namely, if G is finite, then the obvious inclusion induces an iso-

morphism Kn(B{1}) ⊗Z Q
∼=−→ Kn(BG) ⊗Z Q for every n ∈ Z, whereas

K0(C∗r ({1}) → K0(C∗r (G)) agrees with the map RC({1}) → RC(G) which
is rationally bijective if and only if G itself is trivial. Hence Conjecture 1.8 is
not true for non-trivial finite groups.

1.2.4 The Baum-Connes Conjecture

What is going wrong? The sequences (1.4) and (1.5) do exist regardless
whether the groups are torsionfree or not. More generally, if G acts on a
tree, then they can be combined to compute the K-theory K∗(C

∗
r (G)) of a

group G by a certain Mayer-Vietoris sequence from the stabilizers of the ver-
tices and edges, see Pimsner [796, Theorem 18 on page 632]). In the special
case where all stabilizers are finite, one sees that K∗(C

∗
r (G)) is built by the

topological K-theory of the finite subgroups of G in a homological fashion.
This leads to the idea that K∗(C

∗
r (G)) can be computed in a homological

way, but the building blocks do not only consist of K∗(C
∗
r ({1})) alone but

of K∗(C
∗
r (H)) for all finite subgroups H ⊆ G. This suggest to study equi-

variant topological K-theory. It assigns to every proper G-CW -complex X a
sequence of abelian groups KG

n (X) for n ∈ Z such that G-homotopy invari-
ance holds and Mayer-Vietoris sequences exist. A proper G-CW -complex is
a CW -complex with G-action such that for every g ∈ G and every open cell
e with e ∩ g · e 6= ∅ we have gx = x for all x ∈ e and all isotropy groups are
finite. Two interesting features are that KG

n (G/H) agrees with Kn(C∗r (H))
for every finite subgroup H ⊆ G and that for a free G-CW -complex X and

n ∈ Z we have a natural isomorphism KG
n (X)

∼=−→ Kn(G\X). Recall that EG
is a free G-CW -complex which is contractible and that EG→ G\EG = BG
is the universal covering of BG. We can reformulate Conjecture 1.8 by stating
an isomorphism
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KG
n (EG)

∼=−→ Kn(C∗r (G)).

Now suppose that G acts on a tree T with finite stabilizers. Then the com-
putation of Pimsner [796, Theorem 18 on page 632]) mentioned above can be
rephrased to the statement that there is an isomorphism

KG
n (T )

∼=−→ Kn(C∗r (G)).

In particular the left hand side is independent of the tree T , on which G
acts by finite stabilizers. This can be explained as follows. It is known that
for every finite subgroup H ⊆ G the H-fixed point set T is again a non-
empty tree and hence contractible. This implies that two trees T1 and T2, on
which G acts with finite stabilizers, are G-homotopy equivalent and hence
have the same equivariant topological K-theory. The same remark applies to
Kn(BG) and KG

n (EG), namely, two models for BG are homotopy equivalent
and two models for EG are G-homotopy equivalent and therefore Kn(BG)
and KG

n (EG) are independent of the choice of a model. This leads to the
idea to look for an appropriate proper G-CW -complex EG = EFIN (G),
which is characterized by a certain universal property and is unique up to
G-homotopy, such that for a torsionfree group G we have EG = EG, for a
tree, on which G acts with finite stabilizers, we have EG = T , and there is
an isomorphism

KG
n (EG)

∼=−→ Kn(C∗r (G)).

In particular for a finite group we would like to have EG = G/G = {•}
and then the desired isomorphism above is true for trivial reasons. Recall
that EG is characterized up to G-homotopy by the property that it is a G-
CW -complex such that EGH is empty for H 6= {1} and is contractible for
H = {1}. Having the case of a tree, on which G acts with finite stabilizers,
in mind, we define the classifying space for proper G-actions EG to be a
G-CW -complex such that EGH is empty for |H| =∞ and is contractible for
|H| <∞. Indeed, two models for EG are G-homotopy equivalent, a tree, on
which G acts with finite stabilizers, is a model for EG, we have EG = EG if
and only if G is torsionfree, and EG = G/G = {•} if and only if G is finite.
This leads to the Baum-Connes Conjecture, stated already as Conjecture 1.1.
Classifying spaces for families will be treated in detail in Chapter 11.

The Baum-Connes Conjecture 1.1 makes sense for all groups, and no coun-
terexamples are known at the time of writing. The Baum-Connes Conjec-
ture 1.1 reduces in the torsionfree case to Conjecture 1.8 and is consistent
with the results by Pimsner [796, Theorem 18 on page 632] for G acting on a
tree with finite stabilizers. It is obviously true for finite groups G. Pimsner’s
result does hold more generally for groups acting on trees with not necessarily
finite stabilizers. So one should get the analogous result for the left hand side
of the isomorphism appearing in the Baum-Connes Conjecture 1.1. Essen-
tially this boils down to the question whether the analogues of the long exact
sequences (1.4) and (1.5) hold for the left side of the isomorphism appearing
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in the Baum-Connes Conjecture 1.1. This follows for (1.4) from the fact that
for G = G1 ∗G0

G2 one can find appropriate models for the classifying spaces
for proper G-actions such that there is a G-pushout of inclusions of proper
G-CW -complexes

G×G0
EG0

//

��

G×G1
EG1

��
G×G2 EG2

// EG

and for a subgroup H ⊆ G and a proper H-CW -complex X there is a natural
isomorphism

KH
n (X)

∼=−→ KG
n (G×H X).

Thus the associated long exact Mayer-Vietoris sequence yields the long exact
sequence

· · · ∂n+1−−−→ KG0
n (EG0)→ KG1

n (EG1)⊕KG2
n (EG2)→ KG

n (EG)
∂n−→

KG0
n−1(EG0)→ KG1

n−1(EG1)⊕KG2
n−1(EG2)→ KG0

n−1(EG)→ · · ·

which corresponds to (1.4). For (1.5) one uses the fact that for a group au-

tomorphism φ : G
∼=−→ G the Goφ Z-CW -complex given by the to both sides

infinite mapping telescope of the φ-equivariant map Eφ : EG → EG is a
model for E(Goφ Z).

In general KG
n (EG) is much bigger than KG

n (EG) ∼= Kn(BG) and the
canonical map KG

n (EG)→ KG
n (EG) is rationally injective but not necessar-

ily integrally injective.

1.2.5 Reduced versus Maximal Group C∗-Algebras

All the arguments above do also apply to the maximal group C∗-algebra
which does even have better functorial properties than the reduced group
C∗-algebra. So a priori one may think that one should use the maximal group
C∗-algebra instead of the reduced one. However, the version for the maximal
group C∗-algebra is not true in general and the version for the reduced group
C∗-algebra seems to be the right one. This will be discussed in more detail
in subsection 14.5.1.

If one considers instead of the reduced group C∗-algebra the Banach group
algebra l1(G), one obtains the Bost Conjecture 14.23.
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1.2.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 1.1 has an
index theoretic interpretation. An element in KG

0 (EG) can be represented
by a pair (M,P ∗) consisting of a cocompact proper smooth n-dimensional
G-manifold M with a G-invariant Riemannian metric together with an el-
liptic G-complex P ∗ of differential operators of order 1 on M and its image
under the assembly map is a certain equivariant index indC∗r (G)(M,P ∗) in
Kn(C∗r (G)). There are many important consequences of the Baum-Connes
Conjecture such as the Kadison Conjecture, see Subsection 10.4.2, the sta-
ble Gromov-Lawson-Rosenberg Conjecture, see Subsection 14.8.2, the Novikov
Conjecture, see Section 9.14, and the (Modified) Trace Conjecture, see Sub-
sections 10.4.1 and 14.8.1.

A summary of all the application of the Baum-Connes Conjecture is given
in Section 14.8.

1.3 Motivation for the Farrell-Jones Conjecture for
K-Theory

Next we want to deal with the algebraic K-groups Kn(RG) of the group ring
RG.

1.3.1 Algebraic K-Theory of Group Rings

For an associative ring with unit R one defines K0(R) to be the projec-
tive class group of R and K1(R) to be the abelianization of GL(R) =
colimn→∞GLn(R). The higher algebraic K-groups Kn(R) for n ≥ 1 are the
homotopy group groups of a certainK-theory space associated to the category
of finitely generated projective R-modules. One can define negative K-groups
Kn(R) for n ≤ −1 by a certain contracting procedure applied to K0(R). Fi-
nally there exists a K-theory spectrum K(R) such that πn(K(R)) = Kn(R)
holds for every n ∈ Z. If Z→ R is the obvious ring map sending n to n · 1R,
then one defines for n ≤ 1 the reduced K-groups to be the cokernel of the
induced map Kn(Z) → Kn(R). The Whitehead group Wh(G) of a group G
is the quotient of K1(ZG) by elements given by (1, 1)-matrices of the shape
(±g) for g ∈ G.

The reduced projective class group K̃0(ZG) is the recipient for the finite-
ness obstruction of a finitely dominated CW -complex X with fundamental
group G = π1(X). Finitely dominated means that there is a finite CW -
complex Y and maps i : X → Y and r : Y → X such that r ◦ i is homotopic
to the identity on X. The Whitehead group Wh(G) is the recipient of the
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Whitehead torsion of a homotopy equivalence of finite CW -complexes and of
a compact h-cobordism over a closed manifold, where G is the fundamental
group. An h-cobordism W over M consists of a manifold W whose boundary
is the disjoint union ∂W = ∂0W

∐
∂1W such that both inclusions ∂iW →W

are homotopy equivalences, together with a diffeomorphism M
∼=−→ ∂0W . The

finiteness obstruction and the Whitehead torsion are very important topolo-
gical obstructions whose vanishing has interesting geometric and topological
consequences. The finiteness obstruction vanishes if and only if the finitely
dominated CW -complex under consideration is homotopy equivalent to a fi-
nite CW -complex. The Whitehead torsion of a compact h-cobordism W over
M of dimension ≥ 6 vanishes if and only if W is trivial, i.e., is diffeomorphic
to a cylinder M × [0, 1] relative M = M ×{0}. This explains why topologists
are interested in Kn(ZG) for groups G.

All these definitions and results will be explained in Chapters 2, 3, 4,
Chapter 5, and 6.

1.3.2 Appearance of Nil-Terms

The situation for algebraic K-theory of RG is more complicated than the one
for the topological K-theory of C∗r (G). As a special case of the sequence (1.5)
we obtain an isomorphism

Kn(C∗r (G× Z)) = Kn(C∗r (G))⊕Kn−1(C∗r (G)).

For algebraic K-theory the analogue is the Bass-Heller-Swan decomposition

Kn(R[Z]) ∼= Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)

where certain additional terms, the Nil-terms NKn(R) appear, see Subsec-
tion 6.3.4. If one replaces R by RG, one gets

Kn(R[G× Z]) ∼= Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG).

Such correction terms in form of Nil-terms appear also, when one wants to
get analogues of the sequences (1.4) and (1.5) for algebraic K-theory, see
Section 6.9.

1.3.3 The Farrell-Jones Conjecture for K∗(RG) for Regular Rings
and Torsionfree Groups

Let R be a regular ring, i.e., it is Noetherian and every R-module possesses
a finite dimensional projective resolution. For instance, any principal ideal
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domain is a regular ring. Then one can prove in many cases for torsionfree
groups that the analogues of the sequences (1.4) and (1.5) do hold for alge-
braic K-theory, see Waldhausen [955] and [958]. The same reasoning as in
the Baum-Connes Conjecture for torsionfree groups leads to the following
conjecture.

Conjecture 1.9. (Farrell-Jones Conjecture for K∗(RG) for torsion-
free groups and regular rings). Let G be a torsionfree group and let R
be a regular ring. Then there is for every n ∈ Z an isomorphism

Hn(BG; K(R))
∼=−→ Kn(RG).

Here H∗(−; K(R)) is the homology theory associated to the K-theory spec-
trum of R. It is a homology theory with the property that Hn({•}; K(R)) =
πn(K(R)) = Kn(R) holds for every n ∈ Z.

1.3.4 The Farrell-Jones Conjecture for K∗(RG) for Regular Rings

If one drops the condition that G is torsionfree but requires that the order
of every finite subgroup of G is invertible in R, then one still can prove in
many cases that the analogues of the sequences (1.4) and (1.5) do hold for
algebraic K-theory. The same reasoning as in the Baum-Connes Conjecture
leads to the following conjecture.

Conjecture 1.10. (Farrell-Jones Conjecture for K∗(RG) for regular
rings). Let G be a group. Let R be a regular ring such that |H| is invertible
in R for every finite subgroup H ⊆ G. Then there is for every n ∈ Z an
isomorphism

HG
n (EG; KR)

∼=−→ Kn(RG).

Here HG
n (−; KR) is an appropriate G-homology theory with the property

that HG
n (G/H; KR) ∼= HH

n ({•}; KR) ∼= Kn(RH) holds for every subgroup
H ⊆ G and every n ∈ Z, and the isomorphism above is induced by the G-map
EG→ {•}. Conjecture 1.10 reduces to Conjecture 1.9 if G is torsionfree.

1.3.5 The Farrell-Jones Conjecture for K∗(RG)

Conjecture 1.9 can be applied in the case R = Z what is not true for Conjec-
ture 1.10. So what is the right formulation for arbitrary rings R? The idea
is that one does not only need to take all finite subgroups into account but
also all virtually cyclic subgroups. A group is called virtually cyclic if it is
finite or contains Z as subgroup of finite index. Namely, let EG = EVCY(G)
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be the classifying space for the family of virtually cyclic subgroups, i.e., a
G-CW -complex EG such that EGH is contractible for every virtually cyclic
subgroup H ⊆ G and is empty for every subgroup H ⊆ G which is not
virtually cyclic. The G-space EG is unique up to G-homotopy. This consid-
erations lead to the Farrell-Jones Conjecture for K∗(RG) stated already as
Conjecture 1.2.

Conjecture 1.2 makes sense for all groups and rings, and no counterex-
amples are known at the time of writing. We have absorbed all the Nil-
phenomena into the source by replacing EG by EG. There is a certain prize
to pay since often there are nice small geometric models for EG, whereas the
spaces EG are much harder to analyze and are in general huge. There are up
to G-homotopy unique G-maps EG→ EG and EG→ EG which yield maps

Hn(BG; K(R)) ∼= HG
n (EG; KR)→ HG

n (EG; KR)→ HG
n (EG; KR).

We will later see that there is a splitting, see Theorem 13.33,

HG
n (EG; KR) ∼= HG

n (EG; KR)⊕HG
n (EG,EG; KR)(1.11)

where HG
n (EG; KR) is the comparatively easy homological part and all Nil-

type information is contained in HG
n (EG,EG; KR). If R is regular and the

order of any finite subgroup of G is invertible in R, then HG
n (EG,EG; KR) is

trivial and hence the natural mapHG
n (EG; KR)

∼=−→ HG
n (EG; KR) is bijective.

Therefore Conjecture 1.2 reduces to Conjecture 1.9 and Conjecture 1.10 when
they apply.

In the Baum-Connes setting the natural map KG
n (EG)

∼=−→ KG
n (EG) is

always bijective.

1.3.6 Applications of the Farrell-Jones Conjecture for K∗(RG)

We have Kn(Z) = 0 for n ≤ −1. Both the map Z
∼=−→ K0(Z) that sends

n to n · [Z] and the map {±1} → K1(Z) that sends ±1 to the class of the
(1, 1)-matrix (±1) are bijective. Therefore an easy spectral sequence argument
shows that Conjecture 1.9 implies

Conjecture 1.12. (Farrell-Jones Conjecture Kn(ZG) in dimensions

n ≤ 1). Let G be a torsionfree group. Then K̃n(ZG) = 0 for n ∈ Z, n ≤ 0
and Wh(G) = 0.

In particular the finiteness obstruction and the Whitehead torsion are al-
ways zero for torsionfree fundamental groups. This implies in particular that
every h-cobordism over a simply connected d-dimensional closed manifold
for d ≥ 5 is trivial and thus the Poincaré Conjecture in dimensions ≥ 6 (and
with some extra effort also in dimension d = 5). This will be explained in
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Section 3.5. The Farrell-Jones Conjecture for K-theory, see Conjecture 1.2,
implies the Bass Conjecture, see Section 2.10. Kaplansky’s Idempotent Con-
jecture follows from the Farrell-Jones Conjecture for K-theory for torsionfree
groups and regular rings, see Conjecture 1.9, as explained in Section 2.9.
Further applications of the Conjecture 1.9, e.g., to pseudoisotopy and to au-
tomorphisms of manifolds, will be discussed in Section 9.21.

A summary of all the application of the Farrell-Jones Conjecture is given
in Section 13.12.

1.4 Motivation for the Farrell-Jones Conjecture for
L〈−∞〉∗ (RG)

Next we want to deal with the algebraic L-groups Lεn(RG) of the group ring
RG of a group G with coefficients in an associative ring R with unit and
involution.

1.4.1 Algebraic L-Theory of Group Rings

Let R be an associative ring with unit. An involution of rings R→ R, r 7→ r
on R is a map satisfying r + s = r + s, rs = s r, 0 = 0, 1 = 1, and r = r
for all r, s ∈ R. Given a ring with involution, the group ring RG inherits
an involution by

∑
g∈G rg · g =

∑
g∈G r · g−1. If the coefficient ring R is

commutative, we usually use the trivial involution r = r. Given a ring with
involution, one can associate to it quadratic L-groups Lhn(R) for n ∈ Z. The
abelian group Lh0 (R) can be identified with the Witt group of non-degenerate
quadratic forms on finitely generated free R-modules, where every hyperbolic
quadratic forms represent the zero element and the addition is given by the
orthogonal sum of hyperbolic quadratic forms. The abelian group Lh2 (R) is
essentially given by the skew-symmetric versions. One defines Lh1 (R) and
Lh3 (R) in terms of automorphism of quadratic forms. The L-groups are four-

periodic, i.e., there is a natural isomorphism Lhn(R)
∼=−→ Lhn+4(R) for n ∈ Z. If

one uses finitely generated projective R-modules instead of finitely generated
free R-modules, one obtains the proper quadratic L-groups Lpn(RG) for n ∈ Z.
If one uses finitely generated based free RG-modules and takes the Whitehead
torsion into account, then one obtains the simple quadratic L-groups Lsn(RG)

for n ∈ Z. For every j ∈ {−∞}q{j ∈ Z | j ≤ 2} there are versions L
〈j〉
n (RG),

where 〈j〉 is called decoration. The decorations j = 0, 1 correspond to the
decorations p, h and j = 2 is related to the decoration s.

The relevance of the L-groups comes from the fact that they are the re-
cipients for various surgery obstructions. The fundamental surgery problem
is the following. Consider a map f : M → X from a closed manifold M to
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a finite Poincaré complex X. We want to know whether we can change it
by a process called surgery to a map g : N → X with a closed manifold N
as source and the same target such that g is a homotopy equivalence. This
may answer the question whether a finite Poincaré complex X is homotopy
equivalent to a closed manifold. Note that a space which is homotopy equiv-
alent to a closed manifold must be a finite Poincaré complex, but not every
finite Poincaré complex is homotopy equivalent to a closed manifold. If f
comes with additional bundle data and has degree 1, we can find g if and
only if the so-called surgery obstruction of f vanishes which takes values in
Lhn(ZG) for n = dim(X) and G = π1(X). If we want g to be a simple homo-
topy equivalence, the obstruction lives in Lsn(ZG). We see that, analogous to

the finiteness obstruction in K̃0(ZG) and the Whitehead torsion in Wh(G),
the algebraic L-groups are the recipients for important obstructions whose
vanishing has interesting geometric and topological consequences. Also the
question whether two closed manifolds are diffeomorphic or homeomorphic
can be decided via surgery theory of which the L-groups are a part.

More explanations about L-groups and surgery theory will be given in
Chapter 9.

1.4.2 The Farrell-Jones Conjecture for L∗(RG)[1/2]

If we invert 2, i.e., if we consider the localization L
〈−j〉
n (RG)[1/2], then there

is no difference between the various decorations and the analogues of the
sequences (1.4) and (1.5) are true for L-theory, see Cappell [192]. The same
reasoning as for the Baum-Connes Conjecture leads to the following conjec-
ture.

Conjecture 1.13. (Farrell-Jones Conjecture for L∗(RG)[1/2]). Let G
be a group. Let R be an associative ring with unit and involution. Then
there is for every n ∈ Z and every decoration j an isomorphism

HG
n (EG; L

〈j〉
R )[1/2]

∼=−→ L〈j〉n (RG)[1/2].

Here HG
n (−; L

〈j〉
R ) is an appropriate G-homology theory with the property

that HG
n (G/H; L

〈j〉
R ) ∼= HH

n ({•}; L〈j−∞〉R ) ∼= L
〈j〉
n (RH) holds for every sub-

group H ⊆ G and every n ∈ Z and the isomorphism above is induced by the
G-map EG→ {•}.
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1.4.3 The Farrell-Jones Conjecture for L〈−∞〉∗ (RG)

In general the L-groups L
〈j〉
n (RG) do depend on the decoration and often the

2-torsion carries sophisticated information and is hard to handle. Recall that
as a special case of the sequence (1.5) we obtain an isomorphism

Kn(C∗r (G× Z)) = Kn(C∗r (G))⊕Kn−1(C∗r (G)).

The L-theory analogues is given by the Shaneson splitting [896]

L〈j〉n (R[Z]) ∼= L
〈j−1〉
n−1 (R)⊕ L〈j〉n (R).

Here for the decoration j = −∞ one has to interpret j − 1 as −∞. Since S1

is a model for BZ, we get an isomorphisms

Hn(BZ; L〈j〉(R)) ∼= L
〈j〉
n−1(R)⊕ L〈j〉n (R).

Therefore the decoration −∞ shows the right homological behavior and is
the right candidate for the formulation of an isomorphism conjecture.

The analogues of the sequences (1.4) and (1.5) do not hold for L
〈j〉
∗ (RG),

certain correction terms, the UNil-terms come in, which are independent
of the decoration and are always 2-torsion, see Cappell [191], [192]. As in
the algebraic K-theory case this leads to the Farrell-Jones Conjecture for

L
〈−∞〉
∗ (RG), stated already as Conjecture 1.3.

In Conjecture 1.3 the term HG
n (−; L

〈−∞〉
R ) is an appropriate G-homology

theory such that HG
n (G/H; L

〈−∞〉
R ) ∼= HH

n ({•}; L〈−∞〉R ) ∼= L
〈−∞〉
n (RH) holds

for every subgroup H ⊆ G and every n ∈ Z, and the assembly map is induced
by the map EG → {•}. Conjecture 1.3 makes sense for all groups and rings
with involution, and no counterexamples are known at the time of writing.

After inverting 2 Conjecture 1.3 is equivalent to Conjecture 1.13.
There is an L-theory version of the splitting (1.11)

HG
n (EG; L

〈−∞〉
R ) ∼= HG

n (EG; L
〈−∞〉
R )⊕HG

n (EG,EG; L
〈−∞〉
R ),(1.14)

provided that there exists an integer i0 such that Ki(RV ) = 0 holds for all
virtually cyclic subgroups V ⊆ G and i ≤ i0.

1.4.4 Applications of the Farrell-Jones Conjecture for L〈−∞〉∗ (RG)

For applications in geometry and topology the simple L-groups Lsn(ZG) are
the most interesting ones. The difference between the various decorations is
measured by the so-called Rothenberg sequences and given in terms of the
Tate cohomology of Z/2 with coefficients in K̃n(ZG) for n ≤ 0 and Wh(G)
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with respect to the involution coming from the involution on the group ring
ZG. Hence the decorations do not matter if K̃n(ZG) for n ≤ 0 and Wh(G)
vanish. This leads in view of Conjecture 1.12 to the following version of
Conjecture 1.3 for torsionfree groups

Conjecture 1.15. (Farrell-Jones Conjecture for L∗(ZG) for torsion-
free groups). Let G be a torsionfree group. Then there is for every n ∈ Z
and every decoration j an isomorphism

Hn(BG; L〈j〉(Z))
∼=−→ L〈j〉n (RG).

Moreover, the source, target, and the map itself are independent of the dec-
oration j.

Here Hn(−; L〈j〉(Z)) is the homology theory associated to the L-theory

spectrum L〈−j〉(Z) and satisfies Hn({•}; L〈j〉(Z)) ∼= πn
(
L〈j〉(Z)

) ∼= L
〈j〉
n (Z).

The L-theoretic assembly map appearing in Conjecture 1.15 has a topolo-
gical meaning. It appears in the so-called long exact surgery sequence which
we will discuss in more detail in Section 9.12. Let Ls(Z)〈1〉 be the 1-connected
cover Ls(Z)〈1〉 of Ls(Z). There is a canonical map ι : Hn(BG; Ls(Z)〈1〉) →
Hn(BG; Ls(Z)). Let N be an aspherical oriented closed manifold with fun-
damental group G, i.e., an oriented closed manifold homotopy equivalent to
BG. Then G is torsionfree, the source of the composite Hn(BG; Ls(Z)〈1〉)→
Lsn(RG) of the assembly map appearing Conjecture 1.15 with ι consists of
bordism classes of normal maps M → N with N as target, and the composite
sends such a normal map to its surgery obstruction. This is analogous to the
Baum-Connes setting where the assembly map can be described by assigning
to an equivariant index problem its index.

The third term in the surgery sequence is given by the so-called struc-
ture set of N . It is the set of equivalence classes of homotopy equivalences
f0 : M0 → N with a closed topological manifold as source and N as target
where f0 : M0 → N and f1 : M1 → N are equivalent if there is a homeomor-
phism g : M0 → M1 such that f1 ◦ g and f0 are homotopic. Conjecture 1.15
implies that this structure set is trivial provided that the dimension of N is
greater or equal to five. Hence Conjecture 1.15 implies in dimensions ≥ 5 the
following famous conjecture.

Conjecture 1.16 (Borel Conjecture). Let M and N be two aspherical
closed topological manifolds whose fundamental groups are isomorphic. Then
they are homeomorphic, and every homotopy equivalence from M to N is
homotopic to a homeomorphism.

The Borel Conjecture is a topological rigidity theorem for aspherical closed
manifolds and analogous to the Mostow Rigidity Theorem which says that
two hyperbolic closed Riemannian manifolds with isomorphic fundamental
groups are isometrically diffeomorphic. The Borel Conjecture is false if one
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replaces topological manifold by smooth manifold and homeomorphism by
diffeomorphism. Its connection to the Borel Conjecture is one of the main
features of the Farrell-Jones Conjecture. More details will be given in Sub-
sections 9.15.2 and 9.15.3.

The Farrell-Jones Conjecture for L-theory 1.3 implies the Novikov Con-
jecture, see Section 9.14. It also has applications to the problem whether
Poincaré duality groups or torsionfree hyperbolic groups with spheres as
boundary are fundamental groups of aspherical closed manifolds, see Sec-
tions 9.17 and 9.18. Product decompositions of aspherical closed manifolds
are treated in Section 9.20.

A summary of all the application of the Farrell-Jones Conjecture is given
in Section 13.12.

1.5 More General Versions of the Farrell-Jones
Conjecture

We will also treat versions of the Farrell-Jones Conjecture in equivariant
additive categories, or more generally, in equivariant higher categories, see
Sections 13.3 and 13.4. There will be versions with finite wreath products,
see Section 13.5. The most general versions is the Full Farrell-Jones Conjec-
ture 13.27, see Section 13.6 which implies all other variants of the Farrell-
Jones Conjecture, see Section 13.11.

1.6 Status of the Baum-Connes and the Farrell-Jones
Conjecture

A detailed report on the groups for which these conjectures have been proved
will be given in Chapter 16. For example, the Baum-Connes Conjecture 1.1
is known for a class of groups which includes amenable groups, hyperbolic
groups, knot groups, fundamental groups of compact 3-manifolds (possibly
with boundary), and one-relator groups, but is open for SL(n,Z) for n ≥ 3.
The class of groups for which the Farrell-Jones Conjectures 1.2 and 1.3 have
been proved contains hyperbolic groups, finite-dimensional CAT(0)-groups,
fundamental groups of (not necessarily compact) 3-manifolds (possibly with
boundary), solvable groups, lattices in almost connected Lie groups, and
arithmetic groups, but they are open for amenable groups in general. If one
allows coefficients, one can prove for the Baum-Connes Conjecture and the
Farrell-Jones Conjecture inheritance properties, e.g., the class of groups for
which they are true is closed under taking subgroups, finite direct products,
free products, colimits over directed sets whose structure map are injective in
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the Baum-Connes case and can be arbitrary in the Farrell-Jones case. This
will be explained in Sections 13.7 and 14.6.

The Full Farrell-Jones Conjecture 13.27, which implies all other variants
of the Farrell-Jones Conjecture, is known to be true for some groups with
unusual properties, e.g., groups with expanders, Tarsky monsters, lacunary
groups, subgroups of finite products of hyperbolic groups, selfsimilar groups,
see Theorem 16.1. At the time of writing we have no specific candidate of
a group or of a general property of groups such that the Full Farrell-Jones
Conjecture 13.27, or one of its consequences, e.g., the Novikov Conjecture
and the Borel Conjecture, might be false. So we have no good starting point
for a search for counterexamples, see Section 16.10.

At the time of writing no counterexamples to the Baum-Connes Conjecture
is known to the author. There exists a counterexample to the Baum-Connes
Conjecture with coefficients, as explained in Section 16.10.

1.7 Structural Aspects

1.7.1 The Meta-Isomorphism Conjecture

The formulations of the Baum-Connes Conjecture 1.1 and of the Farrell-
Jones Conjecture 1.2 and 1.3 are very similar in the homological picture. It
allows a formulation of the following Meta-Isomorphism Conjecture, of which
both conjectures are special cases and which has also other very interesting
specializations, e.g., for pseudoisotopy, A-theory, topological Hochschild, and
topological cyclic homology, see Section 15.2.

Meta-Isomorphism Conjecture 1.17. Given a group G, a G-homology
theory HG∗ , and a family F of subgroups of G, we say that the Meta-
Isomorphism Conjecture is satisfied if the G-map EF (G) → {•} induces for
every n ∈ Z an isomorphism

AF : HGn (EF (G))→ HGn ({•}).

This general formulation is an excellent framework to construct transfor-
mations between the assembly maps appearing in different Isomorphism Con-
jectures. For instance, the cyclotomic trace relates the K-theoretic Farrell-
Jones Conjecture with coefficients in Z to the Isomorphism Conjecture for
topological cyclic homology, see Subsection 15.14.3, and via symmetric signa-
tures one can link the Farrell-Jones Conjecture for algebraic L-theory with co-
efficient in Z to the Baum-Connes Conjecture, see Subsection 15.14.4. More-
over, basic computational tools and techniques for equivariant homology the-
ories apply both to the Baum-Connes Conjecture 1.1 and the Farrell-Jones
Conjectures 1.2 and 1.3.



18 1 Introduction

1.7.2 Assembly

One important idea is the assembly principle which leads to assembly maps
in a canonical and universal way by asking for the best approximation of
a homotopy invariant functor from G-spaces to spectra by an equivariant
homology theory. It is an important ingredient for the identification of the
various descriptions of assembly maps appearing in the Baum-Connes Con-
jecture and the Farrell-Jones Conjecture. For instance, the assembly map
appearing in the Baum-Connes Conjecture 1.1 can be interpreted as assign-
ing to an appropriate equivariant elliptic complex its equivariant index, and
the assembly map appearing in the L-theoretic Farrell-Jones Conjecture 1.3
is related to the map appearing the surgery sequence, which assigns to a
surgery problem its surgery obstruction. We have already explained above
that these identification are the basis for some of applications of the Isomor-
phisms Conjectures, and we will see that there are also important for proofs.
There is a homotopy theoretic approach to the assembly map based on ho-
motopy colimits over the orbit category, which motivates the name assembly.
Roughly speaking, the name assembly can be understood as assembling the
values of the K-and L-groups of the reduced group C∗-algebra or the group
ring of a group G from their values on finite or virtually cyclic subgroups of
G. All this will be explained in Chapter 18.

This parallel treatment of the Baum-Connes Conjecture and the Farrell-
Jones Conjecture and of other variants is one of the topics of this book.
However, the geometric interpretations of the assembly maps in terms of
indices, surgery obstructions, or forget control are quite different. Therefore
the methods of proof for the Farrell-Jones Conjecture and the Baum-Connes
Conjecture use different input. Although there are some similarities in the
proofs, its is not clear how to export methods of proof from one conjecture
to the other.

1.8 Computational Aspects

In general the target Kn(C∗r (G)) of the assembly map appearing in the Baum-
Connes Conjecture 1.1 is very hard to compute, whereas the source KG

n (EG)
is much more accessible because one can apply standard techniques from al-
gebraic topology such as spectral sequences and equivariant Chern characters
and there are often nice small geometric models for EG. For the Farrell-Jones
Conjectures 1.2 and 1.3, this applies also to the parts HG

n (EG; KR) and

HG
n (EG; L

〈−∞〉
R ) respectively appearing in the splittings (1.11) and (1.14).

The other parts HG
n (EG,EG; KR) or HG

n (EG,EG; L
〈−∞〉
R ) are harder to

handle, since they involve Nil- or UNil-terms and the G-CW -complex EG
is not proper and in general huge. Most of the known computations of
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Kn(C∗r (G)), Kn(RG), and L
〈−j〉
n (RG) are based on the Baum-Connes Con-

jecture 1.1 and the Farrell-Jones Conjectures 1.2 and 1.3.
Classifications of manifolds and of C∗-algebras rely on and thus motivate

explicit calculations of K- and L-groups. In this context it is often impor-
tant, not only to determine the K- and L-groups abstractly, but to develop
detection techniques so that one can identify or distinguish specific elements
associated to the original classification problem or give geometric or index-
theoretic interpretations to elements in the K- and L-groups.

A general guide for computations and a list of known cases including ap-
plications to classification problems will be given in Chapter 17.

1.9 Are the Baum-Connes Conjecture and the
Farrell-Jones Conjecture True in General?

The title of this section is the central and at the time of writing unsolved
question. One motivation for writing this monograph is to stimulate some very
clever mathematician to work on this problem and finally find an answer. Let
us speculate about the possible answer.

We are skeptical about the Baum-Connes Conjecture for two reasons: there
are counterexamples for the version with coefficients, and the left side of the
Baum-Connes assembly map is functorial under arbitrary group homomor-
phisms, whereas the right side is not. The Bost Conjecture which predicts an
isomorphism

KG
n (EG)→ Kn(l1(G))

has a much better chance to be true in general. The possible failure of the
Baum-Connes Conjecture may come from the possible failure of the canonical
map Kn(l1(G))→ Kn(Cr∗(G)) to be bijective.

In spite of the Baum-Connes Conjecture, we do not see an obvious flaw
with the Bost Conjecture or the Farrell-Jones Conjecture. As explained in
Section 1.6 above, we have no starting point for a construction of a coun-
terexample, and all abstract properties we know for the right side do hold for
the left side of the assembly map and vice versa. In particular for the Bass
Conjecture and for the Novikov Conjecture which follow from the Farrell-
Jones Conjecture, the class of groups for which they are known to be true
is impressive. There are some conclusions from the Farrell-Jones Conjecture
which are not trivial and true for all groups. These are arguments are in favor
of a positive answer

The following arguments are in favor of a negative answer. The universe
of groups is overwhelming large. We have Gromov’s saying on our neck that
a statement which is true for all groups is either trivial or false. We have no
philosophical reason why the Bost Conjecture or the Farrell-Jones Conjecture
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should be true. Finding a counterexample will probably require some new
ideas, maybe from logic or random groups.

The upshot of this discussion is that the author is sketical about the Baum-
Connes Conjecture, but does not dare to make any predictions about the
chances for the other conjectures, in particular for the Novikov Conjecture,
to be true for all groups.

We will elaborate on this discussion in Section 16.10.

1.10 The Organization of the Book and a User’s Guide

We have written the text in a way such that one can read small units, e.g., a
single chapter, independently from the rest, concentrate on certain aspects,
and extract easily and quickly specific information. We hopefully have found
the right mixture between definitions, theorems, examples, and remarks so
that reading the book is entertaining and illuminating. We have successfully
used parts of this book, sometimes a single chapter, for seminars, reading
courses, and advanced lecture courses.

The book consists of three parts and a supplement, which we briefly review
next. We will also give some information how to use the book.

1.10.1 Introduction to K- and L-Theory (Part I)

In the first part “Introduction to K- and L-Theory”, which encompasses
Chapters 2 to 10, we introduce and motivate the relevant theories, namely,
algebraic K-theory, algebraic L-theory, and topological K-theory. In these
chapters we present some applications and more accessible special versions
of the Baum-Connes and the Farrell-Jones Conjecture. They are rather in-
dependent of one another and one can start reading each of them without
having gone though the others. If a reader may just want to get some infor-
mation, for instance about Wall’s finiteness obstruction, Whitehead torsion,
or the projective class group, she or he can directly start reading the relevant
chapter, learn the basics about these invariant, and understand the relevant
special versions of the Baum-Connes Conjecture or the Farrell-Jones Con-
jecture without going through the other chapters. Each of these chapters is
eligible for a lecture course, seminar, or reading course.
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1.10.2 The Isomorphism Conjectures (Part II)

In the second part “The Isomorphism Conjectures”, which consists of Chap-
ters 11 to Chapter 18, we introduce the Baum-Connes Conjecture and the
Farrell-Jones Conjecture in their most general form, namely, for arbitrary
groups and with coefficients. We discuss further applications and in particu-
lar how they can be used for computations. We give a report about the status
of these conjectures and discuss open problems.

Note that the Farrell-Jones Conjecture comes in different levels. It can
be considered for rings (with involution) and hence aims at the algebraic
K-theory and L-theory of groups rings. This is the most relevant version
for applications, where it often suffices to treat lower and middle K-theory,
torsionfree groups, and Z or a field as coefficients. One may twist the group
rings and allow orientation characters. The next level is to pass to equivariant
additive categories (with involution) as coefficients, which has the advantage
that it automatically leads to useful inheritance properties of the Farrell-
Jones Conjecture and does encompass the case of rings as coefficients. For
algebraic K-theory one can even allow higher categories as coefficients. This
contains the version of additive categories as coefficients and also the versions
of the Farrell-Jones Conjecture for Waldhausen’s A-theory, for pseudoisotopy,
and for Whitehead spaces as special cases. There are also versions “with finite
wreath product”, where the passage to overgroups of finite index is built in.

So there are many variations of the Farrell-Jones Conjecture, but the Full
Farrell-Jones Conjecture 13.27 does imply all of them.

We also state Meta-Conjectures, which reduce to the Baum-Connes Con-
jecture, the Farrell-Jones Conjecture, or other types of Isomorphism Con-
jectures if one feeds the right theory into them. There are versions of the
Farrell-Jones Conjecture for Waldhausen’s A-theory, pseudoisotopy, White-
head spaces, topological Hochschild homology, topological cyclic homology,
and homotopy K-theory.

We also briefly discuss the Farrell-Jones Conjecture for totally discon-
nected groups and Hecke Algebras, where for the first time a version of
the Farrell-Jones Conjecture for a topological groups is considered. The
Baum-Connes Conjecture has already been intensively studied for topologi-
cal groups. However, in this monograph we will confine ourselves to discrete
groups.

1.10.3 Methods of Proofs (Part III)

The third part “Methods of Proofs”, which ranges from Chapter 19 to Chap-
ter 26, we give a survey on the background, history, philosophy, strategies,
and some ingredients of the proofs. We will concentrate on the Farrell-Jones
Conjecture in this part III.
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The reader, who is interested in proofs, should first go through Chap-
ter 19. There motivations for the proofs of the Farrell-Jones Conjecture and
some information about their long history is given without getting lost in
technical details. So it will be a soft introduction to the methods of proofs
conveying ideas only. Mainly we explain why controlled topology, flows, and
transfers come in, which one would not expect at the first glance in view of
the homotopy theoretic nature of the Farrell-Jones Conjecture.

In Chapter 20 we isolate some conditions about a group which guarantee
that it satisfies the Full Farrell-Jones Conjecture or some special version of it.
Note that here K- or L-theory do not yet play any role and one can use the
results of this section without any knowledge about them. This is interesting
for someone who is already familiar with geometric group theory but has no
background in K- or L-theory.

Depending on how ambitious the reader is, she or he should go through
the other chapters. We recommend to read Section 24.7, where details of the
proof of the Farrell-Jones Conjecture for the surjectivity of the K-theoretic
assembly map in dimension 1 is given, which does not use much knowledge
about algebraic K-theory but uses all the basic ideas appearing in the proof
of the Full Farrell-Conjecture.

The reader, who wants to understand the proof in the most advanced set-
ting, namely the one for higher categories as coefficients, and for the largest
class of groups, namely the class of Dress-Farrell-Hsiang-Jones groups, is rec-
ommended to read through Chapter 25. For this some background in higher
category theory is necessary.

We give a very brief overview for the methods of proof for the Baum-
Connes Conjecture in Chapter 26.

1.10.4 Supplement

The book contains a number of exercises. They are not needed for the expo-
sition of the book, but give some illuminating insight. Moreover, the reader
may test whether she or he has understood the text or improve her or his
understanding by trying to solve the exercises. Hints to the solutions of the
exercises are given in Chapter 27.

If one wants to find a specific topic, the extensive index of the monograph
can be used to find the right spot for a specific topic. The index contains an
item “Theorem”, under which all theorems with their names appearing in
the book are listed, and analogously there is an item “Conjecture”.
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1.10.5 Prerequisites

We require that the reader is familiar with basic notions in topology (CW -
complexes, chain complexes, homology, homotopy groups, manifolds, cover-
ings, cofibrations, fibrations, . . . ), functional analysis (Hilbert spaces, bounded
operators, differential operators, . . . ), algebra (groups, modules, group rings,
elementary homological algebra, . . . ), group theory (presentations, Cayley
graphs, hyperbolic groups, . . . ), and elementary category theory (functors,
transformations, additive categories, . . . ).

1.11 Notations and Conventions

Here is a briefing on our main conventions and notations. Details are of course
discussed in the text.

• Ring will mean (not necessarily commutative) associative ring with unit
unless explicitly stated otherwise;

• Module means always left module unless explicitly stated otherwise;
• Groups means discrete group unless explicitly stated otherwise;
• We will always work in the category of compactly generated spaces, com-

pare [909] and [987, I.4]. In particular every space is automatically Haus-
dorff.

• For our conventions concerning spectra see Section 12.4. Spectra are de-
noted with boldface letters such as E;

• We use the standards symbols Z, Q, R, C, and Zp̂ for the integers, the
rational numbers, the real numbers, the complex numbers, and the p-adic
numbers.

• We denote

symbol name

Z/n finite cyclic group of order n

Sn symmetric group of permutations of the set {1, 2, . . . n}
An alternating group of even permutations of the set {1, 2, . . . , n}
D∞ infinite dihedral group

Dn dihedral group of order n
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Chapter 2

The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group K0(R) of a ring R.
We give in Section 2.2 three equivalent definitions of K0(R), namely, by

the universal additive invariant for finitely generated projective modules, by
the Grothendieck construction applied to the abelian monoid of isomorphism
classes of finitely generated projective modules, and by idempotent matrices,
and discuss the significance of K0(R) for the category of finitely generated
projective modules. We explain some calculations for principal ideal domains
and Dedekind rings in Section 2.3.

We explain connections to geometry. We prove Swan’s Theorem 2.27 that
relates K0(C0(X)) for the ring C0(X) of continuous functions on a compact
space X to the Grothendieck group of the abelian monoid of isomorphism
classes of vector bundles over X. The relevance of K0(ZG) for topologists is
illustrated by Wall’s finiteness obstruction, which also leads to a geometric
description of K0(ZG) in terms of finitely dominated spaces and is discussed
in detail in Section 2.5.

We introduce variants of the K-theoretic Farrell-Jones Conjecture for pro-
jective class groups in Section 2.8. A prototype asserts that for a torsionfree
group G and a regular ring R, e.g., R = Z or R a field, the change of rings
map

K0(R)
∼=−→ K0(RG)

is bijective. It implies the conjecture that for a torsionfree group G the re-
duced projective class group K̃0(ZG) vanishes, which is for finitely presented
G equivalent to the conjecture that every finitely dominated CW -complex
with π1(X) ∼= G is homotopy equivalent to a finite CW -complex. We also
introduce a version where the group is not necessarily torsionfree, but R is a
regular ring with Q ⊆ R or a field of prime characteristic.

In Section 2.9 we consider Kaplansky’ s Idempotent Conjecture, which
asserts for a torsionfree group G and a field F that 0 and 1 are the only
idempotents in FG. It is a consequence of the Farrell-Jones Conjecture. We
also discuss various Bass Conjectures, all of which are implied by the Farrell-
Jones Conjecture, in Section 2.10.

Finally, we give a survey of K0(ZG) for finite groups G and of K0(C∗r (G))
in Section 2.12 and of K0(N (G)) in Section 2.13, where C∗r (G) is the reduced
group C∗-algebra and N (G) the group von Neumann algebra.
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26 2 The Projective Class Group

2.2 Definition and Basic Properties of the Projective
Class Group

Definition 2.1 (Projective class group K0(R)). Let R be an (associative)
ring (with unit). Define its projective class group K0(R) to be the abelian
group whose generators are isomorphism classes [P ] of finitely generated pro-
jective R-modules P and whose relations are [P0] + [P2] = [P1] for any exact
sequence 0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.

Define G0(R) analogously but replacing finitely generated projective by
finitely generated.

Given a ring homomorphism f : R → S, we can assign to an R-module
M an S-module f∗M by S ⊗RM where we consider S as a right R-module
using f . We say that f∗M is obtained by induction with f from M . If M
is finitely generated or free or projective, the same is true for f∗M . This
construction is natural, compatible with direct sums, and sends an exact
sequence 0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules
to an exact sequence 0 → f∗P0 → f∗P1 → f∗P2 → 0 of finitely generated
projective S-modules. Hence we get a homomorphism of abelian groups

f∗ = K0(f) : K0(R)→ K0(S), [P ] 7→ [f∗P ],(2.2)

which is also called change of rings homomorphism. Thus K0 becomes a
covariant functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group).
One should view K0(R) together with the assignment sending a finitely gener-
ated projective R-module P to its class [P ] in K0(R) as the universal additive
invariant or the universal dimension function for finitely generated projec-
tive R-modules. Namely, suppose that we are given an abelian group and
an assignment d that associates to a finitely generated projective R-module
an element d(P ) ∈ A such that d(P0) + d(P2) = d(P1) holds for any exact
sequence 0→ P0 → P1 → P2 → 0 of finitely generated projective R-modules.
Then there is precisely one homomorphism of abelian groups φ : K0(R)→ A
such that φ([P ]) = d(P ) holds for every finitely generated projective R-
module P . The analogous statement holds for G0(R) if we consider finitely
generated R-modules instead of finitely generated projective R-modules.

A ring is an integral domain if every zero-divisor is trivial, i.e., if r, s ∈ R
satisfy rs = 0, then r = 0 or s = 0. A principal ideal domain is a commutative
integral domain for which every ideal is a principal ideal, i.e., of the form
(r) = {r′r | r′ ∈ R} for some r ∈ R.

Example 2.4 (K0(R) and G0(R) of a principal ideal domain). Let R
be a principal ideal domain. Then we get isomorphisms of abelian groups
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Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ G0(R), [P ] 7→ [P ].

This follows from the structure theorem of finitely generated R-modules over
principal ideal domains. It implies for any finitely generated R-module M
that it can be written as a direct sum Rn ⊕ T for some torsion R-module
T for which there exists an exact sequence of R-modules of the shape 0 →
Rs → Rs → T → 0. Moreover, M is projective if and only if T is trivial and
Rm = Rn ⇐⇒ m = n.

Definition 2.5 (Reduced projective class group K0(R)). Define the re-

duced projective class group K̃0(R) to be the quotient of K0(R) by the abelian
subgroup {[Rm]−[Rn] | n,m ∈ Z,m, n ≥ 0}, which is the same as the abelian
subgroup generated by the class [R].

We conclude from Example 2.4 that the reduced projective class group
K̃0(R) is isomorphic to the cokernel of the homomorphism

f∗ : K0(Z)→ K0(R)

where f is the unique ring homomorphism Z→ R, n 7→ n · 1R.

Remark 2.6 (The projective class group as a Grothendieck group).
Let Proj(R) be the abelian semigroup of isomorphisms classes of finitely
generated projective R-modules with the addition coming from the direct
sum. Let K ′0(R) be the associated abelian group given by the Grothendieck
construction applied to Proj(R). There is a natural homomorphism

φ : K ′0(R)
∼=−→ K0(R)

sending the class of a finitely generated projective R-module P in K ′0(R) to
its class in K0(R). This is a well-defined isomorphism of abelian groups.

The analogous definition of G′0(R) and the construction of a homomor-
phism G′0(R) → G0(R) makes sense, but the latter map is not bijective
in general. It works for K0(R) because every exact sequence of projective
R-modules 0 → P0 → P1 → P2 → 0 splits and thus yields an isomorphism
P1
∼= P0⊕P2. In general K-theory deals with exact sequences, not with direct

sums. Therefore Definition 2.1 of K0(R) reflects better the underlying idea
of K-theory than its definition in terms of the Grothendieck construction.

Exercise 2.7. Prove that the homomorphism φ : K ′0(R)→ K0(R) appearing
in Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group mea-
sure?). Let P be a finitely generated projective R-module. Then we conclude

from Remark 2.6 that its class [P ] ∈ K̃0(R) is trivial if and only if P is stably
finitely generated free, i.e., P ⊕Rr ∼= Rs for appropriate integers r, s ≥ 0. So
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the reduced projective class group K̃0(R) measures the deviation of a finitely
generated projective R-module to be stably finitely generated free. Note that
stably finitely generated free does in general not imply finitely generated free
as Examples 2.9 and 2.28 will show.

Example 2.9 (Dunwoody’s example). An interesting ZG-module P that
is stably finitely generated free but not finitely generated free is constructed
by Dunwoody [303] for G the torsionfree one-relator group 〈a, b | a2 = b3〉,
which is the fundamental group of the trefoil knot. Note that K̃0(ZG) is
known to be trivial, in other words, every finitely generated projective RG-
module is stably finitely generated free. It is also worth while mentioning
that ZG contains no idempotent besides 0 and 1. Hence any direct summand
in ZG is free.

More examples of this kind are given in Berridge-Dunwoody [127].

One basic feature of algebraic K-theory is Morita equivalence.

Theorem 2.10 (Morita equivalence for K0(R)). For every ring R and
integer n ≥ 1, there is a natural isomorphism

µ : K0(R)
∼=−→ K0(Mn(R)).

Proof. We can consider Rn as Mn(R)-R-bimodule, denoted by Mn(R)R
n
R.

Then µ sends [P ] to [Mn(R)R
n
R ⊗R P ]. We can also consider Rn as an R-

Mn(R)-bimodule denoted by RR
n

Mn(R). Define ν : K0(Mn(R))→ K0(R) by
sending [Q] to [RR

n
Mn(R) ⊗Mn(R) Q]. Then µ and ν are inverse to one an-

other. ut

Exercise 2.11. Check that µ and ν are inverse to one another.

We omit the easy proof of the next lemma.

Lemma 2.12. Let R0 and R1 be rings. Denote by pri : R0 × R1 → Ri for
i = 0, 1 the projection. Then we obtain an isomorphism

(pr0)∗ × (pr1)∗ : K0(R0 ×R1)
∼=−→ K0(R0)×K0(R1).

Example 2.13 (Rings with non-trivial K̃0(R)). We conclude from Ex-
ample 2.4 and Lemma 2.12 that for a principal ideal domain R we have

K0(R×R) ∼= Z⊕ Z;

K̃0(R×R) ∼= Z.

The R × R-module R × {0} is finitely generated projective but not stably

finitely generated free. It is a generator of the infinite cyclic group K̃0(R×R).

Notation 2.14 (M(R), GL(R) and Idem(R)). Let Mm,n(R) be the set of
(m,n)-matrices over R. For A ∈ Mm,n(R), let rA : Rm → Rn, x → xA be
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the R-homomorphism of (left) R-modules given by right multiplication with
A. Let Mn(R) be the ring of (n, n)-matrices over R. Denote by GLn(R) the
group of invertible (n, n)-matrices over R. Let Idemn(R) be the subset of
Mn(R) of idempotent matrices A, i.e., (n, n)-matrices satisfying A2 = A.

There are embeddings it,n : Mn(R) → Mn+1(R), A 7→
(
A 0
0 t

)
for t = 0, 1

and n ≥ 1. The embedding i1,n induces an embedding GLn(R)→ GLn+1(R)
of groups. Let GL(R) be the union of the GLn(R)-s, which is a group again.
Denote by M(R) the union of the Mn(R)-s with respect to the embeddings i0.
This is a ring without unit. Let Idem(R) be the set of idempotent elements
in M(R). This is the same as the union of the Idemn(R)-s with respect
to the embeddings Idemn(R) → Idemn+1(R) coming from the embeddings
i0,n : Mn(R)→ Mn+1(R).

Remark 2.15 (The projective class groups in terms of idempotent
matrices). The projective class groups K0(R) can also be defined in terms
of idempotent matrices. Namely, the conjugation action of GLn(R) on Mn(R)
induces an action of GL(R) on M(R) which leaves Idem(R) fixed. One obtains
a bijection of sets

φ : GL(R)\ Idem(R)→ Proj(R), [A] 7→ im (rA : Rn → Rn) .

This becomes a bijection of abelian semigroups if we equip the source with the

addition coming from (A,B) 7→
(
A 0
0 B

)
and the target with the one coming

from the direct sum. So we can identify K0(R) with the Grothendieck group
associated to the abelian semigroup GL(R)\ Idem(R) by Remark 2.6.

Exercise 2.16. Show that the map φ appearing in Remark 2.15 is a well-
defined isomorphism of abelian semigroups.

Example 2.17 (A ring R with trivial K0(R)). Let F be a field and let
V be an F -vector space with an infinite countable basis. Consider the ring
R = endF (V ). Next we prove that K0(R) is trivial.

By Remark 2.15 it suffices to show for every integer n ≥ 0 and two idem-
potent matrices A,B ∈ Idemn(R) that the matrices A⊕ 0⊕ 1 and B ⊕ 1⊕ 0
in Mn+2(R) are conjugated by an element in GLn+2(R). This follows from
the observations that both the kernel and the image of the F -linear endomor-
phisms rA⊕0⊕1 and rB⊕0⊕1 of V n+2 have infinite countable dimension, two
F -vector spaces of infinite countable dimension are isomorphic, the obvious
sequence of F -vector spaces 0→ ker(rA⊕0⊕1)→ V n+1 → im(rA⊕0⊕1)→ 0 is
split exact, and the same is true for rB⊕1⊕0.

Lemma 2.18. Let G be a group. Let R be a commutative integral domain
with quotient field F . Then we obtain an isomorphism

K0(RG)
∼=−→ K̃0(RG)⊕ Z, [P ] 7→ ([P ],dimF (F ⊗RG P ))
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where F is considered as an RG-module with respect to the trivial G-action
and the inclusion of rings j : R→ F .

Proof. Since F⊗RGP is a finite dimensional F -vector space for finitely gener-
ated P and F⊗RG (P⊕Q) ∼=G (F ⊗RG P )⊕(F ⊗RG Q), this is a well-defined
homomorphism. Bijectivity follows from dimF (F ⊗RG RGn) = n. ut

2.3 The Projective Class Group of a Dedekind Domain

Let R be a commutative integral domain with quotient field F . A non-zero
R-submodule I ⊂ F is called a fractional ideal if for some r ∈ R we have
rI ⊆ R. A fractional ideal I is called principal if I is of the form

{
ra
b | r ∈ R

}
for some a, b ∈ R with a, b 6= 0.

Definition 2.19 (Dedekind domain). A commutative integral domain R
is called a Dedekind ring if for any fractional ideal I there exists another
fractional ideal J with IJ = R.

Note that in Definition 2.19 the fractional ideal J must be given by {x ∈
F | x · I ⊆ R}.

The fractional ideals in a Dedekind ring form by definition a group under
multiplication of ideals with R as unit. The principal fractional ideals form
a subgroup. The class group C(R) is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [712, Corollary 11
on page 14] and [844, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class
group of Dedekind domains). Let R be a Dedekind domain. Then every
fractional ideal is a finitely generated projective R-module and we obtain an
isomorphism of abelian groups

Z⊕ C(R)
∼=−→ K0(R), (n, [I]) 7→ n · [R] + [I]− [R].

In particular we get an isomorphism

C(R)
∼=−→ K̃0(R), [I] 7→ [I].

A ring is called hereditary, if every ideal is projective, or, equivalently, if
every submodule of a projective R-module is projective, see [203, Theorem 5.4
in Chapter I.5 on page 14].

Theorem 2.21 (Characterization of Dedekind domains). The follow-
ing assertions are equivalent for a commutative integral domain with quotient
field F :

(i) R is a Dedekind domain;
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(ii) For every pair of ideals I ⊆ J of R, there exists an ideal K ⊆ R with
I = JK;

(iii) R is hereditary;
(iv) Every finitely generated torsionfree R-module is projective;
(v) R is Noetherian and integrally closed in its quotient field F and every

non-zero prime ideal is maximal.

Proof. This follows from [257, Proposition 4.3 on page 76 and Proposition 4.6
on page 77] and the fact that a finitely generated torsionfree module over an
integral domain R can be embedded into Rn for some integer n ≥ 0. See
also [57, Chapter 13]. ut

Remark 2.22 (The class group in terms of ideals of R). One calls two
ideals I and J in R equivalent if there exists non-zero elements r and s in
R with rI = sJ . Then C(R) is the same as the equivalence classes of ideals
under multiplication of ideals and the class given by the principal ideals as
unit. Two ideals I and J of R define the same element in C(R) if and only if
they are isomorphic as R-modules, see [844, Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of Q
and the ring of integers in F is the integral closure of Z in F .

Theorem 2.23 (The class group of a ring of integers is finite). Let
R be the ring of integers in an algebraic number field. Then R is a Dedekind
domain and its class group C(R) and hence its reduced projective class group

K̃0(R) are finite.

Proof. See [844, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23].
ut

Remark 2.24 (Class group of Z[exp(2πi/p)]). Let p be a prime num-
ber. The ring of integers in the algebraic number field Q[exp(2πi/p)] is
Z[exp(2πi/p)]. Its class group C(Z[exp(2πi/p)]) is finite by Theorem 2.23.
However, its structure as a finite abelian group is only known for finitely
many small primes, see [712, Remark 3.4 on page 30] or [971, Tables §3 on
page 352ff].

Example 2.25 (K̃0(Z[
√
−5])). The reduced projective class group K̃0(Z[

√
−5])

of the Dedekind domain Z[
√
−5] is cyclic of order two. A generator is given

by the maximal ideal (3, 2 +
√
−5) in Z[

√
−5]. (For more details see [844,

Exercise 1.4.20 on page 25]).

2.4 Swan’s Theorem

Let F be the field R or C. Let X be a compact space. Denote by C(X,F )
or briefly by C(X) the ring of continuous functions from X to F . Let ξ and
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η be (finite dimensional locally trivial) F -vector bundles over X. Denote by
C(ξ) the F -vector space of continuous sections of ξ. This becomes a C(X)-
module by the pointwise multiplication. If F denotes the trivial 1-dimensional
vector bundle X × F → X, then C(F ) and C(X) are isomorphic as C(X)-
modules. If ξ and η are isomorphic as F -vector bundles, then C(ξ) and C(η)
are isomorphic as C(X)-modules. There is an obvious isomorphism of C(X)-
modules

C(ξ)⊕ C(η)
∼=−→ C(ξ ⊕ η).(2.26)

Since X is compact, every F -vector bundle has a finite bundle atlas and
admits a Riemannian metric. This implies the existence of a F -vector bundle
ξ′ such that ξ⊕ξ′ is isomorphic as F -vector bundle to a trivial F -vector bundle
Fn. Hence C(ξ) is a finitely generated projective C(X)-module. Denote by
hom(ξ, η) the C(X)-module of morphisms of F -vector bundles from ξ to
η, i.e., of continuous maps between the total spaces that commutes with
the bundle projections to X and induce linear (not necessarily injective or
bijective) maps between the fibers over x for all x ∈ X. This becomes a
C(X)-module by the pointwise multiplication. Such a morphism f : ξ → η
induces a C(X)-homomorphism C(f) : C(ξ) → C(η) by composition. The
next result is due to Swan [921].

Theorem 2.27 (Swan’s Theorem). Let X be a compact space and F =
R,C. Then:

(i) Let ξ and η be F -vector bundles. Then we obtain an isomorphism of C(X)-
modules

Γ (ξ, η) : hom(ξ, η) −→ homC(X)(C(ξ), C(η)), f 7→ C(f);

(ii) We have ξ ∼= η ⇐⇒ C(ξ) ∼=C(X) C(η);
(iii) If P is a finitely generated projective C(X)-module, then there exists an

F -vector bundle ξ satisfying C(ξ) ∼=C(X) P .

Proof. (i) Obviously Γ (ξ⊕ ξ′, η) can be identified with Γ (ξ, η)⊕Γ (ξ′, η) and
Γ (ξ, η ⊕ η′) can be identified with Γ (ξ, η) ⊕ Γ (ξ, η′′) under the identifica-
tion (2.26). Since a direct sum of two maps is a bijection if and only if each of
the maps is a bijection and for every ξ there is ξ′ such that ξ⊕ ξ′ is trivial, it
suffices to treat the case where ξ = Fm and η = Fn for appropriate integers
m,n ≥ 0. There is an obvious commutative diagram

hom(Fm, Fn)
Γ (Fm,Fn) //

∼=
��

homC(X)(C(Fm), C(Fn))

∼=
��

Mm,n(hom(F , F ))
Mm,n(Γ (F,F ))

// Mm,n(C(F ))
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Hence it suffices to treat the claim for m = n = 1, which is obvious.

(ii) This follows from assertion (i).

(iii) Given a finitely generated projective C(X)-module P , choose a C(X)-
map p : C(X)n → C(X)n satisfying p2 = p and im(p) ∼=C(X) P . Because of
assertion (ii) we can choose a morphism of F -vector bundles q : Fn → Fn

with Γ (Fn, Fn)(q) = p. We conclude q2 = q from p2 = p and the injectivity
of Γ (Fn, Fn). Elementary bundle theory shows that the image of q and the
image of 1−q are F -subvector bundles in Fn satisfying im(q)⊕im(1−q) = Fn.
One easily checks C(im(q)) ∼=C(X) P . ut

One may summarize Theorem 2.27 by saying that we obtain an equivalence
of C(X)-additive categories from the category of F -vector bundles over X to
the category of finitely generated projective C(X)-modules by sending ξ to
C(ξ).

Example 2.28 (C(TSn)). Consider the n-dimensional sphere Sn. Let TSn

be its tangent bundle. Then C(TSn) is a finitely generated projective C(Sn)-
module. It is free if and only if TSn is trivial. This is equivalent to the
condition that n = 1, 3, 7, see [146]. On the other hand C(TSn) is always
stably finitely generated free as a C(Sn)-module since TSn is stably finitely
generated free as an F -vector bundle because the direct sum of TSn and
the normal bundle ν(Sn,Rn+1) of the standard embedding Sn ⊆ Rn+1 is
TRn+1|Sn and both F -vector bundles ν(Sn,Rn+1) and TRn+1|Sn are trivial.

Exercise 2.29. Consider an integer n ≥ 1. Show that there exists a C(Sn)-
module M with C(TSn) ∼=C(Sn) C(Sn) ⊕ M if and only if Sn admits a
nowhere vanishing vector field. (This is equivalent to requiring that χ(Sn) =
0, or, equivalently, that n is odd.)

Remark 2.30 (Topological K-theory in dimension 0). Let X be a com-
pact space. Let VectF (X) be the abelian semigroup of isomorphism classes of
F -vector bundles over X where the addition comes from the Whitney sum.
Let K0(X) be the abelian group obtained from the Grothendieck construc-
tion to it. It is called the 0-th topological K-group of X. If f : X → Y is a
map of compact spaces, the pullback construction yields a homomorphism
K0(f) : K0(Y ) → K0(X). Thus we obtain a contravariant functor K0 from
the category of compact spaces to the category of abelian groups. Since the
pullback of a vector bundle with two homotopic maps yields isomorphic vec-
tor bundles, K0(f) depends only on the homotopy class of f . Actually there is
a sequence of such homotopy invariants covariant functors Kn for n ∈ Z that
constitutes a generalized cohomology theory K∗ called topological K-theory.
It is 2-periodic if F = C, i.e., there are natural so-called Bott isomorphism

Kn(X)
∼=−→ Kn+2(X) for n ∈ Z. If F = R, it is 8-periodic. We will give further

explanations and generalization of topological K-theory later in Section 10.2
Swan’s Theorem 2.27 yields an identification
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K0(X) ∼= K0(C(X)) [ξ] 7→ [C0(ξ)].(2.31)

Exercise 2.32. Let f : X → Y be a map of compact spaces. Composi-
tion with f yields a ring homomorphism C(f) : C(Y ) → C(X). Show that
under the identification (2.31) the maps K0(f) : K0(Y ) → K0(X) and
C(f)∗ : K0(C(Y ))→ K0(C(X)) coincide.

Exercise 2.33. Compute K0(C(Dn)) for the n-dimensional disk Dn for n ≥
0.

2.5 Wall’s Finiteness Obstruction

We now discuss the geometric relevance of K̃0(ZG).
Let X be a CW -complex. It is called finite, if it consists of finitely many

cells. This is equivalent to the condition that X is compact. We call X
finitely dominated, if there exists a finite domination (Y, i, r), i.e., a finite
CW -complex Y together with maps i : X → Y and r : Y → X such that
r ◦ i is homotopic to the identity on X. If X is finitely dominated, its set of
path components π0(X) is finite and the fundamental group π1(C) of each
component C of X is finitely presented, see Lemma 2.42.

While studying existence problems for compact manifolds with prescribed
properties (like for example the existence of certain group actions), it happens
occasionally that it is relatively easy to construct a finitely dominated CW -
complex with the desired property within a given homotopy type, whereas it
is not at all clear whether one can also find a homotopy equivalent finite CW -
complex. If the goal is to construct a compact manifold, this is a necessary
step in the construction. Wall’s finiteness obstruction, which we will explain
below, decides this question.

An example of such a geometric problem is the Spherical Space Form
Problem 9.197, i.e., the classification of closed manifolds M whose universal
coverings are diffeomorphic or homeomorphic to the standard sphere. Such
examples arise as unit sphere in unitary representations of finite groups, but
there are also examples that do not occur in this way. This problem initiated
not only the theory of the finiteness obstruction, but also surgery theory for
closed manifolds with non-trivial fundamental group. We refer to the survey
articles [270] and [679] for more information about the Spherical Space Form
problem. It was finally solved by Madsen-Thomas-Wall [686, 687].

The finiteness obstruction also appears in the Ph.D.-thesis [898] of Sieben-
mann who dealt with the problem whether a given smooth or topological ma-
nifold can be realized as the interior of a compact manifold with boundary.

Next we explain the definition and the main properties of the finiteness
obstruction illustrating that it is a kind of Euler characteristic, but now
counting elements in the projective class group instead of counting ranks of
finitely generated free modules.
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2.5.1 Chain Complex Version of the Finiteness Obstruction

Definition 2.34 (Types of chain complexes). We call an R-chain com-
plex finitely generated, free, or projective respectively, if each R-chain module
is finitely generated, free, or projective respectively. It is called positive, if
Cn = 0 for n ≤ −1. It is called finite dimensional, if there exists a natural
number N such that Cn = 0 for |n| ≤ N . It is called finite, if it is finite
dimensional and finitely generated.

For the remainder of this section all chain complexes C∗ are understood
to be positive. Let R be a ring and C∗ be an R-chain complex. A finite
domination (F∗, i∗, p∗) of C∗ consists of a finite free R-chain complex F∗ and
R-chain maps i∗ : C∗ → F∗ and r∗ : F∗ → C∗ such that r∗ ◦ i∗ ' idC∗ holds.
The existence of a finite domination is equivalent to the existence of a finite
projective R-chain complex P∗ which is R-chain homotopy equivalence to C∗.
For a proof of this claim we refer for instance to [635, Proposition 11.11 on
page 222], or to the explicite construction in Subsection 24.7.5. For any such
choice of P∗, define the finiteness obstruction o(C∗) ∈ K0(R) to be

o(C∗) :=
∑
n≥0

(−1)n · [Pn].(2.35)

The reduced finiteness obstruction õ(C∗) ∈ K̃0(R) is the image of o(C∗) under

the projection K0(R)→ K̃0(R). The definition is indeed independent of the
choice of P∗ since for two finite projective R-chain complexes P∗ and Q∗
coming with an R-chain homotopy equivalence f∗ : P∗

'−→ Q∗ the mapping
cone cone∗(f∗), see Definition 3.29, is contractible and hence we obtain an
R-isomorphism

Podd ⊕Qev

∼=−→ Pev ⊕Qodd.

from the to one another inverse isomorphism (3.30) and (3.31).

Lemma 2.36.(i) If the two R-chain complexes C∗ and D∗ are R-chain ho-
motopy equivalent and one of them is finitely dominated, then both are
finitely dominated and we get

o(C∗) = o(D∗);

(ii) Let 0→ C∗ → D∗ → E∗ → 0 be an exact sequence of R-chain complexes.
If two of the R-chain complexes C∗, D∗, and E∗ are finitely dominated,
then all three are finitely dominated and we get

o(D∗) = o(C∗) + o(E∗);

(iii) Let C∗ be a finitely dominated R-chain complex. Then it is R-chain ho-
motopy equivalent to a finite free R-chain complex if and only if 0̃(C∗)
vanishes.
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Proof. (i) This follows directly from the definitions.

(ii) One can construct a commutative diagram of R-chain complexes

0 // C ′∗ //

'
��

D′∗ //

'
��

E′∗ //

'
��

0

0 // C∗ // D∗ // E∗ // 0

such that the rows are exact, the upper row consists of finite projective R-
chain complexes, and the vertical maps are R-chain homotopy equivalences,
see for instance [629, Lemma 11.6 on page 216].

(iii) Suppose that õ(C∗) = 0. Choose a finite projective R-chain complex
P∗ which is R-chain homotopy equivalent to C∗. An elementary R-chain
complex E∗ over an R-module M is an R-chain complex which is concentrated
in two consecutive dimensions and its only non-trivial differential is given
by idM : M → M . By adding elementary R-chain complexes over finitely
generated free R-modules, one can arrange that P∗ is of the shape · · · → 0→
Pn → Pn−1 → · · · → P0 such that Pi is finitely generated free for i ≤ n− 1.

Since õ(C∗) = (−1)n · [Pn] = 0 holds in K̃0(R), the R-module Pn is stably
free. Hence, by adding one further elementary chain complexes over a finitely
generated free R-module, one can arrange that P∗ is finite free. ut

2.5.2 Space Version of the Finiteness Obstruction

In the sequel we ignore base point questions. This is not a real problem since
an inner automorphism of a group G induces the identity on K0(RG).

Given a finitely dominated connected CW -complex X with fundamental
group π, we consider its universal covering X̃ and the associated cellular
Zπ-chain complex C∗(X̃). Given a finite domination (Y, i, r), we regard the
π-covering Y over Y associated to the epimorphism r∗ : π1(Y )→ π1(X). The
pullback construction yields a π-covering i∗Y over X. Then F∗ = C∗(i

∗Y )
is a finite free Zπ-chain complex. The maps i and r yield Zπ-chain maps
r∗ : F∗ → C∗(X̃) and i∗ : C∗(X̃)→ F∗ such that r∗◦i∗ is Zπ-chain homotopic

to the identity on C∗(X̃). Thus (F∗, i∗, r∗) is a finite domination of the Zπ-

chain complex C∗(X̃). We have defined o(C∗(X̃)) ∈ K0(Zπ) in (2.35). Now
define the unreduced finiteness obstruction

o(X) := o(C∗(X̃)) ∈ K0(Zπ).(2.37)

Define the finiteness obstruction

(2.38) õ(X) ∈ K̃0(Zπ)
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to be the image of o(X) under the canonical projection K0(Zπ) → K̃0(Zπ).
Obviously õ(X) = 0, if X is homotopy equivalent to a finite CW -complex Z

since in this case we can take P∗ = C∗(Z̃) and C∗(Z̃) is a finite free Zπ-chain
complex. The next result is due to Wall, see [964] and [965].

Theorem 2.39 (Properties of the Finiteness Obstruction). Let X be
a finitely dominated connected CW -complex.

(i) The space X is homotopy equivalent to a finite CW -complex if and only
if õ(X) vanishes;

(ii) Every element in K0(ZG) can be realized as the finiteness obstruction o(X)
of a finitely dominated connected 3-dimensional CW -complex X with G =
π1(X), provided that G is finitely presented.

Theorem 2.39 illustrates why it is important to study the algebraic object
K̃0(Zπ) when one is dealing with geometric or topological questions. The

favorite case is when K̃0(Zπ) vanishes because then the finiteness obstruction
is obviously zero and one does not have to go to a specific computation.

Exercise 2.40. Let X be a finitely dominated connected CW -complex with
fundamental group π. Define a homomorphism of abelian groups

ψ : K0(Zπ)→ Z, [P ] 7→ dimQ(Q⊗Zπ P ).

Show that ψ sends o(X) to the Euler characteristic χ(X).

Remark 2.41. One can extend the finiteness obstruction also to not nec-
essarily connected CW -complexes. If X is be a (not necessarily connected)
finitely dominated CW -complex, we define

K0(Z[π1(X)]) :=
⊕

C∈π0(X)

K0(Z[π1(C)]);

K̃0(Z[π1(X)]) :=
⊕

C∈π0(X)

K̃0(Z[π1(C)]),

and the unreduced finite obstruction and the finiteness obstruction to be

o(X) := {o(C) | C ∈ π0(X)} ∈ K0(Z[π1(X)]);

õ(X) := {õ(C) | C ∈ π0(X)} ∈ K̃0(Z[π1(X)]).

Note that K0(Z[π1(X)]) and K̃0(Z[π1(X)]) are covariant functors in X in the
obvious way.

For more information about the finiteness obstruction we refer for instance
to [365, 367, 627, 654, 725, 728, 744, 822, 947, 964, 965].
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2.5.3 Outline of the Proof of the Obstruction Property

In this subsection we outline the proof of Theorem 2.39.
The elementary proofs of the next two lemmascan be found in [964,

Lemma 1.3] and [629, Lemma 14.8 on page 280].

Lemma 2.42. Let G be a finitely presented group. Let i : H → G and r : G→
H be group homomorphisms with r ◦ i = idH . Then H is finitely presented.

Lemma 2.43. Let H be a finitely generated group and G be a finitely pre-
sented group. Then the kernel of any epimorphism H → G is finitely gener-
ated.

The next Lemma 2.44 follows from Lemma 2.42 and Lemma 2.43.

Lemma 2.44. Let (Y, i, r) be a finite domination of the CW -complex X.
Then we can arrange by attaching finitely many cells to Y that the map
π1(r) : π1(Y )→ π1(X) is bijective and hence r is 2-connected.

Lemma 2.45. Let Y be a finitely dominated connected CW -complex whose
finiteness obstruction õ(Y ) vanishes. Then there are:

(i) A finite 2-dimensional connected CW -complex Z;
(ii) A 2-connected map h : Z → Y ;

(iii) A finite free Zπ-chain complex C∗ with C∗|2 = C∗(Z̃) and a Zπ-chain

homotopy equivalence f∗ : C∗ → C∗(Ỹ ) with f∗|2 = C∗(h̃), where here
and in the sequel we identify π = π1(Z) = π1(Y ) using the isomorphism

π1(h) : π1(Z)
∼=−→ π1(Y ).

Proof. By Lemma 2.44 we obtain a finite domination (Y, i, r) such that
r : Y → X is 2-connected. Take Z to be the 2-skeleton Y2 of Y and h : Z → X
to be the restriction of r to Z.

Since h is 2-connected, the induced Zπ-chain map C∗(h̃) : C∗(Z̃)→ C∗(Ỹ )

is 2-connected and hence Hn(cone∗(C∗(h̃))) = 0 for n ≥ 2. Let P∗ be the

Zπ-subchain complex of cone∗(C∗(h̃)) given by

. . .
c5−→ cone4(C∗(h̃))

c4−→ cone3(C∗(h̃))
c3−→ ker(c2)→ 0→ 0→ 0

where c∗ is the differential of cone(C∗(h̃)). Because of the exact sequence

0→ ker(c2)→ cone2(C∗(h̃))
c2−→ cone1(C∗(h̃))

c1−→ cone0(C∗(h̃))→ 0

the Zπ-chain complex P∗ is projective. The inclusion i∗ : P∗ → cone∗(C∗(h̃))
is a homology equivalence of projective Zπ-chain complexes and hence a Zπ-
chain homotopy equivalence. Put Q∗ = Σ−3P∗. Then Q∗ is a positive pro-
jective Zπ-chain complex such that Σ3Q∗ is Zπ-chain homotopy equivalent
to cone∗(C∗(h̃)).
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The mapping cylinder cyl(C∗(h̃)), see Definition 3.29, is Zπ-chain homo-

topy equivalent to C∗(Ỹ ) and there is an obvious short exact sequence of
Zπ-chain complexes

0→ C∗(Z̃)→ cyl∗(C∗(h̃))→ cone(C∗(h̃))→ 0.

Since C∗(Z̃) is finite free and C∗(Ỹ ) is finitely dominated, we conclude from
Lemma 2.36 (i) and (ii) that Q∗ is finitely dominated and that we get in

K̃0(Zπ)

õ(Q∗) = −õ(P∗) = −õ(cone∗(C∗(h̃))) = õ(cyl∗(C∗(h̃)))− õ(C∗(Z̃))

= õ(C∗(Ỹ ))− õ(C∗(Z̃)) = 0− 0 = 0.

Lemma 2.36 (iii) implies that Q∗ is Zπ-chain homotopy equivalent to a finite
free positive Zπ-chain complex F∗. Choose a Zπ-chain homotopy equiva-
lence g∗ : Σ3F∗ → cone∗(C∗(h̃)). We get a commutative diagram of Zπ-chain
complexes with exact rows and Zπ-chain homotopy equivalences as vertical
arrows

0 // C∗(Z̃) //

id
��

C∗ //

g′∗
��

Σ3F∗

g∗

��

// 0

0 // C∗(Z̃) // cyl∗(C∗(h̃)) // cone∗(C∗(h̃)) // 0

by requiring that the right square is a pull back. Now define the desired Zπ-
chain map f∗ : C∗ → C∗(Ỹ ) to be the composite of g′∗ with the canonical

Zπ-chain homotopy equivalence cyl∗(C∗(h̃))→ C∗(Ỹ ). ut

Next we present the main tool to pass from chain complexes to CW -
complexes. Its proof can be found in [965, Theorem 2] or in the more general
equivariant setting in [629, Theorem 13.19 on page 268].

Theorem 2.46 (Realization Theorem). Let h : Z → Y be a map be-
tween connected CW -complexes such that π1(h) : π1(Z) → π1(Y ) is an iso-
morphism. In the sequel identity π = π1(Y ) with π1(Z) using π1(h). Put
d = dim(Z) and suppose d ≥ 2. Assume the existence of a free Zπ-chain
complex C∗ with a preferred Zπ-basis and a Zπ-chain homotopy equivalence
f∗ : C∗ → C∗(Ỹ ) such that the restriction C∗|d to dimensions 0, 1, . . ., d

agrees with C∗(Z̃) and f∗|d = C∗(h̃).
Then we can construct a CW -complex X such that its d-skeleton Xd agrees

with Z and a cellular homotopy equivalence g : X → Z satisfying under the
obvious identification π = π1(X) = π1(Y ) = π1(Z):

(i) We have g|Z = h;
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(ii) There is a Zπ-chain isomorphism u∗ : C
∼=−→ C∗(X̃) such that the given

Zπ-basis on C∗ is mapped bijectively to the cellular Zπ-basis of X̃;
(iii) We have C∗(g) ◦ u∗ = f∗.

Remark 2.47. Note that there is no absolute version of the Realization The-
orem 2.46 in the sense that, for a d-dimensional CW -complex Z with fun-
damental group π and dimension d ≥ 2 and a based free Zπ-chain complex
C∗ with C∗|d = C∗(Z̃), we can find a CW -complex X with Xd = Z and

C∗(X̃) = C∗. Moreover, the assumption dim(Z) ≥ 2 cannot be dropped in
the Realization Theorem 2.46.

Lemma 2.48. Let X be a connected CW -complex. Then it is finitely domi-
nated if and only if π1(X) is finitely presented and the Z[π1(X)]-chain com-

plex C∗(X̃) is finitely dominated.

Proof. This follows essentially from Theorem 2.46; details of the proof can
be found in [965, Corollary 5.1] or in the more general equivariant setting
in [629, Proposition 14.6 (a) on page 282]. ut

Next we can give the proof of Theorem 2.39.

Proof of Theorem 2.39. (i) If the finitely dominated connected CW -complex
Y is homotopy equivalent to a finite CW -complex, we get õ(Y ) = 0 directly
from the definitions. Now suppose that Y is a finitely dominated connected
CW -complex with õ(Y ) = 0. We conclude from Lemma 2.45 and Theo-
rem 2.45 that Y is homotopy equivalent to a CW -complex X for which its
cellular Zπ-chain complex C∗(X̃) is finite free. The latter implies that X is
finite.

(ii). Since G is finitely presented, we can choose a connected finite 2-
dimensional CW -complex Z with π1(Z) = G. Consider any element ξ ∈
K̃0(Zπ). Choose a finitely generated projective R-module P and a natu-
ral number n such that ξ = [P ] − [Zπn] holds. Choose an exact sequence

0 →
⊕

I3
Zπ u−→

⊕
I2
Zπ → P → 0. Now consider X ′ = X ∨

∨
i2∈I S

2. For

each i3 ∈ I3 we attach a 3-cell to X ′ with an attaching map qi3 : S2 → X ′

such that [qi3 ] ∈ π2(X ′) corresponds to the image of the basis element in⊕
I3
Zπ associated to i3 under the composite⊕

I3

Zπ u−→
⊕
I2

Zπ j−→ π2(X ′)

where j sends the basis element associated to i2 ∈ I2 to the element in π2(X ′)
given by the obvious inclusion of S2 → X ′ associated to j2. Call the resulting
3-dimensional CW -complex Y . Note that we can identify π = π1(Y ). We
obtain an exact sequence of free Zπ-chain complexes

0→ C∗(X̃)→ C∗(Ỹ )→ C∗(Ỹ , X̃)→ 0.
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The Zπ-chain complex C∗(Ỹ , X̃) is concentrated in dimensions 2 and 3 and

its third differential is u. This implies that C∗(Ỹ , X̃) is Zπ-chain homo-
topy equivalent to the Zπ-chain complex concentrated in dimension 2 with
P as second Zπ-chain module. Hence C∗(Ỹ , X̃) is finitely dominated and

o(C∗(Ỹ , X̃)) = [P ] by Lemma 2.36 (i). Lemma 2.36 (ii) implies that C∗(Ỹ )
is finitely dominated. Then Y is finitely dominated as a CW -complex by
Lemma 2.48. Lemma 2.36 (ii) implies that we get for some integer m

o(C∗(Ỹ )) = o(C∗(Z̃)) + o(C∗(Ỹ , X̃)) = m · [Zπ] + [P ].

By attaching to Y finitely many trivial 2 and 3-cells, we can arrange that Y
is a finitely dominated connected CW -complex with π1(Y ) = G and o(Y ) =
[P ]− [Zπn] = ξ. ut

Exercise 2.49. Let

X0
i1 //

i2

�� j0 !!

X1

j1

��
X2

j2
// X

be a cellular pushout, i.e., the diagram is a pushout, the map i1 is an inclusion
of CW -complexes, the map i2 is cellular and X carries the induced CW -
structure. Suppose that X0, X1, X2 are finitely dominated.

Then X is finitely dominated and we get in K0(Z[π1(X)])

o(X) = (j1)∗(o(X1)) + (j2)∗(o(X2))− (j0)∗(o(X1)).

2.6 Geometric Interpretation of Projective Class Group
and Finiteness Obstruction

Next we give a geometric construction of K̃0(Zπ) that is in the spirit of the
well-known interpretation of the Whitehead group in terms of deformation
retractions which we will present later in Section 3.4. The material of this
section is taken from [627] where more information and details of the proofs
can be found.

Given a space Y , we want to define an abelian group Wa(Y ). The underly-
ing set is the set of equivalence classes of an equivalence relation ∼ defined on
the set of maps f : X → Y with finitely dominated CW -complexes as source
and the given space Y as target. We call f0 : X0 → Y and f4 : X4 → Y
equivalent if there exists a commutative diagram
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X0
i0 //

f0

""

X1
j1 //

f1

��

X2

f2

��

X3
j3oo

f3

��

X4
i4oo

f4

||
Y

such that j1 and j3 are homotopy equivalences and i0 and i4 are inclusions
of CW -complexes with the property that the larger one is obtained from
the smaller one by attaching finitely many cells. Obviously this relation is
symmetric and reflexive. It needs some work to show transitivity and hence
that it is an equivalence relation. The addition in Wa(Y ) is given by the
disjoint sum, i.e., define the sum of the class of f0 : X0 → Y and f1 : X1 → Y
to be the class of f0

∐
f1 : X0

∐
X1 → Y . It is easy to check that this is

compatible with the equivalence relation. The neutral element is represented
by ∅ → Y . The inverse of the class [f ] of f : X → Y is constructed as follows.
Choose a finite domination (Z, i, r) of X. Construct a map F : cyl(i) → X
from the mapping cylinder of i to Y such that F |X = idX and F |Z = r. Then
an inverse of [f ] is given by the class [f ′] of the composite

f ′ : cyl(i) ∪X cyl(i)
F∪idX

F
−−−−−→ X

f−→ Y.

This finishes the definition of the abelian group Wa(Y ). A map f : Y0 → Y1

induces a homomorphism of abelian groups Wa(f) : Wa(Y0) → Wa(Y1) by
composition. Thus Wa defines a functor from the category of spaces to the
category of abelian groups.

Exercise 2.50. Show that [f ] + [f ′] = 0 holds for the composite f ′ above.

Given a finitely dominated CW -complex X, define its geometric finiteness
obstruction ogeo(X) ∈Wa(X) by the class of idX .

Theorem 2.51 (The geometric finiteness obstruction). Let X be a
finitely dominated CW -complex. Then X is homotopy equivalent to a finite
CW -complex if and only if ogeo(X) = 0 in Wa(X).

Proof. Obviously ogeo(X) = 0 if X is homotopy equivalent to a finite CW -
complex. Suppose ogeo(X) = 0. Hence there are a CW -complex Y , a map
r : Y → X and a homotopy equivalence h : Y → Z to a finite CW -complex
Z such that Y is obtained from X by attaching finitely many cells and r ◦ i =
idX holds for the inclusion i : X → Y . The mapping cylinder cyl(r) is built
from the mapping cylinder cyl(i) by attaching a finite number of cells and is
homotopy equivalent to X. Choose a homotopy equivalence g : cyl(i) → Z.
Consider the push-out
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cyl(i)
i //

g

��

cyl(r)

g′

��
Z

i′
// Z ′

where i is the inclusion. Since g is a homotopy equivalence, the same is true
for g′. Hence X is homotopy equivalent to the finite CW -complex Z ′. ut

Theorem 2.52 (Identifying the finiteness obstruction with its geo-
metric counterpart). Let Y be a space. Then there is a natural isomor-
phism of abelian groups

Φ : Wa(Y )
∼=−→

⊕
C∈π0(Y )

K̃0(Zπ1(C)).

Proof. We only explain the definition of Φ. Consider an element [f ] ∈Wa(Y )
represented by a map f : X → Y from a finitely dominated CW -complex
X to Y . Given a path component C of X, let Cf be the path component
of Y containing f(C). The map f induces a map f |C : C → Cf and hence

a map (f |C)∗ : K̃0(Zπ1(C)) → K̃0(Zπ1(Cf )). Since X is finitely dominated,
every path component C of X is finitely dominated, and we can consider its
finiteness obstruction õ(C) ∈ K̃0(Zπ1(C)). Let φ([f ])C be the image of õ(C)
under the composite

K̃0(Zπ1(C))
(f |C)∗−−−−→ K̃0(Zπ1(Cf ))→

⊕
C∈π0(Y )

K̃0(Zπ1(C)).

Since π0(X) is finite, we can define

φ([f ]) :=
∑

C∈π0(X)

φ([f ])C .

We omit the proof that this is compatible with the equivalence relation ap-
pearing in the definition of Wa(Y ), that φ is a homomorphism of abelian
groups and that Theorem 2.39 implies that Φ is bijective. ut

2.7 Universal Functorial Additive Invariants

In this section we describe the pair (K0(Zπ1(X)), o(X)) by an abstract prop-
erty.

Definition 2.53 (Functorial additive invariant for finitely dominated
CW -complexes). A functorial additive invariant for finitely dominated
CW -complexes consists of a covariant functor A from the category of finitely
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dominated CW -complexes to the category of abelian groups together with
an assignment a that associates to every finitely dominated CW -complex X
an element a(X) ∈ A(X) such that the following axioms are satisfied:

• Homotopy invariance of A
If f, g : X → Y are homotopic maps between finitely dominated CW -
complexes, then A(f) = A(g);

• Homotopy invariance of a(X)
If f : X → Y is a homotopy equivalence of finitely dominated CW -
complexes, then A(f)(a(X)) = a(Y );

• Additivity
Let

X0
i1 //

i2

�� j0 !!

X1

j1

��
X2

j2
// X

be a cellular pushout, i.e., the diagram is a pushout, the map i1 is an in-
clusion of CW -complexes, the map i2 is cellular and X carries the induced
CW -structure. Suppose that X0, X1, X2 are finitely dominated.
Then X is finitely dominated and

a(X) = A(j1)(a(X1)) +A(j2)(a(X2))−A(j0)(a(X0));

• Normalization
a(∅) = 0.

Example 2.54 (Componentwise Euler characteristic). Let A be the
covariant functor sending a finitely dominated CW -complexX toH0(X;Z) =⊕

C∈π0(X) Z. Let a(X) ∈ A(X) be the componentwise Euler characteristic,

i.e., the collection of integers {χ(C) | C ∈ π0(X)}. Then (A, a) is a functorial
additive invariant for finitely dominated CW -complexes.

Definition 2.55 (Universal functorial additive invariant for finitely
dominated CW -complexes). A universal functorial additive invariant for
finitely dominated CW -complexes (U, u) is a functorial additive invariant
with the property that for any functorial additive invariant (A, a) there
is precisely one natural transformation T : U → A with the property that
T (X)(u(X)) = a(X) holds for every finitely dominated CW -complex X.

Exercise 2.56. Show that the functorial additive invariant defined in Exam-
ple 2.54 is the universal one if we restrict to finite CW -complexes.

Obviously the universal additive functorial invariant is unique (up to
unique natural equivalence) if it exists. It is also easy to construct it. How-
ever, it turns out that there exists a concrete model, namely, the following
theorem is proved in [627, Theorem 4.1].
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Theorem 2.57 (The finiteness obstruction is the universal functorial
additive invariant). The covariant functor X 7→

⊕
C∈π0(X)K0(Zπ1(C))

together with the componentwise finiteness obstruction {o(C) | C ∈ π0(X)}
is the universal functorial additive invariant for finitely dominated CW -
complexes.

Exercise 2.58. (i) Construct for finitely dominated CW -complexes X and
Y a natural pairing

P (X,Y ) : U(X)⊗Z U(Y )→ U(X × Y )

sending u(X)⊗ u(Y ) to u(X × Y ) where (U, u) is the universal functorial
additive invariant for finitely dominated CW -complexes;

(ii) LetX be a finitely dominated CW -complex. Let Y be a finite CW -complex
such that χ(C) = 0 for every component C of Y . Show that X × Y is
homotopy equivalent to a finite CW -complex.

2.8 Variants of the Farrell-Jones Conjecture for K0(RG)

In this section we state variants of the Farrell-Jones Conjecture for K0(RG),
where RG, sometimes also written as R[G], is the group ring of a group G
with coefficients in an associative ring R with unit. Elements in RG are given
by formal finite sums

∑
g∈G rg · g, and addition and multiplication is given

by (∑
g∈G

rg · g
)

+

(∑
g∈G

sg · g

)
:=
∑
g∈G

(rg + sg) · g;

(∑
g∈G

rg · g

)
·

(∑
g∈G

sg · g

)
:=
∑
g∈G

( ∑
h,k∈G,
g=hk

rh · sk

)
· g.

The Farrell-Jones Conjecture itself will give a complete answer for arbi-
trary groups and rings, but to formulate the full version some additional
effort will be needed. If one assumes that R is regular and G is torsionfree
or that R is regular and Q ⊆ R, then the conjecture reduces to easy to for-
mulate statements, which we will present next. Moreover, these special cases
are already very interesting.

Definition 2.59 (Projective resolution). Let M be an R-module. A
projective resolution (P∗, φ∗) of M is a positive projective R-chain com-
plex P∗ with Hn(P∗) = 0 for n ≥ 1 together with an R-isomorphism

φ : H0(P∗)
∼=−→M . It is called finite, finitely generated, free, finite dimensional,

or d-dimensional if the R-chain complex P∗ has this property.
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A ring R is Noetherian if any submodule of a finitely generated R-module is
again finitely generated. A ring R is called regular if it is Noetherian and any
finitely generated R-module has a finite dimensional projective resolution.
Any principal ideal domain such as Z, any field, and, more generally, any
Dedekind domain is regular, see Theorem 2.21.

Conjecture 2.60 (Farrell-Jones Conjecture for K0(R) for torsionfree
G and regular R). Let G be a torsionfree group and let R be a regular
ring. Then the map induced by the inclusion of the trivial group into G

K0(R)
∼=−→ K0(RG)

is bijective.
In particular we get for any principal ideal domain R and torsionfree G

K̃0(RG) = 0.

Remark 2.61 (Relevance of Conjecture 2.60). In view of Remark 2.8
Conjecture 2.60 is equivalent to the statement that for a torsionfree group
G and a regular ring R every finitely generated projective RG-module is
stably finitely generated free. This is the algebraic relevance of this conjec-
ture. Its geometric meaning comes from the following conclusion of Theo-
rem 2.39. Namely, if R = Z and G is a finitely presented torsionfree group,
it is equivalent to the statement that every finitely dominated CW -complex
with π1(X) ∼= G is homotopy equivalent to a finite CW -complex.

Definition 2.62 (Family of subgroups). A family F of subgroups of a
group G is a set of subgroups that is closed under conjugation with elements
of G and under passing to subgroups.

Our main examples of families are listed below

Notation 2.63.
notation subgroups
T R trivial group

FCY finite cyclic subgroups

FIN finite subgroups
CYC cyclic subgroups

VCY virtually cyclic subgroups

ALL all subgroups

Definition 2.64 (Orbit category). The orbit category Or(G) has as ob-
jects homogeneous spaces G/H and as morphisms G-maps. Given a family F
of subgroups of G, let the F-restricted orbit category OrF (G) be the full sub-
category of Or(G) whose objects are homogeneous spaces G/H with H ∈ F .

Definition 2.65 (Subgroup category). The subgroup category Sub(G)
has as objects subgroups H of G. For H,K ⊆ G, let conhomG(H,K) be
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the set of all group homomorphisms f : H → K for which there exists a
group element g ∈ G such that f is given by conjugation with g. The group
of inner automorphisms inn(K) consists of those automorphisms K → K that
are given by conjugation with an element k ∈ K. It acts on conhom(H,K)
from the left by composition. Define the set of morphisms in Sub(G) from H
to K to be inn(K)\ conhom(H,K). Composition of group homomorphisms
defines the composition of morphisms in Sub(G).

Given a family F , define the F-restricted category of subgroups SubF (G)
to be the full subcategory of Sub(G) that is given by objects H belonging to
F .

Exercise 2.66. Show that SubF (G) is a quotient category of OrF (G).
Note that there is a morphism from H to K only if H is conjugated

to a subgroup of K. Clearly K0(R(−)) yields a functor from SubF (G) to
abelian groups since inner automorphisms on a group K induce the identity
on K0(RK). Using the inclusions into G, one obtains a map

colimH∈SubF (G)K0(RH)→ K0(RG).

We briefly recall the notion of a colimit of a covariant functor F : C →
Z-MOD from a small category C into the category of abelian groups, where
small means that the objects of C form a set. Given an abelian group A,
let CA be the constant functor C → Z-MOD that sends every object in C
to A and every morphism in C to idA. Given a homomorphism f : A → B
of abelian groups, let Cf : CA → CB be the obvious transformation. The
colimit, or sometimes also called direct limit, of F consists of an abelian group
colimC F together with a transformation TF : F → CcolimC F such that for any
abelian group B and transformation T : F → CB there exists precisely one
homomorphism of abelian groups φ : colimC F → B satisfying Cφ ◦ TF = T .
The colimit is unique (up to unique isomorphism) and always exists. If we
replace abelian group by ring or by R-module respectively, we get the notion
of a colimit or sometimes also called direct limit of functors from a small
category to rings or R-modules respectively.

Conjecture 2.67 (Farrell-Jones Conjecture for K0(RG) for regular R
with Q ⊆ R). Let R be a regular ring with Q ⊆ R and let G be a group.

Then the homomorphism

IFIN (G,F ) : colimH∈SubFIN (G)K0(RH)→ K0(RG)(2.68)

coming from the various inclusions of finite subgroups of G into G is a bijec-
tion.

One can also ask for the following stronger version of Conjecture 2.67
which also encompasses Conjecture 2.60.

Conjecture 2.69 (Farrell-Jones Conjecture for K0(RG) for regular
R). Let R be a regular ring and let G be a group. Let P(G,R) be the set of
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primes which are not invertible in R and for which G contains an element of
order p.

Then the homomorphism

IFIN (G,F ) : colimH∈SubFIN (G)K0(RH)→ K0(RG)

coming from the various inclusions of finite subgroups of G into G is
an P(G,R)-isomorphism, i.e., an isomorphism after inverting all prime in
P(G,R).

We mention that the surjectivity of the map IFIN (G,F ) is equivalent to
the surjectivity of the map induced by the various inclusions of subgroups
H ∈ FIN into G ⊕

H∈FIN
K0(RH) → K0(RG),

because this map factorizes as⊕
H∈FIN

K0(RH)
ψ−→ colimH∈SubFIN (G)K0(RH)

IFIN (G,F )−−−−−−−→ K0(RG)

where the first map ψ is surjective.

Remark 2.70 (Module-theoretic relevance of Conjecture 2.67). Con-
jecture 2.67 implies that for a regular ring R with Q ⊆ R every finitely gener-
ated projective R-module is up to adding finitely generated free RG-modules
a direct sum of finitely many RG-modules of the shape RG ⊗RH P for a
finite subgroup H ⊆ G and a finitely generated projective RH-module P . So
it predicts the (stable) structure of finitely generated projective RG-modules
in the most elementary way. We mention, however, that the situation is much
more complicated in the case where we drop the assumption that R is regular
and Q ⊆ R. In particular for R = Z new phenomena will occur as explained
later that are related to so-called negative K-groups and Nil-groups. For in-
stance, the obvious inclusion Z/6 → Z × Z/6 does not induce a surjection

K0(Z[Z/6])→ K0(Z[Z×Z/6]) since K̃0(Z[Z/6]) = 0 and K̃0(Z[Z×Z/6]) ∼= Z,
whereas by K0(Q[Z/6]) → K0(Q[Z × Z/6]) is known to be bijective as pre-
dicted by Conjecture 2.67.

Remark 2.71 (Conjecture 2.67 and the Atiyah Conjecture). Conjec-
ture 2.67 plays a role in a program aiming at a proof of the Atiyah Conjecture
about L2-Betti numbers as explained in [635, Section 10.2]. Atiyah defined

the n-th L2-Betti number of the universal covering M̃ of a closed Riemannian
manifold M to be the non-negative real number

b(2)
n (M̃) := lim

t→∞

∫
F

tr
(
e−t∆n(x̃,x̃)

)
dx̃
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where F is a fundamental domain for the π1(M)-action and e−t∆n(x̃,x̃) de-

notes the heat kernel on M̃ . The version of the Atiyah Conjecture, which we

are interested in and which is at the time of writing open, says that d·b(2)
n (M̃)

is an integer if d is an integer such that the order of any finite subgroup of

π1(M) divides d. In particular b
(2)
n (M̃) is expected to be an integer if π1(M)

is torsionfree. This gives an interesting connection between the analysis of
heat kernels and the projective class group of complex group rings CG.

If one drops the condition that there exists a bound on the order of finite
subgroups of π1(M), then also transcendental real numbers can occur as L2-

Betti number of the universal covering M̃ of a closed Riemannian manifold
M , see [58, 416, 793].

An R-module M is called Artinian if for any descending series of sub-
modules M1 ⊇ M2 ⊇ . . . there exists an integer k such that Mk = Mk+1 =
Mk+2 = . . . holds. An R-module M is called simple or irreducible if M 6= {0}
and M contains only {0} and M as submodules. A ring R is called Artinian
if both R considered as left R-module is Artinian and R considered as right
R-module is Artinian, or, equivalently, every finitely generated left R-module
and every finitely generated right R-module is Artinian. Skew-fields and finite
rings are Artinian, whereas Z is not Artinian.

Conjecture 2.72 (Farrell-Jones Conjecture for K0(RG) for an Ar-
tinian ring R). Let G be a group and R be an Artinian ring.

Then the canonical map

IFIN (G,R) : colimH∈SubFIN (G)K0(RH)→ K0(RG)

is an isomorphism

2.9 Kaplansky’s Idempotent Conjecture

In this section we discuss

Conjecture 2.73 (Kaplansky’s Idempotent Conjecture). Let R be an
integral domain and let G be a torsionfree group. Then all idempotents of
RG are trivial, i.e., equal to 0 or 1.

Remark 2.74 (Kaplansky’s Idempotent Conjecture for prime char-
acteristic). There is a reasonable more general version of Conjecture 2.73
where one replaces the condition that G is torsionfree by the weaker condition
that any prime p, which divides the order of some finite subgroup H ⊆ G is
not invertible in the integral domain R. If R is a skew-field of prime character-
istic p, then this condition reduces to the condition that any finite subgroup
H of G is a p-group.



50 2 The Projective Class Group

The version of Kaplansky’s Idempotent Conjecture 2.73 described in Re-
mark 2.74 is consistent with the observation that the only known idempotents
in a group ring RG come from idempotents in R or by the following construc-
tion.

Example 2.75 (Construction of idempotents). Let G be a group and
g ∈ G be an element of finite order. Suppose that the order |g| is invertible

in R. Define an element x := |g|−1 ·
∑|g|
i=1 g

i. Then x2 = x, i.e., x is an
idempotent in RG.

Exercise 2.76. Show that the version of Kaplansky’s Idempotent Conjecture
of Remark 2.74 holds for G = Z/2.

Exercise 2.77. Consider the ring R = Z[x]/(2x2 − 3x + 1). In the sequel
denote by u the class of u ∈ Z[x] in R. Show:

(i) 2 is not invertible in R;
(ii) There are precisely two non-trivial idempotents in R, namely 2− 2x and
−1 + 2x;

(iii) The element x+ (1− x) · t is a non-trivial idempotent in R[Z/2].

Remark 2.78 (Sofic groups). In the next theorem we will use the notion
of a sofic group that was introduced by Gromov and originally called suba-
menable group. Every residually amenable group is sofic but the converse is
not true. The class of sofic groups is closed under taking subgroups, direct
products, amalgamated free products, colimits and inverse limits, and, if H
is a sofic normal subgroup of G with amenable quotient G/H, then G is sofic.
To the authors’ knowledge there is no example of a group that is not sofic.
There is a note by Dave Witte Morris [735] following Deligne [286] where a
central extension 1 → Z → G → SP (2n,R) → 1 is constructed such that
G is not residually finite. The group G is viewed as a candidate for a group
which is not sofic. It is unknown but likely to be true that all hyperbolic
groups are sofic. For more information about the notion of a sofic group we
refer to [318].

Definition 2.79 (Directly finite). An R-module M is called directly finite
if every R-module N satisfying M ∼=R M ⊕ N is trivial. A ring R is called
directly finite (or von Neumann finite) if it is directly finite as a module over
itself, or, equivalently, if r, s ∈ R satisfy rs = 1, then sr = 1. A ring is called
stably finite if the matrix algebra Mn(R) is directly finite for all n ≥ 1.

Remark 2.80 (Stable finiteness). Stable finiteness for a ring R is equiv-
alent to the following statement. Every finitely generated projective R-
module P whose class in K0(R) is zero is already the trivial module, i.e.,
0 = [P ] ∈ K0(R) implies P ∼= 0.

If F is a field of characteristic zero, then FG is stably finite for every group
G. This is proved by Kaplansky [527], see also Passman [775, Corollary 1.9 on



2.9 Kaplansky’s Idempotent Conjecture 51

page 38]. If R is a skew-field and G is a sofic group, then RG is stably finite.
This is proved for free-by-amenable groups by Ara-Meara-Perera [35] and ex-
tended to sofic groups by Elek-Szabo [317, Corollary 4.7]. These results have
been extended to extensions with a finitely generated residually finite groups
as kernel and a sofic finitely generated group as quotient by Berlai [121].

The next theorem is taken from [87, Theorem 1.12].

Theorem 2.81 (The Farrell-Jones Conjecture and Kaplansky’s Idem-
potent Conjecture). Let G be a group. Let R be a ring whose idempotents
are all trivial. Suppose that

K0(R)⊗Z Q −→ K0(RG)⊗Z Q

is an isomorphism.
Then 0 and 1 are the only idempotents in RG if one of the following

conditions is satisfied:

(i) RG is stably finite;
(ii) R is a field of characteristic zero;

(iii) R is a skew-field and G is sofic.

Remark 2.82 (The Farrell-Jones Conjecture and Kaplansky’s Idem-
potent Conjecture). Theorem 2.81 implies that for a skew-field D of char-
acteristic zero and a torsionfree group G Kaplansky’s Idempotent Conjec-
ture 2.73 is true for DG, provided that Conjecture 2.60 holds and that D is
commutative or G is sofic.

Remark 2.83 (The Farrell-Jones Conjecture and the Kaplansky’s
Idempotent Conjecture for prime characteristic). Suppose that D
is a skew-field of prime characteristic p, that Conjecture 2.72 holds for G

and D, and that all finite subgroups of G are p-groups. Then K0(D)
∼=−→

K0(DG) is an isomorphism since for a finite p-group H the group ring DH is

a local ring, see [257, Theorem 5.24 on page 114], and hence K̃0(DH) = 0 by
Lemma 2.122. If we furthermore assume that G is sofic, then Theorem 2.81
implies that all idempotents in DG are trivial.

Remark 2.84 (Reducing the case of a field of characteristic zero to
C). Let F be a field of characteristic zero and let u =

∑
g∈G xg · g ∈ FG

be an element. Let K be the finitely generated field extension of Q given by
K = Q(xg | g ∈ G) ⊂ F . Then u is already an element in KG. The field K
embeds into C since K is finitely generated, it is a finite algebraic extension
of a transcendental extension K ′ of Q, see [602, Theorem 1.1 on p. 356], and
K ′ has finite transcendence degree over Q. Since the transcendence degree
of C over Q is infinite, there exists an embedding K ′ ↪→ C induced by an
injection of a transcendence basis of K over Q into a transcendence basis of
C over Q. It extends to an embedding K ↪→ C because C is algebraically
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closed. Hence u can be viewed as an element in CG. This reduces the case of
fields F of characteristic zero to the case F = C.

Next we mention some further results.
Formanek [383, Theorem 9], see also [176, Proposition 4.2], has shown that

all idempotents of FG are trivial, provided that F is a field of characteristic
zero and there are infinitely many primes p for which there do not exist an

element g ∈ G, g 6= 1 and an integer k ≥ 1 such that g and gp
k

are conjugate.
Torsionfree hyperbolic groups satisfy these conditions. Hence Formanek’s re-
sults imply that all idempotents in FG are trivial ifG is torsionfree hyperbolic
and F is a field of characteristic zero.

Delzant [287] has proved the Kaplansky’s Idempotent Conjecture 2.73 for
all integral domains R for a torsionfree hyperbolic group G, provided that G
admits an appropriate action with large enough injectivity radius. Delzant
actually deals with zero-divisors and units as well.

2.10 The Bass Conjectures

2.10.1 The Bass Conjecture for Fields of Characteristic Zero as
Coefficients

Let G be a group. Let con(G) be the set of conjugacy classes (g) of elements
g ∈ G. Denote by con(G)f the subset of con(G) consisting of those conju-
gacy classes (g) for which each representative g has finite order. Let R be
a commutative ring. Let class(G,R) and class(G,R)f be the free R-module
with the set con(G) and con(G)f as basis. This is the same as the R-module
of R-valued functions on con(G) and con(G)f with finite support. Define the
universal R-trace

truRG : RG→ class(G,R),
∑
g∈G

rg · g 7→
∑
g∈G

rg · (g).(2.85)

It extends to a function truRG : Mn(RG) → class(G,R) on (n, n)-matrices
over RG by taking the sum of the traces of the diagonal entries. Let P be a
finitely generated projective RG-module. Choose a matrix A ∈ Mn(RG) such
that A2 = A and the image of the RG-map rA : RGn → RGn given by right
multiplication with A is RG-isomorphic to P . Define the Hattori-Stallings
rank of P to be

HSRG(P ) = truRG(A) ∈ class(G,R).(2.86)

The Hattori-Stallings rank depends only on the isomorphism class of the
RG-module P . It induces an R-homomorphism, the Hattori-Stallings homo-
morphism,
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HSRG : K0(RG)⊗Z R → class(G,R), [P ]⊗ r 7→ r ·HSRG(P ).(2.87)

Let F be a field of characteristic zero. Fix an integerm ≥ 1. Let F (ζm) ⊃ F
be the Galois extension given by adjoining the primitive m-th root of unity
ζm to F . Denote by Γ (m,F ) the Galois group of this extension of fields, i.e.,
the group of automorphisms σ : F (ζm)→ F (ζm) that induce the identity on
F . It can be identified with a subgroup of Z/m∗ by sending σ to the unique

element u(σ) ∈ Z/m∗ for which σ(ζm) = ζ
u(σ)
m holds. Let g1 and g2 be two

elements of G of finite order. We call them F -conjugated if for some (and
hence all) positive integers m with gm1 = gm2 = 1 there exists an element σ in

the Galois group Γ (m,F ) with the property that g
u(σ)
1 and g2 are conjugated.

Two elements g1 and g2 are F -conjugated for F = Q, R, or C, respectively,
if the cyclic subgroups 〈g1〉 and 〈g2〉 are conjugated, if g1 and g2 or g1 and
g−1

2 are conjugated, or if g1 and g2 are conjugated, respectively.
Denote by conF (G)f the set of F -conjugacy classes (g)F of elements g ∈ G

of finite order. Let classF (G)f be the F -vector space with the set conF (G)f
as basis, or, equivalently, the F -vector space of functions conF (G)f → F with
finite support. There are obvious inclusions of F -modules

classF (G)f ⊆ class(G,F )f ⊆ class(G,F ).

Lemma 2.88. Suppose that F is a field of characteristic zero and H is a
finite group. Then the Hattori-Stallings homomorphism, see (2.87), induces
an isomorphism

HSFH : K0(FH)⊗Z F
∼=−→ classF (H)f .

Proof. Since H is finite, an FH-module is a finitely generated projective FH-
module if and only if it is a (finite dimensional) H-representation with coeffi-
cients in F and K0(FH) is the same as the representation ring RF (H). The
Hattori-Stallings rank HSFH(V ) and the character χV of a G-representation
V with coefficients in F are related by the formula

χV (h−1) = |CG〈h〉| ·HSFH(V )(h)(2.89)

for h ∈ H where CG〈h〉 is the centralizer of h in G. Hence Lemma 2.88 follows
from representation theory, see for instance [892, Corollary 1 in Chapter 12
on page 96]. ut

Exercise 2.90. Prove formula (2.89).

The following conjecture is the obvious generalization of Lemma 2.88 to
infinite groups.

Conjecture 2.91 (Bass Conjecture for fields of characteristic zero as
coefficients). Let F be a field of characteristic zero and let G be a group.
The Hattori-Stallings homomorphism of (2.87) induces an isomorphism
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HSFG : K0(FG)⊗Z F → classF (G)f .

Lemma 2.92. Suppose that F is a field of characteristic zero and G is a
group. Then the composite

(2.93) colimH∈SubFIN (G)K0(FH)⊗Z F
IFIN (G,F )⊗ZidF−−−−−−−−−−−→ K0(FG)⊗Z F

HSFG−−−−→ class(G,F )

is injective and has as image classF (G)f where IFIN (G,F ) is the map defined
in (2.68).

Proof. This follows from the following commutative diagram, compare [631,
Lemma 2.15 on page 220].

colimH∈SubFIN (G)K0(FH)⊗Z F

colimH∈SubFIN (G) HSFH ∼=
��

IFIN (G,F )⊗ZidF // K0(FG)⊗Z F

HSFG

��
colimH∈SubFIN (G) classF (H)f

j

∼=
// classF (G)f

i // class(G,F ).

Here the isomorphism j is the direct limit over the obvious maps classF (H)f →
classF (G)f given by extending a class function in the trivial way and the map
i is the natural inclusion and in particular injective. ut

Exercise 2.94. Let F be a field of characteristic zero. Show that the group
G must be torsionfree if K̃0(FG) is a torsion group.

Theorem 2.95 (The Farrell-Jones Conjecture and the Bass Conjec-
ture for fields of characteristic zero). The Farrell-Jones Conjecture 2.67
for K0(RG) for regular R and Q ⊆ R implies the Bass Conjecture 2.91 for
fields of characteristic zero as coefficients.

Proof. This follows from Lemma 2.92. ut

The Bost Conjecture 14.23 implies the Bass Conjecture 2.91 for fields of
characteristic zero as coefficients, provided that F = C, see [124, Theorem 1.4
and Lemma 1.5].

Exercise 2.96. Let F be field of characteristic zero and let G be a group.
Suppose that the Farrell-Jones Conjecture 2.67 for K0(RG) for regular R
and Q ⊆ R holds for R = F . Consider any finitely generated projective
FG-module P . Then the Hattori-Stallings rank HS(P ) evaluated at the unit
e ∈ G belongs to Q ⊆ F .

Remark 2.97 (Zalesskii’s Theorem). Zalesskii [1012], see also [176, The-
orem 3.1], has shown for every field F , every group G, and every idempotent
x ∈ FG that HS(P ) evaluated at the unit e ∈ G belongs to the prime field
of F .
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2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.98 (Bass Conjecture for integral domains as coeffi-
cients). Let R be a commutative integral domain and let G be a group. Let
g ∈ G be an element in G. Suppose that either the order |g| is infinite or that
the order |g| is finite and not invertible in R.

Then for every finitely generated projective RG-module the value of its
Hattori-Stallings rank HSRG(P ) at (g) is trivial.

Sometimes the Bass Conjecture 2.98 for integral domains as coefficients, is
called the Strong Bass Conjecture, see [98, 4.5]. The Weak Bass Conjecture,
see [98, 4.4], states for a finitely generated projective ZG-module P that the
evaluation of its Hattori-Stallings rank at the unit HS(P )(1) agrees with
dimZ(Z⊗ZG P ).

Exercise 2.99. Show that the Weak Bass Conjecture follows from the Bass
Conjecture 2.98 for integral domains as coefficients.

The Bass Conjecture 2.98 can be interpreted topologically. Namely, the
Bass Conjecture 2.98 is true for a finitely presented group G in the case R = Z
if and only if every homotopy idempotent selfmap of an oriented smooth
closed manifold whose dimension is greater than 2 and whose fundamental
group is isomorphic to G, is homotopic to one that has precisely one fixed
point, see [125]. The Bass Conjecture 2.98 for G in the case R = Z (or R = C)
also implies for a finitely dominated CW -complex with fundamental group
G that its Euler characteristic agrees with the L2-Euler characteristic of its
universal covering, see [313, 0.3].

The next results follows from the argument in [357, Section 5].

Theorem 2.100 (The Farrell-Jones Conjecture and the Bass Con-
jecture for integral domains). Let G be a group. Suppose that

I(G,F )⊗Z Q : colimOrFIN (G)K0(FH)⊗Z Q→ K0(FG)⊗Z Q

is surjective for all fields F of prime characteristic.
Then the Bass Conjecture 2.98 is satisfied for G and every commutative

integral domain R.
In particular the Bass Conjecture 2.98 follows from the Farrell-Jones Con-

jecture 2.72.

For finiteG andR an integral domain such that no prime dividing the order
of |G| is a unit in R, Conjecture 2.98 was proved by Swan [919, Theorem 8.1],
see also [98, Corollary 4.2]. The Bass Conjecture 2.98 has been proved by
Bass [98, Proposition 6.2 and Theorem 6.3] for R = C and G a torsionfree
linear group and by Eckmann [311, Theorem 3.3] for R = Q, provided that
G has at most cohomological dimension 2 over Q.

The following result is due to Linnell [617, Lemma 4.1].
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Theorem 2.101 (The Bass Conjecture for integral domains and el-
ements of finite order). Let G be a group.

(i) Let p be a prime, and let P be a finitely generated projective Z(p)G-module.
Suppose for g ∈ G that HS(P )(g) 6= 0. Then there exists an integer n ≥ 1
such that g and gp

n

are conjugated in G and we get for the Hattori-Stallings
rank HS(P )(g) = HS(P )(gp

n

);
(ii) Let P be a finitely generated projective ZG-module. Suppose for g ∈ G that

g 6= 1 and HS(P )(g) 6= 0. Then there exist subgroups C,H of G such that
g ∈ C, C ⊆ H, C is isomorphic to the additive group Q, H is finitely
generated, and the elements of C lie in finitely many H-conjugacy classes.
In particular the order of g is infinite.

More information about the Bass Conjectures can be found in [97, 124,
126, 176, 222, 322, 323, 324, 529, 635, 772, 876, 877].

2.11 The Passage from the Integral to the Rational
Group Ring

The following conjecture is taken from [657, Conjecture 85 on page 754].

Conjecture 2.102 (The rational K̃0(ZG)-to-K̃0(QG)-Conjecture). The
change of ring maps

Q⊗Z K̃0(ZG)→ Q⊗Z K̃0(QG)

is trivial.

If G satisfies the Farrell-Jones Conjecture 2.67 for K0(RG) for regu-

lar R with Q ⊆ R, then it satisfies the rational K̃0(ZG)-to-K̃0(QG)-
Conjecture 2.102, see [657, Proposition 87 on page 754].

Remark 2.103. The question whether an integral version of Conjecture 2.102
holds, i.e., whether the change of ring maps

K̃0(ZG)→ K̃0(QG)

is trivial, is discussed in [657, Remark 89 on page 756].
The answer is no in general. Counterexamples have been constructed by

Lehner [610], who actually carefully analyzes the image of the map K̃0(ZG)→
K̃0(QG). The group G = QD32 ∗Q16 QD32 is a counterexample, where QD32

is the quasi-dihedral group of order 32, and Q16 is the generalized quaternion
group of order 16, see [610, Theorem 1.5].



2.12 Survey on Computations of K0(RG) for Finite Groups 57

2.12 Survey on Computations of K0(RG) for Finite
Groups

In this section we give a brief survey about computations of K0(RG) for
finite groups G and certain rings R. The upshot will be that the reduced
projective class group K̃0(ZG) is a finite abelian group, but in most cases
it is non-trivial and unknown, and that for F a field of characteristic zero
K0(FG) is a well-known finitely generated free abelian group.

The following result is due to Swan [919, Theorem 8.1 and Proposition 9.1].

Theorem 2.104 (K̃0(RG) is finite for finite G and R the ring of in-
tegers in an algebraic number field). Let G be a finite group. Let R be
the ring of algebraic integers in an algebraic number field, e.g., R = Z. Then
K̃0(RG) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally
proved by Rim [836].

Theorem 2.105 (Rim’s Theorem). Let p be a prime number. The ho-
momorphism induced by the ring homomorphism Z[Z/p] → Z[exp(2πi/p)]
sending the generator of Z/p to the primitive p-th root of unity exp(2πi/p)

K0(Z[Z/p])
∼=−→ K0(Z[exp(2πi/p)])

is a bijection.

Example 2.106 (K̃0(Z[Z/p])). Let p be a prime. We have already mentioned
in Remark 2.23 that Z[exp(2πi/p)] is the ring of integers in the algebraic num-
ber field Q[exp(2πi/p)] and hence a Dedekind domain and that the structure
of its ideal class group C(Z[exp(2πi/p)]) is only known for a few primes. Thus
the message of Rim’s Theorem 2.105 is that we know the structure of the fi-
nite abelian group K̃0(Z[Z/p]) only for a few primes. Here is a table taken
from [712, page 30] or [971, Tables §3 on page 352ff].

p K̃0(Z[Z/p])
≤ 19 {0}
23 Z/3
29 Z/2⊕ Z/2⊕ Z/2
31 Z/9
37 Z/37
41 Z/11⊕ Z/11
43 Z/211
47 Z/5⊕ Z/139

Remark 2.107 (Strategy to study K̃0(ZG) for finite G). A Z-order Λ
is a Z-algebra that is finitely generated projective over Z. Its locally free class
group is defined as the subgroup of K0(Λ)
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Cl(Λ) :=
{

[P ]− [Q] | P(p)
∼=Λ(p)

Q(p) for all primes p
}

(2.108)

where (p) denotes localization at the prime p. This is the part of K0(Λ) that
can be described by localization sequences. Its significance for Λ = ZG lies
in the result of Swan [919], see also Curtis-Reiner [257, Theorem 32.11 on

page 676] and [258, (49.12 on page 221], that K̃0(ZG) ∼= Cl(ZG) for every
finite group G. Now fix a maximal Z-order ZG ⊆M ⊆ QG. Such a maximal
order has better ring properties than ZG, namely, it is a hereditary ring.
The map i∗ : Cl(ZG) → Cl(M) induced by the inclusion i : ZG → M is
surjective. Define

D(ZG) = ker (i∗ : Cl(ZG)→ Cl(M)) .(2.109)

The definition of D(ZG) is known to be independent of the choice of the

maximal orderM. Thus the study of K̃0(ZG) splits into the study of D(ZG)
and Cl(M). The analysis of Cl(M) can be intractable and involves study-
ing cyclotomic fields, whereas the analysis of D(ZG) essentially uses p-adic
logarithms.

Remark 2.110 (Finiteness obstructions and D(ZG)). Often calcula-
tions concerning finiteness obstructions are done by first showning that its
image in Cl(M) = K̃0(ZG)/D(ZG) is trivial, and then determining it in
D(ZG). For instance, Mislin [724] proved that the finiteness obstruction for
every finitely dominated homologically nilpotent space with the finite group
G as fundamental group lies in D(ZG), but that not every element in D(ZG)
occurs this way. Questions concerning the Spherical Space Form Problem in-
volve direct computations in D(ZG), see for instance Bentzen [115], Bentzen-
Madsen [116], and Milgram [704]. The group D(ZG) enters also in the work
of Oliver on actions of finite groups on disks, see [754, 755].

For computations of D(ZG) for finite p-groups we refer to Oliver [757, 758]
and Oliver-Taylor [761].

A survey on D(ZG) and the methods of its computations can be found in
Oliver [759].

Theorem 2.111 (Vanishing results for D(ZG)).

(i) Let G be a finite abelian group G. Then D(ZG) = 0 holds if and only if G
satisfies one of the conditions:

(a) G has prime order;
(b) G is cyclic of order 4, 6, 8, 9, 10, 14;
(c) G is Z/2× Z/2;

(ii) If G is a finite group that is not abelian and satisfies D(ZG) = 0, then it
is Dn for n ≥ 6, or A4, A5 or S4;

(iii) One has D(ZG) = 0 if G is A4, A5 or S4;
(iv) D(ZDn) = 0 for n < 120 and D(ZD120) = Z/2;
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(v) D(ZDn) = 0 if n satisfies one of the following conditions:

(a) n/2 is an odd prime;
(b) n/2 is a power of a regular odd prime;
(c) n/2 is a power of 2.

Proof. (i) This is proved by Cassou-Nogués [206], see also [258, Theo-
rem 50.16 on page 253].

(ii) This is proved in Endo-Hironaka [325], see also [258, Theorem 50.29 on
page 266].

(iii) This follows from Reiner-Ulom [833], see also [258, Theorem 50.29 on
page 266].

(iv) This is proved in Endo-Miyata [326], see [258, Theorem 50.30 on
page 266].

(v) See [258, Theorem 50.29 on page 266]. ut

Theorem 2.112 (Finite groups with vanishing K̃0(ZG)).

(i) Let G be a finite abelian group G. Then K̃0(ZG) = 0 holds If and only if
G satisfies one of the conditions:

(a) G is cyclic of order n for 1 ≤ n ≤ 11;
(b) G is cyclic of order 13, 14, 17, 19;
(c) G is Z/2× Z/2;

(ii) If G is a non-abelian finite group with K̃0(ZG) = 0, then G is Dn for
n ≥ 6 or A4, A5 or S4;

(iii) We have K̃0(ZG) = 0 for G = A4, S4, D6, D8, D12.

Proof. (i) This is proved by Cassou-Nogués [206], see also [258, Corol-
lary 50.17 on page 253].

(ii) This follows from Theorem 2.111 (ii).

(iii) The cases G = A4, S4, D6, D8 are already treated in [832, Theorem 6.4
and Theorem 8.2]. Because of Theorem 2.111 (iii) it suffices to show for the
maximal order M for the groups G = A4, S4, D6, D8, D12 that Cl(M) = 0.
This follows from the fact that QG is a products of matrix algebras over Q
and hence the maximal Z-order M is a products of matrix rings over Z. ut

Exercise 2.113. Determine all finite groups G of order ≤ 9 for which
K̃0(ZG) is non-trivial.

Theorem 2.114 (K0(RG) for finite G and an Artinian ring R). Let
R be an Artinian ring. Let G be a finite group. Then RG is also an Ar-
tinian ring. There are only finitely many isomorphism classes [P1], [P2], . . .,
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[Pn] of irreducible finitely generated projective RG-modules, and we obtain
an isomorphism of abelian groups

Zn
∼=−→ K0(RG), (k1, k2, . . . kn) 7→

n∑
i=1

ki · [Pi].

Proof. This follows from [257, Proposition 16.7 on page 406 and the paragraph
after Corollary 6.22 on page 132]. ut

Let F be a field of characteristic zero or a prime number p not dividing
|G|. Then K0(FG) is the same as the representation ring RF (G) of G with
coefficients in the field F since the ring FG is semisimple i.e., every submod-
ule of a module is a direct summand. If F is a field of characteristic zero,
then representations are detected by their characters, see Lemma 2.88. For
more information about modules over FG for a finite group G and a field F
we refer for instance to Curtis-Reiner [257, Chapter 1 and Chapter 2] and
Serre [892].

Exercise 2.115. Compute K0(FD8) for F = Q, R and C.

2.13 Survey on Computations of K0(C
∗
r (G)) and

K0(N (G))

Let G be a group. Let B(L2(G)) denote the bounded linear operators on
the Hilbert space L2(G) whose orthonormal basis is G. The reduced group
C∗-algebra C∗r (G) is the closure in the norm topology of the image of the
regular representation CG → B(L2(G)) that sends an element u ∈ CG to
the (left) G-equivariant bounded operator L2(G) → L2(G) given by right
multiplication with u. The group von Neumann algebra N (G) is the closure
in the weak topology. There is an identification N (G) = B(L2(G))G. One has
natural inclusions

CG ⊆ C∗r (G) ⊆ N (G) ⊆ B(L2(G)).

We have CG = C∗r (G) = N (G) if and only if G is finite. If G = Z, then the
Fourier transform gives identifications C∗r (Z) = C(S1) and N (Z) = L∞(S1).

Remark 2.116 (K0(C∗r (G)) versus K0(CG)). We will later see that the
study of K0(C∗r (G)) is not done by its algebraic nature. Instead we will in-
troduce and analyze the topological K-theory of C∗r (G) and explain that
in dimension 0 the algebraic and the topological K-theory of C∗r (G) agree.
In order to explain the different flavour of K0(C∗r (G)) in comparison with
K0(CG), we mention the conclusion of the Baum-Connes Conjecture for tor-
sionfree groups 10.44 that for torsionfree G there exists an isomorphism
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n≥0

H2n(BG;Q)
∼=−→ K0(C∗r (G))⊗Z Q.

The space BG is the classifying space of the group G, which is up to homotopy
characterized by the property that it is a CW -complex with π1(BG) ∼= G
whose universal covering is contractible. We denote by H∗(X,R) the singu-
lar or cellular homology of a space or CW -complex X with coefficient in a
commutative ring R. We can identify H∗(BG;R) with the group homology
of G with coefficients in R.

We see that K0(C∗r (G)) can be huge also for torsionfree groups, whereas
K0(CG) ∼= Z for torsionfree G is a conclusion of the Farrell-Jones Conjec-
ture 2.60 for K0(R) for torsionfree G and regular R. We see already here a
homological behavior of K0(C∗r (G)), which is not yet evident in the case of
group rings so far and will become clear later.

Remark 2.117 (K0(N (G))). The projective class group K0(A) can be com-
puted for any von Neumann algebraA using the center-valued universal trace,
see for instance [635, Section 9.2]. In particular one gets for a finitely gen-
erated group G that does not contain Zn as subgroup of finite index an
isomorphism

K0(N (G)) ∼= Z(N (G))Z/2.

Here Z(N (G)) is the center of the group von Neumann algebra and the Z/2-
action comes from taking the adjoint of an operator in B(L2(G)), see [635,
Example 9.34 on page 353]. If G is a finitely generated group that does not
contain Zn as subgroup of finite index and for which the conjugacy class (g)
of an element g different from the unit is always infinite, then Z(N (G)) = C
and one obtains an isomorphism

K0(N (G)) ∼= R.

A pleasant feature of N (G) is that there is no difference between stably
isomorphic and isomorphic in the sense that for three finitely generated pro-
jective N (G)-modules P0, P1 and Q we have P0 ⊕ Q ∼=N (G) P1 ⊕ Q if and
only if P0

∼=N (G) P1.
We see that in the case of the group von Neumann algebra we can com-

pute K0(N (G)) completely, but the answer does not show any homological
behavior in G. In fact, the Farrell-Jones Conjecture and the Baum-Connes
Conjecture have no analogues for group von Neumann algebras.

Exercise 2.118. Let G be an torsionfree hyperbolic group that is not cyclic.
Prove K0(N (G)) ∼= R.

Remark 2.119 (Change of rings homomorphisms for K̃0 for ZG →
CG→ C∗r (G)→ N (G)). We summarize what is conjectured or known about
the string of change of rings homomorphism

K̃0(ZG)
i1−→ K̃0(CG)

i2−→ K̃0(C∗r (G))
i3−→ K̃0(N (G))
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coming from the various inclusion of rings. The first map i1 is conjectured
to be rationally trivial, see [657, Conjecture 85 on page 754], but is not
integrally trivial, see [610, Theorem 5.1]. The second map i2 is conjectured
to be rationally injective, compare [634, Theorem 0.5], but is not surjective in
general. The map i3 is in general not injective, not surjective, and not trivial.
It is known that the composite i3 ◦ i2 ◦ i1 is trivial, see for instance [635,
Theorem 9.62 on page 362]..

2.14 Notes

Algebraic K-theory is compatible with direct limits as explained for the pro-
jective class group next. A directed set I is a non-empty set with a partial
ordering ≤ such that for two elements i0 and i1 there exists an element i with
i0 ≤ i and i1 ≤ i. A directed system of rings is a set of rings {Ri | i ∈ I}
indexed by a directed set I together with a choice of a ring homomorphism
φi,j : Ri → Rj for i, j ∈ I with i ≤ j such that φi,k = φj,k ◦ φi,j holds for
i, j, k ∈ I with i ≤ j ≤ k and φi,i = id holds for i ∈ I. The colimit, sometimes
also called direct limit, of {Ri | i ∈ I} is a ring denoted by colimi∈I Ri to-
gether with ring homomorphisms ψj : Ri → colimi∈I Ri for every j ∈ I such
that ψj ◦ φi,j = ψi holds for i, j ∈ I with i ≤ j and the following universal
property is satisfied: For every ring S and every system of ring homomor-
phisms {µi : Ri → S | i ∈ I} such that µj ◦ φi,j = µi holds for i, j ∈ I
with i ≤ j, there is precisely one ring homomorphism µ : colimi∈I Ri → S
satisfying µ ◦ ψi = µi for every i ∈ I. If we replace ring by group or module
respectively everywhere, we get the notion of directed system and direct limit
of groups or modules respectively. This is a special case of the direct limit
of a functor, namely, consider I as category with the set I as objects and
precisely one morphism from i to j if i ≤ j, and no other morphisms.

Remark 2.120 (Filtered categories). One consider instead of a directed
set a filtered category , i.e, a nonempty category I such that for every two
objects i and j there is an object k together with two morphisms i→ k and
j → k and for two morphism f, g : i → j with the same source and target
there is a morphism h : j → k with hj ◦ f = h ◦ k, and all the results about
colimits over a directed sets stay true if one considers colimits over filtered
categories. Then one talks about filtered systems instead of filtered sets.

Let {Ri | i ∈ I} be a direct system of rings. For every i ∈ I, we obtain
a change of rings homomorphism (ψi)∗ : K0(Ri) → K0(R). The universal
property of the direct limit yields a homomorphism

colimi∈I(ψi)∗ : colimi∈I K0(Ri)
∼=−→ K0(R),(2.121)

which turns out to be an isomorphism, see [844, Theorem 1.2.5].
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We denote by R× the group of units in R. A ring R is called local if the
set I := R −R× forms a (left) ideal. If I is a left ideal, it is automatically a
two-sided ideal and it is maximal both as a left ideal and as a right ideal. A
ring R is local if and only if it has a unique maximal left ideal and a unique
maximal right ideal and these two coincide. An example of a local ring is
the ring of formal power series F [[t]] with coefficients in a field F . If R is a
commutative ring and I is a prime ideal, then the localization RI of R at I
is a local ring.

Theorem 2.122 (K0(R) of local rings). Let R be a local ring. Then every
finitely generated projective R-module is free and K0(R) is infinite cyclic with
[R] as generator.

Proof. See for instance [712, Lemma 1.2 on page 5] or [844, Theorem 1.3.11
on page 14]. ut

Its proof is based on Nakayama’s Lemma which says for a ring R and a
finitely generated R-module M that rad(R)M = M ⇐⇒M = 0 holds. Here
rad(R) is the radical, or Jacobson radical, i.e., the two sided ideal that is given
by the intersection of all maximal left ideals, or, equivalently, of all maximal
right ideals of R. The radical is the same as the set of elements r ∈ R for
which there exists s ∈ S such that 1− rs has a left inverse in R.

If R is a commutative ring and spec(R) is its spectrum consisting of its
prime ideals and equipped with the Zariski topology, then we obtain for
every finitely generated projective R-module P a continuous rank function
Spec(R)→ Z by sending a prime ideal I to the rank of the finitely generated
free RI -module PI = P ⊗R RI . This makes sense because of Theorem 2.122
since RI is local. If R is a commutative integral domain, this rank function
is constant. For more details we refer for instance to [844, Proposition 1.3.12
on page 15].

Exercise 2.123. Prove for an integer n ≥ 1 that K0(Z/n) is the free abelian
group whose rank is the number of prime numbers dividing n.

A ring is called semilocal ifR/ rad(R) is Artinian, or, equivalently,R/ rad(R)
is semisimple. If R is commutative, then R is semilocal if and only if it has
only finitely many maximal ideas, see [899, page 69]. For a semilocal ring R,
the projective class group K0(R) is a finitely generated free abelian group,
see [899, Proposition 14 on page 28]. More information about semilocal rings
can be found for instance in [594, § 20].

Lemma 2.124. For any ring R and nilpotent two-sided ideal I ⊆ R, the map
K0(R)→ K0(R/I) induced by the projection R→ R/I is bijective.

Proof. See [979, Lemma 2.2 in Section II.2 on page 70]. ut

Given two groups G1 and G2, let G1∗G2 by the amalgamated free product.
Then the natural maps Gk → G0 ∗ G1 for k = 1, 2 induce an isomorphism,
see [405, Theorem 1.1],
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K̃0(Z[G1])⊕ K̃0(Z[G1]) ∼= K̃0(Z[G1 ∗G2]).(2.125)

This is a first glimpse of a homological behavior of K0 if one compares this
with the corresponding isomorphism of group homology

H̃n(G1)⊕ H̃n(G1) ∼= H̃n(G1 ∗G2).

Exercise 2.126. Show that the projections prk : G1 ×G2 → Gk for k = 1, 2
do not in general induce isomorphisms

K̃0(Z[G1 ×G2])→ K̃0(Z[G1])× K̃0(Z[G2]).

There are also equivariant versions of the finiteness obstructions, see for
instance [32], [627], and [629, Chapter 3 and 11]. Finiteness obstructions for
categories are investigated in [376, 375].
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Chapter 3

The Whitehead Group

3.1 Introduction

This chapter is devoted to the first K-group K1(R) of a ring R and the
Whitehead group Wh(G) of a group G.

We give two equivalent definitions of K1(R), namely, as the universal de-
terminant and in terms of invertible matrices. We explain some elementary
calculations of K1(R) for rings with Euclidian algorithm, local rings, and
rings of integers in algebraic number fields.

We introduce the Whitehead group of a group and the Whitehead torsion
of a homotopy equivalence of finite CW -complexes algebraically and geo-
metrically. The relevance of these notions are illustrated by the s-Cobordism
Theorem and its applications to the classification of manifolds and by the
classification of lens spaces by Reidemeister torsion.

The next topic is the Bass-Heller-Swan decomposition and the long exact
sequence associated to a pullback of rings and to a two-sided ideal. These are
important tools for computations and relate K0(R) and K1(R).

We discuss Swan homomorphisms and free homotopy representations.
Thus we provide a link between torsion invariants and finite obstructions.

We explain the variant of the Farrell-Jones Conjecture that for a torsion-
free group G the reduced projective class group K̃0(ZG) and the Whitehead
group Wh(G) vanish. It implies that any h-cobordism with torsionfree fun-
damental group and dimension ≥ 6 is trivial.

Finally, we give a survey of computations of K1(ZG) for finite groups G
and of the algebraic K1-group of commutative Banach algebras, commutative
C∗-algebras, and of some group von Neumann algebras.

3.2 Definition and Basic Properties of K1(R)

Definition 3.1 (K1-group K1(R)). Let R be a ring. Define the K1-group of
a ring K1(R) to be the abelian group whose generators are conjugacy classes
[f ] of automorphisms f : P → P of finitely generated projective R-modules
with the following relations:

• Additivity
Given a commutative diagram of finitely generated projective R-modules

65
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0 // P1
i //

f1

��

P2
p //

f2

��

P3
//

f3

��

0

0 // P1
i // P2

p // P3
// 0

with exact rows and automorphisms as vertical arrows, we get

[f1] + [f3] = [f2];

• Composition formula
Given automorphisms f, g : P → P of a finitely generated projective R-
module P , we get

[g ◦ f ] = [f ] + [g].

Define G1(R) analogously but replacing finitely generated projective by
finitely generated everywhere.

Given a ring homomorphism f : R → S, we obtain a change of rings ho-
momorphism

f∗ = K1(f) : K1(R)→ K1(S), [g : P → P ] 7→ [f∗g : f∗P → f∗P ](3.2)

analogously as we have defined it for the projective class group in (2.2). Thus
K1 becomes a covariant functor from the category of rings to the category of
abelian groups.

Exercise 3.3. Show that K1(R) = 0 holds for the ring R appearing in Ex-
ample 2.17.

Remark 3.4 (The universal property of K1(R)). One should view
K1(R) together with the assignment sending an automorphism f : P → P of
a finitely generated projective R-module P to its class [f ] ∈ K1(R) as the
universal determinant. Namely, for any abelian group A and assignment a
that sends the automorphism f of a finitely generated projective R-module
to a(f) ∈ A such that (A, a) satisfies additivity and the composition for-
mula appearing in Definition 3.1, there exists precisely one homomorphism
of abelian groups φ : K1(R) → A such that φ([f ]) = a(f) holds for every
automorphism f of a finitely generated projective R-module.

We always have the following map of abelian groups

i : R×/[R×, R×] → K1(R), [x] 7→ [rx : R→ R](3.5)

where rx right multiplication is with x. It is neither injective nor surjective
in general. However, we have

Theorem 3.6 (K1(F ) of skew-fields). The map i defined in (3.5) is an
isomorphism if R is a skew-field or, more generally, a local ring. It is surjec-
tive (with an explicitly described kernel) if R is a semilocal ring.
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Proof. See for instance [899, Corollary 43 on page 133], [844, Corollary 2.2.6
on page 69], and [899, Proposition 53 on page 140]. ut

Exercise 3.7. Let H be the skew-field of quaternions {a + bi + cj + dk |
a, b, c, d ∈ R}. Since H is a 4-dimensional vector space, there is an embed-
ding GLn(H)→ GL4n(R). Its composite with the determinant over R yields
a homomorphism µn : GLn(H) → R>0 to the multiplicative group of posi-
tive real numbers. Show that the system of homomorphisms µn induces an
isomorphism

µ : K1(H)
∼=−→ R>0.

The proof of the next two results is analogous to the one of Theorem 2.10
and Lemma 2.12.

Theorem 3.8 (Morita equivalence for K1(R)). For every ring R and
integer n ≥ 1, there is natural isomorphism

µ : K1(R)
∼=−→ K1(Mn(R)).

Lemma 3.9. Let R0 and R1 be rings. Denote by pri : R0 × R1 → Ri for
i = 0, 1 the projection. Then we obtain an isomorphism

(pr0)∗ × (pr1)∗ : K1(R0 ×R1)
∼=−→ K1(R0)×K1(R1).

Lemma 3.10. Define the abelian group Kf
1 (R) analogous to K1(R) but with

finitely generated projective replaced by finitely generated free everywhere.
Then the canonical homomorphism

α : Kf
1 (R)

∼=−→ K1(R), [f ] 7→ [f ]

is an isomorphism.

Proof. Given an automorphism f : P → P of a finitely generated projective
R-module P , we can choose a finitely generated projective R-module Q, a

finitely generated free R-module F and an R-isomorphism φ : P ⊕ Q
∼=−→ F .

We obtain an automorphism φ◦ (f ⊕ idQ)◦φ−1 : F → F and thus an element

[φ ◦ (f ⊕ idQ) ◦φ−1] ∈ Kf
1 (R). One easily checks that it is independent of the

choice of Q and φ and then that it depends only on [f ] ∈ K1(R). Thus we

obtain a homomorphism of abelian groups β : K1(R) → Kf
1 (R). One easily

checks that α and β are inverse to one another. ut

Next we give a matrix description of K1(R). Denote by En(i, j) for n ≥ 1
and 1 ≤ i, j ≤ n the (n, n)-matrix whose entry at (i, j) is one and is zero
elsewhere. Denote by In the identity matrix of size n. An elementary (n, n)-
matrix is a matrix of the form In + r · En(i, j) for n ≥ 1, 1 ≤ i, j ≤ n, i 6= j
and r ∈ R. Let A be an (n, n)-matrix. The matrix B = A · (In+r ·En(i, j)) is
obtained from A by adding the i-th column multiplied with r from the right
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to the j-th column. The matrix C = (In + r · En(i, j)) · A is obtained from
A by adding the j-th row multiplied with r from the left to the i-th row. Let
E(R) ⊂ GL(R) be the subgroup generated by all elements in GL(R) that are
represented by elementary matrices.

Lemma 3.11. The subgroup E(R) of GL(R) coincides with the commutator
subgroup [GL(R),GL(R)].

Proof. For n ≥ 3, pairwise distinct numbers 1 ≤ i, j, k ≤ n, and r ∈ R, we
can write In + r · En(i, k) as a commutator in GLn(R), namely,

In + r · En(i, k)

= (In+r ·En(i, j)) · (In+En(j, k)) · (In+r ·En(i, j))−1 · (In+En(j, k))−1.

This implies E(R) ⊂ [GL(R),GL(R)].
Let A and B be two elements in GLn(R). Let [A] and [B] be the elements

in GL(R) represented by A and B. Given two elements x and y in GL(R),
we write x ∼ y if there are elements e1 and e2 in E(R) with x = e1ye2, in
other words, if the classes of x and y in E(R)\GL(R)/E(R) agree. One easily
checks

[AB] ∼
[(

AB 0
0 In

)]
∼
[(

AB A
0 In

)]
∼
[(

0 A
−B In

)]
∼
[(

0 A
−B 0

)]
since each step is given by multiplication from the right or left with a block

matrix of the form

(
In 0
C In

)
or

(
In C
0 In

)
and such a block matrix is obviously

obtained from I2n by a sequence of column and row operations and hence its
class in GL(R) belongs to E(R). Analogously we get

[BA] ∼
[(

0 B
−A 0

)]
.

Since the element in GL(R) represented by

(
0 −In
In 0

)
belongs to E(R), we

conclude [(
0 A
−B 0

)]
∼
[(

A 0
0 B

)]
∼
[(

0 B
−A 0

)]
.

and hence
[AB] ∼ [BA].

This implies for any element x ∈ GL(R) and e ∈ E(R) that xex−1 ∼ ex−1x =
e and hence xex−1 ∈ E(R). Therefore E(R) is normal. Given a commutator
xyx−1y−1 for x, y ∈ GL(R), we conclude for appropriate elements e1, e2, e3

in E(R)

xyx−1y−1 = e1yxe2x
−1y−1 = e1(yx)e2(yx)−1 = e1e3 ∈ E(R).
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ut

Theorem 3.12 (K1(R) equals GL(R)/[GL(R),GL(R)]). There is a natu-
ral isomorphism

GL(R)/[GL(R),GL(R)]
∼=−→ K1(R).

Proof. Because of Lemma 3.10 it suffices to construct to one another inverse
homomorphisms of abelian groups α : GL(R)/[GL(R),GL(R)]→ Kf

1 (R) and

β : Kf
1 (R) → GL(R)/[GL(R),GL(R)]. The map α sends the class [A] of

A ∈ GLn(R) to the class [rA] of rA : Rn → Rn. This is a well-defined homo-
morphism of abelian groups since [rAB ] = [rA]+[rB ], [rA⊕I1 ] = [rA] holds for
all n ∈ Z, n ≥ 1 and A,B ∈ GLn(R), and K1(R) is abelian. The map β sends
the class [f ] of an automorphism f of a finitely generated free R-module F
to the class [A(f,B)] of the invertible (n, n)-matrix A(f,B) associated to
f after a choice of some R-basis B for F . This class is independent of the
choice of B since for another choice of a bases B′ there exists U ∈ GLn(R)
with UA(f,B)U−1 = A(f,B′), which implies [A(f,B′)] = [UA(f,B)U−1] =
[U ][A(f,B)][U ]−1 = [U ][U ]−1[A(f,B)] = [A(f,B)]. Thus we have defined β
on generators. It remains to check the relations. Obviously the composition
formula is satisfied. Additivity is satisfied because of the following calculation
in GL(R)/[GL(R),GL(R)] for A ∈ GLm(R), B ∈ GLn(R) and C ∈Mm,n(R)
based on Lemma 3.11[(

A 0
B C

)]
=

[(
A 0
0 In

)
·
(
Im 0
0 C

)
·
(

Im 0
C−1B In

)]
=

[(
A 0
0 In

)]
·
[(

Im 0
0 C

)]
·
[(

Im 0
C−1B In

)]
= [A] · [C] · [Im+n] = [A] · [C].

One easily checks that α and β are inverse to one another. ut

Remark 3.13 (What K1(R) measures). We conclude from Lemma 3.11
and Theorem 3.12 that two matrices A ∈ GLm(R) and B ∈ GLn(R) represent
the same class in K1(R) if and only if B can be obtained from A by a sequence
of the following operations:

(i) Elementary row operation
B is obtained from A by adding the k-th row multiplied with r from the
left to the l-th row for r ∈ R and k 6= l;

(ii) Elementary column operation
B is obtained from A by adding the k-th column multiplied with r from
the right to the l-th row for r ∈ R and k 6= l;

(iii) Stabilization
B is obtained by taking the direct sum of A and I1, i.e., B looks like the

block matrix

(
A 0
0 1

)
;
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(iv) Destabilization
A is the direct sum of B and I1. (This is the inverse operation to (iii).)

Since multiplication from the left or right with an elementary matrix cor-
responds to the operation (i) or the operation (ii), the abelian group K1(R)
is trivial if and only if any invertible matrix A ∈ GLn(R) can be reduced by
a sequence of the operations above to the empty matrix.

One could delete the operation (i) or the operation (ii) from the list above
without changing the conclusion. This follows from the fact that E(R) is a
normal subgroup of GL(R).

The elementary proof of the next lemma is left to the reader.

Lemma 3.14. Let R be a commutative ring. Then the determinant defines
a homomorphism of abelian groups

det : K1(R)→ R×, [f ] 7→ det(f).

It satisfies det ◦i = idR× for the map i defined in (3.5). In particular the map
det is surjective.

Definition 3.15 (SK1(R) of a commutative ring R). Let R be a com-
mutative ring. Define

SK1(R) := ker
(
det : K1(R)→ R×

)
.

We will see in Section 3.12 that there are commutative group rings ZG for
which the surjective map det : K1(ZG) → ZG× is not injective, or, equiva-
lently, with non-trivial SK1(ZG). Here is another example.

Example 3.16. The following example is taken from [100, Example 4.4], see
also [844, Exercise 2.3.11 on page 82]. Let Λ be obtained from the polynomial
ring R[x, y] by dividing out the ideal generated by x2 + y2 − 1. This is a
Dedekind domain. The matrix

M :=

(
x y
−y x

)
∈ SL2(Λ)

represents a non-trivial element in SK1(Λ). The proof uses Mennicke symbols
and is based on the observation that the function

S1 → SLn(R), (x, y) 7→

 x y 0
−y x 0
0 0 In−2


represents a non-trivial element in π1(SLn(R)) ∼= π1(SO(n)) ∼= Z/2 for n ≥ 3.

Theorem 3.17 (K1(R) = R× for commutative rings with Euclidean
algorithm). Let R be a commutative ring with Euclidean algorithm in the
sense of [844, 2.3.1 on page 74], for instance a field or Z.
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Then the determinant induces an isomorphism

det : K1(R)
∼=−→ R×.

Proof. Because of Lemma 3.14 it suffices to show for A ∈ GLn(R) with
det(A) = 1 that it can be reduced to the empty matrix by a sequence of
operations appearing in Remark 3.13. But this is a well-known result of ele-
mentary algebra, see for instance [844, Theorem 2.3.2 on page 74]. ut

Exercise 3.18. Prove K1(Z[i]) ∼= {1,−1, i,−i} ∼= Z/4.

Remark 3.19 (K1(R) of principal ideal domains). There exists principal
ideal domains R such that det : K1(R) → R× is not bijective. For instance
Grayson [418] gives such an example, namely, take Z[x] and invert x and all
polynomials of the shape xm − 1 for m ≥ 1. Other examples can be found in
Ischebeck [500].

Theorem 3.20 (Vanishing of SK1 of ring of integers in an algebraic
number field). Let R be the ring of integers in an algebraic number field.
Then the determinant induces an isomorphism

det : K1(R)
∼=−→ R×.

Proof. See [100, page 77] or [712, Corollary 16.3 on page 159]. ut

The proof of the next classical result can be found for instance in [843,
Theorem 2.3.8 on page 79].

Theorem 3.21 (Dirichlet Unit Theorem). Let R be the ring of integers
in an algebraic number field F . Let r1 be the number of distinct embeddings
of F into R and let r2 be the number of distinct conjugate pairs of embeddings
of F into C with image not contained in R. Then:

(i) r1 + 2r2 is the degree [F : Q] of the extension Q ⊆ F ;
(ii) The abelian group R× is finitely generated:

(iii) The torsion subgroup of R× is the finite cyclic group of roots of unity in
F ;

(iv) The rank of R× is r1 + r2 − 1.

Exercise 3.22. Let R be the ring of integers in an algebraic number field F .
Then K1(R) is finite if and only if F is Q or an imaginary quadratic field.

3.3 Whitehead Group and Whitehead Torsion

In this section we will assign to a homotopy equivalence f : X → Y of fi-
nite CW -complexes its Whitehead torsion τ(f) in the Whitehead group
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Wh(π(Y )) associated to Y . A basic feature is that the Whitehead tor-
sion can distinguish manifolds or spaces that are homotopy equivalent. The
notion of Whitehead torsion goes back to the papers by J.H.C. White-
head [988, 989, 990].

The reduced K1-group K̃1(R) is defined to be the cokernel of the map
K1(Z) → K1(R) induced by the unique ring homomorphism Z → R. The
homomorphism det : K1(Z) → {±1} is a bijection, because Z is a ring with

Euclidean algorithm, see Theorem 3.17. Hence K̃1(R) is the same as the
quotient of K1(R) by the cyclic subgroup of at most order two generated by
the class of the (1, 1)-matrix (−1).

Definition 3.23 (Whitehead group). Define the Whitehead group Wh(G)
of a group G to be the cokernel of the map G× {±1} → K1(ZG) that sends
(g,±1) to the class of the invertible (1, 1)-matrix (±g).

Obviously a group homomorphism u : G → H induces a homomorphism
of abelian groups

(3.24) u∗ = Wh(u) : Wh(G)→Wh(H).

Exercise 3.25. Using the ring homomorphism f : Z[Z/5]→ C that sends the
generator of Z/5 to exp(2πi/5) and the norm of a complex number, define a
homomorphism of abelian groups

φ : Wh(Z/5)→ R>0.

Show that 1−t−t−1 is a unit in Z[Z/5] whose class in Wh(Z/5) is an element
of infinite order. (Actually Wh(Z/5) is an infinite cyclic group with this class
as generator).

For a ring R and a group G we denote by

A0 = K0(i) : K0(R)→ K0(RG)(3.26)

the map induced by the inclusion i : R→ RG. Sending (g, [P ]) ∈ G×K0(R) to
the class of the RG-automorphism R[G]⊗RP → R[G]⊗RP, u⊗x 7→ ug−1⊗x
defines a map Φ : G/[G,G]⊗Z K0(R)→ K1(RG). Define a homomorphism

A1 := Φ⊕K1(i) : (G/[G,G]⊗Z K0(R))⊕K1(R)→ K1(RG).(3.27)

Definition 3.28 (Generalized Whitehead group). For a regular ring R
and a group G we define the generalized Whitehead group WhR1 (G) as the
cokernel of the map A1. Denote by WhR0 (G) the cokernel of the map A0.

Note that the abelian group WhZ
1 (G) of Definition 3.28 agrees with the

abelian group Wh(G) of Definition 3.23.
Next we will define torsion invariants on the level of chain complexes.
We begin with some input about chain complexes. Let f∗ : C∗ → D∗ be a

chain map of R-chain complexes for some ring R. Define cyl∗(f∗) to be the
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chain complex with n-th differential

Cn−1 ⊕ Cn ⊕Dn


−cn−1 0 0
− id cn 0
fn−1 0 dn


−−−−−−−−−−−−−→ Cn−2 ⊕ Cn−1 ⊕Dn−1.

Define cone∗(f∗) to be the quotient of cyl∗(f∗) by the obvious copy of C∗.
Hence the n-th differential of cone∗(f∗) is

Cn−1 ⊕Dn

−cn−1 0
fn−1 dn


−−−−−−−−−−→ Cn−2 ⊕Dn−1.

Given a chain complex C∗, define ΣC∗ to be the quotient of cone∗(idC∗) by
the obvious copy of C∗, i.e., the chain complex with n-th differential

Cn−1
−cn−1−−−−→ Cn−2.

Definition 3.29 (Mapping cylinder and mapping cone). For a chain
map f∗ : C∗ → D∗, we call cyl∗(f∗) the mapping cylinder and cone∗(f∗) the
mapping cone. For a chain complex C∗, we call ΣC∗ the suspension.

These algebraic notions of mapping cylinder, mapping cone, and suspen-
sion are modelled on their geometric counterparts. Namely, the cellular chain
complex of a mapping cylinder of a cellular map f of CW -complexes is the
mapping cylinder of the chain map induced by f . As suggested already
from the geometric picture, there exists obvious exact sequences such as
0→ C∗ → cyl∗(f∗)→ cone∗(f∗)→ 0 and 0→ D∗ → cone∗(f∗)→ ΣC∗ → 0.

A chain contraction γ∗ for an R-chain complex C∗ is a collection of R-
homomorphisms γn : Cn → Cn+1 for n ∈ Z satisfying cn+1 ◦ γn + γn−1 ◦ cn =
idCn for all n ∈ Z. We call a finite free R-chain complex based free if each R-
chain module Cn comes with a preferred (finite ordered) basis. Suppose that
C∗ is a finite based free R-chain complex which is contractible, i.e., which
possesses a chain contraction. Put Codd = ⊕n∈ZC2n+1 and Cev = ⊕n∈ZC2n.
Let γ∗ and δ∗ be two chain contractions. Define R-homomorphisms

(c∗ + γ∗)odd : Codd → Cev;(3.30)

(c∗ + δ∗)ev : Cev → Codd.(3.31)

Let A be the matrix of (c∗ + γ∗)odd with respect to the given bases. Let B
be the matrix of (c∗+ δ∗)ev with respect to the given bases. We define µn :=
(γn+1 − δn+1) ◦ δn and νn := (δn+1 − γn+1) ◦ γn. One easily checks that the
endomorphisms (id +µ∗)odd, (id +ν∗)ev, (c∗+γ∗)odd◦(id +µ∗)odd◦(c∗+δ∗)ev,
and (c∗+δ∗)ev◦(id +ν∗)ev◦(c∗+γ∗)odd are given by upper triangular matrices
whose diagonal entries are identity maps. Hence A and B are invertible and
their classes [A], [B] ∈ K̃1(R) satisfy [A] = −[B]. Since [B] is independent of
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the choice of γ∗, the same is true for [A]. Thus we can associate to a finite
based free contractible R-chain complex C∗ an element

τ(C∗) := [A] ∈ K̃1(R).(3.32)

Let f∗ : C∗ → D∗ be a homotopy equivalence of finite based free R-chain
complexes. Its mapping cone cone(f∗) is a contractible finite based free R-
chain complex. Define the Whitehead torsion of f∗ by

τ(f∗) := τ(cone∗(f∗)) ∈ K̃1(R).(3.33)

Now we can pass to CW -complexes. Let f : X → Y be a cellular homo-
topy equivalence of connected finite CW -complexes. Let pX : X̃ → X and
pY : Ỹ → Y be the universal coverings. Identify π1(Y ) with π1(X) using the
isomorphism induced by f . (We ignore base point questions here and in the
sequel. This can be done since an inner automorphisms of a group G induces
the identity on K1(ZG) and hence also on Wh(G).) There is a lift f̃ : X̃ → Ỹ
which is π1(Y )-equivariant. It induces a Zπ1(Y )-chain homotopy equivalence

C∗(f̃) : C∗(X̃)→ C∗(Ỹ ). The CW -structure defines a basis for each Zπ1(Y )-

chain module Cn(X̃) and Cn(Ỹ ) which is unique up to multiplying each basis
element with a unit of the form ±g ∈ Zπ1(Y ) and permuting the elements
of the basis. Pick such a cellular basis for each chain module. We can ap-
ply (3.33) to it and thus obtain an element in K̃1(Zπ1(Y )). Its image under

the projection K̃1(Zπ1(Y ))→Wh(π1(Y )) is denoted by

τ(f) ∈Wh(π1(Y )).(3.34)

Since we consider τ(f) in Wh(π1(Y )), the choice of the cellular basis does
not matter anymore.

Given a (not necessarily cellular) homotopy equivalence of connected fi-
nite CW -complexes f : X → Y , we can defines its Whitehead torsion τ(f)
as follows. We can choose by the Cellular Approximation Theorem a cellular
map f ′ : X → Y that is homotopic to f , and define the Whitehead torsion
τ(f) by τ(f ′). Since the Whitehead torsion of two cellular maps which are ho-
motopic and hence even cellularly homotopic by the Cellular Approximation
Theorem, agrees, this is independent of the choice of f ′.

If f : X → Y is a homotopy equivalence of finite CW -complexes, then
define Wh(π1(Y )) :=

⊕
C∈π0(Y ) Wh(π1(C)) and τ(f) ∈ Wh(π1(Y )) by the

collection of the Whitehead torsions of the homotopy equivalences induce
between path components. Obviously a map g : Y1 → Y2 induces a homo-
morphism of abelian groups g∗ : Wh(π1(Y1)) → Wh(π1(Y2)) by the homo-
morphisms between the various fundamental groups of the path components
induced by g.

Definition 3.35 (Whitehead torsion). We call τ(f) the (algebraic) White-
head torsion of the homotopy equivalence f : X → Y of finite CW -complexes.
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Exercise 3.36. Let 0 → C∗
i∗−→ D∗

p∗−→ E∗ → 0 be an exact sequence of
projective R-chain complexes. Suppose that E∗ is contractible. Construct an
R-chain map s∗ : E∗ → D∗ such that p∗ ◦ s∗ = idE∗ . Show that i∗⊕ s∗ : C∗⊕
E∗ → D∗ is an isomorphism of R-chain complexes. Give a counterexample
to the conclusion if one drops the condition that E∗ is contractible.

The basic properties of this invariant are summarized in the following
theorem whose proof can be found for instance in [233, (22.1), (22.4), (23.1),
and (23.2)], [652, Chapter 3] or [633, Chapter 2].

Theorem 3.37 (Basic properties of Whitehead torsion).

(i) Sum formula

Let the following two diagrams be pushouts of finite CW -complexes

X0
i1 //

i2

��

X1

j1

��
X2

j2
// X

Y0
k1 //

k2

��

Y1

l1

��
Y2

l2

// Y

where the left vertical arrows are inclusions of CW -complexes, the upper
horizontal maps are cellular, and X and Y are equipped with the induced
CW -structure. Let fi : Xi → Yi be homotopy equivalences for i = 0, 1, 2
satisfying f1 ◦ i1 = k1 ◦ f0 and f2 ◦ i2 = k2 ◦ f0. Put l0 = l1 ◦ k1 = l2 ◦ k2.
Denote by f : X → Y the map induced by f0, f1, and f2 and the pushout
property.
Then f is a homotopy equivalence and

τ(f) = (l1)∗τ(f1) + (l2)∗τ(f2)− (l0)∗τ(f0);

(ii) Homotopy invariance

Let f ' g : X → Y be homotopic maps of finite CW -complexes. Then the
homomorphisms f∗, g∗ : Wh(π1(X)) → Wh(π1(Y )) agree. If additionally
f and g are homotopy equivalences, then we obtain

τ(g) = τ(f);

(iii) Composition formula

Let f : X → Y and g : Y → Z be homotopy equivalences of finite CW -
complexes. Then we get

τ(g ◦ f) = g∗τ(f) + τ(g);

(iv) Product formula

Let f : X ′ → X and g : Y ′ → Y be homotopy equivalences of connected
finite CW -complexes. Then
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τ(f × g) = χ(X) · j∗τ(g) + χ(Y ) · i∗τ(f)

where χ(X), χ(Y ) ∈ Z denote the Euler characteristics, j∗ : Wh(π1(Y ))→
Wh(π1(X × Y )) is the homomorphism induced by j : Y → X × Y, y 7→
(y, x0) for some base point x0 ∈ X and i∗ is defined analogously.

Let X be a finite simplicial complex. Let X ′ be its barycentric subdivision.
Then one can show τ(f) = 0 for the map f : X → X ′ whose underlying
map of spaces is the identity. However, if X1 and X2 are two finite CW -
complexes with the same underlying space, it is not at all clear that τ(f) =
0 holds for the map f : X1 → X2 whose underlying map of spaces is the
identity. This problem is solved by the following (in comparison with the
other statements above much deeper) result due to Chapman [215], [216], see
also [233, Appendix] and [785, Section 5].

Theorem 3.38 (Topological invariance of Whitehead torsion). The
Whitehead torsion of a homeomorphism f : X → Y of finite CW -complexes
vanishes.

3.4 Geometric Interpretation of Whitehead Group and
Whitehead Torsion

In this section we introduce the concept of a simple homotopy equivalence
f : X → Y of finite CW -complexes geometrically. We will show that the
obstruction for a homotopy equivalence f : X → Y of finite CW -complexes
to be simple is the Whitehead torsion.

We have the inclusion of spaces Sn−2 ⊂ Sn−1
+ ⊂ Sn−1 ⊂ Dn where Sn−1

+ ⊂
Sn−1 is the upper hemisphere. The pair (Dn, Sn−1

+ ) carries an obvious relative

CW -structure. Namely, attach an (n− 1)-cell to Sn−1
+ by the attaching map

id: Sn−2 → Sn−2 to obtain Sn−1. Then we attach to Sn−1 an n-cell by the
attaching map id: Sn−1 → Sn−1 to obtain Dn. Let X be a CW -complex. Let
q : Sn−1

+ → X be a map satisfying q(Sn−2) ⊂ Xn−2 and q(Sn−1
+ ) ⊂ Xn−1.

Let Y be the space Dn ∪q X, i.e., the pushout

Sn−1
+

q //

i

��

X

j

��
Dn

g
// Y

where i is the inclusion. Then Y inherits a CW -structure by putting Yk =
j(Xk) for k ≤ n − 2, Yn−1 = j(Xn−1) ∪ g(Sn−1) and Yk = j(Xk) ∪ g(Dn)
for k ≥ n. Note that Y is obtained from X by attaching one (n − 1)-cell
and one n-cell. Since the map i : Sn−1

+ → Dn is a homotopy equivalence and
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cofibration, the map j : X → Y is a homotopy equivalence and a cofibration.
We call j an elementary expansion and say that Y is obtained from X by an
elementary expansion. There is a map r : Y → X with r ◦ j = idX . This map
is unique up to homotopy relative j(X). We call any such map an elementary
collapse and say that X is obtained from Y by an elementary collapse.

Definition 3.39 (Simple homotopy equivalence). Let f : X → Y be a
map of finite CW -complexes. We call it a simple homotopy equivalence if
there is a sequence of maps

X = X[0]
f0−→ X[1]

f1−→ X[2]
f2−→ · · · fn−1−−−→ X[n] = Y

such that each fi is an elementary expansion or elementary collapse and f is
homotopic to the composition of the maps fi.

Remark 3.40 (Combinatorial meaning of simple homotopy equiva-
lence). The idea of the definition of a simple homotopy equivalence is that
such a map can be written as a composition of elementary maps, namely,
elementary expansions and collapses, which are obviously homotopy equiva-
lences and in some sense the smallest and most elementary steps to pass from
one finite CW -complex to another without changing the homotopy type. If
one works with simplicial complexes, an elementary map has a purely com-
binatorial description. An elementary collapse means to delete a simplex and
one of its faces that is not shared by another simplex. So one can describe the
passage from one finite simplicial complex to another coming from a simple
homotopy equivalence by finitely many combinatorial data. This does not
work for two finite simplicial complexes that are homotopy equivalent but
not simple homotopy equivalent.

This approach is similar to the idea in knot theory that two knots are
equivalent if one can pass from one knot to the other by a sequence of elemen-
tary moves, the so-called Reidemeister moves. A Reidemeister move obviously
does not change the equivalence class of a knot and, indeed, it turns out that
one can pass from one knot to a second knot by a sequence of Reidemeister
moves if and only if the two knots are equivalent, see for instance [174, Chap-
ter 1] or [970]. The analogous statement is not true for homotopy equivalences
f : X → Y of finite CW -complexes because there is an obstruction for f to
be simple, namely, its Whitehead torsion.

Exercise 3.41. Consider the simplicial complex X with four vertices v0, v1,
v2, and v3, the edges {v0, v1}, {v1, v2}, {v0, v2} and {v2, v3} and one 2-simplex
{v0, v1, v2}. Describe a sequence of elementary collapses and expansions trans-
forming it to the one-point-space {•}.

Recall that the mapping cylinder cyl(f) of a map f : X → Y is defined by
the pushout
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X × {0}
f //

��

Y

��
X × [0, 1] // cyl(f).

There are natural inclusions iX : X = X ×{1} → cyl(f) and iY : Y → cyl(f)
and a natural projection p : cyl(f) → Y . Note that iX is a cofibration and
p ◦ iX = f and pY ◦ iY = idY . Define the mapping cone cone(f) by the
quotient cyl(f)/iX(X).

Lemma 3.42. Let f : X → Y be a cellular map of finite CW -complexes and
A ⊂ X be a CW -subcomplex. Then the inclusion cyl(f |A) → cyl(f) and (in
the case A = ∅) iY : Y → cyl(f) is a composition of elementary expansions
and hence a simple homotopy equivalence.

Proof. It suffices to treat the case where X is obtained from A by attaching an
n-cell by an attaching map q : Sn−1 → X. Then there is an obvious pushout

Sn−1 × [0, 1] ∪Sn−1×{0} D
n × {0} //

��

cyl(f |A)

��
Dn × [0, 1] // cyl(f)

and an obvious homeomorphism

(Dn × [0, 1], Sn−1 × [0, 1] ∪Sn−1×{0} D
n × {0})→ (Dn+1, Sn+).

ut

Lemma 3.43. A map f : X → Y of finite CW -complexes is a simple ho-
motopy equivalence if and only if iX : X → cyl(f) is a simple homotopy
equivalence.

Proof. This follows from Lemma 3.42 since a composition of simple homotopy
equivalence and a homotopy inverse of a simple homotopy equivalence is again
a simple homotopy equivalence. ut

We only sketch the proof of the next result. More details can be found for
instance in [233, (22.2)] or [633, Chapter 2]. However, we try to give enough
information about its proof to illustrate why the geometric problem to decide
whether a homotopy equivalence is simple, is equivalent to a question about
an invertible matrix A, which has a positive answer precisely if the class of
A vanishes in the Whitehead group. Then the key will be Remark 3.13.

Theorem 3.44 (Whitehead torsion and simple homotopy equiva-
lences).
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(i) Let X be a finite CW -complex. Then for any element x ∈ Wh(π1(X))
there is an inclusion i : X → Y of finite CW -complexes such that i is a
homotopy equivalence and i−1

∗ (τ(i)) = x;
(ii) Let f : X → Y be a homotopy equivalence of finite CW -complexes. Then

its Whitehead torsion τ(f) ∈ Wh(π1(Y )) vanishes if and only if f is a
simple homotopy equivalence.

Proof. (i) We can assume without loss of generality that X is connected.
Put π = π1(X). Choose an element A ∈ GLn(Zπ) representing x ∈ Wh(π).
Choose n ≥ 2. In the sequel we fix a zero-cell in X as base point. Put
X ′ = X ∨ ∨nj=1S

n. Let bj ∈ πn(X ′) be the element represented by the
inclusion of the j-th copy of Sn into X ′ for j = 1, 2 . . . , n. Recall that πn(X ′)
is a Zπ-module. Choose for i = 1, 2 . . . , n a map fi : S

n → X ′n such that
[fi] =

∑n
j=1 ai,j ·bj holds in πn(X ′). Attach to X ′ for each i ∈ {1, 2 . . . , n} an

(n+1)-cell by fi : S
n → X ′n. Let Y be the resulting CW -complex and i : X →

Y be the inclusion. Then i is an inclusion of finite CW -complexes and induces
an isomorphism on the fundamental groups. In the sequel we identify π and
π1(Y ) by π1(i). The cellular Zπ-chain complex C∗(Ỹ , X̃) is concentrated in
dimensions n and (n + 1) and its (n + 1)-differential is given by the matrix

A with respect to the cellular basis. Hence C∗(Ỹ , X̃) is a contractible finite

based free Zπ-chain complex with τ(C∗(Ỹ , X̃)) = [A] in Wh(π). This implies
that i : X → Y is a homotopy equivalence with i−1

∗ (τ(i)) = x.

(ii) Suppose that f is a simple homotopy equivalence. We want to show
τ(f) = 0. Because of Theorem 3.37 (iii) it suffices to prove for an elementary
expansion j : X → Y that its Whitehead torsion τ(j) ∈Wh(Y ) vanishes. We
can assume without loss of generality that Y is connected. In the sequel we
write π = π1(Y ) and identify π = π1(X) by π1(f). The following diagram of
based free finite Zπ-chain complexes

0 // C∗(X̃)
C∗(j̃) // C∗(Ỹ )

pr∗ // C∗(Ỹ , X̃) // 0

0 // C∗(X̃)
id∗ //

id∗

OO

C∗(X̃)
pr∗ //

C∗(j̃)

OO

0 //

0∗

OO

0

has based exact rows and Zπ-chain homotopy equivalences as vertical arrows.
Elementary facts about chain complexes, in particular the conclusion from
Exercise 3.36, imply

τ
(
C∗(j̃)

)
= τ

(
id∗ : C∗(X̃)→ C∗(X̃)

)
+ τ
(
0∗ : 0→ C∗(Ỹ , X̃)

)
= 0 + τ

(
C∗(Ỹ , X̃)

)
= τ

(
C∗(Ỹ , X̃)

)
.

The Zπ-chain complex C∗(Ỹ , X̃) is concentrated in two consecutive dimen-
sions and its only non-trivial differential is id : Zπ → Zπ if we identify the two
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non-trivial Zπ-chain modules with Zπ using the cellular basis. This implies
τ(C∗(Ỹ , X̃)) = 0 and hence τ(j) := τ(C∗(j̃)) = 0.

Now suppose that τ(f) = 0. We want to show that f is simple. We can
assume without loss of generality that X is connected, otherwise treat each
path component separately. Because of Lemma 3.43 we can assume that
f is an inclusion i : X → Y of connected finite CW -complexes which is a
homotopy equivalence. We have to show that we can achieve by a sequence
of elementary collapses and expansions that Y = X, i.e., we must get rid of
all the cells in Y −X.

Since χ(X) = χ(Y ), it is clear that one cannot remove a single cell, this
always has to be done in pairs. In the first step one shows for an n-dimensional
cell en that one can attach one new (n+ 1)-cell en+1 and a new (n+ 2)-cell
en+2 by an elementary expansion and then get rid of en and en+1 by an
elementary collapse. The outcome is that one can replace an n-cell by a
(n + 2)-cell. Analogously one can show that one can replace an (n + 2)-cell
by a n-cell. Thus one can arrange for some integer n ≥ 2 that Y is obtained
from X by attaching k cells of dimension n trivially and then attaching k
cells of dimension (n+ 1). Hence the cellular Zπ-chain complex C∗(Ỹ , X̃) is
concentrated in dimension n and (n+1). After we have picked a cellular basis,
its (n+ 1)-differential is given by an invertible (k, k)-matrix A. By definition
τ(f) is the class of this matrix in Wh(π). In Remark 3.13 we have described
what τ(f) = [A] = 0 means, namely, there is a sequence of operations that
transform A to the empty matrix. Note that X = Y holds if and only if A is
the empty matrix. Now the main idea is to show that each of this operations
can be realized by elementary expansions and collapses. ut

Next we describe the Whitehead group geometrically. Fix a finite CW -
complex X. Consider two pairs of finite CW -complexes (Y,X) and (Z,X)
such that the inclusions of X into Y and Z are homotopy equivalences. We
call them equivalent if there is a chain of pairs of finite CW -complexes

(Y,X) = (Y [0], X), (Y [1], X), (Y [2], X), . . . , (Y [n], X) = (Z,X)

such that for each k ∈ {1, 2, . . . , n} either Y [k] is obtained from Y [k − 1] by
an elementary expansion or Y [k− 1] is obtained from Y [k] by an elementary
expansion. Denote by Whgeo(X) the equivalence classes [Y,X] of such pairs
(Y,X). This becomes an abelian group under the addition [Y,X] + [Z,X] :=
[Y ∪X Z,X]. The zero element is given by [X,X]. The inverse of [Y,X] is
constructed as follows. Choose a map r : Y → X with rX = id. Let p : X ×
[0, 1] → X be the projection. Then [(cyl(r) ∪p X) ∪r X,X] + [Y,X] = 0. A
map g : X → X ′ induces a homomorphism g∗ : Whgeo(X) → Whgeo(X ′) by
sending [Y,X] to [Y ∪g X ′, X ′]. We obviously have id∗ = id and (g ◦ h)∗ =
g∗ ◦h∗. In other words, we obtain a covariant functor on the category of finite
CW -complexes with values in abelian groups. More information about this
construction can be found for instance in [233, § 6 in Chapter II].
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Given a homotopy equivalence of finite CW -complexes f : X → Y , de-
fine its geometric Whitehead torsion τgeo(f) ∈ Whgeo(X) to be the class of
(cyl(f), X). Because of Lemma 3.43 we have τgeo(f) = 0 if and only f is a
simple homotopy equivalence

The next result is essentially a consequence of Theorem 3.44. Details of
its proof can be found in [233, §21].

Theorem 3.45 (Geometric and algebraic Whitehead groups).

(i) Let X be a finite CW -complex. The map

τ : Whgeo(X)→Wh(π1(X))

sending [Y,X] to i−1
∗ τ(i) for the inclusion i : X → Y is a natural isomor-

phism of abelian groups.
It sends τgeo(f) to f−1

∗ τ(f) for a homotopy equivalence f : X → Y of finite
CW -complexes.

(ii) A homotopy equivalence f : X → Y is a simple homotopy equivalence if
and only if τ(f) ∈Wh(Y ) vanishes.

Exercise 3.46. Let Y be a simply connected finitely dominated CW -complex.
Show that there exists a finite CW -complex X and a homotopy equivalence
f : X → Y . Prove that for any two finite CW -complexes X0 and X1 and ho-
motopy equivalences fi : Xi → Y for i = 0, 1 there exists a simple homotopy
equivalence g : X0 → X1 with f1 ◦ g ' f0.

3.5 The s-Cobordism Theorem

One of the main applications of Whitehead torsion is the theorem below.

Theorem 3.47 (s-Cobordism Theorem). Let M0 be a connected closed
manifold of dimension n ≥ 5 with fundamental group π = π1(M0). Then:

(i) Let (W ;M0, f0,M1, f1) be an h-cobordism over M0. Then W is trivial over
M0 if and only if its Whitehead torsion τ(W,M0) ∈Wh(π) vanishes;

(ii) For any x ∈ Wh(π) there is an h-cobordism (W ;M0, f0,M1, f1) over M0

with τ(W,M0) = x ∈Wh(π);
(iii) The function assigning to an h-cobordism (W ;M0, f0,M1, f1) over M0 its

Whitehead torsion yields a bijection from the diffeomorphism classes rela-
tive M0 of h-cobordisms over M0 to the Whitehead group Wh(π).

Here are some explanations. An n-dimensional cobordism (sometimes also
called just bordism) (W ;M0, f0,M1, f1) consists of a compact n-dimensio-
nal manifold W , closed (n − 1)-dimensional manifolds M0 and M1, a dis-
joint decomposition ∂W = ∂0W

∐
∂1W of the boundary ∂W of W , and
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diffeomorphisms f0 : M0 → ∂W0 and f1 : M1 → ∂W1. If we want to spec-
ify M0, we say that W is a cobordism over M0. If f0 and f1 are obvi-
ous from the context, we briefly write (W ; ∂0W,∂1W ). We call a cobor-
dism (W ;M0, f0,M1, f1) an h-cobordism, if the inclusions ∂iW → W for
i = 0, 1 are homotopy equivalences. Two cobordisms (W ;M0, f0,M1, f1) and
(W ′;M0, f

′
0,M

′
1, f
′
1) over M0 are diffeomorphic relative M0 if there is a dif-

feomorphism F : W → W ′ with F ◦ f0 = f ′0. We call an h-cobordism over
M0 trivial if it is diffeomorphic relative M0 = M0 × {0} to the trivial h-
cobordism (M0 × [0, 1];M0 × {0}, (M0 × {1})). Note that the choice of the
diffeomorphisms fi do play a role although they are often suppressed in the
notation.

The Whitehead torsion of an h-cobordism (W ;M0, f0,M1, f1) over M0

τ(W,M0) ∈Wh(π1(M0))(3.48)

is defined to be the preimage of the Whitehead torsion, see Definition 3.35,

τ
(
M0

f0−→ ∂0W
i0−→W

)
∈Wh(π1(W ))

under the isomorphism (i0 ◦ f0)∗ : Wh(π1(M0))
∼=−→ Wh(π1(W )) where the

map i0 : ∂0W → W is the inclusion. Here we use the fact that each smooth
closed manifold has a CW -structure, which comes for instance from a smooth
triangulation, or that each closed topological manifold of dimension different
from 4 has a CW -structure, which comes from a handlebody decomposition,
and that the choice of CW -structure does not matter by the topological
invariance of the Whitehead torsion, see Theorem 3.38.

The idea of the proof of Theorem 3.47 is analogous to the one of Theo-
rem 3.44, but now one uses a handlebody decomposition instead of a CW -
structure and carries out the manipulation for handlebodies instead of cells.
Here a handlebody of index k corresponds to a k-dimensional cell. More de-
tails can be found for instance in [652, Chapter 2].

The h-Cobordism Theorem 3.50 is due to Smale [903]. The s-Cobordism
Theorem 3.47 is due to Barden, Mazur, Stallings, see [65, 696]. In the PL
category proofs can be found in [861, 6.19 on page 88]. Its topological ver-
sion follows from Kirby and Siebenmann [562, Conclusion 7.4 on page 320].
More information about the s-Cobordism Theorem can be found for instance
in [558], [710], [861, page 87-90]. The s-Cobordism Theorem is known to
be false for dim(M0) = 4 in general, by the work of Donaldson [298], but
it is true for n = dim(M0) = 4 for good fundamental groups in the to-
pological category by results of Quinn and Freedman [112, 386, 387, 388].
Counterexamples in the case dim(M0) = 3 are constructed by Matsumoto
and Siebenmann [695] and Cappell and Shaneson [194] where the relevant
4-dimensional s-cobordism is a topological manifold. It is not known whether
one can choose the s-cobordism to be smooth in these counterexamples. It
follows from Kwasik and Schultz [581] and Perelman’s proof of the Thurston
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Geometrization Conjecture, see [563, 734], that every h-cobordism between
two orientable closed 3-manifolds is an s-cobordism.

Exercise 3.49. Show for n ≥ 6 that there exists an n-dimensional h-
cobordism (W ;M0,M1) which is not trivial such that the h-cobordism
(W × S3;M0 × S3,M1 × S3) is trivial.

Since the Whitehead group of the trivial group vanishes, see Theorem 3.17,
the s-Cobordism Theorem 3.47 implies, see also [710],

Theorem 3.50 (h-Cobordism Theorem). Let M0 be a simply connected
closed n-dimensional manifold with dim(M0) ≥ 5. Then every h-cobordism
(W ;M0, f0,M1, f1) over M0 is trivial.

Theorem 3.51 (Poincaré Conjecture). The Poincaré Conjecture is true
for a closed n-dimensional manifold M with dim(M) ≥ 5, namely, if M is
simply connected and its homology Hp(M) is isomorphic to Hp(S

n) for all
p ∈ Z, then M is homeomorphic to Sn.

Proof. We only give the proof for dim(M) ≥ 6. Since M is simply connected
and H∗(M) ∼= H∗(S

n), one can conclude from the Hurewicz Theorem and
Whitehead Theorem [987, Theorem IV.7.13 on page 181 and Theorem IV.7.17
on page 182] that there is a homotopy equivalence f : M → Sn. Let Dn

i ⊂M
for i = 0, 1 be two embedded disjoint disks. Let W be obtained from M by
removing the interior of the two disks Dn

0 and Dn
1 . Then W turns out to be a

simply connected h-cobordism. Hence we can find because of Theorem 3.50 a
homeomorphism F : (∂Dn

0 × [0, 1], ∂Dn
0 × {0}, ∂Dn

0 × {1})→ (W,∂Dn
0 , ∂D

n
1 )

that is the identity on ∂Dn
0 = ∂Dn

0 × {0} and induces some (unknown)
homeomorphism f1 : ∂Dn

0 × {1} → ∂Dn
1 . By the Alexander trick one can

extend f1 : ∂Dn
0 = ∂Dn

0 × {1} → ∂Dn
1 to a homeomorphism f1 : Dn

0 → Dn
1 .

Namely, any homeomorphism f : Sn−1 → Sn−1 extends to a homeomorphism
f : Dn → Dn by sending t · x for t ∈ [0, 1] and x ∈ Sn−1 to t · f(x). Now
define a homeomorphism h : Dn

0 × {0} ∪i0 ∂Dn
0 × [0, 1] ∪i1 Dn

0 × {1} → M
for the canonical inclusions ik : ∂Dn

0 × {k} → ∂Dn
0 × [0, 1] for k = 0, 1 by

h|Dn0×{0} = id, h|∂Dn0×[0,1] = F and h|Dn0×{1} = f1. Since the source of h is
obviously homeomorphic to Sn, Theorem 3.51 follows.

In the case dim(M) = 5 one uses the fact that M is the boundary of a
contractible 6-dimensional manifold W and applies Theorem 3.50 to W with
an embedded disc removed. ut

The Poincaré Conjecture, see Theorem 3.51, is known in all dimensions,
where dimension 3 is due to the work of Perelman, see [563, 733, 734, 787,
788, 789], and dimension 4 is due to Freedman, see [112, 386, 387, 388]. The
first poof of the Poincaré Conjecture in the topological category in dimension
≥ 5 was given by Newman [741] using engulfing theory. The smooth version
of the Poincaré Conjecture holds in dimensions ≤ 3, is open in dimension
4, and is discussed in dimensions ≥ 5 for instance in [652, Remark 12.26 on
page 455].
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Remark 3.52 (Exotic Spheres). Note that the proof of the Poincaré Con-
jecture in Theorem 3.51 works only in the topological category but not in
the smooth category. In other words, we cannot conclude the existence of a
diffeomorphism h : Sn →M . The proof in the smooth case breaks down when
we apply the Alexander trick. The construction of f given by coning f yields
only a homeomorphism f and not a diffeomorphism, even if we start with
a diffeomorphism f . The map f is smooth outside the origin of Dn but not
necessarily at the origin. Indeed, not every diffeomorphism f : Sn−1 → Sn−1

can be extended to a diffeomorphism Dn → Dn and there exist so-called
exotic spheres, i.e., closed manifolds that are homeomorphic to Sn but not
diffeomorphic to Sn. The classification of these exotic spheres is one of the
early very important achievements of surgery theory and one motivation for
its further development. For more information about exotic spheres we refer
for instance to [559], [595], [612], [633, Chapter 6] and [652, Chapter 12].

Remark 3.53 (The Surgery Program). In some sense the s-Cobordism
Theorem 3.47 is one of the first theorems where diffeomorphism classes of cer-
tain manifolds are determined by an algebraic invariant, namely, the White-
head torsion. Moreover, the Whitehead group Wh(π) depends only on the
fundamental group π = π1(M0), whereas the diffeomorphism classes of h-
cobordisms over M0 a priori depend on M0 itself. The s-Cobordism Theo-
rem 3.47 is one step in a program to decide whether two closed manifolds
M and N are diffeomorphic what is in general a very hard question. The
idea is to construct an h-cobordism (W ;M,f,N, g) with vanishing White-
head torsion. Then W is diffeomorphic to the trivial h-cobordism over M
what implies that M and N are diffeomorphic. So the Surgery Program is:

(i) Construct a simple homotopy equivalence f : M → N ;
(ii) Construct a cobordism (W ;M,N) and a map (F, f, id) : (W ;M,N) →

(N × [0, 1], N × {0}, N × {1});
(iii) Modify W and F relative boundary by so-called surgery such that F be-

comes a simple homotopy equivalence and thusW becomes an h-cobordism
whose Whitehead torsion is trivial.

The advantage of this approach will be that it can be reduced to prob-
lems in homotopy theory and algebra, which can sometimes be handled by
well-known techniques. In particular one will get sometimes computable ob-
structions for two homotopy equivalent manifolds to be diffeomorphic. Often
surgery theory has proved to be very useful when one wants to distinguish
two closed manifolds which have very similar properties. The classification
of homotopy spheres is one example. Moreover, surgery techniques can be
applied to problems that are of different nature than of diffeomorphism or
homeomorphism classifications, for instance for the construction of group
actions.

More information about surgery theory will be given in Chapter 9.



3.6 Reidemeister Torsion and Lens Spaces 85

3.6 Reidemeister Torsion and Lens Spaces

In this section we briefly deal with Reidemeister torsion, which was defined
earlier than Whitehead torsion and motivated the definition of Whitehead
torsion. Reidemeister torsion was the first invariant in algebraic topology
that could distinguish between spaces which are homotopy equivalent but not
homeomorphic. Namely, it can be used to classify lens spaces up to homeo-
morphism, see Reidemeister [831]. We will give no proofs. More information
and complete proofs can be found in [233, Chapter V], [633, Section 2.4],
and [652, Section 3.5].

Let X be a finite CW -complex with fundamental group π. Let U be an
orthogonal finite dimensional π-representation. Denote by Hp(X;U) the ho-
mology of X with coefficients in U , i.e., the homology of the R-chain complex
U ⊗Zπ C∗(X̃). Suppose that X is U -acyclic, i.e., Hn(X;U) = 0 for all n ≥ 0.

If we fix a cellular basis for C∗(X̃) and some orthogonal R-basis for U , then

U ⊗Zπ C∗(X̃) is a contractible based free finite R-chain complex and yields

an element τ(U ⊗Zπ C∗(X̃)) ∈ K̃1(R), see (3.32). Define the Reidemeister
torsion

ρ(X;U) ∈ R>0(3.54)

to be the image of τ(U ⊗Zπ C∗(X̃)) ∈ K̃1(R) under the homomorphism

K̃1(R)→ R>0 sending the class [A] of A ∈ GLn(R) to |det(A)|. Note that for
any trivial unit ±γ the automorphism of U given by multiplication with ±γ is
orthogonal and that the absolute value of the determinant of any orthogonal
automorphism of U is 1. Therefore ρ(X;U) ∈ R>0 is independent of the

choice of cellular basis for C∗(X̃) and the orthogonal basis for U , and hence
is an invariant of the CW -complex X and the orthogonal representation U .

We state without proof the next result, which essential says that White-
head torsion of a homotopy equivalence is related to the difference of Reide-
meister torsion of the target and the source when defined.

Lemma 3.55. Let f : X → Y be a homotopy equivalence of connected finite
CW -complexes and let U be an orthogonal finite dimensional π = π1(Y )-
representation. Suppose that Y is U -acyclic. Let f∗U be the orthogonal
π1(X)-representation obtained from U by restriction with the isomorphism
π1(f). Let dU : Wh(π(Y )) → R>0 be the map sending the class [A] of
A ∈ GLn(Zπ1(Y )) to |det(idU ⊗ZπrA : U ⊗Zπ Zπn → U ⊗Zπ Zπn)|.

Then X is f∗U -acyclic and we get

ρ(Y ;U)

ρ(X; f∗U)
= dU (τ(f)).

Next we introduce lens spaces. Let G be a cyclic group of finite order |G|.
Let V be a unitary finite dimensional G-representation. Define its unit sphere
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SV and its unit disk DV to be the G-subspaces SV = {v ∈ V | ||v|| = 1} and
DV = {v ∈ V | ||u|| ≤ 1} of V . Note that a complex finite dimensional vector
space has a preferred orientation as real vector space, namely, the one given by
the R-basis {b1, ib1, b2, ib2, . . . , bn, ibn} for any C-basis {b1, b2, . . . , bn}. Any
C-linear automorphism of a complex finite dimensional vector space pre-
serves this orientation. Thus SV and DV are oriented compact Riemannian
manifolds with isometric orientation preserving G-action. We call a unitary
G-representation V free if the induced G-action on its unit sphere SV is free.
Then SV → G\SV is a covering and the quotient space L(V ) := G\SV
inherits from SV the structure of an oriented closed Riemannian manifold.

Definition 3.56 (Lens space). We call the closed oriented Riemannian ma-
nifold L(V ) the lens space associated to the free finite dimensional unitary
representation V of the finite cyclic group G.

Exercise 3.57. Show that the 3-dimensional real projective space RP3 is a
lens space. Let R− be the non-trivial orthogonal Z/2-representation. Show
that RP3 is R−-acyclic and compute the Reidemeister torsion ρ(RP3;R−).

One can specify these lens spaces also by numbers as follows.

Notation 3.58. Let Z/t be the cyclic group of order t ≥ 2. The 1-dimensional
unitary representation Vk for k ∈ Z/t has as underlying vector space C and
l ∈ Z/t acts on it by multiplication with exp(2πikl/t). Note that Vk is free
if and only if k ∈ (Z/t)×, and is trivial if and only if k = 0 in Z/t. Define
the lens space L(t; k1, . . . , kc) for an integer c ≥ 1 and elements k1, . . . , kc in
(Z/t)× by L(⊕ci=1Vki).

Lens spaces form a very interesting family of manifolds, which can be com-
pletely classified as we will see. Two lens spaces L(V ) and L(W ) of the same
dimension n ≥ 3 have the same homotopy groups, namely, their fundamen-
tal group is G and their p-th homotopy group is isomorphic to πp(S

n) for
p ≥ 2. They also have the same homology with integral coefficients, namely
Hp(L(V )) ∼= Z for p ∈ {0, n}, Hp(L(V )) ∼= G for p odd and 1 ≤ p < n,
and Hp(L(V )) = 0 for all other values of p. Also their cohomology groups
agree. Nevertheless not all of them are homotopy equivalent. Moreover, there
are homotopy equivalent lens spaces that are not diffeomorphic, see Exam-
ple 3.62.

We state without proof the following result.

Theorem 3.59 (Homotopy Classification of Lens Spaces). The lens
spaces L(t; k1, . . . , kc) and L(t; l1, . . . , lc) are homotopy equivalent if and only
if there are e ∈ (Z/t)× and ε ∈ {±1} satisfying

∏c
i=1 ki = ε · ec ·

∏c
i=1 li in

(Z/t)×.
The lens spaces L(t; k1, . . . , kc) and L(t; l1, . . . , lc) are oriented homotopy

equivalent if and only if there is e ∈ (Z/t)× satisfying
∏c
i=1 ki = ec ·

∏c
i=1 li

in (Z/t)×.
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Theorem 3.60 (Diffeomorphism Classification of Lens Spaces).

(i) Let G be a finite cyclic group. Let L(V ) and L(W ) be two lens spaces of
the same dimension n ≥ 3. Then the following statements are equivalent:

(a) There is an automorphism α : G → G such that V and α∗W are iso-
morphic as orthogonal G-representations;

(b) There is an isometric diffeomorphism L(V )→ L(W );
(c) There is a diffeomorphism L(V )→ L(W );
(d) There is a homeomorphism L(V )→ L(W );
(e) There is a simple homotopy equivalence L(V )→ L(W );
(f) There is an automorphism α : G→ G such that for any orthogonal finite

dimensional representation U with UG = 0

ρ(L(W );U) = ρ(L(V );α∗U)

holds;
(g) There is an automorphism α : G → G such that for any non-trivial

1-dimensional unitary G-representation U

ρ(L(W ); resU) = ρ(L(V );α∗ resU)

holds where the orthogonal representation resU is obtained from U by
restricting the scalar multiplication from C to R;

(ii) Two lens spaces L(t; k1, . . . , kc) and L(t; l1, . . . , lc) are homeomorphic if
and only if there are e ∈ (Z/t)×, signs εi ∈ {±1} and a permutation
σ ∈ Σc such that ki = εi · e · lσ(i) holds in (Z/t)× for i = 1, 2, . . . , c.

Proof. We give only a sketch of the proof of assertion (i). Assertion (ii) is a
direct consequence of assertion (i).

The implications (ia)⇒ (ib)⇒ (ic)⇒ (id) and (if)⇒ (ig) are obvious. The
implication (id)⇒ (ie) follows from Theorem 3.38. The implication (ie)⇒ (if)
follows from Lemma 3.55. The hard part of the proof is the implication (ig)
⇒ (ia). It involves proving the formula

ρ(L(V ⊕W ); resU) = ρ(L(V ); resU) · ρ(L(W ); resU)

for two free unitary G-representations V and W and then directly computing
ρ(L(V ); resU) for every free 1-dimensional unitary representation V . Finally
one has to show that the values of the Reidemeister torsion do distinguish
the unitary representations V and W up to automorphisms of G. This proof
is based on the number theoretic result mentioned below, whose proof can
be found for instance in [280] or [384]. ut

Lemma 3.61 (Franz’ independence Lemma). Let t ≥ 2 be an integer
and S = {j ∈ Z | 0 < j < t, (j, t) = 1}. Let (aj)j∈S be a sequence of
integers indexed by S such that

∑
j∈S aj = 0, aj = at−j for j ∈ S and
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j∈S(ζj − 1)aj = 1 holds for every t-th root of unity ζ 6= 1. Then aj = 0 for

j ∈ S.

Example 3.62. We conclude from Theorem 3.59 and Theorem 3.60 (ii) the
following facts:

(i) Any homotopy equivalence L(7; k1, k2) → L(7; k1, k2) has degree 1. Thus
L(7; k1, k2) possesses no orientation reversing selfdiffeomorphism;

(ii) L(5; 1, 1) and L(5; 2, 1) have the same homotopy groups, homology groups
and cohomology groups, but they are not homotopy equivalent;

(iii) L(7; 1, 1) and L(7; 2, 1) are homotopy equivalent, but not homeomorphic.

Example 3.63 (h-cobordisms between lens spaces). The rigidity of lens
spaces is illustrated by the following fact. Let (W,L,L′) be an h-cobordism
of lens spaces that is compatible with the orientations and the identifications
of π1(L) and π1(L′) with G. Then W is diffeomorphic relative L to L× [0, 1]
and L and L′ are diffeomorphic, see [711, Corollary 12.13 on page 410].

Remark 3.64 (Differential geometric characterization of lens spaces).
Lens spaces with their preferred Riemannian metric have constant positive
sectional curvature. A closed Riemannian manifold with constant positive
sectional curvature and cyclic fundamental group is isometrically diffeomor-
phic to a lens space after possibly rescaling the Riemannian metric with a
constant [999].

Remark 3.65 (de Rham’s Theorem). The results above when interpreted
as statements about unit spheres in free representations are generalized by
De Rham’s Theorem [279], see also [624, Proposition 3.2 on page 478], [630,
page 317], and [860, section 4], as follows. It says for a finite group G and
two orthogonal G-representations V and W whose unit spheres SV and
SW are G-diffeomorphic that V and W are isomorphic as orthogonal G-
representations. This remains true if one replaces G-diffeomorphic by G-
homeomorphic provided that G has odd order, see [487], [684], but not for
any finite group G, see [193, 195, 443, 445, 446].

We refer to [233],[633, Chapter 2] and [711] for more information about
Reidemeister torsion and lens spaces.

Remark 3.66 (Further appearance of Reidemeister torsion). The
Alexander polynomial of a knot can be interpreted as a kind of Reide-
meister torsion of the canonical infinite cyclic covering of the knot com-
plement, see [709], [941]. Reidemeister torsion appears naturally in surgery
theory [680]. Counterexamples to the (polyhedral) Hauptvermutung that two
homeomorphic simplicial complexes are already PL-homeomorphic are given
by Milnor [708], see also [826], and detected by Reidemeister torsion. Seiberg-
Witten invariants for 3-manifolds are closely related to torsion invariants, see
Turaev [940].
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Remark 3.67 (Analytic Reidemeister torsion). Ray-Singer [829] de-
fined the analytic counterpart of topological Reidemeister torsion using a
regularization of the zeta-function. Ray and Singer conjectured that the ana-
lytic and topological Reidemeister torsion agree. This conjecture was proved
independently by Cheeger [224] and Müller [736]. Manifolds with boundary
and manifolds with symmetries, sum (= glueing) formulas and fibration for-
mulas are treated in [168, 259, 624, 630, 666, 948]. For a survey on analytic and
topological torsion we refer for instance to [646]. There are also L2-versions
of these notions, see for instance [177, 198, 622], [635, Chapter 3], [664, 692].

3.7 The Bass-Heller-Swan Theorem for K1

In the section we want to compute K1(R[Z]) for a ring R. This computation,
the so-called Bass-Heller-Swan decomposition, marks the beginning of the
(long) way towards the final formulation of the Farrell-Jones Conjecture for
algebraic K-theory.

3.7.1 The Bass-Heller-Swan Decomposition for K1

We need some preparation to formulate it. In the sequel we write R[Z] as
the ring R[t, t−1] of finite Laurent polynomials in t with coefficients in R.
Obviously the ring R[t] of polynomials in t with coefficients in R is a subring
of R[t, t−1]. Define the ring homomorphisms

ev0 : R[t] → R,
∑
n∈Z rnt

n 7→ r0

i′ : R → R[t], r 7→ r · t0;
i : R → R[t, t−1], r 7→ r · t0.

Definition 3.68 (NKn(R)). Define for n = 0, 1

NKn(R) := ker
(
(ev0)∗ : Kn(R[t])→ Kn(R)

)
.

Example 3.69. Let F be a field. Put R = F [t]/(t2). Every element in R can
be uniquely written as a+bt for a, b ∈ F . We have (1+bt)·(1−bt) = 1−b2t2 = 1
in R. Hence the element a+bt ∈ R is a unit if and only if a 6= 0. We conclude
that R is a local ring with (t) = {bt | b ∈ F} as the unique maximal ideal.
Since R is commutative, the homomorphism

iR : R×
∼=−→ K1(R), [x] 7→ [rx : R→ R]

is bijective by Theorem 3.6. Let ev0 : R → F be the ring homomorphism
sending a + bt to a. Its kernel is (t). It induces a group homomorphism
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R[x]× → F [x]×. Since F [x]× is the multiplicative group of non-trivial poly-
nomials over F of degree 0 and (1 + tvx) · (1 − tvx) = 1 − v2t2x2 = 1 holds
in R[x] for all v ∈ F [x], we obtain an isomorphism of abelian groups

φ : R× ⊕ F [x]
∼=−→ R[x]×, (u, v) 7→ u · (1 + tvx).

Since R[x] is commutative, the map iR[x] : R[x]×
∼=−→ K1(R[x]) is injective,

a retraction is given by the determinant. We conclude that the following
composite is an injection of abelian groups

F [x]
φ|F [x]−−−−→ coker

(
R× → R[x]×

) i−→ coker (K1(R)→ K1(R[x])) ∼= NK1(R)

where i is the map induced by iR and iR[x]. This implies that NK1(R) is an
abelian group which is not finitely generated.

Example 3.69 illustrates the following fact. If R is any ring, then NK1(R)
is either trivial or infinitely generated as abelian group, see Theorem 6.20. So
in general NK1(R) is hard to compute. At least we have the following useful
results. IfR is a ring of finite characteristicN , then we getNKn(R)[1/N ] = 0
for n = 0, 1, see Theorem 6.17. If NKn(R) = 0 and G is finite, then
NKn(RG)[1/|G|] = 0 for n = 0, 1, see Theorem 6.18.

Recall that an endomorphism f : P → P of an R-module P is called
nilpotent if there exists a positive integer n with fn = 0.

Definition 3.70 (Nil-group Nil0(R)). Define the 0-th Nil-group Nil0(R) to
be the abelian group whose generators are conjugacy classes [f ] of nilpotent
endomorphisms f : P → P of finitely generated projective R-modules with
the following relation. Given a commutative diagram of finitely generated
projective R-modules

0 // P1
i //

f1

��

P2
p //

f2

��

P3
//

f3

��

0

0 // P1
i // P2

p // P3
// 0

with exact rows and nilpotent endomorphisms as vertical arrows, we get

[f1] + [f3] = [f2].

Let ι : K0(R) → Nil0(R) be the homomorphism sending the class [P ] of
a finitely generated projective R-module P to the class [0 : P → P ] of the
trivial endomorphism of P .

Definition 3.71 (Reduced Nil-group Ñil0(R)). Define the reduced 0-th

Nil-groups Ñil0(R) to be the cokernel of the map ι.
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The homomorphism Nil0(R)→ K0(R), [f : P → P ] 7→ [P ] is a retraction
of the map ι. So we get a natural splitting

Nil0(R)
∼=−→ Ñil0(R)⊕K0(R).

Denote by
j : NK1(R)→ K1(R[t])

the inclusion. Let
l± : R[t]→ R[t, t−1]

be the inclusion of rings sending t to t±1. Define

j± := K1(l±) ◦ j : NK1(R)→ K1(R[t, t−1]).

The homomorphism
B : K0(R)→ K1(R[t, t−1])

sends the class [P ] of a finitely generated projective R-module P to the
class [rt ⊗R idP ] of the R[t, t−1]-automorphism rt ⊗R idP : R[t, t−1]⊗R P →
R[t, t−1]⊗R P that maps u⊗ p to ut⊗ p. The homomorphism

N ′ : Nil0(R)→ K1(R[t])

sends the class [f ] of the nilpotent endomorphism f : P → P of the finitely
generated projective R-module P to the class [id−rt ⊗R f ] of the R[t]-
automorphism

id−rt ⊗R f : R[t]⊗R P → R[t]⊗R P, u⊗ p 7→ u⊗ p− ut⊗ f(p).

This is indeed an automorphism. Namely, if fn+1 = 0, then an inverse is given
by
∑n
k=0 (rt ⊗R f)

k
. The composite of N ′ with both (ev0)∗ : K1(R[t]) →

K1(R) and ι : K0(R)→ Nil0(R) is trivial. Hence N ′ induces a homomorphism

N : Ñil0(R)→ NK1(R).

The proof of the following theorem can be found for instance in [99] (for
regular rings), [96, Chapter XII], [844, Theorem 3.2.22 on page 149] and [979,
3.6 in Section III.3 on page 205].

Theorem 3.72 (Bass-Heller-Swan decomposition for K1). The fol-
lowing maps are isomorphisms of abelian groups, natural in R,

N : Ñil0(R)
∼=−→ NK1(R);

j ⊕K1(i′) : NK1(R)⊕K1(R)
∼=−→ K1(R[t]);

B ⊕K1(i)⊕ j+ ⊕ j− : K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R)
∼=−→ K1(R[t, t−1]).
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One easily checks that Theorem 3.72 applied to R = ZG implies the fol-
lowing reduced version

Theorem 3.73 (Bass-Heller-Swan decomposition for Wh(G×Z)). Let
G be a group. Then there is an isomorphism of abelian groups, natural in G

B⊕Wh(i)⊕j+⊕j− : K̃0(ZG)⊕Wh(G)⊕NK1(ZG)⊕NK1(ZG)
∼=−→Wh(G×Z).

Example 3.74 (K̃0(ZG) affects Wh(G)). The Whitehead group Wh(Sn) of

the symmetric group Sn is trivial, see Theorem 3.116 (iii), whereas K̃0(Z[Sn])
is a finite non-trivial group for n ≥ 5, see Theorem 2.112 (ii). In the sequel
we let n ≥ 5. We conclude from Theorem 3.73 that Wh(Sn×Z) is non-trivial
for n ≥ 5, whereas the obvious map

colimH∈SubFIN (Sn×Z) Wh(H)→Wh(Sn × Z)

is the zero map and hence not surjective. Also the map

colimH∈SubFIN (G)K1(ZH)→ K1(Z[Sn × Z])

cannot be surjective. Hence there is no hope that a formula, which computes
Kn(RG) in terms of the values Kn(RH) for all finite or all virtually cyclic
subgroups H of G, (such as appearing in Conjecture 2.67), is true in general.
The general picture will be that a computation of a K or L-group of RG
in dimension n does involve K- and L-groups of RH in all dimensions ≤ n
where H runs through all virtually cyclic subgroups of G.

Denote by
k± : R→ R[t±1]

the ring homomorphism sending r to r · t0. Obviously τ± ◦ k± = i. Define a
map

C : K1(R[t, t−1])→ K0(R)

by sending the class [f ] of anR[t, t−1]-automorphism f : R[t, t−1]n → R[t, t−1]n

to the element [P (f, l)]− l · [R] where l is a large enough positive integer and
P (f, l) is the finitely generated projective R-module f(tl−1 · R[t−1]) ∩ R[t].
We omit the proof that P (f, l) is a finitely generated projective R-module for
large enough l, that the class [P (f, l)]− l · [R] is independent of l and depends
only on [f ], and that the map C is a well-defined homomorphism of abelian
groups.

Theorem 3.75 (Fundamental Theorem of K-theory in dimension 1).
There is a sequence which is natural in R and exact

0→ K1(R)
K1(k+)⊕−K1(k−)−−−−−−−−−−−−→ K1(R[t])⊕K1(R[t−1])

K1(l+)∗⊕K1(l−)−−−−−−−−−−−→ K1(R[t, t−1])
C−→ K0(R)→ 0
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where k+, k−, l+, and l− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contrac-

tion, natural in R.

Proof. One checks C ◦ B = idK0(R) and C ◦ i∗ = C ◦ j− = C ◦ j+ = 0. Now
apply Theorem 3.72. ut

3.7.2 The Grothendieck Decomposition for G0 and G1

There is also a G-theory version of the Bass-Heller-Swan decomposition,
which is due to Grothendieck. Its proof can be found in [99] or [844, Theo-
rem 3.2.12 on page 141, Theorem 3.2.16 on page 143 and Theorem 3.2.19 on
page 147].

Theorem 3.76 (Grothendieck decomposition for G0 and G1). Let R
be a Noetherian ring.

(i) The inclusions R→ R[t] and R→ R[t, t−1] induce isomorphisms of abelian
groups

G0(R)
∼=−→ G0(R[t]);

G0(R)
∼=−→ G0(R[t, t−1]);

(ii) There are natural isomorphism

i′∗ : G1(R)
∼=−→ G1(R[t]);

B ⊕ i∗ : G0(R)⊕G1(R)
∼=−→ G1(R[t, t−1]),

where i′∗, B, and i∗ are defined analogously to the maps appearing in The-
orem 3.72.

Exercise 3.77. Show that the map Z
∼=−→ G0(R[Zn]) sending n to n · [R[Zn]]

is an isomorphism for a principal ideal domain R and n ≥ 0.

3.7.3 Regular Rings

Theorem 3.78 (Hilbert Basis Theorem). If R is Noetherian, then R[t]
and R[t, t−1] are Noetherian.

Proof. See for instance [844, Theorem 3.2.1 on page 133 and Corollary 3.2.2
on page 134]. ut
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Let (P ) be a property of groups, e.g., being finite or being cyclic. A group
G is called virtually (P) if G contains a subgroup H ⊂ G of finite index such
that H has property (P). A group G is poly-(P) if there is a finite sequence of
subgroups {1} = G0 ⊂ G1 ⊂ G2 ⊂ . . . Gr = G such that Gi is normal in Gi+1

and the quotient Gi+1/Gi has property (P) for i = 0, 1, 2, . . . , r−1. Thus the
notions of virtually finitely generated abelian, virtually free, virtually nilpotent,
poly-cyclic, poly-Z, and virtually poly-cyclic are defined, where poly-Z stands
of poly-(infinite cyclic).

Theorem 3.79 (Noetherian group rings). If R is a Noetherian ring and
G is a virtually poly-cyclic group, then RG is Noetherian.

Proof. See for instance [635, Lemma 10.55 on page 397]. ut

No counterexample is known to the conjecture that CG is Noetherian if
and only if G is virtually poly-cyclic.

Theorem 3.80 (Regular group rings).

(i) The rings R[t] and R[t, t−1] are regular if R is regular;
(ii) The ring RG is regular if R is regular and G is poly-Z;

(iii) The ring RG is regular if R is regular, Q ⊆ R and G is virtually poly-
cyclic;

Proof. (i) This is proved for instance in [844, Theorem 3.2.3 on page 134 and
Corollary 3.2.4 on page 136].

(ii) This is follows from [864, Theorem 8.2.2 on page 533 and Theorem 8.2.18
on page 537] in the case where R is a field.

(iii) This is follows from [864, Theorem 8.2.2 on page 533 and Theorem8.2.20
on page 538] in the case where R is a field. ut

A ring is called semihereditary, if every finitely generated ideal is projec-
tive, or, equivalently, if every finitely generated submodule of a projective
R-module is projective, see [203, Proposition 6.2 in Chapter I.6 on page 15].

Theorem 3.81 (Bass-Heller-Swan decomposition for K1 for regular
rings). Suppose that R is semihereditary or regular. Then we get

Ñil0(R) = NK1(R) = 0,

and the Bass-Heller-Swan decomposition of Theorem 3.72 reduces to the iso-
morphism

B ⊕ i∗ : K0(R)⊕K1(R)
∼=−→ K1(R[t, t−1]).

Proof. The proof for regular R can be found for instance in [844, Exer-
cise 3.2.25 on page 152] or [922, Corollary 16.5 on page 226].



3.7 The Bass-Heller-Swan Theorem for K1 95

Suppose that R is semihereditary. Consider a nilpotent endomorphism
f : P → P of the finitely generated projective R-module P . Define I1(f) =
im(f) and K1(f) = ker(f). Let f |I1(f) : I1(f)→ I1(f) be the endomorphism
induced by f . Since R is semihereditary, I1(f) is a finitely generated projec-
tive R-module. We obtain a commutative diagram

0 // K1(f)
i //

0

��

P
f //

f

��

I1(f) //

f |I1(f)

��

0

0 // K1(f)
i // P

f // I1(f) // 0

with exact rows and nilpotent endomorphisms of finitely generated projective
R-modules as vertical arrows. Hence we get [f : P → P ] = [I1(f) : I1(f)→
I1(f)] in Ñil0(R). Define inductively In+1(f) = I1

(
f |In(f)

)
. Hence we get for

all n ≥ 1
[f : P → P ] = [f |In(f) : In(f)→ In(f)].

Since f is nilpotent, there exists some n with In(f) = 0. This implies [f ] = 0

in Ñil0(R). Now apply Theorem 3.72. ut

Exercise 3.82. Prove that K̃0(Z[Zn]) = Wh(Zn) = 0 for all n ≥ 0.

Remark 3.83 (Glimpse of a homological behavior of K-theory). In
the case that R is regular, Theorem 3.81 shades some homological flavour on
K-theory. Just observe the analogy between the two formulas

K1(R[Z]) ∼= K0(R[{1}])⊕K1(R[{1}]);
H1(Z;A) ∼= H0({1};A)⊕H1({1};A),

where in the second line we consider group homology with coefficients in some
abelian group A, which corresponds to the role of R in the first line.

Remark 3.84 (Von Neumann algebras are semihereditary but not
Noetherian). Note that any von Neumann algebra is semihereditary. This
follows from the facts that any von Neumann algebra is a Baer ∗-ring and
hence in particular a Rickart C∗-algebra [117, Definition 1, Definition 2 and
Proposition 9 in Chapter 1.4] and that a C∗-algebra is semihereditary if and
only if it is Rickart [34, Corollary 3.7 on page 270]. The group von Neumann
algebra N (G) is Noetherian if and only if G is finite, see [635, Exercise 9.11
on page 367].

Lemma 3.85. If R is regular, then the canonical homomorphism

f : K0(R)
∼=−→ G0(R), [P ] 7→ [P ]

is a bijection.
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Proof. We have to define an inverse homomorphism

r : G0(R)→ K0(R).

Given a finitely generated R-module M , we can choose a finite projective
resolution P∗ = (P∗, φ) since R is by assumption regular. We want to define

r([M ]) :=
∑
n≥0

(−1)n · [Pn].

The Fundamental Lemma of Homological Algebra implies for two projective
resolutions P∗ and Q∗ of M the existence of an R-chain homotopy equivalence
f∗ : P∗ → Q∗, see for instance [978, Comparison Theorem 2.2.6 on page 35].
We conclude from Lemma 2.36 (i)∑

n≥0

(−1)n · [Pn] = o(P∗) = o(Q∗) =
∑
n≥0

(−1)n · [Qn].

Hence the choice of projective resolution does not matter in the definition
of r([M ]). It remains to show for an exact sequence of finitely generated R-
modules 0 → M → M ′ → M ′′ → 0 that r(M) − r(M ′) + r(M ′′) = 0 holds.
This follows from Lemma 2.36 (ii) since we can construct from finite pro-
jective R-resolutions P∗ of M and P ′′∗ of M ′′ a finite projective R-resolution
P ′∗ of M ′ such that there exists a short exact sequence of R-chain complexes
0 → P∗ → P ′∗ → P ′′∗ → 0, see [629, Lemma 11.6 on page 216]. Hence r is
well-defined. One easily checks that r and f are inverse to one another. ut

3.8 The Mayer-Vietoris K-Theory Sequence of a
Pullback of Rings

Theorem 3.86 (Mayer-Vietoris sequence for middle K-theory of a
pullback of rings). Consider a pullback of rings

R
i1 //

i2

��

R1

j1

��
R2

j2
// R0

such that j1 or j2 is surjective. Then there exists a natural exact sequence of
six terms
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K1(R)
(i1)∗⊕(i2)∗−−−−−−−→ K1(R1)⊕K1(R2)

(j1)∗−(j2)∗−−−−−−−→ K1(R0)

∂1−→ K0(R)
(i1)∗⊕(i2)∗−−−−−−−→ K0(R1)⊕K0(R2)

(j1)∗−(j2)∗−−−−−−−→ K0(R0).

Its construction and its proof requires some preparation. In particular
we need the following basic construction due to Milnor [712, page 20]. Let
jk : Pk → (jk)∗Pk be the map sending x ∈ Pk to 1⊗x ∈ R0⊗jkPk for k = 1, 2.
Define a ring homomorphism i0 = j1◦i1 = j2◦i2 : R→ R0. Given Rk-modules

Pk for k = 0, 1, 2 and isomorphisms of R0-modules fk : (jk)∗Pk
∼=−→ P0 for

k = 1, 2, define an R-moduleM = M(P1, P2, f1, f2) by the pullback of abelian
groups

M //

��

P1

f1◦j1
��

P2
f2◦j2

// P0

together with the R-multiplication on M induced by the R-actions on Pk
that comes from the ring homomorphisms ik : R→ Rk for k = 0, 1, 2.

Lemma 3.87.(i) The R-module M is projective if P0 and P1 are projective.
The R-module M is finitely generated projective if P0 and P1 are finitely
generated projective;

(ii) Every projective R-module P can be realized up to isomorphism as M for
appropriate projective Rk-modules Pk for k = 0, 1, 2 and isomorphisms of

R0-modules fk : (jk)∗Pk
∼=−→ P0 for k = 1, 2;

(iii) The Rk-modules (ik)∗M and Pk are isomorphic for k = 1, 2.

Proof. This is proved in Milnor [712, Theorems 2.1, 2.2 and 2.3 on page 20]
or in[899, Proposition 59 on page 155, Proposition 60 on page 157, Proposi-
tion 61 on page 158]. ut

Now we can give the proof of Theorem 3.86

Proof. The main step is to construct the boundary homomorphism ∂1. Given

an element x ∈ K1(R0), we can find an automorphism f : Rn0
∼=−→ Rn0 of a

finitely generated free R-module with x = [f ], see Lemma 3.10. The R0-
module M(Rn1 , R

n
2 , idRn0 , f) is a finitely generated projective R0-module by

Lemma 3.87 (i). Define

∂1(x) := [M(Rn1 , R
n
2 , idRn0 , f)]− [Rn0 ].

This is a well-defined homomorphism of abelian groups, see [899, page 164].
The elementary proof of the exactness of the sequence of six terms can be
found in [899, Proposition 63 on page 164]. ut

Now we are ready to give the promised proof of Rim’s Theorem 2.105.
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Proof. Consider the pullback of rings

Z[Z/p] i1 //

i2

��

Z[exp(2πi/p)]

j1

��
Z

j2
// Fp

where here and in the sequel Fq denotes the field with q elements, i1 sends the
generator of Z/p to exp(2πi/p), the map i2 sends the generator of Z/p to 1 ∈
Z, the map j2 is the projection and the homomorphism j1 sends exp(2πi/p)
to 1. Obviously j1 and j2 are surjective. Hence we get from Theorem 3.86 an
exact sequence

K1(Z[Z/p]) (i1)∗⊕(i2)∗−−−−−−−→ K1(Z[exp(2πi/p)])⊕K1(Z)
(j1)∗−(j2)∗−−−−−−−→ K1(Fp)

∂1−→

K0(Z[Z/p]) (i1)∗⊕(i2)∗−−−−−−−→ K0(Z[exp(2πi/p)])⊕K0(Z)
(j1)∗−(j2)∗−−−−−−−→ K0(Fp).

The map (j2)∗ : K0(Z) → K0(Fp) is bijective by Example 2.4. Hence it re-
mains to prove that (j1)∗ : K1(Z[exp(2πi/p)]) → K1(Fp) is surjective. Be-
cause of Theorem 3.17 we have to find for each integer k with 1 ≤ k ≤ p− 1
a unit u ∈ Z[exp(2πi/p)]× satisfying j1(u) = k. Put ξ = exp(2πi/p). Choose
an integer l such that kl = 1 mod p. Define

u := 1 + ξ + ξ2 + · · ·+ ξk−1;

v := 1 + ξk + ξ2k + · · ·+ ξ(l−1)k.

Since (ξ − 1)u = ξk − 1 and (ξk − 1) · v = ξ − 1 and Z[exp(2πi/p)] is an
integral domain, we get uv = 1 and hence u ∈ Z[exp(2πi/p)]×. Obviously
j1(u) = k. ut

3.9 The K-Theory Sequence of a Two-Sided Ideal

Let I ⊆ R be a two-sided ideal in the ring R. The double of the ring R
along the ideal I is the subring D(R, I) of R × R consisting of pairs (r1, r2)
satisfying r1 − r2 ∈ I. Let pk : D(R, I)→ R send (r1, r2) to rk for k = 1, 2.

Definition 3.88 (Kn(R, I)). Define for n = 0, 1 the abelian group Kn(R, I)
to be the kernel of the homomorphism

(p1)∗ : Kn(D(R, I))→ Kn(R).

Theorem 3.89 (Exact sequence of a two-sided ideal for middle K-
theory). We obtain an exact sequence, natural in I ⊆ R
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K1(R, I)
j1−→ K1(R)

pr1−−→ K1(R/I)
∂1−→ K0(R, I)

j1−→ K0(R)
pr0−−→ K0(R/I).

Proof. We obtain a pullback of rings

D(R, I)
p1 //

p2

��

R

pr

��
R

pr
// R/I

such that pr is surjective. We get from Theorem 3.86 the exact sequence

K1(D(R, I))
(p1)∗⊕(p2)∗−−−−−−−−→ K1(R)⊕K1(R)

− pr∗ + pr∗−−−−−−−→ K1(R/I)
∂−→

K0(D(R, I))
(p1)∗⊕(p2)∗−−−−−−−−→ K0(R)⊕K0(R)

− pr∗ + pr∗−−−−−−−→ K0(R/I).

This yields the desired exact sequence if we define jn : Kn(R, I)→ Kn(R) to
be the restriction of (p2)∗ : Kn(D(R, I)) → Kn(R) to Kn(R, I) for n = 0, 1
and let ∂1 be the map induced by ∂. ut

Next we give alternative descriptions of K0(R, I).
Let S be a ring, but now for some time we do not require that it has a unit.

If we want to emphasize that we do not require this, we say that S is a ring
without unit although it may have one. The point is that a homomorphism
of rings without units f : S → S′ is a map compatible with the abelian group
structure and the multiplication but no requirement about the unit is made.
The ring obtained from S by adjoining a unit S+ has as underlying group
S ⊕ Z. The multiplication is given by

(s1, n1) · (s2, n2) := (s1s2 + n1s2 + n2s1, n1n2).

The unit in S+ is given by (0, 1). We obtain a natural embedding iS : S → S+

by sending s to (s, 0). Let pS : S+ → Z be the homomorphism of rings with
unit sending (s, n) to n. We obtain an exact sequence of rings without unit

0→ S
iS−→ S+

pS−→ Z→ 0. If f : S → S′ is a homomorphism of rings without
unit, we obtain a homomorphism f+ : S+ → S′+ of rings with unit by sending
(s, n) to (f(s), n). If S does has a unit 1S , then we obtain an isomorphism of

rings with unit uS : S+

∼=−→ S × Z by sending (s, n) to (s+ n · 1S , n).

Definition 3.90 (Kn(S) for rings without unit). Let S be a ring without
unit. Define for n = 0, 1

Kn(S) := ker ((pS)∗ : Kn(S+)→ Kn(Z)) .

Given a homomorphism f : S → S′ of rings without unit, the homomor-
phism (f+)∗ : Kn(S+)→ Kn(S′+) induces a homomorphism of abelian groups
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f∗ : Kn(S)→ Kn(S′). Thus we obtain a covariant functor from the category
of rings without unit to the category of abelian groups by sending S to Kn(S).

If S happens to have already a unit, we get back the old definition (up

to natural isomorphism). Namely, the isomorphism K0(uS) : Kn(S+)
∼=−→

Kn(S × Z) sends ker((pS)∗) to the kernel of the map (prZ)∗ : Kn(S × Z) →
Kn(Z) given by the projection prZ : S × Z → Z and the inclusion j : S →
S × Z, s 7→ (s, 0) induces an isomorphism of Kn(S) to the kernel of the
map prZ by Theorem 2.12 and Theorem 3.9.

Lemma 3.91. Let I be a two-sided ideal in the ring R. Let K0(I) be the
projective class group of the ring I without unit, see Definition 3.90. Then
there is a natural isomorphism

K0(I)
∼=−→ K0(R, I).

In particular K0(R, I) depends only on the ring without unit I but not on R.

Proof. The isomorphism is induced by the homomorphism of rings with unit
I+ → D(R, I) sending (s, n) to (n ·1R, n ·1R+s). The proof that it is bijective
can be found for instance in [844, Theorem 1.5.9 on page 30]. ut

Exercise 3.92. Let n be a positive integer. Compute

K0((n)) ∼=

{
0 if n = 2;

(Z/n)×/{±1} if n ≥ 3,

for the ideal (n) = {mn | m ∈ Z} ⊆ Z. Prove for the ideal (NZ/2) ⊆ Z[Z/2]
generated by the norm element that (NZ/2) and (2Z) are isomorphic as rings
without unit. Conclude

K̃0(Z[Z/2]) = 0.

Next we give an alternative description of K1(R, I). Define GL(R, I) to
be the kernel of the map GL(R) → GL(R/I) induced by the projection
R→ R/I. Let E(R, I) be the smallest normal subgroup of E(R) that contains
all matrices of the shape In + r · Eni,j for n ∈ Z, n ≥ 1, i, j ∈ {1, 2, . . . , n},
i 6= j, r ∈ I. Note that E(R, I) ⊆ GL(R, I). The proof of the next result can
be found for instance in [844, Theorem 2..5.3 on page 93].

Theorem 3.93 (Relative Whitehead Lemma). Let I ⊆ R be a two-sided
ideal. Then:

(i) The subgroup E(R, I) of GL(R) is normal;
(ii) There is an isomorphism, natural in (R, I)

GL(R, I)/E(R, I)
∼=−→ K1(R, I);

(iii) The center of GL(R)/E(R, I) is GL(R, I)/E(R, I);
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(iv) We have E(R, I) = [E(R),E(R, I)] = [GL(R),E(R, I)].

Example 3.94 (K1(R, I) depends on R). In contrast to K0(R, I) it is not
true that K1(R, I) is independent of R as shown by Swan [924, Section 1].
Let S be a ring and put

R =

{(
a b
0 d

)
| a, b, d ∈ S

}
;

R′ =

{(
n b
0 n

)
| n ∈ Z, b ∈ S

}
;

I =

{(
0 b
0 0

)
| b ∈ S

}
.

Then K1(R, I) = {0} and K1(R′, I) ∼= S.

Remark 3.95 (Congruence Subgroup Problem). Given a commutative
ring R, the Congruence Subgroup Problem asks if every normal subgroup of
GL(R) is of the form SL(R, I) := {A ∈ GL(R, I) | det(A) = 1} for some two-
sided ideal I ⊆ R. Bass has shown that for any normal subgroup H ⊆ GL(R)
there exists an ideal I ⊆ R satisfying E(R, I) ⊆ H ⊆ GL(R, I), see [96,
Theorem 2.1 (a) on page 229] or [843, Exercise 2.5.21 on page 106]. Hence
the Congruence Subgroup Problem has a positive answer if and only for every
two-sided ideal I ⊆ R we have E(R, I) = SL(R, I), see [843, Exercise 2.5.21
on page 106]. More information about this problem can be found for instance
in [100].

Exercise 3.96. Show that the Congruence Subgroup Problem has a positive
answer for every field F .

3.10 Swan Homomorphisms

3.10.1 The Classical Swan Homomorphism

The definitions and results of this subsection are taken from Swan [920]. This
paper marked the beginning of a development that finally leads to a solution
of the Spherical Space Form Problem 9.197 which we have discussed also in
Section 2.5. It presents a nice and illuminating interaction between geometry,
group theory, and algebraic K-theory.

Let G be a finite group. Let NG ∈ ZG be the norm element, i.e., NG :=∑
g∈G g. Consider the following pullback of rings
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(3.97) ZG i1 //

i2

��

ZG/(NG)

j1

��
Z

j2
// Z/|G|

where (NG) ⊆ ZG is the ideal generated by NG, i1 and j2 are the obvi-
ous projections, i2 is induced by the group homomorphism G → {1}, and
j1 is the unique ring homomorphism for which the diagram above com-
mutes. One easily checks that it is a pullback and that the maps i1 and
j1 are surjective. Hence we can apply Theorem 3.86 and obtain a bound-
ary homomorphism ∂ : K1(Z/|G|) → K0(ZG). The obvious homomorphism
i : Z/|G|× → K1(Z/|G|) is an isomorphism by Theorem 3.6 since the com-
mutative finite ring Z/|G| is a commutative semilocal ring and hence the
determinant det : K1(Z/|G|)→ Z/|G|× is an inverse of i.

Definition 3.98 (Swan homomorphism). The (classical) Swan homo-
morphism is the composition

swG : Z/|G|× i−→ K1(Z/|G|) ∂−→ K0(ZG).

Lemma 3.99. Let n ∈ Z/|G|× be an element represented by n ∈ Z. Then the
ideal (n,NG) ⊆ ZG generated by n and NG is a finitely generated projective
ZG-module and

sw(n) = [(n,NG)]− [ZG].

Proof. Let P1 be the Z-module Z, P2 be the ZG/(NG)-module ZG/(NG),
and P0 be the Z/|G|-module Z/|G|. Consider the automorphism rn : Z/|G| →
Z/|G| given by multiplication with n. Define a ZG-module P by the pullback

P //

i2

��

ZG/(NG)

rn◦j1
��

Z
j2
// Z/|G|.

One easily checks that the ZG map (n,NG) → Z which sends n to n and
NG to |G| and the ZG map (n,NG)→ ZG/(NG) which sends n to the class

of 1 and NG to 0 induce an isomorphism of ZG-modules (n,NG)
∼=−→ P . We

conclude from Lemma 3.87 (i) that (r,NG) is a finitely generated projective
ZG-module and that sw(n) = [(n,NG)]− [ZG]. ut

Remark 3.100 (Another description of the Swan homomorphism).
For any n ∈ Z with (n, |G|) = 1, the abelian group Z/n with the triv-
ial G-action is a ZG-module that possesses a finite projective resolution
P∗, see [161, Theorem VI.8.12 on page 152]. Since two finite projective
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resolutions of Z/n are ZG-chain homotopic, their finiteness obstructions
agree, Lemma 2.36 (i). Thus we can define [Z/n] ∈ K0(ZG) by o(P∗) =∑
n≥0(−1)n · [Pn] for any finite projective resolution P∗. We get

sw(n) = −[Z/n]

for any integer n ∈ Z with (n, |G|) = 1. This follows essentially from [920,
Lemma 6.2] and Lemma 3.99.

Exercise 3.101. Show that swG is trivial for a finite cyclic group G.

3.10.2 The Classical Swan Homomorphism and Free Homotopy
Representations

Let G be a finite group. A free d-dimensional G-homotopy representation X
is a d-dimensional CW -complex X together with a G-action such that for
any open cell e we have ge ∩ e 6= ∅ ⇒ g = 1, the space X is homotopy
equivalent to Sd and G\X is a finitely dominated CW -complex. Let f : X →
Y be a G-map of free d-dimensional G-homotopy representations for d ≥ 2.
Let n ≥ 0 be the integer such that the homomorphism of infinite cyclic
groups Hd(f) : Hd(X) → Hd(Y ) sends a generator of Hd(X) to ±n-times
the generator of Hd(Y ). Let o(G\X), o(G\Y ) ∈ K0(ZG) be the finiteness
obstructions of X and Y with respect to the obvious identification G =
π1(X) = π1(Y ).

Lemma 3.102. Let G be a finite group of order ≥ 3.

(i) The G-action on Hm(X) is trivial for m ≥ 0 and d is odd;
(ii) We have n ≥ 1, (n, |G|) = 1, and

swG(n) = o(G\Y )− o(G\X),

Proof. (i) Let C∗(X) be the cellular ZG-chain complex. The conditions about
the G-actions imply that C∗(X) is a free ZG-chain complex and is the same as

C∗(G̃\X). SinceG\X is finitely dominated, we can find a finite projective ZG-
chain complex P∗ that is ZG-chain homotopy equivalent to C∗(X), see [635,
Proposition 11.11 on page 222] or Subsection 24.7.5. Since CG is semisim-
ple, every submodule of a finitely generated CG-module is finitely generated
projective again. This implies the following equality in K0(CG) = RC(G):∑

m≥0

(−1)m · [Pm ⊗ZG CG] = [H0(X;C)] + (−1)d · [Hd(X;C)].

The Bass Conjecture for integral domains 2.98 has been proved for finite
groups andR = Z by Swan [919, Theorem 8.1]. This implies that Pn⊗ZGCG is
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a finitely generated free CG-module for every n. Since P∗⊗ZGZ ' C∗(G\X),
we conclude

∑
m≥0(−1)m · [Pm ⊗ZG CG] = χ(G\X) · [CG]. Hence we get the

following equality in RC(G)

χ(G\X) · [CG] = [H0(X;C)] + (−1)d · [Hd(X;C)].

ObviouslyH0(X;C) is CG-isomorphic to the trivial 1-dimensionalG-represen-
tation [C]. Since Hd(X) ∼= Z, there is a group homomorphism w : G→ {±1}
such that Hd(X;C) is the 1-dimensional G-representation Cw for which g ∈ G
acts by multiplication with w(g). Thus we get in RC(G)

χ(G\X) · [CG] = [C] + (−1)d · [Cw].

Computing the characters on both sides yields the following equalities for
g ∈ G

χ(G\X) · |G| = 1 + (−1)d;

0 = 1 + (−1)d · w(g) for g 6= 1.

Since we assume |G| ≥ 3 and χ(G\X) is an integer, the first equality implies
that d is odd. The second inequality implies that w(g) = 1 for all g ∈ G.
Hence G acts trivially on Hm(X) for all m ≥ 0.

(ii) Let C∗(X) and C∗(Y ) be the free cellular ZG-chain complexes. Choose
finite projective ZG-chain complexes P∗ and Q∗ together with ZG-chain
homotopy equivalences u∗ : P∗ → C∗(X) and v∗ : Q∗ → C∗(Y ). The map
f : X → Y induces a ZG-chain map C∗(f) : C∗(X)→ C∗(Y ). Choose a ZG-
chain map h∗ : P∗ → Q∗ satisfying v∗◦h∗ ' C∗(f)◦u∗. Let cone∗ = cone∗(h∗)
be the mapping cone of h∗. It is a (d+1)-dimensional free ZG-chain complex
such that Hm(cone∗) = 0 for m 6= d and Hd(cone(C∗(f))) is ZG-isomorphic
to Z/n with the trivial G-action. This follows from the long exact homol-
ogy sequence associated to the short exact sequence of ZG-chain complexes
0 → Q∗ → cone(h∗) → ΣP∗ → 0 and assertion (i). Let D∗ be the ZG-chain
subchain complex of cone∗ such that Dd+1 = coned+1, Dd is the kernel of the
d-th differential of cone∗ and Dk = 0 for k 6= d, d+1. Then D∗ is a projective
ZG-chain complex and the inclusion D∗ → cone∗ induces an isomorphism on
homology and hence is a ZG-chain homotopy equivalence. In particular we
get a short exact sequence 0→ Dd+1 → Dd → Z/n→ 0. This excludes n = 0
since the cohomological dimension of a non-trivial finite group is∞. Suppose
that (n, |G|) = 1 is not true. Then we can find a prime number p such that
Z/p is a subgroup of G and Z/pl is a direct summand in Z/n for some l ≥ 1.
This implies that the cohomological dimension of the trivial Z[Z/p]-module
Z/pl is bounded by 1. An easy computation shows that ExtnZ[Z/p](Z,Z/pl)
does not vanish for all n ≥ 2, a contradiction. Hence (n, |G|) = 1.

We conclude from Lemma 2.36
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(−1)d · [Z/n] = (−1)d+1 · [Dd+1] + (−1)d · [Dd] = o(D∗) = o(cone∗)

= [Q∗]− [P∗] = o(G\Y )− o(G\X).

Since d is odd by assertion (i), we conclude sw(n) = o(G\Y )− o(G\X) from
Remark 3.100. ut

Exercise 3.103. Let X be a free d-dimensional G-homotopy representation
of the finite cyclic group G. Then G\X is homotopy equivalent to a finite
CW -complex.

3.10.3 The Generalized Swan Homomorphism

In this subsection we briefly introduce the generalized Swan homomorphism.
For proofs and more information we refer to [629, Chapter 19].

Fix a finite group G. Let m be its order |G|. We obtain a pullback of rings

ZG //

��

Z[1/m]G

��
Z(m)G // QG.

Despite the fact that neither the right horizontal arrow nor the lower vertical
arrow are surjective, one obtains a long exact sequence, which is an example
of a localization sequence

(3.104) K1(ZG)→ K1(Z[1/m]G)⊕K1(Z(m)G)→ K1(QG)
∂−→ K0(ZG)

→ K0(Z[1/m]G)⊕K0(Z(m)G)→ K0(QG).

We denote in the sequel by K1(QG)/K1(Z(m)G) the cokernel of the change
of rings homomorphism K1(Z(m)G)→ K1(QG).

Definition 3.105 (Generalized Swan homomorphism). The generalized
Swan homomorphism

swG : Z/m× → K1(QG)/K1(Z(m)G)

sends r to element in K1(QG)/K1(Z(m)G) that is given by the element in
K1(QG) represented by the QG-automorphism r · id : Q → Q of the trivial
QG-module Q.

This is well-defined by the argument in [629, page 381]. The following
result is taken from [629, Theorem 19.4 on page 381]

Theorem 3.106 (The generalized Swan homomorphism). Let G be a
finite group of order m.
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(i) The composite of the generalized Swan homomorphism swG : Z/m× →
K1(QG)/K1(Z(m)G) introduced in Definition 3.105 with the homomor-

phism ∂ : K1(QG)/K1(Z(m)G)→ K0(ZG) induced by the boundary homo-
morphism of the localization sequence (3.104) is the classical Swan homo-
morphism swG : Z/m× → K0(ZG) of Definition 3.98;

(ii) The generalized Swan homomorphism swG : Z/m× → K1(QG)/K1(Z(m)G)
is injective.

3.10.4 The Generalized Swan Homomorphism and Free
Homotopy Representations

In this subsection we briefly discuss Reidemeister torsion for free homotopy
representations. For proofs and more information we refer to [629, Chap-
ter 20].

Let G be a finite group of order m = |G|. Let X be a free d-dimensional
G-homotopy representation. Suppose that we have fixed an orientation, i.e.,
a generator of Hd(X;Z). Then we can define a kind of Reidemeister torsion
of X

ρG(X) ∈ K1(QG)/K1(Z(m)G)(3.107)

as follows. The change of rings map K̃0(ZG)→ K̃0(Z(m)G) is trivial, see [919,
Theorem 7.1 and Theorem 8.1]. Hence there is a finite free Z(m)G-chain
complex F∗ together with a Z(m)G-chain homotopy equivalence f∗ : F∗ →
C∗(X)⊗ZGZ(m)G. Choose a Z(m)G-basis for F∗. Then F∗⊗Z(m)GQG is a finite
based free QG-chain complex. Note that we have preferred isomorphisms of
abelian group H0(X) ∼= Z and Hd(X) ∼= Z and G acts trivially on H0(X) and
Hd(X). This induces preferred QG-isomorphisms Hi(F∗⊗Z(m)GQG) ∼= Q for
i = 0, d where we equip Q with the trivial G-action. This enables us to define
a torsion invariant τ(F∗ ⊗Z(m)G QG) ∈ K̃1(QG) although F∗ ⊗Z(m)G QG is

not acyclic. Define ρG(X) to be its image under the projection K̃1(QG) →
K1(QG)/K1(Z(m)G). One easily checks that ρG(X) is independent of the
choice of F∗, f∗, and the choice of the Z(m)G-basis for F∗. The proof of the
following result is a special case of the results in [629, Theorem 20.37 on
page 403 and Corollary 20.39 on page 404].

Theorem 3.108 (Torsion and free homotopy representations). Let
G be a finite group of order m = |G| ≥ 3. Let X and Y be free oriented
G-homotopy representations.

(i) The homomorphism ∂ : K1(QG)/K1(Z(m)G)→ K0(ZG) sends the torsion

ρG(X) to the finiteness obstruction o(G\X);
(ii) Let f : X → Y be a G-map, which always exists. Then its degree deg(f) is

prime to m and
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swG(deg(f)) = ρG(Y )− ρG(X);

(iii) The free G-homotopy representations X and Y are oriented G-homotopy
equivalent if and only if ρG(X) = ρG(Y ).

Theorem 3.108 gives an interesting relation between torsion invariants and
finite obstructions and generalizes the homotopy classification of lens spaces
to free G-homotopy representations.

All this can be extended to not necessarily free G-homotopy representa-
tions, see [629, Section 20]. The theory of G-homotopy representations was
initiated by tom Dieck-Petrie [937].

3.11 Variants of the Farrell-Jones Conjecture for
K1(RG)

In this section we state variants of the Farrell-Jones Conjecture for K1(RG).
The Farrell-Jones Conjecture itself will give a complete answer for arbitrary
rings but to formulate the full version some additional effort will be needed.
If one assumes that R is regular and G is torsionfree, the conjecture reduces
to an easy to formulate statement, which we will present next. Moreover, this
special case is already very interesting.

Conjecture 3.109 (Farrell-Jones Conjecture for K0(RG) and K1(RG)
for regular R and torsionfree G). Let G be a torsionfree group and let
R be a regular ring. Then the maps defined in (3.26) and (3.27)

A0 : K0(R)
∼=−→ K0(RG);

A1 : G/[G,G]⊗Z K0(R)⊕K1(R)
∼=−→ K1(RG),

are both isomorphisms. In particular the groups WhR0 (G) and WhR1 (G) in-
troduced in Definition 3.28 vanish.

We mention the following important special case of Conjecture 3.109.

Conjecture 3.110 (Farrell-Jones Conjecture for K̃0(ZG) and Wh(G)

for torsionfree G). Let G be a torsionfree group. Then K̃0(ZG) and Wh(G)
vanish.

We have already discussed the K0-part of the two conjectures above in
Section 2.8. The following exercise shows that we cannot expect to have an
analogue for K1(RG) of the Conjecture 2.67.

Exercise 3.111. Let G be a group and let R be a ring. Suppose that the
map

colimH∈SubFIN (G×Z)K1(RH)→ K1(R[G× Z]).
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is surjective. Show that then K0(RG) = 0 and hence K0(R) = 0. In particu-
lar, R cannot be a commutative integral domain.

Remark 3.112 (Relevance of Conjecture 3.110). In view of Remark 3.13
Conjecture 3.110 predicts for a torsionfree group G that any matrix A in
GLn(ZG) can be transformed by a sequence of the operations mentioned in
Remark 3.13 to a (1, 1)-matrix of the form (±g) for some g ∈ G. This is
the algebraic relevance of this conjecture. Its geometric meaning comes from
the following conclusion of the s-Cobordism Theorem 2.39. Namely, if G is
a finitely presented torsionfree group, and n an integer with n ≥ 6, then it
implies that every compact n-dimensional h-cobordism is trivial.

3.12 Survey on Computations of K1(ZG) for Finite
Groups

In contrast to K0(ZG) for finite groups G, the Whitehead group Wh(G) of a
finite group is very well understood. The key source for the computation of
Wh(G) for finite groups G is the book written by Oliver [760].

Definition 3.113 (SK1(ZG) and Wh′(G)). Let G be a finite group. Define

SK1(ZG) := ker((K1(ZG)→ K1(QG)) ;

Wh′(G) = Wh(G)/ tors(Wh(G)).

Remark 3.114 (SK1(ZG) and reduced norms). Let G be a finite group.
The reduced norm on CG is defined as the composite of isomorphisms of
abelian groups

nrCG : K1(CG)
φ∗−→ K1

(
k∏
i=1

Mri(C)

)
∼=−→

k∏
i=1

K1(Mri(C))

∼=−→
k∏
i=1

K1(C)
∏k
i=1 det

−−−−−−→
k∏
i=1

C×

where the isomorphism of rings φ : CG
∼=−→
∏k
i=1Mri(C) comes from Wed-

derburn’s Theorem applied to the semisimple ring CG and the remaining
three isomorphisms come from Theorem 3.6, Lemma 3.8 and Lemma 3.9.
The reduced norm on RG for R = Z,Q is defined as the composite

nrRG : K1(RG)
iR−→ K1(CG)

nrCG−−−→
k∏
i=1

C×
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where iR is the obvious change of rings homomorphism. The map iQ is injec-
tive, see [760, Theorem 2.5 on page 43]). Thus we can identify

SK1(ZG) = ker

(
nrZG : K1(ZG)→

k∏
i=1

C×
)
.

This identification is useful for investigating SK1(ZG) and Wh′(G). We con-
clude that for abelian groups the two definitions of SK1(ZG) appearing in
Definition 3.15 and Definition 3.113 agree.

We denote by rF (G), the number of isomorphism classes of irreducible
representations of the finite G over the field F . Recall that rF = | conF (G)|
by Lemma 2.88. The proof of the next result can be found for instance in [760,
Theorem 2.5 on page 48] and is based on the Dirichlet Unit Theorem 3.21.

Theorem 3.115 (SK1(ZG) = tors(Wh(G))). Let G be a finite group. Then
the abelian group SK1(ZG) is finite and agrees with the torsion subgroup
tors(Wh(G)) of Wh(G). The group Wh′(G) = Wh(G)/ tors(Wh(G)) is a
finitely generated free abelian group of rank rR(G)− rQ(G).

Hence the next step is to compute SK1(ZG). This is done using localization
sequences, see [760, Theorem 1.17 on page 36 and Section 3c], which do also
involve the second algebraic K-group, see Chapter 5, and are consequences
of the general result of Quillen stated in Theorem 6.49. Define

SK1(Zp̂G) := ker (K1(Zp̂G)→ K1(Qp̂G)) .

Put

Cl1(ZG) := ker

SK1(ZG)→
∏
p| |G|

SK1(Zp̂G)


where p runs over all prime numbers dividing |G|. Then one obtains an exact
sequence

0→ Cl1(ZG)→ SK1(ZG)→
∏
p| |G|

SK1(Zp̂G)→ 0.

The analysis of Cl1(ZG) and SK1(Zp̂G) is carried out independently and
with different methods. Besides localization sequences p-adic logarithms play
a key role. Details can be found in Oliver [760].

Given a groups G and Q the wreath product G o Q is defined to be the
semidirect product

∏
QG o Q where Q acts on

∏
QG o Q permuting the

factors.

Theorem 3.116 (Finite groups with vanishing Wh(G) or SK1(ZG)).
Let G be a finite group.
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(i) Let p be a prime number. If the p-Sylow subgroup SpG of G is isomorphic
to Z/pn or Z/pn × Z/p for some n ≥ 0, then SK1(ZG)(p) = 0, i.e., the
finite abelian group SK1(ZG) contains no p-torsion;

(ii) Let G be a finite abelian group. Then SK1(ZG) = 0 if and only if for every
prime p the p-Sylow subgroup SpG is isomorphic to Z/pn or Z/pn × Z/p
for some n ≥ 0 or if G = (Z/2)n for some n ≥ 1;

(iii) Let CWh be the smallest class of groups that is closed under finite products
and wreath products with Sn for every n ≥ 2 and contains the trivial
group. Let CSK1

be the smallest class of groups that is closed under finite
products and wreath products with Sn for every n ≥ 2 and contains the
dihedral groups Dn for n ≥ 2.
Then Wh(G) = 0 for G ∈ CWh and SK1(ZG) = 0 if G ∈ CSK1

;
(iv) We have SK1(ZG) = 0 if G is one of the following groups

(a) G is finite cyclic;
(b) Z/pn × Z/p for some prime p and n ≥ 1;
(c) (Z/2)n for n ≥ 1;
(d) G is any symmetric group;
(e) G is any dihedral group;
(f) G is any semidihedral 2-group.

Proof. (i) See Oliver [760, Theorem 14.2 (i) on page 330].

(ii) See Oliver [760, Theorem 14.2 (iii) on page 330].

(iii) See Oliver [760, Theorem 14.1 on page 328].

(iv) This follows essentially from the other assertions. See Oliver [760, Ex-
amples 1 and 2 on page 14]. ut

The group SK1(ZG) can be computed for many examples. We mention
the following example taken from [760, Theorem 14.6 on page 336].

Example 3.117 (SK1(Z[An])). We have SK1(Z[An]) ∼= Z/3 if we can
write n =

∑r
i=1 3mi such that m1 > m2 > · · · > mr > 0 and

∑r
i=1mi is odd.

Otherwise we get SK1(Z[An]) = {0}.

Exercise 3.118. Show that the Whitehead group Wh(Z/m) of the finite
cyclic group Z/m of order m is a free abelian group of rank bm/2c+1−δ(m),
where bm/2c is the greatest integer less or equal to m/2 and δ(m) is the
number of divisors of m.

Let p be a prime. Show that Wh(Z/p) is isomorphic to Z(p−1)/2−1 if p is
odd and is trivial if p = 2.
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3.13 Survey on Computations of Algebraic K1(C
∗
r (G))

and K1(N (G))

Define SL(R) := {A ∈ GL(R) | det(A) = 1}. Let B be a commutative Banach
algebra. Then GLn(B) inherits a topology, namely the subspace topology

for the obvious embedding GLn(B) ⊆ Mn(B) =
∏n2

i=1B. Equip GL(B) =⋃
n≥1 GLn(B) with the weak topology, i.e., a subset A ⊂ GL(B) is closed if

and only if A ∩ GLn(B) is a closed subset of GLn(B) for all n ≥ 1. Equip
SL(B) ⊆ GL(B) with the subspace topology.

The following results are due to Milnor [712, Corollary 7.2 on page 57 and
Corollary 7.3 on page 58].

Theorem 3.119 (K1(B) of a commutative Banach algebra). Let B be
a commutative Banach algebra. Then there is a natural isomorphism

K1(B)
∼=−→ B× × π0(SL(B)).

Define the infinite special orthogonal group SO =
⋃
n≥1 SO(n) and infinite

special unitary group SU,=
⋃
n≥1 SU(n) where SO(n) = {A ∈ GLn(R) |

AAt = I,det(A) = 1} is the special n-th orthogonal group and SU(n) =
{A ∈ GLn(C) | AA∗ = I, det(A) = 1} is the special n-th unitary group.
Denote by [X,SO] and [X,SU] respectively the set of homotopy classes of
maps from X to SO and SU respectively.

Theorem 3.120 (K1(C(X)) of a commutative C∗-algebra C(X)). Let
X be compact space. Then there are natural isomorphisms

K1(C(X,R))
∼=−→ C(X,R)× × [X,SO];

K1(C(X,C))
∼=−→ C(X,C)× × [X,SU].

The sets [X,SO] and [X,SU] are closely related to the topological K-
groups KO−1(X) and K−1(X).

If B is a group C∗-algebra C∗r (G), then not much is known about the
algebraic K-group K1(B) in general. However, the algebraic K1-group of a
von Neumann algebra is fully understood, see [635, Section 9.3],[662]. We
mention the special case, see [635, Example 9.34 on page 353], that for a
finitely generated group G which is not virtually finitely generated abelian
the Fuglede-Kadison determinant induces an isomorphism

K1(N (G))
∼=−→ Z(N (G))+,inv(3.121)

where Z(N (G))+,inv consists of the elements of the center of N (G) that are
both positive and invertible.

The connection between the algebraic and the topological K-theory of a
C∗-algebra will be discussed in Section 10.7.
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3.14 Notes

A universal property describing the Whitehead group and the Whitehead
torsion similar to the description of the finiteness obstruction in Section 2.7
is presented in [629, Theorem 6.11].

Geometric versions or analogues of maps related to the Bass-Heller-Swan
decomposition are described in [335], [365], [629, (7.34) on page 130], and [824,
§ 10].

Given two groups G1 and G2, let G1∗G2 by the amalgamated free product.
Then the natural maps Gk → G0 ∗ G1 for k = 1, 2 induce an isomorphism,
see [906],

Wh(G1)⊕Wh(G2) ∼= Wh(G1 ∗G2).(3.122)

Compare this with the analog for the reduced projective class groups stated
in (2.125).

Exercise 3.123. Show that the projections prk : G1 ×G2 → Gk for k = 1, 2
do not in general induce an isomorphism

Wh(G1 ×G2)
∼=−→ Wh(G1)×Wh(G2).

There are also equivariant versions of the Whitehead torsion, see for in-
stance [629, Chapter 4 and Chapter 12], where more references can be found.

Next we discuss the following conjecture.

Conjecture 3.124 (Unit-Conjecture). Let R be an integral domain and
G be a torsionfree group. Then every unit in RG is trivial, i.e., of the form
r · g for some unit r ∈ R× and g ∈ G.

For more information about it we refer for instance to [594, page 95].

Remark 3.125 (Status of the Unit Conjecture and its stable ver-
sion). Actually, Gardam found an explicite counterexample to the Unit Con-
jecture, see [401, Theorem A]. His group G is given by the presentation

〈a, b | ba2b−1 = a−2, ab2a−1 = b−2〉.

It can be written as a non-split extension extension 1 → Z3 → G → Z/2 ×
Z/2→ 1 and is a crystallographic group. The underlying coefficient ring is the
field of two elements F2. Note that Gardam found his counterexample using
computer algebra, but in his paper he presents a short human-readable proof.
Counterexamples where the coefficient ring is a field of (arbitrary) prime
characteristic were constructed by Murray [738]. Gardam [402, Theorem A]
constructed counterexamples with coefficients in C for the same group G as
above.
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Note that Conjecture 3.109 does not imply the Unit Conjecture 3.124. At
least the bijectivity of the map A1 implies the stable version of the Unit Con-
jecture 3.124 that the class [x] ∈ K1(RG) of any unit x ∈ RG× is represented
by the class [u] of some trivial unit u, or, equivalently, by a sequence of ele-
mentary row and column operation and (de-)stabilization one can transform
the (1, 1)-matrix (x) to the (1, 1)-matrix (u), see Remark 3.13, provided that

K̃0(R) vanishes.

Note, that the map (ZG)× → K1(ZG) sending a unit to its class in the
K1-group is in general not injective and in general not every unit is a trivial
unit, as the following example shows. If G is a finite group, then a result of
Hartley-Pickels [451, Theorem 2] says that exactly one of the following cases
occurs:

• G is abelian and (ZG)× is abelian;
• G is a Hamiltonian 2-group and (ZG)× = {±g | g ∈ G};
• (ZG)× contains a free subgroup of rank 2.

Hence for the symmetric group Sn for n ≥ 3, the group of units Z[Sn]×

is infinite, whereas Wh(Sn) vanishes, see Theorem 3.116 (iii), and hence
K1(Z[Sn]) and {±g | g ∈ Sn} are finite. This implies that the map
(Z[Sn])× → K1(Z[Sn]) has an infinite kernel for n ≥ 3 and that there are
infinitely many elements in (Z[Sn])× which are not trivial units.
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Chapter 4

Negative Algebraic K-Theory

4.1 Introduction

In this chapter we introduce negative K-groups. They are designed such that
the Bass-Heller-Swan decomposition and the long exact sequence of a pull-
back of rings and of a two-sided ideal extend beyond K0. We give a geometric
interpretation of negative K-groups of group rings in terms of bounded h-
cobordisms. We state variants of the Farrell-Jones Conjecture for negative
K-groups and give a survey of computations for group rings of finite groups.

4.2 Definition and Basic Properties of Negative
K-Groups

Recall that we get from Theorem 3.75 an isomorphism

K0(R) = coker
(
K1(R[t])⊕K1(R[t−1])→ K1(R[t, t−1])

)
.

This motivates the following definition of negative K-groups due to Bass.

Definition 4.1. Given a ring R, define inductively for n = −1,−2, . . .

Kn(R) := coker
(
Kn+1(R[t])⊕Kn+1(R[t−1])→ Kn+1(R[t, t−1])

)
.

Define for n = −1,−2, . . .

NKn(R) := coker (Kn(R)→ Kn(R[t])) .

Obviously a ring homomorphism f : R → S induces for n ≤ −1 a map of
abelian groups

(4.2) Kn(f) : Kn(R)→ Kn(S).

The Bass-Heller-Swan decomposition 3.72 for K1(R[t, t−1]) extends to neg-
ative K-theory.

Theorem 4.3 (Bass-Heller-Swan decomposition for middle and lower
K-theory). There are isomorphisms of abelian groups, natural in R, for
n = 1, 0,−1,−2, . . .

115
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NKn(R)⊕Kn(R)
∼=−→ Kn(R[t]);

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)
∼=−→ Kn(R[t, t−1]).

There is a sequence which is natural in R and exact for n = 1, 0,−1, . . .

0→ Kn(R)
Kn(k+)⊕−Kn(k−)−−−−−−−−−−−−→ Kn(R[t])⊕Kn(R[t−1])

Kn(l+)⊕Kn(l−)∗−−−−−−−−−−−→ Kn(R[t, t−1])
Cn−−→ Kn−1(R)→ 0

where k+, k−, l+, and l− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contrac-

tion, natural in R.

Proof. We give the proof only for n = 0, then an iteration of the argument
proves the claim for all n ≤ 0. Take S = R[Z] = R[x, x−1]. We obtain a
commutative diagram

0

��

0

��
K0(R)

f3 //

K0(k+)⊕−K0(k−)

��

K1(S)

K0(k+)⊕−K0(k−)

��
K0(R[t])⊕K0(R[t−1])

f2 //

K0(l+)⊕K0(l−)

��

K1(S[t])⊕K1(S[t−1])

K0(l+)⊕K0(l−)

��
K0(R[t, t−1])

f1 //

C′

��

K1(S[t, t−1])

C

��
K−1(R)

f0 //

��

K0(S)

��
0 0

where the right column is the exact sequence appearing in Theorem 3.75,
the map C ′ is the canonical projection, the maps f1, f2, and f3 come from
the Bass-Heller-Swan decompositions for S = R[x, x−1], S[t] = R[t][x, x−1],
S[t−1] = R[t−1][x, x−1], and S[t, t−1] = R[t, t−1][x, x−1], and the map f0 is
the unique map that makes the diagram commutative. There are natural re-
tractions rk of fk for k = 1, 2, 3 for which the diagram remains commutative,
and a natural chain contraction γ = {γk | k = 0, 1, 2} of the right column,
see Theorem 3.72. Let r0 : K0(S)→ K−1(R) be the unique map that satisfies
r0 ◦ C = C ′ ◦ r1. An easy diagram shows that r0 is well-defined since C ′ ◦ r3

sends the kernel of C to zero. One easily checks r0◦f0 = id. We obtain a chain
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contraction for the left column by considering the composites rk ◦ γk ◦ fk+1

for k = 0, 1, 2. ut

Remark 4.4 (Extending exact sequences to negative K-theory). The
Mayer-Vietoris sequence of a pullback of rings, see Theorem 3.86, can be
extended to negative K-theory and also to K2 as we will explain in Theo-
rem 5.9. Similarly, the long exact sequence of a two-sided ideal appearing in
Theorem 3.89 can be extended to negative K-theory and also to K2, as we
will explain in Theorem 5.12.

Exercise 4.5. Let R and S be rings. Show for n ≤ 1 that the projections
induce an isomorphism

Kn(R× S)
∼=−→ Kn(R)×Kn(S).

Definition 4.6. Define for n ≤ 1 inductively for p = 0, 1, 2, . . .

N0Kn(R) := Kn(R);

Np+1Kn(R) := coker (NpKn(R)→ NpKn(R[t])) .

Obviously N1Kn(R) agrees with NKn(R).

Theorem 4.7 (Bass-Heller-Swan decomposition for lower and mid-
dle K-theory for regular rings). Suppose that R is regular. Then we
get

Kn(R) = 0 for n ≤ −1;

NpKn(R) = 0 for n ≤ 1 and p ≥ 1,

and the Bass-Heller-Swan decomposition appearing in Theorem 4.3 reduces
for n ≤ 1 to the natural isomorphism

Kn−1(R)⊕Kn(R)
∼=−→ Kn(R[t, t−1]).

Proof. The Bass-Heller-Swan decomposition, see Theorem 4.3, applied to R
and R[t] together with the obvious maps i : R → R[t] and ε : R[t] → R
satisfying ε ◦ i = idR yield a natural Bass-Heller-Swan decomposition

(4.8) NKn(R)⊕NKn−1(R)⊕N2Kn(R)⊕N2Kn(R)
∼=−→ NKn(R[Z]).

Hence NKn−1(R) = 0 if NKn(R[Z]) = 0. If R is regular, then R[Z] is regular
by Theorem 3.80 (i). Hence NKn−1(R) vanishes for all regular rings R if
NKn(R) vanishes for all regular rings. We have shown in Theorem 3.81 that
NK1(R) vanishes for all regular rings R. We conclude by induction over n
that NKn(R) vanishes for all regular rings R and n ≤ 1. Obviously NpKn(R)
is a direct summand in NKn(R[t]) and R[t] is regular by Theorem 3.80 (i).
Hence NpKn(R) vanishes for p ≥ 1 and n ≤ 1 if R is a regular ring.
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Next we show that K−1(R) = 0 for every regular ring. It suffices to show
that the obvious map K0(R[t])→ K0(R[t, t−1]) is surjective. The homomor-
phism

α : G0(R[t])→ G0(R[t, t−1]), [M ]→ [M ⊗R[t] R[t, t−1]]

is well-defined since R[t, t−1] is a localization of R[t] and hence flat as
R[t]-module. Since R by assumption and hence R[t] and R[t, t−1] by The-
orem 3.80 (i) are regular, we conclude from Lemma 3.85 that it remains to
prove surjectivity of α. Let M be a finitely generated R[t, t−1]-module. Since
R[t, t−1] is Noetherian, we can find a matrix A ∈ Mm,n(R[t, t−1]) such that

there exists an exact sequence of R[t, t−1]-modules R[t, t−1]m
A−→ R[t, t−1]n →

M → 0. Since t is invertible in R[t, t−1], the sequence remains exact if we
replace A by tkA for some k ≥ 1. Hence we can assume without loss of gen-
erality that A ∈ Mm,n(R[t]). Define the R[t]-module N to be the cokernel

of R[t]m
A−→ R[t]n. Then N ⊗R[t] R[t, t−1] is R[t, t−1]-isomorphic to M and

hence α([N ]) = [M ].
Now Kn(R) = 0 follows inductively for n ≤ −1 for every regular ring from

Theorem 3.80 (i) and the Bass-Heller-Swan decomposition 4.3.
Finally apply Theorem 4.3. ut

Exercise 4.9. Let R be a regular ring. Prove

K1(R[Zk]) = K1(R)⊕
k⊕
i=1

K0(R);

K0(R[Zk]) ∼= K0(R);

Kn(R[Zk]) ∼= 0 for n ≤ −1.

Example 4.10 (Kn(Z[Z/p× Zk]) for n ≤ 0 and a prime p). Let p be a
prime number. We want to show

Kn(Z[Z/p× Zk]) = 0 for n ≤ −1 and k ≥ 0

and thatK0(Z[Z/p×Zk]) is finitely generated for k ≥ 0. Consider the pullback
of rings appearing in the proof of Rim’s Theorem in Section 3.8.

Z[Z/p] i1 //

i2

��

Z[exp(2πi/p)]

j1

��
Z

j2
// Fp.

If we apply −⊗Z Z[Zk], we obtain the pullback of rings
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Z[Z/p× Zk]
i1 //

i2

��

Z[exp(2πi/p)][Zk]

j1

��
Z[Zk]

j2
// Fp[Zk].

The ring Z[exp(2πi/p)] is a Dedekind domain, see Theorem 2.23, and in
particular regular. The rings Z and Fp are regular as well. Hence the rings
Z[exp(2πi/p)][Zk], Z[Zk] and Fp[Zk] are regular by Theorem 3.80 (i). The
negative K-groups of Z[exp(2πi/p)][Zk], Z[Zk] and Fp[Zk] vanish by Theo-
rem 4.7. The obvious maps

K0(Z)
∼=−→ K0(Z[Zk]);

K0(Z[exp(2πi/p)])
∼=−→ K0(Z[exp(2πi/p)][Zk]);

K0(Fp)
∼=−→ K0(Fp[Zk]),

are bijective because of Theorem 4.7. Hence the associated long exact Mayer-
Vietoris sequence, see Remark 4.4, implies that Kn(Z[Z/p × Zk]) = 0 holds
for n ≤ −2 and that we get the exact sequence

K1(Fp[Zk])→ K0(Z[Z/p× Zk])

→ K0(Z)⊕K0(Z[exp(2πi/p)])→ K0(Fp)→ K−1(Z[Z/p× Zk])→ 0.

Since Fp is a field and hence K0(Fp) is generated by [Fp], see Example 2.4,
we conclude K−1(Z[Z/p× Zk]) = 0. Example 2.4, Theorem 3.17, and Theo-
rem 4.7 imply K1(Fp[Zk]) ∼= K1(Fp) ⊕K0(Fp)k ∼= (Fp)× ⊕ Zk. The abelian
group K0(Z) ⊕ K0(Z[exp(2πi/p)]) is finitely generated by Theorem 2.23.
Hence K0(Z[Z/p× Zk]) is finitely generated.

Exercise 4.11. Show for k ≥ 0 and n ≤ 0 that K̃n(Z[Z/3× Zk]) = 0. Prove
that NpKn(Z[Z/3× Zk]) = 0 holds for n ≤ −1 and p ≥ 0 and for n = 0 and
p ≥ 1.

Example 4.12 (Negative K-theory of Z[Z/6]). We want to show

Kn(Z[Z/6]) ∼=

{
Z n = −1;

0 n ≤ −2.

Consider the pullback of rings

Z[Z/2]
i1 //

i2

��

Z

j1

��
Z

j2
// Z/2
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where i1 sends a+bt to a−b and i2 sends a+bt to a+b for t ∈ Z/2 the generator
and the two maps from Z to Z/2 are the canonical projections. Since Z[Z/3]
is free as abelian group, this remains to be a pullback of rings if we apply
−⊗Z Z[Z/3]. We have isomorphisms of rings Z[Z/2]⊗Z Z[Z/3] = Z[Z/6] and
Z⊗ZZ[Z/3] = Z[Z/3]. From the pullback for p = 3 appearing in Example 4.10
we obtain an isomorphism of rings

F2 ⊗Z Z[Z/3] ∼= F2 × (F2 ⊗Z Z[exp(2πi/3)]).

The ring Z[exp(2πi/3)] is as abelian group free with two generators 1 and ω =
exp(2πi/3) and the multiplication is uniquely determined by ω2 = −1 − ω.
Hence F2 ⊗Z Z[exp(2πi/3)] contains four elements, namely 0, 1, 1 ⊗ ω and
the sum 1 + 1⊗ω. Since (1⊗ω) · (1 + 1⊗ω) = 1, it is the field F4 consisting
of four elements. Hence we obtain a pullback of rings

Z[Z/6]
i1 //

i2

��

Z[Z/3]

j1

��
Z[Z/3]

j2
// F2 × F4.

Since Kn(F2 × F4) ∼= Kn(F2)×Kn(F4) vanishes for n ≤ −1 and Kn(Z[Z/3])
vanishes for n ≤ −1 by Example 4.10, the associated long exact Mayer-
Vietoris sequence, see Remark 4.4, implies that Kn(Z[Z/6]) = 0 holds for
n ≤ −2 and there is an exact sequence

K0(Z[Z/3])⊕K0(Z[Z/3])→ K0(F2 × F4)→ K−1(Z[Z/6])→ 0.

Since K̃0(Z[Z/3]) is trivial, see Example 2.106, and the projections induce

an isomorphism K0(F2 × F4)
∼=−→ K0(F2) × K0(F4) ∼= Z ⊕ Z, we conclude

K−1(Z[Z/6]) ∼= Z.

Exercise 4.13. Consider k ∈ {0, 1, 2, . . .}. Compute

Kn(Z[Zk × Z/6]) ∼=


Zk+1 for n = 0;

Z for n = −1;

0 for n ≤ −2,

and prove NpKn(Z[Z/6× Zk]) = 0 for p ≥ 1 and n ≤ 0.

The Bass-Heller-Swan decomposition can be used to show that certain
results about the K-groups in a fixed degree m have implications to all the
K-groups in degree n ≤ m, as illustrated by the next result.

Lemma 4.14. Consider a ring R and m ∈ Z with m ≤ 1. Suppose that
for every k ≥ 1 the map Km(R) → Km(R[Zk]) induced by the inclusion
R→ R[Zk] is bijective.
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Then Kn(R[Zl]) = 0 for n ≤ m − 1 and NKn(R[Zl]) = 0 for n ≤ m hold
for all l ≥ 0.

Proof. Since the bijectivity of Km(R)→ Km(R[Zk]) for all k ≥ 1 implies the
bijectivity of Km(R[Zl]) → Km((R[Zl])[Zk]) for all k, l ≥ 0 because of the
identification (R[Zl])[Zk] = R[Zk+l], it suffices to treat the case l = 0.

Consider any integer k ≥ 1. The assumptions in Lemma 4.14 imply that
the map Km(R[Zk−1]) → Km(R[Zk]) induced by the inclusion R[Zk−1] →
R[Zk] is bijective. Theorem 4.3 applied to the ring R[Zk−1] together with
the identity R[Zk] = (R[Zk−1])[Z] shows that Km−1(R[Zk−1]) = 0 and
NKm(R[Zk−1]) = 0. Using Theorem 4.3 and the Bass-Heller-Swan-decom-
position for NK, see (4.8), one shows inductively for i = 0, 1, . . . , (k−1) that
Km−1−j(R[Zk−i−1]) = 0 and NKm−j(R[Zk−i−1]) = 0 holds for j = 0, 1 . . . , i.
Then the case i = k − 1 shows that Kn(R) = 0 for m− k ≤ n ≤ m− 1 and
NKn(R) = 0 for m− k+ 1 ≤ n ≤ m. Since k ≥ 1 was arbitrary, Lemma 4.14
follows. ut

Exercise 4.15. Consider a ring R and m ∈ Z with m ≤ 1. Suppose that
Km(R[Zk]) = 0 for every k ≥ 1. Then Ki(R[Zl]) = NKi(R[Zl]) = 0 holds for
i ≤ m and l ≥ 0.

Theorem 4.16 (The middle and lower K-theory of RG for finite G
and Artinian R). Let G be a finite group, and let R be an Artinian ring.
Then:

(i) For every k ≥ 0 the map

K0(RG)
∼=−→ K0(RG[Zk])

induced by the inclusion is bijective;
(ii) Given any k ≥ 0, we have Kn(RG[Zk]) = 0 for n ≤ −1 and NKn(RG[Zk]) =

0 for n ≤ 0.

Proof. (i) Denote by J = rad(RH) ⊆ RH the Jacobson radical of RH. Since
R and hence RH are Artinian, there exists a natural number l with JJ l = J l.
By Nakayama’s Lemma, see [899, Proposition 8 in Chapter 2 on page 20], J l

is {0}, in other words, J is nilpotent. The ring RH/J is a semisimple Artinian
ring, see [594, Definition 20.3 on page 311 and (20.3) on page 312], and in
particular regular. Theorem 3.80 (ii) implies that (RH/J)[Zk] is regular for
all k ≥ 1. We derive from Theorem 4.7 that Kn((RH/J)[Zk]) = 0 for n ≤ −1
and NKn((RH/J)[Zk]) for n ≤ 0 hold for all k ≥ 0. We conclude from
Theorem 4.7 by induction over k = 0, 1, 2 . . . that the inclusion RH/J →
(RH/J)[Zk] induces an isomorphism

K0(RH/J)
∼=−→ K0((RH/J)[Zk])

for all k ≥ 0.
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The following diagram

K0(RH) //

��

K0(RH[Zk])

��
K0(RH/J) // K0((RH/J)[Zk])

commutes. Since J is a nilpotent two-sided ideal of RH, J [Zk] is a nilpo-
tent two-sided ideal of RH[Zk]. Obviously (RH/J)[Zk] can be identified with
(RH[Zk])/(J [Zk]). Hence the vertical arrows in the diagram above are bijec-
tive by Lemma 2.124. Since the lower horizontal arrow is bijective for every
k ≥ 1, the upper horizontal arrow is bijective for every k ≥ 1.

(ii) This follows from assertion (i) and Lemma 4.14 applied in the case m = 0
to the ring RG. ut

4.3 Geometric Interpretation of Negative K-Groups

One possible geometric interpretation of negative K-groups is in terms of
bounded h-cobordisms.

We consider manifolds W parametrized over Rk, i.e., manifolds that are
equipped with a surjective proper map p : W → Rk. Recall that proper map
means that preimages of compact subsets are compact again. We will always
assume that the fundamental group(oid) is bounded, see [781, Definition 1.3].
A map f : W → W ′ between two manifolds parametrized over Rk is called
bounded if {p′ ◦ f(x)− p(x) | x ∈W} is a bounded subset of Rk.

A bounded cobordism (W ;M0, f0,M1, f1) is defined just as in Section 3.5
but compact manifolds are replaced by manifolds parametrized over Rk and
the parametrization for Ml is given by pW ◦fl. If we assume that the inclusions
il : ∂kW → W are homotopy equivalences, then there exist deformations
rl : W × I → W such that rl|W×{0} = idW and rl(W × {1}) ⊂ ∂lW . A
bounded cobordism is called a bounded h-cobordism if the inclusions il are
homotopy equivalences and additionally the deformations can be chosen such
that the two sets

Sl = {pW (rl(x, t))− pW (rl(x, 1)) | x ∈W, t ∈ [0, 1]}

are bounded subsets of Rk.
The following theorem, see [781] and [981, Appendix], contains the s-

Cobordism Theorem 3.47 as a special case, gives another interpretation of
elements in K̃0(Zπ) and explains one aspect of the geometric relevance of
negative K-groups.
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Theorem 4.17 (Bounded h-Cobordism Theorem). Suppose that M0

is parametrized over Rk and satisfies dimM0 ≥ 5. Let π be its fundamen-
tal group(oid). Equivalence classes of bounded h-cobordisms over M0 mod-
ulo bounded diffeomorphism relative M0 correspond bijectively to elements in
κ1−k(π) where

κ1−k(π) =


Wh(π) if k = 0;

K̃0(Zπ) if k = 1;

K1−k(Zπ) if k ≥ 2.

4.4 Variants of the Farrell-Jones Conjecture for
Negative K-Groups

In this section we state variants of the Farrell-Jones Conjecture for negative
K-theory. The Farrell-Jones Conjecture itself will give a complete answer for
arbitrary rings but to formulate the full version some additional effort will be
needed. If one assumes that R is regular and G torsionfree or that R = Z, the
conjecture reduces to an easy to formulate statement, which we will present
next.

Conjecture 4.18 (The Farrell-Jones Conjecture for negative K-theory
and regular coefficient rings). Let R be a regular ring and G be a group
such that for every finite subgroup H ⊆ G the element |H| · 1R of R is
invertible in R. Then we get

Kn(RG) = 0 for n ≤ −1.

Exercise 4.19. Prove that Conjecture 4.18 is true if G is finite.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative K-theory
of the ring of integers in an algebraic number field). Let R be the
ring of integers in an algebraic number field. Then, for every group G, we
have

Kn(RG) = 0 for n ≤ −2,

and the map

colimH∈SubFIN (G)K−1(RH)
∼= // K−1(RG)

is an isomorphism.

Conjecture 4.21 (The Farrell-Jones Conjecture for negative K-theory
and Artinian rings as coefficient rings). Let G be a group, and let R
be an Artinian ring. Then we have

Kn(RG) = 0 for n ≤ −1.
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4.5 Survey on Computations of Negative K-Groups for
Finite Groups

The following result is due to Carter [205]. See also [96, Theorem 10.6 on
page 695].

Theorem 4.22 (Negative K-theory of RG for a finite group G and
a Dedekind domain of characteristic zero R). Let R be a Dedekind
domain of characteristic zero. Let k be its fraction field. For any maximal
ideal P of R, let kP be the P -adic completion. Let G be a finite group of
order n = |G|.

For a field F we denote by rF (G) the number of isomorphism classes of
irreducible representations of G over the field F . Then:

(i) Km(RG) = 0 for m ≤ −2;
(ii) K−1(RG) is a finitely generated group;

(iii) Suppose that no prime divisor of n is invertible in R. Then the rank r of
the finitely generated abelian group K−1(RG) is given by

r = 1− rk(G) +
∑
p|nR

rkP (G)− rR/P (G)

where the sum runs over all maximal (= non-zero prime) ideals P dividing
nR;

(iv) If R is the ring of integers in an algebraic number field k, then

K−1(RG) = Zr ⊕ Z/2s

There is an explicit description of the integer s in terms of global and local
Schur indices.
If G contains a normal abelian subgroup of odd index, then s = 0;

(v) Let A be a finite abelian group. Then K−1(ZA) vanishes if and only if |A|
is a prime power.

If R = Z, then r = 1−rQ(G)+
∑
p|n rQp̂(G)−rFp(G) where p runs through

the prime numbers dividing n.

4.6 Notes

More information about NKn(RG) for all n ∈ Z will be given in Theo-
rem 6.17, Theorem 6.18, Theorem 6.19, and Theorem 6.21.

More information about negative K-groups can be found for instance
in [30, 96, 204, 205, 353, 513, 670, 671, 685, 780, 781, 809, 824, 844, 979].
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Chapter 5

The Second Algebraic K-Group

5.1 Introduction

This chapter is devoted to the second algebraic K-group.
We give two equivalent definitions, namely, in terms of the Steinberg group

and in terms of the universal central extension of E(R). We extend the long
exact sequence associated to a pullback of rings and to a two-sided ideal
beyond K1 to K2. The long exact sequence associated to a pullback of rings
cannot be extended to the left to higher algebraic K-groups, whereas this
will be done for the long exact sequence associated to a two-sided ideal later.

We will introduce the second Whitehead group and state a variant of the
Farrell-Jones Conjecture for it, namely, that it vanishes for torsionfree groups.
Finally we give some information about computations of the second algebraic
K-group.

5.2 Definition and Basic Properties of K2(R)

Definition 5.1 (n-th Steinberg group). For n ≥ 3 and a ring R, define its
n-th Steinberg group Stn(R) to be the group given by generators and relations
as follows. The set of generators is

{xri,j | i, j ∈ {1, 2, . . . , n} and r ∈ R}.

The relations are

(i) xri,j · xsi,j = xr+si,j for i, j ∈ {1, 2, . . . , n} and r, s ∈ R;
(ii) [xri,j , x

s
j,k] = xrsi,k for i, j, k ∈ {1, 2, . . . , n} with i 6= k and r, s ∈ R;

(iii) [xri,j , x
s
k,l] = 1 for i, j, k, l ∈ {1, 2, . . . , n} with i 6= l, j 6= k and r, s ∈ R,

where [a, b] denotes the commutator aba−1b−1.

The idea behind the Steinberg group is that for every ring R the correspon-
ding relations hold in GLn(R) if we replace xri,j by the matrix In+r ·En(i, j)
appearing in Section 3.2. Hence we get a canonical group homomorphism

φRn : Stn(R)→ GLn(R), xri,j 7→ In + r · En(i, j).

127
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The image of φRn is by definition the subgroup of GLn(R) generated by all
elements of the form In + r ·En(i, j) for i, j ∈ {1, 2, . . . , n} and r ∈ R. There
is an obvious inclusion Stn(R)→ Stn+1(R) sending a generator xri,j to xri,j .

Definition 5.2 (Steinberg group). Define the Steinberg group St(R) to be
the union of the groups Stn(R).

The set of maps {φRn | n ≥ 3} defines a homomorphism of groups

φR : St(R)→ GL(R).(5.3)

The image of φR is just the group E(R) which agrees with [GL(R),GL(R)],
see Lemma 3.11.

Definition 5.4 (K2(R)). Define the algebraic K2-group K2(R) of a ring R
to be the kernel of the group homomorphism φR : St(R)→ GL(R) of (5.3).

Obviously a ring homomorphism f : R → S induces a map of abelian
groups

(5.5) K2(f) : K2(R)→ K2(S).

Exercise 5.6. Show that there is a natural exact sequence

0→ K2(R)→ St(R)→ GL(R)→ K1(R)→ 0.

5.3 The Steinberg Group as Universal Extension

A central extension of a group Q is a surjective group homomorphism φ : G→
Q with Q as target such that the kernel of φ is contained in the center
{g ∈ G | g′g = gg′ for all g′ ∈ G} of G. A central extension φ : U → Q of a
group Q is called universal if for every central extension ψ : G→ Q there is
precisely one group homomorphism f : U → G with ψ ◦ f = φ. If a group Q
admits a universal central extension, it is unique up to unique isomorphism.
A group Q possesses a universal central extension if and only if it is perfect,
i.e., it is equal to its commutator subgroup, see [712, Theorem 5.7 on page 44]
or [844, Theorem 4.1.3 on page 163]. In this case the kernel of the universal
central extension φ : U → Q is isomorphic to the second homology H2(Q;Z)
of Q, see [712, Corollary 5.8 on page 46] or [844, Theorem 4.1.3 on page 163].
A central extension φ : G → Q of a group Q is universal if and only if G
is perfect and every central extension ψ : H → G of G splits, i.e., there is
a homomorphism s : G → H with ψ ◦ s = idG, see [712, Theorem 5.3 on
page 43] or [844, Theorem 4.1.3 on page 163]. A central extension φ : G→ Q
of a perfect group Q is universal if and only if H1(G;Z) = H2(G;Z) = 0,
see [844, Corollary 4.1.18 on page 177]. The proof of the next result can be
found in [712, Theorem 5.10 on page 47] or [844, Theorem 4.2.7 on page 190].
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Theorem 5.7 (K2(R) and universal central extensions of E(R)). The
canonical epimorphism φR : St(R)→ E(R) coming from the map (5.3) is the
universal central extension of E(R).

Exercise 5.8. Prove K2(R) ∼= H2(E(R);Z).

5.4 Extending Exact Sequences of Pullbacks and Ideals

Theorem 5.9 (Mayer-Vietoris sequence for K-theory in degree ≤ 2
of a pullback of rings). Consider a pullback of rings

R
i1 //

i2

��

R1

j1

��
R2

j2
// R0

such that both j1 and j2 are surjective. Then there exists a natural exact
sequence, infinite to the right,

K2(R)
(i1)∗⊕(i2)∗−−−−−−−→ K2(R1)⊕K2(R2)

(j1)∗−(j2)∗−−−−−−−→ K2(R0)

∂2−→ K1(R)
(i1)∗⊕(i2)∗−−−−−−−→ K1(R1)⊕K1(R2)

(j1)∗−(j2)∗−−−−−−−→ K1(R0)

∂1−→ K0(R)
(i1)∗⊕(i2)∗−−−−−−−→ K0(R1)⊕K0(R2)

(j1)∗−(j2)∗−−−−−−−→ K0(R0)

∂0−→ K−1(R)
(i1)∗⊕(i2)∗−−−−−−−→ K−1(R1)⊕K−1(R2)

(j1)∗−(j2)∗−−−−−−−→ K−1(R0)
∂−1−−→ · · · .

Proof. See [712, Theorem 6.4 on page 55] for the extension to K2. The exten-
sion for negative K-theory follows for example from the fact that the passage
going from R to R[Z] sends a pullback of rings to a pullback of rings. ut

Remark 5.10 (Surjectivity assumption is necessary). Swan [924, Corol-
lary 1.2] has shown that the assumption that both j1 and j2 are surjective
in Theorem 5.9 is necessary. It is not enough that j1 or j2 is surjective, in
contrast to the weaker Theorem 3.86.

Remark 5.11 (No exact sequence for pullbacks in higher degrees).
Swan [924, Corollary 6.9] has shown that it is not possible to define a functor
K3 so that the natural exact sequence appearing in Theorem 5.9 can be
extended to K3.

Theorem 5.12 (Exact sequence of a two-sided ideal K-theory in de-
gree ≤ 2). Given a two-sided ideal I ⊂ R, we obtain an exact sequence,
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natural in I ⊆ R and infinite to the right

K2(R)
pr∗−−→ K2(R/I)

∂2−→ K1(R, I)
j1−→ K1(R)

pr∗−−→ K1(R/I)

∂1−→ K0(R, I)
j0−→ K0(R)

pr∗−−→ K0(R/I)
∂0−→ K−1(R, I)

j−1−−→ K−1(R)
pr∗−−→ · · ·

where pr: R→ R/I the projection.

Proof. See [712, Theorem 6.2 on page 54], [844, Theorem 3.3.4. on page 155
and Theorem 4.3.1 on page 200] or [979, Theorem 5.7.1 in Section III.5 on
page 223]. ut

Remark 5.13 (Dependence of Kn(R, I) on R). The group Kn(R, I) can
be identified for n ≤ 0 with Kn(I), see Definition 3.90, and hence depends
only on the structure of I as a ring without unit but not on the embedding
I ⊆ R. But for n ≥ 1 the group Kn(R, I) does depend on the embedding
I ⊆ R, see Example 3.94.

The sequence appearing in Theorem 5.12 is indeed an extension of the
long exact sequence appearing in Theorem 3.89.

Often one wants to get information about K2 in order to compute K1-
groups using for instance Theorem 5.12. This is illustrated by the following
example.

Example 5.14. Let R be the ring of integers in an algebraic number field,
and let P be a non-zero prime ideal. Then the exact sequence appearing in
Theorem 5.12 induces an exact sequence

K2(R/P )→ SK1(R,P )→ SK1(R)→ SK1(R/P )

where SK1(R) has been defined in Definition 3.15 and we put:

SK1(R,P ) := (SL(R) ∩GL(R,P ))/E(R,P )
∼= ker

(
det : GL(R,P )→ {r ∈ R | r ≡ 1 mod P}

)
.

Since R/P is a finite field, SK1(R/P ) and K2(R/P ) vanish by Theorem 3.17
and Theorem 5.18 (v). Hence we obtain an isomorphism

SK1(R,P )
∼=−→ SK1(R).

The group SK1(R) vanishes by [712, Corollary 16.3]. Hence also SK1(R,P )
vanishes.

Example 5.15 (Kn(Z[Z/p× Zk]) for n ≤ 1 and a prime p). Let p be a
prime number. We want to show
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Kn(Z[Z/p× Zk]) = 0 for n ≤ −1 and k ≥ 0

and that K0(Z[Z/p × Zk]) and K1(Z[Z/p × Zk]) are finitely generated. All
of these statements except the claim for K1(Z[Z/p× Zk]) have already been
proved in Example 4.10. The same method of proof applies to this case since
Theorem 5.9 yields the exact sequence

K2(Fp[Zk])→ K1(Z[Z/p× Zk])→ K1(Z[Zk])⊕K1(Z[exp(2πi/p)][Zk])

and K2(Fp[Zk]), K1(Z[Zk]), and K1(Z[exp(2πi/p)]) are finitely generated
abelian groups by Theorem 4.7, as Km(Fp) for m = 0, 1, 2, Km(Z) for
m = 0, 1, and Km(Z[exp(2πi/p)]) for m = 0, 1 are finitely generated and
Km(Fp), Km(Z), and Km(Z[exp(2πi/p)]) vanish for m ≤ −1 because of Ex-
ample 2.4, Theorem 2.23, Theorem 3.17, Theorem 3.21, Theorem 3.80 (i)
Theorem 4.7, and Theorem 5.18 (iv).

5.5 Steinberg Symbols

Let R be a commutative ring and u, v ∈ R×. Consider the elements
d1,2(u), d1,3(v) ∈ E(R) given by the invertible (3, 3)-matricesu 0 0

0 u−1 0
0 0 1

 and

v 0 0
0 1 0
0 0 v−1

 .

Let d̃1,2(u) and d̃1,3(v) be any preimages of d1,2(u) and d1,3(v) under the

canonical map φR : St(R) → E(R). Then the commutator [d̃1,2(u), d̃1,3(v)]
in St(R) defines an element in the kernel of φR : St(R) → E(R) and hence
in K2(R). It depends only on u and v. The proof of the facts above can be
found for instance in [844, page 192].

Definition 5.16 (Steinberg symbol). Let R be a commutative ring and
u, v ∈ R×. The element in K2(R) given by the construction above is called
the Steinberg symbol of u and v and is denoted by {u, v}.

Exercise 5.17. Prove that the Steinberg symbol of Definition 5.16 is well-
defined.

Theorem 5.18 (Properties of the Steinberg symbol). Let R be a com-
mutative ring. Then:

(i) The Steinberg symbol defines a bilinear skew-symmetric pairing

R× ×R× → K2(R), (u, v) 7→ {u, v},
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i.e., {u1 ·u2, v} = {u1, v}+{u2, v} and {u, v} = −{v, u} for all u1, u2, u, v
in R×;

(ii) For u ∈ R× we have {u,−u} = 0;
(iii) If for u ∈ R× also 1− u ∈ R×, then {u, 1− u} = 0;
(iv) (Matsumoto’s Theorem) If F is a field, then K2(F ) is isomorphic to the

abelian group given by the generators {u, v} for u, v ∈ F× and the rela-
tions:

(a) {u, 1− u} = 0 for u ∈ F with u 6= 0, 1;
(b) {u1 · u2, v} = {u1, v}+ {u2, v} for u1, u2, v ∈ F×;
(c) {u, v1 · v2} = {u, v1}+ {u, v2} for u, v1, v2 ∈ F×;

(v) If F is a finite field, then K2(F ) = 0;
(vi) We have K2(Z) = Z/2. A generator is given by the Steinberg symbol
{−1,−1};

(vii) Let m ≥ 2 be an integer. If m 6= 0 mod 4, then K2(Z/m) = {0}. If m = 0
mod 4, then K2(Z/m) = Z/2 and a generator is given by the Steinberg
symbol {1, 1};

(viii) (Tate) We have K2(Q) = Z/2×
∏
p F×p where p runs through the odd prime

numbers;
(ix) (Bass, Tate) Let R be a Dedekind domain with quotient field F . Then there

is an exact sequence

K2(F )→
⊕
P

K1(R/P )→ K1(R)→ K1(F )

→
⊕
P

K0(R/P )→ K0(R)→ K0(F )→ 0,

where P runs through the maximal ideals of R.

Proof. (i) See [712, Theorem 8.2 on page 64] or [844, Lemma 4.2.14 on
page 194].

(ii) and (iii) See [712, Theorem 9.8 on page 74] or [844, Theorem 4.2.17 on
page 197].

(iv) See [712, Theorem 11.1 on page 93] or [844, Theorem 4.3.15 on page 214].

(v) See [712, Theorem 9.13 on page 78] or [844, Theorem 4.3.13 and Re-
mark 4.3.14 on page 213].

(vi) See [712, Corollary 10.2 on page 81].

(vii) See [712, Corollary 10.8 on page 92], [293, Theorem 5.1], and [844, Ex-
ercise 4.3.19 on page 217].

(viii) See [712, Theorem 11.6 on page 101].

(ix) See [712, Corollary 13.1 on page 123] and [96, pages 702, 323]. ut
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5.6 The Second Whitehead Group

Let R be a ring. Consider u ∈ R× and integers i, j ≥ 1. If xui,j is the canonical
generator of St(R), see Definition 5.1, then define

wui,j := xui,jx
−u−1

j,i xuij ∈ St(R).

Let G be a group. Let WG be the subgroup of St(ZG) generated by all
elements of the shape wgi,j for g ∈ G and integers i, j ≥ 1. Recall that we can
think of K2(ZG) as a subgroup of St(ZG).

Definition 5.19 (The second Whitehead group). Let G be a group.
Define the second Whitehead group of G by

Wh2(G) := K2(ZG)/(K2(ZG) ∩WG).

Exercise 5.20. Show that the second Whitehead group of the trivial group
vanishes using the fact, see [844, Example 4.2.19 on page 198], that w1,2(1)4 =
{−1,−1} holds in St(Z).

Let I denote the unit interval [0, 1]. Let M be a closed smooth manifold.
A smooth pseudoisotopy of M is a diffeomorphism h : M × I → M × I that
restricted to M ×{0} ⊆M × I is the obvious inclusion. The group PDiff(M)
of smooth pseudoisotopies is the group of all such diffeomorphisms under
composition. Pseudoisotopies play an important role if one tries to understand
the homotopy type of the topological group Diff(M) of selfdiffeomorphisms
of M . Two selfdiffeomorphisms f0, f1 : M →M are called isotopic if there is
a smooth map h : M × [0, 1]→M called isotopy such that ht : M →M,x 7→
h(x, t) is a selfdiffeomorphism for each t ∈ [0, 1] and hk = fk for k = 0, 1. They
are called pseudoisotopic if there exists a diffeomorphism H : M × [0, 1] →
M × [0, 1] such that H(x, k) = (fk(x), k) for all x ∈ M and k = 0, 1. If h is
an isotopy, then we obtain a pseudoisotopy by H(x, k) = (h(x, k), k). Hence
isotopic selfdiffeomorphisms are pseudoisotopic. The converse is not true in
general, there is no reason why a pseudoisotopy is level preserving, i.e., sends
M × {t} to M × {t} for every t ∈ [0, 1].

In order to decide whether two selfdiffeomorphisms are isotopic, it is often
very useful to firstly decide whether they are pseudoisotopic what is in general
easier.

The set of path components π0(Diff(M)) of the space Diff(M) agrees with
the set of isotopy classes of selfdiffeomorphisms of M . The group PDIFF(M)
acts on Diff(M) by h · f := h1 ◦ f . If PDIFF(M) is path-connected, then
two pseudoisotopic diffeomorphisms M → M are isotopic since the orbit
of the identity idM : M → M under the PDIFF(M)-action consists of the
diffeomorphisms M → M that are pseudoisotopic to the identity. If M is
simply connected, PDIFF(M) is known to be path connected by a result of
Cerf [207, 208] if dim(M) ≥ 5.
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The relevance of the second Whitehead group comes from the following
result, see [452, 453].

Theorem 5.21 (Pseudoisotopy and the second Whitehead group).
Let M be a smooth closed manifold of dimension ≥ 5. Then there is an
epimorphism

π0(PDIFF(M))→Wh2(π1(M)).

More information about pseudoisotopy and its relation to algebraic K-
theory will be given in Chapter 7. The Farrell-Jones Conjecture for pseu-
doisotopy will be stated as Conjecture 15.61.

5.7 A Variant of the Farrell-Jones Conjecture for the
Second Whitehead group

Conjecture 5.22 (Farrell-Jones Conjecture for Wh2(G) for torsion-
free G). Let G be a torsionfree group. Then Wh2(G) vanishes.

5.8 The Second Whitehead Group of Some Finite
Groups

We give some information about K2(ZG) and Wh2(G) for some finite groups.
The group K2(RG) is finite for every finite group G and every ring of

integer R in a number field, see [580, Theorem 1.1]. In particular K2(ZG)
and Wh2(G) are finite for any finite group G.

We have

Wh2(G) = 0, for G = {1},Z/2,Z/3,Z/4;

|Wh2(Z/6)| ≤ 2;

Wh2(D6) ∼= Z/2,

where D6 is the dihedral group of order six. The claim for the finite cyclic
groups follow from [304, page 482] and [910, pages 218 and 221]. We get
K2(ZD6) ∼= (Z/2)3 from [910, Theorem 3.1]. This implies Wh2(D6) ∼= Z/2
as explained in [667, Theorem 3.2.d.iii].

Given a prime p, the p-rank of an abelian group A is dimFp(Fp⊗ZA). The 2-

rank of the finite abelian group Wh2

(
(Z/2)n

)
is at least (n−1)·2n− (n+2)(n−1)

2
by [288, Corollary 7]. If p is an odd prime, then the p-rank of the finite abelian

group Wh2

(
(Z/p)n

)
is at least (n− 1) · (pn − 1)−

(
p+n−1

p

)
− n(n−1)

2 by [288,

Corollary 8]. In particular Wh2

(
(Z/p)n

)
is non-trivial for a prime p and n ≥ 2.

Some information about K2(FpG) for finite groups can be found in [689].
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Exercise 5.23. Determine all integers n ≥ 1 for which K̃i(Z[Z/n]) for all
i ≤ 0, Wh(Z/n), and Wh2(Z/n) vanish.

5.9 Notes

We have already mentioned that often computations involving K1 use in-
formation about K2 since there are various long exact sequences relating
K-groups of different rings. Examples of such sequences have been given in
Theorem 5.9, Theorem 5.12 and Theorem 5.18 (ix). Another important class
of such exact sequences are given by localization sequences, see [760, Chap-
ter 3].

The second algebraic K-group of fields plays also a role in number theory,
as for instance explained in [712, Chapters 11, 15, 16], [905, Chapter 8]
and [843, Chapter 4, Section 4]. Keywords are Hilbert symbols, Gauss’ laws
of quadratic reciprocity, Brauer groups, and the Mercurjev-Suslin Theorem.
Relations to operator theory are discussed in [712, Chapter 7], and [843,
Chapter 4, Section 4].

Further references to K2 and the second Whitehead group are [23, 289,
290, 291, 292, 293, 453, 688, 911, 979].
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Chapter 6

Higher Algebraic K-Theory

6.1 Introduction

In this chapter we extend the definition of the algebraic K-groups Kn(R) to
all integers n ∈ Z.

We first present the plus-construction to define higher algebraic K-theory
and record the basic properties. We introduce algebraic K-theory with co-
efficients in Z/k. We discuss other constructions of K-theory that apply to
more general situations such as to exact categories or Waldhausen categories.
The previous constructions lead only to spaces and one can find deloopings
which result in spectra whose homotopy groups are the algebraic K-groups
also in negative degrees. We present the K-theoretic Farrell-Jones Conjec-
ture for torsionfree groups and regular rings. We introduce Mayer-Vietoris
sequences for amalgamated free products and Wang sequence for HNN exten-
sions for the algebraic K-theory of group rings. The appearance of Nil-terms
in these exact sequences is responsible for some complications concerning al-
gebraic K-theory and the Farrell-Jones Conjecture that do not occur in the
Baum-Connes setting. We discuss homotopy K-theory, a theory that is on
the one hand close to algebraic K-theory and on the other hand is free of
Nil-phenomena. We briefly explain relations between algebraic K-theory and
cyclic homology.

6.2 The Plus-Construction

Let R be a ring. So far the algebraic K-groups Kn(R) for n ≤ 2 have been
described in a purely algebraic fashion by generators and relations. The defi-
nition of the higher algebraic K-groups Kn(R) for n ≥ 3 has been achieved
topologically, namely, one assigns to a ring R a space K(R) and defines
Kn(R) by the n-th homotopy group πn(K(R)) for n ≥ 0. This will coincide
with the previous definition for n = 0, 1, 2. There are various definitions of
the space K(R) that extend to more general settings as explained below and
are appropriate in different situations. We briefly recall the technically less
demanding one, the plus-construction.

A space Z is called acyclic if it has the homology of a point, i.e., the
singular homology with integer coefficients Hn(Z) vanishes for n ≥ 1 and is
isomorphic to Z for n = 0.

137
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Exercise 6.1. Prove that an acyclic space is path connected and that its
fundamental group π is perfect and satisfies H2(π;Z) = 0.

In the following we will suppress choices of and questions about base
points. The homotopy fiber hofib(f) of a map f : X → Y of path connected
spaces has the property that it is the fiber of a fibration pf : X → Ef which
comes with a homotopy equivalence h : Ef → X satisfying pf = f◦h, see [987,
Theorem 7.30 in Chapter I.7 on page 42]. The long exact homotopy sequence
associated to f , see [987, Corollary 8.6 in Chapter IV.8 on page 187], looks
like

(6.2) · · · ∂3−→ π2(hofib(f))
π2(i)−−−→ π2(X)

π2(f)−−−→ π2(Y )
∂2−→ π1(hofib(f))

π1(i)−−−→ π1(X)
π1(f)−−−→ π1(Y )

∂1−→ π0(hofib(f))→ {{•}}.

Definition 6.3 (Acyclic map). Let X and Y be path connected CW -
complexes. A map f : X → Y is called acyclic if its homotopy fiber hofib(f)
is acyclic.

We conclude for an acyclic map f : X → Y from the long exact homotopy
sequence (6.2) that f1 : π1(X)→ π1(Y ) is surjective and its kernel is a perfect
subgroup P of π1(X) since P is a quotient of the perfect group π1(hofib(f))
and π0(hofib(f)) consists of one element. Obviously a space Z is acyclic if
and only if the map Z → {•} is acyclic.

Definition 6.4 (Plus-construction). Let X be a connected CW -complex
and P ⊆ π1(X) be a perfect subgroup. A map f : X → X+ to a CW -complex
is called a plus-construction of X relative to P if f is acyclic and the kernel
of f1 : π1(X)→ π1(X+) is P .

The next result is due to Quillen. A proof can be found for instance in [844,
Theorem 5.2.2 on page 266 and Proposition 5.2.4 on page 268].

Theorem 6.5 (Properties of the plus-construction). Let X be a con-
nected CW -complex and let P ⊆ π1(X) be a perfect subgroup. Then:

(i) There exists a plus-construction f : X → X+ relative to P . (One can
construct X+ by attaching 2- and 3-cells to X);

(ii) Let f : X → X+ be a plus-construction relative to P , and let g : X → Y
be a map such that the kernel of π1(g) : π1(X)→ π1(Y ) contains P . Then
there is a map g : X+ → Y which is up to homotopy uniquely determined
by the property that g ◦ f is homotopic to g;

(iii) If f1 : X → X+
1 and f2 : X → X+

2 are two plus-constructions for X relative
to P , then there exists a homotopy equivalence g : X+

1 → X+
2 which is up

to homotopy uniquely determined by the property g ◦ f1 ' f2;
(iv) If f : X → X+ is a plus-construction relative to P , then π1(f) : π1(X)→

π1(X+) can be identified with the canonical projection π1(X)→ π1(X)/P ;
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(v) If f : X → X+ is a plus-construction, then Hn(f ;M) : Hn(X; f∗M) →
Hn(X+;M) is bijective for all n ≥ 0 and all local coefficient systems M
on X+.

Remark 6.6 (Perfect radical). Every group G has a unique largest perfect
subgroup P ⊆ G, called the perfect radical of G. In the following we will
always use the perfect radical of G for P unless explicitly stated otherwise.

Exercise 6.7. Show that every group has a unique largest perfect subgroup.

Exercise 6.8. Show that E(R) = [GL(R),GL(R)] is the perfect radical of
GL(R).

Definition 6.9 (Higher algebraic K-groups of a ring). Let BGL(R)→
BGL(R)+ be a plus-construction in the sense of Definition 6.4 for the clas-
sifying space BGL(R) of GL(R) (relative to the perfect radical of GL(R),
which is E(R)). Define the K-theory space associated to R

K(R) := K0(R)×BGL(R)+

where we view K0(R) with the discrete topology. Define the n-th algebraic
K-group

Kn(R) := πn(K(R)) for n ≥ 0.

This definition makes sense because of Theorem 6.5 (i) and (iii). Note that
for n ≥ 1 we have Kn(R) = πn(BGL(R)+).

Exercise 6.10. Show that the Definition 6.9 of Kn(R) for n = 0, 1 is com-
patible with the one of Definitions 2.1 and 3.1.

For n = 0, 1, 2 Definition 6.9 is compatible with the previous Defini-
tions 2.1, 3.1, and 5.4, and we have K3(R) ∼= H3(St(R)) and Kn(R) =
πn(BSt(R)+) for n ≥ 3, see [843, Corollary 5.2.8 on page 273], [407].

A ring homomorphism f : R→ S induces a group homomorphism GL(R)→
GL(S) and hence maps BGL(R) → BGL(S) and BGL(R)+ → BGL(S)+.
We have a already defined a map K0(f) : K0(R)→ K0(S) in (2.2). Therefore
f induces a map K(f) : K(R) → K(S) and hence for every n ≥ 0 a map
of abelian groups Kn(f) : Kn(R)→ Kn(S). This turns out to be compatible
with the previous definitions for n = 0, 1, 2 in (2.2), (3.2), and (5.5). We have
also defined Kn(f) : Kn(R) → Kn(S) for n ≤ −1 in (4.2). Hence we get a
covariant functor from the category of rings to the category of abelian groups
by Kn(−) for n ∈ Z.

Definition 6.11 (Relative K-groups). Define for a two-sided ideal I ⊆ R
and n ≥ 0

Kn(R, I) := πn
(
hofib(K(pr) : K(R)→ K(R/I))

)
for pr : R→ R/I the projection.
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The long exact homotopy sequence (6.2) associated to K(pr) : K(R) →
K(R/I) together with Theorem 5.12 implies

Theorem 6.12 (Long exact sequence of a two-sided ideal for higher
algebraic K-theory). Let I ⊆ R be a two sided ideal. Then there is a long
exact sequence, infinite to both sides,

· · · ∂3−→ K2(R, I)
j2−→ K2(R)

K2(pr)−−−−→ K2(R/I)
∂2−→ K1(R, I)

j1−→ K1(R)

K1(pr)−−−−→ K1(R/I)
∂1−→ K0(R, I)

j0−→ K0(R)
K0(pr)−−−−→ K0(R/I)

∂0−→ K−1(R, I)
j−1−−→ K−1(R)

K−1(pr)−−−−−→ K−1(R/I)
∂−1−−→ · · · .

The existence of the long exact sequence of a two-sided ideal of Theo-
rem 6.12 has been one important requirement of an extension of middle and
lower algebraic K-theory to higher degrees. It is indeed an extension of the
long exact sequences appearing in Theorem 3.89 and Theorem 5.12.

For more information about the plus-construction we refer for instance
to [123], [843, Chapter 5], [905, Chapter 2].

6.3 Survey on Main Properties of Algebraic K-Theory
of Rings

6.3.1 Compatibility with Finite Products

The basic idea of the proof of the following result for n ≥ 1 can be found
in [805, (8) in §2 on page 20]. The case n ≤ 1 follows from Lamma 2.12,
Lemma 3.9, and by inspecting Definition 4.1, see also Exercise 4.5.

Theorem 6.13 (Algebraic K-theory and finite products). Let R0 and
R1 be rings. Denote by pri : R0 × R1 → Ri for i = 0, 1 the projection. Then
we obtain for n ∈ Z isomorphisms

Kn(pr0)×Kn(pr1) : Kn(R0 ×R1)
∼=−→ Kn(R0)×Kn(R1).

6.3.2 Morita Equivalence

The idea of the proof of the next result is essentially the same as of Theo-
rem 2.10.

Theorem 6.14 (Morita equivalence for algebraic K-theory). For ev-
ery ring R and integer k ≥ 1 there are for all n ∈ Z natural isomorphisms
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µn : Kn(R)
∼=−→ Kn(Mk(R)).

6.3.3 Compatibility with Colimits over Directed Sets

We conclude from [805, (12) in §2 on page 20], (at least in the connective
setting) and [884, Lemma 6 in Section 7].

Theorem 6.15 (Algebraic K-theory and colimits over directed sets).
Let {Ri | i ∈ I} be a directed system of rings. Then the canonical map

colimi∈I Kn(Ri)
∼=−→ Kn

(
colimi∈I Ri

)
is bijective for n ∈ Z.

Actually, one may consider more generally filtered colimits.

6.3.4 The Bass-Heller-Swan Decomposition

We have already explained the following result for n ≤ 1 in Theorem 3.72
and Theorem 4.3. Definition 3.68 of NKn(R) makes sense for every n ∈ Z.
The proof for higher algebraic K-theory can be found in [905, Theorem 9.8
on page 207], see also [843, Theorem 5.3.30 on page 295]. More general ver-
sions where twistings are allowed and additive categories are considered are
presented in [417, 419, 440, 514, 516, 593, 671].

Theorem 6.16 (Bass-Heller-Swan decomposition for algebraic K-
theory).

(i) There are isomorphisms of abelian groups, natural in R, for n ∈ Z

NKn(R)⊕Kn(R)
∼=−→ Kn(R[t]);

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)
∼=−→ Kn(R[t, t−1]).

There is a sequence, which is natural in R and exact, for n ∈ Z

0→ Kn(R)
Kn(k+)⊕−Kn(k−)−−−−−−−−−−−−→ Kn(R[t])⊕Kn(R[t−1])

Kn(l+)⊕Kn(l−)−−−−−−−−−−→ Kn(R[t, t−1])
Cn−−→ Kn−1(R)→ 0

where k+, k−, l+, and l− are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contrac-
tion, natural in R;
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(ii) If R is regular, then

NKn(R) = {0} for n ∈ Z;

Kn(R) = {0} for n ≤ −1.

6.3.5 Some Information about NK-groups

The proof of the next result can be found in Weibel [976, Corollary 3.2].

Theorem 6.17 (NKn(R)[1/N ] vanishes for characteristic N). Let R be
a ring of finite characteristic N . Then we get for n ∈ Z

NKn(R)[1/N ] = 0.

Theorem 6.18 (Vanishing criterion of NKn(RG) for finite groups).
Let R be a ring and let G be a finite group. Fix n ∈ Z. Suppose NKn(R) = 0.
Then we get

NKn(RG)[1/|G|] = 0.

Proof. This follows from Hambleton-Lück [440, Theorem A]. ut

The following result is taken from Hambleton-Lück [440, Corollary B].

Theorem 6.19 (p-elementary induction for NKn(RG)). Let R be a ring
and let G be a finite group. For all n ∈ Z, the sum of the induction maps⊕

E

NKn(RE)(p) → NKn(RG)(p),

is surjective where E runs through all p-elementary subgroups.

The following theorem due to Prasolov [798] is an extension of a result due
to Farrell [336] for n = 1 to n ≥ 1.

Theorem 6.20 (NKn(R) is trivial or infinitely generated for n ≥ 1).
Let R be a ring. Then NKn(R) is either trivial or infinitely generated as

abelian group for n ≥ 1.

Theorem 6.21 (Vanishing of NKn(Z[G× Zk]) for n ≤ 1, k ≥ 0 and
finite G of square-free order). Let G be a finite group whose order is
square-free. Then NKn(Z[G× Zk]) = 0 for n ≤ 1 and k ≥ 0.

Proof. Fix a prime p. We know from Example 5.15 that K1(Z[Z/p × Zk])
is finitely generated for every k ≤ 0. We conclude from Theorem 6.16 that
Kn(Z[Z/p × Zk]) is finitely generated for every n ≤ 1 and k ≥ 0 and hence
that NKn(Z[Z/p × Zk]) is finitely generated for every n ≤ 1 and k ≥ 0.
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Theorem 6.20 implies that NKn(Z[Z/p × Zk]) is trivial every n ≤ 1 and
k ≥ 0.

We conclude from [440, Theorem A] that for any ring R, any finite group
G, and any prime number p, there is a surjection⊕

P

NKn(RP )(p) → NKn(RG)(p),

where P runs through the p-subgroups of G. This implies that NKn(RG)
vanishes if NKn(RP )(p) vanishes for every prime p and every p-subgroup P
of G. In particular NKn(RG) vanishes for a finite group G of square-free
order, if NKn(R[Z/p])(p) vanishes for every prime number p. Put R = Z[Zk].

Then R[Z/p] = Z[Z/p×Zk] and RG = Z[G×Zk], and we know already that
NKn(R[Z/p])(p) vanishes for every prime number p, n ≤ 1 and k ≥ 0. Hence

NKn(Z[G × Zk]) = NKn(RG) vanishes for n ≤ 1 and k ≥ 0, if G is a finite
group of square-free order. ut

Theorem 6.21 has been proved in the case k = 0 by Harmon [450].

Exercise 6.22. Let G be a finite group of square-free order. Show for all
k ≥ 1

Kn(Z[G× Zk]) =


K1(ZG)⊕K0(ZG)k ⊕K−1(ZG)k(k−1)/2 if n = 1;

K0(ZG)⊕K−1(ZG)k if n = 0;

K−1(ZG) if n = −1;

{0} if n ≤ −2.

6.3.6 Algebraic K-Theory of Finite Fields

The following result has been proved by Quillen [804].

Theorem 6.23 (Algebraic K-theory of finite fields). Let Fq be a finite
field of order q. Then Kn(Fq) vanishes if n = 2k for some integer k ≥ 1, and
is a finite cyclic group of order qk − 1 if n = 2k − 1 for some integer k ≥ 1.

Recall that K0(F ) ∼= Z and Kn(F ) = {0} for n ≤ −1 if F is a field, see
Example 2.4 and Theorem 4.7.

6.3.7 Algebraic K-Theory of the Ring of Integers in a Number
Field

The computation of the higher algebraic K-groups of Z or, more gener-
ally, of the ring of integers R in an algebraic number field F , is very hard.
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Quillen [804] showed that these are finitely generated as abelian group. Their
ranks as abelian groups have been determined by Borel [143].

Theorem 6.24 (Rational Algebraic K-theory of ring of integers of
number fields). Let R be a ring of integers in an algebraic number field.
Let r1 be the number of distinct embeddings of F into R and let r2 be the
number of distinct conjugate pairs of embeddings of F into C with image not
contained in R. Then

Kn(R)⊗Z Q ∼=



{0} n ≤ −1;

Q n = 0;

Qr1+r2−1 n = 1;

Qr1+r2 n ≥ 2 and n = 1 mod 4;

Qr2 n ≥ 2 and n = 3 mod 4;

{0} n ≥ 2 and n = 0 mod 2.

We have Kn(Z) = {0} for n ≤ −1 and the first values of Kn(Z) for
n = 0, 1, 2, 3, 4, 5, 6, 7 are given by Z, Z/2, Z/2, Z/48, {0}, Z, {0}, Z/240.

The Lichtenbaum-Quillen Conjecture makes a prediction about the tor-
sion, see [614, 615], relating the algebraic K-groups to number theory via the
zeta-function. We refer to the survey article of Weibel [975], where a complete
picture about the algebraic K-theory of ring of integers in algebraic number
fields and in particular of K∗(Z) is given and a list of relevant references can
be found. See also Weibel [979, Section VI.10 on pages 527ff].

An outline how the next corollary follows from Theorem 6.49 can be found
in [805, page 29] and [843, page 294]. It is a basic tool for computations.

Corollary 6.25. Let R be a Dedekind domain with quotient field F . Then
there is an exact sequence

· · · → Kn+1(F )→
⊕
P

Kn(R/P )→ Kn(R)→ Kn(F )→
⊕
P

Kn−1(R/P )

· · · → K1(F )→
⊕
P

K0(R/P )→ K0(R)→ K0(F )→ 0

where P runs through the maximal ideals of R.

Exercise 6.26. Consider the part of the sequence

K1(Z)→ K1(Q)
∂1−→
⊕
p

K0(Fp)→ K0(Z)→ K0(Q)→ 0

of Corollary 6.25 for R = Z. Compute the five terms appearing in it. Guess
what the map ∂1 is and determine the others.
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Exercise 6.27. Show that the map Kn(Z) → Kn(Q) is injective if n = 2k
for k ≥ 1, is surjective if n = 2k − 1 for k ≥ 2, and rationally bijective for
n ≥ 2.

6.4 Algebraic K-Theory with Coefficients

By invoking the Moore space associated to Z/k, one can introduce K-theory
mod k, denoted by Kn(R;Z/k), for any integer k ≥ 2 and every n ∈ Z. Its
main feature is that there exists a long exact sequence

(6.28) · · · → Kn+1(R;Z/k)→ Kn(R)
k·id−−→ Kn(R)→ Kn(R;Z/k)

→ Kn−1(R)
k·id−−→ Kn−1(R)→ Kn−1(R;Z/k)→ · · · .

The next theorem is due to Suslin [916].

Theorem 6.29 (Algebraic K-theory mod k of algebraically closed
fields). The inclusion of algebraically closed fields induces isomorphisms on
K∗(−;Z/k).

Let p be a prime number. Quillen [804] has computed the algebraic K-
groups for any algebraic extension of the field Fp of p elements for every
prime p. One can determine Kn(Fp;Z/k) for the algebraic closure Fp of Fp
from (6.28). Hence one obtains Kn(F ;Z/k) for any algebraically closed field
of prime characteristic p by Suslin’s Theorem 6.29.

The next theorem is due to Suslin [917]. We will explain the topological
K-groups KTOP

n (R) and KTOP
n (C) of the C∗-algebras R and C in Subsec-

tion 10.3.2. There are mod k versions KTOP
n (R;Z/k) and KTOP

n (C;Z/k), for
which a long exact sequence analogous to the one of (6.28) exists.

Theorem 6.30 (Algebraic and topological K-theory mod k for R and
C). The comparison map from algebraic to topological K-theory induces for
all integers k ≥ 2 and all n ≥ 0 isomorphisms

Kn(R;Z/k)
∼=−→ KTOP

n (R;Z/k);

Kn(C;Z/k)
∼=−→ KTOP

n (C;Z/k).

Generalizations of Theorem 6.30 to C∗-algebras will be discussed in Sec-
tion 10.7.

Since KTOP
n (C) is Z for n even and vanishes for n odd and for every

algebraically closed field F of characteristic 0 we have an injection Q → F
for the algebraic closure Q of Q, Theorem 6.29 and Theorem 6.30 imply for
every algebraically closed field F of characteristic zero.
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Kn(F ;Z/k) ∼=


Z/k n ≥ 0, n even;

{0} n ≥ 1, n odd.

{0} n ≤ −1.

Exercise 6.31. Using the fact that KTOP
n (R) is 8-periodic and its values for

n = 0, 1, 2, 3, 4, 5, 6, 7 are given by Z, Z/2, Z/2, {0}, Z, {0}, {0}, {0}, compute
Kn(R;Z/k) and KTOP

n (R;Z/k) for n ∈ Z and k ≥ 3 an odd natural number.

6.5 Other Constructions of Connective Algebraic
K-Theory

The plus-construction works for rings and finitely generated free or projec-
tive modules. However, it turns out that it is important to consider more
general situations where one can feed in categories with certain extra struc-
tures. The main examples are Quillen’s Q-construction, see [805, §2], [843,
Chapter 5], [905, Chapter 4], designed for exact categories, the group comple-
tion construction, see [417, 890], designed for symmetric monoidal categories,
and Waldhausen’s wS•-construction, see [960] and Subsection 7.3.2, designed
for categories with cofibrations and weak equivalences. Given a ring R, the
category of finitely generated projective R-modules yields examples of the
type of categories above and the appropriate construction yields always the
same, namely, the K-groups as defined by the plus-construction above. The
Q-construction and exact categories can be used to define K-theory for the
category of finitely generated R-modules (dropping projective) or the cate-
gory of locally free OX -modules of finite rank over a scheme X. One impor-
tant feature is that the notion of exact sequences can be different from the
one given by split exact sequences, or, equivalently, by direct sums. Whereas
in Quillen’s setting one needs exact structures in an algebraic sense, Wald-
hausen’s wS•-construction is also suitable for categories where the input are
spaces and one can replace isomorphisms by weak equivalences.

We briefly recall the setup of exact categories beginning with additive cat-
egories. A category C is called small if its objects form a set. An additive
category A is a small category A such that for two objects A and B the mor-
phism set morA(A,B) has the structure of an abelian group, there exists a
zero-object, i.e., an object which is both initial and terminal, the direct sum
A ⊕ B of two objects A and B exists, and the obvious compatibility condi-
tions hold, e.g., composition of morphisms is bilinear. A functor of additive
categories F : A0 → A1 is a functor respecting the zero-objects such that for
two objects A and B in A0 the map morA0

(A,B) → morA1
(F (A), F (B))

sending f to F (f) respects the abelian group structures and F (A ⊕ B) is a
model for F (A)⊕ F (B).
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A skeleton D of a category C is a full subcategory such that D is small
and the inclusion D → C is an equivalence of categories, or, equivalently, for
every object C ∈ C there is an object D in D together with an isomorphism

C
∼=−→ D in C.

Definition 6.32 (Exact category). An exact category P is a full additive
subcategory of some abelian category A with the following properties:

• P is closed under extensions in A, i.e., for any exact sequence 0 → P0 →
P1 → P2 → 0 in A with P0, P2 in P we have P1 ∈ P;

• P has a small skeleton.

An exact functor F : P0 → P1 is a functor of additive categories that sends
exact sequences to exact sequences.

Examples of exact categories are abelian categories possessing a small
skeleton, the category of finitely generated projective R-modules, the cat-
egory of finitely generated R-modules, the category of vector bundles over
a compact space, the category of algebraic vector bundles over a projective
algebraic variety, and the category of locally free sheaves of finite rank on a
scheme.

An additive category becomes an exact category in the sense of Quillen
with respect to split exact sequences. On the other hand there are interesting
exact categories where the exact sequences are not necessarily split exact
sequences.

The Q-construction, see [805, §2], [843, Chapter 5], [905, Chapter 4], as-
signs to any exact category P its K-theory space K(P) and one defines
Kn(P) := πn(K(P)) for n ≥ 0. If P is the category of finitely generated pro-
jective R-modules, this definition coincides with the Definition 6.9 of Kn(R)
coming from the plus-construction.

The Q-construction allows to define algebraic K-theory for objects natu-
rally appearing in algebraic geometry, arithmetic geometry and number the-
ory, since these give exact categories as described above.

Example 6.33 (The category of nilpotent endomorphism). Let NIL(R)
be the exact category whose objects are pairs (P, f) of finitely generated pro-
jective R-modules together with nilpotent endomorphisms f : P → P . Its

K-theory Niln(R) := Kn(NIL(R)) splits as Kn(R) ⊕ Ñiln(R) for n ≥ 0

where Ñiln(R) is the cokernel of the homomorphism Kn(R)→ Kn(NIL(R))
induced by the obvious functor sending a finitely generated projective R-
module P to 0: P → P . We get for n ≥ 1

NKn(R) = Ñiln−1(R).

This has been considered for n = 1 already in Theorem 3.72. A proof, which
works also for the more general context of non-connective K-theory of addi-
tive categories where a twist with an automorphism is allows, can be found
in [671, Theorem 0.4], see also [419].
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6.6 Non-Connective Algebraic K-Theory of Additive
Categories

The approaches mentioned in Section 6.5 will always yield spaces K(R) such
that the algebraic K-groups are defined to be its homotopy groups. Since a
space has no negative homotopy groups, this definition will not encompass
the negative algebraic K-groups. In order to take these into account, one has
to find appropriate deloopings.

So the task is to replace the space K(R) by a (non-connective) spectrum
K(R) such that one can define Kn(R) by πn(K(R)) for n ∈ Z and this
definition coincides with the other definitions for all n ∈ Z. For rings this has
been achieved by Gersten [406] and Wagoner [954].

We would like to feed in additive categories.
The category of spectra SPECTRA will be introduced in Section 12.4. De-

note by ADDCAT the category of additive categories. There is an obvious
notion of the direct sum of two additive categories. We will use a construction
of Pedersen-Weibel [783], see also Schlichting [197], or Lück-Steimle [668] of
a functor

K : ADDCAT → SPECTRA, A 7→ K(A).(6.34)

Definition 6.35 (Algebraic K-groups of additive categories). We call
K(A) the non-connective K-theory spectrum associated to an additive cate-
gory. Define for n ∈ Z the n-th algebraic K-group of an additive category A
by

Kn(A) := πn(K(A)).

Definition 6.36 (Flasque and Eilenberg swindle). An additive category
A is called flasque if there exists a functor of additive categories S : A → A
together with a natural equivalence T : idA⊕S

∼=−→ S. Sometimes the pair
(S, T ) is called an Eilenberg swindle.

We conclude from Pedersen-Weibel [783], see also [197], or from Lück-
Steimle [668]

Theorem 6.37 (Properties of K(A)).

(i) If R is a ring and A is the additive category of finitely generated projective
R-modules, then Kn(A) coincides with Kn(R) for n ∈ Z;

(ii) Let F1 and F2 be functors of additive categories. If there exists a natural
equivalence of such functors from F1 to F2, then the maps of spectra K(F1)
and K(F2) are homotopic;
In particular a functor F : A → A′ of additive categories which is an
equivalence of categories induces a homotopy equivalence K(F ) : K(A)→
K(A′);

(iii) If A is flasque, then K(A) is weakly contractible.
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Exercise 6.38. Give a definition of K0(A) and K1(A) as abelian groups in
terms of generators and relations such that in the case where R is a ring and
A is the category of finitely generated projective R-modules, this definition
coincides with the ones appearing in Definitions 2.1 and 3.1. Show that K0(A)
and K1(A) are trivial if A is flasque.

Exercise 6.39. Let A be the category of countably generated projective R-
modules. Show that Kn(A) = 0 for all n ∈ Z.

Remark 6.40 (Non-connective K-theory spectra for exact catego-
ries). Schlichting [884] has constructed for an exact category P a delooping of
the spaceK(P). Thus he can assign to an exact category P a (non-connective)
spectrum K(P) and define Kn(P) := πn(K(P)) for n ∈ Z. If P is the category
of finitely generated projective R-modules, this definition coincides with our
previous definition of Kn(R). If the exact sequences in P are given by split
exact sequences, this definition agrees with the one of Definition 6.35 when
we consider P as an additive category.

We will use later the following construction for additive categories.
Given an additive category A, its idempotent completion Idem(A) is de-

fined to be the following additive category. Objects are morphisms p : A→ A
in A satisfying p ◦ p = p. A morphism f from p1 : A1 → A1 to p2 : A2 → A2

is a morphism f : A1 → A2 in A satisfying p2 ◦ f ◦ p1 = f . The identity of
an object (A, p) is given by the morphism p : (A, p) → (A, p). The structure
of an additive category on A induces the structure of an additive category
on Idem(A) in the obvious way. A functor of additive categories F : A → A′
induces a functor Idem(F ) : Idem(A) → Idem(A′) of additive categories by
sending (A, p) to (F (A), F (p)).

There is a obvious embedding

η(A) : A → Idem(A)

sending an object A to idA : A → A and a morphism f : A → B to the
morphism given by f again. A unital additive category A is called idempotent
complete, if η(A) : A → Idem(A) is an equivalence of additive categories, or,
equivalently, if for every idempotent p : A → A in A there exists objects B

and C and an isomorphism f : A
∼=−→ B⊕C in A such that f ◦p◦f−1 : B⊕C →

B⊕C is given by

(
idB 0
0 0

)
. The idempotent completion Idem(A) of a unital

additive category A is idempotent complete.

Theorem 6.41. The map η induces an equivalence

K(η) : K(A)
'−→ K(Idem(A))

on the non-connective K-theory spectra.

Proof. This follows from [931, Theorem A.9.1] and [668, Corollary 3.7]. ut
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Note that Theorem 6.41 is not true for the standard construction of the
connective K-theory of an additive category. Therefore we always replaces in
the construction of the connective K-theory spectrum A by its idempotent
completion Idem(A). This passage does not change Kn(A) for n ≥ 1, but
K0(A), see [931, Theorem A.9.1]. This is analogous to the fact that in previous
constructions of the connective K-theory of a ring we had taking the cross
product with K0(A), see Definition 6.9.

Let R be a ring. Let R-MODfgf and R-MODfgp respectively be the unital
additive category of finitely generated free R-modules and of finitely gener-
ated projective R-modules respectively. We obtain an equivalence of unital

additive categories Idem(R-MODfgf)
'−→ R-MODfgp by sending an object

(F, p) to im(p). Let R⊕ be the additive category which has a objects the
natural numbers 0, 1, 2, . . . and morphisms from m to n are given by (m,n)-
matrices over R. The composition is given by multiplication of matrices,
more precisely, given morphisms A : l → m and B : m → n, their composite
is AB : l→ m. The direct sum of of two objects m and n is the object m+n
and the direct sum of morphisms is given by the block sum of matrices. We
have the obvious equivalence of additive categories

(6.42) R⊕
'−→ R-MODfgf

which sends an object m to Rm and a morphism A : m → n to the R-
linear homomorphism rA : Rm → Rn, (s1, . . . , sm) 7→ (s1, . . . , sm)A given by
right multiplication with A. Thus we obtain an equivalence of unital additive
categories, natural in the unital ring R,

(6.43) ΘR : Idem
(
R⊕
) '−→ R-MODfgp.

Note that Idem
(
R⊕
)

is small, in contrast to R-MODfgp. The non-connective
K-theory spectrum of a ring K(R) is defined to be K(R⊕) for K defined
in (6.34). Then πn(K(R)) can be identified with all other definitions of Kn(R)
above for every n ∈ Z.

6.7 Survey on Main Properties of Algebraic K-Theory
of Exact Categories

Next we state some basic and important general results about algebraic K-
theory of exact categories. Comment 1 (by W.): This section may have
to be adapted to Chapter 8 when it is written.
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6.7.1 Additivity

For a proof of the next result we refer for instance to [805, Corollary 1 in §3
on page 22], [905, Corollary 4.3 on page 41], [979, Theorem 1.2 in Section V.I
on page 366] (at least in the connective setting), and [884, Corollary 4 in
Section 7].

Theorem 6.44 (Additivity Theorem for exact categories). Let 0 →
F0

i−→ F1
p−→ F2 → 0 be an exact sequence of functors Fk : P1 → P2 of exact

categories P1 and P2, i.e., i and p are natural transformations such that for

each object P the sequence 0 → F0(P )
i(P )−−−→ F1(P )

p(P )−−−→ F2(P ) → 0 is
exact. Then we get for the induced morphisms Kn(Fk) : Kn(P1) → Kn(P2)
for every n ∈ Z

Kn(F1) = Kn(F0) +Kn(F2).

6.7.2 Resolution Theorem

Let M and P be exact categories which are contained in the same abelian
category A. Suppose that P is a full subcategory ofM. A finite resolution of
an object M of M by objects in P is an exact sequence 0→ Pn → Pn−1 →
· · · → P1 → P0 →M → 0 for some natural number n. We say that P is closed
under extensions in M if for any exact sequence 0→ M0 → M1 → M2 → 0
inM with M0,M2 in P we have M1 ∈ P. For a proof of the next Theorem we
refer for instance to [805, Corollary 1 in §4 on page 25] or [905, Theorem 4.6
on page 41], [979, Theorem 3.1 in Section V.3 on page 385] (at least in the
connective setting), and [884].

Theorem 6.45 (Resolution Theorem). LetM and P be exact categories
which are contained in the same abelian category A. Suppose that P is a full
subcategory of M and is closed under extensions in M. Suppose that every
object in M has a finite resolution by objects in P.

Then the inclusion P →M induces for every n ∈ Z an isomorphism

Kn(P)
∼=−→ Kn(M).

Exercise 6.46. Let R be a regular ring. Show that for every n ∈ Z the
canonical map Kn(R)→ Gn(R) is bijective.



152 6 Higher Algebraic K-Theory

6.7.3 Devissage

For a proof of the next result we refer for instance to [805, Theorem 4 in §5 on
page 28], [905, Theorem 4.8 on page 42], or [979, Theorem 4.1 in Section V.4
on page 400].

Theorem 6.47 (Devissage). Let A be an abelian category. Let B be a full
abelian subcategory of A which is closed under taking subobjects, quotients,
and finite products in A. Suppose that each object A in A has a finite filtration
in A

0 = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An = A

such that Ai/Ai−1 is isomorphic to an object in B for i = 1, 2, . . . , n.
Then the inclusion of exact categories i : B → A induces an isomorphism

for n ≥ 0.

Note that in Theorem 6.47 the condition n ≥ 0 appears. To the author’s
knowledge it is not known whether Theorem 6.47 holds also for n ≤ −1. If
A is a Noetherian abelian category, then its negative K-groups vanish and
Theorem 6.47 holds also for negative K-groups of trivial reasons, see [884,
Theorem 7].

An object N in an abelian category is called simple if N 6= 0 and any
monomorphism M → N is the zero-homomorphism or an isomorphism. For a
simple object M its ring of automorphisms endA(M) is a skew-field (Schur’s
Lemma). An object N in an abelian category is called semisimple if it is
isomorphic to a finite direct sum of simple objects. A zero object is called an
object of length 0. Call the simple objects of an abelian category objects of
length ≤ 1. We define inductively for l ≥ 2 an object M to be of length ≤ l if
there exists an exact sequence 0→M1 →M →M2 → 0 for an object M1 of
length ≤ 1 and an object M2 of length ≤ (l− 1). An object is of finite length
if it has length ≤ l for some natural number l. For a proof of the following
corollary of Theorem 6.47 we refer to [805, Corollary 1 in §5 on page 28].

Corollary 6.48. LetA be an abelian category. Suppose that there is a subset
S of the set of objects of A with the property that any simple object in A
is isomorphic to precisely one object in S. Let Ass be the full subcategory
of A consisting of semisimple objects and let Afl be the full subcategory
consisting of objects of finite length. Then we obtain for every n ∈ Z, n ≥ 0
an isomorphism⊕

M∈S
Kn(endA(M))

∼=−→ Kn(Ass)
∼=−→ Kn(Afl).

In particular we get in the situation of Corollary 6.48 from Example 2.4
and Theorem 3.6.
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K0(Afl) ∼=
⊕
S

Z;

K1(Afl) ∼=
∏
S

endA(S)×/[endA(S)×, endA(S)×].

6.7.4 Localization

Theorem 6.49 (Localization). Let A be a small abelian category and let B
be an additive subcategory such that for any exact sequence 0→M0 →M1 →
M2 → 0 in A the object M1 belongs to B if and only if both M0 and M2 belong
to B. Then there exists a well-defined quotient abelian category A/B. It has
the same objects as A, and its morphisms are obtained from those in A by
formally inverting morphisms whose kernel and cokernel belong to B.

Then there are obvious functors B → A and A → A/B that induce a long
exact sequence

· · · → Kn+1(A/B)→ Kn(B)→ Kn(A)→ Kn(A/B)→ · · · .

The full description of A/B can be found in [905, Appendix B.3] or [979,
Section II.6 on page 119] A proof of the last theorem is given in [805, The-
orem 5 in §5 on page 29], [905, Theorem 4.9 on page 42], [979, Theorem 5.1
in Section V.5 on page 402] (at least in the connective setting), and [884,
Theorem 1].

The next example is taken from [979, Application 6.1 in Section V.6 on
page 406]

Example 6.50. Let R be a Noetherian ring and s be an element in the
center of R which is different from 0. Then one can consider the subcategory
of finitely generated s-torsion modules of the abelian category of finitely
generated R-modules and the localization sequence of Theorem 6.49 reduces
to a long exact sequence

· · · → Gn+1(R[s−1])→ Gn(R/(s))→ Gn(R)→ Gn(R[s−1])

· · · → G1(R[s−1])→ G0(R/(s))→ G0(R)→ G0(R[s−1])→ 0

where, roughly speaking, R[s−1] is obtained from R by inverting s.

Exercise 6.51. Let p be a prime number. Then we obtain a long exact se-
quence

· · · → Kn+1(Z[p−1])→ Kn(Fp)→ Kn(Z)→ Kn(Z[p−1])

· · · → K1(Z[p−1])→ K0(Fp)→ K0(Z)→ K0(Z[p−1])→ 0.
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6.7.5 Filtered Colimits

For a proof of the next Theorem we refer for instance to [805, (9) in §2
on page 20] or [905, Lemma 3.8 on page 35], [979, (6.4) in Section IV.6 on
page 321] (at least in the connective setting), and [884, Corollary 5].

Theorem 6.52 (K-theory and directed colimits).
Let A be an exact category. Let {Ai | i ∈ I} be a directed set of exact

subcategories of A, directed by inclusion such that A is the union of the
categories A in the sense that for every object A in A and every morphism
f : A→ A′ there is i ∈ I with A ∈ A and f ∈ Ai. Then the canoncial map

colimi∈I Kn(Ai)→ Kn(A)

is bijective for n ∈ Z.

Theorem 6.52 holds more generally for filtered colimits.

6.8 The K-Theoretic Farrell-Jones Conjecture for
Torsionfree Groups and Regular Rings

The Farrell-Jones Conjecture for algebraic K-theory, which we will formulate
in full generality in Conjecture 13.1, reduces for a torsionfree group and a
regular ring to the following conjecture. Under the additional assumption
that there is a finite model for BG it appears already in [486].

Conjecture 6.53 (Farrell-Jones Conjecture for torsionfree groups
and regular rings for K-theory). Let G be a torsionfree group. Let
R be a regular ring. Then the assembly map

Hn(BG; K(R))→ Kn(RG)

is an isomorphism for n ∈ Z.

Here H∗(−; K(R)) denotes the homology theory that is associated to the
(non-connective) K-spectrum K(R). Recall that Hn({•}; K(R)) is Kn(R)
for n ∈ Z, where here and elsewhere {•} denotes the space consisting of one
point. The space BG is the classifying space of the group G, which is up
to homotopy characterized by the property that it is a CW -complex with
π1(BG) ∼= G whose universal covering is contractible. The technical details
of the construction of Hn(−; K(R)) and the assembly map will be explained
in a more general setting in Sections 12.4 and 12.5.

The point of Conjecture 6.53 is that on the right-hand side of the assembly
map we have the group Kn(RG) we are interested in, whereas the left-hand
side is a homology theory and hence much easier to compute. A basic tool
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for the computation of a homology theory is the Atiyah-Hirzebruch spectral
sequence, which in our case has as E2-term E2

p,q = Hp(BG;Kq(R)) and
converges to Hp+q(BG; K(R)).

Remark 6.54 (The conditions appearing in Conjecture 6.53 are nec-
essary). The condition that G is torsionfree and that R is regular are nec-
essary in Conjecture 6.53. If one drops one of these conditions, one obtains
counterexamples as follows.

If G is a finite group, then we obtain an isomorphism

Kn(R)⊗Z Q ∼= Hn({•}; K(R))⊗Z Q
∼=−→ Hn(BG; K(R))⊗Z Q.

Hence Conjecture 6.53 would predict for a finite group that the change of rings

homomorphism Kn(R)⊗Z Q
∼=−→ Kn(RG)⊗Z Q is bijective. This contradicts

for instance Lemma 2.88.
In view of the Bass-Heller-Swan decomposition 6.16, Conjecture 6.53 is

true for G = Z in degree n only if NKn(R) vanishes.

Exercise 6.55. Let R be a regular ring. Let G = G1 ∗G0
G2 be an amalga-

mated free product of torsionfree groups, where G0 is a common subgroup
of G1 and G2. Suppose that Conjecture 6.53 is true for G0, G1, G2, and
G with coefficients in the ring R. Show that then there exists a long exact
Mayer-Vietoris sequence

· · · → Kn(RG0)→ Kn(RG1)⊕Kn(RG2)→ Kn(RG)

→ Kn−1(RG0)→ Kn−1(RG1)⊕Kn−1(RG2)→ · · ·

Exercise 6.56. Let R be a regular ring. Let φ : G→ G be an automorphism
of the torsionfree group G. Suppose that Conjecture 6.53 is true for G and
the semidirect product GoφZ with coefficients in the ring R. Show that then
there exists a long exact Wang sequence

· · · → Kn(RG)
id−Kn(φ)−−−−−−−→ Kn(RG)→ Kn(R[Goφ Z])

→ Kn−1(RG)
id−Kn−1(φ)−−−−−−−−→ Kn−1(RG)→ · · · .

Remark 6.57 (K∗(ZG) ⊗Z Q for torsionfree G). Rationally the Atiyah-
Hirzebruch spectral sequence always collapses and the homological Chern
character gives an isomorphism

ch:
⊕
p+q=n

Hp(BG;Q)⊗Q (Kq(R)⊗Z Q)
∼=−→ Hn(BG; K(R))⊗Z Q.

The Atiyah-Hirzebruch spectral sequence and the Chern character will
be discussed in a much more general setting in Subsection 12.6.1 and Sec-
tion 12.7.
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Because of Theorem 6.24 the left hand side of the isomorphism described in
Remark 6.57 specializes for R = Z to Hn(BG;Q)⊕

⊕∞
k=1Hn−(4k+1)(BG;Q).

Hence Conjecture 6.53 predicts for a torsionfree group G

Kn(ZG)⊗Z Q ∼= Hn(BG;Q)⊕
∞⊕
k=1

Hn−(4k+1)(BG;Q).(6.58)

Conjecture 6.59 (Nil-groups for regular rings and torsionfree groups).
Let G be a torsionfree group and let R be a regular ring. Then we get

NKn(RG) = 0 for all n ∈ Z.

Exercise 6.60. Show that a torsionfree group G satisfies Conjecture 6.59 for
all regular rings R if it satisfies Conjecture 6.53 for all regular rings R.

6.9 Mayer-Vietoris Sequences for Amalgamated Free
Products and Wang Sequences for HNN-Extensions

We have seen in the introduction that for the topological K-theory of reduced
group C∗-algebras there exist Mayer-Vietoris sequences associated to amalga-
mated free products, see (1.4), and long exact Wang sequences for semidirect
products of the shape G = HoφZ, see (1.5). These lead to the final formula-
tion of the Baum-Connes Conjecture 1.1. Because of Exercises 6.55 and 6.56
one can expect similar long exact sequences to exists for algebraic K-theory
of group rings for torsionfree groups and regular rings, but not in general, as
one can derive for instance from the Bass-Heller-Swan decomposition 6.16.

We want to explain the more complicated general answer for algebraic
K-theory of group rings, which is given by Waldhausen [956] and [957].

A ring R is called regular coherent if every finitely presented R-module
possesses a finite projective resolution. A ring R is regular if and only if it
is regular coherent and Noetherian. A group G is called regular or regular
coherent respectively if for any regular ring R the group ring RG is regular
or regular coherent respectively. If G = G1 ∗G0G2 for regular coherent groups
G1 and G2 and a regular group G0 or if G = H oφ Z for a regular group H,
then G is regular coherent. In particular Zn is regular and regular coherent,
whereas a non-abelian finitely generated free group is regular coherent but
not regular. For proofs of the claims above and for more information about
regular coherent groups we refer to [957, Theorem 19.1].

The maps of spectra appearing in the theorem below are all induced by
obvious functors between categories.

Theorem 6.61 (Waldhausen’s cartesian squares for non-connective
algebraic K-theory). Let G = G1 ∗G0 G2 be an amalgamated free product
and let R be a ring.



6.9 Mayer-Vietoris Sequences 157

(i) The exists a homotopy cartesian square of spectra

Nil(RG0;RG1, RG2)
j //

i

��

K(RG1) ∨K(RG2)

k1

��
K(RG0)

k0

// K(RG)

where Nil(RG0;RG1, RG2) is a certain non-connective Nil-spectrum as-
sociated to G = G1 ∗G0

G2 and R and K is the (non-connective) K-theory
spectrum;

(ii) There is a map f : K(RG0) ∨ K(RG0) → Nil(RG0;RG1, RG2) and for
k = 1, 2 a map gk : Nil(RG0;RG1, RG2) → K(RG0) with the following
properties. The composite gk ◦ f : K(RG0) ∨ K(RG0) → K(RG0) is the
projection to the k-th summand, the composite

K(RG0) ∨K(RG0)
f−→ Nil(RG0;RG1, RG2)

l−→ K(RG1) ∨K(RG2)

is homotopic to K(j1) ∨K(j2) for jk : G0 → Gk the canonical inclusion,
and i ◦ f is homotopic to id∨ id : K(RG0) ∨K(RG0)→ K(RG0);

(iii) If R is regular and G0 is regular coherent, then f : K(RG0) ∨K(RG0)→
Nil(RG0;RG1, RG2) is a weak homotopy equivalence;

(iv) The composite of the map ΩK(RG) → Nil(RG0;RG1, RG2) associated
to the homotopy cartesian square of assertion (i) with the canonical map
from Nil(RG0;RG1, RG2) to the homotopy cofiber of the map f induces a
split surjection on homotopy groups.

Proof. All these claims are proved for connectiveK-theory in Waldhausen [957,
11.2, 11.3, 11.6]. In [74, Section 9 and 10] the definitions and assertions are ex-
tended to the non-connective version except for assertion (iv). Assertion (iv)
can be derived from the connective version by using the Bass-Heller-Swan
decomposition 6.16. ut

Theorem 6.62 (Mayer-Vietoris sequence of an amalgamated free
product for algebraic K-theory). Let G = G1 ∗G0

G2 be an amalgamated
free product and let R be a ring. Denote by ik : G0 → Gk and jk : Gk → G the
obvious inclusions. Define NKn(RG0;RG1, RG2) to be the (n−1)-homotopy
group of the homotopy cofiber of the map f appearing in Theorem 6.61 (ii). Let
pn : Kn(RG) → NKn(RG0;RG1, RG2) be the split surjection coming from
Theorem 6.61 (iv). Then:

(i) We obtain a splitting

Kn(RG) ∼= ker(pn)⊕NKn(RG0;RG1, RG2);

(ii) There exists a long exact Mayer-Vietoris sequence sequence
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· · · ∂n+1−−−→ Kn(RG0)
Kn(i1)⊕Kn(i2)−−−−−−−−−−→ Kn(RG1)⊕Kn(RG2)

Kn(j1)−Kn(j2)−−−−−−−−−−→ ker(pn)
∂n−→ Kn−1(RG0)

Kn−1(i1)⊕Kn−1(i2)−−−−−−−−−−−−−→ Kn−1(RG1)⊕Kn−1(RG2)
Kn−1(j1)−Kn−1(j2)−−−−−−−−−−−−−→ · · · ;

(iii) If G0 is regular coherent and R is regular, then

NKn(RG0;RG1, RG2) = 0 for n ∈ Z

and the sequence of assertion (ii) reduces to the long exact sequence

· · · ∂n+1−−−→ Kn(RG0)
Kn(i1)⊕Kn(i2)−−−−−−−−−−→ Kn(RG1)⊕Kn(RG2)

Kn(j1)−Kn(j2)−−−−−−−−−−→ Kn(RG)
∂n−→ Kn−1(RG0)

Kn−1(i1)⊕Kn−1(i2)−−−−−−−−−−−−−→ Kn−1(RG1)⊕Kn−1(RG2)
Kn−1(j1)−Kn−1(j2)−−−−−−−−−−−−−→ · · · .

Exercise 6.63. Show that Theorem 6.61 implies Theorem 6.62.

Analogously one gets from Waldhausen [956] and [957] using [74, Section 9
and 10]

Theorem 6.64 (Wang sequence associated to an HNN-extension for
algebraic K-theory). Let α, β : H → K be two injective group homomor-
phisms. Let G be the associated HNN-extension and let j : K → G be the
canonical inclusion. Then there are certain Nil-groups NKn(RH,RK,α, β)
and homomorphisms pn : Kn(RG) → NKn(RH,RK,α, β) such that the fol-
lowing holds:

(i) There is a long exact Wang sequence

· · · ∂n+1−−−→ Kn(RH)
Kn(α)−Kn(β)−−−−−−−−−→ Kn(RK)

Kn(j)−−−−→ ker(pn)

∂n−→ Kn−1(RH)
Kn−1(α)−Kn−1(β)−−−−−−−−−−−−→ Kn−1(RK)

Kn−1(j)−−−−−→ · · · ;

(ii) The map pn : Kn(RG)→ NKn(RH,RK,α, β) is split surjective;
(iii) If R is regular and H is regular coherent, then NKn(RH,RK,α, β) van-

ishes for all n ∈ Z. In this case the Wang sequence reduces to

· · · ∂n+1−−−→ Kn(RH)
Kn(α)−Kn(β)−−−−−−−−−→ Kn(RK)

Kn(j)−−−−→ Kn(RG)

∂n−→ Kn−1(RH)
Kn−1(α)−Kn−1(β)−−−−−−−−−−−−→ Kn−1(RK)

Kn−1(j)−−−−−→ · · · .

Remark 6.65 (Wang sequence of a semidirect product G = K oφ Z
for algebraic K-theory). A semidirect product G = K oφ Z for a group
automorphism φ : K → K is a special case of an HNN-extensions, namely
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take H = K, α = id and β = φ. In this case the Wang sequence appearing
in Theorem 6.64 (i) takes the form

· · · ∂n+1−−−→ Kn(RK)
id−Kn(φ)−−−−−−−→ Kn(RK)

Kn(j)−−−−→ ker(pn)

∂n−→ Kn−1(RK)
id−Kn−1(φ)−−−−−−−−→ Kn−1(RK)

Kn−1(j)−−−−−→ · · ·

and we get an isomorphism

N+Kn(RK,φ)⊕N−Kn(RK,φ)
∼=−→ NKn(RK,RK, id, φ).

Here N±Kn(RK,φ) is the kernel of the split surjection Kn(RKφ[t±1]) →
Kn(RK) that is induced by the homomorphism RKφ[t±1] → RK obtained
by evaluation at t = 0.

Such a Wang sequence is established more generally for additive categories
in [671, Theorem 0.1].

We mention the following computation from [651, Corollary 1.14].

Theorem 6.66 (Vanishing of NKn(RK,φ)). Let R be a regular ring. Let

φ : K
∼=−→ K be an automorphism of the finite group K. Let P(K,R) be the

set of primes which divide the order of K and are not invertible in R.
Then for every n ∈ Z the abelian group N±Kn(RK,φ) vanishes after

inverting all primes in P(K,R). In particular we get N±Kn(RK,φ)⊗ZQ = 0
for all n ∈ Z.

6.10 Homotopy Algebraic K-Theory

Homotopy algebraic K-theory has been introduced for rings by Weibel [977].
He constructs for a ring R a spectrum KH(R) and defines

KHn(R) := πn(KH(R)) for n ∈ Z.(6.67)

The main feature of homotopy K-theory is that it is homotopy invariant,
i.e., for every ring R and every n ∈ Z the canonical inclusion induces an
isomorphism [977, Theorem 1.2 (i)]

KHn(R)
∼=−→ KHn(R[t]).(6.68)

Note that homotopy invariance does not hold for algebraic K-theory unless
R is regular, see Theorem 6.16.

A consequence of homotopy invariance is that we get for every ring R and
n ∈ Z isomorphisms, see [977, Theorem 1.2 (iii)],

KHn(R)⊕KHn−1(R)
∼=−→ KHn(RZ).(6.69)
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Hence the are no Nil-terms appearing for the trivial HNN-extension G ×
Z. It turns out that there are no Nil-phenomena concerning amalgamated
free products and HNN-extensions in general. Namely, we conclude from [74,
Theorem 11.3]

Theorem 6.70 (Mayer-Vietoris sequence of an amalgamated free
product for homotopy K-theory). Let G = G1∗G0

G2 be an amalgamated
free product and let R be a ring. Denote by ik : G0 → Gk and jk : Gk → G
the obvious inclusions.

Then there exists a Mayer-Vietoris sequence

· · · ∂n+1−−−→ KHn(RG0)
KHn(i1)⊕KHn(i2)−−−−−−−−−−−−→ KHn(RG1)⊕KHn(RG2)

KHn(j1)−KHn(j2)−−−−−−−−−−−−→ KHn(RG)
∂n−→ KHn−1(RG0)

KHn−1(i1)⊕KHn−1(i2)−−−−−−−−−−−−−−−→ KHn−1(RG1)⊕KHn−1(RG2)
KHn−1(j1)−KHn−1(j2)−−−−−−−−−−−−−−−→ · · · .

Theorem 6.71 (Wang sequence associated to an HNN-extension for
homotopy K-theory). Let α, β : H → K be two injective group homomor-
phisms. Let G be the associated HNN-extension and let j : K → G be the
canonical inclusion. Then there is a long exact Wang sequence

· · · ∂n+1−−−→ KHn(RH)
KHn(α)−KHn(β)−−−−−−−−−−−→ KHn(RK)

KHn(j)−−−−−→ KHn(RG)

∂n−→ KHn−1(RH)
KHn−1(α)−KHn−1(β)−−−−−−−−−−−−−−−→ KHn−1(RK)

KHn−1(j)−−−−−−→ · · · .

There is a natural map of (non-connective) spectra K(R)→ KH(R) and
hence one obtains natural homomorphisms

Kn(R)→ KHn(R) for n ∈ Z.(6.72)

This map is in general neither injective nor surjective. It is bijective if R is
regular by Theorem 6.16. In some sense homotopy algebraic K-theory is the
best approximation of algebraic K-theory by a homotopy invariant functor.

Exercise 6.73. Let R = R0⊕R1⊕R2⊕ . . . be a graded ring. Show that the

inclusion i : R0 → R induces isomorphisms KHn(R0)
∼=−→ KHn(R) for n ∈ Z.

The same discussion as for the Baum Conjecture in Subsection 1.2.3 leads
to the following conjecture.

Conjecture 6.74 (Farrell-Jones Conjecture for torsionfree groups
for homotopy K-theory). Let G be a torsionfree group. Then the as-
sembly map

Hn(BG; KH(R))→ KHn(RG)

is an isomorphism for every n ∈ Z and every ring R.
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The next result is taken from [87, Lemma 2.11].

Lemma 6.75.(i) Let R be a ring of finite characteristic N . Then the canon-
ical map from algebraic K-theory to homotopy K-theory induces an iso-
morphism

Kn(R)[1/N ]
∼=−→ KHn(R)[1/N ]

for all n ∈ Z;
(ii) Let H be a finite group. Then the canonical map from algebraic K-theory

to homotopy K-theory induces an isomorphism

Kn(Z[H])⊗Z Q
∼=−→ KHn(Z[H])⊗Z Q

for all n ∈ Z.

Conjecture 6.76 (Comparison of algebraic K-theory and homotopy
K-theory for torsionfree groups). Let R be a regular ring and let G be
a torsionfree group. Then the canonical map

Kn(RG)→ KHn(RG)

is bijective for all n ∈ Z.

Note that Conjecture 6.76 follows from Conjecture 6.53 and Conjec-
ture 6.74.

6.11 Algebraic K-Theory and Cyclic Homology

Fix a commutative ring k, referred to as the ground ring. Let R be a k-algebra.
We denote by HH⊗k∗ (R) the Hochschild homology of R relative to the ground
ring k, and similarly by HC⊗k∗ (R), HP⊗k∗ (R), and HN⊗k∗ (R) the cyclic, the
periodic cyclic, and the negative cyclic homology of R relative to k. Hochschild
homology receives a map from the algebraic K-theory, which is known as the
Dennis trace map. There are variants of the Dennis trace taking values in
cyclic, periodic cyclic, and negative cyclic homology (sometimes called Chern
characters), as displayed in the following commutative diagram.

HN⊗k∗ (R) //

h

��

HP⊗k∗ (R)

��
K∗(R)

ntr

88

dtr // HH⊗k∗ (R) // HC⊗k∗ (R).

(6.77)

For the definition of these maps, see [621, Chapters 8 and 11] and [658,
Section 5]. In [658] the question is investigated, which parts of Kn(RG)⊗ZQ
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can be detected by using the linear traces above. Here is an example, see [658,
Theorem 0.7].

Theorem 6.78 (Detection Result for Q and C as coefficients). For
every group G and every integer n ≥ 0, there exist injective homomorphisms⊕

(C)∈(FCY)

H∗(BNGC;Q)→ K∗(QG)⊗Z Q;

⊕
(g)∈con(G),|g|<∞

H∗(BCG〈g〉;C)→ K∗(CG)⊗Z C,

where we denote by (FCY) the conjugacy classes of finite cyclic subgroups of
G, by con(G) the set of conjugacy classes (g) of elements g ∈ G, by NGC the
normalizer of C ⊆ G, and by CG〈g〉 the centralizer of g ∈ G.

Remark 6.79. In [141], Bökstedt, Hsiang and Madsen define the cyclotomic
trace, a map out of K-theory, which takes values in topological cyclic homol-
ogy. The cyclotomic trace map can be thought of as an even more elaborate
refinement of the Dennis trace map. In contrast to the Dennis trace, the
cyclotomic trace has the potential to detect almost all of the rationalized
K-theory of an integral group ring. This question is investigated in detail
by Lück-Rognes-Reich-Varisco [659, 660]. More information will be given in
Subsection 15.11.2.

6.12 Notes

A good source of survey articles about algebraic K-theory is the handbook
of K-theory, edited by Friedlander and Grayson [391]. There the relevance
of higher algebraic K-theory for algebra, topology, arithmetic geometry, and
number theory is explained. Other good sources are the books by Rosen-
berg [844], Srinivas [905], and Weibel [979].

The relation of the exact sequences for amalgamated free products and
HNN-extensions appearing in Sections 6.9 and 6.10 to the Farrell-Jones Con-
jecture is explained in Section 15.7.

The exact sequences for amalgamated free products and HNN-extensions
appearing in Sections 6.9 and 6.10 are the main ingredients in the proof that
Conjecture 6.53 holds for a certain class of groups CL, see [957, Theorem 19.4
on page 249] in the connective case and [74, Corollary 0.12] in general. The
class CL is described and analyzed in [957, Definition 19.2 on page 248 and
Theorem 17.5 on page 250] and [74, Definition 0.10]. It is closed under taking
subgroups and contains for instance all torsionfree one-relator groups.

We remark that algebraic K-theory does commute with infinite products
for additive categories, see [200] and also [556, Theorem 1.2], but not with
infinite products of rings.
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The question, under which condition the long exact sequence associated
to a pullback of rings, see Remark 4.4 and Remark 5.11, can be extended to
higher algebraic K-theory, is investigated by Land-Tamme [601], actually for
ring spectra.

The group K2n(RG) is finite for every finite group G, every ring of integer
R in a number field, and every n ≥ 1, see [580, Theorem 1.1].

In Chapter 8 we will deal with (non-connective) K-theory in the more
general setting of higher categories. A non-connective K-theory spectrum
associated to homotopical Waldhausen categories wil be briefly discussed in
Section 21.4.
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Chapter 7

Algebraic K-Theory of Spaces

7.1 Introduction

We give a brief introduction to the K-theory of spaces called A-theory. This
theory was initialized by Waldhausen. Its benefit is that it allows to study in-
teresting spaces of geometric structures such as groups of diffeomorphisms or
homeomorphism of manifolds, pseudoisotopy spaces, spaces of h-cobordisms,
and Whitehead spaces. It is the instance of a very successful strategy in topol-
ogy to extend algebraic notions to spaces. Other examples of this type are
topological Hochschild homology and topological cyclic homology.

7.2 Pseudoisotopy

Let I denote the unit interval [0, 1]. A topological pseudoisotopy of a compact
manifold M is a homeomorphism h : M × I → M × I that restricted to
M×{0}∪∂M×I is the obvious inclusion. The space P (M) of pseudoisotopies
is the group of all such homeomorphisms, where the group structure comes
from composition. If we allow M to be non-compact, we will demand that
h has compact support, i.e., there is a compact subset C ⊆ M such that
h(x, t) = (x, t) for all x ∈M − C and t ∈ [0, 1].

Pseudoisotopies play an important role if one tries to understand the ho-
motopy type of the topological group Top(M) of selfhomeomorphisms of a
closed manifold M . We will see in Section 9.21 how the results about pseu-
doisotopies discussed in this section combined with surgery theory lead to
quite explicit results about the homotopy groups of Top(M) for an aspheri-
cal closed manifold M .

There is a stabilization map P (M) → P (M × I) given by crossing a
pseudoisotopy with the identity on the interval I and the stable pseudoisotopy
space is defined as P(M) = hocolimj→∞ P (M × Ij). There exist also smooth
versions PDIFF(M) and PDIFF(M) = hocolimj→∞ PDIFF(M × Ij). The PL-
version agrees for closed manifolds of dimension ≥ 6 with the topological
version, see [178].

The natural inclusions P (M) → P(M) and PDIFF(M) → PDIFF(M) in-
duce isomorphisms on the i-th homotopy group if the dimension n of M is
large compared to i, roughly for i ≤ n/3, see [179, 452, 454, 495]. Meanwhile
one has more information about this range by Goodwillie, Krannich, Kupers,

165
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Randal-Williams, and others, see for instance [413, 566, 567]. A consequence
of their work, is that for a closed Spin-manifold M of dimension d ≥ 10, the
rational connectivity of PDIFF(M)→ PDIFF(M) is at most d−4 and is equal
to d − 4 if M is simply connected. If M is the disk Dd for d ≥ 10, then the
rational connectivity of PDIFF(M)→ PDIFF(M) is d− 4.

Next we want to define a delooping of P (M). Let p : M × Rk × I → Rk
denote the natural projection. For a manifold M the space Pb(M ;Rk) of
bounded pseudoisotopies is the space of all selfhomeomorphism h : M ×Rk×
I →M×Rk×I satisfying: (i) The restriction of h to M×Rk×{0}∪∂M×R×
[0, 1] is the inclusion, (ii) the map h is bounded in the Ri-direction, i.e., the
set {p◦h(y)−p(y) | y ∈M ×Rk× I} is a bounded subset of Rk, and (iii) the
map h has compact support in the M -direction, i.e., there is a compact subset
C ⊆M such that h(x, y, t) = (x, y, t) for all x ∈M −C, y ∈ Ri and t ∈ [0, 1].
There is an obvious stabilization map Pb(M ;Rk)→ Pb(M×I;Rk) and a sta-
ble bounded pseudoisotopy space Pb(M ;Rk) = hocolimj→∞ Pb(M × Ij ;Rk).
There is a homotopy equivalence Pb(M ;Rk)→ ΩPb(M ;Rk+1), see [455, Ap-
pendix II]. Hence the sequences of spaces Pb(M ;Rk) for k = 0, 1, 2, . . . and
Ω−iPb(M) for i = 0,−1,−2, . . . define an Ω-spectrum P(M). Analogously
one defines the differentiable bounded pseudoisotopies PDIFF

b (M ;Rk) and an
Ω-spectrum PDIFF(M).

Definition 7.1 ((Non-connective) pseudoisotopy spectrum). We call
the Ω-spectra P(X) and PDIFF(X) associated to a topological space X the
(non-connective) pseudoisotopy spectrum and the smooth (non-connective)
pseudoisotopy spectrum of X.

Remark 7.2 (Strict Functoriality). A priori the pseudoisotopy space and
its non-connective version are only homotopy functors in the following sense.
They assign to a map between manifolds only a homotopy class of maps
between the pseudoisotopy spaces and not a specific map. At least the ho-
motopy class of maps between the pseudoisotopy spaces depends only on the
homotopy class of the map between manifolds we started with. The homo-
topy class of the identity is sent to the homotopy class of the identity and
the construction is compatible with composition up to homotopy. Moreover,
it is a priori not clear what the values of the pseudoisotopy space on general
topological spaces are.

There are several places in the literature where a construction as a strict
functor from the category of topological spaces to the category of non-
connective spectra is indicated, but it seems to be the case that the only
places where all the details of this non-trivial extensions are carried out in the
smooth, topological and PL category are the PhD-theses of Enkelmann [329]
and Pieper [794]. This is important for the construction of the assembly map
appearing in the Farrell-Jones Conjecture for pseudoisotopy spaces 15.61,
since we want the pseudoisotopy functor to digest for instance classifying
spaces of groups and groupoids, which obviously are not compact manifolds
in general, and to construct the assembly map we need strict functoriality.
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Theorem 7.3 (Pseudoisotopy is a homotopy-invariant functor). Let
f : X → Y be a weak homotopy equivalence. Then the induced maps

P(f) : P(X)→ P(Y );

PDIFF(f) : PDIFF(X)→ PDIFF(Y ),

are weak homotopy equivalences.

Proof. See [455, Proposition 1.3]. ut

Remark 7.4. There is also a PL-version PPL(X) of P(X). Since the canon-
cial map PPL(X) → P(X) is a weak homotopy equivalence, we do not con-
sider it further.

7.3 Whitehead Spaces and A-Theory

7.3.1 Categories with Cofibrations and Weak Equivalences

The following definition is a generalization of the notion of an exact category
of Definition 6.32 in the sense of Quillen. It allows to deal with spaces instead
of algebraic objects such as modules. It is due to Waldhausen.

A category C is called pointed if it comes with a distinguished zero-object,
i.e., an object that is both initial and terminal.

Definition 7.5 (Category with cofibrations and weak equivalences).
A category with cofibrations and weak equivalences is a small pointed category
with a subcategory coC, called category of cofibrations, in C and a subcategory
wC, called category of weak equivalences, in C such that the following axioms
are satisfied:

(i) The isomorphisms in C are cofibrations, i.e., belong to coC;
(ii) For every object C the map ∗ → C is a cofibration, where ∗ is the distin-

guished zero-object;

(iii) If in the diagram A Boo
ioo f // C the left arrow is a cofibration, the

pushout

A //
i //

f

��

B

f
��

C //
i // D

exists and i is a cofibration;
(iv) The isomorphisms in C are contained in wC;
(v) If in the commutative diagram
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B

'
��

Aoooo //

'
��

C

'
��

B′ A′oooo // C ′

the horizontals arrow on the left are cofibrations, and all vertical arrows
are weak equivalences, then the induced map on the pushout of the upper
row to the pushout of the lower row is a weak homotopy equivalence.

Example 7.6 (Exact categories are categories with cofibrations and
weak equivalences). Let P ⊆ A be an exact category in the sense of
Definition 6.32. The zero-object is just a zero-object in the abelian category
A. A cofibration in P is a morphism i : A → B that occurs in an exact
sequence 0 → A → B → C → 0 of P. The weak equivalences are given by
the isomorphisms.

Exercise 7.7. Let C be the category of finite projective R-chain complexes.
Define cofibrations to be chain maps i∗ : C∗ → D∗ such that in : Cn → Dn is
split injective for all n ≥ 0. Define weak equivalences to be homology equiva-
lences. Show that C is a category with cofibrations and weak equivalences in
the sense of Definition 7.5 ignoring the fact that C is not small.

Example 7.8 (The category R(X) of retractive spaces). Let X be a
space. A retractive space over X is a triple (Y, r, s) consisting of a space
Y and maps s : X → Y and r : Y → X such that s is a cofibration and
r ◦ s = idX . A morphism from (Y, r, s) to (Y ′, r′, s′) is a map f : X → X ′

satisfying r′ ◦ f = r and f ◦ s = s′. The zero-object is (X, idX , idX). A
morphism f : (Y, r, s) → (Y ′, r′, s′) is declared to be a cofibration if the un-
derlying map of spaces f : Y → Y ′ is a cofibration. Now there are several
possibilities to define weak equivalences. One may require that f : Y → Y ′ is
a homeomorphism, a homotopy equivalence, weak homotopy equivalence, or
a homology equivalence with respect to some fixed homology theory. Then
one obtains a category R(X) with cofibrations and weak equivalences in the
sense of Definition 7.5 except that R(X) is not small.

To achieve that R(X) is small and later to get interesting K-theory, one
may for instance require that (Y,X) is a relative CW -complex which is rel-
atively finite, and s : X → Y is the inclusion and morphisms to be cellu-
lar maps. Denote this category with cofibrations and weak equivalences by
Rf (X) where we choose all weak homotopy equivalences as weak equivalences
and inclusion of relative CW -complexes as cofibrations.

7.3.2 The wS•-Construction

Let C be a category with cofibrations and weak equivalences. Next we briefly
recall Waldhausen’s wS•-construction, see [960, Section 1.3].
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For an integer n ≥ 0 let [n] be the ordered set {0, 1, 2, . . . , n}. Let ∆
be the category whose set of objects is {[n] | n = 0, 1, 2 . . .} and whose
set of morphisms from [m] to [n] consists of the order preserving maps. A
simplicial category is a contravariant functor from ∆ to the category CAT
of categories. Analogously, a simplicial category with cofibrations and weak
equivalences is a contravariant functor from ∆ to the category CAT cof,weq

of categories with cofibrations and weak equivalences. Now we assign to C a
simplicial category with cofibrations and weak equivalences S•C as follows.
Define SnC to be the category for which an object is a sequence of cofibrations

A0,1
k0,1−−→ A0,2

k0,2−−→ · · · k0,n−1−−−−→ A0,n together with explicit choices of quotient
objects pri,j : A0,j → Ai,j = A0,j/A0,i for i, j ∈ {1, 2, . . . , n}, i < j, i.e., we
fix pushouts

A0,i

k0,j−1◦···◦k0,i//

��

A0,,j

pri,j

��
0 // Ai,j .

Morphisms are given by a collection of morphisms {fi,j} which make the
obvious diagram commute.

With these explicit choices of quotient objects, it is easy to define the
relevant face and degeneracy maps. For instance the face map di : SnC →
Sn−1C is given for i ≥ 1 by dropping A0,i and for i = 0 by passing to
A0,2/A0,1 → A0,3/A0,1 → · · · → A0,n/A0,1. An arrow in SnC is declared to
be a cofibration if each arrow Ai,j → A′i,j is a cofibration and analogously for
weak equivalences.

We obtain a simplicial category wS•C by considering the category of weak
equivalences of S•C. Let |wS•C| be the geometric realization of the simpli-
cial category wS•C, which is the geometric realization of the bisimplicial set
obtained by the composite of the functor nerve of a category with wS•C.

Definition 7.9 (Algebraic K-theory space of a category with cofi-
brations and weak equivalences). Let C be a category with cofibrations
and weak equivalences. Its algebraic K-theory space K(C) is defined by

K(C) := Ω|wS•C|.

The 1-skeleton in the S• direction of |wS•C| is obtained from |wSC| ×
[0, 1] = |wS1C| × ∆1 by collapsing {∗} × [0, 1] ∪ |wSC| × {0} to a point
because of |wS0| = {•}. Hence there is a canonical map |wC| → Ω|wS•C|
that is the adjoint of the obvious identification of the 1-skeleton in the S•-
direction of |wS•C| with the reduced suspension |wC| ∧ S1. If we apply the
construction to SnC, we obtain a map of spaces |wSnC| → Ω|wS•SnC|. The
collection of these maps for n ≥ 0 yields a map of simplicial spaces and hence
by geometric realization a map of spaces |wS•C| → Ω|wS•S•C|. By iterating
this construction, we obtain a sequence of maps
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|wC| → Ω|wS•C| → ΩΩ|wS•S•C| → ΩΩΩ|wS•S•S•C| → · · ·

such that all maps except the first one are weak homotopy equivalences. So
K(C) is an infinite loop space beyond the first term.

7.3.3 A-Theory

Next we recall Waldhausen’s definition of A-theory of a topological space,
see [960, Chapter 2].

Definition 7.10 (Connective A-theory). Let X be a topological space.
Let Rf (X) be the category with cofibrations and weak equivalences defined
in Example 7.8. Define the A-theory space A(X) associated to X to be the
algebraic K-theory space K(Rf (X)) in the sense of Definition 7.9.

Remark 7.11 (The wS•-construction encompasses the Q-construction).
Waldhausen’s construction encompasses theQ-construction of Quillen, see [960,
Section 1.9].

As in the case of algebraic K-theory of rings or pseudoisotopy, it will be
crucial for us to consider a non-connective version. Vogell [949] has defined a
delooping of A(X) yielding a non-connective Ω-spectrum A(X) for a topo-
logical space. The idea is similar to the construction of the (non-connective)
pseudoisotopy spectrum in Section 7.2, where one considers parametrizations
over Rn and imposes control conditions. This construction actually yields a
covariant functor from the category of topological spaces to the category of
Ω-spectra

A : TOP → Ω-SPECTRA.(7.12)

Definition 7.13 (Non-connective A-theory). We call A(X) the (non-
connective) A-theory spectrum associated to the topological space X. We
write for n ∈ Z

An(X) := πn(A(X)).

Note that An(X) agrees with πn(A(X)) for n ≥ 1 if A(X) is the space
appearing in Definition 7.10. Actually there is a map of spectra, natural in
X,

i(X) : A(X)→ A(X)(7.14)

which induces isomorphisms πn(i(X)) : πn(A(X))
∼=−→ πn(A(X)) for n ≥ 1.

Remark 7.15 (π0(A(X))). If X is path connected, then A0(X) ∼= Z. The
isomorphism comes from taking the Euler characteristic of a relatively finite
relative CW -complex (Y,X).
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One may replace in the definition of A(X) the category Rf (X) by the
full subcategory of R(X) of those triples (Y, r, s) such that (Y,X) is a rel-
ative CW -complex consisting of countably many cells, s : X → Y is the
inclusion and the object (Y, r, s) is up to homotopy the retract of an object
(Y ′, r′, s′) such that (Y ′, X) is a relatively finite relative CW -complex. Then
πn(A(X)) is unchanged for n ≥ 1, whereas π0(A(X)) can now be identified
with K0(Z[π1(X)]) if X is path connected. The identification comes from
taking an appropriate finiteness obstruction. With this new definition the
map π0(i) : π0(A(X))→ π0(A(X)) is bijective.

For the proof of the next result see [960, Proposition 2.1.7].

Theorem 7.16 (A-theory is a homotopy-invariant functor). Let f : X →
Y be a weak homotopy equivalence. Then the induced maps

A(f) : A(X)→ A(Y );

A(f) : A(X)→ A(Y ),

are weak homotopy equivalences.

Let X be a connected space with fundamental group π = π1(X), which

admits a universal covering pX : X̃ → X. Consider an object in Rf (X). Re-
call that it is given by a relatively finite relative CW -complex (Y,X) together

with a map r : Y → X satisfying r|X = idX . Let Ỹ → Y be the π-covering ob-

tained from pX : X̃ → X by the pullback construction applied to r : Y → X.
The cellular Zπ-chain complex C∗(Ỹ , X̃) of the relative free π-CW -complex

(Ỹ , X̃) is a finite free Zπ-chain complex. This yields a functor of categories
with cofibrations and weak equivalences from Rf (X) to the category of finite
free Zπ-chain complexes. The algebraic K-theory of the category of finite
free Zπ-chain complexes agrees with the one of the finitely generated free
Zπ-modules. Hence we get a natural map of spectra called linearization map

L(X) : A(X)→ K(Zπ1(X)).(7.17)

The next result follows by combining [950, Section 4] and [959, Proposi-
tion 2.2 and Proposition 2.3].

Theorem 7.18 (Connectivity of the linearization map). Let X be a
connected CW -complex. Then:

(i) The linearization map L(X) of (7.17) is 2-connected, i.e., the map

Ln(X) := πn(L(X)) : An(X)→ Kn(Zπ1(X))

is bijective for n ≤ 1 and surjective for n = 2;
(ii) Rationally the map Ln(X) is bijective for all n ∈ Z provided that X is

aspherical.
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Exercise 7.19. Show that the canonical map of spectra A({•}) → A({•})
is a weak homotopy equivalence.

Remark 7.20. We obtain from the transformation L of (7.17) for every
group G and every n ∈ Z a commutative diagram

(7.21) Hn(BG; A({•}))

Hn(idBG;L({•}))
��

// An(BG)

Ln(BG)

��
Hn(BG; K(Z)) // Kn(ZG)

whose horizontal arrows are assembly maps. We conclude from Theorem 7.18
that its vertical arrows are bijective for n ≤ 1, surjective for n = 2, and ratio-
nally bijective for all n ∈ Z. Hence the upper horizontal arrow is rationally
bijective if and only if the lower horizontal arrow is rationally bijective. Recall
that Conjecture 6.53 says that the lower horizontal map is bijective. So one
may wonder whether the upper horizontal is always bijective. The answer is
no, already for G = Z the assembly map

Hn(BZ; A({•})) = An−1({•})⊕An({•})→ An(BZ) = A(S1)

is known to be not surjective by the following consideration.
Let NAn({•}) be the Nil-term occurring in the Bass-Heller-Swan-isomor-

phisms for non-connective A-theory, see [493, 494],

(7.22) An(S1) = An({•})⊕An−1({•})⊕NAn({•})⊕NAn({•}).

We conclude NAn({•}) = {0} for n ≤ 1 and NAn({•})⊗Z Q = {0} for n ∈ Z
from (7.21) and [669, Theorem 0.3]. On the other hand, NAn({•}) for n =
2, 3 is an infinite-dimensional F2–vector space. For more information about
NAn({•}) we refer to Grunewald-Klein-Macko [428] and Hesselholt [461].

Exercise 7.23. Show that the map linearization map

L2(S1) : A2(S1)→ K2(Zπ1(S1))

is not injective using the fact that Wh2(Z) vanishes.

7.3.4 Whitehead Spaces

Waldhausen [959, 960] defines the functor Wh(X) from spaces to infinite
loop spaces, which can be viewed as connective Ω-spectra, and a fibration
sequence
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X+ ∧A({•})→ A(X)→Wh(X).(7.24)

Here X+ ∧ A({•}) → A(X) is an assembly map. After taking homotopy
groups, it can be compared with the algebraic K-theory assembly map that
appears in Conjecture 6.53 via a commutative diagram

πn(X+ ∧A({•}))

∼=
��

// πn(A(X))

��
πn(X+ ∧A({•})) = Hn(X; A({•}))

Hn(X;L)

��

// πn(A(X))

πn(L)

��
Hn(Bπ1(X); K(Z)) // Kn(Zπ1(X)).

(7.25)

Here the vertical arrows from the first row to the second row come from the
map i of (7.14). The left one of these is bijective for n ∈ Z by Exercise 7.19
and the right one of these is bijective for n ≥ 1. As already discussed in
Remark 7.20, the lower vertical arrows from the second row to the third row
come from the linearization map L of (7.17) and because of Theorem 7.18
the left lower vertical arrow is bijective for n ≤ 1 and rationally bijective
for n ∈ Z. In the case where X is aspherical, the lower right vertical map
πn(L) is bijective for n ≤ 1 and rationally bijective for all n ∈ Z because of
Theorem 7.18. Because of (7.24) and the fact that

Ω2 Wh(X) ' P(X),(7.26)

see [307, Section 9] and [962], Conjecture 6.53 implies rational vanishing
results for the groups πn(P(M)) if M is an aspherical closed manifold.

Theorem 7.27 (Homotopy groups of Wh(BG) and P(BG) rationally
for torsionfree G). Let G be a torsionfree group. Suppose that Conjec-
ture 6.53 holds for G and R = Z. Then we get for all n ≥ 0

πn(Wh(BG))⊗Z Q = 0;

πn(P(BG))⊗Z Q = 0.

Exercise 7.28. Show that π1(Wh(BG)) is Wh(G).

There is also a smooth version of the Whitehead space WhDIFF(X) defined
as homotopy cofiber

Σ∞(X+)→ A(X)→WhDIFF(X)(7.29)

where Σ∞(X+) → A(X) factors as the unit map Σ∞(X+) = X+ ∧ S →
Σ∞(X+) ∧ A({•}) and the assembly map Σ∞(X+) ∧ A({•}) → A(X). We
have
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Ω2 WhDIFF(X) ' PDIFF(X).(7.30)

Again there is a close relation to A-theory via the natural splitting of con-
nective spectra due to Waldhausen [959, 961, 962]

A(X) ' Σ∞(X+) ∨WhDIFF(X).(7.31)

Here Σ∞(X+) denotes the suspension spectrum associated to X+. Since for
every space πn(Σ∞(X+))⊗Z Q ∼= Hn(X;Q), Conjecture 6.53 combined with
Remark 6.57 and Theorem 7.18 yields the following result.

Theorem 7.32 (Homotopy groups of WhDIFF(BG) and PDIFF(BG) ra-
tionally for torsionfree G). Let G be a torsionfree group. Suppose that
Conjecture 6.53 holds for R = Z and G. Then we get for all n ≥ 0

πn(WhDIFF(BG))⊗Z Q ∼=
∞⊕
k=1

Hn−4k−1(BG;Q);

πn(PDIFF(BG))⊗Z Q ∼=
∞⊕
k=1

Hn−4k+1(BG;Q).

Note that Theorem 7.27 and Theorem 7.32 is a key ingredient in the
computation of the homotopy groups of Top(M) and Diff(M) for a closed
(smooth) manifolds M , as they appear in Theorem 9.192 and Theorem 9.193.

Exercise 7.33. Show that there is no connected closed manifold M such that
the homomorphism induced by the forgetful map πn(WhDIFF(M)) ⊗Z Q →
πn(Wh(M)) ⊗Z Q is bijective for all n ≥ 0. Use the fact that the composite
of the obvious inclusion of WhDIFF(X) into Σ∞(X+)∨WhDIFF(X) with the
inverse of the splitting (7.31) and the map A(X) → Wh(X) of (7.24) is up
to homotopy the obvious forgetful map WhDIFF(M)→Wh(M).

Remark 7.34. There are also non-connective versions Wh of the Whitehead
space Wh defined by the homotopy fibration sequence of non-connective spec-
tra

X+ ∧A({•})→ A(X)→Wh(X)(7.35)

and WhDIFF(X) of the smooth Whitehead space WhDIFF(X) defined to be
the homotopy cofiber in the sequence of non-connective spectra

Σ∞(X+)→ A(X)→WhDIFF(X)(7.36)

such that the result above have non-connective versions working for all n ∈ Z.

Integral computations of the homotopy groups of Whitehead spaces are
much harder. We at least state one example, which follows directly from [330,
Theorem 1.3].
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Theorem 7.37 (Homotopy groups of Wh(BG) of a torsionfree hy-
perbolic group G). Let G be a torsionfree hyperbolic group. Then we get
for n ∈ Z an isomorphism

πn(Wh(BG)) ∼=
⊕
(C)

NAn({•})⊕NAn({•})

where (C) ranges over the conjugacy classes of maximal infinite cyclic sub-
groups C of G and NAn({•}) has been introduced in (7.22).

In particular, πn(Wh(BG)) = 0 for n ≤ 1.

7.4 Notes

One of the basic tools to investigate algebraic K-theory of spaces is the
Additivity Theorem, see [697] and [960, Theorem 1.4.2]. If C is a category
with cofibrations and weak equivalences, we can assign to it a category with
cofibrations and weak equivalences E(C) whose objects are exact sequences

A
i−→ B

p−→ C, where exact means that the map i is a cofibration and the
following diagram is a pushout

A
i //

��

B

p

��
∗ // C

Theorem 7.38 (Additivity Theorem for categories with cofibrations
and weak equivalences). Let F1 and F3 respectively be the functors
E(C) → C of categories with cofibrations and weak equivalences sending an

object A
i−→ B

p−→ C to A and C respectively. Then we obtain a weak homotopy
equivalence

K(F1)×K(F3) : K(E(C)) '−→ K(C)×K(C).

Further useful tools are the Approximation Theorem, see [960, Theo-
rem 1.6.7], the Fibration Theorem, see [960, Theorem 1.6.4], and the Co-
finality Theorem, see [960, Theorem 1.5.9], which give criterions to decide
when a functor of categories with cofibrations and weak equivalences induces
a weak homotopy equivalence on the K-theory spaces.

To the author’s knowledge, it is not known how to define a non-connective
K-theory spectrum for an arbitrary Waldhausen category. If we restrict our-
selves to homotopical Waldhausen category, a non-connective K-theory spec-
trum has been defined by Bunke-Kasprowski-Winges [173, Definition 2.37],
which we will recall in Section 21.4, where one can also find the statements
of the Approximation Theorem, the Fibration Theorem, and the Cofinality
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Theorem in the non-connective case. The usefulness of these theorems become
clear when one inspects the proof Theorem 21.5.

There is also a space of parametrized h-cobordisms H(M) for a closed to-
pological manifold M . Roughly speaking, the space is designed such that
a map N → H(M) is the same as a bundle over N whose fibers are h-
cobordisms over M . The set of path component π0(H(M)) agrees with the
isomorphism classes of h-cobordisms over M . In particular the s-Cobordism
Theorem 3.47 is equivalent to the statement that for dim(M) ≥ 5 we obtain a

bijection π0(H(M))
∼=−→Wh(π1(M)) coming from taking the Whitehead tor-

sion, or, equivalently, that we obtain a bijection π0(H(M))
∼=−→ π0(ΩWh(M)).

There is also a stable version, the space of stable parametrized h-cobordisms
K(M) = hocolimj→∞H(M × Ij).

Theorem 7.39 (The stable parametrized h-cobordism Theorem). If
M is a closed topological manifold, then there is a homotopy equivalence

K(M)
'−→ ΩWh(M).

There is also a smooth version of the result above. For the proof and more
information about the stable parametrized h-cobordism Theorem we refer
to [962].
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Chapter 8

Algebraic K-theory of Higher
Categories

8.1 Introduction

Comment 2 (by W.): This chapter should be filled in by Christoph.

8.2 To do

Comment 3 (by W.): The list below contains certain things which should
be addressed in this chapter:

• Introduce the notion of a right-exact ∞-category . We will denote them by
C. Recall that A is reserved for additive categories (and exact categories).
Comment 4 (by W.): Add a list of references where one can find basics
about higher categories, for instance [230, 456, 597, 674, 675, 676, 835].
Comment 5 (by W.): Add a list of references where one can find basics
about the algebraic K-theory of higher categories, for instance [136].

• Add a discussion what the advantage of the passage to right-exact ∞-
category are.

• We neet to explain the (non-connective) algebraic K-theory spectrum as-
sociated to a right-exact ∞-category. Or more generally, we should con-
sider any lax monoidal finitary localising invariant H or just of a localizing
invariant .

• Describe the universal property of the algebraic K-theory of right-exact
∞-categories.

• Introduce the notion of a right-exact G-∞-category ;
• Construct for a right-exact G-∞-category the relevant contravariant func-

tor to the category CATREX of right-exact ∞-category

GROUPOIDS ↓ G→ CATREX, pr: G → I(G) 7→
∫
G
C ◦ pr .

Composing it with the functor sending a right-exact ∞-category to its
non-connective K-theory spectrum, yields the desired functor

KC : GROUPOIDS ↓ G→ SPECTRA,(8.1)

which will give the equivariant homology theory H?
∗(−; KC), see Theo-

rem 12.30 and Subsection 13.3.1.

177
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• We have to explain why an additive category A defines a right-exact
∞-category C(A) and the functor (8.1) for C(A) agrees with the func-
tor (13.10). The candidate is

C(A) = Chb(A)[h−1].

• The construction has to be compared with Schlichting’s definition of non-
connective K-theory for exact categories, see [884] and Remark 6.40.

• In which sense can one define module categories (of perfect modules) over
group rings with ring spectra as coefficients and interprete them in term
of higher categories? This is related to the question whether one can for-
mulate a Farrell-Jones Conjecture with coefficients in ring spectra.

• Explain why Waldhausen’s A theory functor corresponds to the algebraic
K-theory of an appropriate right-exact ∞-category; Comment 6 (by
W.): When this is done, we should update the references appearing in the
proof of Theorem 15.63 (iii).

• Introduce the Swan group in the setting of right-exact G-∞-categories
and explain why the results of Bob Oliver [755, 756] lead to interesting
induction results, see [942].
Later we have to figure out which of the reduction theorems for the families
in Section 13.10 carry over in a possibly modified form to the setting of
right-exact G-∞-categories.

• We shall discuss some basics, the localisation theorem, devissage, the the-
orems of the heart, Bass-Heller-Swan decomposition, and so on.

• Shall we mention for instance [598] [601]?

8.3 Why Should One Consider Hhigher Categories in
the Farrell-Jones-Conjecture

It is out of question that higher categories has become a very important tool
in many branches of mathematics in the last years, including K-theory. Here
we want briefly to discuss its relevance in connection with the Isomorphism
Conjectures.

If one goes through the list of applications of the Farrell-Jones Conjec-
ture in Section 13.12, one sees that for all them except the applications to
the computations of homotopy groups of automorphisms of aspherical closed
manifolds it suffices to consider rings as coefficients. For the computations
of homotopy groups of automorphisms of aspherical closed manifolds, it is
enough to know the Farrell-Jones Conjecture for A-theory, which has already
been treated in detail in [330]. The passage from rings to additive categories
is not directly relevant for applications, but is clearly motivated by the facts
that it allows to handle also twisted group rings and orientation characters
and ensures all the useful inheritance properties. At the time of writing we
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know no application of the Farrell-Jones Conjecture to prominent problems
in algebra, geometry, group theory, or topology where it does not suffice to
deal with rings as coefficients or with the A-theory version and one is forced
to consider higher categories. We also think that computations using cyclo-
tomic traces have come to their limit concerning the detection of the algebraic
K-theory of integral group rings.

Nevertheless, we expect that in the future the version of the Farrell-Jones
Conjecture for higher categories will become important. Actually there are
already instances where the passage to higher categories was necessary to get
information about the classical setting. The constructions of natural trans-
formations from the topological K-theory to the algebraic L-theory of C∗-
algebra have been poorly (and incorrectly) treated in the classical setting,
but in very satisfactory way using higher category theory in [599, 600] and
thus open the door to a link between the Farrell-Jones Conjecture and the
baum-Connes Conjecture as explained in Subsection 15.14.4. Even for com-
putations of the topological K-theory of C∗-algebras methods from higher
category theory are useful and actually needed, see for instance [600, Theo-
rem B].

So far the L-theoretic version of the Farrell-Jones Conjecture has only
been established for additive categories with involution. Christoph Winges
and the author of the book expect that it can be generalized to the setting
of higher categories and proved for all Dress-Farrell-Hsiang-Jones groups.

Another related topic is Hermitian K-theory in the setting of higher cate-
gories and all its applications, see for instance Calmès, Dotto, Harpaz, Hebe-
streit, Land, Moi, Nardin, Nikolaus and Steimle [183, 181, 182, 184].

8.4 Leftover

Comment 7 (by W.): This is a section which Christoph has already written
some time ago. Some parts of it may be used in the chapter.

The language of homotopical algebra (and∞-categories in particular) pro-
vides a framework in which the algebraic K-theory of group rings (or additive
categories) and Waldhausen’s A-theory can be treated on equal footing. The
plus-construction described in Section 6.2 can be generalized to apply to E1-
ring spectra [320, Section VI.7]. The resulting K-theory functor reduces to
the functor of of Definition 6.9 by precomposing with the functor that sends
an ordinary ring to its associated Eilenberg-MacLane spectrum. It is a folk
theorem that the A-theory of a path-connected space X is equivalent to the
algebraic K-theory of the spherical group ring S[ΩX], see for example [616].
In particular, there is an equivalence A(BG) ' K(S[G]) for every group G.
We ignore the question of a non-connective algebraic K-theory functor for
the moment since we are going to switch to a slightly different perspective in
a moment.
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Just as in the case of ordinary rings, one can only formulate a Farrell-
Jones Conjecture for group rings over an E1-ring spectrum R after promoting
the assignment G/H 7→ K(R[H]) to a functor on the orbit category of G.
In analogy to Section 13.3 however, it is worthwhile to pass directly to an
even more general setting in which the Farrell-Jones Conjecture enjoys the
same inheritance properties as the Full Farrell-Jones Conjecture formulated
in Section 13.7.

We find such a setting by considering algebraic K-theory as a functor
defined on stable ∞-categories. See [674, Chapter 1] for fundamentals on
stable ∞-categories and [136, Section 9] for a description of non-connective
algebraic K-theory as a functor K : Catst

∞ → SPECTRA from the∞-category
of stable∞-categories to the∞-category of spectra. In the sequel, we assume
some familiarity with the basics of higher category theory.

In slightly greater generality, one can also allow right-exact ∞-categories,
i.e. pointed and finitely cocomplete ∞-categories, as input for the alge-
braic K-theory functor K. The inclusion functor from Catst

∞ to the ∞-
category Catrex

∞,∗ of right-exact ∞-categories admits a left adjoint Stab.
When applied to the ∞-category of finite spaces, this construction spe-
cialises to the (∞-category associated to) the classical Spanier-Whitehead
category of finite spectra. The unit of this adjunction induces an equivalence
K(C) ∼−→ K(Stab(C)) for every right-exact ∞-category, so the right-hand
term might as well be considered a definition of K as a functor on Catrex

∞,∗.
To formulate the Farrell-Jones Conjecture with coefficients in right-exact

∞-categories, we proceed as follows. Denote by BG the∞-category given by
the one-object groupoid with automorphism group G. Consider a right-exact
∞-category C with a (right) G-action, i.e. a functor C : BGop → Catrex

∞,∗.
There is a canonical functor j : BGop → Or(G) that sends the unique object
of BG to the transitive G-set G and each element g ∈ G to the G-equivariant
map rg : G→ G given by right multiplication with g. Since Catrex

∞,∗ is cocom-
plete, we can take the left Kan extension j!C : Or(G)→ Catrex

∞,∗ of C along j
and compose this functor with K to obtain the Or(G)-spectrum

KC : Or(G)
j!C−−→ Catrex

∞,∗
K−→ SPECTRA.

The universal property of P(Or(G)) implies that the Or(G)-spectrum KC is
the same as a colimit-preserving functor

HG(−; KC) : P(Or(G))→ SPECTRA.

By Elmendorf’s theorem, the ∞-category P(Or(G)) := Fun(Or(G)op,Spc)
of presheaves on Or(G) is a model for the ∞-category of G-spaces. Under
this identification, HG(−; KC) is precisely the G-homology theory associated
to the Or(G)-spectrum KC . Moreover, we use this identification to consider
the classifying space EF (G) of G for a family F of subgroups as an object in
P(Or(G)).
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Consequently, we may say that a group G satisfies the K-theoretic Farrell-
Jones Conjecture with coefficients in right-exact ∞-categories if the essen-
tially unique map EVCY(G) → ∗ to the final object ∗ of P(Or(G)) induces
for every right-exact ∞-category C with G-action an equivalence

HG(EVCY(G); KC)→ HG(∗; KC)

in SPECTRA. Similarly, there is a Full K-theoretic Farrell-Jones Conjecture
with right-exact coefficients which asks that every wreath product G oF with
a finite group F satisfies the Farrell-Jones Conjecture with coefficients in
right-exact ∞-categories.

As promised, this formulation of the K-theoretic Farrell-Jones conjecture
encompasses both the K-theoretic Farrell-Jones Conjecture with coefficients
in additive G-categories and the Farrell-Jones Conjecture for A-theory:

(i) For an additive G-category A, we obtain a stable ∞-category

A := Chb(A)[h−1]

by localizing the category Chb(A) of bounded chain complexes in A at the
collection of chain homotopy equivalences h. This construction is functo-
rial, so A is a stable ∞-category with G-action.
If we apply the above construction to C, the resulting G-homology theory
HG(−; KC) is equivalent to theG-homology theoryHG(−,KA) considered
in Conjecture 13.11, see [169, Example 1.6].

(ii) Let Z be a free G-CW-complex where we assume for convenience that
G acts on the right. Then we may regard Z as an object in the func-
tor category Fun(BGop,Spc). Since Catrex

∞,∗ is cocomplete, it is ten-
sored over spaces. Denoting the right-exact ∞-category of pointed and
compact (i.e. finitely dominated) spaces by Spcω∗ , we obtain a right-
exact ∞-category Z ⊗ Spcω∗ with G-action. The G-homology theory
HG(−; KZ⊗Spcω∗ ) is equivalent to the G-homology theory HG(−; AG

Z ) con-
sidered in Conjecture, see [169, Example 1.9 & Corollary 7.71].

Comment 8 (by W.): The next theorem will become a consequence of
Theorem 15.63 (iii), see Remark 13.21.

Theorem 8.2 (The Farrell-Jones Conjecture for coefficients in right-
exact∞-categories). Theorem 16.1 holds verbatim for the Full K-theoretic
Farrell-Jones Conjecture with right-exact coefficients.

Proof. See [172, Theorem 1.6 and Section 8]. ut

In addition, the evident analogs of Theorem 13.33 and of the split in-
jectivity results from Section 16.6 hold for the assembly map associated to
right-exact ∞-categories with G-action [169, Theorem 6.52 & Theorem 1.1].

The recent work of Calmès, Dotto, Harpaz, Hebestreit, Land, Moi, Nardin,
Nikolaus and Steimle [183, 181, 182, 184] provides a framework in which these
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results can be further generalized to treat the K-theoretic and L-theoretic
Farrell-Jones Conjectures in a unified way.

Exercise 8.3. Test. (There is a section with solutions to the exercises.)

8.5 Notes
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Chapter 9

Algebraic L-Theory

9.1 Introduction

In Remark 3.53 we have briefly discussed the Surgery Program. Starting with
a map of degree one of connected closed manifolds f : M → N , the goal is
to modify it by surgery steps so that it becomes a homotopy equivalence.
This will change the source but not the target, and can only be carried out
if the map f is covered by bundle data. With the bundle data, one is able
to make the map highly connected, but in the last step towards a homotopy
equivalence an obstruction, the surgery obstruction, occurs, whose appearance
is among other things due to Poincaré duality. This surgery obstruction takes
values in the algebraic L-groups Ln(ZG) for G = π1(N). An introduction
to the surgery obstruction and the algebraic L-groups will be given in this
chapter. These are the key tools for the classification of manifolds besides the
s-Cobordism Theorem 3.47. All this will be carried out in Sections 9.2 to 9.5
in the even dimensional case and in Sections 9.6 to 9.8 in the odd dimensional
case.

We will also consider normal maps between compact manifolds with
boundary that induce homotopy equivalences on the boundary. Here we want
to achieve a homotopy equivalence by surgery on the interior, see Section 9.9.

Since the Whitehead torsion appears in the s-Cobordism Theorem 3.47, it
will be important to achieve a simple homotopy equivalence and not only a
homotopy equivalence by surgery. This leads to the simple surgery obstruction
and decorated L-groups, see Section 9.10. The various decorated L-groups are
linked by Rothenberg sequences. The L-theoretic analogue of the Bass-Heller-
Swan decomposition for K-theory is the Shaneson splitting.

We will present the L-theoretic Farrell-Jones Conjecture for torsionfree
groups 9.114, which relates the algebraic L-groups Ln(ZG) to the homology
of BG with coefficient in the L-theory spectrum, analogous to the Farrell-
Jones Conjecture for torsionfree groups and regular rings for K-theory 6.53.
This together with the Surgery Exact Sequence of Section 9.12 opens the door
to many applications. We will discuss the Novikov Conjecture 9.137 about
the homotopy invariance of higher signatures and the Borel Conjecture 9.160
about the topologically rigidity of aspherical closed manifolds. Moreover, we
deal with the problems whether a given finitely presented Poincaré duality
group occurs as the fundamental group of an aspherical closed manifold, see
Section 9.17, of which hyperbolic groups have spheres as their boundary, see
Section 9.18, the stable Cannon Conjecture, see Section 9.19, and when does

183
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a product decomposition of the fundamental group of an aspherical closed
manifold already implies a product decomposition of the manifold itself, see
Section 9.20. Automorphism groups of aspherical closed manifolds are treated
in Section 9.21. A brief survey on computations of L-theory of group rings of
finite groups is presented in Section 9.22.

This chapter is an extract of [652].

9.2 Symmetric and Quadratic Forms

9.2.1 Symmetric Forms

Definition 9.1 (Ring with involution). A ring with involution R is an
associative ring R with unit together with an involution of rings

: R→ R, r 7→ r,

i.e., a map satisfying r = r, r + s = r+ s, r · s = s · r, and 1 = 1 for r, s ∈ R.

If R is commutative, we can equip it with the trivial involution r = r.
Below we fix a ring R with involution. Module is to be understood as left

module unless explicitly stated otherwise.

Example 9.2 (Involutions on groups rings). Let w : G → {±1} be a
group homomorphism. Then the group ring RG inherits an involution, the
so-called w-twisted involution, that sends

∑
g∈G rg · g to

∑
g∈G w(g) · rg · g−1.

Remark 9.3 (Dual modules). The main purpose of the involution is to
ensure that the dual of a left R-module can be viewed as a left R-module
again. Namely, let M be a left R-module. Then M∗ := homR(M,R) carries
a canonical right R-module structure given by (fr)(m) = f(m) · r for a
homomorphism of left R-modules f : M → R and m ∈ M . The involution
allows us to view M∗ = homR(M,R) as a left R-module, namely, define rf
for r ∈ R and f ∈M∗ by (rf)(m) := f(m) · r for m ∈M .

Notation 9.4. Given a finitely generated projective R-module P , denote by

e(P ) : P
∼=−→ (P ∗)∗ the canonical isomorphism of (left) R-modules that sends

p ∈ P to the element in (P ∗)∗ given by P ∗ → R, f 7→ f(p).

We will often use the following elementary fact. Let f : P → Q be a ho-
momorphism of finitely generated projective R-modules. Then the following
diagram commutes
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P
f //

∼=e(P )

��

Q

e(Q)∼=
��

(P ∗)∗
(f∗)∗

// (Q∗)∗.

(9.5)

Exercise 9.6. Show that the map e(P ) : P → (P ∗)∗ of Notation (9.4) is a
well-defined isomorphism of finitely generated projective R-modules, is com-
patible with direct sums and is natural, i.e., the diagram (9.5) commutes.

Definition 9.7 (Non-singular ε-symmetric form). Let ε ∈ {±1}. An ε-
symmetric form (P, φ) over an associative ring R with involution is a finitely
generated projective (left) R-module P together with an R-map φ : P → P ∗

such that the composite P
e(P )−−−→ (P ∗)∗

φ∗−→ P ∗ agrees with ε · φ.
A morphism f : (P, φ) → (P ′, φ) of ε-symmetric forms is an R-homomor-

phism f : P → P ′ satisfying f∗ ◦ φ′ ◦ f = φ.
We call an ε-symmetric form (P, φ) non-singular if φ is an isomorphism.

If ε is 1 or −1 respectively, we often replace ε-symmetric by symmetric
or skew-symmetric respectively. The direct sum of two ε-symmetric forms is
defined in the obvious way. The direct sum of two non-singular ε-symmetric
forms is again a non-singular ε-symmetric form.

Remark 9.8 (ε-symmetric forms as pairings). We can rewrite an ε-
symmetric form (P, φ) as a pairing

λ : P × P → R, (p, q) 7→ φ(p)(q).

The conditions that φ is R-linear and that φ(p) is R-linear for all p ∈ P
translates to

λ(p, r1 · q1 + r2 · q2, ) = r1 · λ(p, q1) + r2 · λ(p, q2);

λ(r1 · p1 + r2 · p2, q) = λ(p1, q) · r1 + λ(p2, q) · r2.

The condition φ = ε · φ∗ ◦ e(P ) translates to λ(q, p) = ε · λ(p, q).

If we consider the real numbers R as a ring with involution by the trivial
involution, then a non-singular 1-symmetric form φ on a finite dimensional
R-vector space V such that φ(x)(x) ≥ 0 holds for all x ∈ Rn is the same as
a scalar product on V . If we consider the complex numbers C as a ring with
involution by taking complex conjugation, then the corresponding statement
holds for a finite dimensional complex vector space.

Definition 9.9 (The standard hyperbolic ε-symmetric form). Let P
be a finitely generated projective R-module. The standard hyperbolic ε-
symmetric form Hε(P ) is given by the R-module P ⊕ P ∗ and the R-
isomorphism
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φ : (P ⊕ P ∗)

 0 1
ε 0


−−−−−→ P ∗ ⊕ P id⊕e(P )−−−−−→ P ∗ ⊕ (P ∗)∗

ρ−→ (P ⊕ P ∗)∗

where ρ is the obvious R-isomorphism.

If we write the standard hyperbolic ε-symmetric form Hε(P ) as a pairing,
see Remark 9.8, we obtain

(P ⊕ P ∗)× (P ⊕ P ∗)→ R, ((p, α), (p′, α′)) 7→ α′(p) + ε · α(p′).

9.2.2 The Signature

Consider a non-singular symmetric bilinear pairing s : V ×V → R for a finite
dimensional real vector space V , or, equivalently, a non-singular symmetric
form of finitely generated free R-modules. Choose a basis for V and let A be
the square matrix describing s with respect to this basis. Since s is symmetric
and non-singular, A is symmetric and invertible. Hence A can be diagonalized
by an orthogonal matrix U to a diagonal matrix whose entries on the diagonal
are non-zero real numbers. Let n+ be the number of positive entries and n−
be the number of negative entries on the diagonal. These two numbers are
independent of the choice of the basis and the orthogonal matrix U . Namely
n+ is the maximum of the dimensions of subvector spaces W ⊂ V , on which
s is positive-definite, and analogous for n−. Obviously n+ + n− = dimR(V ).

Definition 9.10 (Signature). Define the signature of the non-singular sym-
metric bilinear pairing s : V ×V → R for a finite dimensional real vector space
V to be the integer

sign(s) := n+ − n−.

Define the signature of a non-singular symmetric form over Z to be the
signature of the associated non-singular symmetric form over R.

Lemma 9.11. Let s : V ×V → R be a non-singular symmetric bilinear pair-
ing for a finite dimensional real vector space V . Then sign(s) = 0 if and only
if there exists a subvector space L ⊂ V such that dimR(V ) = 2 · dimR(L) and
s(a, b) = 0 for a, b ∈ L.

Proof. Suppose that sign(s) = 0. Then one can find an orthogonal (with
respect to s) basis {b1, b2, . . . , bn+

, c1, c2, . . . , cn−} such that s(bi, bi) = 1 and
s(cj , cj) = −1 holds. Since 0 = sign(s) = n+ − n−, we can define L to be the
subvector space generated by {bi + ci | i = 1, 2, . . . , n+}. One easily checks
that L has the desired properties.

Suppose such an L ⊂ V exists. Choose subvector spaces V+ and V− of V
such that s is positive-definite on V+ and negative-definite on V− and that
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V+ and V− are maximal with respect to this property. Then V+ ∩ V− = {0}
and V = V+ ⊕ V−. Obviously V+ ∩ L = V− ∩ L = {0}. From

dimR(V±) + dimR(L)− dimR(V± ∩ L) ≤ dimR(V ),

we conclude dimR(V±) ≤ dimR(V )−dimR(L). Since 2·dimR(L) = dimR(V ) =
dimR(V+) + dimR(V−) holds, we get dimR(V±) = dimR(L). This implies

sign(s) = dimR(V+)− dimR(V−) = dimR(L)− dimR(L) = 0.

ut

If M is an orientable connected closed manifold of dimension d, then
Hd(M) is infinite cyclic. An orientation on M is equivalent to a choice of
generator [M ] ∈ Hd(M) called fundamental class. This definition extends to
a (not necessarily connected) orientable closed manifold M of dimension d
by defining [M ] ∈ Hd(M) to be the image of {[C] | C ∈ π0(M)} under the

canonical isomorphism
⊕

C∈π0(M)Hdim(M)(C)
∼=−→ Hdim(M)(M).

Example 9.12 (Intersection pairing). Let M be a closed oriented mani-
fold of even dimension 2n. Then we obtain a (−1)n-symmetric form on the
finitely generated free R-module Hn(M ;R)

i : Hn(M ;R)×Hn(M ;R)→ R

by sending ([x], [y]) for x, y ∈ Hn(M ;R) to 〈x∪y, [M ]R〉 where 〈u, v〉 denotes
the Kronecker pairing and [M ]R is the image of the fundamental class [M ]
under the change of rings homomorphism Hn(M ;Z)→ Hn(M ;R). It is non-
singular by Poincaré duality.

Next we define a fundamental invariant of a closed oriented manifold,
namely, its signature. This is the first kind of surgery obstruction we will
encounter.

Definition 9.13 (Signature of a closed oriented manifold). Let M be
a closed oriented manifold of dimension n. If n is divisible by four, then
the signature sign(M) of M is defined to be the signature of its intersection
pairing. If n is not divisible by four, define sign(M) = 0.

One easily checks sign(M) =
∑
C∈π0(M) sign(C).

Exercise 9.14. Let M be an oriented closed 4k-dimensional manifold. Let
χ(M) be its Euler characteristic. Show sign(M) ≡ χ(M) mod 2.

The signature can also be defined for oriented compact manifolds with pos-
sibly non-empty boundary, see for instance [652, Definition 5.84 on page 138],
and has the following properties.

Theorem 9.15 (Properties of the signature of oriented compact
manifolds).
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(i) The signature is an oriented bordism invariant, i.e., if M is a (4k + 1)-
dimensional oriented compact manifold with boundary ∂M , then

sign(∂M) = 0;

(ii) Let M and N be oriented compact manifolds and f : ∂M → ∂N be an ori-
entation reversing diffeomorphism. Then M ∪f N inherits an orientation
from M and N and

sign(M ∪f N) = sign(M) + sign(N);

(iii) Let M and N be oriented compact manifolds. Then we get

sign(M ×N, ∂(M ×N)) = sign(M,∂M) · sign(N, ∂N);

(iv) Let p : M →M be a finite covering with d sheets of oriented closed mani-
folds. Then

sign(M) = d · sign(M);

(v) If the oriented oriented connected closed manifolds M and N are oriented
homotopy equivalent, then

sign(M) = sign(N);

(vi) If M is an oriented closed manifold and M− is obtained from M by re-
versing the orientation, then

sign(M−) = − sign(M).

Proof. (i) Let i : ∂M → M be the inclusion. Then the following diagram
commutes

H2k(M ;R)
H2k(i) //

−∩[M,∂M ]R ∼=
��

H2k(∂M ;R)
δ2k //

−∩∂4k+1([M,∂M ]R) ∼=
��

H2k+1(M,∂M ;R)

−∩[M,∂M ]R ∼=
��

H2k+1(M,∂M ;R)
∂2k+1 // H2k(∂M ;R)

H2k(i) // H2k(M ;R).

This implies dimR(ker(H2k(i))) = dimR(im(H2k(i))). Since R is a field, we get
from the Kronecker pairing an isomorphism H2k(M ;R) ∼= (H2k(M ;R))∗ and
analogously for ∂M . Under these identifications H2k(i) becomes (H2k(i))∗.
Hence dimR(im(H2k(i))) = dimR(im(H2k(i))). From

dimR(H2k(∂M ;R)) = dimR(ker(H2k(i))) + dimR(im(H2k(i)))

we conclude

dimR(H2k(∂M ;R)) = 2 · dimR(im(H2k(i))).
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We have for x, y ∈ H2k(M ;R)

〈H2k(i)(x) ∪H2k(i)(y), ∂4k+1([M,∂M ]R)〉
= 〈H4k(i)(x ∪ y), ∂4k+1([M,∂M ]R)〉
= 〈x ∪ y,H4k(i) ◦ ∂4k+1([M,∂M ]R)〉
= 〈x ∪ y, 0〉
= 0.

If we apply Lemma 9.11 to the non-singular symmetric bilinear pairing

H2k(∂M ;R)⊗R H
2k(∂M ;R)

∪−→ H4k(∂M ;R)
〈−,∂4k+1([M,∂M ]R)〉−−−−−−−−−−−−−→ R

with L the image of H2k(i) : H2k(M ;R) → H2k(∂M ;R), we see that the
signature of this pairing is zero.

(ii) This is due to Novikov. For a proof see for instance [53, Proposition 7.1
on page 588].

(iii) See for instance [652, Lemma 5.85 (ii) on page 139].

(iv) For a smooth manifold M this follows from Atiyah’s L2-index theo-
rem [46, (1.1)]. Topological closed manifolds are treated in [875, Theorem 8].

(v) The two intersection pairings are isomorphic and hence have the same
signatures.

(vi) This follows from [M−] = −[M ]. ut

Exercise 9.16. Compute for n ≥ 1 the signature of:

(i) the complex projective space CPn;
(ii) the total space STM of the sphere tangent bundle of an oriented closed

n-dimensional manifold M ;
(iii) an oriented closed n-dimensional manifold M admitting an orientation

reversing selfdiffeomorphism.

9.2.3 Quadratic Forms

Next we introduce quadratic forms, which are refinements of symmetric
forms.

Notation 9.17. For a finitely generated projective R-module P define an
involution of R-modules

T = T (P ) : homR(P, P ∗)→ homR(P, P ∗), u 7→ u∗ ◦ e(P ).

Notation 9.18. Let P be a finitely generated projective R-module. Define
abelian groups
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Qε(P ) := ker ((1− ε · T ) : homR(P, P ∗)→ homR(P, P ∗)) ;

Qε(P ) := coker ((1− ε · T ) : homR(P, P ∗)→ homR(P, P ∗)) .

An R-homomorphism f : P → Q induces a homomorphism of abelian groups

Qε(f) : Qε(Q)→ Qε(P ), u 7→ f∗ ◦ u ◦ f ;

Qε(f) : Qε(Q)→ Qε(P ), [u] 7→ [f∗ ◦ u ◦ f ].

Let
(1 + ε · T ) : Qε(P )→ Qε(P )

be the homomorphism that sends the class [u] represented by u : P → P ∗ to
the element u+ ε · T (u).

Definition 9.19 (Non-singular ε-quadratic form). Let ε ∈ {±1}. An ε-
quadratic form (P,ψ) is a finitely generated projective R-module P together
with an element ψ ∈ Qε(P ). It is called non-singular if the associated ε-
symmetric form (P, (1 + ε ·T )(ψ)) is non-singular, i.e. (1 + ε ·T )(ψ) : P → P ∗

is bijective.
A morphism f : (P,ψ) → (P ′, ψ′) of two ε-quadratic forms is an R-

homomorphism f : P
∼=−→ P ′ such that the induced map Qε(f) : Qε(P

′) →
Qε(P ) sends ψ′ to ψ.

Given a non-singular ε-symmetric form (P, φ), a quadratic refinement is a
non-singular ε-quadratic form (P,ψ) with φ = (1 + ε · T )(ψ).

There is an obvious notion of a direct sum of two ε-quadratic forms. The
direct sum of two non-singular ε-quadratic forms is a non-singular ε-quadratic
form.

Consider the pairing

(9.20) ρ : R×Q(−1)k(R)→ Q(−1)k(R), (r, [s]) 7→ [rsr].

It is well defined since for r, s, t ∈ R we get if we put t′ = rtr,

r
(
s+ (t− (−1)k · t)

)
r = rsr +

(
t′ − (−1)k · t′

)
.

It is additive in the second variable, i.e., ρ(r, [s1]− [s2]) = ρ(r, [s1])−ρ(r, [s2]),
but it is not additive in the first variable and in particular ρ does not give
the structure of a left R-module on Q(−1)k(R). Nevertheless, sometimes in
the literature ρ(r, [s]) is denoted by r[s]r.

Remark 9.21 (Writing a quadratic form as a triple (P, λ, µ)). We can
rewrite this as follows. An ε-quadratic form (P,ψ) is equivalent to a triple
(P, λ, µ) consisting of a pairing

λ : P × P → R

satisfying
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λ(p, r1 · q1 + r2 · q2) = r1 · λ(p, q1) + r2 · λ(p, q2);

λ(r1 · p1 + r2 · p2, q) = λ(p1, q) · r1 + λ(p2, q) · r2;

λ(q, p) = ε · λ(p, q),

and a map
µ : P → Qε(R) = R/{r − ε · r | r ∈ R}

satisfying

µ(rp) = ρ(r, µ(p));

µ(p+ q)− µ(p)− µ(q) = pr(λ(p, q));

λ(p, p) = (1 + ε · T )(µ(p)),

where the pairing ρ was introduced in (9.20), pr : R→ Qε(R) is the projection
and (1+ ε ·T ) : Qε(R)→ R the map sending the class of r to r+ ε ·r. Namely,
put

λ(p, q) =
(
(1 + ε · T )(ψ)(p)

)
(q);

µ(p) = pr(ψ(p)(p)).

These two descriptions of an ε-quadratic form are equivalent, see [967,
Theorem 1].

Definition 9.22 (The standard hyperbolic ε-quadratic form). Let P
be a finitely generated projective R-module. The standard hyperbolic ε-
quadratic form Hε(P ) is given by the R-module P ⊕ P ∗ and the class in
Qε(P ⊕ P ∗) of the R-homomorphism

φ : (P ⊕ P ∗)

 0 1
0 0


−−−−−→ P ∗ ⊕ P id⊕e(P )−−−−−→ P ∗ ⊕ (P ∗)∗

ρ−→ (P ⊕ P ∗)∗

where ρ is the obvious R-isomorphism.

If we write the standard hyperbolic ε-quadratic form Hε(P ) as a pairing,
see Remark 9.21, we obtain

λ : (P ⊕ P ∗)× (P ⊕ P ∗)→ R, ((p, α), (p′, α′)) 7→ α′(p) + ε · α(p′);
µ : P ⊕ P ∗ → Qε(R), (p, α) 7→ pr(α(p)).

In particular the ε-symmetric form associated to the standard ε-quadratic
form Hε(P ) is just the standard ε-symmetric form Hε(P ).

Exercise 9.23. Let λ : P × P → Z be a non-singular symmetric Z-bilinear
pairing on the finitely generated free Z-module P . Show that it has, when
considered as a non-singular symmetric form, a quadratic refinement if and
only if λ(x, x) is even for all x ∈ P .
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Remark 9.24. Suppose that 1/2 ∈ R. Then the homomorphism

(1 + ε · T ) : Qε(P )→ Qε(P ), [u] 7→ [u+ ε · T (u)]

is bijective. The inverse sends v to [v/2]. Hence any ε-symmetric form carries
a unique ε-quadratic structure. Therefore there is no difference between the
symmetric and the quadratic setting if 2 is invertible in R.

9.3 Even Dimensional L-groups

Next we define even dimensional L-groups. Below R is an associative ring
with involution.

Definition 9.25 (L-groups in even dimensions). For an even integer
n = 2k define the abelian group Ln(R), called the n-th quadratic L-group, of
R to be the abelian group of equivalence classes [P,ψ] of non-singular (−1)k-
quadratic forms (P,ψ) whose underlying R-module P is a finitely generated
free R-module, with respect to the following equivalence relation: We call
(P,ψ) and (P ′, ψ′) equivalent if and only if there exists integers u, u′ ≥ 0 and
an isomorphism of non-singular (−1)k-quadratic forms

(P,ψ)⊕Hε(R)u ∼= (P ′, ψ′)⊕Hε(R)u
′
.

Addition is given by the direct sum of two (−1)k-quadratic forms. The zero
element is represented by [H(−1)k(R)u] for any integer u ≥ 0. The inverse of
[P,ψ] is given by [P,−ψ].

A morphism u : R → S of rings with involution induces homomorphisms
u∗ : Ln(R) → Ln(S) and u∗ : Ln(R) → Ln(S) for even n ∈ Z by induction
satisfying (u ◦ v)∗ = u∗ ◦ v∗ and (idR)∗ = idLk(R) for k = 0, 2.

Next we will present a criterion for an ε-quadratic form (P,ψ) to represent
zero in L1−ε(R). Let (P,ψ) be an ε-quadratic form. A sublagrangian L ⊂ P
is an R-submodule such that the inclusion i : L → P is split injective, the
image of ψ under the map Qε(i) : Qε(P )→ Qε(L) is zero, and L is contained
in its annihilator L⊥, that is by definition the kernel of

P
(1+ε·T )(ψ)−−−−−−−→ P ∗

i∗−→ L∗.

A sublagrangian L ⊂ P is called lagrangian if L = L⊥. Equivalently, a
lagrangian L ⊂ P is an R-submodule L with inclusion i : L → P such that
the sequence

0→ L
i−→ P

i∗◦(1+ε·T )(ψ)−−−−−−−−−→ L∗ → 0.

is exact.
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Lemma 9.26. Let (P,ψ) be an ε-quadratic form. Let L ⊂ P be a subla-
grangian. Then L is a direct summand in L⊥ and ψ induces the structure
of a non-singular ε-quadratic form (L⊥/L, ψ⊥/ψ). Moreover, the inclusion
i : L→ P extends to an isomorphism of ε-quadratic forms

Hε(L)⊕ (L⊥/L, ψ⊥/ψ)
∼=−→ (P,ψ).

In particular a non-singular ε-quadratic form (P,ψ) is isomorphic to Hε(Q)
if and only if it contains a lagrangian L ⊂ P which is isomorphic as R-module
to Q.

Proof. See for instance [652, Lemma 8.95 on page 265]. ut

Exercise 9.27. Show for a non-singular ε-quadratic form (P,ψ) that (P,ψ)⊕
(P,−ψ) is isomorphic to Hε(P ) and hence an inverse of [P,ψ] in L1−ε(R) is
given by [P,−ψ].

Exercise 9.28. Show that the signature defines an isomorphism L0(R)
∼=−→ Z.

Finally we state the computation of the even dimensional L-groups of
the ring of integers Z. Consider an element (P,ψ) in L0(Z). By tensoring
over Z with R and only taking the symmetric structure into account, we
obtain a non-singular symmetric R-bilinear pairing λ : R ⊗Z P × R ⊗Z P →
R. It turns out that its signature is always divisible by eight. A proof the
following classical result can be found for instance in [652, Subsection 8.5.2],
see also [713].

Theorem 9.29 (L-groups of the ring of integers in dimension 4n).
The signature defines for n ∈ Z an isomorphism

1

8
· sign: L4n(Z)

∼=−→ Z, [P,ψ] 7→ 1

8
· sign(R⊗Z P, λ).

Consider a non-singular quadratic form (P,ψ) over the field F2 of two ele-
ments. Write (P,ψ) as a triple (P, λ, µ) as explained in Remark 9.21. Choose
any symplectic basis {b1, b2, . . . , b2m} for P , where symplectic means that
λ(bi, bj) is 1 if i − j = m and 0 otherwise. Such a symplectic basis always
exists. Define the Arf invariant of (P,ψ) by

Arf(P,ψ) :=

m∑
i=1

µ(bi) · µ(bi+m) ∈ Z/2.(9.30)

It turns out that the Arf invariant of (P,ψ) is 1 if and only if µ sends a
(strict) majority of the elements of P to 1, see [159, Corollary III.1.9 on
page 55]. (Because of this property sometimes the Arf invariant is called the
democratic invariant.) This description shows that (9.30) is independent of
the choice of symplectic basis.
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Exercise 9.31. Let V be a two-dimensional F2-vector space. Classify all non-
singular quadratic forms on V up to isomorphism and compute their Arf
invariants.

The Arf invariant defines an isomorphism

Arf : L2n(F2)
∼=−→ Z/2,

essentially, since two non-singular quadratic forms over F2 on the same finite
dimensional F2-vector space are isomorphic if and only if they have the same
Arf invariant, see [159, Theorem III.1.12 on page 55]. The change of rings
homomorphism Z→ F2 induces an isomorphism,

L4n+2(Z)
∼=−→ L4n+2(F2).

This implies, see for instance [652, Subsection 8.5.3],

Theorem 9.32 (L-groups of the ring of integers in dimension 4n+2).
The Arf invariant defines for n ∈ Z an isomorphism

Arf : L4n+2(Z)
∼=−→ Z/2, [P,ψ] 7→ Arf(F2 ⊗Z (P,ψ)).

For more information about forms over the integers and the Arf invariant
we refer for instance to [159, 713]. Implicitly the computation of Ln(Z) is
already in [559].

9.4 Intersection and Selfintersection Pairings

The notions of an ε-symmetric form as presented in Remark 9.8 and of an ε-
quadratic form as presented in Remark 9.21 are best motivated by considering
intersections and selfintersection pairings. When trying to solve a surgery
problem in even dimensions, one faces in the final step, namely, when dealing
with the middle dimension, the problem to decide whether we can change an
immersion f : Sk → M within its regular homotopy class to an embedding
where M is a compact manifold of dimension n = 2k. This problem leads in
a natural way to selfintersection pairings and ε-quadratic forms as explained
next.

9.4.1 Intersections of Immersions

Let k ≥ 2 be a natural number, and let M be a connected compact smooth
manifold of dimension n = 2k. We fix base points s ∈ Sk and b ∈M . We will
consider pointed immersions (f, w), i.e., an immersion f : Sk → M together
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with a path w from b to f(s) in M . A regular homotopy h : M × [0, 1] → N
from an immersion q0 : M → N to an immersion q1 : M → N is a (continuous,
but not necessarily smooth) homotopy h : M × [0, 1] → N such that h0 =
q0, h1 = q1, ht : M → N is a (smooth) immersion for each t ∈ [0, 1], and
the derivatives Tht : TM → TN of ht fit together to define a (continuous)
homotopy of bundle monomorphisms

TM × [0, 1]→ TN, (v, t) 7→ Tht(v)

between Tq0 and Tq1. A pointed regular homotopy from (f0, w0) to (f1, w1)
is a regular homotopy h : Sk × [0, 1]→M from h0 = f0 to h1 = f1 such that
w0 ∗ h(s,−) and w1 are homotopic paths relative end points. Here h(s,−)
is the path from f0(s) to f1(s) given by restricting h to {s} × [0, 1]. Denote
by Ik(M) the set of pointed regular homotopy classes [f, w] of of pointed
immersions (f, w) from Sk to M . We need the paths to define the structure
of an abelian group on Ik(M). The sum of [f0, w0] and [f1, w1] is given by
the connected sum along the path w−0 ∗ w1 from f0(s) to f1(s). The zero
element is given by the composite of the standard embedding Sk → Rk+1 ⊂
Rk+1×Rk−1 = Rn with some embedding Rn ⊂M and any path w from b to
the image of s. The inverse of the class of (f, w) is the class of (f ◦ a,w) for
any base point preserving diffeomorphism a : Sk → Sk of degree −1.

The fundamental group π = π1(M, b) operates on Ik(M) by composing the
path w with a loop at b. Thus Ik(M) inherits the structure of a Zπ-module.

Next we want to define the intersection pairing

λ : Ik(M)× Ik(M)→ Zπ.(9.33)

For this purpose we will have to fix an orientation of TbM at b. Consider
α0 = [f0, w0] and α1 = [f1, w1] in Ik(M). Choose representatives (f0, w0)
and (f1, w1). We can arrange without changing the pointed regular homotopy
classes that D = im(f0) ∩ im(f1) is finite, for any y ∈ D both the preimage
f−1

0 (y) and the preimage f−1
1 (y) consists of precisely one point, and, for any

two points x0 and x1 in Sk with f0(x0) = f1(x1), we have Tx0f0(Tx0S
k) +

Tx1f1(Tx1S
k) = Tf0(x0)M . Consider d ∈ D. Let x0 and x1 in Sk be the

points uniquely determined by f0(x0) = f1(x1) = d. Let ui be a path in Sk

from s to xi. Then we obtain an element g(d) ∈ π by the loop at b given
by the composite w1 ∗ f1(u1) ∗ f0(u0)− ∗ w−0 . Recall that we have fixed an
orientation of TbM . The fiber transport along the path w0 ∗ f(u0) yields an

isomorphism TbM
∼=−→ TdM that is unique up to isotopy. Hence TdM inherits

an orientation from the given orientation of TbM . The standard orientation of
Sk determines an orientation on Tx0

Sk and Tx1
Sk. We have the isomorphism

of oriented vector spaces

Tx0f0 ⊕ Tx1f1 : Tx0S
k ⊕ Tx1S

k ∼=−→ TdM.
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Define ε(d) = 1 if this isomorphism respects the orientations and ε(d) = −1
otherwise. The elements g(d) ∈ π and ε(d) ∈ {±1} are independent of the
choices of u0 and u1 since Sk is simply connected for k ≥ 2. Define

λ(α0, α1) :=
∑
d∈D

ε(d) · g(d).

Lift b ∈M to a base point b̃ ∈ M̃ . Let f̃i : S
k → M̃ be the unique lift of fi

determined by wi and b̃ for i = 0, 1. Let λZ(f̃0, f̃1) be the Z-valued intersection

number of f̃0 and f̃1. This is the same as the algebraic intersection number
of the classes in the k-th homology with compact support defined by f̃0 and
f̃1, which obviously depends only on the homotopy classes of f̃0 and f̃1; the
proof in [153, Theorem 11.9 in Chapter VI on page 372] can be extended to
our setting. Then

λ(α0, α1) =
∑
g∈π

λZ(f̃0, lg−1 ◦ f̃1) · g(9.34)

where lg−1 denotes left multiplication with g−1. This shows that λ(α0, α1)
depends only on the pointed regular homotopy classes of (f0, w0) and (f1, w1).

Below we use the w1(M)-twisted involution on Zπ that sends
∑
g∈π ag · g

to
∑
g∈π w1(M)(g) · ag · g−1, where w1(M) : π → {±1} is the first Stiefel-

Whitney class of M . The elementary proof of the next lemma is left to the
reader.

Lemma 9.35. For α, β, β1, β2 ∈ Ik(M) and u1, u2 ∈ Zπ we have

λ(α, β) = (−1)k · λ(β, α);

λ(α, u1 · β1 + u2 · β2) = u1 · λ(α, β1) + u2 · λ(α, β2).

Remark 9.36 (Intersection pairing and (−1)k-symmetric forms).
Lemma 9.35 says that the pair (Ik(M), λ) satisfies all the requirements ap-
pearing in Remark 9.8 except that Ik(M) may not be finitely generated free
over Zπ.

Remark 9.37 (The intersection pairing as necessary obstruction for
finding an embedding). Suppose that the normal bundle of the immersion
f : Sk → M has a nowhere vanishing section. (In the typical situation that
appears in surgery theory it actually will be trivial.) Suppose that f is regular
homotopic to an embedding g. Then the normal bundle of g has a nowhere
vanishing section σ. Let g′ be the embedding obtained by moving g a little bit
in the direction of this normal vector field σ. Choose a path wf from f(s) to
b. Then for appropriate paths wg and wg′ we get pointed embeddings (g, wg)
and (g′, wg′) such that the pointed regular homotopy classes of (f, w), (g, wg)
and (g′, wg′) agree. Since g and g′ have disjoint images, we conclude

λ([f, w], [f, w]) = 0.
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Hence the vanishing of λ([f, w], [f, w]) is a necessary condition for finding
an embedding in the regular homotopy class of f , provided that the normal
bundle of f has a nowhere vanishing section. It is not a sufficient condition.
To get a sufficient condition we have to consider selfintersections what we
will do next.

9.4.2 Selfintersections of Immersions

Let α ∈ Ik(M) be an element. Let (f, w) be a pointed immersion representing
α. Recall that we have fixed base points s ∈ Sk, b ∈ M , and an orientation
of TbM . Since we can find arbitrarily close to f an immersion which is in
general position, we can assume without loss of generality that f itself is in
general position. This means that there is a finite subset D of im(f) such that
f−1(y) consists of precisely two points for y ∈ D and of precisely one point
for y ∈ im(f)−D and that for two points x0 and x1 in Sk with x0 6= x1 and
f(x0) = f(x1) we have Tx0

f(Tx0
Sk) + Tx1

f(Tx1
Sk) = Tf0(x0)M . Now fix for

any d ∈ D an ordering x0(d), x1(d) of f−1(d). Analogously to the construction
above one defines ε(x0(d), x1(d)) ∈ {±1} and g(x0(d), x1(d)) ∈ π = π1(M, b).
Consider the element

∑
d∈D ε(x0(d), x1(d)) ·g(x0(d), x1(d)) of Zπ. It does not

only depend on f , but also on the choice of the ordering of f−1(d) for d ∈ D.
One easily checks that the change of ordering of f−1(d) has the following
effect for w = w1(M) : π → {±1}

g(x1(d), x0(d)) = g(x0(d), x1(d))−1;

w(g(x1(d), x0(d))) = w(g(x0(d), x1(d)));

ε(x1(d), x0(d)) = (−1)k · w(g(x0(d), x1(d))) · ε(x0(d), x1(d));

ε(x1(d), x0(d)) · g(x1(d), x0(d)) = (−1)k · ε(x0(d), x1(d)) · g(x0(d), x1(d)).

We have defined the abelian group Q(−1)k(Zπ,w) in Notation 9.18. Define
the selfintersection element for α ∈ Ik(M)

µ(α) :=

[∑
d∈D

ε(x0(d), x1(d)) · g(x0(d), x1(d))

]
∈ Q(−1)k(Zπ,w).(9.38)

The passage from Zπ to Q(−1)k(Zπ,w) ensures that the definition is inde-
pendent of the choice of the order on f−1(d) for d ∈ D. It remains to show
that it depends only on the pointed regular homotopy class of (f, w). Let h
be a pointed regular homotopy from (f, w) to (g, v). We can arrange that h
is in general position. In particular each immersion ht is in general position
and comes with a set Dt. The collection of the Dt-s yields a bordism W from
the finite set D0 to the finite set D1. Since W is a compact one-dimensional
manifold, it consists of circles and arcs joining points in D0 ∪D1 to points in
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D0 ∪D1. Suppose that the point e and the point e′ in D0 ∪D1 are joint by
an arc. Then one easily checks that their contributions to

µ(f, w)− µ(g, w) :=

[ ∑
d0∈D0

ε(x0(d0), x1(d0)) · g(x0(d0), x1(d0))

−
∑
d1∈D1

ε(x0(d1), x1(d1)) · g(x0(d1), x1(d1))

]

cancel out. This implies µ(f, w) = µ(g, w).
Consider the pairing

(9.39) ρ : Zπ ×Q(−1)k(Zπ,w)→ Q(−1)k(Zπ,w), (u, [v]) 7→ [uvu].

It is additive in the second variable, i.e., ρ(x, [y1]−[y2]) = ρ(x, [y1])−ρ(x, [y2]),
but it is not additive in the first variable, and in particular ρ does not give the
structure of a left Zπ-module on Q(−1)k(Zπ,w). Sometimes in the literatur
ρ(x, [y]) is denoted by x[y]x, but this is a little bit misleading since it might
lead to the wrong impression that Q(−1)k(Zπ,w) is a left or right Zπ-module.

Lemma 9.40. Let µ : Ik(M) → Q(−1)k(Zπ,w) be the map given by the self-
intersection element, see (9.38), and let λ : Ik(M) × Ik(M) → Zπ be the
intersection pairing, see (9.33). Then:

(i) Let (1 + (−1)k · T ) : Q(−1)k(Zπ,w)→ Zπ be the homomorphism of abelian

groups that sends [u] to u+(−1)k ·u. Denote for α ∈ Ik(M) by χ(α) ∈ Z the
Euler number of the normal bundle ν(f) for any representative (f, w) of α
with respect to the orientation of ν(f) given by the standard orientation on
Sk and the orientation on f∗TM given by the fixed orientation on TbM
and w. Then:

λ(α, α) = (1 + (−1)k · T )(µ(α)) + χ(α) · 1;

(ii) We get for pr: Zπ → Q(−1)k(Zπ,w) the canonical projection and α, β ∈
Ik(M)

µ(α+ β)− µ(α)− µ(β) = pr(λ(α, β));

(iii) For α ∈ Ik(M) and u ∈ Zπ, we get

µ (x · α) = ρ(x, µ(α))

where ρ is defined in (9.39).

Proof. (i) Represent α ∈ Ik(M) by a pointed immersion (f, w) which is in
general position. Choose a section σ of ν(f) which meets the zero section
transversally. Note that then the Euler number satisfies
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χ(f) =
∑

y∈N(σ)

ε(y)

where N(σ) is the (finite) set of zero points of σ and ε(y) is a sign that
depends on the local orientations. We can arrange that no zero of σ is the
preimage of an element in the set of double points Df of f . Now move f a
little bit in the direction of this normal field σ. We obtain a new immersion
g : Sk → M with a path v from b to g(s) such that (f, w) and (g, v) are
pointed regularly homotopic.

We want to compute λ(α, α) using the representatives (f, w) and (g, v).
Note that any point in d ∈ Df corresponds to two distinct points x0(d) and
x1(d) in the set D = im(f) ∩ im(g) and any element n ∈ N(σ) corresponds
to one point x(n) in D. Moreover any point in D occurs as xi(d) or x(n) in a
unique way. Now the contribution of d to λ([f, w], [g, v]) is ε(d) ·g(d)+(−1)k ·
ε(d) · g(d) and the contribution of n ∈ N(σ) is ε(n) · 1. Now assertion (i)
follows.

(ii) and (iii) The proof of these assertions are left to the reader. ut

Remark 9.41 (Selfintersection pairing and (−1)k-quadratic forms).
Lemma 9.40 says that the triple (Ik(M), λ, µ) satisfies all the requirements
appearing in Remark 9.21 except that Ik(M) may not be finitely generated
free over Zπ and we have to require χ(α) = 0, which will be satisfied in the
cases of interest.

The following theorem of Wall is taken from [968, Theorem 5.2 on page 45].

Theorem 9.42 (Selfintersections and embeddings). Let M be a con-
nected compact manifold of even dimension n = 2k. Fix base points s ∈ Sk
and b ∈ M and an orientation of TbM . Let (f, w) be a pointed immersion
of Sk in M . Suppose that k ≥ 3. Then (f, w) is pointed homotopic to a
pointed immersion (g, v) for which g : Sk → M is an embedding if and only
µ(f, w) = 0.

Proof. If f is represented by an embedding, then µ(f, w) = 0 by definition.
Suppose that µ(f, w) = 0. We can assume without loss of generality that f is
in general position. Since µ(f, w) = 0, we can find d and e in the set of double
points Df of f and a numeration x0(d), x1(d) of f−1(d) and x0(e), x1(e) of
f−1(e) such that

ε(x0(d), x1(d)) = −ε(x0(e), x1(e));

g(x0(d), x1(d)) = g(x0(e), x1(e)).

Therefore we can find arcs u0 and u1 in Sk such that u0(0) = x0(d), u0(1) =
x0(e), u1(0) = x1(d), and u1(1) = x1(e) hold, the path u0 and u1 are disjoint
from one another, f(u0((0, 1))) and f(u1((0, 1))) do not meet Df , and f(u0)
and f(u1) are homotopic relative endpoints. We can change u0 and u1 without
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destroying the properties above and find a smooth map U : D2 → M whose
restriction to S1 is an embedding (ignoring corners on the boundary) and is
given on the upper hemisphere S1

+ by u0 and on the lower hemisphere S1
− by

u1 and which meets im(f) transversally. There is a compact neighborhood K
of S1 such that U |K is an embedding. Since k ≥ 3 we can find arbitrarily close
to U an embedding which agrees with U on K. Hence we can assume without
loss of generality that U itself is an embedding. The Whitney trick, see [710,
Theorem 6.6 on page 71], [993], allows to change f within its pointed regular
homotopy class to a new pointed immersion (g, v) such that Dg = Df−{d, e}
and µ(g, v) = 0. By iterating this process we achieve Df = ∅. ut

Remark 9.43 (The dimension assumption dim(M) ≥ 5). The condition
dim(M) ≥ 5, which arises in high-dimensional manifold theory, ensures in the
proof of Theorem 9.42 that k ≥ 3 and hence we can arrange U to be an em-
bedding. If k = 2, one can achieve that U is an immersion but not necessarily
an embedding. This is the technical reason, why surgery in dimension 4 is
much more complicated than in dimensions ≥ 5.

Exercise 9.44. Let f : Sk → M be an immersion into a compact 2k-
dimensional manifold. Suppose that it is in general position and the set of
double points consists of precisely one element. Show that f is not regular
homotopic to an embedding.

Exercise 9.45. Construct an immersion f : M → N of connected closed
manifolds which is homotopic but not regularly homotopic to an embedding.

9.5 The Surgery Obstruction in Even Dimensions

We give a brief introduction to the surgery obstruction in even dimension
to motivate the relevance of the L-groups for topology. We will use the sign
conventions for chain complexes as they appear in [652, Section 14.4].

9.5.1 Poincaré Duality Spaces

Consider a connected finite CW -complex X with fundamental group π and
a group homomorphism w : π → {±1}. Below we use the w-twisted involu-

tion on Zπ. Denote by C∗(X̃) the cellular Zπ-chain complex of the universal

covering. It is a finite free Zπ-chain complex. The product X̃ × X̃ equipped
with the diagonal π-action is again a π-CW -complex. The diagonal map
D : X̃ → X̃ × X̃ sending x̃ to (x̃, x̃) is π-equivariant but not cellular. By the
Equivariant Cellular Approximation Theorem, see for instance [629, Theo-
rem 2.1 on page 32], there is up to cellular π-homotopy precisely one cellular
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π-map D : X̃ → X̃ × X̃ which is π-homotopic to D. It induces a Zπ-chain
map unique up to Zπ-chain homotopy

C∗(D) : C∗(X̃)→ C∗(X̃ × X̃).(9.46)

There is a natural isomorphism of Zπ-chain complexes

i∗ : C∗(X̃)⊗Z C∗(X̃)
∼=−→ C∗(X̃ × X̃).(9.47)

Definition 9.48 (Dual chain complex). Given an R-chain complex of left
R-modules C∗ and n ∈ Z, we define its dual chain complex Cn−∗ to be the
chain complex of left R-modules whose p-th chain module is homR(Cn−p, R)
and whose p-th differential is given by

(−1)n−p+1 · homR(cn−p+1, id) : (Cn−∗)p = homR(Cn−p, R)

→ (Cn−∗)p−1 = homR(Cn−p+1, R).

Denote by Zw the Zπ-module whose underlying abelian group is Z and on
which g ∈ π acts by w(g) · id. Given two projective Zπ-chain complexes C∗
and D∗, we obtain a natural Z-chain map unique up to Z-chain homotopy

s : Zw ⊗Zπ (C∗ ⊗Z D∗)→ homZπ(C−∗, D∗)(9.49)

by sending 1⊗ x⊗ y ∈ Z⊗ Cp ⊗Dq to

s(1⊗x⊗y) : homZπ(Cp,Zπ)→ Dq, (φ : Cp → Zπ) 7→ (−1)|x|·|y|+|x| ·φ(x)·y.

The composite of the chain map (9.49) for C∗ = D∗ = C∗(X̃), the inverse
of the chain map (9.47) tensored with Zw ⊗Zπ −, and the chain map (9.46)
tensored with Zw ⊗Zπ − yield a Z-chain map

Zw ⊗Zπ C∗(X̃)→ homZπ(C−∗(X̃), C∗(X̃)).

Note that the n-th homology of homZπ(C−∗(X̃), C∗(X̃)) is the set of Zπ-chain

homotopy classes [Cn−∗(X̃), C∗(X̃)]Zπ of Zπ-chain maps from Cn−∗(X̃) to

C∗(X̃). Define Hn(X;Zw) := Hn(Zw⊗Zπ C∗(X̃)). Taking the n-th homology
group yields a well-defined Z-homomorphism

∩ : Hn(X;Zw)→ [Cn−∗(X̃), C∗(X̃)]Zπ(9.50)

that sends a class x ∈ Hn(X;Zw) = Hn(Zw ⊗Zπ C∗(X̃)) to the Zπ-chain

homotopy class of a Zπ-chain map denoted by − ∩ x : Cn−∗(X̃)→ C∗(X̃).

Definition 9.51 (Poincaré complex). A connected finite n-dimensional
Poincaré complex is a connected finite CW -complex of dimension n together
with a group homomorphism w = w1(X) : π1(X)→ {±1} called orientation
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homomorphism if there exists an element [X] ∈ Hn(X;Zw) called funda-

mental class such that the Zπ-chain map − ∩ [X] : Cn−∗(X̃) → C∗(X̃) is a
Zπ-chain homotopy equivalence. We will call it the Poincaré Zπ-chain ho-
motopy equivalence.

Exercise 9.52. Show that the orientation homomorphism w : π1(X) →
{±1} is uniquely determined by the homotopy type of the finite n-dimensional
Poincaré complex X.

Obviously there are two possible choices for [X] since it has to be a gen-
erator of the infinite cyclic group Hn(X,Zw) ∼= H0(X;Z) ∼= Z. A choice of
[X] is called w-orientation on X. We call X w-oriented if we have chosen a
w-orientation.

A map f : Y1 → Y2 of w-oriented connected Poincaré complexes has
degree one if w1(Y2) ◦ π1(f) = w1(Y2) and the map Hn(Y1,Zw1(Y1)) →
Hn(Y2,Zw1(Y2)) induced by f sends [Y1] to [Y2].

Theorem 9.53. Let M be a connected closed manifold of dimension n. Then
M carries the structure of a connected finite n-dimensional Poincaré complex.

For a proof we refer for instance to [968, Theorem 2.1 on page 23].
Below a w-orientation of a connected closed manifold M of dimension n is

a choice of a generator [M ] of the infinite cyclic groupHn(M ;Zw1(M)). We call
M w-oriented if we have chosen a w-orientation. Note that w-oriented does
not necessarily mean that w1(M) is trivial. Following the standard conven-
tions, we say that M is orientable if w1(M) is trivial, and we call M oriented
if w1(M) is trivial and we have chosen a fundamental class [M ] ∈ Hn(M ;Z).

Remark 9.54 (Poincaré duality as obstruction for being homotopy
equivalent to a closed manifold). Theorem 9.53 gives us the first ob-
struction for a topological space X to be homotopy equivalent to a connected
closed n-dimensional manifold. Namely, X must be homotopy equivalent to
a connected finite n-dimensional Poincaré complex.

9.5.2 Normal Maps and the Surgery Step

Definition 9.55 (Normal map of degree one). Let X be a w-oriented
connected finite n-dimensional Poincaré complex together with an m-dimen-
sional vector bundle ξ : E → X. A normal m-map (M, i, f, f) with (X, ξ)
as target consists of a w-oriented connected closed manifold M of dimen-
sion n together with an embedding i : M → Rn+m and a bundle map
(f, f) : ν(M) → ξ where ν(M) denotes the normal bundle ν(i) of the em-
bedding i : M → Rm+n. A normal map of degree one is a normal map such
that the degree of f : M → X is one.
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Remark 9.56. We are somewhat sloppy here since we ignore the problem
that the choices of the fundamental classes and the bundle data have to
be consistent with one another. This is an issue that has been overlooked
at many places. This is explained in detail and fixed in [652, Section 7.4,
Example 7.44 on page 217 and Remark 7.45 on page 218]. However, to keep
this exposition comprehensible, we ignore this issue and also will not treat
the notion of an intrinsic fundamental class of [652, Section 5.5].

Given a normal map (M, i, f, f) with (X, ξ) as target, we obtain for

k ≥ 1 a normal map (M, i, f, f
′
) with (X, ξ ⊕ Rk) as target as follows. Let

i′ : M → Rn+m+k be the composite of the embedding i : M → Rn+m with
the standard inclusion Rn+m → Rn+m+k. Then ν(i′) is the Whitney sum

ν(i)⊕Rk where Rk is the trivial k-dimensional bundle. Let f
′
: ν(i′)→ ξ⊕Rk

be the stabilization of f . We call (M, i′, f, f
′
) a stabilization of (M, i, f, f).

The next result is due to Whitney [992, 993].

Theorem 9.57 (Whitney’s Approximation Theorem). Let M and N
be closed manifolds of dimensions m and n. Then any map f : M → N is
arbitrarily close and in particular homotopic to an immersion, provided that
2m ≤ n, and arbitrarily close and in particular homotopic to an embedding,
provided that 2m < n.

Remark 9.58 (Existence of a normal map of degree one as obstruc-
tion for being homotopy equivalent to a closed manifold). Given a
connected finite n-dimensional Poincaré complex X, the existence of a normal
map of degree one with (X, ξ) as target for some vector bundle ξ over X (for
some appropriate choice of w-orientations) is necessary for X to be homotopy
equivalent to a closed manifold. Namely, if f : M → X is such a homotopy
equivalence, choose a homotopy inverse g : X → M and put ξ = g∗ν(i) for
some embedding i : M ⊆ Rn+m. Such an embedding exists always for n < m
by Theorem 9.57. Obviously f can be covered by a bundle map f : ν(M)→ ξ
and f has degree one (for some appropriate choice of w-orientations).

Note that an orientation of a compact manifold W induces an orientation
of its boundary ∂W , see for instance [652, Remark 5.37 on page 121]. In
the special case W = M × [0, 1] for closed M , the induced orientations on
M = M × {0} and M = M × {1} are inverse to one another.

Definition 9.59 (Normal bordism). Consider two normal maps of degree
one (Mk, ik, fk, fk) with the same target (X, ξ) for k = 0, 1. A normal bor-
dism from (f0, f0) to (f1, f1) consists of a w-oriented connected compact
manifold W with boundary ∂W , an embedding j : (W,∂W ) → (Rn+m ×
[0, 1],Rn+m × {0, 1}), a map (F, ∂F ) : (W,∂W ) → (X × [0, 1], X × {0, 1})
of degree one covered by a bundle map F : ν(W ) → ξ, and an orientation

preserving diffeomorphism u : ∂W
∼=−→ M0 qM1 satisfying the obvious com-

patibility conditions.
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We call (M0, i0, f0, f0) and (M1, i1, f1, f1) normally bordant if after stabi-
lization there exists a normal bordism between them.

Note Definition 9.59 corresponds in [652] to the notion of a normal bordism
with cylindrical ends, see [652, Definition 716 on page 206].

Exercise 9.60. Let (M, i0, f, f0) be a normal map of degree one with target
(X, ξ). Let i1 : M → Rn+k be an embedding. Show that there exists a normal
map of degree one (M, i1, f, f1) with target (X, ξ) which is normally bordant
to (M, i0, f, f0).

Below we will often suppress the embedding i : M → Rn+m in the notation.

9.5.3 The Surgery Step

So the question is whether we can modify a normal map of degree one with
(X, ξ) as target (without changing the target) so that the underlying map f is
a homotopy equivalence. There is a procedure in the world of CW -complexes
to turn a map into a weak homotopy equivalence, namely, by attaching cells.
If f : Y1 → Y2 is already k-connected, we can attach (k + 1) cells to Y1 to
obtain an extension f ′ : Y ′1 → Y2 of f which is (k+ 1)-connected. In principle
we want to do the same for a normal map of degree one with target (X, ξ).
However, there are two fundamental difficulties. First of all we have to keep
the manifold structure on the source and cannot therefore just attach cells.
Moreover, by Poincaré duality any modification in dimension k will cause a
dual modification in dimension n− k if n is the dimension of X so that one
encounters at any rate problems when n happens to be 2k.

Consider a normal map (f, f) : ν(M) → ξ such that f : M → X is a k-
connected map. Consider an element ω ∈ πk+1(f) represented by a diagram

Sk
q //

j
��

M

f

��
Dk+1

Q
// X.

We cannot attach a single cell to M without destroying the manifold struc-
ture. But one can glue two manifolds together along a common boundary such
that the result is a manifold. Suppose that the map q : Sk → M extends to
an embedding q : Sk ×Dn−k →M . (This assumption will be justified later.)
Let int(im(q)) be the interior of the image of q. Then M − int(im(q)) is a
manifold with boundary im(q|Sk×Sn−k−1). We can get rid of the boundary by
attaching Dk+1 × Sn−k−1 along im(q|Sk×Sn−k−1). Call the result

M ′ := Dk+1 × Sn−k−1 ∪im(q|
Sk×Sn−k−1 ) (M − int(im(q))) .
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Here and elsewhere we apply without further mentioning the technique of
straightening the angle in order to get a well-defined smooth structure,
see [157, Definition 13.11 on page 145 and (13.12) on page 148] and [480,
Chapter 8, Section 2]. Choose a map Q : Dk+1×Dn−k → X which extends Q
and f ◦q. The restriction of f to M−int(im(q)) extends to a map f ′ : M ′ → X
using Q|Dk+1×Sn−k . Note that the inclusion M−int(im(q))→M is (n−k−1)-
connected since Sk × Sn−k−1 → Sk ×Dn−k is (n− k − 1)-connected. So the
passage from M to M − int(im(q)) will not affect πj(f) for j < n− k− 1. All
in all we see that πl(f) = πl(f

′) for l ≤ k and that there is an epimorphism
πk+1(f) → πk+1(f ′) whose kernel contains ω, provided that 2(k + 1) ≤ n.
The condition 2(k+ 1) ≤ n can be viewed as a consequence of Poincaré dual-
ity. Roughly speaking, if we change something in a manifold in dimension l,
Poincaré duality forces also a change in dimension (n− l). This phenomenon
will cause surgery obstructions to appear.

Note that f : M → X and f ′ : M ′ → X are bordant. The relevant bordism
is given by W = Dk+1 × Dn−k ∪q M × [0, 1] where we think of q as an
embedding Sk × Dn−k → M × {1}. In other words, W is obtained from
M×[0, 1] by attaching a handle Dk+1×Dn−k to M×{1}. Then M appears in
W as M×{0} and M ′ as other part of the boundary of W . Define F : W → X
by f × id[0,1] and Q. Then F restricted to M and M ′ is f and f ′.

Why can we assume that the map q : Sk → M extends to an embedding
q : Sk × Dn−k → M? This will be ensured by the bundle data in the case
2k + 1 < n by the following argument.

Because of Theorem 9.57 we can arrange that q is an embedding. The
extension q exists if and only if the normal bundle ν(q) of the embedding
q : Sk → M is trivial. Since Dk+1 is contractible, every vector bundle over
Dk+1 is trivial. Hence Q∗ξ is a trivial vector bundle over Dk+1. Recall that
i : M → Rm+n is a fixed embedding and ν(M) is define to be the normal
bundle ν(i) of i. Pullbacks of trivial vector bundles are trivial again. This
implies that q∗ν(M) ∼= q∗f∗ξ ∼= j∗Q∗ξ is a trivial vector bundle over Sk.
Since ν(q) ⊕ q∗ν(M) ∼= ν(i : Sk → Rn+m) is trivial, ν(q) is a stably trivial
(n − k)-dimensional vector bundle over Sk. Since 2k + 1 ≤ n, this implies
that ν(q) itself is trivial.

So we see that the bundle data are needed to carry out the desired surgery
step. Note that the construction yields a map f ′ : M ′ → X of degree one and
a bundle map f ′ : ν(M ′) → ξ covering f ′ so that we end up with a normal
map of degree one with target X again. Hence we are able to repeat this
surgery step over and over again in dimensions 2k − 1 ≤ n. Actually, also
the bordism W together with the map F : W → X come by a bundle map
F : ν(W ) → ξ covering F and is therefore a normal bordism in the sense of
Definition 9.59. In particular surgery does not change the normal bordism
class.

For the proof of the next lemma we refer for instance to [652, Theorem 7.41
on page 217].
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Lemma 9.61. Consider a normal map of degree one (f, f) : ν(M)→ ξ cov-
ering f : M → X where M is a w-oriented connected closed manifold of
dimension n and X is a connected finite Poincaré complex of dimension n.
Let k be the natural number given by n = 2k or n = 2k + 1.

Then we can always arrange by finitely many surgery steps that for the
resulting normal map of degree one (f ′, f ′) : ν(M ′) → ξ its underlying map
f ′ : M ′ → X is k-connected.

Now assume that n is even, let us say n = 2k. As mentioned above, we can
arrange that f is k-connected. If we can achieve that f is (k + 1)-connected,
then by Poincaré duality the map f is a homotopy equivalence.

But in this last step we encounter a problem which actually leads to the
surgery obstruction in the even dimensional case. Namely, in the argument
above we used at one point that the map q : Sk →M can be arranged to be an
embedding by general position if 2k+ 1 ≤ n and that certain normal bundle
are trivial. In the situation n = 2k we can arrange q to be an immersion
by Theorem 9.57 and simultaneously ensure that the bundle data carry over
to the desired normal bordism, essentially, because of a systematic use of
Theorem 9.63 below. However, the latter fixes the regular homotopy class of
the immersion q. Hence one open problem is to ensure that we can change q to
an embedding within its regular homotopy class. We have already introduced
the main obstruction for that, the selfintersection element in (9.38). We also
encounter the problem that by Poincaré duality any change in the homology
of the middle dimension comes with a dual change and one has to ensure that
there two have the desired effect and do not disturb one another. Next we
explain how this leads to the so-called surgery obstruction in L2k(Zπ1(X))
with respect to the w1(X)-twisted involution on Zπ.

9.5.4 The Even Dimensional Surgery Obstruction

For the rest of this subsection we fix a normal map (f, f) : ν(M)→ ξ of degree
one covering f : M → X where M is a w-oriented connected closed manifold
of dimension n and X is a w-oriented connected finite Poincaré complex of
dimension n. Suppose that f induces an isomorphism on the fundamental

groups. Fix a base point b ∈ M together with lifts b̃ ∈ M̃ of b and f̃(b) ∈ X̃
of f(b). We identify π = π1(M, b) = π(X, f(b)) by π1(f, b). The choices of b̃

and f̃(b) determine π-operations on M̃ and on X̃ and a lift f̃ : M̃ → X̃ which
is π-equivariant.

Definition 9.62 (Surgery kernels). Let Kk(M̃) be the kernel of the

Zπ-map Hk(f̃) : Hk(M̃) → Hk(X̃). Denote by Kk(M̃) the cokernel of

the Zπ-map Hk(f̃) : Hk(X̃) → Hk(M̃) which is the Zπ-map induced by

C∗(f̃) : C∗(X̃)→ C∗(M̃). We call Kk(M̃) the surgery kernel.
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Given two vector bundles ξ : E → M and η : F → N , we have so far only
considered bundle maps (f, f) : ξ → η which are fiberwise isomorphisms.
We need to consider, at least for the next theorem, more generally bundle
monomorphisms, i.e., we only will require that the map is fiberwise injective.
Consider two bundle monomorphism (f0, f0), (f1, f1) : ξ → η. Let ξ × [0, 1]
be the vector bundle ξ × id : E × [0, 1] → M × [0, 1]. A homotopy of bundle
monomorphisms (h, h) from (f0, f0) to (f1, f1) is a bundle monomorphism
(h, h) : ξ×[0, 1]→ η whose restriction toX×{j} is (f j , fj) for j = 0, 1. Denote
by π0(Mono(ξ, η)) the set of homotopy classes of bundle monomorphisms.

For a proof of the following result we refer to Haefliger-Poenaru [434],
Hirsch [479], and Smale [903]. Denote by π0(Imm(M,N)) the set of regular
homotopy classes of immersions from M to N .

Theorem 9.63 (Immersions and Bundle Monomorphisms). Let M
be an m-dimensional and N be an n-dimensional closed manifold.

(i) Suppose that 1 ≤ m < n. Then taking the differential of an immersion
yields a bijection

T : π0(Imm(M,N))
∼=−→ π0(Mono(TM, TN));

(ii) Suppose that 1 ≤ m ≤ n and that M has a handlebody decomposition
consisting of q-handles for q ≤ n − 2. Then taking the differential of an
immersion yields a bijection

T : π0(Imm(M,N))
∼=−→ colima→∞ π0(Mono(TM ⊕ Ra, TN ⊕ Ra))

where the colimit is given by stabilization.

Lemma 9.64.(i) The cap product with [M ] induces isomorphisms

− ∩ [M ] : Kn−k(M̃)
∼=−→ Kk(M̃);

(ii) Suppose that f is k-connected. Then there is the composite of natural Zπ-
isomorphisms

hk : πk+1(f)
∼=−→ πk+1(f̃)

∼=−→ Hk+1(f̃)
∼=−→ Kk(M̃);

(iii) Suppose that f is k-connected and n = 2k. Then there is a natural Zπ-
homomorphism

tk : πk+1(f)→ Ik(M).

Proof. (i) The following diagram commutes and has isomorphisms as vertical
arrows
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Hn−k(M̃)

∼=−∩[M ]

��

Hn−k(X̃)
Hn−k(f̃)oo

Hk(M̃)
Hk(f̃)

// Hk(X̃).

−∩[X]∼=

OO
(9.65)

Hence the composite Kk(M̃) → Hk(M̃)
(−∩[M ])−1

−−−−−−−→ Hn−k(M̃) → Kn−k(M̃)
is bijective.

(ii) The commutative square (9.65) above implies that Hl(f̃) : Hl(M̃) →
Hl(X̃) is split surjective for all l. We conclude from the long exact sequence

of C∗(f̃) that the boundary map

∂ : Hk+1(f̃) := Hk+1(cone(C∗(f̃)))→ Hk(M̃)

induces an isomorphism

∂k+1 : Hk+1(f̃)
∼=−→ Kk(M̃).

Since f and hence f̃ is k-connected, the Hurewicz homomorphism

πk+1(f̃)
∼=−→ Hk+1(f̃)

is bijective [987, Corollary IV.7.10 on on page 181]. The canonical map

πk+1(f̃)→ πk+1(f)

is bijective. The composite of the maps above or their inverses yields a natural
isomorphism hk : πk+1(f)→ Kk(M̃).

(iii) Note that an element in πk+1(f, b) is given by a commutative diagram

Sk
q //

��

M

��
Dk+1

Q
// X

together with a path w from b to f(s) for a fixed base point s ∈ Sk. We leave
the details of the rest of the proof, which is based on Theorem 9.63 (ii), to the
reader. The necessary bundle monomorphisms come from the bundle data of
(f, f), the stable triviality of TSk, and the fact that any vector bundle over
Dk+1 is trivial. ut

Suppose that n = 2k. The Kronecker pairing 〈 , 〉 : Hk(M̃)×Hk(M̃)→ Zπ
is induced by the evaluation pairing homZπ(Cp(M̃),Zπ)×Cp(M̃)→ Zπ which
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sends (β, x) to β(x). It induces a pairing

〈 , 〉 : Kk(M̃)×Kk(M̃)→ Zπ.

Together with the isomorphism

− ∩ [M ] : Kn−k(M̃)
∼=−→ Kk(M̃)

of Theorem 9.64 (i) it yields the intersection pairing

s : Kk(M̃)×Kk(M̃)→ Zπ.(9.66)

We get from Lemma 9.64 (ii) and (iii) a Zπ-homomorphism

α : Kk(M̃)→ Ik(M̃).(9.67)

The elementary proof of the next lemma is left to the reader.

Lemma 9.68. The following diagram commutes

Kk(M̃)×Kk(M̃)
s //

α×α
��

Zπ

id

��
Ik(M)× Ik(M)

λ
// Zπ

where the upper pairing is defined in (9.66), the lower pairing in (9.33), and
the left vertical arrows in (9.67).

Exercise 9.69. Let f : X → Y be a map of connected finite Poincaré com-
plexes of dimension n ≥ 4. Suppose that f has degree one and that f is
(k+ 1)-connected where k is given by n = 2k if n is even, and by n = 2k+ 1
if n is odd. Show that then f is a homotopy equivalence.

Recall that an R-module V is called stably finitely generated free if for
some non-negative integer l the R-module V ⊕Rl is a finitely generated free
R-module.

Lemma 9.70. If f : X → Y is k-connected for n = 2k or n = 2k + 1, then
Kk(M̃) is stably finitely generated free.

Proof. See for instance [652, Lemma 8.55 (ii) on page 252]. ut

Example 9.71 (Effect of trivial surgery). Consider the normal map
(f, f) : ν(M)→ ξ covering the k-connected map of degree one f : M → X for
a w-oriented connected closed n-dimensional manifolds M for n = 2k. If we
do surgery on the zero element in πk+1(f), then the effect on M is that M is

replaced by the connected sum M ′ = M](Sk × Sk). The effect on Kk(M̃) is

that it is replaced by Kk(M̃ ′) = Kk(M̃)⊕(Zπ⊕Zπ). The intersection pairing
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on this new kernel is the sum of the given intersection pairing on Kk(M̃) to-

gether with the standard hyperbolic symmetric form H(−1)k(Zπ). Moreover,
taking the selfintersections into account, the non-singular (−1)k-quadratic
form on the new kernel is direct sum of the one of the old kernel and the
standard hyperbolic (−1)k-quadratic form H(−1)k(Zπ). In particular we can
arrange by finitely many surgery steps on the trivial element in πk+1(f) that

Kk(M̃) is a finitely generated free Zπ-module.

Remark 9.72. Let (f, f) : ν(M)→ ξ be a normal map of degree one covering
f : M → X where M is a w-oriented connected closed manifold of dimension
n and X is a w-oriented connected finite Poincaré complex of dimension n.
Suppose that n = 2k and f is k-connected.

By Lemma 9.70 and Example 9.71, we can do finitely many trivial surgery
steps to achieve that the kernel Kk(M̃) is a finitely generated free Zπ-module.
By the intersection pairing s of (9.66), we obtain a non-singular (−1)k-

symmetric form (Kk(M̃), s), see Remark 9.8.
So far we have not used the bundle data. They come now into play, when we

want to refine (Kk(M̃), s) to a non-singular (−1)k-quadratic form. Because

of Remark 9.21 we have to specify a map t : Kk(M̃) → Q(−1)k(Zπ). We will
take the composite

Kk(M̃)
h−1
k−−→ πk+1(f)

tk−→ Ik(M)
µ−→ Q(−1)k(Zπ)

where µ has been defined (9.38) and the isomorphism hk and the map tk
have been introduced in Lemma 9.64. This is indeed a quadratic refinement
by Lemma 9.40 and Lemma 9.68.

Definition 9.73 (Even dimensional surgery obstruction). Consider a
normal map of degree one (f, f) : ν(M) → ξ covering f : M → X where M
is a w-oriented connected closed manifold of even dimension n = k and X is
a connected finite Poincaré complex of dimension n with fundamental group
π. Perform surgery below the middle dimension and trivial surgery in the
middle dimension so that we obtain a k-connected normal map of degree one
(f ′, f ′) : ν(M) → ξ such that Kk(M̃ ′) is finitely generated free Zπ-module.
Define the surgery obstruction of (f, f) : ν(M)→ ξ

σ(f, f) ∈ L2k(Zπ,w1(X))

by the class of the non-singular (−1)k-quadratic form (Kk(M̃ ′), s, t) of Re-
mark 9.72.

We omit the proof that this element is well-defined, e.g., independent of the
previous surgery steps; details of the proof can be found in [652, Section 8.6.3]

Theorem 9.74 (Surgery obstruction in even dimensions). Consider
a normal map of degree one (f, f) : ν(M) → ξ covering f : M → X where
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M is a w-oriented connected closed manifold of even dimension n = 2k and
X is a w-oriented connected finite Poincaré complex of dimension n with
fundamental group π. Then:

(i) Suppose k ≥ 3. Then σ(f, f) = 0 in Ln(Zπ,w1(X)) if and only if we can do
a finite number of surgery steps to obtain a normal map (f ′, f ′) : ν(M ′)→
ξ which covers a homotopy equivalence f ′ : M ′ → X;

(ii) The surgery obstruction σ(f, f) depends only on the normal bordism class
of (f, f).

Proof. We only give the proof of assertion (i). More details can be found
in [652, Theorem 8.112 on page 274] or [968, Chapter 5]. By Lemma 9.61,
Example 9.71, and the definition of L2k(Zπ,w), we can arrange by finitely

many surgery steps that the non-singular (−1)k-quadratic form (Kk(M̃), s, t)
is isomorphic to H(−1)k(Zπv). Thus we can choose for some natural number

v a Zπ-basis {b1, b2, . . . , bv, c1, c2, . . . , cv} for Kk(M̃) such that

s(bi, ci) = 1 i ∈ {1, 2, . . . , v};
s(bi, cj) = 0 i, j ∈ {1, 2, . . . , v}, i 6= j;
s(bi, bj) = 0 i, j ∈ {1, 2, . . . , v};
s(ci, cj) = 0 i, j ∈ {1, 2, . . . , v};
t(bi) = 0 i ∈ {1, 2, . . . , v}.

Note that f is a homotopy equivalence if and only if the number v is zero.
Hence it suffices to explain how we can lower the number v to (v − 1) by a
surgery step on an element in πk+1(f). Of course our candidate is the ele-
ment ω in πk+1(f) which corresponds under the isomorphism h : πk+1(f)→
Kk(M̃), see Lemma 9.64 (ii), to the element bv. By construction the compos-
ite

πk+1(f)
tk−→ Ik(M)

µ−→ Q(−1)k(Zπ,w)

of the maps defined in (9.38) and Lemma 9.64 (iii) sends ω to zero. Now
Theorem 9.42 ensures that we can perform surgery on ω. Note that the as-
sumption k ≥ 3 and the quadratic structure on the kernel become relevant
exactly at this point. Finally it remains to check whether the effect on Kk(M̃)
is the desired one, namely, that we get rid of one of the hyperbolic summands
Hε(Zπ), or equivalently, v is lowered to v − 1.

We have explained earlier that doing surgery yields not only a new ma-
nifold M ′, but also a bordism from M to M ′. Namely, take W = M ×
[0, 1] ∪Sk×Dn−k Dk+1 ×Dn−k where we attach Dk+1 ×Dn−k by an embed-
ding Sk × Dn−k → M × {1}, and M ′ := ∂W −M using the identification
M = M ×{0}. The manifold W comes with a map F : W → X× [0, 1] whose
restriction to M is the given map f : M = M × {0} → X = X × {0} and
whose restriction to M ′ is a map f ′ : M ′ → X × {1}. The definition of the
kernels makes also sense for pair of maps. We obtain an exact braid
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0

##

��

Kk+1(W̃ , M̃)

##

��

Kk(M̃)

##

��

Kk(W̃ , M̃ ′)
!!

��

0

0

@@

��

Kk+1(W̃ , ∂̃W )

@@

��

Kk(W̃ )

@@

��

0

@@

0

@@

<<
Kk(M̃ ′)

@@

== 0

@@

which combines the various long exact sequences of pairs.
The (k+ 1)-handle Dk+1×Dn−k defines an element φk+1 in Kk+1(W̃ , M̃)

and the associated dual k-handle defines an element ψk ∈ Kk(W̃ , M̃ ′). These

elements constitute a Zπ-basis for Kk+1(W̃ , M̃) ∼= Zπ and Kk(W̃ , M̃ ′) ∼= Zπ.

The Zπ-homomorphism Kk+1(W̃ , M̃) → Kk(M̃) maps φ to bv. The Zπ-

homomorphism Kk(M̃)→ Kk(W̃ , M̃ ′) sends x to s(bv, x) ·ψk. Hence we can

find elements b′1, b′2, . . ., b′v and c′1, c′2, . . ., c′v−1 in Kk+1(W̃ , ∂̃W ) uniquely
determined by the property that b′i is mapped to bi and c′i to ci under the

Zπ-homomorphism Kk+1(W̃ , ∂̃W )→ Kk(M̃). Moreover, these elements form

a Zπ-basis for Kk+1(W̃ , ∂̃W ), and the element φk+1 is mapped to b′v under

the Zπ-homomorphism Kk+1(W̃ , M̃)→ Kk+1(W̃ , ∂̃W ). Define b′′i and c′′i for
i = 1, 2, . . . , (v−1) to be the image of b′i and c′i under the Zπ-homomorphism

Kk+1(W̃ , ∂̃W )→ Kk(M̃ ′). Then

{b′′i | i = 1, 2 . . . , (v − 1)}
∐
{c′′i | i = 1, 2 . . . , (v − 1)}

is a Zπ-basis for Kk(M̃ ′). One easily checks for the quadratic structure (s′, t′)

on Kk(M̃ ′)

s′(b′′i , c
′′
i ) = s(bi, ci) = 1 i ∈ {1, 2, . . . , (v − 1)};

s′(b′′i , c
′′
j ) = s(bi, cj) = 0 i, j ∈ {1, 2, . . . , (v − 1)}, i 6= j;

s′(b′′i , b
′′
j ) = s(bi, bj) = 0 i, j ∈ {1, 2, . . . , (v − 1)};

s′(c′′i , c
′′
j ) = s(ci, cj) = 0 i, j ∈ {1, 2, . . . , (v − 1)};

t′(b′′i ) = t(bi) = 0 i ∈ {1, 2, . . . , (v − 1)}.

This finishes the proof of assertion (i) of Theorem 9.74. ut

Exercise 9.75. Let M be a stably framed manifold of dimension (4k + 2),
i.e., a closed (4k+ 2)-dimensional manifold together with a choice of a stable
trivialization of its tangent bundle. Assign to it an element α(M) ∈ Z/2 such
that α(M) = α(N) depends only on the stably framed bordism class of M .
(The easy solutions that α is constant is not what we have in mind).
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9.6 Formations

In this subsection we explain the algebraic objects, so-called formations,
which describe the surgery obstruction and will be the typical elements in
the surgery obstruction group in odd dimensions. Throughout this section R
will be an associative ring with involution and ε ∈ {±1}.

Definition 9.76 (Formation). An ε-quadratic formation (P,ψ;F,G) is a
non-singular ε-quadratic form (P,ψ) together with two lagrangians F and G.

An isomorphism f : (P,ψ;F,G) → (P ′, ψ′;F,′ , G′) of ε-quadratic forma-
tions is an isomorphism f : (P,ψ) → (P ′, ψ′) of non-singular ε-quadratic
forms such that f(F ) = F ′ and f(G) = G′ holds.

Definition 9.77 (Trivial formation). The trivial ε-quadratic formation
associated to a finitely generated projective R-module P is the formation
(Hε(P );P, P ∗). A formation (P,ψ;F,G) is called trivial if it isomorphic to the
trivial ε-quadratic formation associated to some finitely generated projective
R-module. Two formations are stably isomorphic if they become isomorphic
after taking the direct with trivial formations.

Remark 9.78 (Formations and automorphisms). We conclude from
Lemma 9.26 that any ε-quadratic formation is isomorphic to an ε-quadratic
formation of the type (Hε(P );P, F ) for some lagrangian F ⊂ P ⊕ P ∗. Given

an automorphism v : Hε(P )
∼=−→ Hε(P ) of the standard hyperbolic ε-quadratic

form Hε(P ) for some finitely generated projective R-module P , we get a for-
mation by (Hε(P );P, v(P )).

Consider an ε-quadratic formation (P,ψ;F,G) such that P , F , and G
are finitely generated free and suppose that R has the property that Rn

and Rm are R-isomorphic if and only if n = m. Then (P,ψ;F,G) is stably
isomorphic to (Hε(Q);Q, v(Q)) for some finitely generated free R-module
Q and automorphism v of Hε(Q) by the following argument. Because of
Lemma 9.26 we can choose isomorphisms of non-singular ε-quadratic forms

f : Hε(F )
∼=−→ (P,ψ) and g : Hε(G)

∼=−→ (P,ψ) such that f(F ) = F and g(G) =
G. Since F ∼= Ra and G ∼= Rb by assumption and R2a ∼= F ⊕ F ∗ ∼= P ∼=
G ⊕ G∗ ∼= R2b, we conclude a = b. Hence we can choose an R-isomorphism
u : F → G. Then we obtain an automorphism of non-singular ε-quadratic
forms by the composite

v : Hε(F )
Hε(u)−−−−→ Hε(G)

g−→ (P,ψ)
f−1

−−→ Hε(F )

and an isomorphism of ε-quadratic formations

f : (Hε(F );F, v(F ))
∼=−→ (P,ψ;F,G).

Recall that K1(R) is defined in terms of automorphisms of finitely gener-
ated free R-modules. Hence it is plausible that the odd dimensional L-groups
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will be defined in terms of formations, which is essentially the same as in
terms of automorphisms of the standard hyperbolic form over a finitely gen-
erated free R-module.

Definition 9.79 (Boundary formation). Let (P,ψ) be a (not necessarily
non-singular) (−ε)-quadratic form. Define its boundary ∂(P,ψ) to be the ε-
quadratic formation (Hε(P );P, Γψ) where Γψ is the lagrangian given by the
image of the R-homomorphism

P → P ⊕ P ∗, x 7→ (x, (1− ε · T )(ψ)(x)) .

One easily checks that Γψ appearing in Definition 9.79 is indeed a la-
grangian. Two lagrangians F,G of a non-singular ε-quadratic form (P,ψ) are
called complementary if F ∩G = {0} and F +G = P .

Lemma 9.80. Let (P,ψ;F,G) be an ε-quadratic formation. Then:

(i) (P,ψ;F,G) is trivial if and only F and G are complementary to one an-
other;

(ii) (P,ψ;F,G) is isomorphic to a boundary if and only if there is a lagrangian
L ⊂ P such that L is a complement of both F and G;

(iii) There is an ε-quadratic formation (P ′, ψ′;F ′, G′) such that (P,ψ;F,G)⊕
(P ′, ψ′;F ′, G′) is a boundary;

(iv) An (−ε)-quadratic form (Q,µ) is non-singular if and only if its boundary
is trivial.

Proof. See for instance [652, Lemma 9.13 on page 337]. ut

9.7 Odd Dimensional L-groups

Now we can define the odd dimensional L-groups.

Definition 9.81 (Odd dimensional L-groups). Let R be an associative
ring with involution. For an odd integer n = 2k + 1 define the abelian
group Ln(R), called the n-th quadratic L-group, of R to be the abelian group
of equivalence classes [P,ψ;F,G] of (−1)k-quadratic formations (P,ψ;F,G)
such that P , F and G are finitely generated free R-modules with respect
to the following equivalence relation. We call (P,ψ;F,G) and (P ′, ψ′;F ′, G′)
equivalent if and only if there exist (−(−1)k)-quadratic forms (Q,µ) and
(Q′, µ′) for finitely generated free R-modules Q and Q′ and finitely generated
free R-modules S and S′ together with an isomorphism of (−1)k-quadratic
formations

(P,ψ;F,G)⊕ ∂(Q,µ)⊕ (Hε(S);S, S∗)
∼= (P ′, ψ′;F ′, G′)⊕ ∂(Q′, µ′)⊕ (Hε(S

′);S′, (S′)∗).
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Addition is given by the sum of two (−1)k-quadratic formations. The zero
element is represented by ∂(Q,µ) ⊕ (H(−1)k(S);S, S∗) for any (−(−1)k)-
quadratic form (Q,µ) for any finitely generated free R-module Q and any
finitely generated free R-module S. The inverse of [P,ψ;F,G] is represented
by (P,−ψ;F ′, G′) for any choice of lagrangians F ′ and G′ in Hε(P ) such that
F and F ′ are complementary and G and G′ are complementary.

A morphism u : R → S of rings with involution induces homomorphisms
u∗ : Lk(R)→ Lk(S) for k = 1, 3 by induction satisfying (u◦v)∗ = u∗ ◦v∗ and
(idR)∗ = idLk(R) for k = 1, 3.

Theorem 9.82 (Vanishing of the odd dimensional L-groups of the
ring of integers). We have L2k+1(Z) = 0 for all k ∈ Z.

Proof. See for instance [652, Subsection 9.2.4]. ut

Remark 9.83 (Four-periodicity of the L-groups). Obviously the L-
groups are four-periodic, i.e., Ln(R) = Ln+4k(R) holds for all k, n ∈ Z.

9.8 The Surgery Obstruction in Odd Dimensions

Next we very briefly treat the odd dimensional surgery obstruction. Consider
a normal map of degree one (f, f) : ν(M) → ξ covering f : M → X where
M is a w-oriented closed manifold of dimension n and X is a w-oriented
connected finite Poincaré complex of dimension n for odd n = 2k + 1. Put
π = π1(X). To these data one can assign the surgery obstruction of (f, f)

σ(f, f) ∈ L2k+1(Zπ,w),(9.84)

Its construction and the proof of the following result can be found in [652,
Section 9.3] or [968, Chapter 6].

Theorem 9.85 (Surgery obstruction in odd dimensions). We get un-
der the conditions above:

(i) Suppose k ≥ 2. Then σ(f, f) = 0 in Ln(Zπ,w) if and only if we can do a
finite number of surgery steps to obtain a normal map (f ′, f ′) : ν(M ′)→ ξ
covering a homotopy equivalence f ′ : M ′ → X;

(ii) The surgery obstruction σ(f, f) depends only on the normal bordism class
of (f, f).

Example 9.86 (The surgery obstruction in the simply connected
case). Consider a normal map of degree one (f, f) : ν(M) → ξ covering
f : M → X where M is a w-oriented connected closed manifold of dimension
n and X is a w-oriented connected finite Poincaré complex of dimension n.
Suppose that X is simply connected.
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If n is odd, Ln(Z) is trivial and hence σ(f, f) = 0. In particular we can
arrange by finitely many surgery steps that the underlying map is a homotopy
equivalence, provided n ≥ 5.

If n is divisible by four, we obtain an isomorphism Ln(Z)
∼=−→ Z by sending

a quadratic form to its signature divided by eight, see Theorem 9.29. It turns
out that under this isomorphism we get

σ(f, f) =
sign(X)− sign(M)

8
.

Note that in this case the surgery obstruction depends only on M and X,
but not on f and f . This is not true in general.

If n is even, but not divisible by four, then the Arf invariant yields an

isomorphism Ln(Z)
∼=−→ Z/2. It turns out that σ(f, f) depends not only on f

but also on the bundle data f . For instance, for different framings of T 2 one
obtains different invariants α(T 2) in Exercise 9.75.

More details can be found in [652, Subsection 8.7.6].

9.9 Surgery Obstructions for Manifolds with Boundary

Next we deal with manifolds with boundary.

Definition 9.87 (Poincaré pairs). The notion of a Poincaré complex can
be extended to pairs as follows. Let X be a connected finite n-dimensional
CW -complex with fundamental group π together with a subcomplex A ⊂ X
of dimension (n−1). Denote by Ã ⊂ X̃ the preimage of A under the universal

covering X̃ → X. We call (X,A) a finite n-dimensional Poincaré pair with
respect to the orientation homomorphism w : π1(X) → {±1} if there is a
fundamental class [X,A] ∈ Hn(X,A;Zw) such that the Zπ-chain maps − ∩
[X,A] : Cn−∗(X̃, Ã) → C∗(X̃) and − ∩ [X,A] : Cn−∗(X̃) → C∗(X̃, Ã) are
Zπ-chain homotopy equivalences.

We call (X,A) simple if the Whitehead torsions of these Zπ-chain homo-
topy equivalences vanish.

If M is a connected compact manifold of dimension n with boundary ∂M ,
then (M,∂M) is a simple finite n-dimensional Poincaré pair.

We want to extend the notion of a normal map from closed manifolds
to manifolds with boundary. The underlying map f is a map of pairs
(f, ∂f) : (M,∂M) → (X, ∂X) where M is a w-oriented compact manifold
with boundary ∂M and (X, ∂X) is a w-oriented finite Poincaré pair, the de-
gree of f is one and ∂f : ∂M → ∂X is required to be a homotopy equivalence.
The bundle data are unchanged, they consist of a vector bundle ξ over X and
a bundle map f : ν(M)→ ξ.
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The notion of a normal bordism for manifolds with boundaries is rather
complicated, but also obvious. We will at least explain what happens for
the underlying spaces and maps, more details can be found in [652, Subsec-
tion 8.8.2].

Consider two normal maps in dimension n whose underlying maps are
(fm, ∂fm) : (Mm, ∂Mm)→ (Xm, ∂Xm) such that ∂fm is a homotopy equiva-
lence. A normal bordism between them is defined a follows. As in the closed
case W is a w-oriented compact (n+1)-dimensional manifold with boundary
∂W , but now the boundary is the union of three pieces

∂W = ∂0W ∪ ∂1W ∪ ∂2W

where ∂mW is a codimension zero submanifold of ∂W possibly with non-
empty boundary ∂∂mW for m = 0, 1, 2 satisfying

∂0W ∩ ∂1W = ∅;
∂2W ∩ ∂mW = ∂∂mW for m = 0, 1;

∂∂2W = ∂∂0W q ∂∂1W.

We have an (n + 1)-dimensional finite Poincaré pair (Y, ∂Y ) with a decom-
position of ∂Y into three n-dimensional finite CW -subcomplexes

∂Y = ∂0Y ∪ ∂1Y ∪ ∂2Y,

such that for appropriate (n−1)-dimensional finite CW -subcomplexes ∂∂mY ⊆
∂mY for m = 0, 1, 2 we have

∂0Y ∩ ∂1Y = ∅;
∂2Y ∩ ∂mY = ∂∂mY for m = 0, 1;

∂∂2Y = ∂∂0Y q ∂∂1Y.

The map F : W → Y is required to induce maps ∂mF : ∂mW → ∂mY for
m = 0, 1, 2 and ∂2F : ∂2W → ∂2Y is required to be a homotopy equivalence.

The various identifications Mm

∼=−→ ∂mW and Xm → ∂mY for m = 0, 1

in the closed case are now required to be identifications (Mm, ∂Mm)
∼=−→

(∂mW,∂∂mW ) and (Xm, ∂Xm)
∼=−→ (∂mY, ∂Ym) for m = 0, 1.

The definition and the main properties of the surgery obstruction carry
over from normal maps for closed manifolds to normal maps for compact
manifolds with boundary. The main reason is that we require ∂f : ∂M →
∂X to be a homotopy equivalence so that the surgery kernels “do not feel
the boundary”. All arguments such as making a map highly connected by
surgery steps and intersection pairings and selfintersection can be carried out
in the interior of M without affecting the boundary. Thus we get, see [652,
Theorem 8.186 on page 302 and Theorem 9.109 on page 381],
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Theorem 9.88. (Surgery Obstruction for Manifolds with Bound-
ary). Let (f, f) be a normal map of degree one with underlying map
(f, ∂f) : (M,∂M) → (X, ∂X) such that ∂f is a homotopy equivalence. Put
n = dim(M) and π = π1(X). Then:

(i) We can associate to it its surgery obstruction

σ(f, f) ∈ Ln(Zπ,w);

(ii) The surgery obstruction depends only on the normal bordism class of (f, f);
(iii) Suppose n ≥ 5. Then σ(f, f) = 0 in Ln(Zπ,w) if and only if we can do a

finite number of surgery steps on the interior of M leaving the boundary
fixed to obtain a normal map (f ′, f ′) which covers a homotopy equivalence
of pairs (f ′, ∂f ′) : (M ′, ∂M ′)→ (X, ∂X) with ∂M ′ = ∂M and ∂f ′ = ∂f .

More details can be found in [652, Sections 8.8 and 9.5].

9.10 Decorations

Next we want to modify the L-groups and the surgery obstruction so that the
surgery obstruction is the obstruction to achieve a simple homotopy equiva-
lence. This will force us to study L-groups with decorations.

9.10.1 L-groups with K1-Decorations

We begin with the L-groups. It is clear that this requires to take equivalence
classes of bases into account. Suppose that we have specified a subgroup U ⊂
K1(R) such that U is closed under the involution on K1(R) coming from the
involution of R and contains the image of the change of rings homomorphism
K1(Z)→ K1(R).

Two bases B and B′ for the same finitely generated free R-module V
are called U -equivalent, if the change of basis matrix defines an element in
K1(R) which belongs to U . Note that the U -equivalence class of a basis B is
unchanged if we permute the order of elements of B. We call an R-module
V U -based if V is finitely generated free and we have chosen a U -equivalence
class of bases.

Let V be a stably finitely generated free R-module. A stable basis for V
is a basis B for V ⊕Ru for some integer u ≥ 0. Denote for any integer v the
direct sum of the basis B and the standard basis Sa for Ra by B

∐
Sa which

is a basis for V ⊕Ru+a. Let C be a basis for V ⊕Rv. We call the stable basis
B and C stably U -equivalent if and only if there is an integer w ≥ u, v such
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that B
∐
Sw−u and C

∐
Sw−v are U -equivalent basis. We call an R-module

V stably U -based if V is stably finitely generated free and we have specified
a stable U -equivalence class of stable basis for V .

Let V and W be stably U -based R-modules. Let f : V ⊕Ra
∼=−→W ⊕Rb be

an R-isomorphism. Choose a non-negative integer c together with basis for
V ⊕Ra+c and W⊕Rb+c which represent the given stable U -equivalence classes

of basis for V and W . Let A be the matrix of f⊕idRc : V ⊕Ra+c
∼=−→W⊕Rb+c

with respect to these bases. It defines an element [A] in K1(R). Define the
U -torsion

τU (f) ∈ K1(R)/U(9.89)

by the class represented by [A]. It is easy to prove that τU (f) is independent
of the choices of c and the basis and depends only on f and the stable U -basis
for V and W . Moreover, one easily checks

τU (g ◦ f) = τU (g) + τU (f);

τU
(
f 0
u v

)
= τU (f) + τU (v);

τU (idV ) = 0,

for R-isomorphisms f : V0

∼=−→ V1, g : V1

∼=−→ V2, and v : V3

∼=−→ V4 and an
R-homomorphism u : V0 → V4 of stably U -based R-modules Vi. Let C∗ be
a contractible stably U -based finite R-chain complex, i.e., a contractible R-
chain complex C∗ of stably U -based R-modules which satisfies Ci = 0 for
|i| > N for some integer N . The definition of Whitehead torsion in (3.32)
carries over to the definition of the U -torsion

τU (C∗) = [A] ∈ K1(R)/U.(9.90)

Analogously we can associate to an R-chain homotopy equivalence f : C∗ →
D∗ of stably U -based finite R-chain complexes its U -torsion, cf. (3.33),

τU (f∗) := τ(cone∗(f∗)) ∈ K1(R)/U.(9.91)

We will consider stably U -based ε-quadratic forms (P,ψ), i.e., non-singular
ε-quadratic forms whose underlying R-module P is a stably U -based R-

module such that the U -torsion of the isomorphism (1 + ε · T )(ψ) : P
∼=−→ P ∗

is zero in K1(R)/U . An isomorphism f : (P,ψ)→ (P ′, ψ′) of stably U -based
ε-quadratic forms is U -simple if the U -torsion of f : P → P ′ vanishes in
K1(R)/U . Note that for a stably U -based R-module P the ε-quadratic form
Hε(P ) is a stably U -based ε-quadratic form. The sum of two stably U -based
ε-quadratic forms is again a stably U -based ε-quadratic form. It is worthwhile
to mention the following U -simple version of Lemma 9.26.
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Lemma 9.92. Let (P,ψ) be a stably U -based ε-quadratic form. Let L ⊂ P be
a lagrangian such that L is a stably U -based R-module and the U -torsion of
the following 2-dimensional stably U -based finite R-chain complex

0→ L
i−→ P

i∗◦(1+ε·T )(ψ)−−−−−−−−−→ L∗ → 0

vanishes in K1(R)/U . Then the inclusion i : L → P extends to a U -simple
isomorphism of stably U -based ε-quadratic forms

Hε(L)
∼=−→ (P,ψ).

Next we give the simple version of the even dimensional L-groups.

Definition 9.93. Let R be an associative ring with involution. For ε ∈ {±1}
define LU1−ε(R) to be the abelian group of equivalence classes [P,ψ] of stably
U -based non-singular ε-quadratic forms (P,ψ) with respect to the following
equivalence relation. We call (P,ψ) and (P ′, ψ′) equivalent if and only if
there exists integers u, u′ ≥ 0 and a U -simple isomorphism of stably U -based
non-singular ε-quadratic forms

(P,ψ)⊕Hε(R
u) ∼= (P ′, ψ′)⊕Hε(R

u′).

Addition is given by the sum of two ε-quadratic forms. The zero element is
represented by [Hε(R

u)] for any integer u ≥ 0. The inverse of [P,ψ] is given
by [P,−ψ].

For an even integer n define the abelian group LUn (R), called the n-th
U -decorated quadratic L-group, of R by

LUn (R) :=

{
LU0 (R) if n ≡ 0 mod 4;
LU2 (R) if n ≡ 2 mod 4.

A stably U -based ε-quadratic formation (P,ψ;F,G) consists of an ε-
quadratic formation (P,ψ;F,G) such that (P,ψ) is a stably U -based ε-
quadratic form, the lagrangians F and G are stably U -based R-modules, and
the U -torsion of the following two contractible stably U -based finite R-chain
complexes

0→ F
i−→ P

i∗◦(1+ε·T )(ψ)−−−−−−−−−→ F ∗ → 0

and

0→ G
j−→ P

j∗◦(1+ε·T )(ψ)−−−−−−−−−→ G∗ → 0

vanish in K1(R)/U where i : F → P and j : G→ P denote the inclusions. An
isomorphism f : (P,ψ;F,G)→ (P ′, ψ′;F ′, G′) of U -based ε-quadratic forma-

tions is U -simple if the U -torsion of the induced R-isomorphisms P
∼=−→ P ′,

F
∼=−→ F ′ and G

∼=−→ G′ vanishes in K1(R)/U . Note that for a U -stably based
R-module P the trivial ε-quadratic formation (Hε(P );P, (P )∗) has the struc-
ture of a stably based ε-quadratic formation. Given a stably U -based (−ε)-
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quadratic form (Q,ψ), its boundary ∂(Q,ψ) is a stably U -based ε-quadratic
formation. Obviously the sum of two stably U -based ε-quadratic formations
is again a stably U -based ε-quadratic formation. Next we give the simple
version of the odd dimensional L-groups.

Definition 9.94. Let R be an associative ring with involution. For ε ∈ {±1}
define LU2−ε(R) to be the abelian group of equivalence classes [P,ψ;F,G] of
stably U -based ε-quadratic formations (P,ψ;F,G) with respect to the follow-
ing equivalence relation. We call two stably U -based ε-quadratic formations
(P,ψ;F,G) and (P ′, ψ′;F ′, G′) equivalent if and only if there exists stably
U -based (−ε)-quadratic forms (Q,µ) and (Q′, µ′) and non-negative integers u
and u′ together with a U -simple isomorphism of stably U -based ε-quadratic
formations

(P,ψ;F,G)⊕ ∂(Q,µ)⊕ (Hε(R
u);Ru, (Ru)∗)

∼= (P ′, ψ′;F ′, G′)⊕ ∂(Q′, µ′)⊕ (Hε(R
u′);Ru

′
, (Ru

′
)∗).

Addition is given by the sum of two stably U -based ε-quadratic forms. The
zero element is represented by ∂(Q,µ)⊕(Hε(R

u);Ru, (Ru)∗) for any stably U -
based (−ε)-quadratic form (Q,µ) and non-negative integer u. The inverse of
[P,ψ;F,G] is represented by (P,−ψ;F ′, G′) for any choice of stably U -based
lagrangians F ′ and G′ in Hε(P ) such that F and F ′ are complementary and
G and G′ are complementary and the U -torsion of the obvious isomorphism

F ⊕ F ′
∼=−→ P and G⊕G′

∼=−→ P vanishes in K1(R)/U .
For an odd integer n define the abelian group LUn (R) called the n-th U -

decorated quadratic L-group of R

LUn (R) :=

{
LU1 (R) if n ≡ 1 mod 4;
LU3 (R) if n ≡ 3 mod 4.

Notation 9.95. Consider the case of a group ring Rπ with the w-twisted
involution. For a group G denote by WhRn (G) the n-th Whitehead group
of RG, which is the (n − 1)-th homotopy group of the homotopy fiber of
the assembly map BG+ ∧ K(R) → K(RG). Then we define Lsn(Rπ,w) by
LUn (Rπ) for U the kernel of the map K1(Rπ) → WhR1 (π). Observe that
Lsn(Rπ) depends on the pair (R, π). Sometimes one denotes Lsn(Rπ,w) also

by L
〈2〉
n (Rπ,w).

If R = Zπ with the w-twisted involution, then U ⊆ K1(Zπ) reduces to the
abelian group V ⊆ K1(ZG) of elements of the shape (±g) for g ∈ π. So we
get the simple quadratic L-groups

Lsn(Zπ,w) = L
〈2〉
n (Zπ,w) = LVn (Zπ,w).
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9.10.2 The Simple Surgery Obstruction

Let (f, f) be a normal map of degree one with (f, ∂f) : (M,∂M)→ (X, ∂X)
as underlying map such that (X, ∂X) is a simple finite Poincaré complex
and ∂f is a simple homotopy equivalence. Then the definition of the surgery
obstruction appearing in Theorem 9.88 (i) can be modified to the simple set-
ting. Note that the difference between the L-groups Lhn(Zπ,w) and the simple
L-groups Lsn(Zπ,w) is the additional structure of a U -basis. The definition
of the simple surgery obstruction

σ(f, f) ∈ Lsn(Zπ,w).(9.96)

is the same as the one appearing in Theorem 9.88 (i) except that we must
explain how the various surgery kernels inherit a stable U -basis.

The elementary proof of the following lemma is left to the reader. Note
that for any stably U -based R-module V and element x ∈ K1(R)/U we can
find another stable U -basis C for V such that the U -torsion τU (id : (V,B)→
(V,C)) is x. This is not true in the unstable setting. For instance, there exists
a ring R with an element x ∈ K1(R)/U for U the image of K1(Z)→ K1(R)
such that x cannot be represented by a unit in R, in other words x is not the
U -torsion of any R-automorphism of R.

Lemma 9.97. Let C∗ be a contractible finite stably free R-chain complex and
r be an integer. Suppose that each chain module Ci with i 6= r comes with a
stable U -basis. Then Cr inherits a preferred stable U -basis which is uniquely
defined by the property that the U -torsion of C∗ vanishes in K1(R)/U .

We have the following version of Lemma 9.70

Lemma 9.98. If f : X → Y is k-connected for n = 2k or n = 2k + 1, then
Kk(M̃) is stably finitely generated free and inherits a preferred stable U -basis.

Proof. See [652, Lemma 10.27 (i) on page 414]. ut

Next we can give the simple version of the surgery obstruction theorem. For
its proof see for instance [652, Theorem 10.30 on page 415]. Note that simple
normal bordism class means that in the definition of normal nullbordisms
the pairs (Y, ∂Y ), (∂0Y, ∂0Y ∩ ∂1Y ) and (∂1Y, ∂0Y ∩ ∂1Y ) are required to be
simple finite Poincaré pairs and the map ∂2F : ∂2M → ∂2Y is required to be
a simple homotopy equivalence.

Theorem 9.99. (Simple surgery obstruction for manifolds with bound-
ary) Let (f, f) be a normal map of degree one whose underlying map is
(f, ∂f) : (M,∂M) → (X, ∂X) such that (X, ∂X) is a simple finite Poincaré
complex and ∂f is a simple homotopy equivalence. Put n = dim(M) and
π = π1(X). Then:
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(i) The simple surgery obstruction depends only on the simple normal bordism
class of (f, f);

(ii) Suppose n ≥ 5. Then σ(f, f) = 0 in Lsn(Zπ,w) if and only if we can do
a finite number of surgery steps on the interior of M leaving the bound-
ary fixed to obtain a normal map (f ′, f ′) : νM ′ → ξ which covers a sim-
ple homotopy equivalence of pairs (f ′, ∂f ′) : (M ′, ∂M ′) → (X, ∂X) with
∂M ′ = ∂M and ∂f ′ = ∂f .

Exercise 9.100. Let W be a compact manifold of dimension n whose bound-
ary is the disjoint union M q N . Let (f, f) be a normal map such that the
underlying maps of pairs is of the shape f : (W,∂W )→ (X×[0, 1], X×{0, 1})
for some closed manifold X and induces a simple homotopy equivalence
∂W → X × {0, 1}. Show that M and N are diffeomorphic provided that
the simple surgery obstruction σ(f, f) of (9.96) vanishes and n ≥ 6.

9.10.3 Decorated L-Groups

L-groups are designed as obstruction groups for surgery problems. The dec-
oration reflects what kind of surgery problem one is interested in.

The L-group Ln(R) of Definitions 9.25 and 9.81 are also denoted by

L
〈1〉
n (R) or by Lhn(R). If one works with finitely generated projective mod-

ules instead of finitely generated free R-modules in Definitions 9.25 and 9.81,
one obtains projective quadratic L-groups Lpn(R) which are also denoted by

L
〈0〉
n (R). The negative decorations L

〈j〉
n (R) for j ∈ Z, j ≤ −1 can be obtained

using suitable categories of modules parametrized over Rk. There are forgetful

maps L
〈j+1〉
n (R) → L

〈j〉
n (R) for j ∈ Z, j ≤ 1. The group L

〈−∞〉
n (R) is defined

as the colimit over these maps. For details the reader can consult [817, 824].
Let us summarize the decorations for integral group rings. We have already

introduced Lsn(Zπ,w) = L
〈2〉
n (Zπ,w) in Notation 9.95, we get

Lhn(Zπ,w) = L
〈1〉
n (Zπ,w) = Ln(Zπ,w);

Lpn(Zπ,w) = L
〈0〉
n (Zπ,w),

and have furthermore L
〈j〉
n (Zπ) for j ∈ Z, j ≤ −1 and L

〈−∞〉
n (Zπ).

For the Farrell-Jones Conjecture we will have to take the decoration 〈−∞〉
where for applications the decorations h and s will be relevant. So we have
to understand how one can compare them.
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9.10.4 The Rothenberg Sequence

Next we explain how decorated L-groups can be computed from one another
for a ring with involution. We have the long exact Rothenberg sequence [821,
Proposition 1.10.1 on page 104], [824, 17.2] for j ∈ {0,−1,−2, . . .} q {−∞}
and n ∈ Z

(9.101) · · · → L〈j+1〉
n (R)→ L〈j〉n (R)→ Ĥn(Z/2; K̃j(R))

→ L
〈j+1〉
n−1 (R)→ L

〈j〉
n−1(R)→ · · · .

Here Ĥn(Z/2; K̃j(R)) is the Tate-cohomology of the group Z/2 with coeffi-

cients in the Z[Z/2]-module K̃j(R). The involution on K̃j(R) comes from the
involution on R.

For a group ring Rπ with the w-twisted involution and elements j in
{1, 0,−1, . . .} q {−∞} and n in Z, we get the long exact sequence

(9.102) · · · → L〈j+1〉
n (Rπ,w)→ L〈j〉n (Rπ,w)→ Ĥn(Z/2; WhRj (π))

→ L
〈j+1〉
n−1 (Rπ,w)→ L

〈j〉
n−1(Rπ,w)→ · · · .

Over the integral group ring WhZ
1 (π) agrees with Wh(π) and WhZ

j (π)

agrees with K̃j(Zπ) for j ≤ 0. Hence (9.101) reduces for R = Z and j = 1 to

(9.103) · · · → L〈s〉n (Zπ,w)→ L〈h〉n (Zπ,w)→ Ĥn(Z/2; Wh(π))

→ L
〈s〉
n−1(R)→ L

〈h〉
n−1(R)→ · · · ,

and for R = Z and j ≤ 0 to

(9.104) · · · → L〈j+1〉
n (Zπ,w)→ L〈j〉n (Zπ,w)→ Ĥn(Z/2; K̃j(Zπ))

→ L
〈j+1〉
n−1 (Zπ,w)→ L

〈j〉
n−1(Zπ,w)→ · · · .

In particular we get

(9.105) . . .→ L〈h〉n (Zπ,w)→ L〈p〉n (Zπ,w)→ Ĥn(Z/2; K̃0(Zπ))

→ L
〈h〉
n−1(Zπ,w)→ L

〈p〉
n−1(Zπ,w)→ · · · .

Theorem 9.106 (Independence of decorations). Let G be a group such

that Wh(G), K̃0(ZG) and Kn(ZG) for all n ∈ Z, n ≤ −1 vanish. Then for
every j ∈ Z, j ≤ −1 and every n ∈ Z the forgetful maps induce isomorphisms

Lsn(ZG)
∼=−→ Lhn(ZG)

∼=−→ Lpn(ZG)
∼=−→ L〈j〉n (ZG)

∼=−→ L〈−∞〉n (ZG).

Proof. This follows from the various Rothenberg sequences. ut



9.10 Decorations 225

Exercise 9.107. Show that for every group G, every j ∈ Z, j ≤ −1, and
every n ∈ Z the forgetful maps induces isomorphisms after inverting 2

Ls(ZG)[1/2]
∼=−→ Lh(ZG)[1/2]

∼=−→ Lp(ZG)[1/2]
∼=−→ L〈j〉(ZG)[1/2]

∼=−→ L〈−∞〉(ZG)[1/2].

9.10.5 The Shaneson Splitting

The Bass-Heller-Swan decomposition in K-theory, see Theorem 6.16, has the
following analogue for the algebraic L-groups.

Theorem 9.108 (Shaneson splitting). For every group G, every ring with
involution R, every j ∈ Z, j ≤ 2 and n ∈ Z there is a natural isomorphism

L〈j〉n (RG)⊕ L〈j−1〉
n−1 (RG)

∼=−→ L〈j〉n (R[G× Z])

and we have the natural isomorphism

L〈−∞〉n (RG)⊕ L〈−∞〉n−1 (RG)
∼=−→ L〈−∞〉n (R[G× Z]).(9.109)

The map appearing in the theorem above comes from the map L
〈j〉
n (RG)→

L
〈j〉
n (R[G×Z]) induced by the inclusion G→ G×Z and a map L

〈j−1〉
n−1 (RG)→

L
〈j〉
n (R[G × Z]) which is essentially given by the cartesian product with S1.

The latter explains the raise from (n− 1) to n. But why does the decoration
raises from j − 1 to j? The reason is the product formula for Whitehead
torsion, see Theorem 3.37 (iv). It predicts for any (not necessarily simple)
homotopy equivalence f : X → Y of finite CW -complexes that the homotopy
equivalence f × idS1 : X × S1 → Y × S1 is a simple homotopy equivalence.
There is also a product formula for the finiteness obstruction which predicts
for a finitely dominated (not necessarily up to homotopy finite) CW -complex
X that X ×S1 is homotopy equivalent to a finite CW -complex. The original
proof of the Shaneson splitting for the case j = 2 and R = Z i.e., for the
isomorphism

Lsn(ZG)⊕ Lhn−1(ZG)
∼=−→ Lsn(Z[G× Z])

can be found in [896]. The proof for arbitrary j and R is given in [824, 17.2].
Note that for j = 1 we obtain an isomorphism

Lhn(RG)⊕ Lpn−1(RG)
∼=−→ Lhn(R[G× Z])(9.110)

Remark 9.111 (UNil-groups). Even though in the Shaneson splitting (9.109)
above there are no terms analogous to the Nil-terms in the Bass-Heller-
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Swan decomposition in K-theory, see Theorem 6.16, such Nil-phenomena do
also occur in L-theory, as soon as one considers amalgamated free products.
The corresponding groups are the UNil-groups. They vanish if one inverts 2,
see [192]. For more information about the UNil-groups we refer for instance
to [62, 189, 190, 240, 241, 244, 337, 825]. How the Farrell-Jones Conjecture
predicts exact Mayer-Vietoris sequences for amalgamated free products after
inverting 2 is explained in Section 15.7.

Exercise 9.112. Compute L
〈j〉
n (Z[Z]).

9.11 The Farrell-Jones Conjecture for Algebraic
L-Theory for Torsionfree Groups

The Farrell-Jones Conjecture for algebraic L-theory, which will later be for-
mulated in full generality in Chapter 13, reduces for a torsionfree group to
the following conjecture. Given a ring with involution R, there exists an L-
spectrum associated to R with decoration 〈−∞〉

L〈−∞〉(R)(9.113)

with the property that πn
(
L〈−∞〉(R)

)
= L

〈−∞〉
n (R) holds for n ∈ Z.

Conjecture 9.114 (Farrell-Jones Conjecture for torsionfree groups
for L-theory). Let G be a torsionfree group. Let R be any ring with invo-
lution.

Then the assembly map

Hn(BG; L〈−∞〉(R))→ L〈−∞〉n (RG)

is an isomorphism for all n ∈ Z.

We get for every j ∈ {1, 0,−1, . . .} q {−∞}

Hn(BZ; L〈j〉(R)) ∼= Hn({•}; L〈j〉(R))⊕Hn−1({•}; L〈j〉(R))

∼= L〈j〉n (R)⊕ L〈j〉n−1(R).

In view of the Shaneson splitting of Theorem 9.108 it is now obvious, why
we have passed to the decoration j = −∞ in Conjecture 9.114.

Exercise 9.115. Let Fg be the closed orientable surface of genus g. Com-

pute L
〈j〉
n (Z[π1(Fg)]) for all j ∈ Z, j ≤ 2 and n ∈ Z using the fact that

Conjecture 9.114 holds for G = π1(Fg).

Lemma 9.116. Let X be a CW -complex.
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(i) If X is finite and we localize at the prime 2, we obtain a natural isomor-
phism

Hn(X; L〈−∞〉(Z))(2)
∼=
∏
j∈Z

(
Hn+4j(X;Z(2))×Hn+4j−2(X;Z/2)

)
;

(ii) If we invert 2, we obtain a natural isomorphism

Hn(X; L〈−∞〉(Z))[1/2] ∼= KOn(X)[1/2].

Proof. (i) The L-theory spectrum L〈−∞〉(Z)(2) localized at (2) is a infinite
product of Eilenberg-Mac-Lane spectra by [928, Theorem A].

(ii) This follows from the more general case discussed in Subsection 15.14.4,
which is based on [599, 600]. ut

9.12 The Surgery Exact Sequence

In this section we introduce the Surgery Exact Sequence. It is the realiza-
tion of the Surgery Program, which we have explained in Remark 3.53. The
Surgery Exact Sequence is the main theoretical tool in solving the classifica-
tion problem of manifolds of dimensions greater than or equal to five.

9.12.1 The Structure Set

Definition 9.117 (Simple structure set). Let X be a closed manifold of
dimension n. We call two simple homotopy equivalences fi : Mi → X from
closed manifolds Mi of dimension n to X for i = 0, 1 equivalent if there exists
a diffeomorphism g : M0 →M1 such that f1◦g is homotopic to f0. The simple
structure set Ssn(X) of X is the set of equivalence classes of simple homotopy
equivalences M → X from closed manifolds of dimension n to X. This set
has a preferred base point, namely, the class of the identity id : X → X.

The simple structure set Ssn(X) is the basic object in the study of manifolds
which are diffeomorphic to X. Note that a simple homotopy equivalence
f : M → X is homotopic to a diffeomorphism if and only if it represents
the base point in Ssn(X). A manifold M is diffeomorphic to N if and only
if for some simple homotopy equivalence f : M → N the class of [f ] agrees
with the preferred base point. Some care is necessary since it may be possible
that a given simple homotopy equivalence f : M → N is not homotopic to
a diffeomorphism, although M and N are diffeomorphic. Hence it does not
suffice to compute Ssn(N), one also has to understand the operation of the
group of homotopy classes of simple selfequivalences of N on Ssn(N). This
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can be rather complicated in general. But it will be no problem in the case
N = Sn because any selfhomotopy equivalence Sn → Sn is homotopic to a
selfdiffeomorphism.

There is also a version of the structure set which does not take Whitehead
torsion into account.

Definition 9.118 (Structure set). Let X be a closed manifold of dimen-
sion n. We call two homotopy equivalences fi : Mi → X from closed manifolds
Mi of dimension n to X for i = 0, 1 equivalent if there is a manifold triad
(W ; ∂0W,∂1W ) with ∂0W ∩ ∂1W = ∅ and a homotopy equivalence of triads
(F ; ∂0F, ∂1F ) : (W ; ∂0W,∂1W )→ (X× [0, 1];X×{0}, X×{1}) together with
diffeomorphisms g0 : M0 → ∂0W and g1 : M1 → ∂1W satisfying ∂iF ◦ gi = fi
for i = 0, 1. The structure set Shn(X) of X is the set of equivalence classes
of homotopy equivalences M → X from a closed manifold M of dimension
n to X. This set has a preferred base point, namely the class of the identity
id : X → X.

Remark 9.119 (The simple structure set and s-cobordisms). If we
require in Definition 9.118 the homotopy equivalences F , f0, and f1 to be
simple homotopy equivalences, we get the simple structure set Ssn(X) of Def-
inition 9.117, provided that n ≥ 5. We have to show that the two equivalence
relations are the same. This follows from the s-Cobordism Theorem 3.47.
Namely, W appearing in Definition 9.118 is an h-cobordism and is even an
s-cobordism if we require F , f0, and f1 to be simple homotopy equivalences,
see Theorem 3.37. Hence there is a diffeomorphism Φ : ∂0W × [0, 1] → W
inducing the obvious identification ∂0W × {0} → ∂0W and some diffeomor-
phism φ1 : (∂0W ) = (∂0W × {1}) → ∂1W . Then φ : M0 → M1 given by
g−1

1 ◦ φ1 ◦ g0 is a diffeomorphism such that f1 ◦ φ is homotopic to f0. The
other implication is obvious.

9.12.2 Realizability of Surgery Obstructions

In this section we explain that any element in the L-group Ln(Zπ,w) for n ≥ 5
can be realized as the surgery obstruction of a normal map (f, f) covering a
map (f, ∂f) : (M,∂M)→ (X, ∂X) of compact manifolds if we require that X
has non-empty boundary ∂X and that ∂f is a (simple) homotopy equivalence.

Theorem 9.120 (Realizability of the surgery obstruction). Suppose
n ≥ 5. Consider a w-oriented connected compact manifold X with non-empty
boundary ∂X. Let π be its fundamental group and let w : π → {±1} be its
orientation homomorphism. Consider an element x ∈ Ln(Zπ,w).

Then we can find a normal map of degree one (f, f) covering a map of
triads

f = (f ; ∂0f, ∂1f) : (M ; ∂0M,∂1M)→ (X×[0, 1];X×{0}∪∂X×[0, 1], X×{1})
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with the following properties:

(i) ∂0f is a diffeomorphism and f |∂0M is a stabilization of T (∂f0);
(ii) ∂1f is a homotopy equivalence;

(iii) The surgery obstruction σ(f, f) in Ln(Zπ,w), see (9.84), is the given el-
ement x.

The analogous statement holds for x ∈ Lsn(Zπ,w) if we require ∂1f to be a
simple homotopy equivalence and we consider the simple surgery obstruction,
see (9.96).

Proof. See [652, Theorem 8.192 on page 308 and Theorem 9.111 on page 382].
ut

Remark 9.121 (Surgery obstructions of closed manifolds). It is not
true that for any w-oriented closed manifold N of dimension n with funda-
mental group π and orientation homomorphism w : π → {±1} and any ele-
ment x ∈ Ln(Zπ,w) there is a normal map (f, f) covering a map of w-oriented
closed manifolds f : M → N of degree one such that σ(f, f) = x. Note that in
Theorem 9.120 the target manifold X × [0, 1] is not closed. The same remark
holds for Lsn(Zπ,w). These questions are discussed in in [437, 442, 705, 706],
see also [652, Remark 8.199 on page 209 and Ramark 9.117 on page 401].

9.12.3 The Surgery Exact Sequence

Now we can establish one of the main tools in the classification of manifolds,
the Surgery Exact Sequence. We have already extended the notion of a nor-
mal map for closed manifolds to manifolds with boundary and explained the
notion of a normal bordism for normal maps of pairs in Section 9.9. In this
Subsection 9.12.3, we will consider only normal maps with the same target
(X, ∂X) whose underlying maps are diffeomorphisms on the boundary, and
we call two of them with the same target normally bordant if there is a nor-
mal bordism between them in the sense of Definition 9.59 whose underlying
map induces a diffeomorphism ∂1W → ∂X × [0, 1].

Definition 9.122. Let (X, ∂X) be a w-oriented compact manifold of dimen-
sion n with boundary ∂X. Define the set of normal maps to (X, ∂X)

Nn(X, ∂X)

to be the set of normal bordism classes of normal maps of degree one (f, f)
with underlying map (f, ∂f) : (M,∂M)→ (X, ∂X), for which ∂f : ∂M → ∂X
is a diffeomorphism.

Let X be a closed w-oriented connected manifold of dimension n ≥ 5.
Denote by π its fundamental group and by w : π → {±1} its orientation
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homomorphism. Let Nn+1(X × [0, 1], X × {0, 1}) and Nn(X) be the set of
normal maps of degree one as introduced in Definition 9.122. Let Ssn(X) be
the structure set of Definition 9.117. Denote by Lsn(Zπ,w) the simple surgery
obstruction group, see Notation 9.95. Denote by

σsn+1 : Nn+1(X × [0, 1], X × {0, 1})→ Lsn+1(Zπ,w);(9.123)

σsn : Nn(X)→ Lsn(Zπ,w),(9.124)

the maps that assign to the normal bordism class of a normal map of de-
gree one its simple surgery obstruction, see (9.96). This is well-defined by
Theorem 9.88 (ii). Let

ηsn : Ssn(X)→ Nn(X)(9.125)

be the map that sends the class [f ] ∈ Ssn(X) represented by a simple homo-
topy equivalence f : M → X to the normal bordism class of the following
normal map of degree one. Choose a homotopy inverse f−1 : X → M and a
homotopy h : idM ' f−1 ◦ f . Put ξ = (f−1)∗TM . Up to isotopy of bundle
maps there is precisely one bundle map (h, h) : TM × [0, 1] → TM cover-
ing h : M × [0, 1] → M whose restriction to TM × {0} is the identity map
TM × {0} → TM . The restriction of h to X × {1} induces a bundle map
f : TM → ξ covering f : M → X. Put η([f ]) := [(f, f)]. One easily checks
that the normal bordism class of (f, f) depends only on [f ] ∈ Ssn(X) and
hence that η is well-defined.

Next we define an action of the abelian group Lsn+1(Zπ,w) on the structure
set Ssn(X)

ρsn : Lsn+1(Zπ,w)× Ssn(X)→ Ssn(X).(9.126)

Fix x ∈ Lsn+1(Zπ,w) and [f ] ∈ Ssn(X) represented by a simple homotopy

equivalence f : M → X. By Theorem 9.120 we can find a normal map (F , F )
covering a map of triads (F ; ∂0F, ∂1F ) : (W ; ∂0W,∂1W ) → (M × [0, 1];M ×
{0},M × {1}) such that ∂0F is a diffeomorphism and ∂1F is a simple ho-
motopy equivalence and σ(F , F ) = x. Then define ρsn(x, [f ]) by the class
[f ◦ ∂1F : ∂1W → X]. We have to show that this is independent of the choice
of (F , F ). Let (F ′, F ′) be a second choice. We can glue W ′ and W− together
along the diffeomorphism (∂0F )−1◦∂0F

′ : ∂0W
′ → ∂0W and obtain a normal

bordism from (F |∂1W , ∂1F ) to (F ′|∂1W ′ , ∂1F
′). The simple obstruction of this

normal bordism is

σ(F ′, F ′)− σ(F , F ) = x− x = 0.

Because of Theorem 9.99 (ii) we can perform surgery relative boundary on
this normal bordism to arrange that the reference map from it to X × [0, 1]
is a simple homotopy equivalence. In view of Remark 9.119 this shows that
f ◦ ∂1F and f ◦ ∂1F

′ define the same element in Ssn(X). One easily checks
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that this defines a group action since the surgery obstruction is additive under
stacking normal bordisms together. The next result is the main result of this
chapter and follows from the definitions and Theorem 9.99 (ii).

Theorem 9.127 (The Surgery Exact Sequence). Under the conditions
and in the notation above the so-called Surgery Exact Sequence

Nn+1(X × [0, 1], X × {0, 1})
σsn+1−−−→ Lsn+1(Zπ,w)

∂sn+1−−−→ Ssn(X)

ηsn−→ Nn(X)
σsn−−→ Lsn(Zπ,w)

is exact for n ≥ 5 in the following sense. An element z ∈ Nn(X) lies in
the image of ηsn if and only if σsn(z) = 0. Two elements y1, y2 ∈ Ssn(X)
have the same image under ηsn if and only if there exists an element x ∈
Lsn+1(Zπ,w) with ρsn(x, y1) = y2. For two elements x1, x2 in Lsn+1(Zπ) we
have ρsn(x1, [id : X → X]) = ρsn(x2, [id : X → X]) if and only if there is
u ∈ Nn+1(X × [0, 1], X × {0, 1}) with σsn+1(u) = x1 − x2.

There is an analogous Surgery Exact Sequence

N h
n+1(X × [0, 1], X × {0, 1})

σhn+1−−−→ Lhn+1(Zπ,w)
∂hn+1−−−→ Sh(X)

ηhn−→ Nn(X)
σhn−−→ Lhn(Zπ,w)

where Sh(X) is the structure set of Definition 9.118 and Lhn(Zπ,w) :=
Ln(Zπ,w) has been introduced in Definitions 9.25 and 9.81.

Remark 9.128 (Extending the Surgery Exact Sequence to the left).
The Surgery Exact Sequence of Theorem 9.127 can be extended to infinity to
the left. In the range far enough to the left it is a sequence of abelian groups.

9.13 Surgery Theory in the PL and in the Topological
Category

One can also develop surgery theory in the PL (=piecewise linear) category
or in the topological category [562]. This requires to carry over the notions
of vector bundles and tangent bundles to these categories. There are analogs
of the sets of normal invariants NPL

n (X) and N TOP
n (X) and the structure

sets SPL,hn (X), SPL,sn (X) STOP,h
n (X) and STOP,s

n (X). There are analogs PL
and TOP of the group O = colimn→∞On. The topological group TOP is the
limit of the groups TOP(k) that are the groups of homeomorphisms of Rk
fixing the origin:

TOP = colimk→∞ TOP(k).
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The definition of PL is more elaborate and therefore omitted. Let G =
colimn→∞G(n) where G(n) is the monoid of self homotopy equivalences of
Sn. There are classifying spaces BPL (resp. BTOP), which classify stable iso-
morphism classes of PL (resp. TOP) Rk bundles and which are infinite loop
spaces with multiplication corresponding to the Whitney sum of bundles.
The space BG is the classifying space for spherical fibrations. There are also
canonical maps BPL→ BG (resp. BTOP→ BG) which classify the passage
to strong fiber homotopy equivalence classes of stable spherical fibrations.
The homotopy fibres of these maps are denoted G/PL (resp. G/TOP) and
have infinite loop space structures so that the canonical maps G/PL→ BPL
and G/TOP → BTOP are maps of infinite loop spaces. Define G/O as the
homotopy fiber of the map BO→ BG.

Theorem 9.129 (The set of normal maps and G/O, G/PL and G/TOP).
Let X be a connected compact n-dimensional manifold. Then there is a

canonical group structure on the set [X,G/O] [X,G/PL], or [X,G/TOP] re-
spectively, and a transitive free operation of this group on Nn(X), NPL

n (X),
or N TOP

n (X) respectively. In particular we get bijections

[X/∂X,G/O]
∼=−→ Nn(X);

[X/∂X,G/PL]
∼=−→ NPL

n (X);

[X/∂X,G/TOP]
∼=−→ N TOP

n (X),

respectively.

There are analogs of the Surgery Exact Sequence, see Theorem 9.127, for
the PL category and the topological category.

Theorem 9.130 (The Surgery Exact Sequence for the PL and the
topological category). There is a Surgery Exact Sequence

NPL
n+1(X × [0, 1], X × {0, 1})

σsn+1−−−→ Lsn+1(Zπ,w)
∂sn+1−−−→ SPL,sn (X)

ηsn−→ NPL
n (X)

σsn−−→ Lsn(Zπ,w)

which is exact for n ≥ 5 in the sense of Theorem 9.127. There is an analogous
Surgery Exact Sequence

NPL
n+1(X × [0, 1], X × {0, 1})

σhn+1−−−→ Lhn+1(Zπ,w)
∂hn+1−−−→ SPL,hn (X)

ηhn−→ NPL
n (X)

σhn−−→ Lhn(Zπ,w).

The analogous sequences exists in the topological category, namely there is a
surgery sequence
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N TOP
n+1 (X × [0, 1], X × {0, 1})

σsn+1−−−→ Lsn+1(Zπ,w)
∂sn+1−−−→ STOP,s

n (X)

ηsn−→ N TOP
n (X)

σsn−−→ Lsn(Zπ,w)

which is exact for n ≥ 5 in the sense of Theorem 9.127, and an analogous
Surgery Exact Sequence

N TOP
n+1 (X × [0, 1], X × {0, 1})

σhn+1−−−→ Lhn+1(Zπ,w)
∂hn+1−−−→ STOP,h

n (X)

ηhn−→ N TOP
n (X)

σhn−−→ Lhn(Zπ,w).

Note that the surgery obstruction groups are the same in the smooth
category, PL category, and topological category. Only the set of normal in-
variants and the structure sets are different. The set of normal invariants in
the smooth category, PL category or topological category do not depend on
the decoration h and s, whereas the structure sets and the surgery obstruc-
tion groups depend on the decoration h and s. In particular the structure set
depends on both the choice of category and choice of decoration.

As in the smooth setting the surgery sequence above can be extended to
infinity to the left.

Some interesting constructions can be carried out in the topological cate-
gory, which do not have smooth counterparts.

Remark 9.131 (The total surgery obstruction). Given a finite Poincaré
complex X of dimension ≥ 5, a single obstruction, the so-called total surgery
obstruction, is constructed in [823, §17], see also [579]. It vanishes if and only
if X is homotopy equivalent to a closed topological manifold. It combines
the two stages of the classical obstructions, namely, the problem whether the
Spivak normal fibration has a reduction to a TOP-bundle (which is equiva-
lent to the condition that N TOP(X) is non-empty) and whether the surgery
obstruction of the associated normal map is trivial.

Remark 9.132 (Group structures on the surgery sequence). An al-
gebraic surgery sequence is constructed in [823, § 14, § 18] and identified
with the geometric surgery sequence above in the topological category. More-
over, in the topological situation one can find abelian group structures on
STOP,s
n (X), STOP,h

n (X) and N TOP
n (X) such that the surgery sequence be-

comes a sequence of abelian groups. The main point is to find the right
addition on G/TOP.

There cannot be a group structure in the smooth category for Shn(X) and

Nn(X) such that Shn(X)
η−→ Nn(X)

σ−→ Lhn(Zπ,w) is a sequence of groups
(and analogous for the simple version), see [249]. Note that the composite,
see Theorem 9.129,

[X; G/O] ∼= Nn(X)
σsn−−→ Lsn(Zπ,w)
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is a map whose source and target come with canonical group structures but
it is not a homomorphism of abelian groups in general, see [968, page 114].
The same problem arises with the decoration h. More information about this
topic can be found for instance in [652, Sections 11.8 and 17.6].

Remark 9.133 (The homotopy type of G/TOP and TOP/PL). The
computation of the homotopy type of the space G/TOP (and also of G/PL)
due to Sullivan [915] is explained in detail in [682, Chapter 4]. One obtains
homotopy equivalences

G/TOP

[
1

2

]
' BO

[
1

2

]
;

G/TOP(2) '
∏
j≥1

K(Z(2), 4j)×
∏
j≥1

K(Z/2, 4j − 2),

where K(A, i) denotes the Eilenberg-MacLane space of type (A, i), i.e., a
CW -complex such that πn(K(A, i)) is trivial for n 6= i and is isomorphic
to A if n = i, the subscript (2) stands for localizing at (2), i.e., all primes

except 2 are inverted, and
[

1
2

]
stands for localization of 2, i.e. 2 is inverted.

In particular we get for a space X isomorphisms

[X,G/TOP]

[
1

2

]
∼= K̃O

0
(X)

[
1

2

]
;

[X,G/TOP](2)
∼=
∏
j≥1

H4j(X;Z(2))×
∏
j≥1

H4j−2(M ;Z/2),

where KO∗ is K-theory of real vector bundles, see Subsection 10.2.2.

The various groups G, TOP, and PL, and their (homotopy theoretic) quo-
tients G/PL, PL/O and G/PL fit into a braid by inspecting long exact se-
quences of fibrations. This braid can be interpreted geometrically in terms of
L-groups, bordism groups, and homotopy groups of exotic spheres in dimen-
sions ≥ 5, see for instance [652, Chapter 12].

Kirby and Siebenmann [562, Theorem 5.5 in Essay V on page 251], see
also [867], have proved

Theorem 9.134. The space TOP/PL is an Eilenberg MacLane space of type
(Z/2, 3).

More information about the homotopy type of G/O, G/PL, and G/TOP
can be found for instance in [652, Chapter 17].

9.14 The Novikov Conjecture

In this section we introduce the Novikov Conjecture in its original form in
terms of higher signatures and make a first link to surgery theory. It follows
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from both the Baum-Connes Conjecture and the Farrell-Jones Conjecture
and has been an important interface between topology and non-commutative
geometry.

9.14.1 The Original Formulation of the Novikov Conjecture

Let G be a (discrete) group. Let u : M → BG be a map from an oriented
closed smooth manifold M to BG. Let

L(M) ∈
⊕

k∈Z,k≥0

H4k(M ;Q)(9.135)

be the L-class of M . Its k-th entry L(M)k ∈ H4k(M ;Q) is a certain homo-
geneous polynomial of degree k in the rational Pontrjagin classes pi(M ;Q) ∈
H4i(M ;Q) for i = 1, 2, . . . , k such that the coefficient sk of the monomial
pk(M ;Q) is different from zero. It is defined in terms of multiplicative se-
quences, see for instance [714, § 19]. We mention at least the first values

L(M)1 =
1

3
· p1(M ;Q);

L(M)2 =
1

45
·
(
7 · p2(M ;Q)− p1(M ;Q)2

)
;

L(M)3 =
1

945
·
(
62 · p3(M ;Q)− 13 · p1(M ;Q) ∪ p2(M ;Q) + 2 · p1(M ;Q)3

)
.

The L-class L(M) is determined by all the rational Pontrjagin classes and vice
versa. Recall that the k-th rational Pontrjagin class pk(M,Q) ∈ H4k(M ;Q)
is defined as the image of k-th Pontrjagin class pk(M) under the obvious
change of coefficients map H4k(M ;Z) → H4k(M ;Q). The L-class depends
on the tangent bundle and thus on the differentiable structure of M . For
x ∈

∏
k≥0H

k(BG;Q) define the higher signature of M associated to x and
u to be

signx(M,u) := 〈L(M) ∪ u∗x, [M ]Q〉 ∈ Q(9.136)

where [M ]Q denotes the image of the fundamental class [M ] of an ori-
ented closed d-dimensional manifold M under the change of coefficients
map Hd(M ;Z) → Hd(M ;Q). Recall that for dim(M) = 4n the signature
sign(M) of M is the signature of the non-singular bilinear symmetric pair-
ing on the middle cohomology H2n(M ;R) given by the intersection pairing
(a, b) 7→ 〈a∪b, [M ]R〉. Obviously sign(M) depends only on the oriented homo-
topy type of M . We say that signx for x ∈ H∗(BG;Q) is homotopy invariant,
if for two oriented closed closed smooth manifolds M and N with reference
maps u : M → BG and v : N → BG we have
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signx(M,u) = signx(N, v),

whenever there is an orientation preserving homotopy equivalence f : M → N
such that v ◦ f and u are homotopic.

Conjecture 9.137 (Novikov Conjecture). The group G satisfies the
Novikov Conjecture if signx is homotopy invariant for all elements x of∏
k∈Z,k≥0H

k(BG;Q).

This conjecture appears for the first time in the paper by Novikov [748,
§ 11]. A survey about its history can be found in [368].

9.14.2 Invariance Properties of the L-Class

One motivation for the Novikov Conjecture comes from the Signature Theo-
rem due to Hirzebruch [481, 482].

Theorem 9.138 (Signature Theorem). Let M be an oriented closed ma-
nifold of dimension n. Then the higher signature sign1(M,u) = 〈L(M), [M ]Q〉
associated to 1 ∈ H0(M) and some map u : M → BG coincides with the sig-
nature sign(M) of M if dim(M) = 4n, and is zero, if dim(M) is not divisible
by four.

The Signature Theorem 9.138 leads to the question whether the Pontrjagin
classes or the L-classes are homotopy invariants or homeomorphism invari-
ants. They are obviously invariants of the diffeomorphism type. However, the
Pontrjagin classes pk(M) ∈ H4k(M ;Z) for k ≥ 2 are not homeomorphism
invariants, see for instance [570, Theorem 4.8 on page 31]. On the other hand,
there is the following deep result due to Novikov [745, 746, 747].

Theorem 9.139 (Topological invariance of rational Pontrjagin classes).
The rational Pontrjagin classes pk(M,Q) ∈ H4k(M ;Q) are topological in-

variants, i.e., for a homeomorphism f : M → N of closed smooth manifolds
we have

H4k(f ;Q)(pk(N ;Q)) = pk(M ;Q)

for all k ≥ 0 and in particular H∗(f ;Q)(L(N)) = L(M).

Example 9.140 (The L-class is not a homotopy invariant). The ra-
tional Pontrjagin classes and the L-class are not homotopy invariants as the
following example shows. There exists for k ≥ 1 and large enough j ≥ 0 a
(j+1)-dimensional vector bundle ξ : E → S4k with Riemannian metric whose
k-th Pontrjagin class pk(ξ) is not zero and which is trivial as a fibration. The
total space SE of the associated sphere bundle is a closed (4k+j)-dimensional
manifold which is homotopy equivalent to S4k × Sj and satisfies
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pk(SE) = −pk(ξ) 6= 0;

L(SE)k = sk · pk(SE) 6= 0,

where sk 6= 0 is the coefficient of pk in the polynomial defining the L-class. But
pk(S4k×Sj) and L(S4k×Sj)k vanish since the tangent bundle of S4k×Sj is
stably trivial. In particular SE and S4k×Sj are simply connected homotopy
equivalent closed manifolds which are not homeomorphic. This example is
taken from [825, Proposition 2.9] and attributed to Dold and Milnor there.
See also [825, Proposition 2.10] or [714, Section 20].

Remark 9.141 (The homological version of the Novikov Conjec-
ture). One may understand the Novikov Conjecture as an attempt to figure
out, how much of the L-class is a homotopy invariant of M . If one consid-
ers the oriented homotopy type and the simply connected case, it is just
the expression 〈L(M), [M ]Q〉 or, equivalently, the top component of L(M).
In the Novikov Conjecture one asks the same question, but now taking
the fundamental group into account by remembering the classifying map
uM : M → Bπ1(M), or, more generally, a reference map u : M → BG. The
Novikov Conjecture can also be rephrased by saying that for any group G
and any pair (M,u) consisting of an oriented closed manifold M of dimension
n together with a reference map u : M → BG the term

u∗(L(M) ∩ [M ]Q) ∈
⊕
k∈Z

Hn+4k(BG;Q)

depends only on the oriented homotopy type of the pair (M,u). This follows
from the elementary computation for x ∈ H∗(BG;Q)

〈L(M) ∪ u∗x, [M ]Q〉 = 〈u∗x,L(M) ∩ [M ]Q〉 = 〈x, u∗(L(M) ∩ [M ]Q)〉

and the fact that the Kronecker pairing 〈−,−〉 for rational coefficients is non-
singular. Note that−∩[M ]Q : Hn−i(M ;Q)→ Hi(M ;Q) is an isomorphism for
all i ≥ 0 by Poincaré duality. Hence L(M)∩[M ]Q carries the same information
as L(M).

Exercise 9.142. Let f : M → N be an orientation preserving homotopy
equivalence of oriented closed manifolds which are aspherical. Assume that
the Novikov Conjecture 9.137 holds for G = π1(M). Show that then L(M) =
f∗L(N) must be true.

9.14.3 The Novikov Conjecture and Surgery Theory

Remark 9.143 (The Novikov Conjecture and assembly map). There
exists an assembly map
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asmbGn :
⊕
k∈Z

Hn+4k(BG;Q)→ Lhn(ZG)⊗Z Q,

which fits into the following commutative diagram

STOP,h
n (M)

ηhn //

s

$$

N TOP
n (M)

σsn //

b

��

Lhn(Zπ1(M))

u∗

��
[M,G/TOP]

c

��

Lhn(ZG)

i

��⊕
k∈ZHn+4k(BG;Q)

asmbGn // Lhn(ZG)⊗Z Q.

The map i is the obvious map and u∗ is the homomorphism coming from
π1(u) : π1(M)→ π1(BG) = G. The bijection b is taken from Theorem 9.129.
The map c comes from the rational version of the homotopy equivalences
describing G/TOP appearing in Remark 9.133, and Poincaré duality. The
composite c ◦ b sends the class of a normal map (f, f) with underlying map
f : N → M of degree one to (u ◦ f)∗(L(N) ∩ [N ]Q) − u∗(L(M) ∩ [M ]Q).
This fact is for instance explained in [611, page 728]. The map s is defined
analogously, it sends the class [f ] of a homotopy equivalence f : N → M to
the difference (u◦f)u∗(L(N)∩ [N ]Q)−u∗(L(M)∩ [M ]Q) where we choose [N ]
such that the map f has degree one. We conclude from Remark 9.141 that
the Novikov Conjecture 9.137 is equivalent to the statement that s is trivial.
The upper row is part of the Surgery Exact Sequence of Theorem 9.130. This
implies that the composite

STOP,h
n (M)

s−→
⊕
k∈Z

Hn+4k(BG;Q)
asmbGn−−−−→ Lhn(ZG)⊗Z Q

is trivial.
Thus we can conclude that the group G satisfies the Novikov Conjec-

ture 9.137 if the map asmbGn :
⊕

k∈ZHn+4k(BG;Q)→ Lhn(ZG)⊗ZQ is injec-
tive. See also Kaminker-Miller [524] or [570, Proposition 15.4 on page 112].
Note that the last map involves only G. This conclusion will be a key ingre-
dient in the proof that the L-theoretic Farrell-Jones Conjecture for G implies
the Novikov Conjecture 9.137, see Theorem 13.62 (xi).

Remark 9.144 (The converse of the Novikov Conjecture). A kind
of converse to the Novikov Conjecture 9.137 is the following result. Let N
be an oriented connected closed smooth manifold of dimension n ≥ 5. Let
u : N → BG be a map inducing an isomorphism on the fundamental groups.
Consider any element l ∈

∏
i≥0H

4i(N ;Q) such that u∗(l ∩ [N ]Q) = 0 holds
in H∗(BG;Q). Then there exists a non-negative integer K such that for any
multiple k of K there is a homotopy equivalence f : M → N of oriented
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closed smooth manifolds satisfying

f∗(L(N) + k · l) = L(M).

A proof can be found for instance in [263, Theorem 6.5]. This shows that
the top dimension part of the L-class L(M) is essentially the only homo-
topy invariant rational characteristic class for simply connected closed 4k-
dimensional manifolds.

More information about the Novikov Conjecture can be found for instance
in [369, 370, 570, 849, 1010]. An algebraic geometric and an equivariant ver-
sion of the Novikov Conjecture is introduced in [847] and [854].

9.15 Topologically Rigidity and the Borel Conjecture

In this section we deal with the Borel Conjecture and how it follows from the
Farrell-Jones Conjecture in dimensions ≥ 5.

9.15.1 Aspherical Spaces

Definition 9.145 (Aspherical). A space X is called aspherical, if it is path
connected and all its higher homotopy groups vanish, i.e., πn(X) is trivial for
n ≥ 2.

Remark 9.146 (Homotopy classification of aspherical CW -complexes).
A CW -complex is aspherical if and only if it is connected and its universal
covering is contractible. Given two aspherical CW -complexes X and Y , the
map from the set of homotopy classes of maps X → Y to the set of group ho-
momorphisms π1(X) → π1(Y ) modulo inner automorphisms of π1(Y ) given
by the map induced on the fundamental groups is a bijection. In particular,
two aspherical CW -complexes are homotopy equivalent if and only if they
have isomorphic fundamental groups and every isomorphism between their
fundamental groups comes from a homotopy equivalence.

Remark 9.147 (Classifying space of a group). An aspherical CW -
complex X with fundamental group π is the same as an Eilenberg Mac-Lane
space K(π, 1) of type (π, 1) and the same as the classifying space Bπ for the
group π.

Exercise 9.148. Let F → E → B be a fibration. Suppose that F and B are
aspherical. Show that then E is aspherical.

Exercise 9.149. Let X be an aspherical CW -complex of finite dimension.
Show that π1(X) is torsionfree.
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Example 9.150 (Examples of aspherical manifolds).

(i) A connected closed 1-dimensional manifold is homeomorphic to S1 and
hence aspherical;

(ii) Let M be a connected closed 2-dimensional manifold. Then M is either
aspherical or homeomorphic to S2 or RP2;

(iii) A connected closed 3-manifold M is called prime if for any decomposition
as a connected sum M ∼= M0]M1 one of the summands M0 or M1 is home-
omorphic to S3. It is called irreducible, if any embedded sphere S2 bounds
a disk D3. Every irreducible closed 3-manifold is prime. A prime closed
3-manifold is either irreducible or an S2-bundle over S1. The following
statements are equivalent for a closed 3-manifold M :

• M is aspherical;
• M is irreducible and its fundamental group is infinite and contains no

element of order 2;
• The fundamental group π1(M) cannot be written in a non-trivial way

as an amalgamated free product of two groups, is infinite, different from
Z, and contains no element of order 2.

• The universal covering of M is homeomorphic to R3.

(iv) Let L be a Lie group with finitely many path components. Let K ⊆ L
be a maximal compact subgroup. Let G ⊆ L be a discrete torsionfree
subgroup. Then M = G\L/K is an aspherical closed manifold with fun-
damental group G since its universal covering L/K is diffeomorphic to Rn
for appropriate n;

(v) Every closed Riemannian (smooth) manifold with non-positive sectional
curvature has a universal covering which is diffeomorphic to Rn and is in
particular aspherical.

Exercise 9.151. Classify all simply connected aspherical closed manifolds.

Exercise 9.152. Suppose that M is a connected sum M1]M2 of two closed
manifolds M1 and M2 of dimension n ≥ 3, which are not homotopy equivalent
to a sphere. Show that M is not aspherical.

There exists exotic aspherical manifolds as the following results illustrate.
The following theorem is due to Davis-Januszkiewicz [276, Theorem 5a.4].

Theorem 9.153 (Non-PL-example).
For every n ≥ 4 there exists an aspherical closed topological n-manifold

that is not homotopy equivalent to a PL-manifold

The following result is proved by Davis-Fowler-Lafont [275] using the work
of Manolescu [691, 690].

Theorem 9.154 (Non-triangulable aspherical closed manifolds). There
exists for each n ≥ 6 an n-dimensional aspherical closed topological manifold
that cannot be triangulated. One can arrange that the fundamental group is
hyperbolic.
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The proof of the following theorem can be found in [273], [276, Theo-
rem 5b.1].

Theorem 9.155 (Exotic universal covering of aspherical closed man-
ifolds). For each n ≥ 4 there exists an aspherical closed n-dimensional
manifold such that its universal covering is not homeomorphic to Rn.

By the Hadamard-Cartan Theorem, see [398, 3.87 on page 134], the mani-
fold appearing in Theorem 9.155 above cannot be homeomorphic to a smooth
manifold with Riemannian metric with non-positive sectional curvature.

The following theorem is proved in [276, Theorem 5c.1 and Remark on
page 386].

Theorem 9.156 (Exotic aspherical closed manifolds with hyperbolic
fundamental group).

For every n ≥ 5, there exists an aspherical closed smooth n-dimensional
manifold M that is homeomorphic to a strictly negatively curved polyhedron
and has in particular a hyperbolic fundamental group such that the universal
covering is homeomorphic to Rn, but M is not homeomorphic to a smooth
manifold with Riemannian metric with negative sectional curvature.

The next results are due to Belegradek [114, Corollary 5.1], Mess [700],
and Weinberger, see [272, Section 13].

Theorem 9.157 (Aspherical closed manifolds with exotic fundamen-
tal groups).

(i) For every n ≥ 4, there is an aspherical closed topological manifold of di-
mension n whose fundamental group contains an infinite divisible abelian
group;

(ii) For every n ≥ 4, there is an aspherical closed PL manifold of dimension
n whose fundamental group has an unsolvable word problem and whose
simplicial volume in the sense of Gromov [421] is non-zero.

More information about fundamental groups of aspherical closed manifolds
with unusual properties can be found for instance in [871].

The question, when the isometry group of the universal covering of an as-
pherical closed manifold is non-discrete, is studied by Farb-Weinberger [332].

Remark 9.158 (S1-actions on aspherical closed manifolds). If S1 acts
on an aspherical closed manifold, then the orbit circle is a non-trivial ele-
ment in the center by a result of Borel, see for instance [235, Lemma 5.1
on page 242]. There is the conjecture of Conner-Raymond [235, page 229]
stating that the converse is true, namely, if the fundamental group of an as-
pherical closed manifold has nontrivial center, then the manifold has a circle
action, such that the orbit circle is a nontrivial central element of the fun-
damental group. A counterexample in dimensions ≥ 6 was constructed by
Cappell-Weinberger-Yan [196].
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It is an open question whether the conjecture of Conner-Raymond above
is true if one allows the passage to a finite covering.

Another interesting open question is whether the center of the fundamental
group of an aspherical closed manifold is finitely generated.

For more information about aspherical closed manifolds we refer for in-
stance to [645].

9.15.2 Formulation and Relevance of the Borel Conjecture

Definition 9.159 (Topologically rigid). We call a closed topological ma-
nifold N topologically rigid if any homotopy equivalence M → N with a
closed topological manifold M as source is homotopic to a homeomorphism.

Conjecture 9.160 (Borel Conjecture (for a group G in dimension
n)). The Borel Conjecture for a group G in dimension n predicts for two
aspherical closed topological manifolds M and N of dimensions n with
π1(M) ∼= π1(N) ∼= G, that M and N are homeomorphic and any homo-
topy equivalence M → N is homotopic to a homeomorphism.

The Borel Conjecture says that every aspherical closed topological mani-
fold is topologically rigid.

Remark 9.161 (The Borel Conjecture in low dimensions). The Borel
Conjecture is true in dimension ≤ 2. It is true in dimension 3 if Thurston’s
Geometrization Conjecture is true. This follows from results of Waldhausen,
see Hempel [460, Lemma 10.1 and Corollary 13.7], and Turaev, see [939], as
explained for instance in [571, Section 5]. A proof of Thurston’s Geometriza-
tion Conjecture is given in [563, 734] following ideas of Perelman. Some in-
formation in dimension 4 can be found in Davis [264].

Remark 9.162 (Topological rigidity for non-aspherical manifolds).
Topological rigidity phenomenons do hold also for some non-aspherical closed
manifolds. For instance the sphere Sn is topologically rigid by the Poincaré
Conjecture. The Poincaré Conjecture is known to be true in all dimensions.
This follows in high dimensions from the h-cobordism theorem, in dimension
four from the work of Freedman [386, 387], in dimension three from the work
of Perelman as explained in [563, 733], and and in dimension two from the
classification of surfaces.

Many more examples of classes of manifolds which are topologically rigid
are given and analyzed in Kreck-Lück [571]. For instance, the connected sum
of closed manifolds of dimension ≥ 5 which are topologically rigid and whose
fundamental groups do not contain elements of order two is again topologi-
cally rigid. The product Sk×Sn is topologically rigid if and only if k and n are
odd. An integral homology sphere of dimension n ≥ 5 is topologically rigid
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if and only if the inclusion Z → Z[π1(M)] induces an isomorphism of sim-
ple L-groups Lsn+1(Z)→ Lsn+1

(
Z[π1(M)]

)
. Every 3-manifold with torsionfree

fundamental group is topologically rigid.

Exercise 9.163. Give an example of a closed orientable 3-manifold with fi-
nite fundamental group that is not topologically rigid.

Exercise 9.164. Give an example of two topologically rigid orientable closed
smooth manifolds whose cartesian product is not topologically rigid.

Remark 9.165 (The Borel Conjecture does not hold in the smooth
category). The Borel Conjecture 9.160 is false in the smooth category, i.e.,
if one replaces topological manifold by smooth manifold and homeomorphism
by diffeomorphism. The torus Tn for n ≥ 5 is an example, see [968, 15A].
Other counterexample involving negatively curved manifolds are constructed
by Farrell-Jones [347, Theorem 0.1].

Remark 9.166 (The Borel Conjecture versus Mostow rigidity). The
examples of Farrell-Jones [347, Theorem 0.1] give actually more. Namely,
they yield for given ε > 0 a closed Riemannian manifold M0 whose sectional
curvature lies in the interval [1− ε,−1 + ε] and a closed hyperbolic manifold
M1 such that M0 and M1 are homeomorphic but not diffeomorphic. The idea
of the construction is essentially to take the connected sum of M1 with exotic
spheres. Note that by definition M0 were hyperbolic if we could take ε = 0.
Hence this example is remarkable in view of Mostow rigidity, which predicts
for two closed hyperbolic manifolds N0 and N1 that they are isometrically
diffeomorphic if and only if π1(N0) ∼= π1(N1) and any homotopy equivalence
N0 → N1 is homotopic to an isometric diffeomorphism.

One may view the Borel Conjecture as the topological version of Mostow
rigidity. The conclusion in the Borel Conjecture is weaker, one gets only
homeomorphisms and not isometric diffeomorphisms, but the assumption is
also weaker since there are many more aspherical closed topological manifolds
than hyperbolic closed manifolds.

Remark 9.167 (The work of Farrell-Jones). Farrell-Jones have made
deep contributions to the Borel Conjecture. They have proved it in dimen-
sion ≥ 5 for non-positively curved closed Riemannian manifolds, for compact
complete affine flat manifolds, and for aspherical closed manifolds whose fun-
damental group is isomorphic to the fundamental group of a complete non-
positively curved Riemannian manifold that is A-regular. Relevant references
are [348, 349, 352, 354, 355].

The Borel Conjecture for higher dimensional graph manifolds is studied
by Frigerio-Lafont-Sisto [392].

More information about the Borel Conjecture can be found in [652, Chap-
ter 19] and [980].
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9.15.3 The Farrell-Jones and the Borel Conjecture

Theorem 9.168 (The Farrell-Jones and the Borel Conjecture). Let
G be a finitely presented group. Suppose that it satisfies the versions of the K-
theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version of
the L-theoretic Farrell-Jones Conjecture stated in 9.114 for the ring R = Z.

Then every aspherical closed manifold of dimension ≥ 5 with G as funda-
mental group is topologically rigid, in other words, the Borel Conjecture 9.160
holds for G in dimensions ≥ 5.

For its proof we need the following lemma.

Lemma 9.169. Let M be a closed topological manifold with Wh(π1(M)) = 0.
Then M is topologically rigid if and only if the simple topological structure
set STOP,s(M) consists of precisely on element, namely the class of idM .

Proof. Suppose that M is topologically rigid. Consider any element in η ∈
STOP,s(M). Choose a simple homotopy equivalence f : N →M representing
η. SinceM is topologically rigid, f is homotopic to a homeomorphism h : N →
M . Hence idM ◦h ' f . This implies that η is represented by idM .

Suppose that STOP,s(M) consists only of one class, the one represented by
idM . Consider any homotopy equivalence f : N →M . Since Wh(π1(M)) = 0
holds by assumption, f is a simple homotopy equivalence and thus represents
an element in STOP,s(M). Since it represents the same class as idM by as-
sumption, there exists a homeomorphism h : N → M such that h = idM ◦h
is homotopic to f . ut

Lemma 9.170. Let M be a closed topological manifold of dimension n ≥ 5.
Let w : π := π1(M) → {±1} be given by its first Stiefel-Whitney class. Sup-
pose Wh(π1(M)) = 0. Assume that the homomorphism of abelian groups
σsn+1 : N TOP

n+1 (M × [0, 1],M × {0, 1}) → Lsn+1(Zπ,w) of (9.123) is surjec-
tive and that the preimage of 0 under the map σsn : N TOP

n (X) → Lsn(Zπ,w)
of (9.124) consists of one point.

Then M is topologically rigid.

Proof. This follows from the simple topological Surgery Exact Sequence of
Theorem 9.130 and Lemma 9.169. ut

Now we can give a sketch of the proof of Theorem 9.168.

Sketch of the proof of Theorem 9.168. We deal for simplicity with the ori-
entable case, i.e., w1 = 0, only. Let L〈−∞〉(Z) be the L-theory spectrum
appearing in the version of the L-theoretic Farrell-Jones Conjecture 9.114.
Since it holds by assumption, the so-called assembly map

asmb
〈−∞〉
k : Hk(Bπ; L〈−∞〉(Z))→ L

〈−∞〉
k (Zπ)
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is bijective for all k. Let L〈−∞〉(Z)〈1〉 be the 1-connected cover of L〈−∞〉(Z).
This spectrum comes with a map of spectra i : L〈−∞〉(Z)〈1〉 → L〈−∞〉(Z)
such that πk(i) is bijective for k ≥ 1 and πk(L〈−∞〉(Z)〈1〉) = 0 for k ≤ 0. For
k ≥ 1 there is a connective version of the assembly map asmbk above

asmb
〈−∞〉
k 〈1〉 : Hk

(
Bπ; L〈−∞〉(Z)〈1〉

)
→ L

〈−∞〉
k (Zπ)

such that πk(i) ◦ asmbk〈1〉 = asmbk holds. A comparison argument of the

Atiyah-Hirzebruch spectral sequence shows that the bijectivity of asmb
〈−∞〉
k

for k = n, n + 1 implies that asmb
〈−∞〉
n+1 〈1〉 is bijective and in particular

surjective and asmb〈−∞〉n 〈1〉 is injective if n is the dimension of the aspher-
ical closed manifold under consideration. Because by assumption Conjec-
tures 3.110 and 4.20 hold for π, we conclude from Theorem 9.106 that the
simple versions of the 1-connective assembly maps

asmbsk〈1〉 : Hk

(
Bπ; Ls(Z)〈1〉

)
→ Lsk(Zπ)

agree with the maps asmb
〈−∞〉
k 〈1〉. One can identify the map asmbsn+1〈1〉 with

the map σsn+1 : N TOP
n+1 (M × [0, 1],M ×{0, 1})→ Lsn+1(Zπ) of (9.123) and the

map asmbsn〈1〉 with the map σsn : NPL
n (X) → Lsn(Zπ) of (9.124), see [823,

Theorem 18.5 on page 198], [818], [579] using Remark 18.18, Remark 18.19,
and Example 18.23.

Now Theorem 9.168 follows from Lemma 9.170. ut

Remark 9.171 (Dimension 4). The conclusion of Theorem 9.168 hold also
in dimension 4, provided that the fundamental group is good in the sense of
Freedman, see [386, 387]. Groups of subexponential growth are good, see [389,
577].

Remark 9.172 (The Novikov Conjecture implies a stable version of
the Borel Conjecture). For a group G that satisfies the Novikov Con-
jecture 9.137, the following stable version of the Borel Conjecture holds:
For any homotopy equivalence f : M → N of aspherical closed manifolds
of dimension ≥ 5 whose fundamental groups are isomorphic to G, the map
f × idR3 : M × R3 → N × R3 is homotopic to a homeomorphism. See [504,
Proposition 2.8], where the proof is attributed to Shmuel Weinberger, see
also [341, Proof of Corollary B on page 207].

Remark 9.173 (Homology-ANR-manifolds). If one works in the cate-
gory of homology ANR-manifolds, one does not have to pass to the 1-
connective cover, see [164, Main Theorem].
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9.16 Homotopy Spheres

An oriented closed smooth manifold is called a homotopy sphere if it is ho-
motopy equivalent to the standard sphere. By the Poincaré Conjecture a
homotopy sphere is always homeomorphic to a standard sphere and actu-
ally topologically rigid. However, it may not be diffeomorphic to a standard
sphere, and in this case it is called an exotic homotopy sphere.

The classification of homotopy spheres due to Kervaire-Milnor[559] marks
the beginning of surgery theory. In order to understand the surgery ma-
chinery and in particular the long exact surgery sequence, we recommend
to the reader to study the classification of homotopy spheres, which boils
down to compute Ssn(Sn). Moreover, there are some beautiful constructions
of exotic spheres and results about the curvature properties of Riemannian
metric on an exotic sphere. We refer for instance to the following survey
articles [509], [595], [612], and [633, Chapter 6], and to [652, Chapter 12].

9.17 Poincaré Duality Groups

The following definition is due to Johnson-Wall [511].

Definition 9.174 (Poincaré duality group).
A group G is called a Poincaré duality group of dimension n if the following

conditions holds:

(i) The group G is of type FP, i.e., the trivial ZG-module Z possesses a finite
dimensional projective ZG-resolution by finitely generated projective ZG-
modules;

(ii) We get an isomorphism of abelian groups

Hi(G;ZG) ∼=
{
{0} for i 6= n;
Z for i = n.

Recall that a CW -complex X is called finitely dominated if there exists a
finite CW -complex Y and maps i : X → Y and r : Y → X with r ◦ i ' idX .

A metric space X is called an absolute neighborhood retract or briefly ANR
if, for every embedding i : X → Y as a closed subspace into a metric space Y ,
there is an open neighbourhood U of im(i) together with a retraction r : U →
im(i), or, equivalently, for every metric space Z, every closed subset Y ⊆ Z,
and every (continuous) map f : Y → X, there exists an open neighborhood
U of Y in Z together with an extension F : U → X of f to U . Every ANR
is locally contractible, see [488, Theorem 7.1 in Chapter III on page 96].
A metrizable space of finite dimension is an ANR if and only if it is locally
contractible, see [488, Theorem 7.1 in Chapter V on page 168]. Being an ANR
is a local property, see [488, Theorem 8.1 in Chapter III on page 98]. Every



9.17 Poincaré Duality Groups 247

finite CW -complex and every topological manifold is an ANR. Another good
source about ANR-s is the book by Borsuk [145].

A compact n-dimensional homology ANR-manifold X is a compact abso-
lute neighborhood retract such that it has a countable basis for its topology,
has finite topological dimension, see Definition 23.35, and for every x ∈ X
the abelian group Hi(X,X − {x}) is trivial for i 6= n and infinite cyclic for
i = n. A closed n-dimensional topological manifold is an example of a com-
pact n-dimensional homology ANR-manifold, see [261, Corollary 1A in V.26
page 191].

Exercise 9.175. Show that the product of two Poincaré duality groups is
again a Poincaré duality group.

Theorem 9.176 (Homology ANR-manifolds and finite Poincaré com-
plexes). Let M be a closed topological manifold, or more generally, a compact
homology ANR-manifold of dimension n. Then M is homotopy equivalent to
a finite n-dimensional Poincaré complex.

Proof. A closed topological manifold, and more generally a compact ANR, has
the homotopy type of a finite CW -complex, see [562, Theorem 2.2], [985]. The
usual proof of Poincaré duality for closed manifolds carries over to homology
ANR-manifolds. ut

Theorem 9.177 (Poincaré duality groups). Let G be a group and n ≥ 1
be an integer. Then:

(i) The following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n;
(b) There exists a finitely dominated n-dimensional aspherical Poincaré

complex with G as fundamental group;

(ii) Suppose that K̃0(ZG) = 0. Then the following assertions are equivalent:

(a) G is finitely presented and a Poincaré duality group of dimension n;
(b) There exists a finite n-dimensional aspherical Poincaré complex with G

as fundamental group;

(iii) A group G is a Poincaré duality group of dimension 1 if and only if G ∼= Z;
(iv) A group G is a Poincaré duality group of dimension 2 if and only if G is

isomorphic to the fundamental group of an aspherical closed surface;

Proof. (i) Every finitely dominated CW -complex has a finitely presented fun-
damental group since every finite CW -complex has a finitely presented fun-
damental group and a group that is a retract of a finitely presented group
is again finitely presented, see [964, Lemma 1.3]. If there exists a CW -model
for BG of dimension n, then the cohomological dimension of G satisfies
cd(G) ≤ n and the converse is true, provided that n ≥ 3, see [161, Theo-
rem 7.1 in Chapter VIII.7 on page 205], [316], [964], and [965]. This implies
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that the implication (ib) =⇒ (ia) holds for all n ≥ 1 and that the impli-
cation (ia) =⇒ (ib) holds for n ≥ 3. For more details we refer to [511,
Theorem 1]. The remaining part to show the implication (ia) =⇒ (ib) for
n = 1, 2, follows from assertions (iii) and (iv).

(ii) This follows in dimension n ≥ 3 from assertion (i) and Wall’s results
about the finiteness obstruction, which decides whether a finitely dominated
CW -complex is homotopy equivalent to a finite CW -complex, and takes
values in K̃0(Zπ), see [367, 725, 964, 965] or Section 2.5. The implication
(iib) =⇒ (iia) holds for all n ≥ 1. The remaining part to show the impli-
cation (iia) =⇒ (iib) holds, follows from assertions (iii) and (iv).

(iii) Since S1 = BZ is a 1-dimensional closed manifold, Z is a finite Poincare
duality group of dimension 1 by Theorem 9.176. We conclude from the (easy)
implication (ib) =⇒ (ia) appearing in assertion (i) that Z is a Poincaré du-
ality group of dimension 1. Suppose that G is a Poincaré duality group of
dimension 1. Since the cohomological dimension of G is 1, it has to be a free
group, see [907, 923]. Since the homology group of a group of type FP is
finitely generated, G is isomorphic to a finitely generated free group Fr of
rank r. Since H1(BFr) ∼= Zr and H0(BFr) ∼= Z, Poincaré duality can only
hold for r = 1, i.e., G is Z.

(iv) This is proved in [314, Theorem 2]. See also [131, 132, 312, 315]. ut

Conjecture 9.178 (Manifold structures on aspherical Poincaré com-
plexes). Every finitely dominated aspherical Poincaré complex is homotopy
equivalent to a closed topological manifold.

Remark 9.179 (Existence and uniqueness part of the Borel Conjec-
ture). Conjecture 9.178 can be viewed as the existence part of the Borel
Conjecture 9.160, namely, the question whether an aspherical finite Poincaré
complex carries up to homotopy the structure of a closed topological mani-
fold. The Borel Conjecture 9.160 as stated above is the uniqueness part.

Conjecture 9.180 (Poincaré duality groups). A finitely presented group
is an n-dimensional Poincaré duality group if and only if it is the fundamental
group of an aspherical closed n-dimensional topological manifold.

The disjoint disk property says that for any ε > 0 and maps f, g : D2 →M
there are maps f ′, g′ : D2 → M so that the distance between f and f ′ and
the distance between g and g′ are bounded by ε and f ′(D2) ∩ g′(D2) = ∅.

Theorem 9.181 (Poincaré duality groups and aspherical compact
homology ANR-manifolds). Suppose that the torsionfree group G is a
finitely presented Poincaré duality group of dimension n ≥ 6 and satisfies the
versions of the K-theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20
and the version of the L-theoretic Farrell-Jones Conjecture stated in 9.114
for the ring R = Z. Let X be some aspherical finite Poincaré complex with
π1(X) ∼= G. (It exists because of Theorem 9.177 (ii).) Suppose that the Spivak
normal fibration of X admits a TOP-reduction.



9.17 Poincaré Duality Groups 249

Then BG is homotopy equivalent to an aspherical compact homology ANR-
manifold satisfying the disjoint disk property.

Proof. See [823, Remark 25.13 on page 297], [164, Main Theorem on page 439
and Section 8] and [166, Theorem A and Theorem B]. ut

Remark 9.182. Note that in Theorem 9.181 the condition appears that for
some aspherical finite Poincaré complex X with π1(X) ∼= G the Spivak nor-
mal fibration of X admits a TOP-reduction. This condition does not appear
in earlier versions. The reason is that there seems to be a mistake in [164] as
explained in the Erratum [165]. The problem was pointed out by Hebestreit-
Land-Winges, see [459]. The problem is that the proof that any compact
homology ANR-manifold has a TOP-reduction of its Sprivak normal fibra-
tion is not correct. In the applications of [164] to results appearing in this
book one has either to assume that the TOP-reduction exists or to prove its
existence. This is the reason why this extra assumption in Theorem 9.181
appears.

As pointed out in [165], Theorem 9.185 and 9.189 remain true with adding
any further hypothesis. This is also true for Theorem 9.191 by the follow-
ing argument. Let X1 and X2 be connected finite Poincare complexes. Let
p1 : E1 → X1 and p2 : E2 → X2 be spherical fibrations representing their
Spivak normal fibration. Then the fibration p1 ∗ p2 : E1 ∗ E2 → X1 × X2 is
a representative of the Spivak normal fibration of X1 ×X2, where the fiber
over (x1, x2) ∈ X1 × X2 is the join p−1

1 (x1) ∗ p−1
2 (x2) of the fibers of p1

over x1 and p2 over x2. Now suppose that p1 ∗ p2 has a TOP reduction after
possibly stabilization. Then i∗(p1 ∗ p2) has also a TOP-reduction for the in-
clusion i : X1 → X1 ×X2 sending x1 to (x1, x2) for some fixed x2 ∈ X2. But
i∗(p1 ∗ p2) is a stabilization of p1. Hence the Spivak normal fibration of X1

has a TOP-reduction. Analogously one sees that the Spivak normal fibration
of X2 has a TOP-reduction.

Remark 9.183 (Compact homology ANR-manifolds versus closed
topological manifolds). In the following all manifolds have dimension ≥ 6.
One would prefer that in the conclusion of Theorem 9.181 one could replace
“compact homology ANR-manifold” by “closed topological manifold”. The
problem is that in the geometric exact surgery sequence one has to work
with the 1-connective cover L〈1〉 of the L-theory spectrum L, whereas in the
assembly map appearing in the Farrell-Jones setting one uses the L-theory
spectrum L. The L-theory spectrum L is 4-periodic, i.e., πn(L) ∼= πn+4(L) for
n ∈ Z. The 1-connective cover L〈1〉 comes with a map of spectra f : L〈1〉 → L
such that πn(f) is an isomorphism for n ≥ 1 and πn(L〈1〉) = 0 for n ≤ 0. Since
π0(L) ∼= Z, one misses a part involving L0(Z) of the so-called total surgery
obstruction due to Ranicki, i.e., the obstruction for a finite Poincaré complex
to be homotopy equivalent to a closed topological manifold. If one deals with
the periodic L-theory spectrum L, one picks up only the obstruction for a
finite Poincaré complex to be homotopy equivalent to a compact homology
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ANR-manifold, the so-called four-periodic total surgery obstruction. The dif-
ference of these two obstructions is related to the resolution obstruction of
Quinn, which takes values in L0(Z). Any element of L0(Z) can be realized by
an appropriate compact homology ANR-manifold as its resolution obstruc-
tion. There are compact homology ANR-manifolds, that are not homotopy
equivalent to closed manifolds. But no example of an aspherical compact
homology ANR-manifold that is not homotopy equivalent to a closed topolo-
gical manifold is known. For an aspherical compact homology ANR-manifold
M , the total surgery obstruction and the resolution obstruction carry the
same information. So we could replace in the conclusion of Theorem 9.181
“compact homology ANR-manifold” by “closed topological manifold” if and
only if every aspherical compact homology ANR-manifold with the disjoint
disk property admits a resolution.

We refer for instance to [164, 366, 810, 811, 823] for more information
about this topic.

Question 9.184 (Vanishing of the resolution obstruction in the as-
pherical case). Is every aspherical compact homology ANR-manifold ho-
motopy equivalent to a closed manifold?

9.18 Boundaries of Hyperbolic Groups

If G is the fundamental group of an n-dimensional closed Riemannian
(smooth) manifold with negative sectional curvature, then G is a hyperbolic
group in the sense of Gromov, see for instance [149], [155], [408], and [423].
Moreover, such a group is torsionfree and its boundary ∂G is homeomorphic
to a sphere. This leads to the natural question whether a torsionfree hyper-
bolic group with a sphere as boundary occurs as fundamental group of an
aspherical closed manifold, see Gromov [424, page 192]. In high dimensions
this question is answered by the following two theorems taken from Bartels-
Lück-Weinberger [89]. For the notion of and information about the boundary
of a hyperbolic group and its main properties we refer for instance to [528].

Theorem 9.185 (Hyperbolic groups with spheres as boundary). Let
G be a torsionfree hyperbolic group and let n be an integer ≥ 6. Then:

(i) The following statements are equivalent:

(a) The boundary ∂G is homeomorphic to Sn−1;
(b) There is an aspherical closed topological manifold M such that G ∼=

π1(M), its universal covering M̃ is homeomorphic to Rn and the com-

pactification of M̃ by ∂G is homeomorphic to Dn;

(ii) The aspherical closed topological manifold M appearing in the assertion
above is unique up to homeomorphism.
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Theorem 9.186 (Hyperbolic groups with Čech-homology spheres as
boundary). Let G be a torsionfree hyperbolic group and let n be an integer
≥ 6. Then

(i) The following statements are equivalent:

(a) The boundary ∂G has the integral Čech cohomology of Sn−1;
(b) G is a Poincaré duality group of dimension n;
(c) There exists a compact homology ANR-manifold M homotopy equiva-

lent to BG. In particular, M is aspherical and π1(M) ∼= G;

(ii) If the statements in assertion (i) hold, then the compact homology ANR-
manifold M appearing there is unique up to s-cobordism of compact ANR-
homology manifolds.

One of the main ingredients in the proof of the two theorems above is the
fact that both the K-theoretic and the L-theoretic the Farrell-Jones Conjec-
ture hold for hyperbolic groups, see [77] and [86].

9.19 The Stable Cannon Conjecture

Tremendous progress in the theory of 3-manifolds has been made during
the last decade. A proof of Thurston’s Geometrization Conjecture is given
in [563], [734] following ideas of Perelman. The Virtually Fibering Conjecture
was settled by the work of Agol, Liu, Przytycki-Wise, and Wise [20, 21, 618,
800, 801, 997, 998].

However, the following famous conjecture, taken from [185, Conjecture 5.1],
is still open.

Conjecture 9.187 (Cannon Conjecture). Let G be a hyperbolic group.
Suppose that its boundary is homeomorphic to S2.

Then G acts properly cocompactly and isometrically on the 3-dimensional
hyperbolic space.

In the torsionfree case it boils down to

Conjecture 9.188 (Cannon Conjecture in the torsionfree case). Let
G be a torsionfree hyperbolic group. Suppose that its boundary is homeo-
morphic to S2.

Then G is the fundamental group of a closed hyperbolic 3-manifold.

More information about Conjecture 9.187 and its status can be found for
instance in [362, Section 2],and [142].

The following theorem is taken from [362, Theorem 2]. It is a stable version
of the Conjecture 9.188 above. Its proof is based on high-dimensional surgery
theory and the theory of homology ANR-manifolds.
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Theorem 9.189 ((Stable Cannon Conjecture)). Let G be a hyperbolic
3-dimensional Poincaré duality group. Let N be any smooth, PL, or topolo-
gical manifold respectively, that is closed and whose dimension is ≥ 2.

Then there is a closed smooth, PL, or topological manifold M and a normal
map of degree one

TM ⊕ Ra

��

f
// ξ × TN

��
M

f // BG×N

satisfying

(i) The map f is a simple homotopy equivalence;

(ii) Let M̂ →M be the G-covering associated to the composite of the isomor-

phism π1(f) : π1(M)
∼=−→ G × π1(N) with the projection G × π1(N) → G.

Suppose additionally that N is aspherical, dim(N) ≥ 3, and π1(N) sat-
isfies the Full Farrell-Jones Conjecture 13.27. (Its status is discussed in
Theorem 16.1.)

Then M̂ is homeomorphic to R3 ×N . Moreover, there is a compact topo-

logical manifold M̂ whose interior is homeomorphic to M̂ and for which

there exists a homeomorphism of pairs (M̂, ∂M̂)→ (D3 ×N,S2 ×N).

If we could choose N = {•} in Theorem 9.189, it would imply Conjec-
ture 9.188.

Exercise 9.190. Show that the manifold M appearing in Theorem 9.189 is
unique up to homeomorphism if N is aspherical and π1(N) satisfies the Full
Farrell-Jones Conjecture 13.27.

9.20 Product Decompositions

In this section we show that, roughly speaking, an aspherical closed topolo-
gical manifold M is a product M1 ×M2 if and only if its fundamental group
is a product π1(M) = G1 ×G2 and that such a decomposition is unique up
to homeomorphism.

Theorem 9.191 (Product decompositions of aspherical closed man-
ifolds). Let M be an aspherical closed topological manifold of dimension n
with fundamental group G = π1(M). Suppose we have a product decomposi-
tion

p1 × p2 : G
∼=−→ G1 ×G2.

Suppose that G, G1, and G2 satisfy the versions of the K-theoretic Farrell-
Jones Conjecture stated in 3.110 and 4.20 and the version of the L-theoretic
Farrell-Jones Conjecture stated in 9.114 for the ring R = Z.
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Then G, G1 and G2 are Poincaré duality groups whose cohomological di-
mensions satisfy

n = cd(G) = cd(G1) + cd(G2).

Suppose in the following:

• the cohomological dimension cd(Gi) is different from 3, 4 and 5 for i = 1, 2;
• n 6= 4 or (n = 4 and G is good in the sense of Freedman).

Then:

(i) There are aspherical closed topological manifolds M1 and M2 together with
isomorphisms

vi : π1(Mi)
∼=−→ Gi

and maps
fi : M →Mi

for i = 1, 2 such that

f = f1 × f2 : M →M1 ×M2

is a homeomorphism and vi ◦π1(fi) = pi (up to inner automorphisms) for
i = 1, 2;

(ii) Suppose we have another such choice of aspherical closed topological man-
ifolds M ′1 and M ′2 together with isomorphisms

v′i : π1(M ′i)
∼=−→ Gi

and maps
f ′i : M →M ′i

for i = 1, 2 such that the map f ′ = f ′1 × f ′2 is a homotopy equivalence and
v′i ◦ π1(f ′i) = pi (up to inner automorphisms) for i = 1, 2. Then there are
for i = 1, 2 homeomorphisms hi : Mi → M ′i such that hi ◦ fi ' f ′i and
vi ◦ π1(hi) = v′i holds for i = 1, 2.

Proof. The case n 6= 3 is proved in [645, Theorem 6.1]. The case n = 3 is
done as follows. One gets from [460, Theorem 11.1 on page 100] that G1 and
G2 are the fundamental groups of compact 2-manifolds. This implies that
G1
∼= Z ∼= π1(S1) and G2 is the fundamental group π1(F ) of a closed surface

or the other way around. Now use the fact that the Borel Conjecture is true
in dimensions ≤ 3. ut

9.21 Automorphisms of Manifolds

We record the following two results that deduce information about the ho-
motopy groups of the automorphism group of an aspherical closed manifold
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from the Farrell-Jones Conjecture and the material from Chapter 7 about
pseudoisotopy spaces.

Theorem 9.192 (Homotopy Groups of Top(M) rationally for closed
aspherical M). Let M be an aspherical orientable closed topological ma-
nifold of dimension > 10 with fundamental group G. Suppose the L-theory
assembly map

Hn(BG; L〈−∞〉(Z))→ L〈−∞〉n (ZG)

is an isomorphism for all n and suppose the K-theory assembly map

Hn(BG; K(Z))→ Kn(ZG)

is an isomorphism for n ≤ 1 and a rational isomorphism for n ≥ 2. Then for
1 ≤ i ≤ (dimM − 7)/3 one has

πi(Top(M))⊗Z Q =

{
center(G)⊗Z Q if i = 1,
0 if i > 1.

In the differentiable case one additionally needs to study involutions on
the higher K-theory groups.

Theorem 9.193 (Homotopy Groups of Diff(M) rationally for closed
aspherical M). Let M be an aspherical orientable closed smooth manifold of
dimension > 10 with fundamental group G. Then under the same assumptions
as in Theorem 9.192 we have for 1 ≤ i ≤ (dimM − 7)/3

πi(Diff(M))⊗Z Q =


center(G)⊗Z Q if i = 1;⊕∞

j=1H(i+1)−4j(M ;Q) if i > 1 and dimM odd;

0 if i > 1 and dimM even.

For a proof see for instance [339], [349, Section 2] and [338, Lecture 5]. For
a survey on automorphisms of manifolds we refer to [983].

Remark 9.194. We get also some information about the cohomology of
BTop(M)◦, where Top(M)◦ denotes the component of the identity of Top(M).
There is a canonical map

π1(BTop(M), id)→ G1(M) ⊆ π1(M).

onto Gottliebs subgroups G1(M) of π1(M), see [415]. Suppose from now on
that M is an aspherical orientable closed topological manifold of dimension
> 10. Then G1(M) = center(G) and the induced map

BTop(M)◦ → K(center(G), 2)

is a map of simply connected spaces inducing isomorphism on the rational-
ized homotopy groups in a range. This implies that in this range we get an
isomorphism
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H∗(K(center(G), 2);Q)
∼=−→ H∗(BTop(M)◦;Q).

Integral computations of the homotopy groups of automorphisms are much
harder. We mention at least the following result taken from [330, Theo-
rem 1.3].

Theorem 9.195 (Homotopy groups of Top(M) for closed aspherical
M with hyperbolic fundamental group).

Let M be a smoothable aspherical closed topological manifold of dimension
≥ 10 whose fundamental group π is hyperbolic.

Then there is a Z/2-action on WhTOP(Bπ) such that we obtain for every
n satisfying 1 ≤ n ≤ min{(dimM − 7)/2, (dimM − 4)/3} isomorphisms

πn(TOP(M)) ∼= πn+2

(
EZ/2+ ∧Z/2

(∨
C

WhTOP(BC)
))

and an exact sequence

1→ π2

(
EZ/2+ ∧Z/2

(∨
(C)

WhTOP(BC)
))
→ π0(TOP(M))→ Out(π)→ 1

where (C) ranges over the conjugacy classes (C) of maximal infinite cyclic
subgroups C of π.

The methods described in this book about automorphisms groups of closed
manifold apply only to aspherical closed manifolds. It is of course also essen-
tial to study automorphism groups of disks. The techniques used to ana-
lyze them are quite different. There has been tremendous progress on this
topic during the recent years. We refer to the survey article by Randal-
Williams [816], where also further references in the literatur about this topic
are given.

Moreover, there has been tremendous progress on the moduli spaces of
manifolds in the recent years, which gives informations about the cohomology
of the classifying space BDiff(M) of closed smooth manifolds M such as the
connected sum of several copies of a product of spheres. We refer to the survey
article by Galatius and Randal-Williams [397], where also further references
in the literatur about this topic are given.

9.22 Survey on Computations of L-Theory of Group
Rings of Finite Groups

Theorem 9.196 (Algebraic L-theory of ZG for finite groups). Let G
be a finite group. Then
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(i) The groups L
〈j〉
n (Z) are independent of the decoration j and given by Z,

{0}, Z/2, {0} for n ≡ 0, 1, 2, 3 mod (4);

(ii) For every n ∈ Z, the groups L
〈s〉
n (ZG), L

〈h〉
n (ZG), L

〈p〉
n (ZG), L

〈−∞〉
n (ZG),

and L
〈j〉
n (ZG) for every j ≤ 1 are finitely generated as abelian groups and

contain no p-torsion for odd primes p. Moreover, they all are finite for odd
n;

(iii) Let r(G) be the number of isomorphisms classes of irreducible real G-
representations. Let rC(G) be the number of isomorphisms classes of irre-
ducible real π-representations V that are of complex type. For every deco-
ration 〈j〉 we have

L〈j〉n (ZG)[1/2] ∼= L〈j〉n (QG)[1/2] ∼= L〈j〉n (RG)[1/2]

∼=

Z[1/2]r(G) n ≡ 0 (4);
Z[1/2]rC(G) n ≡ 2 (4);
0 n ≡ 1, 3 (4);

(iv) If G has odd order and n is odd, then Lεn(ZG) = 0 for ε = p, h, s and

L
〈j〉
n
∼= (ZG) = Z/2r for j ∈ {−1,−2, . . . , }q{−∞} where r is the number

appearing in Theorem 4.22 (iii);
(v) If G is a cyclic group of odd order, then the kernel of the split epimorphism

Lsn(ZG)→ Lsn(Z) is torsionfree. In particular tors(Lsn(ZG)) is Z/2 if n ≡
2 mod 4 and trivial otherwise.

Proof. (i) See for instance [652, Theorem 16.8 (i) on page 687].

(ii) See [968, Theorem 13.A.4 (i) on page 177], [448] for the decoration s.
Now the claim follows for all decorations from the Rothenberg sequences, see
Subsection 9.10.4 since the relevant K-groups of ZG are all finitely generated
abelian groups.

(iii) See [823, Proposition 22.34 on page 253].

(iv) See [59], [448, Theorem 10.1] for ε ∈ {s, p, h}. Note that Kn(ZG) = 0
for n ≤ −2 and K−1(ZG) = Zr by Theorem 4.22. The involution on

K−1(ZG) = Zr is given by − id. Hence Ĥ0(Z/2,K−1(ZG)) = 0 and
H1(Z/2,K−1(ZG)) = (Z/2)r. Since Lpn(ZG) = 0 for odd n and Lpn(ZG)
is known to be torsionfree for even n, the claim follows from the Rothenberg
sequence (9.101). See also [441, Section 3].

(v) See [968, Theorem 13.A.4 (ii) on page 177], [448, Section 10]. ut

9.23 Notes

The next problem is meanwhile solved and triggered surgery theory for non-
simply connected manifolds. It is a kind of generalization of the Space Form
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Problem asking which finite groups occur as fundamental groups of closed
Riemannian manifolds with constant positive sectional curvature.

Problem 9.197 (Spherical Space Form Problem). Which finite groups
can act freely (topologically or smoothly) on a standard sphere, or, equiv-
alently, occur as fundamental groups of closed manifolds whose universal
covering is (homeomorphic or diffeomorphic to) a standard sphere.

More information about this interesting problem and its solution can be
found in [270] and [679].

For a survey of the classification of fake spaces such as fake product of
spheres, fake projective spaces, fake lens spaces, and fake tori, and the liter-
ature about them, we refer to [652, Chapter 18].

Our definition of the L-groups follows the original approach due to Wall.
A much more satisfactory and elegant approach via chain complexes is due
to Mishchenko and Ranicki and is of fundamental importance for many ap-
plications and generalizations, see for instance [652, 719, 720, 721, 819, 820,
821, 823].

We mention that a different approach to surgery has been developed by
Kreck. A survey about his approach is given in [569]. Its advantage is that
one does not have to get a complete homotopy classification first. The price
to pay is that the L-groups are much more complicated, they are not nec-
essarily abelian groups any more. This approach is in particular successful
when the manifolds under consideration are already highly connected. See
for instance [572, 573, 912].

More information about surgery theory can be found for instance in [159,
187, 188, 214, 652, 633, 827, 968].

We will relate the algebraic L-theory of C∗-algebras to their topological
K-theory in Theorem 10.78. In particular we get for all n ∈ Z natural iso-
morphisms

Ln(C∗r (G,R))[1/2] ∼= KTOP
n (C∗r (G;R))[1/2];

Ln(C∗r (G,C))[1/2] ∼= KTOP
n (C∗r (G;C))[1/2].

We mention already here Conjecture 15.87, which deals with the passage
for L-theory from QG to RG to C∗r (G;R). Its connection to the Baum-Connes
Conjecture and the Farrell-Jones Conjecture is analyzed in Lemma 15.88.
For more information about the algebraic L-theory of C∗-algebras we refer
to [600].

There is also a version of the Borel Conjecture for manifolds with bound-
ary, which is implied by the Farrell-Jones Conjecture, see for instance [368,
page 17 and page 31].

Another survey article about topological rigidity is [538].
There is an equivariant version of the Borel Conjecture where one replaces

EG with the classifying space for proper G-actions EG, see Definition 11.18.
One may ask whether there is a compact closed G-manifold which is a model
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for EG and whether, for two compact proper topological G-manifolds M and
N that both are models for EG, any G-homotopy equivalence between them
is G-homotopic to a G-homeomorphism. This version is not true in general
and investigated for instance in [237, 238, 239, 243, 269, 650, 980].

The vanishing of κ-classes for aspherical closed manifolds is analyzed
in [458] using the Farrell-Jones Conjecture.

last edited on 28.04.2024
last compiled on April 28, 2024

name of texfile: ic



Chapter 10

Topological K-Theory

10.1 Introduction

In this chapter we deal with topological K-theory of reduced group C∗-
algebras, which is the target of the Baum-Connes Conjecture, in contrast to
algebraic K- and L-theory of group rings, which is the target of the Farrell-
Jones Conjecture. We begin with reviewing the topologicalK-theory of spaces
and its equivariant version for proper actions of possibly infinite discrete
groups. Then we pass to its generalization to C∗-algebras. We discuss the
Baum-Connes Conjecture for torsionfree groups 10.44 and present two ap-
plications, namely, to the Trace Conjecture about the integrality of the trace
map and to the Kadison Conjecture about idempotents in reduced group
C∗-algebras of torsionfree groups. Then we briefly state the main properties
of Kasparov’s KK-theory and its equivariant version (without explaining its
construction). This will later be needed in Chapter 14 to explain the ana-
lytic Baum-Connes assembly map and state the Baum-Connes Conjecture
for arbitrary groups and with coefficients in a G-C∗-algebra.

10.2 Topological K-Theory of Spaces

10.2.1 Complex Topological K-Theory of Spaces

Complex topological K-theory of spaces, sometimes also called complex topo-
logical K-cohomology of spaces, is a generalized cohomology theory, i.e., it as-
signs to a pair of CW -complexes (X,A) a Z-graded abelian group K∗(X,A)
and a homomorphism of degree one δ∗ : K∗(A) → K∗+1(X,A) and to a
map f : (X,A)→ (Y,B) of such pairs a homomorphism K∗(f) : K∗(Y,B)→
K∗(X,A) of Z-graded abelian groups such that the Eilenberg-Steenrod ax-
ioms of a cohomology theory are satisfied, i.e., one has naturality, homotopy
invariance, the long exact sequence of a pair, and excision. Moreover, the
disjoint union axiom holds, see Definition 12.1. In contrast to singular coho-
mology the dimension axiom is not satisfied, actually Kn({•}) is Z if n is
even and is trivial if n is odd. A very important feature is that topological
complex K-theory satisfies Bott periodicity, i.e., there is a natural isomor-
phism of degree two compatible with the boundary map in the long exact
sequence of pairs

259
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β∗(X,A) : K∗(X,A)
∼=−→ K∗+2(X,A).

Topological complex K-theory comes with a multiplicative structure.
It can be constructed by the so-called complex topological K-theory spec-

trum KTOP
C that is the following Ω-spectrum. (Spectra will be defined in

Section 12.4.) The n-th space is Z × BU for even n and Ω(Z × BU) for
odd n. The n-th structure map is given by the identity id : Ω(Z × BU) →
Ω(Z× BU) for odd n and by an explicit homotopy equivalence due to Bott

Z × BU '−→ Ω2(Z × BU) for even n. As usual, associated to this spectrum
is also a generalized homology theory K∗(X,A), called topological complex
K-homology of spaces, such that Kn({•}) is Z if n is even and is trivial if n is
odd. A proof of a universal coefficient theorem for complex K-theory can be
found in [27] and [1004, (3.1)], the homological version then follows from [12,
Note 9 and 15].

Rationally one can compute complex topological K-theory by Chern char-
acters. (Equivariant versions will be explained in Section 12.7.) Namely, we
get for any pair of CW -complexes (X,A) a natural Q-isomorphism⊕

p∈Z,p≡n(2)

Hp(X,A;Q)
∼=−→ Kn(X,A)⊗Z Q,(10.1)

and for any pair of finite CW -complexes (X,A) a natural Q-isomorphism

Kn(X,A)⊗Z Q
∼=−→

∏
p∈Z,p≡n(2)

Hp(X,A;Q).(10.2)

The condition that (X,A) is finite is needed in (10.2). The cohomological
Chern character (10.2) is compatible with the multiplicative structures.

For integral computations one has to use the Atiyah-Hirzebruch spectral
sequence, which does not collapse in general.

Exercise 10.3. Let X be a finite CW -complex. Show for its Euler charac-
teristic

χ(X) = rkZ(K0(X))− rkZ(K1(X)) = rkZ(K0(X))− rkZ(K1(X)).

The groups K∗(BG) can be computed explicitly for all finite groups G using

the Completion Theorem due to Atiyah-Segal [43, 51], see for instance [641,
Theorem 0.3]. Namely, if for a prime p we denote by r(p) the number of
conjugacy classes (g) of elements g ∈ G whose order |g| is pd for some integer
d ≥ 1, and by Zp̂ the p-adic integers, then there are isomorphisms of abelian
groups

K0(BG) ∼= Z×
∏

p prime

(Zp̂)r(p);(10.4)

K1(BG) ∼= 0.(10.5)
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One can also figure out the multiplicative structure on K0(BG) in (10.4).
This shows how accessible topological K-theory is, for instance, one does not
know the group cohomology H∗(BG) of all finite groups G.

If X is a finite CW -complex, K∗(X) can be described in terms of vector
bundles. For instance, K0(X) is the Grothendieck group associated to the
abelian monoid of isomorphism classes of (finite dimensional complex) vector
bundles over X under the Whitney sum. Naturality comes from the pullback
construction, the multiplicative structure from the tensor product of vector
bundles.

There are a Thom isomorphism and a Künneth Theorem for finite CW -
complexes for topological complex K-cohomology, see [48, Corollary 2.7.12
on page 111 and Corollary 2.7.15 on page 113].

Using exterior powers one can construct the so-called Adams operations
on topological complex K-cohomology. They were a key ingredient in the
work of Adams on the Hopf invariant one problem, see [3, 14], and on linear
independent vector fields on spheres, see [4, 5, 6]. Atiyah [44] introduced
the groups J(X) where vector bundles are considered up to fiber homotopy
equivalence. They were studied by Adams [8, 9, 10, 11].

Complex topological K-theory is one of the first generalized cohomology
theories. There are other generalized (coh)omology theories such as bordism,
see for instance [963], complex bordism, see for instance [828], Morava K-
theory, see for instance [1002], elliptic cohomology, see for instance [677, 929],
and topological modular forms tmf, see for instance [484, 485, 677], which
have been of great interest in algebraic topology over the last decades.

The connection between topological K-theory and spaces of Fredholm op-
erators was explained by Jänich [502]. Namely, there exists a natural bijection
of abelian groups for finite CW -complexes X

[X,Fred] ∼= K0(X)(10.6)

where Fred is the space of Fredholm operators, i.e., bounded operators with
finite dimensional kernel and cokernel. This shows that there is a relation be-
tween topological K-theory and index theory. For instance, we get from (10.6)
applied to X = {•} an isomorphism π0(Fred) = K0({•}) ∼= Z that sends a
Fredholm operator to its classical index which is the difference of the dimen-
sion of its kernel and the dimension of its cokernel. The bijection of (10.6) as-
signs to a mapX → Fred which can be interpreted as a family of Fredholm op-
erators parametrized by X, its family index which is essentially the difference
of the class of the vector bundle over X whose fiber over x is the kernel of the
Fredholm operator associated to x ∈ X and the vector bundle over X whose
fiber over x is the cokernel of the Fredholm operator associated to x ∈ X.
Good introductions to index theory are the seminal papers [50, 52, 53, 55, 56].
Other references about index theory are [135, 837, 1003].
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10.2.2 Real Topological K-Theory of Spaces

There is also real topological K-theory of spaces, sometimes also called real
topological KO-cohomology of spaces, KO∗(X,A) and real topological K-
homology KO∗(X,A) where one considers real vector bundles instead of
complex vector bundles and BO instead of BU . One uses a specific homo-

topy equivalence Z × BO
'−→ Ω8(Z × BO) to construct so the called real

K-theory spectrum KTOP
R . A much more sophisticated and structured sym-

metric spectrum representing real K-theory in terms of Fredholm operators
was constructed by Joachim [506, 507] and Mitchener [729] based on ideas of
Atiyah-Singer [54].

The main difference between the real and the complex version is that KO∗
is 8-periodic and KOn({•}) = KO−n({•}) is given by Z,Z/2,Z/2, 0,Z, 0, 0, 0
for n = 0, 1, 2, 3, 4, 5, 6, 7. There are natural transformations i∗ : KO∗(X) →
K∗(X) and r∗ : K∗(X) → KO∗(X) that corresponds to assigning to a real
vector bundle its complexification and to a complex vector bundle its restric-
tion to a real vector bundle. They satisfy r ◦ i = 2 · id. They also exist on
K-homology. It is sometimes useful to consider the real topological K-theory
instead of the complex version since one does loose information when pass-
ing to the complex topological version. On the other hand computations for
the real topological K-theory are harder than for the complex topological
K-theory since the real version is 8-periodic and its value at {•} contains
2-torsion, whereas the complex version is 2-periodic and its evaluation at {•}
is much simpler than for the real version.

Rationally we get again a Chern character, namely, for any pair of CW -
complexes (X,A) a natural Q-isomorphism⊕

p∈Z,p≡n(4)

Hp(X,A;Q)
∼=−→ KOn(X,A)⊗Z Q,(10.7)

and for any pair of finite CW -complexes (X,A) a natural Q-isomorphism

KOn(X,A)⊗Z Q
∼=−→

∏
p∈Z,p≡n(4)

Hp(X,A;Q).(10.8)

There is a natural transformation of homology theories called KO-orienta-
tion of Spin bordism due to Atiyah-Bott-Shapiro [49] which can be interpreted
by sending a Spin manifold to the index class of the associated Dirac operator

D : ΩSpin
n (X)→ KOn(X).(10.9)

It plays an important role for the question when a closed spin manifold admits
a Riemannian metric of positive sectional curvature, see Subsection 14.8.2.

A relation of KO-theory to surgery theory has already been explained in
Remark 9.133.
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Another variant of topological K-theory denoted by KR∗(X,A) was de-
fined by Atiyah [45]. Twisted topological K-theory has been studied inten-
sively, see instance [41, 42, 385, 535].

More information about topological K-theory of spaces can be found for
instance in [7, 40, 47, 48, 491, 492, 534, 605].

10.2.3 Equivariant Topological K-Theory of Spaces

Equivariant topological K-theory has been considered for compact topolo-
gical groups acting on compact spaces, see for instance [48, 889]. For our
purpose it will be important to treat the more general case of a proper action
of a not necessarily compact group. It suffices for our purposes to consider dis-
crete groupsG and properG-CW -complexes, or, equivalently, CW -complexes
with a G-action such that all isotropy groups are finite and for every open
cell e of X with g · e ∩ e 6= ∅ we have gx = x for all x ∈ e. This is difficult
enough, but not as hard as the much less understood case of a topological
group acting properly on locally compact Hausdorff space.

If G is a discrete group, G-cohomology theories K∗G and KO∗G are con-
structed by Lück-Oliver [655] for pairs of proper G-CW -complexes (X,A)
using classifying spaces for G-vector bundles. More precisely, for every pair
of proper G-CW -complexes (X,A) one obtains Z-graded abelian groups
K∗G(X,A) and KO∗G(X,A) such that one has naturality, G-homotopy in-
variance, long exact sequence of pairs, excision, and the disjoint union axiom
holds, see Definition 12.1. The complex version K∗G is 2-periodic, the real
version is 8-periodic.

Let H ⊆ G be a finite subgroup, Then

Kn
G(G/H) =

{
RepC(H) if n is even;

{0} if n is odd.
(10.10)

There is a decomposition of the real group ring RH as a direct product∏r
i=0Mni,ni(Di) of matrix algebras over skew-fields Di where Di is R, C, or

H. Then one obtains a decomposition for each n ∈ Z

KO−nG (G/H) =

r∏
i=1

KO−nG (G/H)i(10.11)

where

KO−nG (G/H)i =


KOn({•}) if Di = R;

Kn({•}) if Di = C;

KOn+4({•}) if Di = H.
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There is a natural external multiplicative structure, i.e., there is a natural
pairing

Km
G (X,A)⊗Z K

n
H(X,B)→ Km+n

G×H((X,A)× (Y,B))(10.12)

for discrete groups G and H and a pair (X,A) of proper G-CW -complexes
and a pair (Y,B) of proper H-CW -complexes. There exists a natural restric-
tion homomorphism for any inclusion i : H → G of discrete groups

i∗ : K∗G(X,A)→ K∗H(i∗(X,A))(10.13)

where (X,A) is a pair of proper G-CW -complexes and i∗(X,A) is its restric-
tion to H. Applying this to the diagonal map G → G × G and the external
product and using the diagonal embedding X → X×X, one obtains a natural
internal multiplicative structure, i.e., natural pairings

Km
G (X,A)⊗Z K

n
G(X,B)→ Km+n

G (X,A ∪B)(10.14)

for a discrete group G and a proper G-CW -complex X with G-CW -subcom-
plexes A and B. In particular K∗G(X) becomes a Z-graded algebra for any
proper G-CW -complex X. Given a group homomorphism α : H → G, there
is an induction homomorphism

indα : K∗H(X,A)→ K∗G(indα(X,A))(10.15)

where (X,A) is a proper H-CW -complex and indα(X,A) is the proper G-
CW -complex G ×α (X,A). If ker(α) acts freely on (X,A), the map indα is
bijective.

All the constructions and results above are carried out in [655], and the
corresponding statements do hold also for the real version KO∗G. If G is finite,
they all reduce to the classical constructions and results.

One can give a description for pairs (X,A) of finite proper G-CW -
complexes for a discrete groupG in terms ofG-vector bundles such that for in-
stance K0

G(X) and KO0
G(X) respectively agree with the Grothendieck groups

of isomorphism classes of G-equivariant complex and real respectively vector
bundles over the finite proper G-CW -complex X. This follows from [656,
Theorem 3.2 and Theorem 3.15] and [655, Proposition 1.5]. (A C∗-theoretic
analogue of this result is discussed in [109, Section 6].) However, the inter-
pretation of K0

G(X) in terms of vector bundles does not hold if G is a Lie
group, as explained in [656, Section 5]. A description in terms of infinite di-
mensional G-vector bundles is discussed by Phillips [790]. The question how
the Grothendieck group of isomorphism classes of G-vector bundles over a
classifying space BG of a compact Lie group G looks like and is related to
K0(BG) is treated in [501]. (Note that this is a non-trivial question already
for finite groups since BG does not have a finite dimensional CW -model for
non-trivial finite groups.)
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Let G be a discrete group. For any cyclic group C ⊆ G of order n < ∞
we denote by Z[ζC ] ⊆ Q(ζC) the cyclotomic ring and field generated by the
n-th roots of unity. We regard them as quotient rings of the group rings
Z[hom(C,C∗)] ⊆ Q[hom(C,C∗)]. In other words, we fix an identification of
the n-th roots of unity in Q(ζC) with the irreducible characters of C. Let C(G)
be a set of conjugacy class representatives for the cyclic subgroups C ⊆ G
of finite order. Denote by CGC the centralizer and by NGC the normalizer
of C in G. Then for any pair of finite proper G-complexes (X,A), there is
the following version of an equivariant Chern character, namely, a natural
isomorphism of rings

K∗G(X;A)⊗Z Q
∼=−→

∏
C∈C(G)

(
H∗((X,A)C/CGC;Q(ζC))

)NGC/CGC
(10.16)

where NGC/CGC acts via the conjugation action on Q(ζC) and on XC/CGC
in terms of the given G-action on X.

Equivariant Chern characters can be used to compute K∗(BG) ⊗Z Q for
infinite groups possessing a finite G-CW -model for its classifying space for
properG-actions, i.e., for instance for hyperbolic groupsG or compact lattices
G in connected Lie groups, see [641] and also [15, 16]. More information about
K∗(BG) for infinite groups can be found in [508, Theorem 0.1], and about
cohomological Chern characters in [638].

Exercise 10.17. Let G be an abelian group. Let X be a finite proper G-
CW -complex. Show that there is a Q-isomorphism

K∗G(X)⊗Z Q ∼=
∏

C∈C(G)

H∗(XC/G;Q)ϕ(|C|)

for the Euler Phi-function ϕ. We will construct in Section 10.6 the equiva-

riant K-homology KG
∗ that is a G-homology theory defined for pairs of proper

G-CW -complexes for discrete groups G and satisfies the disjoint union axiom.
An equivariant Universal Coefficient Theorem for equivariant complex K-

theory for discrete groups G and finite proper G-CW -complexes X is given
in [508, Theorem 0.3], namely, there are short exact sequences, natural in X,

0→ ExtZ(KG
∗−1(X),Z)→ K∗G(X)→ homZ(KG

∗ (X),Z)→ 0;(10.18)

0→ ExtZ(K∗+1
G (X),Z)→ KG

∗ (X)→ homZ(K∗G(X),Z)→ 0.(10.19)

It reduces for a finite group G to the one of Bökstedt [137] as explained
in [508, Remark 5.21],

An external Künneth Theorem for complex K-theory relating K∗G×H(X ×
Y ) to K∗G(X) and K∗H(Y ) is given in [715] for compact Lie groups G and H
and finite G-CW -complexes X and Y , namely, there is a short exact sequence
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(10.20) 0→
⊕
i+j=n

Ki
G(X)⊗Z K

j
H(Y )→ Kn

G×H(X × Y )

→
⊕

i+j=n+1

TorZ(Ki
G(X),Kj

H(Y ))→ 0.

The situation is much more complicated and much less understood if one
wants to relate K∗G(X × Y ) to K∗G(X) and K∗G(Y ) for a finite group G and
finite G-CW -complexes X and Y , see [483, 848]. This complication is not
surprising since it is related to the difficult question to compute K∗G(X × Y )
for the diagonal G-action on X × Y from K∗G×G(X × Y ) for a finite group G
and finite G-CW -complexes X and Y .

Exercise 10.21. Let G and H be discrete groups. Let (X,A) be a pair of
finite proper G-CW -complexes, and let (Y,B) be a pair of finite proper H-
CW -complexes. Suppose that either Ki

G(X) is torsionfree for i ∈ Z or that

Kj
H(Y ) is torsionfree for all j ∈ Z.
Then the external multiplicative structure induces for every n ∈ Z an

isomorphism⊕
i+j=n

Ki
G(X,A)⊗Z K

j
H(Y,B)

∼=−→ Kn
G×H((X,A)× (Y,B)).

Consider a discrete group G and a complex G-vector bundle p : E → X
with Hermitian metric over a finite proper G-CW -complex. Let pDE : DE →
X be the disk bundle and pSE : SE → X be the sphere bundle associated to
p whose fiber over x ∈ X is the disk and sphere in p−1(x). Then there exists
a Thom class λE ∈ K0

G(DE,SE) and the composite

TE : K∗G(X)
K∗G(pDE)−−−−−−→ K∗G(DE)

−∪λE−−−−→ K∗G(DE,SE)(10.22)

is an isomorphism of Z-graded abelian groups called Thom isomorphism,
see [656, Theorem 3.14].

Exercise 10.23. For a discrete group G and a complex G-vector bundle
p : E → X over a finite proper G-CW -complex define its Euler class
e(p) ∈ KG

0 (X) to be the image of the Thom class under the composite

K0
G(DE,SE)

K0
G(j)−−−−→ K0

G(DE)
K0
G(pDE)−1

−−−−−−−−→ K0
G(X) for j : DE → (DE,SE)

the inclusion. Show that there exists a long exact Gysin sequence

(10.24) · · · δ
n−1

−−−→ Kn
G(X)

−∪e(p)−−−−→ Kn
G(X)

Kn
G(pSE)−−−−−−→ Kn

G(SE)

δn−→ Kn+1
G (X)

−∪e(p)−−−−→ Kn+1
G (X)

Kn+1
G (pSE)
−−−−−−−→ · · · .

A Completion Theorem for complex and real topological K-theory allowing
families of subgroups is proved in [655, Theorem 6.5] for a discrete group
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G and a finite proper G-CW -complex X in terms of isomorphisms of pro-
systems, see also [656, Theorem 4.3]. Let p : EG → BG be the universal
covering of BG, or, equivalently, the universal principal G-bundle. Up to
G-homotopy EG is uniquely characterized by the property that it is a fre
G-CW -complex which is (after forgetting the group action) contractible. A
consequence of the Completion Theorem is that the inverse system{

K∗
(
(EG×GX)(n)

)}
n≥0

satisfies the Mittag-Leffler condition and we obtain isomorphisms

K∗G(X)Î ∼= K∗(EG×GX) ∼= invlimn→∞K∗
(
(EG×GX)(n)

)
.(10.25)

Here K∗G(X)Î is the completion of K∗G(X) with respect to the so-called
augmentation ideal I that is the kernel of the dimension map K0

G(EG)→ Z
for EG the classifying space for proper G-actions, and we have to assume
that there is a finite dimensional model for EG. If G is finite and we take
X = {•}, this reduces to the classical Atiyah-Segal Completion Theorem
predicting an isomorphism

Kn(BG) =

{
RepC(G)Î n even;

0 n odd,

where I is the augmentation ideal, i.e., kernel of the map given by taking com-
plex dimension RepC(G)→ Z. There is also a version for the real topological
K-theory.

A Cocompletion Theorem for the topological complex K-homology for dis-
crete groups and finite proper G-CW -complexes is proved in [508, Theo-
rem 0.2]. It assigns to a finite proper G-CW -complex X a short exact se-
quence

(10.26) 0→ colimn≥1 Ext1
Z(K∗+1

G (X)/In ·K∗+1
G (X),Z)→ K∗(EG×G X)

→ colimn≥1 homZ(K∗G(X)/In ·K∗G(X),Z)→ 0.

The Completion and Cocompletion Theorems are not only interesting in its
own right, they are needed in the computation of the topological K-theory
of certain group C∗-algebras, see for instance [267, 268, 604, 969].

Another important tool for equivariant K-theory over compact Lie groups
is the Localization Theorem for equivariant topological complex K-theory of
Segal [889, Proposition 4.1]. Given a prime ideal P of RepC(G) = K0

G({•}),
there is a topologically cyclic group S associated to P, its so-called support.
If X is a finite G-CW -complex, let X(S) be the G-CW -subcomplex G ·XS .
Then after localization at P the inclusion X(S) → X induces an isomorphism

K∗G(X)(P)

∼=−→ K∗G(X(S))(P).(10.27)
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Localization for equivariant cohomology theories for compact Lie groups is
treated in general in [934, Chapter 7] and [935, III.3 and III.4].

Equivariant topological K-theory was designed for and is a key ingredient
when one considers indices of equivariant operators. See for instance [50,
52, 53] where also applications such as Lefschetz Theorems, Riemann-Roch
Theorems, and G-Signature Theorems are treated for compact Lie groups.

The KG-degree of G-maps between spheres of unitary G-representations
for a compact Lie group G is an important tool, see [935, II.5].

A discussion about equivariant K-theory and orbifold K-theory can be
found in [18, Chapter 3].

A geometric description of equivariant K-homology for proper actions
in term cycles built by proper cocompact G-Spinc-manifolds and smooth
complex G-vector bundles over them is given in [109], extending the non-
equivariant versions of [104, 108].

10.3 Topological K-Theory of C∗-Algebras

10.3.1 Basics about C∗-algebras

For this section let F be R or C. For λ ∈ F , denote by λ the complex
conjugate of λ.

A Banach algebra over F is an associative F -algebra A = (A,+, ·) together
with a norm || || for the underlying F -vector space such that the underlying
F -vector space is complete with respect to the given norm and we have the
inequality ||a · b|| ≤ ||a|| · ||b|| for all elements a, b ∈ A.

A Banach ∗-algebra is a Banach algebra together with an involution
∗ : A → A, a 7→ a∗ satisfying (a∗)∗ = a, (a · b)∗ = b∗ · a∗, (λ · a + µ · b)∗ =
λ · a∗ + µ · b∗, and ||a∗|| = ||a|| for a, b ∈ A and λ, µ ∈ F . If G is a discrete
group, L1(G,F ) carries the structure of a Banach ∗-algebra coming from the
convolution product, the L1-norm, and the involution sending

∑
g∈G λg · g to∑

g∈G λg · g−1.
A C∗-algebra is a Banach ∗-algebra A that satisfies additionally the C∗-

identity ||a∗a|| = ||a||2 for all a ∈ A. A homomorphism of C∗-algebras f : A→
B is a homomorphism of F -algebras in the algebraic sense that respects the
involutions. A consequence of the C∗-identity is that a homomorphism of
C∗-algebras f : A → B automatically satisfies ||f(a)|| ≤ ||a|| for all a ∈ A
and is in particular continuous. Moreover, any injective homomorphism of
C∗-algebras f : A→ B is automatically isometric, i.e., satisfies ||f(a)|| = ||a||
for all a ∈ A, and two C∗-algebras which are isomorphic as F -algebras with
involutions in the purely algebraic sense are automatically isomorphic as C∗-
algebras. Two homomorphisms f, g : A→ B are homotopic if there is a path
{γt | t ∈ [0, 1]} of homomorphisms of C∗-algebras γt : A → B such that
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γ0 = f and γ1 = g and for every a the evaluation map [0, 1] → B, t 7→
γt(a) is continuous with respect to the C∗-norm on B. Equivalently, there
is a homomorphism of C∗-algebras γ : A → C([0, 1], B) to the C∗-algebra of
continuous functions from [0, 1] to B under the supremum norm such that its
composition with the evaluation maps at t = 0 and t = 1 from C([0, 1], B) to
B are f and g.

IfH is a Hilbert F -space, then the algebra of bounded operators B(H) with
the involution given by taking adjoint operators and the operator norm is a
C∗-algebra. Any subalgebra A ⊆ B(H) that is closed in the norm topology
and closed under taking adjoints inherits the structure of a C∗-algebra, and
any C∗-algebra is isomorphic as C∗-algebra to such A.

We are not requiring a unit for the multiplication. If the Banach algebra
or C∗-algebra A has a unit for the multiplication, we call A a unital Banach
algebra or unital C∗-algebra.

Given a C∗-algebra A, an ideal in A is a two-sided ideal of the underly-
ing F -algebra that is closed in the norm topology. It is automatically closed
under the involution and hence inherits the structure of a C∗-algebra. The
quotient A/I inherits the structure of a C∗-algebra by the obvious F -algebra
structure and the norm ||a + I||A/I := inf{||a + i||A | i ∈ I}. Kernels of
C∗-homomorphisms f : A → B are ideals A and each ideal in A is the ker-
nel of some homomorphism of C∗-algebras with A as source, namely, of the
projection A→ A/I.

Fix an infinite dimensional separable F Hilbert space H. Let B be the
unital C∗-algebra of bounded operators H → H. An element T ∈ B(H) is
compact if for any bounded subset B ⊆ H the closure of T (B) is a compact
subset of H. The compact operators form an ideal K in B. The Calkin algebra
is the unital C∗-algebra B/K

Let X be a locally compact Hausdorff space. Denote by C0(X,F ) the
C∗-algebra of continuous functions f : X → F that vanish at infinity, i.e.,
for every ε > 0 there exists a compact subset C ⊆ X such that |f(x)| ≤ ε
holds for all x ∈ X \ C. If F is clear from the context, we often abbreviate
C0(X) = C0(X,F ). Define an involution ∗ : C0(X,F )→ C0(X,F ) by sending
f to the function mapping x ∈ X to f(x). Equip C0(X,F ) with the supremum
norm. Then C0(X,F ) is a C∗-algebra. If X is compact, the constant function
on X with value 1 is a unit. Moreover, C0(X,F ) is unital if and only if X is
compact.

Example 10.28 (One-point and Stone-Čech compactification). If X
is a locally compact Hausdorff space, then we can assign to it two compacti-
fications, the one-point compactification X+ and the Stone-Čech compactifi-
cation βX, see [737, page 183 and Section 5.3]. Then C0(X+, F ) agrees with
C0(X,F )+ and C(βX,F ) agrees with Cb(X,F ), the C∗-algebra of bounded
continuous functions X → F . (Actually Cb(X,F ) is the so-called multiplier
algebra of C0(X,F ).) See for instance [972, Example 2.1.2 on page 28 and
Example .2.2.4 on page 32].
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Let L2(G,F ) be the Hilbert F -space whose orthonormal basis is G. If
F is clear from the context, we often abbreviate L2(G) = L2(G,F ). Let
B(L2(G,F )) denote the bounded linear operators on the Hilbert F -space
L2(G,F ). The reduced group C∗-algebra C∗r (G,F ) is the closure in the norm
topology of the image of the regular representation FG→ B(L2(G,F )) that
sends an element u ∈ FG to the (left) G-equivariant bounded operator
L2(G,F ) → L2(G,F ) given by right multiplication with u. Let L1(G,F )
be the Banach ∗-algebra of formal sums

∑
g∈G λg · g with coefficients in F

such that
∑
g∈G |λg| <∞. If F is clear from the context, we often abbreviate

L1(G) = L1(G,F ). There are natural inclusions

FG ⊆ L1(G,F ) ⊆ C∗r (G,F ) ⊆ B(L2(G,F ))G ⊆ B(L2(G,F )).

Exercise 10.29. Show for a discrete group G that L1(G,F ) is a C∗-algebra
if and only if G is trivial or (G has order 2 and F = R).

For a group G let C∗m(G,F ) be its maximal group C∗-algebra that is the
norm closure of the image of the so-called universal representation FG →
B(Hu), compare [786, 7.1.5 on page 229]. The maximal group C∗-algebra
has the advantage that every homomorphism of groups φ : G → H induces
a homomorphism C∗m(G,F ) → C∗m(H,F ) of C∗-algebras. This is not true
for the reduced group C∗-algebra C∗r (G,F ). Here is a counterexample: since
C∗r (G,F ) is a simple algebra if G is a non-abelian free group [797], there is
no unital algebra homomorphism C∗r (G,F ) → C∗r ({1}, F ) = F . There is a
canonical homomorphism of C∗-algebras C∗m(G,F )→ C∗r (G,F ) which is an
isomorphism of C∗-algebra if and only if G is amenable, see [786, Theorem
7.3.9 on page 243].

If F is clear from the context, we often abbreviate C∗r (G) = C∗r (G,F ) and
C∗m(G) = C∗m(G,F ).

Given a discrete group G, a G-C∗-algebra A is a C∗-algebra together with
a G-action ρ : G→ aut(A) by C∗-automorphisms. One can associate to a G-
C∗-algebra A two new C∗-algebras, its reduced crossed product A or G and
its maximal crossed product A om G, see [786, 7.6.5 on page 257 and 7.7.4
on page 262]. There is a canonical homomorphism from the maximal crossed
product to the reduced crossed product which is an isomorphism if G is
amenable, see [786, Theorem 7.7.7. on page 263]. If we take A = F with the
trivial G-action, then F or G and F om G are just C∗r (G,F ) and C∗m(G,F ).

Let {Ai | i ∈ I} be a directed system of C∗-algebras. Then its col-
imit, often also called inductive limit, or direct limit, is a C∗-algebra de-
noted by colimi∈I Ai, together with homomorphisms of C∗-algebras ψj : Ai →
colimi∈I Ai for every j ∈ I such that ψj ◦φi,j = ψi holds for i, j ∈ I with i ≤ j
and the following universal property is satisfied: For every C∗-algebra B and
every system of homomorphisms of C∗-algebras {µi : Ai → B | i ∈ I} such
that µj ◦ φi,j = µi holds for i, j ∈ I with i ≤ j, there is precisely one homo-
morphism of C∗-algebras µ : colimi∈I Ai → B satisfying µ◦ψi = µi for every
i ∈ I. The colimit exists and is unique up to isomorphism of C∗-algebras.
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An extensive discussions about tensor products A⊗̂B of C∗-algebras can
be found in [972, Appendix T]. There are various ways for two C∗-algebras A
and B to complete their algebraic tensor product A⊗FB to a new C∗-algebra
A⊗̂B. One is the spatial norm which turns out to be the minimal norm
and leads to the spatial tensor product, sometimes also called the minimal
tensor product. A second is the maximal norm which leads to the maximal
tensor product. Any C∗-norm on the algebraic tensor product lies between
the minimal and the maximal norm. The favorite situation is the case where
A is a so-called nuclear C∗-algebra, i.e., the minimal and the maximal norm
on the algebraic tensor product A ⊗F B agree for any C∗-algebra B. Then
for any C∗-algebra B there exists only one C∗-norm on the algebraic tensor
product A⊗F B and hence there is a unique tensor product C∗-algebra A⊗̂B.
Commutative C∗-algebras and finite dimensional C∗-algebras are nuclear.
The class of nuclear C∗-algebras is closed under taking colimits limits over
directed systems and extensions. In particular the C∗-algebra of compact
operators K is nuclear. Ideals in and quotients of nuclear C∗-algebras are
again nuclear. The reduced group C∗-algebra of G is nuclear if and only if G
is amenable.

Given a C∗-algebra A, define Mn(A) = A⊗̂Mn(F ) which is well-defined
since Mn(F ) = B(Fn) is nuclear. Actually, the underlying F -algebra of
Mn(A) is the algebraic tensor product A⊗F Mn(F ) itself, one does not have
to complete.

The C∗-algebra K of compact operators on an infinite dimensional separa-
ble Hilbert F -space is the colimit of the directed system M1(F )→ M2(F )→
M3(F ) → · · · where the structure maps are given by taking the block sum
with the (1, 1)-zero matrix (0). Given a C∗-algebra A, the tensor product
A⊗̂K is the colimit of the directed system M1(A)→ M2(A)→ M3(A)→ · · · .

A C∗-algebra is called separable if its underlying topological space is sep-
arable, i.e., contains a dense countable subset.

A C∗-algebra SA is called stable if A is isomorphic as C∗-algebra to A⊗̂K.
Since K⊗̂K is isomorphic to K, the tensor product A⊗̂K is a stable C∗-algebra
for every C∗-algebra A.

More information about C∗-algebras can be found for instance in [38, 134,
236, 262, 296, 373, 522, 523, 786].

10.3.2 Basic Properties of the Topological K-Theory of
C∗-Algebras

Topological K-theory assigns to any (not necessarily unital) C∗-algebra A a
Z-graded abelian group K∗(A) such that the following properties hold:

(i) Functoriality
A homomorphism f : A → B of C∗-algebras induces a map of Z-graded
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abelian groups K∗(f) : K∗(A) → K∗(B). If g : B → C is another homo-
morphism of C∗-algebras, we have K∗(g ◦ f) = K∗(g) ◦K∗(f). Moreover
K∗(idA) = idK∗(A);

(ii) Homotopy invariance
Homotopic homomorphisms of C∗-algebras induce the same map on the
topological K-theory;

(iii) Finite direct products
If A and B are C∗-algebras, their direct product A×B inherits the struc-
ture of a C∗-algebra by ||(a, b)|| = max{||a||, ||b||}. The projections to the
factors are homomorphisms of C∗-algebras and induce a natural isomor-
phism of Z-graded abelian groups

K∗(A×B)
∼=−→ K∗(A)×K∗(B);

(iv) Compatibility with colimits over directed systems
Let {Ai | i ∈ I} be a directed system of C∗-algebras. Then the canonical
map of Z-graded abelian groups is an isomorphism

colimi∈I K∗(Ai)
∼=−→ K∗

(
colimi→I Ai

)
;

(v) Morita equivalence
There are canonical isomorphisms K∗(A)→ K∗(Mn(A));

(vi) Stabilization
The canonical inclusion F = M1(F ) → K yields an inclusion iA : A →
A⊗̂K. The induced map of Z-graded abelian groups K∗(iA) : K∗(A) →
K∗(A⊗̂K) is an isomorphism;

(vii) Long exact sequence of an ideal
Let I be a (two-sided closed) ideal in the C∗-algebra A. Denote by i : I → A
the inclusion and by p : A→ A/I the projection. Then there exists a long
exact sequence, natural in (A, I) and infinite to both sides,

· · · ∂n+1−−−→ Kn(I)
Kn(i)−−−−→ Kn(A)

Kn(p)−−−−→ Kn(A/I)
∂n−→ Kn−1(I)

Kn−1(i)−−−−−→ Kn−1(A)
Kn−1(p)−−−−−→ Kn−1(A/I)

∂n−1−−−→ · · · ;

(viii) Bott periodicity
For any C∗-algebra A over F there exists an isomorphism of degree b(F )

β∗(A) : K∗(A)
∼=−→ K∗+b(F )(A),

which is natural in A, and compatible with the boundary operator ∂∗ of
the long exact sequence of an ideal where b(F ) = 2 if F = C and b(F ) = 8
if F = R;

(ix) Commutative C∗-algebras
Let X be a finite CW -complex (or more generally, compact Hausdorff
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space). Then there are isomorphisms of Z-graded abelian groups, natural
in X,

K∗(X)
∼=−→ K∗(C(X,C));

KO∗(X)
∼=−→ K∗(C(X,R)),

from the topological complex or real K-theory of X to the topological K-
theory of the unital C∗-algebra C(X,F ) of continuous functions X → F .

Of course the last property about commutative C∗-algebras is closely re-
lated to the material in Section 2.4 about Swan’s Theorem 2.27.

Notation 10.30 (K and KO). If one considers a real C∗-algebra, one of-
ten writes KO∗(A) instead of K∗(A) to indicate that the C∗-algebra under
consideration lives over R.

The 0-th topological K-group K0(A) of a C∗-algebra A agrees with the
projective class group K0(A) of the underlying ring (possibly without unit)
in the sense of Definition 3.90. In contrast to K0(A) the topology of A enters
in the definition of K1(A) as explained next.

If A is a C∗-algebra (with or without unit), then we define the unital
C∗-algebra A+ as follows. The underling unital F -algebra is A⊕ F with the
addition (a, λ)+(b, µ) = (a+b, λ+µ), multiplication (a, λ)·(b, µ) = (a·b+λ·b+
µ·a, λ·µ), and unit (0, 1). The involutions sends (a, λ) to (a∗, λ). The C∗-norm
is explained for instance in [786, 1.1.3 on page 1] or [972, Proposition 2.1.7
on page 30]. Let p : A+ → F be the canonical projection sending (a, λ) to λ.
It induces maps Mn(A+)→ Mn(F ) and GLn(A+)→ GLn(F ), denoted again
by p. Define

GL+
n (A) := {B ∈ GLn(A+) | p(B) = 1}.(10.31)

This becomes a topological group by the subspace topology with respect to
the inclusion GL+

n (A) ⊆ Mn(A+). There is an obvious directed system of
topological groups

GL+
1 (A) ⊆ GL+

2 (A) ⊆ GL+
3 (A) ⊆ · · ·

coming from embedding Mn(A+) into Mn+1(A+) by taking the block sum
with the (1, 1)-identity matrix (1). Its colimit is a topological group denoted
by GL+(A). Let GL+(A)0 be the path component of the unit element in
GL+(A). Then we get

K1(A) = GL+(A)/GL+(A)0 = π0(GL+(A)).(10.32)

More generally, we have

Kn(A) = πn−1(GL+(A)) for n ≥ 1.(10.33)
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IfA is unital, then one defines the topological group GL(A) = colimn→∞GLn(A)
and obtains a canonical isomorphism

Kn(A) ∼= πn−1(GL(A)) for n ≥ 1.(10.34)

Exercise 10.35. Compute for F = C the topological K-theory of B, K and
B/K.

Remark 10.36 (Six term sequence of an ideal). Let F = C in this
Remark 10.36. Since K∗ is two-periodic, one thinks often about it as a Z/2-

graded theory. The long exact sequence of an extension 0→ I
i−→ A

p−→ A/I →
0 becomes the six-term exact sequence of an ideal

K1(I)
K1(i) // K1(A)

K1(p)// K1(A/I)

∂1

��
K0(A/I)

∂0

OO

K0(A)
K0(p)
oo K0(I)

K0(i)
oo

Remark 10.37 (Topological K-theory in terms of unitary groups).
Let F = C in this Remark 10.37. Let Un(A) be the group of unitary
(n, n)-matrices over A, i.e., (n, n)-matrices U that are invertible and sat-
isfy U−1 = U∗ where U∗ is defined by transposing and applying to each
entry the involution on A. Define U+

n (A) := {U ∈ Un(A+) | p(U) = 1}. Put
U(A) = colimn→∞ Un(A) and U+(A) := colimn→∞ U+

n (A). Then then we
have isomorphisms of groups, see [972, Proposition 4.2.6 on page 77],

K1(A) = GL+(A)/GL+(A)0
∼= GL(A+)/GL(A+)0

∼= U+(A)/U+(A)0
∼= U(A+)/U(A+)0.

Example 10.38 (On the boundary map and indices). Let F = C in
this Example 10.38. Let A be a unital C∗-algebra, I ⊆ A be an ideal, and
p : A→ A/I be the projection. Let u be a unitary element in A/I. Let a ∈ A
be any element in A with p(a) = u and ||a|| = 1. Consider the (2, 2)-matrices
over A

P :=

(
aa∗ a(1a∗a)1/2

a∗(1− aa∗)1/2 1− a∗a

)
;

Q :=

(
1 0
0 0

)
,

where (1−aa∗)1/2 is uniquely determined by the properties that it is positive,
i.e., of the form b∗b for some b ∈ A, and satisfies (1− aa∗)1/2 · (1− aa∗)1/2 =
1−aa∗, and analogously for (1−a∗a)1/2. Then P is a projection, i.e., P 2 = P
and P ∗ = P , and Q is a projection. Moreover, P − Q lies in M2(I). Define
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matrices in M2(I+) by

P+ :=

(
(aa∗ − 1, 1) (a(1a∗a)1/2, 0)

(a∗(1− aa∗)1/2, 0) (1− a∗a, 0)

)
;

Q :=

(
(0, 1) (0, 0)
(0, 0) (0, 0)

)
.

One easily checks P 2
+ = P+ and Q2

+ = Q+ and P+ − Q+ ∈ I. Hence P+

and Q+ determine elements [P+], [Q+] ∈ K0(I+) such that the difference
[P+] − [Q+] is mapped under the canonical projection K0(I+) → K0(C) to
zero. Hence [P+] − [Q+] defines an element in K0(I). It turns out that the
image ∂1([u]) of the class [u] ∈ K1(A) under the boundary homomorphism
∂1 : K1(A/I)→ K0(I) is the class [P+]−[Q+], see [474, Proposition 4.8.10 (a)
on page 109].

If we can additionally arrange that a is a partial isometry, i.e., a∗a is a
projection, then 1 − a∗a and 1 − aa∗ lie in I and are projections, and we
obtain an element [1 − a∗a] − [1 − aa∗] in K0(I) which agrees with ∂1([u]),
see [474, Proposition 4.8.10 (b) on page 109].

Now we apply this to A = B = B(H) and I = K = K(H) for an infinite
dimensional separable Hilbert space H. Let a ∈ B be a Fredholm operator
such that a is a partial isometry. Then 1 − a∗a is the orthogonal projection
onto the kernel of a and 1−aa∗ is the orthogonal projection onto the cokernel
of a. Hence the element [1 − a∗a] − [1 − aa∗] ∈ K0(K) becomes under the
standard identification K0(K) ∼= Z the difference of the dimension of the
kernel of a and the dimension of the cokernel of a which is by definition the
classical index of the Fredholm operator a. This shows that ∂1 : K1(B/K)→
K0(K) ∼= Z sends the class of [a] to the classical index of a.

It will often occur in many more general and important situations that ∂1

can be viewed as an index map.

Example 10.39 (Suspensions and cones). The suspension of a C∗-
algebra A is the C∗-algebra ΣA of continuous functions f : [0, 1] → A with
f(0) = f(1) = 1 equipped with the obvious algebra structure and invo-
lution and the supremums norm inherited from A. Denote by Σn(A) the
n-fold suspension. It can be identified with the tensor product of C∗-algebras
A⊗̂C0(Rn). The cone is defined analogously as the C∗-algebra cone(A) of
continuous functions f : [0, 1] → A with f(0) = 0. It can be identified with
the tensor product of C∗-algebras A⊗̂C0((0, 1]). There is an obvious exact
sequence of C∗-algebras 0 → ΣA → cone(A) → A → 0. Moreover, the C∗-
algebra cone(A) is contractible, i.e., the zero and the identity endomorphism
are homotopic. The desired homotopy is given by the formula ft(s) := f(ts).
Hence K∗(cone(A)) is trivial and the boundary operator in the associated
long exact sequence induces isomorphisms

∂n : Kn(A)
∼=−→ Kn−1(ΣA).
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For complex C∗-algebras A and B for which A lies in the so-called
bootstrap category N a Künneth Theorem, i.e., an exact sequence 0 →
K∗(A) ⊗ K∗(B) → K∗(A⊗̂B) → TorZ(K∗(A),K∗(B)) → 0 is established
in [887]. The case of real C∗-algebras is treated in [138].

Remark 10.40 (Topological K-theory and the classification of C∗-
algebras). One prominent feature is that for certain classes of C∗-algebras
their isomorphism type is determined by their topological K-theory, some-
times taking the order structure on K0(A) coming from the positive cone of
those elements that are represented by finitely generated projective modules
into account. If one considers the topological K-theory of spaces such nice
classification results are not available.

One example is the class of AF-algebras, i.e., C∗- algebras that occur
as a colimit of a sequence of finite dimensional C∗-algebras, due to Elliot,
see [319], [840, Chapter 7], [972, 12.1]. The index n of the Cuntz C∗-algebra
On is determined by the topological K-theory since K0(On) ∼= Z/n and
K1(On) = 0, see [252], [972, 12.2]. A very important result about the clas-
sification of so-called Kirchberg C∗-algebras in terms of their topological K-
theory is due to Kirchberg, see for instance [839, Chapter 8].

Remark 10.41 (Topological K-theory and generalized index the-
ory). One important motivation to study the topological K-theory of C∗-
algebras is index theory and its generalizations. A first introduction how one
can assign to a Fredholm operator over a C∗-algebra A an element in K0(A)
is given in [972, Chapter 17] following Mingo [718]. There are many other
index theorems taking values in the topological K-theory of C∗-algebras. Of-
ten they are generalizations of the classical family index theorem for families
of operators parametrized over a closed manifold M which take values in
K∗(M) = K∗(C(M)).

One can attach to geometric or topological situations new C∗-algebras
and consider their topological K-theory and indices of appropriate operators
where it is not possible anymore to work with topological spaces. Examples
are foliations and coarse geometry. There are also plenty other generalizations
of the classical index theorems using topological K-theory of C∗-algebras. For
information about these topics we refer for instance to [236, 256, 474, 723].

More information about the topological K-theory of C∗-algebras can be
found for instance in [133, 236, 256, 474, 840, 972].

10.4 The Baum-Connes Conjecture for Torsionfree
Groups

Let G be a group. Then there exist for all n ∈ Z assembly maps
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asmbG,C(BG)n : Kn(BG)→ Kn(C∗r (G,C));(10.42)

asmbG,R(BG)n : KOn(BG)→ KOn(C∗r (G,R)).(10.43)

Conjecture 10.44 (Baum-Connes Conjecture for torsionfree groups).
The assembly maps appearing in (10.42) and (10.43) are isomorphisms for

all n ∈ Z, provided that G is torsionfree.

It is crucial for the Baum-Connes Conjecture to work with the reduced
group C∗-algebra, it is definitely not true for the maximal group C∗ algebra
in general. Moreover, Conjecture 10.44 in general fails for groups with torsion.
The general version which makes sense for all groups will be discussed in
Chapter 14.

Exercise 10.45. Show for a finite group G that the following statements are
equivalent:

(i) K0(BG) and K0(C∗r (G)) are rationally isomorphic;
(ii) KO0(BG) and KO0(C∗r (G)) are rationally isomorphic;
(iii) G is trivial.

One benefit of Conjecture 10.44 is that the right side is of great interest be-
cause of index theory but hard to compute, whereas the left side is accessible
to standard methods from algebraic topology.

Example 10.46 (Three-dimensional Heisenberg group). Let Hei(R)
be the three-dimensional Heisenberg group that is the subgroup of GL3(R)
consisting of upper triangular matrices whose diagonal entries are all equal
to 1. The three-dimensional discrete Heisenberg group Hei is the intersection
of Hei(R) with GL3(Z). Obviously Hei is a torsionfree discrete subgroup of
the contractible Lie group Hei(R). Hence Hei \Hei(R) is a model for BHei
which is an orientable closed 3-manifold.

Define elements in Hei

u :=

1 1 0
0 1 0
0 0 1

 ; v :=

1 0 1
0 1 0
0 0 1

 ; w :=

1 0 0
0 1 1
0 0 1

 .

Then we get the presentation

Hei = 〈u, v, w | [u,w] = v, [u, v] = 1, [w, v] = 1〉.

Therefore we have a central extension 1→ Z i−→ Hei
p−→ Z2 → 1, where i sends

the generator of Z to v and p sends v to (0, 0), u to (1, 0) and w to (0, 1).
Hence the map H1(BHei) → H1(BZ2) is an isomorphism. Using Poincaré
duality we conclude

Hn(BHei) =

{
Z if n = 0, 3;

Z2 if n = 1, 2.
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We conclude from the Chern character (10.1) for every n ∈ Z.

Kn(BHei)⊗Z Q ∼= Q3.

Next we consider the Atiyah-Hirzebruch spectral sequence converging to
Kp+q(BHei) whose E2-term is E2

p,q = Hp(BHei;Kq({•})). Its E2-page looks
as follows

...
...

...
...

...
...

Z Z2 Z2 Z 0 0 · · ·

0 0 0 0 0 · · ·

Z Z2 Z2 Z 0 0 · · ·

0 0 0 0 0 · · ·

...
...

...
...

...
...

Each entry is a finitely generated free Z-module and we have for every n ∈ Z∑
p+q=n

dimQ(E2
p,q)⊗Z Q = 3 = Kn(BHei)⊗Z Q.

This implies that all differentials must vanish and we get for every n ∈ Z

Kn(BHei) ∼= Z3.

Conjecture 10.44 is known to be true for Hei and hence we conclude for every
n ∈ Z

Kn(C∗r (Hei)) ∼= Z3.

Exercise 10.47. Let G be the semidirect product ZoZ where the generator
of Z acts on Z by − id. Compute K∗(C

∗
r (G)) using the fact that Conjec-

ture 10.44 is known to be true for G.

Next we discuss some consequences of the Baum-Connes Conjecture for
torsionfree groups 10.44.
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10.4.1 The Trace Conjecture in the Torsionfree Case

The assembly map appearing in the Baum-Connes Conjecture has an inter-
pretation in terms of index theory. Namely, an element η ∈ K0(BG) can be
represented by a pair (M,P ∗) consisting of a cocompact free proper smooth
G-manifold M with a G-invariant Riemannian metric together with an el-
liptic G-complex P ∗ of differential operators of order 1 on M , see [104]. To
such a pair one can assign an index indC∗r (G)(M,P ∗) in K0(C∗r (G)), see [723]
that is the image of η under the assembly map K0(BG) → K0(C∗r (G)) ap-
pearing in Conjecture 10.44. With this interpretation the surjectivity of the
assembly map for a torsionfree group says that any element in K0(C∗r (G))
can be realized as an index. This allows to apply index theorems to get in-
teresting information. It is of the same significance as the interpretation of
the L-theoretic assembly map as the map σ appearing in the exact surgery
sequence discussed in the proof of Theorem 9.168.

Here is a prototype of such an argument. The standard trace

trC∗r (G) : C∗r (G)→ C(10.48)

sends an element f ∈ C∗r (G) ⊆ B(l2(G)) to 〈f(1), 1〉l2(G). Applying the trace
to idempotent matrices yields a homomorphism

trC∗r (G) : K0(C∗r (G))→ R.

Let pr : BG → {•} be the projection. For a group G the following diagram
commutes

K0(BG)

K0(pr)

��

asmbG,C(BG)∗ // K0(C∗r (G))
trC∗r (G) // R

K0({•})
∼= // K0(C)

trC

∼= // Z

i

OO(10.49)

where i : Z → R is the inclusion. This non-trivial statement follows from
Atiyah’s L2-index theorem [46]. Atiyah’s theorem says that the L2-index
trC∗r (G) ◦ asmb∗(η) of an element η ∈ K0(BG), which is represented by a pair
(M,P ∗), agrees with the ordinary index of (G\M ;G\P ∗), which is given by
trC ◦K0(pr)(η) ∈ Z.

The following conjecture is taken from [102, page 21].

Conjecture 10.50 (Trace Conjecture for torsionfree groups). For a
torsionfree group G the image of

trC∗r (G) : K0(C∗r (G))→ R

consists of the integers.
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The commutativity of diagram (10.49) shows

Lemma 10.51. If the Baum-Connes assembly map K0(BG) → K0(C∗r (G))
of (10.42) is surjective, then the Trace Conjecture for Torsionfree Groups 10.50
holds for G.

A Modified Trace Conjecture for not necessarily torsionfree groups is dis-
cussed in Subsection 14.8.1.

10.4.2 The Kadison Conjecture

Conjecture 10.52 (Kadison Conjecture). If G is a torsionfree group,
then the only idempotent elements in C∗r (G) are 0 and 1.

Lemma 10.53. The Trace Conjecture for Torsionfree Groups 10.50 implies
the Kadison Conjecture 10.52.

Proof. Assume that p ∈ C∗r (G) is an idempotent different from 0 or 1. From
p one can construct a non-trivial projection q ∈ C∗r (G), i.e. q2 = q, q∗ = q,
with im(p) = im(q) and hence with 0 < q < 1. Since the standard trace
trC∗r (G) is faithful, we conclude trC∗r (G)(q) ∈ R with 0 < trC∗r (G)(q) < 1. Since
trC∗r (G)(q) is by definition the image of the element [im(q)] ∈ K0(C∗r (G))
under trC∗r (G) : K0(C∗r (G)) → R, we get a contradiction to the assumption
im(trC∗r (G)) ⊆ Z. ut

Remark 10.54 (The Kadison Conjecture 10.52 and Kaplansky’s
Idempotent Conjecture 2.73). Obviously the Kadison Conjecture 10.52
implies Kaplansky’s Idempotent Conjecture 2.73 in the case that R can be
embedded in C. Because of Remark 2.84 the Kadison Conjecture 10.52 im-
plies Kaplansky’s Idempotent Conjecture 2.73 ifR is any field of characteristic
zero. The Bost Conjecture 14.23 implies that there are no non-trivial idem-
potents in L1(G) and hence the Kaplansky’s Idempotent Conjecture 2.73 for
fields of characteristic zero, see [124, Corollary 1.6].

10.4.3 The Zero-in-the-Spectrum Conjecture

The following Conjecture is due to Gromov [422, page 120].

Conjecture 10.55 (Zero-in-the-spectrum Conjecture). Suppose that

M̃ is the universal covering of an aspherical closed Riemannian manifold M
(equipped with the lifted Riemannian metric). Then zero is in the spectrum
of the minimal closure

(∆p)min : L2Ωp(M̃) ⊃ dom(∆p)min → L2Ωp(M̃)
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for some p ∈ {0, 1, . . . ,dimM} where ∆p denotes the Laplacian acting on

smooth p-forms on M̃ .

Theorem 10.56 (The strong Novikov Conjecture implies the Zero-
in-the-spectrum Conjecture). Suppose that M is an aspherical closed
Riemannian manifold with fundamental group G, then the injectivity of the
assembly map

K∗(BG)⊗Z Q→ K∗(C
∗
r (G))⊗Z Q

implies the Zero-in-the-spectrum Conjecture 10.55 for M̃ .

Proof. We give a sketch of the proof. More details can be found in [623,
Corollary 4]. We only explain that the assumption that in every dimension

zero is not in the spectrum of the Laplacian on M̃ , yields a contradiction in
the case that n = dim(M) is even. Namely, this assumption implies that the
C∗r (G)-valued index of the signature operator twisted with the flat bundle

M̃ ×G C∗r (G) → M in K0(C∗r (G)) is zero where G = π1(M). This index is
the image of the class [S] defined by the signature operator in K0(BG) under
the assembly map K0(BG)→ K0(C∗r (G)). Since by assumption the assembly
map is rationally injective, this implies [S] = 0 in K0(BG) ⊗Z Q. Note that
M is aspherical by assumption and hence M = BG. The homological Chern
character defines an isomorphism

K0(BG)⊗Z Q = K0(M)⊗Z Q
∼=−→
⊕
p≥0

H2p(M ;Q)

that sends [S] to the Poincaré dual L(M) ∩ [M ]Q of the Hirzebruch L-
class L(M) ∈

⊕
p≥0H

2p(M ;Q). This implies that L(M) ∩ [M ]Q = 0 and
hence L(M) = 0. This contradicts the fact that the component of L(M) in
H0(M ;Q) is 1. ut

More information about the Zero-in-the-Spectrum Conjecture 10.55 can
be found for instance in [623] and [635, Section 12].

10.5 Kasparov’s KK -Theory

Kasparov introduced the bivariant KK-theory that assigns to two separable
C∗-algebras A and B a Z-graded abelian group KK∗(A,B). We give a very
brief summary of it. In the sequel all C∗-algebras are assumed to be separable.
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10.5.1 Basic Properties of KK -theory for C∗-Algebras

(i) Bi-functoriality
A homomorphism f : A → B of C∗-algebras induces homomorphisms of
Z-graded abelian groups

KK∗(f, idD) : KK∗(B,D)→ KK∗(A,D);

KK∗(idD, f) : KK∗(D,A)→ KK∗(D,B).

If g : B → C is another homomorphism of C∗-algebras, we have

KK∗(g ◦ f, id) = KK∗(f, idD) ◦K∗(g, idD);

KK∗(idD, g ◦ f) = KK∗(idD, g) ◦K∗(idD, f).

Moreover K∗(idA, idB) = idKK∗(A,B). In particular KK∗(−, D) is a con-
travariant and KK∗(D,−) is a covariant functor from the category of
C∗-algebras to the category of Z-graded abelian groups;

(ii) Homotopy invariance
If f, g : A → B are homotopic homomorphisms of C∗-algebras, then
KK∗(f, idC) = KK∗(g, idC) and KK∗(idC , f) = KK∗(idC , g);

(iii) Finite direct products
If A and B are C∗-algebras, there are a natural isomorphism of Z-graded
abelian groups

KK∗(A×B,C)
∼=−→ KK∗(A,C)×KK∗(B,C);

KK∗(C,A×B)
∼=−→ KK∗(C,A)×KK∗(C,B);

(iv) Countable direct sums in the first variable
If A =

⊕∞
i=0Ai is a countable direct sum of C∗-algebras, then there is a

natural isomorphism

KKn

( ∞⊕
i=0

Ai, B
) ∼=−→ ∞∏

i=0

Kn(Ai, B);

(v) Morita equivalence
For any integers m,n ≥ 1 there are natural isomorphisms of Z-graded

abelian groups KK∗(A,B)
∼=−→ KK∗(Mm(A),Mn(B));

(vi) Stabilization
There are natural isomorphisms of Z-graded abelian groups

KK∗(A,B)
∼=−→ KK∗(A⊗̂K, B);

KK∗(A,B)
∼=−→ KK∗(A,B⊗̂K);
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(vii) Long exact sequence of an ideal

Let 0→ I
i−→ A

p−→ A/I → 0 be an extensions of (separable) C∗-algebras.
If it is semisplit in the sense of [133, Definition 19.5.1. on page 195] (what is
automatically true if A is nuclear,) then there exists a long exact sequence,
natural in (A, I) and infinite to both sides,

· · · δn−1−−−→ KKn(A/I,B)
KKn(p,idB)−−−−−−−−→ KKn(A,B)

KKn(i,idB)−−−−−−−→ KKn(I,B)

δn−→ KKn+1(A/I,B)
KKn+1(p,idB)−−−−−−−−−→ KKn+1(A,B)

KKn+1(i,idB)−−−−−−−−−→ KKn+1(I,B, )
δn+1−−−→ · · · .

If the extension is semisplit or if B is nuclear, then there exists a long
exact sequence, natural in (A, I) and infinite to both sides,

· · · ∂n+1−−−→ KKn(B, I)
KKn(idB ,i)−−−−−−−→ KKn(B,A)

KKn(idB ,p)−−−−−−−−→ KKn(B,A/I)

∂n−→ KKn−1(B, I)
KKn−1(idB ,i)−−−−−−−−−→ KKn−1(B,A)

KKn−1(idB ,p)−−−−−−−−−→ KKn−1(B,A/I)
∂n−1−−−→ · · · ;

(viii) Bott periodicity
There exists an isomorphism of degree b(F )

β∗(A) : KK∗(A,B)
∼=−→ KK∗+b(F )(A,B),

which is natural in A and B and compatible with the boundary operators
∂∗ of the long exact sequence of an ideal where b(F ) = 2 if F = C and
b(F ) = 8 if F = R;

(ix) Connection to topological K-theory
There is a natural isomorphism of Z-graded abelian groups

K∗(A)
∼=−→ KK∗(F,A);

(x) Homomorphisms of C∗-algebras
A homomorphism f : A → B of C∗-algebras defines an element [f ] in
KK∗(A,B).

Remark 10.57 (Some failures). The second variable is in general not com-
patible with countable direct sums and in particular not with colimits over
directed sets. However, in the special case A = C, this is the case since then
KK∗(C, B) is just the topological K-theory of B.

The conditions about the existence of long exact sequence of an ideal such
as semisplit or B being nuclear are needed.
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10.5.2 The Kasparov’s Intersection Product

One of the basic features of KK-theory is Kasparov’s intersection product
which is a bilinear pairing of Z-graded abelian groups

⊗̂B : KK∗(A,B)⊗KK∗(B,C)→ KK∗(A,C).(10.58)

It has the following properties

(i) Naturality
It is natural in A, B and C;

(ii) Associativity
It is associative;

(iii) Composition of homomorphisms
If f : A → B and g : B → C are homomorphisms of C∗-algebras, then we
get for the associated elements [f ] ∈ KK0(A,B), [g] ∈ KK0(B,C) and
[g ◦ f ] ∈ KK0(A,C)

[g ◦ f ] = [f ]⊗̂B [g];

(iv) Units
There is a unit 1A := [idA] in KK0(A,A) for the intersection product.

Remark 10.59 (KK-equivalence). One of the basic features of the product
is that an element x in KK0(A,B) induces a homomorphism

−⊗̂Bx : Kn(A) = KKn(F,A)→ Kn(B) = KKn(F,B).

Of course −⊗̂B [f ] agrees with Kn(f) if f : A → B is a homomorphism of
C∗-algebras. An element x ∈ KK0(A,B) is called a KK-equivalence if there
exists an element y ∈ KK0(B,A) satisfying x⊗̂By = 1A and y⊗̂Ax = 1B .
The basic feature of a KK-equivalence is that

−⊗̂Bx : Kn(A) = KKn(F,A)→ Kn(B) = KKn(F,B)

is automatically an isomorphism, the inverse is −⊗̂By.

Remark 10.60 (K-homology of C∗-algebras). One can define topological
K-homology of a C∗-algebra K∗(A) by Kn(A) := KK−n(A,F ). It is in some
sense dual to the topological K-theory K∗(A). Moreover, the intersection
product yields the index pairing

Kn(A)⊗Z K
n(A)→ KK0(F, F ) = Z, (x, y) 7→ 〈x, y〉 := x⊗̂Ay.

If we take n = 0 and A = C(M) for a smooth closed Riemannian manifold
M , then an appropriate elliptic operator P over M defines an element in [P ]
in K0(C(M)) = K0(M) and a vector bundle ξ over M defines an element in
K0(C(M)) = K0(M) and the pairing 〈[ξ], [P ]〉 is the classical index of the
elliptic operator obtained from P by twisting with ξ.
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There are Universal Coefficient Theorems and Künneth Theorems for
KK-theory, see for instance [138, 139, 852, 887]. The Pimsner-Voiculescu
sequences associated to an automorphisms of a C∗-algebra are explained for
KK-theory in [133, Theorem 19.6.1 on page 198].

More information about KK-theory, for instance about its construction
in terms of Kasparov modules or quasi-homomorphisms, other bivariant the-
ories such as Ext for extensions of C∗-algebras, kk-theory, E-theory, and
their relation to KK-theory, generalizations of these theories to more gen-
eral operator algebras than C∗-algebras, universal properties of these theo-
ries, applications to index theory, and the relevant literature can be found
for instance in [133, 256, 464, 466, 474, 503], or in the papers of Kas-
parov [543, 544, 545, 546].

10.6 Equivariant Topological K-Theory and KK -Theory

In the sequel groups are assumed to be discrete. Given a group G, there
exists an equivariant version of KK-theory. It assigns to two G-C∗-algebras
A and B a Z-graded abelian group KKG

∗ (A,B) and has essentially the same
basic properties as non-equivariant KK-theory. Namely, it is a bi-functor,
contravariant in the first and covariant in the second variable, is G-homotopy
invariant, satisfies Morita equivalence and stabilization, is split exact, i.e.,
has long exact sequences for appropriate ideals, satisfies Bott periodicity, is
compatible with finite direct products in both variables and countable direct
sums in the first variable, and a homomorphism of G-C∗-algebras f : A→ B
defines an element [f ] ∈ KKG

0 (A,B). There is also an equivariant version of
Kasparov’s intersection product

⊗̂B : KKG
j (A,B)⊗KKG

i (B,C)→ KKG
i+j(A,C)

which has all the expected properties as in the non-equivariant case.
In particular we get on KKG

0 (F, F ) an interesting structure of a commu-
tative ring with unit and it is sometimes called representation ring of G. If
G is finite, KKG

0 (F, F ) is indeed isomorphic as ring to RepF (G).
There exists certain additional structures in the equivariant setting. Given

a homomorphism α : H → G, there are natural restriction homomorphisms

α∗ : KKG
∗ (A,B)→ KKH(α∗A,α∗B)(10.61)

where α∗A and α∗B are the H-C∗-algebras obtained from the G-C∗-algebras
A and B by restring the H-action to a G-action using α. It is compatible
with the equivariant Kasparov product.

Let i : H → G be the inclusion of groups. Given an H-C∗-algebra A,
we define its induction i∗A, to be the G-C∗-algebra of bounded functions
f : G → A that satisfy f(gh) = h−1 · f(g) and vanish at infinity, i.e., for
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every ε > 0 there exists a finite subset S ⊆ G/H such that for every g ∈ G
with gH /∈ S we have ||f(g)|| ≤ ε. The norm is the supremums norm. Given
g ∈ G and such a function f , define g · f to be the function sending g′ ∈ G
to f(g−1g′).

Note that the left FG-module FG⊗FH A which is the algebraic induction
of A viewed as FH-module, embeds as a dense FG-submodule into i∗A by
sending g ⊗ a to the function that maps gh to h−1a for h ∈ H and g′ ∈ G
with g′H 6= gH to zero. In other words, we can think of FG ⊗FH A as
the set of elements f ∈ i∗A such that {gH ∈ G/H | f(g) 6= 0} is finite.
In contrast to modules over group rings induction i∗ and restriction i∗ do
not form an adjoint pair (i∗, i

∗) for equivariant C∗-algebras as the following
exercise illustrates.

Exercise 10.62. Let i : {1} → G be the inclusion of the trivial group into
an infinite discrete group G. Show that homG(i∗F, F ) and hom{1}(F, i

∗F )
are not isomorphic where F = R,C denotes both the obvious {1}-C∗-algebra
and the obvious G-C∗-algebra with trivial G-action.

If X is a proper H-CW -complex, then G×HX is a proper G-CW -complex,

and we obtain an isomorphism of G-C∗-algebras i∗C0(X)
∼=−→ C0(G ×H X)

that sends f ∈ i∗C0(X) to the function G ×H X → F, (g, x) 7→ f(g)(x).
Given a H-C∗-algebra A and a H-C∗-algebra B, there is a natural induction
homomorphism

i∗ : KKH
∗ (A,B)→ KKG(i∗A, i∗B).(10.63)

It is compatible with the equivariant Kasparov’s intersection product respect-
ing the units. If j : G→ K is an inclusion, we get (j ◦ i)∗ = j∗ ◦ i∗.

There are descent homomorphisms

jGr : KKG
∗ (A,B)→ KK∗(Aor G,B or G);(10.64)

jGr : KKG
∗ (A,C)→ KK∗(Aor G,C);(10.65)

jGm : KKG
∗ (A,B)→ KK∗(Aom G,B om G).(10.66)

The dual of the Green-Julg Theorem says that (10.65) is an isomorphism.
The descent homomorphisms are natural and compatible with Kasparov’s
intersection products respecting the units.

Define the equivariant complex K-homology of a pair of proper G-CW -
complexes (X,A) with coefficients in the complex G-C∗-algebra B by

KG
n (X,A;B) := colimC⊆X KK

G
n (C0(C,C ∩A);B)(10.67)

where the colimit is taken over the directed system of cocompact proper G-
CW -subcomplexes C ⊆ X, directed by inclusion, and C0(C,C ∩ A) is the
G-C∗-algebra of continuous functions C → C that vanish on C ∩ A and at
infinity. This group is often denoted by RKn(X,A;B) in the literature and
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called equivariant K-homology with compact support but from a topologists
point of view it is better to call it equivariant K-homology in view of its
description in terms of spectra, see Section 12.4. If B is C with the trivial
G-action, we just write KG

∗ (X,A) for KG
∗ (X,A;C), and this is precisely the

Z-graded abelian group that we have mentioned already in Subsection 10.2.3
and will be constructed in terms of spectra in Section 12.4.

Next we explain the equivariant Chern character for equivariant complex
K-homology. Denote for a proper G-CW -complex X by F(X) the set of all
subgroups H ⊂ G for which XH 6= ∅, and by

ΛG(X) := Z
[

1

F(X)

]
(10.68)

the ring Z ⊂ ΛG(X) ⊂ ΛG obtained from Z by inverting the orders of all
subgroups H ∈ F(X). Denote by JG(X) the set of conjugacy classes (C)
of finite cyclic subgroups C ⊂ G for which XC is non-empty. Let C ⊂ G
be a finite cyclic subgroup. Let CGC be the centralizer and NGC be the
normalizer of C ⊂ G. Let WGC be the quotient NGC/CGC. For a specific
idempotent θC ∈ ΛC ⊗Z RepQ(C) defined in [636, Section 3] the cokernel of

⊕
D⊂C,D 6=C

indCD :
⊕

D⊂C,D 6=C

Z
[

1

|C|

]
⊗Z RepC(D)→ Z

[
1

|C|

]
⊗Z RepC(C)

is isomorphic to the image of the idempotent endomorphism

θC : Z
[

1

|C|

]
⊗Z RepC(C)→ Z

[
1

|C|

]
⊗Z RepC(C).

The element θC ∈ ΛC ⊗Z RepQ(C) is uniquely determined by the property
that its character sends a generator of C to 1 and all other elements in C to
0.

The next theorem is taken from [636, Theorem 0.7].

Theorem 10.69 (Equivariant Chern character for equivariant K-ho-
mology). Let X be a proper G-CW -complex. Put Λ = ΛG(X) and J =
JG(X). Let im(θC) ⊆ Λ ⊗Z RepC(C) be the image of θC : Λ ⊗Z RepC(C) →
Λ⊗Z RepC(C).

Then there is for n ∈ Z a natural isomorphism

chGp (X) :
⊕

(C)∈J

Λ⊗Z Kn(CGC\XC)⊗Λ[WGC] im(θC)
∼=−→ Λ⊗Z K

G
n (X).

Note that the isomorphism appearing in Theorem 10.69 exists already over
Λ, one does not have to pass to Q or C. This will be important when we will
deal with the Modified Trace Conjecture in Subsection 14.8.1.
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Example 10.70. In the special case where G is finite, X is the one-point-
space {∗} and n = 0, the equivariant Chern character appearing in Theo-
rem 10.69 reduces to an isomorphism⊕

(C)∈JG
Z
[

1

|G|

]
⊗Z[ 1

|G| ][WGC] im(θC)
∼=−→ Z

[
1

|G|

]
⊗Z RepC(G)

where JG is the set of conjugacy classes (C) of cyclic subgroups C ⊂ G. This
is a strong version of the well-known theorem of Artin that the map induced
by induction ⊕

(C)∈JG
Q⊗Z RepC(C)→ Q⊗Z RepC(G)

is surjective for any finite group G.

Exercise 10.71. Let p be an odd prime and let V be an orthogonal Z/p-
representation of dimension d such that V Z/p 6= {0}. Denote by SV the
Z/p-CW -complex consisting of elements v ∈ V of norm 1. Show

Z[1/p]⊗Z K
Z/p
n (SV ) ∼=Z[1/p]


Z[1/p]p if d is even;

Z[1/p]2p if d is odd and n is even;

0 if d is odd and n is even.

Analogously to the complex case one defines equivariant real K-homology
KOG∗ (X,A;B) of a pair of proper G-CW -complexes (X,A) with coeffi-
cients in the real G-C∗-algebra B. We will abbreviate KOG∗ (X,A) :=
KOGn (X,A;R) where R carries the trivial G-action, This is precisely the
Z-graded abelian group that we will be constructed in terms of spectra in
Section 12.4.

For discussions of universal coefficient theorems for equivariant K-theory
see [683, 851, 852].

Further information about equivariant KK-theory can be found for in-
stance in [133, Section 20], [547], and [932].

10.7 Comparing Algebraic and Topological K-theory of
C∗-Algebras

Let A be a C∗-algebra. Then Kn(A) denotes in most cases topological K-
theory, but it can also mean the algebraic K-theory of A considered just as a
ring. To avoid this ambiguity, we will use in this Section 10.7 the superscripts
TOP and ALG to make clear what we mean.

There is for any C∗-algebra over R or C a canonical map of spectra
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t(A) : KALG(A)→ KTOP(A)(10.72)

from the non-connective algebraic K-theory spectrum of A just considered
as ring to the topological K-theory spectrum associated to the C∗-algebra
A, see [846, Theorem 4 on page 851]. It induces homomorphisms of abelian
groups for all n ∈ Z

tn(A) = Kn(t(A)) : KALG
n (A)→ KTOP

n (A).(10.73)

It is always an isomorphism for n = 0, but in general far from being a bijection
as illustrated by the following

Exercise 10.74. Let X be a finite non-empty CW -complex. Prove that the
comparison map K1(C(X))→ KTOP

1 (C(X)) is never injective.
The situation is different if A is stable or if one uses coefficients in Z/k.

Namely, the following result is proved in [918, Theorem 10.9] over C and
n ≥ 1, but holds in the more general form below by [846, Theorem 19 on
page 863], see also Higson [465].

Theorem 10.75 (Karoubi’s Conjecture). Karoubi’s Conjecture is true,
i.e., for any stable C∗-algebra A over R or C the canonical map t of (10.72)
is weak homotopy equivalence i.e., the maps tn of (10.73) are bijective for
n ∈ Z.

Given an integer k ≥ 2, we have introduced KALG
n (A;Z/k) in Section 6.4.

The analogous construction works for topological K-theory and there is the
analogue of (10.73), a natural homomorphisms

tn(A;Z/k) : KALG
n (A;Z/k)→ KTOP

n (A;Z/k).(10.76)

We mention the following conjecture of Rosenberg [842, Conjecture 4.1]
or [846, Conjecture 26 on page 869].

Conjecture 10.77 (Comparing algebraic and topological K-theory
with coefficients for C∗-algebras). If A is a C∗-algebra and k ≥ 2 an
integer, then the comparison map

KALG
n (A;Z/k)→ KTOP

n (A;Z/k)

is bijective for n ≥ 0.

The map KALG
n (A;Z/k)→ KTOP

n (A;Z/k) appearing in Conjecture 10.77
is known to be bijective for n = 1 and to be surjective for n ≥ 1 by [533,
Theorem 2.5]. Conjecture 10.77 is true if A is stable by Theorem 10.75, or if
A is commutative, see [377],[799], [842, Theorem 4.2], and [846, Theorem 27
on page 870].

A discussion aboutKi-regularity and the homotopy invariance ofKALG
n (A)

for n ≤ −1 is discussed for C∗-algebras in [846, Section 3.3.4 on page 865ff].
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More information about the relation between algebraic and topological
K-theory can be found in [246].

10.8 Comparing Algebraic L-Theory and Topological
K-theory of C∗-Algebras

Whereas the algebraic and the topological K-theory of a C∗-algebra are very
different in general, the topological K-theory of a C∗ algebra is closely related
to the L-theory of the C∗-algebra just considered as ring with involution. This
is illustrated by the following result.

Theorem 10.78 (L-theory and topological K-theory of C∗-algebras).

(i) A generalized signature defines for any unital C∗-algebra over R or C a
natural isomorphism

Lp0(A)
∼=−→ K0(A);

(ii) Let A be a unital C∗-algebra over C. Then there is for all n ∈ Z a natural
isomorphism

Kn(A)
∼=−→ Lpn(A);

(iii) Let A be a unital C∗-algebra over R. Then there is a natural homomor-
phism

K1(A)
∼=−→ Lh1 (A)

which is surjective and whose kernel has at most order two;
(iv) For any unital C∗-algebra over R or C there are natural isomorphisms

Kn(A)[1/2]
∼=−→ Lpn(A)[1/2]

∼=−→ Lhn(A)[1/2];

(v) Let A be a real C∗-algebra. There are natural isomorphisms

(a) Lp1(A) ∼= coker(K0(A)
·η−→ K1(A));

(b) Lp2(A) ∼= ker(K6(A)
·η−→ K7(A));

(c) Lp3(A) ∼= K7(A),

where η is the non-trivial element in K1(R) ∼= Z/2.

Proof. (i) See [845, Theorem 1.6].

(ii) See [707, Theorem 0.2], [722], [845, Theorem 1.8].

(iii) See [845, Theorem 1.9].

(iv) See [845, Theorem 1.11] where this result described as a consequence of
Karoubi [531, 532].

(v) See [600, Theorem B]. ut
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10.9 Topological K-Theory for Finite Groups

Note that CG = l1(G) = C∗r (G) = C∗max(G) holds for a finite group, and
analogous for the real versions.

Theorem 10.79 (Topological K-theory of the C∗-algebra of finite
groups). Let G be a finite group.

(i) We have

Kn(C∗r (G)) ∼=

{
R(G) ∼= ZrC(G) for n even;

0 for n odd,

where rC(G) is the number of irreducible complex G-representations;
(ii) There is an isomorphism of topological K-groups

KOn(C∗r (G,R)) ∼= KOn(R)rR(G;R) ×KOn(C)rR(G;C) ×KOn+4(H)rR(G;H)

where rR(G;R), rR(G;C), or rR(G;H) is the number of irreducible real
G-representations real, complex, or quaternionic type.
Moreover KOn(C) = Kn(C) is 2-periodic with values Z, 0 for n = 0, 1,
KOn(R) = K(R) is 8-periodic with values Z, Z/2, Z/2, 0, Z, 0, 0, 0 for
n = 0, 1, . . . , 7 and KOn(H) = KOn+4(R) for n ∈ Z.

Proof. One gets isomorphisms of C∗-algebras

C∗r (G) ∼=
rC(G)∏
j=1

Mni(C)

and

C∗r (G,R) ∼=
rR(G;R)∏
i=1

Mmi(R)×
rR(G;C)∏
i=1

Mni(C)×
rR(G;H)∏
i=1

Mpi(H)

from [892, Theorem 7 on page 19, Corollary 2 on page 96, page 102, page106].
Now the claim follows from Morita invariance and the well-known values for
Kn(R), Kn(C), and Kn(H), see for instance [925, page 216]. ut

10.10 Notes

Bivariant algebraic K-theory is investigated in [248, 403]. More information
about index theory and non-commutative geometry can be found for instance
in [236, 414].

last edited on 19.04.2024
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Chapter 11

Classifying Spaces for Families

11.1 Introduction

This chapter is devoted to classifying spaces for families of subgroups. They
are a key input in the general formulations of the Baum-Connes Conjecture
and the Farrell-Jones Conjecture.

If one wants to understand these conjectures, one only needs to know the
following facts.

• A family of subgroups F is a set of subgroups of G, closed under conjuga-
tion and passing to subgroups;

• AG-CW -model for the classifying space EF (G) is aG-CW -complex whose
isotropy groups belong to F and whose H-fixed point set is weakly con-
tractible for every H ∈ F ;

• Such a G-CW -model always exists, and two such G-CW -models are G-
homotopy equivalent;

• For every G-CW -complex X whose isotropy groups belong to F , there is
up to G-homotopy precisely one G-map from X to EF (G).

Only if one is interested in concrete computations, it is very useful to know
situations where one can find small G-CW -models for specific G and F .

We give much more information about classifying spaces for families since
they are interesting in their own right and are important tools for investigat-
ing groups. After we have explained the basic G-homotopy theoretic aspects,
we pass to the classifying space EG = ECOM(G) for proper action which is
the same as the classifying space for the family COM of compact subgroups.
If G is discrete, EG reduces to EFIN (G), where FIN is the family of fi-
nite subgroups. There are many prominent groups for which the are nice
geometric models for EG. The G-CW -complex EG is relevant for the Baum-
Connes Conjecture. For the Farrell-Jones Conjecture we also have to deal
with EG = EVCY(G) for the family VCY of virtually cyclic subgroups, which
is much harder to analyze. We systematically address the question whether
there are finite or finite dimensional G-CW -models and what the minimal
dimension of such G-CW -models for EF (G) are for F = FIN ,VCY.

293
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11.2 Definition and Basic Properties of
G-CW -Complexes

Remark 11.1 (Compactly generated spaces). In the sequel we will work
in the category of compactly generated spaces. This convenient category is
explained in detail in [672, Appendix A], [909] and [987, I.4]. A reader may
ignore this technical point without harm, but we nevertheless give a short
explanation.

A Hausdorff space X is called compactly generated if a subset A ⊆ X
is closed if and only if A ∩ K is closed for every compact subset K ⊆ X.
Given a topological space X, let k(X) be the compactly generated topolo-
gical space with the same underlying set as X and the topology for which
a subset A ⊆ X is closed if and only if for every compact subset K ⊆ X
the intersection A ∩ K is closed in the given topology on X. The identity
induces a continuous map k(X)→ X which is a homeomorphism if and only
if X is compactly generated. The spaces X and k(X) have the same compact
subsets. Locally compact Hausdorff spaces and every Hausdorff space which
satisfies the first axiom of countability are compactly generated. In particular
metrizable spaces are compactly generated.

Working in the category of compactly generated spaces means that one
only considers compactly generated spaces and whenever a topological con-
struction such as the cartesian product or the mapping space leads out
of this category, one retopologizes the result as described above to get a
compactly generated space. The advantage is for example that in the cate-
gory of compactly generated spaces the exponential map map(X × Y, Z) →
map(X,map(Y,Z)) is always a homeomorphism, for an identification p : X →
Y the map p × idZ : X × Z → Y × Z is always an identification, and, for a
filtration by closed subspaces X1 ⊂ X2 ⊆ . . . ⊆ X such that X is the colimit
colimn→∞Xn, we always get X × Y = colimn→∞(Xn × Y ).

One may also work in the category of weak Hausdorff spaces, see for in-
stance Strickland [914].

In the sequel G is a topologically group (which is compactly generated).
Subgroups are understood to be closed.

Definition 11.2 (G-CW -complex). A G-CW -complex X is a G-space to-
gether with a G-invariant filtration

∅ = X−1 ⊆ X0 ⊂ X1 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration (i.e., a
set C ⊆ X is closed if and only if C∩Xn is closed in Xn for all n ≥ 0) and Xn

is obtained from Xn−1 for each n ≥ 0 by attaching equivariant n-dimensional
cells, i.e., there exists a G-pushout
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∐
i∈In G/Hi × Sn−1

∐
i∈In q

n
i //

��

Xn−1

��∐
i∈In G/Hi ×Dn

∐
i∈In Q

n
i // Xn.

The space Xn is called the n-skeleton of X. Note that only the filtration
by skeletons belongs to the G-CW -structure but not the G-pushouts, only
their existence is required. An equivariant open n-dimensional cell is a G-
component of Xn−Xn−1, i.e., the preimage of a path component of G\(Xn−
Xn−1). The closure of an equivariant open n-dimensional cell is called an
equivariant closed n-dimensional cell . If one has chosen the G-pushouts in
Definition 11.2, then the equivariant open n-dimensional cells are the G-
subspaces Qi(G/Hi×(Dn−Sn−1)) and the equivariant closed n-dimensional
cells are the G-subspaces Qi(G/Hi ×Dn).

It is obvious what a pair of G-CW -complexes is.

Remark 11.3 (G-CW -complexes and CW -complexes with G-action).
Suppose that G is discrete. A G-CW -complex X is the same as a CW -
complex X with G-action such that, for each open cell e ⊆ X and each g ∈ G
with ge ∩ e 6= ∅, we have gx = x for every x ∈ e.

The definition of a G-CW -complex appearing in Definition 11.2 has the
advantage that it makes also sense for topological groups.

Example 11.4 (Simplicial actions). Let X be a simplicial complex on
which the group G acts by simplicial automorphisms. Then G acts also on the
barycentric subdivision X ′ by simplicial automorphisms. The filtration of the
barycentric subdivision X ′ by the simplicial n-skeleton yields the structure of
a G-CW -complex what is not necessarily true for X. This becomes clear if one
considers the standard 2-simplex with the obvious actions of the symmetric
group S3 given by permuting the three vertices.

A map f : X → Y between G-CW -complexes is called cellular if f(Xn) ⊆
Yn holds for all n ≥ 0.

For a subgroup H ⊆ G denote by NGH = {g ∈ G | gHg−1 = H} its
normalizer and by WGH = NGH/H its Weyl group.

Lemma 11.5.

(i) Let X be a G-CW -complex and let Y be an H-CW -complex. Then X ×Y
with the product G×H-action is a G×H-CW -complex;

(ii) Let X be a G-CW -complex and let H ⊆ G be a subgroup. Suppose that
G is discrete or that H is open and closed in G. Then X viewed as an
H-space by restriction inherits the structure of an H-CW -complex;

(iii) Consider a G-pushout
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X0
i1 //

i2

��

X1

j1

��
x2

j2
// X.

Suppose that Xi for i = 0, 1, 2 is a G-CW -complex and that i1 is cellular
and i2 is the inclusion of a pair of G-CW -complexes. Then X inherits the
structure of a G-CW -complex;

(iv) Let X be a G-CW -complex and let H ⊆ G be a subgroup. Then XH viewed
as an WGH-space inherits the structure of a WGH-CW -complex provided
that G is discrete, or that K ⊆ G is open and closed, or that G is a Lie
group and H ⊆ G is compact;

(v) Let X be a G-CW -complex and let H ⊆ G be a normal subgroup. Then
X/H viewed as an G/H-space inherits the structure of a G/H-CW -
complex.

Proof. (11.5) The skeletal filtration on X × Y is given by

(X × Y )n =
⋃

p+q=n

Xp × Yq.

To ensure that X × Y is the colimit colimn→∞(X × Y )n, one needs to work
in the category of compactly generated spaces.

(ii) Use the same filtration on X viewed as an H-space as for the G-CW -
complex X.

(iii) Define the filtration on XH given by

Xn = j1
(
(X1)n

)
∪ j2

(
(X2)n

)
.

(iv) The G-action on X induces a NGH-action on XH , which in turn passes
to a WGH-action on XH . Take the n-skeleton of XH to be (Xn)H . Use the
fact that for every K ⊆ G the space (G/K)H is a disjoint union of WGH-
orbits what is obvious if G is discrete, or if K ⊆ G is open and closed,
and follows for a Lie group G and compact K ⊆ G for instance from [629,
Theorem 1.33 on page 23].

(v) The n-skeleton of X/H is the image of Xn under the canonical projection
X → X/H. ut

Exercise 11.6. Let p : X̃ → X be the universal covering of the connected
CW -complex X with fundamental group π. Show that the π-space X̃ inherits
the structure of a π-CW -complex.

Exercise 11.7. Let p be a prime number and let X be a compact Z/p-CW -
complex. Show that X and XZ/p are compact CW -complexes and their Euler
characteristics satisfy
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χ(X) ≡ χ(XZ/p) mod p.

Definition 11.8 (Type of a G-CW -complex). A G-CW -complex is called
finite if it is built by finitely many equivariant cells.

A G-CW -complex is called of finite type if each n-skeleton is a finite G-
CW -complex.

A G-CW -complex is called of dimension ≤ n if X = Xn. It is called n-
dimensional or of dimension n if X = Xn and X 6= Xn−1 holds. It is called
finite dimensional if it is of dimension ≤ n for some integer n.

Remark 11.9 (Slice Theorem). A Slice Theorem for G-CW -complexes is
proved in [672, Theorem 7.1]. It says roughly, that for a G-CW -complex X we
can find for any x ∈ X an arbitrary small Gx-subspace Sx and an arbitrary
small open G-invariant neighborhood U of x such that the closure of Sx is
contained in U , the inclusion {x} → Sx is a Gx-homotopy equivalence and
the canonical G-map

G×Gx Sx → U, (g, s) 7→ g · s

is a G-homeomorphism.

11.3 Proper G-Spaces

Definition 11.10 (Proper G-space). A G-space X is called proper if for
each pair of points x and y in X there are open neighbourhoods Vx of x and
Wy of y in X such that the closure of the subset {g ∈ G | gVx ∩Wy 6= ∅} of
G is compact.

Lemma 11.11. A G-CW -complex X is proper if and only if all its isotropy
groups are compact.

Proof. This is shown in [629, Theorem 1.23 on page 18]. ut

In particular a free G-CW -complex is always proper. However, not every
free G-space is proper.

Exercise 11.12. Find a free compact Z-space that is not proper.

Remark 11.13 (Lie Groups acting properly and smoothly on man-
ifolds). Let G be a Lie group. If M is a proper smooth G-manifold, then an
equivariant smooth triangulation induces a G-CW -structure on M . For the
proof and for equivariant smooth triangulations we refer to [496, Theorem I
and II].

Exercise 11.14. Let p be an odd prime. Show that there is no smooth free
Z/p-action on an even dimensional sphere.
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11.4 Maps between G-CW -Complexes

Theorem 11.15 (Equivariant Cellular Approximation Theorem).
Let (X,A) be a pair of G-CW -complexes and let Y be a G-CW -complex.
Let f : X → Y be a G-map such that f |A : A→ Z is cellular.

Then there exists a cellular G-map f ′ : X → Y such that f |A = f ′|A and
f and f ′ are G-homotopic relative A.

Proof. Since X = colimn→∞Xn by definition, it suffices to construct induc-
tively for n = −1, 0, 1, 2, . . . G-maps

hn : Xn × [0, 1] ∪X × {0} → Y

such that hn(x, 0) = f(x) for every x ∈ Xn and hn(x, t) = hn−1(x, t) for
every x ∈ Xn−1 and t ∈ [0, 1] hold and the map f ′n : X → Y sending x ∈ Xn

to hn(x, 1) is cellular. The induction beginning n = −1 is trivial, define
h−1 : A× [0, 1] ∪X × {0} → Y by sending (x, t) to f(x). The induction step
from (n− 1) to n is done as follows. Choose a G-pushout

∐
i∈In G/Hi × Sn−1

∐
i∈In qi //

��

Xn−1 ∪A

��∐
i∈In G/Hi ×Dn

∐
i∈In Qi // Xn ∪A.

It yields the G-pushout

∐
i∈In G/Hi ×

(
Sn−1 × [0, 1] ∪Dn × {0}

) ∐i∈In q
′
i //

��

Xn−1 × [0, 1] ∪X × {0}

��∐
i∈In G/Hi ×Dn × [0, 1]

∐
i∈In Q

′
i // Xn × [0, 1] ∪X × {0}.

Because of the G-pushout property it suffices to explain for every i ∈ In how
to extend the composite

φi : G/Hi ×
(
Sn−1 × [0, 1] ∪Dn × {0}

) q′i−→ Xn−1 × [0, 1] ∪X × {0} hn−1−−−→ Y

to a G-map
Φi : G/Hi ×Dn × [0, 1]→ Y

satisfying Φi
(
G/Hi×Dn×{1}

)
⊆ Yn. This is the same as the non-equivariant

problem to extend the map

φ′i : S
n−1 × [0, 1] ∪Dn × {0} → Y H
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obtained from φi by restriction to {eHi} ×
(
Sn−1 × [0, 1] ∪Dn × {0}

)
to a

map
Φ′i : D

n × [0, 1]→ Y H

such that Φ′i
(
Dn × {1}

)
⊆ Yn since we can then define Φi(gH, x, t) := g ·

Φ′i(x, t). It is not hard to check that this non-equivariant problem can be
solved if the inclusion Y Hm−1 → Y Hm is m-connected for every m ≥ 0. Since
we have the pushout of spaces

∐
i∈Im G/H

H
i × Sm−1

∐
i∈Im qmi //

��

Ym−1

��∐
i∈In G/H

H
i ×Dm

∐
i∈In Q

m
i // Ym

the inclusion G/HH
i × Sm−1 → G/HH

i ×Dm is m-connected and G/HH
i ×

Sm−1 is a deformation retract of an open neighborhood in G/HH
i ×Dm, this

follows from Blakers-Massey excision theorem, see [936, Proposition 6.4.2 on
page 133]. ut

A map f : X → Y of spaces is called a weak homotopy equivalence if f
induces a bijection π0(f) : π0(X) → π0(Y ) and for every x ∈ X and n ≥ 1
an isomorphism πn(f, x) : πn(X,x) → πn(Y, f(x)). A G-map f : X → Y of
G-spaces is called a weak G-homotopy equivalence if fH : XH → Y H is a
weak equivalence of spaces for all subgroups H ⊆ G.

Theorem 11.16 (Equivariant Whitehead Theorem).

(i) Let f : Y → Z be a G-map between G-spaces. Then f is a weak G-homotopy
equivalence if for every G-CW -complex X the map induced by f between
the G-homotopy classes of G-maps

f∗ : [X,Y ]G → [X,Z]G, [h] 7→ [f ◦ h]

is bijective;
(ii) Let f : Y → Z be a G-map between G-CW -complexes. Then the following

assertions are equivalent:

(a) f is a G-homotopy equivalence;
(b) f is a weak G-homotopy equivalence;
(c) For every H ⊆ G that occurs as isotropy group of some point in X or

Y , the map fH : XH → Y H is a weak homotopy equivalence of spaces.

Proof. See [935, II.2.6], [629, Theorem 2.4 on page 36]. ut

Exercise 11.17. Let Y be a G-space. A G-CW -approximation of Y is a G-
CW -complex X together with a weak G-homotopy equivalence f : X → Y .
Show that two G-CW -approximations of Y are G-homotopy equivalent.
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11.5 Definition and Basic Properties of Classifying
Spaces for Families

Recall that we have defined the notion of a family of subgroups of a group
G in Definition 2.62, namely, to be a set of subgroups of G that is closed
under conjugation with elements of G and under passing to subgroups, and
listed some examples in Notation 2.63, for instance the family T R consisting
of the trivial subgroup, the family FIN of finite subgroups, the family VCY
of virtually cyclic subgroups, and the family ALL of all subgroups. Actually
one could replace the condition that F is closed under taking subgroups by
the weaker condition that the intersection of finitely many elements of F
belongs to F . Then the set of compact open subgroups is a family also.

Definition 11.18 (Classifying G-CW -complex for a family of sub-
groups). Let F be a family of subgroups of G. A model EF (G) for the
classifying G-CW -complex for the family F of subgroups of G, or sometimes
also called classifying space for the family F of subgroups of G, is a G-CW -
complex EF (G) that has the following properties:

(i) All isotropy groups of EF (G) belong to F ;
(ii) For any G-CW -complex Y whose isotropy groups belong to F , there is up

to G-homotopy precisely one G-map Y → X.

We abbreviate EG := ECOM(G) and call it the universal G-CW -complex
for proper G-actions.

If G is discrete, we have EG := EFIN (G).
In other words, EF (G) is a terminal object in the G-homotopy category

of G-CW -complexes whose isotropy groups belong to F . In particular two
models for EF (G) are G-homotopy equivalent and for two families F0 ⊆ F1

there is up to G-homotopy precisely one G-map EF0(G)→ EF1(G).

Theorem 11.19 (Homotopy characterization of EF (G)). Let F be a
family of subgroups.

(i) There exists a model for EF (G) for any family F ;
(ii) A G-CW -complex X is a model for EF (G) if and only if all its isotropy

groups belong to F and for each H ∈ F the H-fixed point set XH is weakly
contractible, i.e., XH is non-empty and path connected and πn(XH , y)
vanishes for all n ≥ 1 and one (and hence all) basepoints y ∈ XH ;

Proof. (i) A model can be obtained by attaching equivariant cells G/H×Dn

for all H ∈ F to make the H-fixed point sets weakly contractible. See for
instance [629, Proposition 2.3 on page 35]. There are also functorial construc-
tions for discrete G generalizing the bar construction, see [265, Section 3 and
Section 7].

(ii) Suppose that the G-CW -complex X is a model for EF (G). Let Y be any
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CW -complex and let H ∈ F . Then there is up to G-homotopy precisely one
G-map G/H × Y → X. Hence there is up to homotopy precisely one map
Y → XH . This is equivalent to the condition that XH is weakly contractible.

Suppose that XH is weakly contractible for every H ∈ F . Let (Y,B) be
a G-CW -pair such that the isotropy group of any point in Y \B belongs to
F , and let f−1 : B → X be any G-map. We next show the existence of a G-
map f : Y → X extending f−1. Obviously this implies that X is a model for
EF (G). Since Y is the colimit over the skeletons Yn for n ≥ −1 and Y−1 = B,
it suffices to prove for n ≥ 0 that, for a given G-map fn−1 : Yn−1 → X, there
exists a G-map fn : Yn → X with fn|Yn−1 = fn−1. Recall that by definition
there exists a G-pushout

∐
i∈In G/Hi × Sn−1

∐
i∈In q

n
i //

��

Yn−1

��∐
i∈In G/Hi ×Dn

∐
i∈In Q

n
i // Yn

such that each Hi belong to F . Because of the universal property of a G-
pushout it remains to show for every H ∈ F that every G-map u : G/H ×
Sn−1 → X can be extended to a G-map v : G/H ×Dn → X. This is equiv-
alent to showing that every map u′ : Sn−1 → XH can be extended to a
map v′ : Dn → XH . This follows from the assumption that XH is weakly
contractible. ut

A model for EALL(G) is G/G. A model for ET R(G) is the same as a model
for EG i.e, the total space of the universal G-principal bundle EG→ BG =
G\EG. In Section 11.6 we will give many interesting geometric models for
classifying spaces EG = EFIN (G).

Exercise 11.20. Show for a discrete group G that there exists a zero-dimen-
sional model for EF (G) if and only if G ∈ F . Is there a non-trivial connected
Lie group L with a 0-dimensional model for EL?

11.6 Models for the Classifying Space for Proper
Actions

In this section we present some interesting geometric models for the classi-
fying space for proper actions EG for some discrete groups. These models
will often be small in the sense that they are finite, of finite type, or finite
dimensional. We will restrict ourselves to discrete groups G in this section.
More information, also for non-discrete groups, can be found for instance
in [103, 640].
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11.6.1 Simplicial Model

Let P∞(G) be the geometric realization of the simplicial set whose k-simplices
consist of subsets of G of cardinality (k+1). There is an obvious simplicial G-
action of G on P∞(G) coming from the group structure. We get for instance
from [1, Example 2.6].

Theorem 11.21 (Simplicial model). P∞(G) is a model for EG.

11.6.2 Operator Theoretic Model

Let PC0(G) be the metric space of functions f : G → {r ∈ R | r ≥ 0} such
that f is not identically zero and has finite support, where the metric comes
from the supremum norm. The group G acts isometrically on PC0(G) by
(g · f)(x) := f(g−1x) for f ∈ PC0(G) and g, x ∈ G. Obviously PC0(G) is a
subspace of the Banach space C0(G).

Let XG be the metric space

XG =

{
f : G→ [0, 1]

∣∣∣∣ f has finite support,
∑
g∈G

f(g) = 1

}
with the metric coming from the supremum norm. The group G acts isomet-
rically on XG by (g · f)(x) := f(g−1x) for f ∈ XG and g, x ∈ G.

Theorem 11.22 (Operator theoretic model). Both PC0(G) and XG

are G-homotopy equivalent to a G-CW -model for EG.

Proof. See [1, Theorem 2.4] and [103, page 248]. ut

Remark 11.23 (Comparing P∞(G) and XG). The simplicial G-complex
P∞(G) of Theorem 11.21 and the G-space XG of Theorem 11.22 have the
same underlying sets but in general they have different topologies. The iden-
tity map induces a (continuous) G-map P∞(G)→ XG which is a G-homotopy
equivalence, but in general not a G-homeomorphism, see also [945, A.2].

11.6.3 Discrete Subgroups of Almost Connected Lie Groups

The next result is a special case of a much more general result due to Abels [1,
Corollary 4.14]. Recall that a topological group L is called almost connected
if π0(L) is finite.

Theorem 11.24 (Discrete subgroups of almost connected Lie groups).
Let L be an almost connected Lie group. Let G ⊆ L be a discrete subgroup.



11.6 Models for the Classifying Space for Proper Actions 303

Then L contains a maximal compact subgroup K, which is unique up to
conjugation, and the G-space L/K is a model for EG.

11.6.4 Actions on Simply Connected Non-Positively Curved
Manifolds

Theorem 11.25 (Actions on simply connected non-positively curved
manifolds). Suppose that G acts properly and isometrically on the simply
connected complete Riemannian manifold M with non-positive sectional cur-
vature. Then M is a model for EG.

Proof. See [1, Theorem 4.15]. ut

11.6.5 Actions on Trees and Graphs of Groups

A tree is a 1-dimensional CW -complex that is contractible.

Theorem 11.26 (Actions on trees). Suppose that G acts on a tree T
such that for each element g ∈ G and each open cell e with g · e ∩ e 6= ∅ we
have gx = x for any x ∈ e. Assume that the isotropy group of each x ∈ T is
finite.

Then T is a model for EG.

Proof. Obviously T is a G-CW -complex, see Remark 11.3. Let H ⊆ G be
finite. If e0 is a zero-cell in T , then H · e0 is finite. In the sequel we equip T
with the obvious path length metric, for which each edge has length 1. Let T ′

be the union of all geodesics with extremities in H · e. This is an H-invariant
subtree of T of finite diameter. One shows now inductively over the diameter
of T ′ that T ′ has a vertex that is fixed under the H-action, see [894, page
20] or [294, Proposition 4.7 on page 17]. Hence TH is non-empty. If e and f
are vertices in TH , the geodesic in T from e to f must be H-invariant. Hence
TH is a connected CW -subcomplex of the tree T and hence is itself a tree.
This shows that TH is contractible. Now apply Theorem 11.19 (ii). ut

11.6.6 Actions on CAT(0)-Spaces

For the notion of a CAT(0)-space we refer for instance to [155, Definition 1.1
in Chapter II.1 on page 158].

Theorem 11.27 (Actions on CAT(0)-spaces). Let X be a proper G-
CW -complex. Suppose that X has the structure of a complete CAT(0)-space
on which G acts by isometries. Then X is a model for EG.
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Proof. By [155, Corollary 2.8 in Chapter II.2 on page 179] the K-fixed point
set of X is a non-empty convex subset of X and hence contractible for any
compact subgroup K ⊂ G. ut

This result contains as special case Theorem 11.25 and Theorem 11.26
since simply connected complete Riemannian manifolds with non-positive
sectional curvature and trees are complete CAT(0)-spaces.

11.6.7 The Rips Complex of a Hyperbolic Group

A metric space X = (X, d) is called δ-hyperbolic for a given real number
δ ≥ 0 if for any four points x, y, z, t the following inequality holds

d(x, y) + d(z, t) ≤ max{d(x, z) + d(y, t), d(x, t) + d(y, z)}+ 2δ.(11.28)

A group G with a finite set S of generators is called δ-hyperbolic if the
metric space (G, dS) given by G and the word-metric dS with respect to the
finite set of generators S is δ-hyperbolic.

The Rips complex Pd(G,S) of a group G with a finite set S of generators
for a natural number d is the geometric realization of the abstract simplicial
complex whose set of k-simplices consists of subsets S′ ⊆ S of cardinality
(k + 1) such that dS(g, g′) ≤ d holds for all g, g ∈ S′. The obvious G-action
by simplicial automorphisms on Pd(G,S) induces a G-action by simplicial
automorphisms on the barycentric subdivision Pd(G,S)′, see Example 11.4.

Theorem 11.29 (Rips complex). Let G be a group with a finite set S of
generators. Suppose that (G,S) is δ-hyperbolic for the real number δ ≥ 0. Let
d be a natural number with d ≥ 16δ + 8. Then the barycentric subdivision of
the Rips complex Pd(G,S)′ is a finite G-CW -model for EG.

Proof. See [698], [699]. ut

A metric space is called hyperbolic if it is δ-hyperbolic for some real number
δ ≥ 0. A finitely generated group G is called hyperbolic if for one (and hence
all) finite set S of generators the metric space (G, dS) is a hyperbolic metric
space. Since for metric spaces the property hyperbolic is invariant under
quasiisometry and for two finite sets S1 and S2 of generators of G the metric
spaces (G, dS1

) and (G, dS2
) are quasiisometric, the choice of S does not

matter. Theorem 11.29 implies that for a hyperbolic group there is a finite
G-CW -model for EG.

The notion of a hyperbolic group is due to Gromov and has intensively been
studied, see for example [155, 408, 423]. The prototype is the fundamental
group of a closed hyperbolic manifold.
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11.6.8 Arithmetic Groups

An arithmetic group A in a semisimple connected linear Q-algebraic group
possesses a finite A-CW -model for EA. Namely, let G(R) be the R-points
of a semisimple Q-group G(Q), and let K ⊆ G(R) be a maximal compact
subgroup. If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left
A-action is a model for EA as already explained in Theorem 11.24. The
A-space G(R)/K is not necessarily cocompact. The Borel-Serre completion
of G(R)/K, see [144], [893], is a finite A-CW -model for EG as pointed out
in [19, Remark 5.8], where a private communication with Borel and Prasad
is mentioned.

11.6.9 Mapping Class Groups

Let Γ sg,r be the mapping class group of an orientable compact surface F sg,r
of genus g with s punctures and r boundary components. This is the group
of isotopy classes of orientation preserving selfdiffeomorphisms F sg,r → F sg,r
that preserve the punctures individually and restrict to the identity on the
boundary. We require that the isotopies leave the boundary pointwise fixed.
We will always assume that 2g + s + r > 2, or, equivalently, that the Euler
characteristic of the punctured surface F sg,r is negative. It is well-known that
the associated Teichmüller space T sg,r is a contractible space on which Γ sg,r
acts properly.

Theorem 11.30 (Mapping class group). The Teichmüler space T sg,r is a
model for EΓ sg,r

Proof. This follows from [557]. ut

Remark 11.31 (Finite model for EΓ sg,r). There exist a finite Γ sg,r-CW -
model for EΓ sg,r, see [726].

11.6.10 Outer Automorphism Groups of Finitely Generated Free
Groups

Let Fn be the free group of rank n. Denote by Out(Fn) the group of outer
automorphisms of Fn, i.e., the quotient of the group of all automorphisms
of Fn by the normal subgroup of inner automorphisms. Culler and Vogt-
mann [251, 951] have constructed a space Xn, called outer space, on which
Out(Fn) acts with finite isotropy groups. It is analogous to the Teichmüller
space of a surface with the action of the mapping class group of the sur-
face. Fix a graph Rn with one vertex v and n-edges and identify Fn with
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π1(Rn, v). A marked metric graph (g, Γ ) consists of a graph Γ with all ver-
tices of valence at least three, a homotopy equivalence g : Rn → Γ called
marking, and to every edge of Γ there is assigned a positive length. This
turns Γ into a metric space by the path metric. We call two marked metric
graphs (g, Γ ) and (g′, Γ ′) equivalent of there is a homothety h : Γ → Γ ′ such
that g ◦ h and h′ are homotopic. Homothety means that there is a constant
λ > 0 with d(h(x), h(y)) = λ · d(x, y) for all x, y. Elements in outer space Xn

are equivalence classes of marked graphs. The main result in [251] is that X
is contractible. Actually, for each finite subgroup H ⊆ Out(Fn) the H-fixed
point set XH

n is contractible [576, Proposition 3.3 and Theorem 8.1], [986,
Theorem 5.1].

The space Xn contains a spine Kn which is an Out(Fn)-equivariant defor-
mation retraction. This space Kn is a simplicial complex of dimension (2n−3)
on which the Out(Fn)-action is by simplicial automorphisms and cocompact.
Actually the group of simplicial automorphisms of Kn is Out(Fn), see [156].
Hence the barycentric subdivision K ′n is a finite (2n− 3)-dimensional model
of EOut(Fn).

11.6.11 Special Linear Groups of (2,2)-Matrices

In order to illustrate some of the general statements above, we consider the
special example SL2(Z).

Let H2 be the 2-dimensional hyperbolic space. We will use either the up-
per half-plane model or the Poincaré disk model. The group SL2(R) acts by
isometric diffeomorphisms on the upper half-plane by Moebius transforma-

tions, i.e., a matrix

(
a b
c d

)
acts by sending a complex number z with positive

imaginary part to az+b
cz+d . This action is proper and transitive. The isotropy

group of z = i is SO(2). Since H2 is a simply connected Riemannian manifold
whose sectional curvature is constant −1, the SL2(Z)-space H2 is a model for
E SL2(Z) by Theorem 11.25.

One easily checks that SL2(R) is a connected Lie group and SO(2) ⊆
SL2(R) is a maximal compact subgroup. Since the SL2(R)-action on H2 is
transitive and SO(2) is the isotropy group at i ∈ H2, we see that the SL2(R)-
manifolds SL2(R)/SO(2) and H2 are SL2(R)-diffeomorphic.

As SL2(Z) is a discrete subgroup of SL2(R), the space H2 = SL2(R)/ SO(2)
with the obvious SL2(Z)-action is a model for E SL2(Z) by Theorem 11.24.

The group SL2(Z) is isomorphic to the amalgamated free product Z/4∗Z/2
Z/6. This implies that SL2(Z) acts cell preserving with finite stabilizers on
a tree T , which has alternately two and three edges emanating from each
vertex, see [894, Theorem 7 in I.4.1 on page 32 and Example 4.2 (c) in I.4.2
on page 35]. This tree is a model for E SL2(Z) by Theorem 11.26.



11.6 Models for the Classifying Space for Proper Actions 307

The other model H2 is a manifold. These two models must be SL2(Z)-
homotopy equivalent. They can explicitly be related by the following con-
struction.

Divide the Poincaré disk or the half plane model H2 into fundamental do-
mains for the SL2(Z)-action. Each fundamental domain is a geodesic triangle
with one vertex at infinity, i.e., a vertex on the boundary sphere, and two
vertices in the interior. Then the union of the edges whose end points lie in
the interior of the Poincaré disk, is a tree T with SL2(Z)-action. This is the
tree model above. The tree is a SL2(Z)-equivariant deformation retraction of
H2. A retraction is given by moving a point p in H2 along a geodesic starting
at the vertex at infinity that belongs to the triangle containing p, through p
to the first intersection point of this geodesic with T , see for instance [894,
Example 4.2 (c) in I.4.2 on page 35].

11.6.12 Groups with Appropriate Maximal Finite Subgroups

Let G be a discrete group. Let MFIN be the subset of FIN consisting
of elements in FIN that are maximal with respect to inclusion in FIN .
Consider the following assertions concerning G:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal
finite subgroup;

(NM) M ∈MFIN ,M 6= {1} =⇒ NGM = M ;

For such a group there is a nice model for EG with as few non-free cells
as possible. Let {Mi | i ∈ I} be a complete set of representatives for the
conjugacy classes of maximal finite subgroups of G, i.e, each Mi is a maximal
finite subgroup of G and any maximal finite subgroup of G is conjugated
to Mi for precisely one element i ∈ I. By attaching free G-cells, we get an
inclusion of G-CW -complexes j1 :

∐
i∈I G×Mi

EMi → EG where EG is the
same as ET R(G), i.e., a contractible free G-CW -complex.

Theorem 11.32 (Passage from EG to EG). Suppose that G satisfies
(M) and (NM). Let X be the G-CW -complex define by the G-pushout

∐
i∈I G×Mi

EMi
j1 //

u1

��

EG

f1

��∐
i∈I G/Mi

k1

// X

where u1 is the obvious G-map obtained by collapsing each EMi to a point.
Then X is a model for EG.

Proof. We have to explain why EG is a model for the classifying space for
proper actions of G. Obviously it is a G-CW -complex. Its isotropy groups
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are all finite. We have to show for H ⊆ G finite that XH weakly contractible.
We begin with the case H 6= {1}. Because of conditions (M) and (NM) there
is precisely one index i0 ∈ I such that H is subconjugated to Mi0 and is not
subconjugated to Mi for i 6= i0 and we get(∐

i∈I
G/Mi

)H
= (G/Mi0)

H
= {•}.

Hence XH = {•}. It remains to treat H = {1}. Since u1 is a non-equivariant
homotopy equivalence and j1 is a cofibration, f1 is a non-equivariant homo-
topy equivalence and hence EG is contractible (after forgetting the group
action). ut

Here are some examples of groups Q that satisfy conditions (M) and (NM):

• Extensions 1→ Zn → G→ F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn.
The conditions (M) and (NM) are satisfied by [667, Lemma 6.3];

• Fuchsian groups F .
The conditions (M) and (NM) are satisfied by [667, Lemma 4.5]. In [667]
the larger class of cocompact planar groups (sometimes also called cocom-
pact NEC-groups) is treated;

• One-relator groups G.
Let G be a one-relator group. Let G = 〈(qi)i∈I | r〉 be a presentation with
one relation. We only have to consider the case where G contains torsion.
Let F be the free group with basis {qi | i ∈ I}. Then r is an element in F .
There exists an element s ∈ F and an integer m ≥ 2 such that r = sm, the
cyclic subgroup C generated by the class s ∈ G represented by s has order
m, any finite subgroup of G is subconjugated to C, and for any g ∈ G the
implication g−1Cg∩C 6= 1⇒ g ∈ C holds. These claims follows from [678,
Propositions 5.17, 5.18, and 5.19 in II.5 on pages 107 and 108]. Hence G
satisfies conditions (M) and (NM).

Remark 11.33 (Passing to larger families). Theorem 11.32 is a special
case of a general recipe to construct for two families F ⊆ G an efficient model
for EG(G) from EF (G) in [673, Section 2]. These models are important for
concrete calculations of the left hand side appearing in the Baum-Conjecture
or the Farrell-Jones Conjecture, see Chapter 17.

11.6.13 One-Relator Groups

Let G be a one-relator group. Let G = 〈(qi)i∈I | r〉 be a presentation with
one relation. There is up to conjugacy one maximal finite subgroup C, which
turns out to be cyclic. Let p : ∗i∈I Z→ G be the epimorphism from the free
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group generated by the set I to G that sends the generator i ∈ I to qi. Let
Y →

∨
i∈I S

1 be the G-covering associated to the epimorphism p. There is
a 1-dimensional unitary C-representation V and a C-map f : SV → resCG Y
such that the induced action on the unit sphere SV is free and the following is
true: If we equip SV with the C-CW -structure with precisely one equivariant
0-cell and precisely one equivariant 1-cell and DV with the C-CW -complex
structures coming from the fact that DV is the cone over SV , then the C-
map f can be chosen to be cellular and we obtain a G-CW -model for EG by
the G-pushout

G×C SV
f //

��

Y

��
G×C DV // EG

where f sends (g, x) to gf(x). Thus we get a 2-dimensional G-CW -model for
EG such that EG is obtained from G/C for a maximal finite cyclic subgroup
C ⊆ G by attaching free cells of dimensions ≤ 2. The CW -CW -complex
structure on EG has precisely one 0-cell G/C×D0, one 0-cell G×D0, (2 · |I|
many 1-cells G × D1 and |I| many 2-cells G × D2. All these claims follow
from [161, Exercise 2 (c) II. 5 on page 44].

If G is torsionfree, the 2-dimensional complex associated to a presentation
with one relation is a model for BG, see [678, Chapter III §§9 -11].

Exercise 11.34. Let G be a one-relator group. Let M ⊆ G be a maximal
cyclic subgroup. Show that the inclusion induces for n ≥ 3 an isomorphism

Hn(BM)
∼=−→ Hn(BG).

Exercise 11.35. Let G be a finitely generated group. Suppose that for every
integer d there is k ≥ d with Hk(BG;Q) 6= 0. Show that G cannot be a
hyperbolic group, an arithmetic group, a mapping class group, Out(Fn), or
a one-relator group.

11.7 Models for the Classifying Space for the Family of
Virtually Cyclic Subgroups

In general the G-CW -models for EG are not as nice and small than the
ones for EG. We illustrate this in the case G = Zn for n ≥ 2. Then a Zn-
CW -model for EZn = EZn is Rn with the standard translation action of
Zn.

An explicite Zn-CW -model for EZn can be constructed as follows. Choose
an enumeration {Ci | i ∈ Z} of the infinite cyclic subgroups of Zn. Consider
the space Rn ×R. For each i ∈ Z we identify in Rn × {i} the subspace given
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by the R-span of Ci ⊆ Zn ⊆ Rn to a point. Then we obtain a Zn-CW -
complex X. Since the Ci-fixed point set of X consists of precisely one point,
the underlying topological space X is contractible, and all isotropy groups
of the Zn-action are infinite cyclic or trivial, X is a Zn-CW -model for EZn.
Note that the dimension of X is (n + 1). One can actually show that any
Zn-CW -model for EZn has dimension greater or equal to (n + 1), see [673,
Example 5.21].

11.7.1 Groups with Appropriate Maximal Virtually Cyclic
Subgroups

Let G be a discrete group. Let MVCY be the subset of VCY consisting of
elements in VCY that are maximal with respect to inclusion in VCY. Consider
the following assertions concerning G:

(M) Every infinite virtually cyclic subgroup of G is contained in a unique
maximal virtually cyclic subgroup;

(NM) V ∈MVCY, |V | =∞ =⇒ NGV = V .

For such a group there is a nice model for EG with as few cells of type G/V
with infinite virtually cyclic V as possible. Let {Vi | i ∈ I} be a complete set
of representatives for the conjugacy classes of maximal infinite virtually cyclic
subgroups of G. By attaching G-cells of the type G/H for finite subgroups
H ⊆ G, we get an inclusion of G-CW -complexes j1 :

∐
i∈I G×Vi EVi → EG.

The next result is proved in [673, Corollary 2.11].

Theorem 11.36 (Passage from EG to EG). Suppose that G satisfies
(M) and (NM). Let X be the G-CW -complex define by the G-pushout

∐
i∈I G×Vi EVi

j1 //

u1

��

EG

f1

��∐
i∈I G/Vi k1

// X

where u1 is the obvious G-map obtained by collapsing each EVi to a point.
Then X is a model for EG.

A useful criterion for a group G to satisfy both (M) and (NM) can be
found in [673, Theorem 3.1]. It implies that any hyperbolic group satisfies
both (M) and (NM), see [673, Example 3.6]. On the other hand the Klein
bottle group Z o Z does not satisfy (M), see [673, Example 3.7]. This is the
one of the few instances where EG behaves nicer than EG since the class of
groups for which both (M) and (NM) hold is much richer than the class for
which both (M) and (NM) hold.
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Theorem 11.36 will be very helpful for computing the left hand side ap-
pearing in the Farrell-Jones Conjecture, see Section 17.6.

11.8 Finiteness Conditions

It has been very fruitful in group theory to investigate the question whether
one can find small models for BG, for instance a finite CW -model, a CW -
model of finite type or a finite dimensional CW -model, or equivalently, small
G-CW -models for EG. The same question can be asked for EG and EG. For
torsionfree groups there is no difference between EG and EG, but for groups
with torsion the space EG seems to carry much more information than EG.
In this section we collect some information about finiteness conditions on
EG, EG, and EG. Having small models is also important for computation
of the left hand sides appearing in the Baum-Connes Conjecture and the
Farrell-Jones Conjecture, see Chapter 17.

Throughout this section G will be a discrete group.

11.8.1 Review of Finiteness Conditions on BG

As an illustration we review what is known about finiteness properties of
G-CW -models for EG for a discrete group G. This is equivalent to the same
question about BG.

We introduce the following notation. Let R be a commutative associative
ring with unit. The trivial RG-module is R viewed as RG-module by the
trivial G-action. The cohomological dimension cdR(M) of a RG-module M
is ∞ if there is no finite dimensional projective RG-resolution and is equal
to the integer n if there exists a projective resolution of dimension ≤ n for
M but not of dimension ≤ n − 1. Note that M possesses a projective RG-
resolution of dimension ≤ n if and only if for any RG-module N we have
ExtiRG(M,N) = 0 for i ≥ n + 1. The cohomological dimension over R of
a group G, which is denoted by cdR(G), is the cohomological dimension of
trivial RG-module R. If R = Z, we abbreviate cd(G) := cdZ(G).

An RG-module M is of type FPn, if it admits a projective RG-resolution
P∗ such that Pi is finitely generated for i ≤ n, and of type FP∞ if it admits
a projective RG-resolution P∗ such that Pi is finitely generated for all i. A
group G is of type FPn or FP∞ respectively if the trivial ZG-module Z is of
type FPn or FP∞ respectively.

Here is a summary of well-known statements about finiteness conditions
on BG.

Theorem 11.37 (Finiteness conditions for BG). Let G be a discrete
group.
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(i) If there exists a finite dimensional model for BG, then G is torsionfree;
(ii)(a) There exists a CW -model for BG with finite 1-skeleton if and only if

G is finitely generated;
(b) There exists a CW -model for BG with finite 2-skeleton if and only if

G is finitely presented;
(c) For n ≥ 3 there exists a CW -model for BG with finite n-skeleton if and

only if G is finitely presented and of type FPn;
(d) There exists a CW -model for BG of finite type, i.e., all skeleta are finite

if and only if G is finitely presented and of type FP∞;
(e) There exists groups G that are of type FP2 and not finitely presented;

(iii) There is a finite CW -model for BG if and only if G is finitely presented
and there is a finite free ZG-resolution F∗ for the trivial ZG-module Z;

(iv) The following assertions are equivalent:

(a) The cohomological dimension over Z of G is ≤ 1;
(b) There is a model for BG of dimension ≤ 1;
(c) G is free;

(v) The following assertions are equivalent for d ≥ 3:

(a) There exists a CW -model for BG of dimension d;
(b) The cohomological dimension over Z of G is d;

(vi) For Thompson’s group F there is a CW -model of finite type for BG but
no finite dimensional model for BG.

Proof. (i) Suppose we can choose a finite dimensional model for BG. Let C ⊆
G be a finite cyclic subgroup. Then C\B̃G = C\EG is a finite dimensional
model for BC. Hence there is an integer d such that we have Hi(BC) = 0
for i ≥ d. This implies that C is trivial [161, (2.1) in II.3 on page 35]. Hence
G is torsionfree.

(ii) See [128] and [161, Theorem 7.1 in VIII.7 on page 205].

(iii) See [161, Theorem 7.1 in VIII.7 on page 205].

(iv) See [907] and [923].

(v) See [161, Theorem 7.1 in VIII.7 on page 205].

(vi) See [162]. ut

11.8.2 Cohomological Criteria for Finiteness Properties in Terms
of Bredon Cohomology

We have seen that we can read off finiteness properties of BG or EG from
the group cohomology of G. If one wants to investigate the same question
for EF (G) analogous statements are true if one considers modules over the
F-restricted orbit category OrF (G) in the sense of Definition 2.64. This is
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explained in [640, Subsection 5.2]. For instance, if d ≥ 3 is a natural number,
then there is a G-CW -model of dimension ≤ d for EF (G) if and only if the
trivial ZOrF (G)-module Z has projective ZOrF (G)-resolution of dimension
≤ d, see [640, Theorem 5.2 (i)]. The role of the cohomology of a group is
now played by the Bredon cohomology of EF (G). We will deal with Bredon
cohomology in Example 12.2.

Other papers related to the topic of connecting geometric dimension or
other finiteness properties for classifying spaces for families to algebraic ana-
logues are [151, 380, 382, 749, 751].

11.8.3 Finite Models for the Classifying Space for Proper Actions

The specific constructions of Sections 11.6 show that there is a finite G-CW -
model for the classifying space for proper actions EG if G is a cocompact
discrete subgroups of an almost connected Lie group, a hyperbolic group,
an arithmetic group, the outer automorphism group of a finitely generated
free groups, a mapping class group, or a finitely generated one-relator group.
This is also the case for an elementary amenable group of type FP∞, see [574,
Theorem 1.1].

If 1 → K → G → Q → 1 is an extension of groups and there are finite
models for EK and EQ, one may ask whether there is a finite model for EG.
Some sufficient conditions for this question are given in [632, Theorem 3.2
and Theorem 3.3], for instance that K is hyperbolic or virtually poly-cyclic.
However, even in the case that Q is finite and K is torsionfree with a finite
model for BK, it can happen that there is no finite model for EG, see [608,
Example 3 on page 149 in Section 7].

11.8.4 Models of Finite Type for the Classifying Space for Proper
Actions

The following result is proved in [632, Theorem 4.2].

Theorem 11.38 (Models for EG of finite type).
The following statements are equivalent for the group G.

(i) There is a G-CW -model for EG of finite type;
(ii) There are only finitely many conjugacy classes of finite subgroups of G and

for any finite subgroup H ⊂ G there is a CW -model for BWGH of finite
type where WGH := NGH/H;

(iii) There are only finitely many conjugacy classes of finite subgroups of G and
for any finite subgroup H ⊂ G the Weyl group WGH is finitely presented
and is of type FP∞.
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The comments about extensions in Subsection 11.8.3 for finite models
carry over to models of finite type.

11.8.5 Finite Dimensional Models for the Classifying Space for
Proper Actions

The following result follows from Dunwoody [305, Theorem 1.1].

Theorem 11.39 (A criterion for 1-dimensional models for EG). Let
G be a discrete group. Then there exists a 1-dimensional model for EG if and
only if the cohomological dimension of G over Q is less or equal to one.

If G is finitely generated, then there is a 1-dimensional model for EG if
and only if G contains a finitely generated free subgroup of finite index [537,
Theorem 1]. If G is torsionfree, we rediscover the results due to Swan and
Stallings stated in Theorem 11.37 (iv) from Theorem 11.39.

If G is virtually torsionfree, one defines its virtual cohomological dimension
vcd(G) by the cohomological dimension cd(H) of any torsionfree subgroup
H ⊆ G of finite index. Since for any other torsionfree subgroup K ⊆ G of
finite index we have cd(H) = cd(K), this notion is well-defined.

Definition 11.40 (Homotopy dimension). Given a G-space X, the ho-
motopy dimension hdimG(X) ∈ {0, 1, . . .} q {∞} of X is defined to be the
infimum over the dimensions of all G-CW -complexes Y that are G-homotopy
equivalent to X.

Notation 11.41. Put for a group G

gd(G) := hdimG(EG);

gd(G) := hdimG(EG).

Lemma 11.42. Suppose that G is virtually torsionfree. Then

vcd(G) ≤ gd(G).

Proof. Choose a torsionfree subgroup H ⊆ G of finite index. Then the re-
striction of EG to H is a model for EH. This implies cd(H) ≤ dim(EG) and
hence vcd(G) ≤ gd(G). ut

The next result is taken from [640, Theorem 5.24]

Theorem 11.43 (Dimension of EG for a discrete subgroup G of an
almost connected Lie group). Let L be a Lie group with finitely many
path components. Then L contains a maximal compact subgroup K, which is
unique up to conjugation. Let G ⊆ L be a discrete subgroup of L. Then L/K
with the left G-action is a model for EG.
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Suppose additionally that G is virtually torsionfree. Then we have

vcd(G) ≤ dim(L/K)

and equality holds if and only if G\L is compact.

The next result follows from [379, Theorem 1 and inequalities (1) and (2)
on page 7] where also the notion of the Hirsch length for elementary amenable
groups due to Hillman [478] is recalled. In the special case that there is a
finite sequence G = G0 ⊇ G1 ⊇ G2 ⊇ · · · ⊇ Gn−1 ⊇ Gn = {1} of subgroups
such that Gi+1 is normal in Gi and Gi/Gi+1 is finitely generated abelian for

i = 0, 1, . . . , (n− 1), the Hirsch length h(G) is
∑n−1
i=0 rkZ(Gi/Gi+1).

Theorem 11.44 (Dimension of EG for countable elementary amenable
groups of finite Hirsch length). If G is an elementary amenable group,
then its Hirsch length satisfies

h(G) ≤ gd(G).

If G is a countable elementary amenable group, then

gd(G) ≤ max{3, h(G) + 1}.

If F is a virtually poly-cyclic group G, then G is virtually torsionfree, and
vcd(G) is finite and satisfies vcd(G) = h(G) = gd(G), see [640, Example 5.26].

If H ⊆ G is a subgroup of finite index [G : H] and there is a H-CW -model
for EH of dimension ≤ d, then there is a G-CW -model for EG of dimension
≤ d · [G : H], see [632, Theorem 2.4]. In particular gd(G)) ≤ [G : H] · gd(H).

Theorem 11.45 (Dimension of EG and extension). Let 1→ K → G→
Q → 1 be an exact sequence of groups. Suppose that there exists a positive
integer d that is an upper bound on the orders of finite subgroups of Q. Then

gd(G) ≤ d · gd(K) + gd(Q).

Remark 11.46 (gd(G) for locally finite groups). For a locally finite
group of cardinality ℵn the inequality gd(G) ≤ n + 1 is proved in [295]
and [673, Theorem 5.31]. The equality gd(G) = n + 1 is explained in [673,
Example 5.32].

Exercise 11.47. Let F be a non-trivial finite group. Put H =
⊕

Z F . Let
H o Z be the semidirect product with respect to the shift automorphism of
H. Show gd(H) = 1 and gd(H o Z) = 2.
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11.8.6 Brown’s Problem about Virtual Cohomological Dimension
and the Dimension of the Classifying Space for Proper
Actions

The following problem whether the converse of Lemma 11.42 is true, is stated
by Brown [160, page 32].

Problem 11.48 (Brown’s problem about vcd(G) = dim(EG)). For
which virtually torsionfree groups G does the equality

vcd(G) = gd(G)

hold?

The length l(H) ∈ {0, 1, . . .} of a finite group H is the supremum over all
l for which there is a nested sequence H0 ⊂ H1 ⊂ . . . ⊂ Hl of subgroups Hi

of H with Hi 6= Hi+1. The following result is proved in [632, Theorem 6.4]
and was motivated by Brown’s Problem 11.48.

Theorem 11.49 (Estimate on dim(EG) in terms of vcd(G)). Let G be
a group with virtual cohomological dimension vcd(G) ≤ d. Let l ≥ 0 be an
integer such that the length l(H) of any finite subgroup H ⊂ G is bounded by
l.

Then there is a G-CW -model for EG such that for any finite subgroup
H ⊂ G

dim(EGH) = max{3, d}+ l − l(H)

holds. In particular gd(G) ≤ max{3, d}+ l.

However, we obtain from Leary-Petroysan [609, Corollary 1.2], see also
Leary-Nucinkis [608, Example 12 on page 153 in Section 7].

Theorem 11.50 (Brown’s Problem 11.48 has a negative answer in
general). Given a natural number m, there exists a group G such that there
is a finite model for EG and we have vcd(G) = 2m and gd(G) ≥ 3m.

Moreover, Leary-Petroysan [609, page 732] show that the estimate in The-
orem 11.49 cannot be improved, even if one considers only finite models for
EG.

11.8.7 Finite Dimensional Models for the Classifying Space for
the Family of Virtually Cyclic Subgroups

The following problem has triggered a lot of activities
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Problem 11.51 (Relating the dimension of EG and EG). For which
countable groups G do the inequalities

gd(G)− 1 ≤ gd(G) ≤ gd(G) + 1

hold?

The inequality appearing in Problem 11.51 holds for countable elementary
amenable groups, see [285, Corollary 4.4]. There are groups of type FP∞ for
which the difference gd(G)−gd(G) is arbitrary large, see [285, Example 6.5].

All possible cases of the inequality appearing in Problem 11.51 can occur,
in particular there are examples of finitely presented groups G with gd(G) <

gd(G), see Remark 11.55.
The next result is proved in [285, Theorem A].

Theorem 11.52 (Dimension of EG for elementary amenable groups
of finite Hirsch length). If G is an elementary amenable group of cardi-
nality ℵn such that the Hirsch length h(G) of G is finite, then

gd(G) ≤ h(G) + n+ 2.

Theorem 11.53 (The dimension of EG).

(i) We have for any group G

gd(G) ≤ 1 + gd(G);

(ii) We have
gd(G×H) ≤ gd(G) + gd(H),

and
gd(G×H) ≤ gd(G) + gd(H) + 3,

and these inequalities cannot be improved in general;
(iii) If G satisfies condition (M) and (NM), then

gd(G)

{
= gd(G) if gd(G) ≥ 2;

≤ 2 if gd(G) ≤ 1;

(iv) If H ⊆ G is a subgroup of finite index [G : H] then

gd(G) ≤ [G : H] · gd(H).

Proof. (i) See [673, Corollary 5.4 (1)].

(ii) This is obvious for gd(G×H) and proved for gd(G×H) in [673, Corol-

lary 5.6 and Remark 5.7].
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(iii) See [673, Theorem 5.8 (2)].

(iv) This is proved in [632, Theorem 2.4]. ut

Exercise 11.54. If G is the fundamental group of a hyperbolic closed Rie-
mannian manifold M , then

cd(G) = dim(N) = gd(G) = gd(G).

Remark 11.55 (Virtually-poly-cyclic-groups). In [673, Theorem 5.13]
a complete computation of gd(G) is presented for virtually poly-Z groups.

The answer is much more complicated than the one for gd(G), which is equal
to both vcd(G) and the Hirsch length h(G), see [640, Example 5.26]. This
leads to some interesting examples in [673, Subsection 5.4]. For instance,
one can construct, for k = −1, 0, 1, automorphisms fk : Hei → Hei of the
three-dimensional Heisenberg group Hei such that

gd(HeiofkZ) = 4 + k.

Note that gd(HeiofZ) = cd(HeiofZ) = 4 holds for any automorphism
f : Hei→ Hei.

The following result is taken from [643, Theorem 1.1].

Theorem 11.56 (Dimensions of EG and EG for groups acting on
CAT(0)-spaces). Let G be a discrete group that acts properly and isomet-
rically on a complete proper CAT(0)-space X. Let dim(X) be the topological
dimension of X, see Definition 23.35,

(i) We have
gd(G) ≤ dim(X);

(ii) Suppose that G acts by semisimple isometries. (This is the case if we
additionally assume that the G-action is cocompact.)
Then

gd(G) ≤ dim(X) + 1.

Remark 11.57 (gd(G) for locally virtually cyclic groups). For a locally

virtually cyclic group of cardinality ℵn the inequality gd(G) ≤ n + 1 is a

special case of [673, Theorem 5.31].

The next result is taken from [282, Theorem A].

Theorem 11.58 (Finite dimensional models for EG for discrete sub-
groups of GLn(R)). Every discrete subgroup G of GLn(R) admits a finite di-
mensional model for EG. More precisely, if m is the dimension of the Zariski
closure of G in GLn(R), then

gd(G) ≤ m+ 1.



11.8 Finiteness Conditions 319

For information about gd(G) we refer for (relatively) hyperbolic groups

to [515, 589], for mapping class groups of finite type surfaces to [518, 750],
for mapping class groups of punctured spheres to [36], for systolic groups
to [768], for braid groups to [378], for normally poly-free groups to [505], for
orientable 3-manifold groups to [510], and for Out(Fn) to [433].

11.8.8 Low Dimensions

Besides Theorem 11.39 we have the following result proved in [673, Theo-
rem 5.33].

Theorem 11.59 (Low-dimensional models for EG and EG).

(i) Let G be a countable group that is locally virtually cyclic. Then

gd(G) =


0 if G is finite;

1 if G is infinite and either locally finite

or virtually cyclic;

2 otherwise,

and

gd(G) =

{
0 if G is virtually cyclic;

1 otherwise;

(ii) Let G be a countable group satisfying gd(G) ≤ 1. Then

gd(G) =


0 if G is virtually cyclic;

1 if G is locally virtually cyclic but

not virtually cyclic;

2 otherwise.

Exercise 11.60. Let G be a countable group. Show that G is infinite locally
finite if and only if gd(G) = gd(G) = 1 holds.

11.8.9 Finite Models for the Classifying Space for the Family of
Virtually Cyclic Subgroups

If G is virtually cyclic, a model for EG is {•} = G/G, which is in particular
finite. There is no group known such that EG has a finite G-CW -model and
G is not virtually cyclic. This leads to the following conjecture of Juan-Pineda
and Leary [515, Conjecture 1],
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Conjecture 11.61 (Finite Models for EG). If a group G has a finite
G-CW -model for EG, then G is virtually cyclic.

Conjecture 11.61 is known to be true in many cases since the existence
of a finite G-CW -model for EG implies that there is a finite G-CW -model
for EG, see [673, Corollary 5.4 (2)], and that there are only finitely many
conjugacy classes of infinite virtually cyclic groups of G. Conjecture 11.61
holds for instance for hyperbolic groups, see [515, Corollary 12], elementary
amenable groups, see [565, Corollary 5.8], and linear groups, see [952].

11.9 On the Homotopy Type of the Quotient Space of
the Classifying Space for Proper Actions

One may think that there are more homotopy classes of CW -complexes than
isomorphisms classes of groups. Namely, we can assign to any group G its
classifying space BG and for two groups G and H the spaces BH and BG
are homotopy equivalent if and only if G and H are isomorphic, and there
are CW -complexes that are not homotopy equivalent to BG for any group
G. However, here is a result due to Leary-Nucinkis [607, Theorem 1], which
is in some sense the converse.

Theorem 11.62 (Every CW -complex occurs up to homotopy as quo-
tient of a classifying space for proper group actions). Let X be a CW -
complex. Then there exists a group G such that G\EG is homotopy equivalent
to X. Moreover one can arrange that G contains a torsionfree subgroup of
index two.

Exercise 11.63. Let X be a CW -complex. Show that there exists a Z/2-
CW -complex Y such that Y is aspherical and X is homotopy equivalent to
the Z/2-quotient space of Y .

Remark 11.64 (Metric Kan-Thurston Theorem). Leary proves a metic
Kan-Thurston Theorem in [606, Theorem A]. It yields the following variant
of Theorem 11.62, see [606, Theorem 8.3]. Given a group G and proper sim-

plicial G-complex X with connected G\X, there exists a group G̃, a cubi-
cal CAT(0)-complex E with simplicial G-action, an epimorphism of groups

p : G̃ → G, and a map f : E → X such that E is a model for EG, the map
f is p : G̃ → G-equivariant, and for any equivariant homology theory in the
sense of Definition 12.9 the pair (p, f) induces for all n ∈ Z isomorphisms

HG̃n (E) → HGn (X). An application to Isomorphism Conjectures is discussed
in [606, Section 10].

The understanding of G\EG and G\EG will be important for the compu-
tation of the left hand side appearing in the Baum-Conjecture or the Farrell-
Jones Conjecture, see Chapter 17.
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In contrast to the trivial family T R where EG and BG = G\EG carry the
same information, this is not true for EG and G\EG. For instance, G\EG is
contractible if G is the infinite dihedral group D∞ ∼= Z o Z/2 ∼= Z/2 ∗ Z/2,
what can be seen by direct inspection, or if G = SL3(Z), see [904, Corollary
on page 8].

11.10 Notes

The notion of a classifying space for a family was introduced by tom
Dieck [933].

Classifying spaces for families play a role in computations of equivariant
homology and cohomology for compact Lie groups such as equivariant bor-
dism as explained in [934, Chapter 7] and [935, Chapter III].

Classifying spaces for topological groups and appropriate families of sub-
groups play a key role in the construction of classifying equivariant principal
bundles in [672] or the construction of the topological K-cohomology for
arbitrary proper equivariant CW -complexes in [655].

More information about classifying spaces for families can be found for
instance in [1, 64, 103, 242, 283, 284, 285, 381, 575, 640, 653, 673, 803, 935,
952, 953].
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Chapter 12

Equivariant Homology Theory

12.1 Introduction

This section is devoted to equivariant homology theories. They are a key
input in the general formulations of the Baum-Connes Conjecture and the
Farrell-Jones Conjecture. If one only wants to understand these conjectures,
one only needs to browse through the Definition 12.1 of a G-homology theory,
nothing more is needed from this chapter. Since G-homology theories are of
general importance, we have added more material to this section. It will also
be useful for concrete computations of K- and L-groups of group rings and
group C∗-algebras based on the Baum-Connes Conjecture and the Farrell-
Jones Conjecture.

For a fixed group G, the notion of a G-homology theory HG∗ is the obvious
generalization of the notion of a (generalized) homology theory in the non-
equivariant sense. An important insight is to pass to an equivariant homology
theory H?

∗, see Definition 12.9. Roughly speaking, it assigns to every group G
a G-homology theoryHG∗ and links for any group homomorphisms α : H → G
the theories HH∗ and HG∗ by a so-called induction structure. This global point
of view is the key for many applications and computations. Most of the
interesting theories arise as equivariant homology theories.

Whenever one has a covariant functor from the category of small connected
groupoids GROUPOIDS to the category of spectra SPECTRA, one obtains
an associated equivariant homology theory, see Section 12.4 Thus one can
construct our main examples for equivariant homology theories, which are
based onK- and L-groups of group rings and group C∗-algebras, by extending
these notions from groups to groupoids, see Section 12.5.

We will provide tools for computations, namely, the equivariant Atiyah-
Hirzebruch spectral sequence, see Subsection 12.6.1, the p-chain spectral se-
quence, see Subsection 12.6.2, and the equivariant Chern character, see Sec-
tion 12.7. We will present some concrete examples of such computations in
Sections 12.8 and 12.9.

12.2 Basics about G-Homology Theories

In this section we describe the axioms of a (proper) G-homology theory and
give some basic examples. The main examples for us will be the sources of the

323
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assembly maps appearing in the Baum-Connes Conjecture and the Farrell-
Jones Conjecture.

Fix a discrete group G and an associative commutative ring Λ with unit.

Definition 12.1 (G-homology theory). A G-homology theory HG∗ with
values in Λ-modules is a collection of covariant functorsHGn from the category
of G-CW -pairs to the category of Λ-modules indexed by n ∈ Z together with
natural transformations

∂Gn (X,A) : HGn (X,A)→ HGn−1(A) := HGn−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:

• G-homotopy invariance

If f0 and f1 are G-homotopic G-maps of G-CW -pairs (X,A) → (Y,B),
then HGn (f0) = HGn (f1) for n ∈ Z;

• Long exact sequence of a pair

Given a pair (X,A) of G-CW -complexes, there is a long exact sequence

. . .
HGn+1(j)
−−−−−→ HGn+1(X,A)

∂Gn+1−−−→ HGn (A)
HGn (i)−−−−→ HGn (X)

HGn (j)−−−−→ HGn (X,A)
∂Gn−−→ . . .

where i : A→ X and j : X → (X,A) are the inclusions;
• Excision

Let (X,A) be a G-CW -pair, and let f : A → B be a cellular G-map of
G-CW -complexes. Equip (X ∪f B,B) with the induced structure of a G-
CW -pair. Then the canonical map (F, f) : (X,A)→ (X ∪f B,B) induces
an isomorphism

HGn (F, f) : HGn (X,A)
∼=−→ HGn (X ∪f B,B)

for all n ∈ Z;
• Disjoint union axiom

Let {Xi | i ∈ I} be a collection of G-CW -complexes. Denote by ji : Xi →∐
i∈I Xi the canonical inclusion. Then the map

⊕
i∈I
HGn (ji) :

⊕
i∈I
HGn (Xi)

∼=−→ HGn

(∐
i∈I

Xi

)

is bijective for all n ∈ Z;

If HG∗ is defined or considered only for proper G-CW -pairs (X,A), we call
it a proper G-homology theory HG∗ with values in Λ-modules.

Example 12.2 (Bredon Homology). The most basic G-homology theory
is Bredon homology, which was originally introduced in [152]. Recall that
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Or(G) denotes the orbit category of G. Let X be a G-CW -complex. It defines
a contravariant functor from the orbit category Or(G) to the category of CW -
complexes by sending G/H to mapG(G/H,X) = XH . Composing it with the
functor “cellular chain complex” yields a contravariant functor

C
Or(G)
∗ (X) : Or(G)→ Z-CHCOM

to the category of Z-chain complexes. Let Λ be a commutative ring and let

M : Or(G)→ Λ-MOD

be a covariant functor to the abelian category of Λ-modules Λ-MOD. If
N : Or(G) → Z-MOD is a contravariant functor, one can form the tensor
product over the orbit category N ⊗ΛOr(G) M , see for instance [629, 9.12 on
page 166]. It is the quotient of the Λ-module⊕

G/H∈ob(Or(G))

N(G/H)⊗Z M(G/H)

by the Λ-submodule generated by

{xf ⊗ y − x⊗ fy | f : G/H → G/K, x ∈ N(G/K), y ∈M(G/H)}

where xf stands for N(f)(x) and fy for M(f)(y). Since this is natural,

we obtain a Λ-chain complex C
Or(G)
∗ (X) ⊗ZOr(G) M . The homology of

C
Or(G)
∗ (X)⊗ZOr(G) M is the Bredon homology of X with coefficients in M

HG
n (X;M) := Hn(C

Or(G)
∗ (X)⊗ZOr(G) M).(12.3)

This extends in the obvious way to G-CW -pairs. Thus we get a G-homology
theory HG

∗ with values in Λ-modules.

The description of C
Or(G)
∗ (X) ⊗ZOr(G) M in terms of the orbit category

is conceptually the right one since it is intrinsically defined and the basic
properties are easily checked following closely the non-equivariant case. For
computation, the following explicit description is useful.

Fix G-pushouts

∐
i∈In G/Hi × Sn−1

∐
i∈In q

n
i //

��

Xn−1

��∐
i∈In G/Hi ×Dn

∐
i∈In Q

n
i // Xn

as they appear in Definition 11.2. Then the n-th Λ-chain module of the Λ-

chain complex C
Or(G)
∗ (X)⊗ZOr(G) M can be identified with
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COr(G)
n (X)⊗ZOr(G) M =

⊕
i∈In

M(G/Hi).

In order to define the n-th differential

cn :
⊕
i∈In

M(G/Hi)→
⊕

j∈In−1

M(G/Hj),

we specify for each pair (i, j) ∈ In×In−1 a Λ-homomorphism αi,j : M(G/Hi)→
M(G/Hj) such that for fixed i ∈ In there are only finitely many j ∈ In−1

satisfying αi,j 6= 0.
We begin with the case n = 1. For i ∈ I1, let j(i,+) and j(i,−)

be the indices in I0 for which q0
i (G/Hi × {±1}) ⊆ G/Hj(i,±) holds. Let

f(i,±) : G/Hi → G/Hj(i,±) be the map induced by q0
i . Define for i ∈ I1 and

j ∈ I0

αi,j =


M(f(i,+))−M(f(i,−)) if j = j(i,+) and j = j(i,−);

M(f(i,+)) if j = j(i,+) and j 6= j(i,−);

−M(f(i,−)) if j 6= j(i,+) and j = j(i,−);

0 if j 6= j(i,+) and j 6= j(i,−).

Next we deal with the case n ≥ 2. Let Xn−1,j be the quotient of Xn−1

where we collapse the (n − 2)-skeleton and all the equivariant (n − 1)-cells
except the one for the index j to a point. The pushout above, but now for
(n− 1) instead of n, yields a G-homeomorphism

Qn−1
j :

∨
G/Hi

Sn−1 =
(
G/Hj ×Dn−1

)
/
(
G/Hj × Sn−2

) ∼=−→ Xn−1,j

where
∨
G/Hi

Sn−1 is the one-point union or wedge of as many copies of Sn−1

as there are elements inG/Hj . If pgHj :
∨
G/Hi

Sn−1 → Sn−1 is the projection

onto the summand belonging to gHj ∈ G/Hj , k : Sn−1 → G/Hi×Sn−1 is the
obvious inclusion to the summand belonging to eHi, and prj : Xn−1 → Xn−1,j

the obvious projection, then we obtain a selfmap of Sn−1 by the following
composite

Sn−1 k−→ G/Hi × Sn−1 qni−→ Xn−1

prj−−→ Xn−1,j

Qn−1
j

−1

−−−−−→
∨
G/Hj

Sn−1
pgHj−−−→ Sn−1.

Define di,j,gHj ∈ Z to be the mapping degree of the map above. For gHj ∈
G/HHi

j we obtain a G-map

rgHj : G/Hi → G/Hj , g′Hi 7→ g′gHj .
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Define
αi,j : M(G/Hi)→M(G/Hj)

to be the sum of the maps
∑
gHj∈G/H

Hi
j

di,j,gHj ·M(rgHj ). Since because of

the compactness of Sn−1 there are for fixed i ∈ In−1 only finitely many pairs
(j, gHj) for j ∈ In−1 and gHj ∈ G/Hj with di,j,gHj 6= 0, the definition of
αi,j makes sense and we can indeed define cn by sending {xi | i ∈ In} to
{
∑
i∈In αi,j(xi) | j ∈ In−1}.

Obviously Bredon homology reduces for G = {1} to the cellular homology
of a CW -complex with coefficients in the abelian group M . It is the obvious
generalization of this concept to the equivariant setting if one keeps in mind
that in the equivariant situation the building blocks are equivariant cells given
by G-spaces G/Hi ×Dn.

Exercise 12.4. Let Z/2 act on S2 := {(x0, x1, x2) | xi ∈ R, x2
0 + x2

1 + x2
2 =

1} by the involution that sends (x0, x1, x2) to (x0, x1,−x2). Consider the
covariant functor

RC : Or(Z/2)→ Z-MOD

that sends (Z/2)/H to the complex representation ring RC(H), any endo-
morphism in Or(Z/2) to the identity and the morphism pr: (Z/2)/{1} →
(Z/2)/(Z/2) to the homomorphism RC({1}) → RC(Z/2) given by induction
with the inclusion {1} → Z/2.

Show that S2 becomes a Z/2-CW -complex if we take {(1, 0, 0)} as 0-
skeleton, {(x0, x1, 0) | x2

0 + x2
1 = 1} as 1-skeleton, and S2 itself as 2-skeleton,

and compute the abelian groups H
Z/2
∗ (S2;RC).

Lemma 12.5. Let HG∗ be a G-homology theory. Let X be a G-CW -complex,
and let {Xi | i ∈ I} be a directed system of G-CW -subcomplexes directed by
inclusion such that X =

⋃
i∈I Xi. Then for all n ∈ Z the natural map

colimi∈I HGn (Xi)
∼=−→ HGn (X)

is bijective.

Proof. The non-equivariant case is treated [925, Proposition 7.53 on page 121]
for I = N. The proof extends extends directly to the equivariant case, pro-
vided that I = N. The proof of the general is left to the reader. ut

Let HG∗ and KG∗ be G-homology theories. A natural transformation of G-
homology theories T∗ : HG∗ → KG∗ is a sequence of natural transformations
Tn : HGn → KGn of functors from the category of G-CW -pairs to the category
of Λ-modules which are compatible with the boundary homomorphisms.

Lemma 12.6. Let T∗ : HG∗ → KG∗ be a natural transformation of G-homology
theories. Suppose that Tn(G/H) is bijective for every homogeneous space
G/H and n ∈ Z.

Then Tn(X,A) is bijective for every G-CW -pair (X,A) and n ∈ Z.
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Note that one needs in Lemma 12.6 the existence of the natural transfor-
mation T . Namely, there exists two (non-equivariant) homology theories H∗
and K∗ such that H({•}) ∼= Kn({•}) holds for n ∈ Z but there exists a CW -
complex X and m ∈ Z such that Hm(X) and Km(X) are not isomorphic.
An example is topological K-homology theory K∗ and the homology theory
H∗ =

⊕
n∈ZH∗+2n for H∗ singular homology.

Exercise 12.7. Give the proof of Lemma 12.6.

12.3 Basics about Equivariant Homology Theories

In this section we describe the axioms of a (proper) equivariant homology
theory and give some basic examples. The point is that an equivariant ho-
mology theory assigns to every group G a G-homology theory and links them
by an induction structure. It will play a key role in computations, various
proofs, and the construction of the equivariant Chern character.

Let α : H → G be a group homomorphism. Given an H-space X, define
the induction of X with α to be the G-space

indαX = G×α X,(12.8)

i.e., the quotient of G ×X by the right H-action (g, x) · h := (gα(h), h−1x)
for h ∈ H and (g, x) ∈ G×X. The G-actions comes from g′ · (g, x) = (g′g, x).
If α : H → G is an inclusion, we also write indGH instead of indα.

Definition 12.9 (Equivariant homology theory). A (proper) equivariant
homology theory with values in Λ-modules H?

∗ assigns to each group G a
(proper) G-homology theory HG∗ with values in Λ-modules (in the sense of
Definition 12.1) together with the following so-called induction structure:

Given a group homomorphism α : H → G and a (proper) H-CW -pair
(X,A), there are for every n ∈ Z natural homomorphisms

indα : HHn (X,A)→ HGn (indα(X,A))(12.10)

satisfying:

• Compatibility with the boundary homomorphisms

∂Gn ◦ indα = indα ◦ ∂Hn ;
• Functoriality

Let β : G→ K be another group homomorphism. Then we have for n ∈ Z

indβ◦α = HKn (f1) ◦ indβ ◦ indα : HHn (X,A)→ HKn (indβ◦α(X,A))

where f1 : indβ indα(X,A)
∼=−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is the

natural K-homeomorphism;



12.3 Basics about Equivariant Homology Theories 329

• Compatibility with conjugation

For n ∈ Z, g ∈ G, and a (proper) G-CW -pair (X,A) the homomorphism
indc(g) : G→G : HGn (X,A) → HGn (indc(g) : G→G(X,A)) agrees with HGn (f2)
for the G-homeomorphism f2 : (X,A)→ indc(g) : G→G(X,A) that sends x
to (1, g−1x) in G×c(g) (X,A);

• Bijectivity

If ker(α) acts freely on X \ A, then indα : HHn (X,A) → HGn (indα(X,A))
is bijective for all n ∈ Z.

Exercise 12.11. Let H?
∗ be an equivariant homology theory. Show for any

group G, any g ∈ G, and any n ∈ Z that induction with c(g) : G→ G induces
the identity on HGn ({•}).

Lemma 12.12. Let H?
∗ be a (proper) equivariant homology theory. Consider

(finite) subgroups H,K ⊂ G and an element g ∈ G with gHg−1 ⊂ K. Let
Rg−1 : G/H → G/K be the G-map sending g′H to g′g−1K and c(g) : H → K
be the homomorphism sending h to ghg−1. Let pr: (indc(g) : H→K{•})→ {•}
be the projection. Then the following diagram commutes

HHn ({•})
HKn (pr)◦indc(g) //

indGH
∼=
��

HKn ({•})

indGK
∼=
��

HGn (G/H)
HGn (Rg−1 )

// HGn (G/K).

Proof. Let f1 : indc(g) : G→G indGH{•} → indGK indc(g) : H→K{•} be the bijec-
tive G-map sending (g1, g2, {•}) in G×c(g) G×H {•} to (g1gg2g

−1, 1, {•}) in
G×K K ×c(g) {•}. The condition that induction is compatible with compo-
sition of group homomorphisms means precisely that the composite

HHn ({•}) indGH−−−→ HGn (indGH{•})
indc(g) : G→G−−−−−−−−→ HGn (indc(g) : G→G indGH{•})

HGn (f1)−−−−−→ HGn (indGK indc(g) : H→K{•})

agrees with the composite

HHn ({•})
indc(g) : H→K−−−−−−−−→ HKn (indc(g) : H→K{•})

indGK−−−→ HGn (indGK indc(g) : H→K{•}).

Naturality of induction implies HGn (indGK pr) ◦ indGK = indGK ◦HKn (pr). Hence
the following diagram commutes
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HHn ({•})
HKn (pr)◦indc(g)H→K //

indGH
∼=
��

HKn ({•})

indGK
∼=
��

HGn (G/H)
HGn (indGK pr)◦HGn (f1)◦indc(g) : G→G // HGn (G/K).

By the axioms indc(g) : G→G : HGn (G/H) → HGn (indc(g) : G→GG/H) agrees
with HGn (f2) for the map f2 : G/H → indc(g) : G→GG/H that sends g′H to

(g′g−1, 1H) in G ×c(g) G/H. Since the composite (indGK pr) ◦ f1 ◦ f2 is just
Rg−1 , Lemma 12.12 follows. ut
Example 12.13 (Borel homology). Let K∗ be a homology theory for (non-
equivariant) CW -pairs with values in Λ-modules. Examples are singular ho-
mology, oriented bordism theory, or topological K-homology. Then we obtain
two equivariant homology theories with values in Λ-modules in the sense of
Definition 12.9 by the following constructions

HGn (X,A) = Kn(G\X,G\A);

HGn (X,A) = Kn(EG×G (X,A)).

The second one is called the equivariant Borel homology associated to K.
In both cases HG∗ inherits the structure of a G-homology theory from the

homology structure on K∗. Induction for a group homomorphism α : H → G

is induced by the following two maps a and b. Let a : H\X
∼=−→ G\(G ×α

X) be the homeomorphism sending Hx to G(1, x). Define b : EH ×H X →
EG ×G G ×α X by sending (e, x) to (Eα(e), 1, x) for e ∈ EH, x ∈ X, and
Eα : EH → EG the α-equivariant map induced by α. Induction for a group
homomorphism α : H → G is induced by these maps a and b. If the kernel
ker(α) acts freely on X, then the map b is a homotopy equivalence and hence
in both cases indα is bijective.

Example 12.14 (Equivariant bordism). For a proper G-CW -pair (X,A),
one can define the G-bordism group NG

n (X,A) as the abelian group of G-
bordism classes of maps f : (M,∂M) → (X,A) whose sources are smooth
manifolds with cocompact proper smooth G-actions. Cocompact means that
the quotient space G\M is compact. The definition is analogous to the one
in the non-equivariant case. This is also true for the proof that this defines a
proper G-homology theory. There is an obvious induction structure coming
from induction of equivariant spaces which is, however, only defined if the
kernel of α acts freely on X. It is well-defined because of the following fact.
If α : H → G is a group homomorphism, M is an smooth H-manifold with
cocompact proper smooth H-action, and ker(α) acts freely, then indαM is a
smooth G-manifold with cocompact proper smooth G-action. The boundary
of indαM is indα ∂M .

Example 12.15 (Equivariant topological K-theory). We have explained
the notion of equivariant topological K-theory K?

∗ in (10.67). If RC(H) de-
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notes the complex representation ring of the finite subgroup H ⊆ G, then

KG
n (G/H) ∼= KH

n ({•}) ∼=

{
RC(H) n even;

{0} n odd.

Exercise 12.16. Compute KD∞
∗ (ED∞).

In the sequel we put

BG := G\EG.(12.17)

Lemma 12.18. Let H?
∗ be an equivariant proper homology theory. Let G be

any group. Let Z ⊆ Λ ⊆ Q be a ring such that the order of any finite subgroup
of G is invertible in Λ.

(i) The map H{1}n (BG) ⊗Z Λ → H{1}n (BG) ⊗Z Λ is an isomorphism for all
n ∈ Z;

(ii) The map
HGn (EG)⊗Z Λ→ H{1}n (BG)⊗Z Λ

is split surjective, whereas the map

HGn (EG)⊗Z Λ→ HGn (EG)⊗Z Λ

is split injective.

Proof. (i) By the Atiyah-Hirzebruch spectral sequence it suffices to prove the

bijectivity of the Λ-map Hp(BG;H{1}n ({•}))⊗Z Λ→ Hp(BG;H{1}n ({•}))⊗Z
Λ for p, q ∈ Z with p ≥ 0. The G-map EG → EG induces a homology
equivalence of projective ΛG-chain complexes C∗(EG)⊗ZΛ→ C∗(EG)⊗ZΛ,
which is therefore a ΛG-chain homotopy equivalence. Hence it induces a Λ-
chain homotopy equivalence C∗(BG)⊗Z Λ→ C∗(BG)⊗Z Λ.

(ii) Since the following diagram commutes

HGn (EG) //

∼=indG→{1}
��

HGn (EG)

indG→{1}
��

H{1}n (BG) // H{1}n (BG)

and has a bijection as left vertical arrow, the claim follows from assertion (i).
ut

Example 12.19. Note that Lemma 12.18 (ii) is not true if one just considers
a G-homology theory HG∗ . Here is a counterexample. Let G be a finite group.
Let M be the covariant ZOr(G)-module which sends G to Z, G/H for H 6=
{1} to {0}, and every G-map f : G→ G to the identity on Z. Then the Bredon
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homology HG
n (EG;M) is Hn(BG) and the Bredon homology HG

n (EG;M) =
HG
n (G/G;M) = M(G/G) vanishes.

12.4 Constructing Equivariant Homology Theories
Using Spectra

We briefly fix some conventions concerning spectra. Let SPACES+ be the
category of pointed compactly generated spaces. (One may also work with
weakly Hausdorff spaces.) Here the objects are (compactly generated) spaces
X with base points for which the inclusion of the base point is a cofibration.
Morphisms are pointed maps. If X is a space, denote by X+ the pointed
space obtained from X by adding a disjoint base point. For two pointed
spaces X = (X,x) and Y = (Y, y), define their smash product to be the
pointed space

X ∧ Y = X × Y/({x} × Y ∪X × {y}),(12.20)

and the reduced cone to be the pointed space

cone(X) := X × [0, 1]/(X × {1} ∪ {x} × [0, 1]).(12.21)

A spectrum E = {(E(n), σ(n)) | n ∈ Z} is a sequence of pointed
spaces {E(n) | n ∈ Z} together with pointed maps called structure maps
σ(n) : E(n) ∧ S1 −→ E(n + 1). A map of spectra f : E → E′ is a sequence
of maps f(n) : E(n) → E′(n) that are compatible with the structure maps
σ(n), i.e., we have f(n+ 1) ◦σ(n) = σ′(n) ◦ (f(n) ∧ idS1) for all n ∈ Z. Maps
of spectra are sometimes called functions in the literature, they should not be
confused with the notion of a map of spectra in the stable category, see [13,
III.2.]. The category of spectra and maps will be denoted SPECTRA. Recall
that the homotopy groups of a spectrum are defined by

πi(E) := colimk→∞ πi+k(E(k))(12.22)

where the ith structure map of the system πi+k(E(k)) is given by the com-
posite

πi+k(E(k))
S−→ πi+k+1(E(k) ∧ S1)

σ(k)∗−−−→ πi+k+1(E(k + 1))

of the suspension homomorphism S and the homomorphism induced by the
structure map. A weak equivalence of spectra is a map f : E → F of spectra
inducing an isomorphism on all homotopy groups. A spectrum E is called
an Ω-spectrum if the adjoint En → ΩEn+1 of each structure map is a weak
homotopy equivalence.
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Given a spectrum E and a pointed space X, we can define their smash
product X ∧E by (X ∧E)(n) := X ∧E(n) with the obvious structure maps.
It is a classical result that a spectrum E defines a homology theory by setting

Hn(X,A; E) = πn
(
(X+ ∪A+

cone(A+)) ∧E
)
.

We want to extend this to G-homology theories. This requires the consid-
eration of spaces and spectra over the orbit category. Our presentation fol-
lows [265] where more details can be found.

In the sequel C is a small category. Our main example will be the orbit
category Or(G).

Definition 12.23. A covariant (contravariant) C-space X is a covariant
(contravariant) functor

X : C → SPACES.

A map between C-spaces is a natural transformation of such functors. Anal-
ogously a pointed C-space is a functor from C to SPACES+ and a C-spectrum
a functor to SPECTRA.

Example 12.24. Let Y be a left G-space. Define the associated contravari-
ant Or(G)-space mapG(−, Y ) by

mapG(−, Y ) : Or(G)→ SPACES, G/H 7→ mapG(G/H, Y ) = Y H .

If Y has a G-invariant base point, then mapG(−, Y ) takes values in pointed
spaces.

Let X be a contravariant and Y be a covariant C-space. Define their bal-
anced product to be the space

X ×C Y :=
∐

c∈ob(C)

X(c)× Y (c)/ ∼(12.25)

where ∼ is the equivalence relation generated by (xφ, y) ∼ (x, φy) for all
morphisms φ : c→ d in C and points x ∈ X(d) and y ∈ Y (c). Here xφ stands
for X(φ)(x) and φy for Y (φ)(y). If X and Y are pointed, then one defines
analogously their balanced smash product to be the pointed space

X ∧C Y :=
∨

c∈ob(C)

X(c) ∧ Y (c)/ ∼ .(12.26)

In [265] the notation X ⊗C Y was used for this space. Performing the same
construction levelwise, one defines the balanced smash product X ∧C E of a
contravariant pointed C-space and a covariant C-spectrum E.

The proof of the next result is analogous to the non-equivariant case.
Details can be found in [265, Lemma 4.4] where also cohomology theories are
treated.
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Theorem 12.27 (Constructing G-Homology Theories). Let E be a
covariant Or(G)-spectrum. It defines a G-homology theory HG

∗ (−; E) by

HG
n (X,A; E) := πn

(
mapG

(
−, (X+ ∪A+

cone(A+))
)
∧Or(G) E

)
.

In particular we have

HG
n (G/H; E) = πn(E(G/H)).

A version of the Brown representability Theorem is proved for G-homology
theories and Or(G)-spectra in [63], see also [281, Corollary 1.60 on page 36].

Example 12.28 (Bredon homology in terms of spectra). Consider a
covariant functor M : Or(G) → Z-MOD. Composing it with the functor
sending a Z-module N to its Eilenberg-MacLane spectrum HN , which is a
spectrum such that π0(HN ) ∼= N and πn(HN ) = {0} for n 6= 0, yields a
covariant functor

HM : Or(G)→ SPECTRA.

Then theG-homology theoryHG
∗ (−; HM ) associated to HM in Theorem 12.27

agrees with Bredon homology HG
∗ (−;M) defined in Example 12.2.

Recall that we seek an equivariant homology theory and not only a G-
homology theory. If the Or(G)-spectrum in Theorem 12.27 is obtained from
a GROUPOIDS-spectrum in a way we will now describe, then automatically
we obtain the desired induction structure.

Let GROUPOIDS be the category of small connected groupoids with co-
variant functors as morphisms. Recall that a groupoid is a category in which
all morphisms are isomorphisms and that it is called connected if between any
two objects there exists an isomorphism between them. A covariant functor
f : G0 → G1 of groupoids is called injective if for any two objects x, y in
G0 the induced map morG0(x, y) → morG1(f(x), f(y)) is injective. (We are
not requiring that the induced map on the set of objects is injective.) Let
GROUPOIDSinj be the subcategory of GROUPOIDS with the same objects
and injective functors as morphisms. For a G-set S we denote by GG(S)
its associated transport groupoid. Its objects are the elements of S. The set
of morphisms from s0 to s1 consists of those elements g ∈ G that satisfy
gs0 = s1. Composition in GG(S) comes from the multiplication in G. It is
connected if and only if G acts transitively on S. Thus we obtain for a group
G a covariant functor

GG : Or(G)→ GROUPOIDSinj, G/H 7→ GG(G/H).(12.29)

A functor of small categories F : C → D is called an equivalence if there
exists a functor G : D → C such that both F ◦ G and G ◦ F are naturally
equivalent to the identity functor. This is equivalent to the condition that F
induces a bijection on the set of isomorphisms classes of objects and for any
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objects x, y ∈ C the map morC(x, y) → morD(F (x), F (y)) induced by F is
bijective.

Theorem 12.30 (Constructing equivariant homology theories using
spectra). Consider a covariant GROUPOIDS-spectrum

E : GROUPOIDS→ SPECTRA.

Suppose that E respects equivalences, i.e., it sends an equivalence of groupoids
to a weak equivalence of spectra. Then E defines an equivariant homology
theory

H?
∗(−; E)

whose underlying G-homology theory for a group G is the G-homology theory
associated to the covariant Or(G)-spectrum E ◦ GG : Or(G) → SPECTRA in
the previous Theorem 12.27, i.e.,

HG
∗ (X,A; E) = HG

∗ (X,A; E ◦ GG).

In particular we have

HG
n (G/H; E) ∼= HH

n ({•}; E) ∼= πn(E(I(H)))

where I(H) denotes H considered as a groupoid with one object. The whole
construction is natural in E.

Proof. We have to specify the induction structure for a homomorphism
α : H → G. We only sketch the construction in the special case A = ∅.

The functor induced by α on the orbit categories is denoted in the same
way

α : Or(H)→ Or(G), H/L 7→ indα(H/L) = G/α(L).

There is an obvious natural transformation of covariant functors Or(H) →
GROUPOIDS

T : GH → GG ◦ α.

Its evaluation at H/L is the functor GH(H/L)→ GG(G/α(L)) that sends an
object hL to the object α(h)α(L) and a morphism given by h ∈ H to the
morphism given by α(h) ∈ G. The desired homomorphism

indα : HH
n (X; E ◦ GH)→ HG

n (indαX; E ◦ GG)

is induced by the following map of spectra

mapH(−, X+) ∧Or(H) E ◦ GH id∧E(T )−−−−−→ mapH(−, X+) ∧Or(H) E ◦ GG ◦ α
∼=←− (α∗mapH(−, X+))∧Or(G) E◦GG

∼=←− mapG(−, indαX+)∧Or(G) E◦GG.
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Here α∗mapH(−, X+) is the pointed Or(G)-space that is obtained from the
pointed Or(H)-space mapH(−, X+) by induction, i.e., by taking the balanced
product over Or(H) with the (discrete) Or(H)-Or(G) biset morOr(G)(??, α(?)),
see [265, Definition 1.8]. Note that E◦GG ◦α is the same as the restriction of
the Or(G)-spectrum E◦GG along α, which is often denoted by α∗(E◦GG) in
the literature, see [265, Definition 1.8]. The second map is given by the adjunc-
tion homeomorphism of induction α∗ and restriction α∗, see [265, Lemma 1.9].
The third map is the homeomorphism of Or(G)-spaces that is the adjoint of
the obvious map of Or(H)-spaces mapH(−, X+) → α∗mapG(−, indαX+)
whose evaluation at H/L is given by indα.

It remains to show indα is a weak equivalence, provided that ker(α) acts
freely on X. Because the second and third maps appearing in the definition
above are homeomorphisms, this boils down to prove that id∧E(T ) is a weak
equivalence, provided that ker(α) acts freely on X. This follows from the fact
that T (H/L) is an equivalence of groupoids and hence E(T )(G/L) is a weak
equivalence of spectra for all subgroups L ⊆ G appearing as isotropy group in
X since for such L the restriction of α to L induces a bijection L→ α(L). ut

Remark 12.31. In some cases the functor E to SPECTRA is only defined on
GROUPOIDSinj. Then one still gets an equivariant homology theory with the
exception that for the induction structure one has to require that the group
homomorphisms α : H → G are injective. This does exclude the projection
G→ {1}.

Example 12.32 (Bredon Homology). Let M be a covariant functor from
GROUPOIDS to Z-MOD. Then Bredon homology yields an equivariant ho-
mology theory if we define its value at G as the Bredon homology with coef-
ficients in the covariant functor MG : Or(G)→ Z-MOD sending to G/H to
M(GG(G/H)). This is the same as the equivariant homology theory we ob-
tain from applying Theorem 12.30 to the functor GROUPOIDS→ SPECTRA
that sends a groupoid G to the Eilenberg-MacLane spectrum associated with
M(G).

Example 12.33 (Borel homology in terms of spectra). Let E be a
spectrum. Let H(−; E) be the (non-equivariant) homology theory associated
to E. Given a groupoid G, denote by EG its classifying space. If G has only
one object and the automorphism group of this object is G, then EG is a
model for EG. We obtain two covariant functors

cE : GROUPOIDS→ SPECTRA, G 7→ E;

bE : GROUPOIDS→ SPECTRA, G 7→ EG+ ∧E.

Thus we obtain two equivariant homology theories H∗∗ (−; cE) and H∗∗ (−; bE)
from Theorem 12.30. These coincide with the ones associated to K∗ =
H(−; E) in Example 12.13. Namely, we get for any group G and any G-
CW -complex X natural isomorphisms
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HG
n (X; cE) ∼= Hn(G\X; E);(12.34)

HG
n (X; bE) ∼= Hn(EG×G X; E).(12.35)

Exercise 12.36. Let E and F be covariant functors from GROUPOIDS to
SPECTRA. Let t : E → F be a natural transformation such that for every
G ∈ ob(GROUPOIDS) the map t(G) : E(G)→ F(G) is a weak equivalence of
spectra.

Show that the induced transformation of equivariant homology theories
H?
∗(−; t) : H?

∗(−; E)→ H?
∗(−; F) is a natural equivalence.

12.5 Equivariant Homology Theories Associated to K-
and L-Theory

In this section we explain our main examples for covariant functors from
GROUPOIDS or GROUPOIDSinj to SPECTRA, at least for rings as coeffi-
cients. Later we will also consider additive categories and, more generally,
right exact ∞-categories.

Let RINGS be the category of associative rings with unit. Let RINGSinv

be the category of rings with involution. Let C∗-ALGEBRAS be the category
of C∗-algebras. There are classical functors for j ∈ −∞q {j ∈ Z | j ≤ 2}

K : RINGS → SPECTRA;(12.37)

L〈j〉 : RINGSinv → SPECTRA;(12.38)

KTOP : C∗-ALGEBRAS → SPECTRA.(12.39)

The construction of such a non-connective algebraic K-theory functor (12.37)
goes back to Gersten [406] and Wagoner [954]. The spectrum for quadratic
algebraic L-theory (12.38) is constructed by Ranicki in [823]. In a more geo-
metric formulation it goes back to Quinn [806]. In the topological K-theory
case a construction for (12.39) using Bott periodicity for C∗-algebras can eas-
ily be derived from the Kuiper-Mingo Theorem, see [888, Section 2.2]. The
homotopy groups of these spectra give the algebraic K-groups of Quillen
(in high dimensions) and of Bass (in negative dimensions), the decorated
quadratic L-theory groups, and the topological K-groups of C∗-algebras.

We emphasize that in all three cases we need the non-connective versions
of the spectra, i.e., the homotopy groups in negative dimensions are non-
trivial in general, in order to ensure later that the formulations of the various
Isomorphisms Conjectures do have a chance to be true.

Now let us fix a coefficient ring R (with involution). Then sending a group
G to the group ring RG yields functors R(−) : GROUPS → RINGS, respec-
tively R(−) : GROUPS→ RINGSinv where GROUPS denotes the category of
groups. Let GROUPSinj be the category of groups with injective group ho-
momorphisms as morphisms. Taking the reduced group C∗-algebra defines a
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functor C∗r : GROUPSinj → C∗-ALGEBRAS. The composite of these functors
with the functors (12.37), (12.38) and (12.39) above yields functors

KR(−) : GROUPS → SPECTRA;(12.40)

L〈j〉R(−) : GROUPS → SPECTRA;(12.41)

KTOPC∗r (−, F ) : GROUPSinj → SPECTRA,(12.42)

where F = R or C. They satisfy

πn(KR(G)) = Kn(RG);

πn(L〈j〉R(G)) = L〈j〉n (RG);

πn(KTOPC∗r (G,F )) = Kn(C∗r (G,F )),

for every group G and every n ∈ Z. The next result essentially says that these
functors can be extended to groupoids.

Theorem 12.43 (K- and L-Theory Spectra over Groupoids). Let R
be a ring (with involution). There exist covariant functors

KR : GROUPOIDS → SPECTRA;(12.44)

L
〈j〉
R : GROUPOIDS → SPECTRA;(12.45)

KTOP
F : GROUPOIDSinj → SPECTRA,(12.46)

with the following properties:

(i) If F : G0 → G1 is an equivalence of (small) groupoids, then the induced

maps KR(F ), L
〈j〉
R (F ), and KTOP(F ) are weak equivalences of spectra;

(ii) Let I : GROUPS → GROUPOIDS be the functor sending G to G consid-
ered as a groupoid, i.e. to GG(G/G). This functor restricts to a functor
GROUPSinj → GROUPOIDSinj.
There are natural transformations from KR(−) to KR ◦ I, from L〈j〉R(−)

to L
〈j〉
R ◦I and from KC∗r (−) to KTOP◦I such that the evaluation of each of

these natural transformations at a given group is an equivalence of spectra;
(iii) For every group G and all n ∈ Z we have

πn(KR ◦ I(G)) ∼= Kn(RG);

πn(L
〈j〉
R ◦ I

inv(G)) ∼= L〈j〉n (RG);

πn(KTOP
F ◦ I(G)) ∼= Kn(C∗r (G,F )).

Proof. We only sketch the strategy of the proof. More details can be found
in [265, Section 2].

Let G be a groupoid. Similar to the group ring RG one can define an R-
linear category RG by taking the free R-modules over the morphism sets of G.
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Composition of morphisms is extended R-linearly. By formally adding finite
direct sums one obtains an additive category RG⊕. Pedersen-Weibel [783],
see also [197] and [668], define a non-connective algebraic K-theory functor
which digests additive categories and can hence be applied to RG⊕. For the
comparison result one uses that for every ring R (in particular for RG) the
Pedersen-Weibel functor applied to R⊕ (a small model for the category of
finitely generated free R-modules) yields the non-connective K-theory of the
ring R and that it sends equivalences of additive categories to equivalences
of spectra. In the L-theory case RG⊕ inherits an involution and one applies
the construction of Ranicki [823, Example 13.6 on page 139] to obtain the
L〈1〉 = Lh-version. The versions for j ≤ 1 can be obtained by a construction
that is analogous to the Pedersen-Weibel construction for K-theory, compare
Carlsson-Pedersen [202, Section 4], or by iterating the Shaneson splitting
and then finally passing to a homotopy colimit, compare on the group level
with [824, Section 17]. In the C∗-case one obtains from G a C∗-category C∗r (G)
and assigns to it its topological K-theory spectrum. There is a construction
of the topological K-theory spectrum of a C∗-category in Davis-Lück [265,
Section 2]. However, the construction given there depends on two statements,
which appeared in [372, Proposition 1 and Proposition 3], and those state-
ments are incorrect, as already pointed out by Thomason in [930]. The con-
struction in [265, Section 2] can easily be fixed but instead we recommend
the reader to look at the more recent construction of Joachim [507]. ut

Exercise 12.47. Compute HD∞
n (ED∞; KR) for n ≤ 0 and R = Z,C.

12.6 Two Spectral Sequences

In this section we state two spectral sequences which are useful for compu-
tations of equivariant homology theories.

12.6.1 The Equivariant Atiyah-Hirzebruch Spectral Sequence

Theorem 12.48 (The equivariant Atiyah-Hirzebruch spectral se-
quence). Let G be a group and HG∗ be a G-homology theory with values
in Λ-modules in the sense of Definition 12.1. Let X be a G-CW -complex.

Then there is a spectral (homology) sequence of Λ-modules

(Erp,q, d
r
p,q : Erp,q → Erp−r,q+r−1)

whose E2-term is given by the Bredon homology of Example 12.2

E2
p,q = HG

p (X;HGq (−))
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for the coefficient system given by the covariant functor

Or(G)→ Λ-MOD, G/H 7→ HGq (G/H).

The E∞-term is given by

E∞p,q = colimr→∞Erp,q.

This spectral sequence converges to HGp+q(X), i.e., there is an ascending fil-

tration Fp,m−pHGp+q(X) of HGp+q(X) such that

Fp,qHGp+q(X)/Fp−1,q+1HGp+q(X) ∼= E∞p,q.

The construction of the equivariant Atiyah-Hirzebruch spectral sequence
is based on the filtration of X by its skeletons. More details, actually in the
more general context of spaces over a category, and a version for cohomology
can be found in [265, Theorem 4.7].

Exercise 12.49. Let X be a proper G-CW -complex such that X/G with the
induced CW -structure has no odd dimensional cells. Show that KG

n (X) = 0
for odd n ∈ Z where KG

∗ denotes the equivariant topological complex K-
homology. Show that KG

n (X) for even n ∈ Z is a finitely generated free
abelian group if we additionally assume that X/G is finite.

12.6.2 The p-Chain Spectral Sequence

Let G be a group. Recall that for a subgroup H ⊆ G we denote by NGH
its normalizer and define the Weyl group WGH := NGH/H. We obtain a
bijection

WGH
∼=−→ autG(G/H), gH 7→

(
Rg−1 : G/H → G/H

)
where Rg−1 maps g′H to g′g−1H. Hence for any two subgroups H,K ⊆ G
the set mapG(G/H,G/K) inherits the structure of a WGK-WGH-biset.

A p-chain is a sequence of conjugacy classes of finite subgroups

(H0) < · · · < (Hp)

where (Hi−1) < (Hi) means that Hi−1 is subconjugated, but not conjugated
to (Hi). For p ≥ 1 define a WGHp-WGH0-set associated to such a p-chain by

S((H0) < · · · < (Hp))

:= mapG(G/Hp−1, G/Hp)×WGHp−1
· · · ×WGH1

mapG(G/H0, G/H1).

For p = 0 put S(H0) = WGH0.
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Let X be a G-CW -complex. Then XH = mapG(G/H,X) inherits a right
WGH-action. In particular we get for a p-chain (H0) < · · · < (Hp) a right
WGH0-space X(G/Hp)×WGHp S((H0) < · · · < (Hp)).

Theorem 12.50 (The p-chain spectral sequence). Let G be a group and
E be a covariant Or(G)-spectrum. Let X be a proper G-CW -complex.

Then there is a spectral sequence of Λ-modules, called p-chain spectral se-
quence, which converges to HG

p+q(X; E) and whose E1-term is

E1
p,q =

⊕
(H0)<···<(Hp)

πq

((
EWGH0×(XHp×WGHp S((H0) < · · · < (Hp)))

)
+

∧WGH0
E(G/H0)

)
where (H0) < · · · < (Hp) runs through all p-chains consisting of finite sub-
groups Hi ⊆ G with XHp 6= ∅.

The p-chain spectral sequence is established in [266, Theorem 2.5 (a) and
Example 2.14], actually more generally for spaces over a category. There is
also a more complicated version where one drops the condition that X is
proper. Since then the book-keeping gets more involved and in most applica-
tions X is proper, we only deal with the proper case here.

Note that the complexity of the equivariant Atiyah-Hirzebruch spectral
sequence grows with the natural number n for which one wants to compute
HGn (X). The complexity of the p-chain spectral sequence growth with the
maximum over all natural numbers p for which there is a p-chain (H0) <
· · · < (Hp) of finite subgroups such that XHp is non-empty.

Example 12.51 (Free G-CW -complex). Consider the situation of Theo-
rem 12.50 and assume additionally that X is a free G-CW -complex. Then
E1
p,q = 0 for p ≥ 1 and hence the p-chain spectral sequence predicts

HG
q (X; E) = πq

((
EG×X)+ ∧G E(G)

)
.

But this is obviously true since the right hand side of the last equation is by
definition HG

q (EG×X; E) and the projection EG×X → X is a G-homotopy

equivalence and induces an isomorphism HG
q (EG×X; E)

∼=−→ HG
q (X; E).

Example 12.52 (G is finite cyclic of prime order). Let G be a finite
cyclic group of prime order. Then G has only two subgroups, namely, G and
{1}. Let E be a covariant Or(G)-spectrum and X be a G-CW -complex. The
p-chain spectral sequence of Theorem 12.50 satisfies E1

p,q = 0 for p ≥ 2 and
hence reduces to a long exact sequence

. . .→ E1
1,n

d11,n−−−→ E1
0,n → HG

n (X; E)→ E1
1,n−1

d11,n−1−−−−→ E1
0,n−1 → . . .
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We get

E1
0,n = πn

(
(EG×X)+ ∧G E(G)

)
⊕ πn

(
XG

+ ∧E(G/G)
)
;

E1
1,n = πn

(
(EG×XG)+ ∧G E(G)

)
and the differential d1

1,n is given by the homomorphism

πn
(
(EG×XG)+ ∧G E(G)

)
→ πn

(
(EG×X)+ ∧G E(G)

)
that is induced by the inclusion XG → X, and the homomorphism (up to a
sign)

πn
(
(EG×XG)+ ∧G E(G)

)
→ πn

(
XG

+ ∧E(G/G)
)

coming from the projection EG×XG → XG.
Now suppose additionally that E is the constant functor Or(G) →

SPECTRA with value the spectrum F. Let H∗ be the (non-equivariant) ho-
mology theory associated to F. Then HG

n (X; E) = Hn(X/G) and the long
exact sequence above reduces to the long exact sequence

(12.53)

. . .→ Hn(EG×G XG)
d11,n−−−→ Hn(EG×G X)⊕Hn(XG)

en−→ Hn(X/G)

→ Hn−1(EG×G XG)
d11,n−1−−−−→ Hn−1(EG×G X)⊕Hn−1(XG)

en−1−−−→ . . .

where the maps d1
n,1 and en are up to sign induced by the obvious map on

space level.

Exercise 12.54. Give a direct construction of the long exact sequence (12.53).

12.7 Equivariant Chern Characters

If we rationalize and have a Mackey structure on the coefficient system of
an equivariant homology theory, then we can give a more direct and con-
crete computation via equivariant Chern characters which does avoid all the
difficulties concerning spectral sequences.

12.7.1 Mackey Functors

Let Λ be an associative commutative ring with unit. Let FGINJ be the cat-
egory of finite groups with injective group homomorphisms as morphisms.
Let
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M : FGINJ→ Λ-MOD

be a bifunctor, i.e., a pair (M∗,M
∗) consisting of a covariant functor M∗ and

a contravariant functor M∗ from FGINJ to Λ-MOD which agree on objects.
We will often denote for an injective group homomorphism f : H → G the
map M∗(f) : M(H)→ M(G) by indf and the map M∗(f) : M(G)→ M(H)

by resf and write indGH = indf and resHG = resf if f is an inclusion of groups.
We call such a bifunctor M a Mackey functor with values in Λ-modules if

(i) For an inner automorphism c(g) : G→ G we have M∗(c(g)) = id: M(G)→
M(G);

(ii) For an isomorphism of groups f : G
∼=−→ H the composites resf ◦ indf and

indf ◦ resf are the identity;
(iii) Double coset formula

We have for two subgroups H,K ⊂ G

resKG ◦ indGH =
∑

KgH∈K\G/H

indc(g) : H∩g−1Kg→K ◦ resH∩g
−1Kg

H

where c(g) is conjugation with g, i.e. c(g)(h) = ghg−1.

Important examples of Mackey functors are RepF (H), Kq(RH), Lq(RH),
and KTOP

q (Cr∗(H,F )) where R is an associative ring with unit and F = R,C.

Definition 12.55 (Extension to a Mackey functor). Let H?
∗ be a proper

equivariant homology theory with values in Λ-modules. It defines a covariant
functor

H?
q({•}) : FGINJ→ Λ-MOD, H 7→ HGq ({•}).

It sends an injective homomorphism i : H → G to the compositeHHn ({•}) indi−−→

HGn (G×H {•})
HGn (pr)−−−−−→ HGn ({•}) where pr : G×H {•} → {•} is the projection.

We say that the coefficients of H?
∗ extend to a Mackey functor if there exists

a Mackey functor (M∗,M
∗) such that M∗ is the functor H?

q({•}) above.

Example 12.56. The functors of (12.40), (12.41), and (12.42), which send a
group to the algebraic K- or L-theory of RG or to the topological K-theory
of C∗r (G,F ), define Mackey functors with the obvious definition of induction
and restriction.

12.7.2 The Equivariant Chern Character

We can associate to a proper equivariant homology theory with values in
Λ-modules H?

∗ another Bredon type equivariant homology theory with values
in Λ-modules BH?

∗ as follows. For a group G we define
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BHGn (X) :=
⊕
p+q=n

HG
p (X;HGq (−))

where HG
p (X;HGq (−)) is the Bredon homology of X with coefficients in the

covariant functor Or(G) → Λ-MOD sending G/H to HGq (G/H). Next we

show that the collection of the G-homology theories BHG∗ (X,A) inherits the
structure of a proper equivariant homology theory. We have to specify the
induction structure.

Let α : H → G be a group homomorphism and (X,A) be a proper H-CW -
pair. Induction with α yields a functor denoted in the same way

α : OrFIN (H)→ OrFIN (G), H/K 7→ indα(H/K) = G/α(K).

There is a natural isomorphism of OrFIN (G)-chain complexes

indα C
OrFIN (H)
∗ (X,A)

∼=−→ C
OrFIN (G)
∗ (indα(X,A))

and a natural adjunction isomorphism, see [634, (2.5)](
indα C

OrFIN (H)
∗ (X,A)

)
⊗ZOrFIN (G) HGq (−)

∼=−→ C
OrFIN (H)
∗ (X,A)⊗ZOrFIN (H)

(
resαHGq (−)

)
.

The induction structure on H?
∗ yields a morphism of ROrFIN (H)-modules

HHq (H/?)→ resαHGq (−).

These maps or their inverses can be composed to a Λ-chain map

C
OrFIN (H)
∗ (X,A)⊗ZOrFIN (H) HHq (H/?)

∼=−→ C∗(indα(X,A))⊗ZOr(G,FIN ) HGq (−).

Since X is proper and hence the Bredon homology can be defined over
OrFIN (H) instead of Or(G), it induces a natural map

indα : Hp(X,A;HHq (−))
∼=−→ HG

p (indα(X,A);HGq (−)).

Thus we obtain the required induction structure.
Define for a finite group H

(12.57)

SH
(
HHq ({•})

)
:= coker

⊕
K⊂H
K 6=H

indHK :
⊕
K⊂H
K 6=H

HKq ({•})→ HHq ({•})

 .
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Note that SH
(
HHq ({•}

)
carries a natural left Λ[NGH/H · CGH]-module

structure where NGH/H · CGH is the quotient of NGH by the normal sub-
group H · CGH := {h · g | h ∈ H, g ∈ CGH}. The obvious left-action
of WGH = NGH/H-action on XH yields a left NGH/H · CGH-action on
CGH\XH and hence a right NGH/H · CGH-action by y · k := k−1 · y for
y ∈ XH and k ∈ NGH/H · CGH.

The proof of the following result can be found in [634, Theorem 0.2 and
0.3].

Theorem 12.58 (The equivariant Chern character). Let Λ be a com-
mutative ring with Q ⊂ Λ. Let H?

∗ be a proper equivariant homology theory
with values in Λ-modules in the sense of Definition 12.9. Suppose that its
coefficients extend to a Mackey functor.

(i) There is an isomorphism of proper equivariant homology theories

ch?
∗ : BH?

∗
∼=−→ H?

∗;

(ii) Let I be the set of conjugacy classes (H) of finite subgroups H of G. Then
there is for any group G and any proper G-CW -pair (X,A) a natural
isomorphism⊕

p+q=n

⊕
(H)∈I

Hp(CGH\(XH , AH);Λ)⊗Λ[NGH/H·CGH] SH
(
HHq ({•})

)
∼=−→ BHGn (X,A).

Theorem 12.58 reduces the computation of HGn (X,A) to the computation
of the singular or cellular homology Λ-modules Hp(CGH\(XH , AH);Λ) of
the CW -pairs CGH\(XH , AH) including the obvious right WGH-operation
and of the left Λ[WGH]-modules SH

(
HHq ({•})

)
which only involve the values

HGq (G/H) = HHq ({•}).

Exercise 12.59. Let Λ be a commutative ring with Q ⊂ Λ. Let H?
∗ be

a proper equivariant homology theory with values in Λ-modules. Suppose
that its coefficients extend to a Mackey functor. Consider a group G and
a proper G-CW -complex X. Show that all differentials of the equivariant
Atiyah-Hirzebruch spectral sequence converging to HGp+q(X) vanish.

Exercise 12.60. Let H?
∗ be a proper equivariant homology theory with val-

ues in Q-modules in the sense of Definition 12.9. Suppose that its coefficients
extend to a Mackey functor. Let G be a group. Consider two families of sub-
groups F and G with F ⊆ G ⊆ FIN . Let ιF⊆G : EF (G) → EG(G) be the
up to G-homotopy unique G-map. Show that for every n the induced map
HGn (ιF⊆G) : HGn (EF (G))→ HGn (EG(G)) is injective.

Remark 12.61 (Rationalizing an equivariant homology theory). Let
H?
∗ be an equivariant homology theory with values in Z-modules. Suppose
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that its coefficients extend to a Mackey functor. Then we obtain an equiva-
riant homology theory Q⊗Z H?

∗ with values in Q-modules whose coefficients
extend to a Mackey functor since Q ⊗Z − is a flat functor and commutes
with direct sums over arbitrary index sets. We can apply Theorem 12.58 to
Q⊗Z H?

∗ and thus obtain a rational computation of H?
∗.

12.8 Some Rational Computations

12.8.1 Green Functors

Let φ : Λ → Λ′ be a homomorphism of associative commutative rings with
unit. Let M be a Mackey functor with values in Λ-modules, and let N and
P be Mackey functors with values in Λ′-modules. A pairing with respect to
φ is a family of maps

m(G) : M(G)×N(G)→ P (G), (x, y) 7→ m(G)(x, y) =: x · y

where G runs through the finite groups and we require the following proper-
ties for all injective group homomorphisms f : H → G of finite groups:

(x1 + x2) · y = x1 · y + x2 · y for x1, x2 ∈M(H), y ∈ N(H);
x · (y1 + y2) = x · y1 + x · y2 for x ∈M(H), y1, y2 ∈ N(H);

(λx) · y = φ(λ)(x · y) for λ ∈ Λ, x ∈M(H), y ∈ N(H);
x · λ′y = λ′(x · y) for λ′ ∈ Λ′, x ∈M(H), y ∈ N(H);

resf (x · y) = resf (x) · resf (y) for x ∈M(G), y ∈ N(G);
indf (x) · y = indf (x · resf (y)) for x ∈M(H), y ∈ N(G);
x · indf (y) = indf (resf (x) · y) for x ∈M(G), y ∈ N(H).

A Green functor with values in Λ-modules is a Mackey functor U with
values in Λ-modules together with a pairing with respect to id : Λ → Λ and
elements 1G ∈ U(G) for each finite group G such that for each finite group
G the pairing U(G) × U(G) → U(G) induces the structure of an Λ-algebra
on U(G) with unit 1G and for any morphism f : H → G in FGINJ the map
U∗(f) : U(G) → U(H) is a homomorphism of Λ-algebras with unit. Let U
be a Green functor with values in Λ-modules and M be a Mackey functor
with values in Λ′-modules. A (left) U -module structure on M with respect to
the ring homomorphism φ : Λ → Λ′ is a pairing such that any of the maps
U(G)×M(G)→M(G) induces the structure of a (left) module over the Λ-
algebra U(G) on the Λ-module φ∗M(G) that is obtained from the Λ′-module
M(G) by λx := φ(λ)x for r ∈ Λ and x ∈M(G).

The importance of the notion of a Green functor is due to the following
elementary lemma which allows to deduce induction theorems for all Mackey
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functors that are modules over a given Green functor from the corresponding
statement for the given Green functor.

Lemma 12.62. Let φ : Λ → Λ′ be a homomorphism of associative commu-
tative rings with unit. Let U be a Green functor with values in Λ-modules
and let M be a Mackey functor with values in Λ′-modules such that M comes
with a U -module structure with respect to φ. Let S be a set of subgroups of
the finite group G. Suppose that the map⊕

H∈S
indGH :

⊕
H∈S

U(H)→ U(G)

is surjective. Then the map⊕
H∈S

indGH :
⊕
H∈S

M(H)→M(G)

is surjective.

Proof. By hypothesis there are elements uH ∈ U(H) for H ∈ S satisfying
1G =

∑
H∈S indGH uH in U(G). This implies for x ∈M(G).

x = 1G · x =

(∑
H∈S

indGH uH

)
· x =

∑
H∈S

indGH
(
uH · resHG x

)
.

ut

Example 12.63 (Burnside ring). The Burnside ring A(G) of a (not nec-
essarily finite) group G is the commutative associative ring with unit A(G)
which is obtained by the additive Grothendieck construction applied to the
commutative associative semiring with unit given by the G-isomorphism
classes [S] of G-sets S of finite cardinality, i.e., |S| < ∞, under disjoint
union and cartesian product and the unit element given by [G/G]. For more
information about the Burnside ring for not necessarily finite groups we refer
to [637].

The Burnside ring defines a Mackey functor A(?) by induction and re-
striction. The ring structure and the Mackey structure fit together to the
structure of a Green functor A(?) with values in Z-modules.

Exercise 12.64. Let M be a Mackey functor with values in Λ-modules for
an associative commutative ring Λ with unit. Let φ : Z → Λ be the unique
ring homomorphism. Show that M inherits the structure of a module over
the Green functor given by the Burnside ring with respect to φ.

Definition 12.65 (Swan ring). Let G be a (not necessarily finite) group.
Let Λ be an associative commutative ring with unit. Denote by Swp(G;Λ) be
the abelian group whose generators are the isomorphism classes [M ] of ΛG-
modules M whose underlying Λ-module is finitely generated projective. For
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every short exact sequence 0 → M0 → M1 → M2 → 0 of such ΛG-modules,
we require the relation [M0]− [M1] + [M2] in Swp(G;Λ). The tensor product
over Λ with the diagonal G-action induces the structure of an associative
commutative ring with unit [Λ] where [Λ] is the class of Λ equipped with the
trivial G-action. We call Swp(G;Λ) the Swan ring. If Λ = Z, we abbreviate
Swp(G) := Swp(G;Z).

If we replace finitely generated projective by finitely generated in the def-
inition above, we denote the associated ring by Sw(G;Λ) and abbreviate
Sw(G) := Sw(G;Z).

Lemma 12.66. The canoncial map e : Swp(G)→ Sw(G) is an isomorphism.

Proof. We only describe the definition of the inverse map e−1 : Sw(G) →
Swp(G), more details can be found in [782, Lemma 2.2]. Consider a ZG-
module M such that the underlying abelian group is finitely generated. Since
tors(M) is a finite G-set, we can find an exact sequence of ZG-modules 0→
F1 → F0 → tors(M)→ 0 such that the underlying abelian groups of F0 and
F1 are finitely generated free. One may take for F0 the finitely generated
free abelian group with the finite G-set tors(M) as Z-basis. The ZG-module
M/ tors(M) has as underlying abelian group a finitely generated free abelian
group. We define e−1([M ]) = [F0]− [F1] + [M/ tors(M)]. ut

Example 12.67 (Swan ring). Let R be an associative ring with unit. Let
M be a ZG-module whose underlying Z-module is finitely generated free.
It defines an exact functor RG-MOD → RG-MOD by taking the tensor
product M ⊗Z − with the diagonal G-action. It sends finitely generated free
RG-modules to finitely generated free RG-modules by the following observa-
tions. We have the sheering RG-isomorphism

(12.68) sh: M ⊗2 ZG
∼=−→M ⊗d ZG, m⊗ g 7→ gm⊗ g

where M ⊗2 RG and M ⊗d RG are the RG-modules whose underlying R-
module is M ⊗R RG and on which g ∈ G acts by g · (m ⊗ x) = m ⊗ gx
and g · (m ⊗ x) = gm ⊗ gx. Obviously M ⊗2 RG is a finitely generated free
RG-module since M is finitely generated free as an abelian group. If P is a
finitely generated projective RG-module, then M ⊗ZP is a finitely generated
projective RG-module if r ∈ R acts by r · (m⊗ p) = m⊗ rp and g ∈ G acts
by g · (m⊗ p) := gm⊗ gp. We obtain a pairing

(12.69) Swp(G)⊗Kn(RG)→ Kn(RG)

Using induction and restriction Swp(?) defines a Green functor with values in
Z-modules. There is a natural homomorphism of Green functors with values
in Z-modules

A(G)→ Swp(G;Λ)

sending the class of a finite G-set S to the Λ-module with S as basis equipped
with the G-action coming from the G-action on S. Thanks to the pairing
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above, the Mackey functor given by Kn(R?) becomes a module over the
Green functor given by Swp(?).

Example 12.70 (Rational representation ring). An important exam-
ple of a Green functor with values in Q-modules is the rationalized repre-
sentation ring of rational representations Q ⊗Z RQ(?). It assigns to a finite
group G the Q-module Q ⊗Z RepQ(G) where RepQ(G) denotes the rational
representation ring of G. Note that RepQ(G) is the same as the projective
class group K0(QG) and also the same as Swp(G;Q). The Mackey struc-
ture comes from induction and restriction of representations. The pairing
Q ⊗Z RepQ(G) × Q ⊗Z RepQ(G) → Q ⊗Z RepQ(G) comes from the tensor
product P ⊗QQ of two QG-modules P and Q equipped with the diagonal G-
action. The unit element is the class of Q equipped with the trivial G-action.

Recall that classQ(G) denotes the Q-vector space of functions G → Q
that are invariant under Q-conjugation, i.e., we have f(g1) = f(g2) for two
elements g1, g2 ∈ G if the cyclic subgroups 〈g1〉 and 〈g2〉 generated by g1 and
g2 are conjugate in G. Elementwise multiplication defines the structure of a
Q-algebra on classQ(G) with the function that is constant 1 as unit element.
Taking the character of a rational representation yields an isomorphism of
Q-algebras [895, Theorem 29 on page 102]

χG : Q⊗Z RepQ(G)
∼=−→ classQ(G).(12.71)

We define a Mackey structure on classQ(?) as follows. Let f : H → G be
an injective group homomorphism. For a character χ ∈ classQ(H) define its
induction with f to be the character indf (χ) ∈ classQ(G) given by

indf (χ)(g) =
1

|H|
·

∑
l∈G,h∈H
f(h)=l−1gl

χ(h).

For a character χ ∈ classQ(G) define its restriction with f to be the character
resf (χ) ∈ classQ(H) given by

resf (χ)(h) := χ(f(h)).

One easily checks that this yields the structure of a Green functor on classQ(?)
and that the family of isomorphisms χG defined in (12.71) yields an isomor-
phism of Green functors from Q⊗Z RepQ(?) to classQ(?).
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12.8.2 Induction Lemmas

As already explained by Lemma 12.62, Green functors play a prominent role
for induction theorems. In order to formulate two further versions, we have
to introduce the following idempotents.

Let G be a finite group. There is a ring homomorphism

(12.72) card: A(G)→
∏
H

Z, [S] 7→ (|SH |)(H)

where the product is indexed over the conjugacy classes of subgroups of G and
|SH | is the cardinality of the H-fixed point set. The ring homomorphism card
is injective and has a finite cokernel. In particular it induces an isomorphism
of Q-algebras

cardQ : Q⊗Z A(G)
∼=−→
∏
(H)

Q.

Now let eG ∈
∏

(H) Q be the idempotent whose value at (G) is 1 and whose

value at (H) for H 6= G is 0. We then define the idempotent

ΘG := card−1
Q (eG) ∈ Q⊗Z A(G).(12.73)

For a finite cyclic group C, define the idempotent

θC ∈ Q⊗Z RepQ(C)(12.74)

to be the element whose image under the isomorphism of (12.71) is the class
function that sends an elements of C to 1 if it is a generator, and to 0
otherwise. The image of ΘC under the map Q ⊗Z A(C) → Q ⊗Z RepQ(C)
that sends a finite C-set S to the associated permutation module Q[S] is θC .

Lemma 12.75. Let φ : Q → Λ be a homomorphism of associative commu-
tative rings with unit. Let M be a Mackey functor with values in Λ-modules
which is a module over the Green functor Q ⊗Z RepQ(H) with respect to φ.
Then

(i) For a finite group H the map⊕
C⊂H
C cyclic

indHC :
⊕
C⊂H
C cyclic

M(C)→M(H)

is surjective;
(ii) Let C be a finite cyclic group. Let

θC : M(C)→M(C)
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be the map induced by the Q ⊗Z RepQ(C)-module structure and multipli-
cation with idempotent θC of (12.74). Then the inclusion of the image
of θC : M(C) → M(C) into M(C) composed with the projection onto the
cokernel of ⊕

D⊂C
D 6=C

indCD :
⊕
D⊂C
D 6=C

M(D)→M(C)

is an isomorphism.

Proof. Let C ⊂ H be a cyclic subgroup of the finite group H. Then we get
for h ∈ H

1

[H : C]
· indHC θC(h) =

1

[H : C]
· 1

|C|
·
∑
l∈H

l−1hl∈C

θC(l−1hl) =
1

|H|
·

∑
l∈H

〈l−1hl〉=C

1.

This implies in Q⊗Z RepQ(H) ∼= classQ(H)

1H =
∑
C⊂H
C cyclic

1

[H : C]
· indHC θC(12.76)

since for any l ∈ H and h ∈ H there is precisely one cyclic subgroup C ⊂ H
with C = 〈l−1hl〉. Now assertion (i) follows from the following calculation for
x ∈M(H)

x = 1H ·x =

 ∑
C⊂H
C cyclic

1

[H : C]
· indHC θC

·x =
∑
C⊂H
C cyclic

1

[H : C]
·indHC (θC ·resCH x).

It remains to prove assertion (ii). Obviously θC is an idempotent for any
cyclic group C. We get for x ∈M(C) from (12.76)

(1C−θC) ·x =

∑
D⊂C
D 6=C

1

[C : D]
· indCD θD

 ·x =
∑
D⊂C
D 6=C

1

[C : D]
· indCD(θD ·resDC x)

and for D ⊂ C,D 6= C and y ∈M(D)

θC · indCD y = indCD(resDC θC · y) = indCD(0 · y) = 0.

This finishes the proof of Lemma 12.75. ut

The proof of the next result is similar to the one of Lemma 12.75. De-
tails can be found in [658, Lemma 7.2 and Lemma 7.4]. Key ingredients are
Lemma 12.62, Example 12.67, and the result of Swan [919, Corollary 4.2 on
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page 560] which implies together with [782, page 890] that for every finite
group H the cokernel of the map⊕

C⊆H,
C cyclic

indHC :
⊕
C⊆H
C cyclic

Swp(C)→ Swp(H)

is annihilated by |H|2.

Lemma 12.77. Let R be an associative ring with unit. Then

(i) For a finite group H and n ∈ Z the map⊕
C⊂H
C cyclic

indHC :
⊕
C⊂H
C cyclic

Q⊗Z Kn(RC)→ Q⊗Z Kn(RH)

is surjective;
(ii) Let C be a finite cyclic group. Let

ΘC : Q⊗Z Kn(RC)→ Q⊗Z Kn(RC)

be the map induced by the Q⊗Z A(C)-module structure and multiplication
with the idempotent θC of (12.73). Then the inclusion of the image of the
map θC : Q ⊗Z Kn(RC) → Q ⊗Z Kn(RC) into Q ⊗Z Kn(RC) with the
projection onto the cokernel of⊕

D⊂C
D 6=C

indCD :
⊕
D⊂C
D 6=C

M(D)→M(C)

is an isomorphism.

Remark 12.78 (L-theory analogue of Lemma 12.77). The L-theory
analogue of Lemma 12.77 is also true, one has to use instead of Swan [919,
Corollary 4.2 on page 560] the corresponding L-theory analogue of Dress [301,
Theorem 2(a)].

For more information about Mackey and Green functors and induction
theorems we refer for instance to [934, Section 6], [301] and [75].

12.8.3 Rational Computation of the Source of the Assembly Maps

Theorem 12.79 (Rational computation of the source of the assem-
bly maps appearing in the Farrell-Jones and Baum-Connes Con-
jecture). Let R be an associative ring with unit and let F be R or C. Let
G be a group. Denote by J be the set of conjugacy classes (C) of finite cyclic
subgroups C of G.
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Then the rational Chern character of Theorem 12.58 induces isomorphisms⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗Z Kq(RC)

)
∼=−→ Q⊗Z H

G
n (EG; KR)

and⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗Z L

〈−∞〉
q (RC)

)
∼=−→ Q⊗Z H

G
n (EG; L

〈−∞〉
R ).

and⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗Z Kq(C

∗
r (C,F ))

)
∼=−→ Q⊗Z H

G
n (EG; KTOP

F ).

Proof. This follows from Example 12.56, Theorem 12.58, Lemma 12.77, and
Remark 12.78. ut

Computations of Kq(RC) as Z[aut(C)]-module for finite cyclic groups C
and R = Z or R a field of characteristic zero can be found in [777].

The computations simplifies even more if we consider the case R = C, as
the following example, which is taken from [634, Example 8.11], shows.

Example 12.80 (Complex coefficients). Let T be the set of conjugacy
classes (g) of elements g ∈ G. If we tensor with C instead of Q and take
R = F = C, then the isomorphism appearing in Theorem 12.79 reduce to
the isomorphisms⊕

p+q=n

⊕
(g)∈T

Hp(CG〈g〉;C)⊗Z Kq(C)
∼=−→ C⊗Z H

G
n (EG; KC);

⊕
p+q=n

⊕
(g)∈T

Hp(CG〈g〉;C)⊗Z Lq(C)
∼=−→ C⊗Z H

G
n (EG; L

〈−∞〉
R );

⊕
p+q=n

⊕
(g)∈T

Hp(CG〈g〉;C)⊗Z K
TOP
q (C)

∼=−→ C⊗Z H
G
n (EG; KTOP

C ),

where we use in the definition of Lq(C) and Ln(CG) the involutions coming
from complex conjugation. The targets of the maps above are isomorphic to

C⊗ZKn(CG), C⊗Z L
〈−∞〉
n (CG), and C⊗ZKn(C∗r (G,C) if the Farrell-Jones

Conjecture and the Baum-Connes Conjecture hold for G.
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12.9 Some Integral Computations

Integral computations are of course harder than rational computations. We
have already provided basic tools such as the equivariant Atiyah-Hirzebruch
spectral sequence and the p-chain spectral sequence in Section 12.6.

Often we are considering an equivariant homology theory and want to
compute HGn (EG) or HGn (EG). Sometimes one gets easy and useful compu-
tations if one has good models for EG and EG. We illustrate this in the
following favorite case.

Let G be a discrete group. Let MFIN be the subset of FIN consisting
of elements in FIN that are maximal with respect to inclusion in FIN .
Throughout this subsection we suppose that G satisfies the conditions (M)
and (NM) introduced in Subsection 11.6.12, where also examples of such
groups G are given. Let {Mi | i ∈ I} be a complete set of representatives for
the conjugacy classes of maximal finite subgroups of G. Consider an equiva-
riant homology theory H?

∗. Recall that we put BG = G\EG.
Then we obtain from Theorem 11.32 long exact sequences

(12.81) · · · →
⊕
i∈I
H{1}n (BMi)→ H{1}n (BG)⊕

⊕
i∈I
HMi
n ({•})→ HGn (EG)⊕

i∈I
H{1}n−1(BMi)→ H{1}n−1(BG)⊕

⊕
i∈I
HMi
n−1({•})→ · · · .

(12.82) · · · →
⊕
i∈I
H{1}n (BMi)→ H{1}n (BG)⊕

⊕
i∈I
H{1}n ({•})→ H{1}n (BG)⊕

i∈I
H{1}n−1(BMi)→ H{1}n−1(BG)⊕

⊕
i∈I
H{1}n−1({•})→ · · · .

We have the maps H{1}n ({•}) → HMi
n ({•}) induced by the inclusion {1} →

Mi and HMi
n ({•}) → H{1}n ({•}) induced by the projection Mi → {1}. The

composite is the identity. Define

(12.83) H̃Mi
n ({•}) := ker

(
HMi
n ({•})→ H{1}n ({•})

)
.

Obviously we have an isomorphism

HMi
n ({•}) ∼= H{1}n ({•})⊕ H̃Mi

n ({•}).

One can splice the two long exact sequences (12.81) and (12.82) together
to the long exact sequence
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(12.84) · · · → H{1}n+1(BG)→
⊕
i∈I
H̃Mi
n ({•})→ HGn (EG)→

→ H{1}n (BG)→
⊕
i∈I
H̃Mi
n−1({•})→ · · · .

The long exact sequence (12.84) splits after applying − ⊗Z Λ, more pre-

cisely,HGn (EG)⊗ZΛ→ H{1}n (BG)⊗ZΛ is split surjective, see Lemma 12.18 (ii).

Example 12.85 (Equivariant topological K-theory of EG for G =
Z2 o Z/4). Consider the automorphism φ : Z2 → Z2, (x, y) 7→ (−y, x). It
has order four. We want to show for the semidirect product G = Z2 oα Z/4

KG
n (EG) ∼=

{
Z9 if n is even;

0 if n is odd.

In this case we have the presentation

Z2 o Z4 = 〈u, v, t | t4 = 1, uv = vu, tut−1 = v, tvt−1 = u−1〉.

The maximal finite subgroups are up to conjugacy given by

M0 = 〈t〉;
M1 = 〈ut〉;
M2 = 〈ut2〉.

We have M0
∼= M1

∼= Z4 and M2
∼= Z2. We obtain

K̃Z/m
n ({•}) ∼=

{
Zm−1 if n is even;

0 if n is odd.

Obviously BG is the same as Z/4\T 2 for the obvious Z/4-action on the
two-dimensional torus T 2 = Z2\EG = Z2\EZ2. This implies because we are
in dimension two, that BG has a model which is a compact 2-dimensional
manifold. The rational cohomology H∗(BG) agrees with H∗(T 2;Q)Z/4. Since
Z/4 is a subgroup of SL(2,Z), its action on T 2 is orientation preserving.
This implies that Z/4 acts trivial on Hp(T 2;Q) for p = 0, 2. Since Z/4
acts freely on Z2 = H1(T 2;Z) outside {0}, we conclude H1(T 2;Q)Z/4 ∼=
homZ(H1(T 2;Z)Z/4,Q) ∼= {0}. We conclude that BG = Z/4\T 2 has the ra-
tional cohomology of S2 and hence is homeomorphic to S2. This implies that
K0(BG) ∼= Z2 and K1(BG) = 0.

The group G satisfies conditions (M) and (NM) by a direct check or be-
cause of Subsection 11.6.12 since the Z/4 action on Z2 given by α is free
outside 0. Now the claim follows from the long exact sequence (12.84) ap-
plied in the case H?

∗ = K?
∗ .
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Since G satisfies the Baum-Connes Conjecture, we have Kn(C∗r (G)) ∼=
KG
n (EG).

Exercise 12.86. Determine all finite subgroups F ⊆ SL2(Z) and compute
for any of these KG

n (EG) for n ∈ Z and G = Z2 o F .

The long exact sequence (12.84) will be a key ingredient in computations of

Kn(RG), L
〈−∞〉
n (RG), and Kn(C∗r (G)), provided that G satisfies the Farrell-

Jones Conjecture and the Baum-Connes Conjecture, see Theorem 17.12.
Already for group homology the long exact sequence (12.84) contains valu-

able information as we explain next.

Example 12.87 (Group homology). Suppose that G satisfies (M) and
(NM). Let H∗ be given by the Borel homology, i.e., HG(X) := Hn(EG ×
X) for Hn singular homology with coefficients in Z, see Example 12.13.
Then (12.84) reduces to the long exact sequence where Hn(G) := Hn(BG) is

the group homology and H̃n(G) := ker(Hn(G)→ Hn({1})

· · · → Hn+1(BG)→
⊕
i∈I

H̃n(Mi)→ Hn(G)

→ Hn(BG)→
⊕
i∈I

H̃n−1(Mi)→ · · · .

In particular we get for n ≥ dim(BG) + 2 an isomorphism⊕
i∈I

Hn(Mi)
∼=−→ Hn(G).

Example 12.88 (The group homology of certain extensions 1 →
Zn → G → F → 1 for finite F ). Consider an extension 1 → Zn → G →
F → 1 for finite F such that the conjugation action of F on Zn is free outside
0 ∈ Zn. Then the conditions (M) and (NM) are satisfied by [667, Lemma 6.3],
and there is an n-dimensional model for EG whose underlying space is R2.

Even in the case where F is a finite cyclic group, the computation of the
homology of G is not at all easy. It is carried in [267, Theorem 2.1] provided
that |F | is a prime. More information in the case where there are no restriction
on |F |, can be found in [603].

Based on the material of this section, we will compute the group homology
of one-relators groups in Lemma 17.21 (iii) and Lemma 17.27.
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12.10 Equivariant Homology Theory over a Group and
Twisting with Coefficients

Next we present a slight variation of the notion of an equivariant homology
theory introduced in Section 12.3. We have to treat this variation since we
later want to study coefficients over a fixed group Γ which we will then
pullback via group homomorphisms with Γ as target. For instance, we may
be interested in the algebraic K-theory of a twisted groups ring RαG for
some homomorphism α : G→ aut(R). More generally, we will later consider
additive G-categories as coefficients.

Fix a group Γ . A group (G, ξ) over Γ is a group G together with a group
homomorphism ξ : G → Γ . A map α : (G1, ξ1) → (G2, ξ2) of groups over Γ
is a group homomorphisms α : G1 → G2 satisfying ξ2 ◦ α = ξ1. Let Λ be an
associative commutative ring with unit.

Definition 12.89 (Equivariant homology theory over a group Γ ). An

equivariant homology theory H?↓Γ
∗ with values in Λ-modules over a group Γ

assigns to every group (G, ξ) over Γ a G-homology theory HG,ξ∗ with values in
Λ-modules and comes with the following so-called induction structure: given
a homomorphism α : (H,µ) → (G, ξ) of groups over Γ and an H-CW -pair
(X,A), there are for each n ∈ Z natural homomorphisms

indα : HH,µn (X,A)→ HG,ξn (α∗(X,A))(12.90)

satisfying

• Compatibility with the boundary homomorphisms

∂G,ξn ◦ indα = indα ◦∂H,µn ;
• Functoriality

Let β : (G, ξ) → (K, ν) be another morphism of groups over Γ . Then we
have for n ∈ Z

indβ◦α = HK,νn (f1) ◦ indβ ◦ indα : HH,µHn(X,A)→ HK,νn ((β ◦ α)∗(X,A))

where f1 : β∗α∗(X,A)
∼=−→ (β ◦ α)∗(X,A), (k, g, x) 7→ (kβ(g), x) is the

natural K-homeomorphism;
• Compatibility with conjugation

Let (G, ξ) be a group over Γ . Fix g ∈ G such that ξ ◦ c(g) = ξ.
Then the conjugation homomorphisms c(g) : G → G defines a morphism
c(g) : (G, ξ) → (G, ξ) of groups over Γ . Let f2 : (X,A) → c(g)∗(X,A) be
the G-homeomorphism that sends x to (1, g−1x) in G×c(g) (X,A).
Then for every n ∈ Z and every G-CW -pair (X,A) the homomorphism
indc(g) : HG,ξn (X,A)→ HG,ξn (c(g)∗(X,A)) agrees with HGn (f2);

• Bijectivity
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If ker(α) acts freely on X \A, then indα : HH,µn (X,A)→ HG,ξn (indα(X,A))
is bijective for all n ∈ Z.

Definition 12.89 reduces to Definition 12.9 if one puts Γ = {1}.
The analog of Lemma 12.12 in this setting is obvious and easily checked.
The proof of Theorem 12.30 to this setting as explained in [70, Lemma 7.1].

Theorem 12.91 (Constructing equivariant homology theories over
a group using spectra). Let Γ be a group. Denote by GROUPOIDS ↓ Γ
the category of small connected groupoids over Γ considered as a groupoid
with one object. Consider a covariant functor

E : GROUPOIDS ↓ Γ → SPECTRA

that sends equivalences of groupoids to weak equivalences of spectra.
Then we can associate to it an equivariant homology theory H?↓Γ

∗ (−; E)
with values in Z-modules over Γ such that for every group (G,µ) over Γ and
subgroup H ⊆ G we have a natural identification

HH,ξ|Hn ({•}; E) = HG,ξn (G/H,E) = πn(E(H, ξ|H)).

There are obvious twisted analogues of the functors mentioned in Sec-
tion 12.5, see (13.10) together with Remark 13.12 and (13.15) together with
Remark 13.17, and also [70, Theorem 6.1].

Remark 12.92. Equivariant Chern characters have only be constructed for
equivariant homology theories but not for the more general notion of an
equivariant homology theory over a group Γ . It is conceivable they exist,
provided that the coefficients of the homology theory H?

∗ over Γ extend to a
Mackey functor over Γ , where we leave it to the reader to figure out what the
latter condition means. For this claim there are many details to be checked
and we have not done this. It seems also to be plausible that the equivariant
homology theories over a group Γ given by the algebraic K and L-theory
for a ring (with involution) coming with a homomorphism Γ → aut(R) do
have the property that the coefficients of the homology theories H?

∗(−; KR)

and H?
∗(−; L

〈−∞〉
R ) over Γ extend to a Mackey functor over Γ and hence that

there exists equivariant Chern characters for them.

Remark 12.93. Note that the proof of Lemma 12.18 (ii) does not extend
to an equivariant homology theory over a non-trivial group Γ because we
cannot pass to the quotient by G anymore. However, if the coefficients of
the homology theory H?

∗ over Γ extend to a Mackey functor over Γ and we
do have an equivariant Chern character, then it is still true that the map
HG,ξn (EG) → HG,ξn (EG) is rationally injective for every n ∈ Z and every
group ξ : G → Γ over Γ . So this would yield the rational injectivity of the
maps
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HG,ξ
n (EG; KR)→ HG,ξ

n (EG; KR);

HG,ξ
n (EG; L

〈−∞〉
R )→ HG,ξ

n (EG; L
〈−∞〉
R ),

for every n ∈ Z and every ξ : G → Γ . The reader should note that we have
proved this only in the case Γ = {1}, see Lemma 12.18 (ii).

Exercise 12.94. Let Γ be a group. Let R be a ring with a homomorphism
α : Γ → aut(R). Let ξ : G→ Γ be a group over Γ such that G is finite.

Show that the map HG,ξ
n (EG; KR) → HG,ξ

n (EG; KR) = Kn(Rα◦ξG) is
rationally injective for every n ∈ Z.

12.11 Notes

Equivariant stable cohomotopy has been introduced in [637] for arbitrary
groups G and proper finite G-CW -complexes and extended to proper G-
CW -complexes in [281, Example 3.43 on page 107]. A version of the Segal
Conjecture in this setting is proved in [649]. A systematic study of the equi-
variant homotopy category for proper G-CW -complex can be found in [281].
There it is explained in [281, Remark 3.44 on page 107] that the classical
notion of an RO(G)-grading is taken over by a kind of K0

G(EG)-grading.
If one is dealing with equivariant topological K-theory, then there exists

a Chern character where one does not have to fully rationalize, it suffices
to invert the orders of all the isotropy groups of the proper G-CW -complex
under consideration, see [636].

There are also equivariant cohomology theories and a cohomological ver-
sion of the equivariant Chern character, see [638]. It can be used to extend
the Atiyah-Segal Completion Theorem for finite groups to infinite groups and
proper G-CW -complexes, see [655, 656]. It leads to rational computations of
K∗(BG) also for not necessarily finite groups, see [508, 641].

An equivariant Chern character for equivariant topological K-theory after
complexification has been introduced in [101].
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Chapter 13

The Farrell-Jones Conjecture

13.1 Introduction

In this chapter we discuss the Farrell-Jones Conjecture for K- and L-theory
for arbitrary groups and rings. It predicts that certain assembly maps

HG
n (pr) : HG

n (EVCY(G); KR)→ Kn(RG);

HG
n (pr) : HG

n (EVCY(G); L
〈−∞〉
R ) → L〈−∞〉n (RG),

are bijective for all n ∈ Z. The targets are the algebraic K- or L-groups of the
group ring RG, which one wants to understand. The source is an expression
that depends only on the values of these K- and L-groups on virtually cyclic
subgroups of G and is therefore much more accessible. The version above is
often the one which is relevant in concrete applications, but nevertheless we
will consider generalizations, for instance to twisted group rings and twisted
involutions. The both most general and most important version will be the
Full Farrell-Jones Conjecture 13.27. It implies all other variants of the Farrell-
Jones Conjecture which appear in this book, see Section 13.11, It has very
nice inheritance properties, see Section 13.7, which are in general not shared
by the other variants.

A status report of the Full Farrell-Jones Conjecture 13.27 will be given in
Theorem 16.1. It is known for a large class of groups.

The main point about the Full Farrell-Jones Conjecture 13.27 is that it
implies a great variety of other prominent conjectures such as the ones due
to Bass, Borel, Kaplanski, and Novikov, and leads to very deep and inter-
esting results about manifolds and groups, as we will record and explain in
Section 13.12. Often these applications are much more appealing and easier
to comprehend than the rather technical Full Farrell-Jones Conjecture 13.27.
The author’s favorite is the Borel Conjecture, which predicts that two as-
pherical closed topological manifolds are homeomorphic if and only if their
fundamental groups are isomorphic and any homotopy equivalence between
them is homotopic to a homeomorphism.

Section 13.10 deals with the question whether one can reduce the family
of virtually cyclic subgroups to a smaller family of subgroups, for instance to
all finite subgroups or just to the family consisting of the trivial subgroup.
Section 13.13 presents of a short discussion of G-theory.

We have tried to keep this chapter as much as possible independent of the
other chapters, so that one may start reading directly here.

361
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13.2 The Farrell-Jones Conjecture with Coefficients in
Rings

Let G be a (discrete) group. Recall that a G-homology theory HG∗ with values
in Λ-modules for some commutative associative unital ring Λ assigns to every
G-CW -pair (X,A) and integer n ∈ Z a Λ-module HGn (X,A) such that the
obvious generalization to G-CW -pairs of the axioms of a (non-equivariant
generalized) homology theory for CW -complexes holds, i.e., G-homotopy in-
variance, the long exact sequence of a G-CW -pair, excision, and the disjoint
union axiom are satisfied. The precise definition of a G-homology theory can
be found in Definition 12.1 and of a G-CW -complex in Definition 11.2, see
also Remark 11.3.

Recall that we have defined the notion of a family of subgroups of a group
G in Definition 2.62, namely, to be a set of subgroups of G that is closed under
conjugation with elements of G and passing to subgroups. Denote by EF (G)
a model for the classifying space for the family F of subgroups of G, i.e.,
a G-CW -complex EF (G) whose isotropy groups belong to F and for which
for each H ∈ F the H-fixed point set EF (G)H is weakly contractible. Such
a model always exists and is unique up to G-homotopy, see Definition 11.18
and Theorem 11.19. Recall that EG and EG are abbreviations for EFIN (G)
and EVCY(G) where FIN is the family of finite subgroups and VCY is the
family of virtually cyclic subgroups, i.e., subgroups that are either finite or
contain Z as a subgroup of finite index.

13.2.1 The K-Theoretic Farrell-Jones Conjecture with
Coefficients in Rings

Given a ring R, there is a specific G-homology theory HG
n (−; KR) with values

in Z-modules which has the property that HG
n (G/H; KR) ∼= Kn(RH) holds

for all n ∈ Z and subgroups H ⊆ G, where Kn(RH) is the nth algebraic
K-group of the group ring RH. Its construction can be used in the sequel
as a black box. We have already given some details, namely, it is given by
the equivariant homology theory H?

∗(−; KR) evaluated at G that is associ-
ated to the covariant functor KR : GROUPOIDS → SPECTRA of (12.44) in
Theorem 12.30.

Conjecture 13.1 (K-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring R). Given a group G and a ring R, we say that G
satisfies the K-theoretic Farrell-Jones Conjecture with coefficients in the ring
R if the assembly map induced by the projection pr : EVCY(G)→ G/G

HG
n (pr) : HG

n (EVCY(G); KR)→ HG
n (G/G; KR) = Kn(RG)

is bijective for all n ∈ Z.
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In many of the proofs the coefficients rings do not play a role, and there-
fore it is reasonable to consider the following stronger variant that is now a
statement about the group G itself.

Conjecture 13.2 (K-theoretic Farrell-Jones Conjecture with coeffi-
cients in rings). We say that the group G satisfies the K-theoretic Farrell-
Jones Conjecture with coefficients in rings if the K-theoretic Farrell-Jones
Conjecture 13.1 with coefficients in R holds for every ring R.

Exercise 13.3. Show that Conjecture 13.2 does not hold for G = Z if one
replaces VCY by FIN in Conjecture 13.1.

Conjecture 13.2 makes also sense for twisted group rings RαG, see Re-
mark 13.12.

13.2.2 The L-Theoretic Farrell-Jones Conjecture with Coefficients
in Rings

The situation for L-theory is similar. Namely, given a ring with involution

R, there is a specific G-homology theory HG
n (−; L

〈−∞〉
R ) with values in Z-

modules that has the property that HG
n (G/H; L

〈−∞〉
R ) ∼= L

〈−∞〉
n (RH) holds

for all n ∈ Z and subgroups H ⊆ G, where L
〈−∞〉
n (RH) is the nth algebraic

L-groups of the group ring with involution RH with decoration 〈−∞〉. Its
construction can be used in the sequel as a black box. We have already
given some details, namely, it is given by the equivariant homology theory

H?
∗(−; L

〈−∞〉
R ) evaluated at G that is associated to the covariant functor

L
〈−∞〉
R : GROUPOIDS→ SPECTRA of (12.45) in Theorem 12.30.

Conjecture 13.4 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring with involution R). Given a group G and ring with
involution R, we say that G satisfies the L-theoretic Farrell-Jones Conjecture
with coefficients in the ring with involution R if the assembly map induced
by the projection EVCY(G)→ G/G

HG
n (pr) : HG

n (EVCY(G); L
〈−∞〉
R )→ HG

n (G/G; L
〈−∞〉
R ) = L〈−∞〉n (RG)

is bijective for all n ∈ Z.

Exercise 13.5. Show that Conjecture 13.4 holds for G = Z if one replaces
VCY by FIN .

If we invert 2, it is expected that one can replace VCY by FIN in general.

Conjecture 13.6 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring with involution R after inverting 2). Given a
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group G and ring with involution R, we say that G satisfies the L-theoretic
Farrell-Jones Conjecture with coefficients in the ring with involution R after
inverting 2 if the assembly map induced by the projection EFIN (G)→ G/G

HG
n (pr) : HG

n (EFIN (G); L
〈−∞〉
R )→ HG

n (G/G; L
〈−∞〉
R ) = L〈−∞〉n (RG)

is bijective for all n ∈ Z after inverting 2.

Conjecture 13.7 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in rings with involution). A group G satisfies the L-theoretic
Farrell-Jones Conjecture with coefficients in rings with involution if the L-
theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring with in-
volution R holds for every ring with involution R.

Conjecture 13.8 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in rings with involution after inverting 2). We say that a
group G satisfies the L-theoretic Farrell-Jones Conjecture with coefficients in
rings with involution after inverting 2 if the L-theoretic Farrell-Jones Con-
jecture 13.6 with coefficients in the ring with involution R after inverting 2
holds for every ring with involution R.

Remark 13.9 (The decoration 〈−∞〉 is necessary). One can define for
any decoration j ∈ {n ∈ Z | n ≤ 1} q {−∞} an assembly map

HG
n (pr) : HG

n (EVCY(G); L
〈j〉
R )→ HG

n (G/G; L
〈j〉
R ) = L〈j〉n (RG).

But in general one can only hope that it is bijective if one chooses j = −∞.
Counterexamples for G = Z2×F for a finite group F , R = Z and j = −1, 0, 1,
which is also sometimes denoted by j = p, h, s, are constructed in [356].

If we invert 2, the decorations do not play a role because of the Rothenberg
sequences, see Subsection 9.10.4.

Conjectures 13.7 and 13.8 makes also sense for twisted group rings RαG,
see Remark 13.17.

13.3 The Farrell-Jones Conjecture with Coefficients in
Additive Categories

There are situations where one wants to consider twisted groups rings RαG,
sometimes also denoted by Rα[G], for some group homomorphism α : G →
aut(R) to the group of ring automorphisms of R. Elements in RαG are given
by formal finite sums

∑
g∈G rg · g, and addition and multiplication is given

by
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g∈G

rg · g
)

+

(∑
g∈G

sg · g

)
:=
∑
g∈G

(rg + sg) · g;

(∑
g∈G

rg · g

)
·

(∑
g∈G

sg · g

)
:=
∑
g∈G

( ∑
h,k∈G,
g=hk

rh · α(h)(sk)

)
· g.

So the decisive relation for the multiplication is (r ·h)·(s·k) = (r ·α(h)(s))·hk.
Or even, more generally, one may want to consider crossed product rings, see
for instance [76, Section 4].

When considering L-theory, one considers a ring with involution R and
wants to allow to twist the involution on RG by an orientation homomor-
phism w : G → center(R) satisfying w(g) = w(g) resulting in the w-twisted
involution on RG is given by∑

g∈G
rg · g :=

∑
g∈G

w(g) · rg · g−1.

The situation becomes even more involved if one wants to consider crossed
product rings with involution. Details are explained in [76, Section 4].

It turns out that one can nicely treat these generalization of group rings
and involutions by looking at additive G-categories (with involution).

There is another crucial reason why it is useful to look at coefficients in
additive G-categories (with involution). These versions of the Farrell-Jones
Conjecture with coefficients in additive G-categories (with involution) have
much better inheritance properties than the one with coefficients in rings
(with involution) as we will explain below in Section 13.7, for instance they
pass to subgroups.

The details are given for additive G-categories and K-theory in [90], the
case of additive G-categories with involution is treated for the K-theory tak-
ing the involution into account and for L-theory in [76]. Since we can use this
general approach essentially as a black box, we give only a brief summary
here, following the notation of [76].

13.3.1 The K-theoretic Farrell-Jones Conjecture with Coefficients
in Additive G-Categories

Let A be an additive G-category in the sense of [76, Definition 2.1], i.e.,
an additive categories with G-action by functors of additive categories. Note
that we use left actions here, whereas in [76] right actions are considered. Let
GROUPOIDS ↓ G be the category of connected groupoids over I(G). Recall
that for a group G we denote by I(G) the groupoid with one object and G
as its automorphism group. We obtain from [76, Section 5] a contravariant
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functor to the category ADDCAT of small additive categories

GROUPOIDS ↓ G→ ADDCAT , pr: G → I(G) 7→
∫
G
A ◦ pr .

Composing it with the functor sending an additive category to its non-
connective K-theory spectrum, see for instance [197, 668, 783], yields a func-
tor

KA : GROUPOIDS ↓ G→ SPECTRA.(13.10)

By Theorem 12.91 we obtain an equivariant homology theory over G in the
sense of Definition 12.89. In particular its evaluation atG yields aG-homology
theory HG

∗ (−; KA).

Conjecture 13.11 (K-theoretic Farrell-Jones Conjecture with coef-
ficients in additive G-categories). We say that G satisfies the K-theoretic
Farrell-Jones Conjecture with coefficients in additive G-categories if for every
additive G-category A and every n ∈ Z the assembly map induced by the
projection pr : EVCY(G)→ G/G

Hg
n(pr; KA) : HG

n (EVCY(G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
is bijective.

Remark 13.12 (The setting with additive G-categories as coeffi-
cients encompasses the setting with rings as coefficients). Let α : G→
aut(R) be a group homomorphism. Then we have already introduced the
twisted group ring Rα(G) above. For a suitable choice of an additive G-
category A, the assembly map

HG
n (pr; KA) : HG

n (EVCY(G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
appearing in Conjecture 13.11 reduces to the assembly map

HG
n (pr; KR,α) : HG

n (EVCY(G); KR,α)→ HG
n (G/G; KR,α) = Kn(RαG)

where for any subgroup H ⊆ G and integer n ∈ Z we have πn
(
KR,α(I(H))

)
=

Kn(Rα|HH). If α is trivial, this is precisely the assembly map appearing in
Conjecture 13.1. More details, even for crossed product rings, can be found
in [76, Section 4 and 6].

In particular we get that the K-theoretic Farrell-Jones Conjecture 13.2
with coefficients in rings holds for G if the K-theoretic Farrell-Jones Conjec-
ture 13.11 with coefficients in additive G-categories holds for G.

Exercise 13.13. Let R be a ring. Define a category R⊕ as follows. For each
integer m ∈ Z with m ≥ 0 we have one object [m]. For m,n ≥ 1 the set of
morphisms from [m] to [n] is the set Mm,n(R) of (m,n)-matrices with entries
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in R. The set of morphisms from [0] to [m] and from [m] to [0] consist of
precisely one element. Composition is given by matrix multiplication.

Show that R⊕ can be equipped with the structure of a small additive
category and that it is equivalent as an additive category to the category of
finitely generated free R-modules.

Remark 13.14 (Involutions and K-theory). Let A be an additive G-
category with involution in the sense of [76, Definition 4.22], i.e., an additive
category with involution coming with G-action by functors of additive cate-
gories with involution.

Then the involution induces involutions on the source and target of the
K-theoretic assembly map

HG
n (pr; KA) : HG

n (EVCY(G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
of Conjecture 13.11 and the assembly map is compatible with them.

13.3.2 The L-theoretic Farrell-Jones Conjecture with Coefficients
in Additive G-Categories with Involution

Let A be an additive G-category with involution in the sense of [76, Defi-
nition 4.22]. We obtain from [76, Section 7] a contravariant functor to the
category ADDCAT inv of small additive categories with involution

GROUPOIDS ↓ G→ ADDCAT inv, pr: G → I(G) 7→
∫
G
A ◦ pr .

Composing it with the functor sending an additive category with involution
A to its L-theory spectrum L〈−∞〉(A), yields a functor

L
〈−∞〉
A : GROUPOIDS ↓ G→ SPECTRA(13.15)

where for the construction of the spectrum L-theory L〈−∞〉(A) associated to
an additive category with involution A we refer to Ranicki [823, Chapter 13].
By Theorem 12.91 we obtain an equivariant homology theory over G in the
sense of Definition 12.89. In particular its evaluation atG yields aG-homology

theory HG
n (−; L

〈−∞〉
A ).

Conjecture 13.16 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in additive G-categories with involution). We say that G satis-
fies the L-theoretic Farrell-Jones Conjecture with coefficients in additive G-
categories with involution if for every additive G-category with involution A
and every n ∈ Z the assembly map given by the projection EVCY(G)→ G/G
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HG
n (pr; L

〈−∞〉
A ) : HG

n (EVCY(G); L
〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
is bijective.

Remark 13.17 (The setting of additive G-categories with involution
as coefficients encompasses the setting with rings with involution
as coefficients). Let R be a ring with involution. Consider a group homo-
morphism α : G → aut(R) satisfying α(g)(r) = α(g)(r), and a group homo-
morphism w : G → center(R) satisfying w(g) = w(g). Then we have already
introduced the twisted group ring Rα(G) above. It inherits an involution by∑

g∈G
rg · g :=

∑
g∈G

w(g) · α(g−1)(rg) · g−1,

and we denote this ring with involution by Rα,wG. For a suitable choice of
an additive G-category with involution A, the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EVCY(G); L
〈−∞〉
A )→ HG

n (G/G; L
〈−∞〉
A )

appearing in Conjecture 13.16 reduces to the assembly map

HG
n (pr; L

〈−∞〉
R,α,w) : HG

n (EVCY(G); L
〈−∞〉
R,α,w)→ HG

n (G/G; L
〈−∞〉
R,α,w)

where for any subgroup H ⊆ G and integer n ∈ Z we have L
〈−∞〉
R,α,w(I(H)) =

L
〈−∞〉
n (Rα|HH,w|H). If α and w are trivial, this is precisely the assembly

map appearing in Conjecture 13.4. More details, even for crossed product
rings, can be found in [76, Theorem 0.4, Section 4 and 8].

In particular we get that the L-theoretic Farrell-Jones Conjecture 13.7 with
coefficients in rings with involution holds for G if the L-theoretic Farrell-Jones
Conjecture 13.16 with coefficients in additive G-categories with involution
holds for G.

Exercise 13.18. Let F : A → B be a functor of additive categories. Show
that it is an equivalence of additive categories if and only if for every two
objects A and B inA the induced map morA(A0, A1)→ morB(F (A0), F (A1))
sending f to F (f) is bijective and for each object B in B there exists an object
A in A such that F (A) and B are isomorphic in B.

Remark 13.19 (Eilenberg swindle for L-theory). There is an obvious
version of Theorem 6.37 (iii) for the algebraic L-theory L〈−∞〉(A) of an ad-
ditive category A with involution.
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13.4 The K-theoretic Farrell-Jones Conjecture with
Coefficients in Higher Categories

Comment 9 (by W.): The precise formulation of this subsection has to be
discussed with Christoph.

Let C be an right exact G-∞-category in the sense of Comment 10 (by
W.): Add reference, probably to Chapter 8. We obtain from (8.1) a covariant
functor

KC : GROUPOIDS ↓ G→ SPECTRA.

By Theorem 12.91 we obtain an equivariant homology theory over G in the
sense of Definition 12.89. In particular its evaluation atG yields aG-homology
theory HG

∗ (−; KC).

Conjecture 13.20 (K-theoretic Farrell-Jones Conjecture with coef-
ficients in higher G-categories). We say that G satisfies the K-theoretic
Farrell-Jones Conjecture with coefficients in higher G-categories if for every
right exact G-∞-category C and every n ∈ Z the assembly map given by the
projection

HG
n (pr; KC) : HG

n (EVCY(G); KC)→ HG
n (G/G; KC) = πn

(
KC(I(G))

)
is bijective.

Comment 11 (by W.): The next remark is under construction.

Remark 13.21 (For K-theory the setting of higher G-categories en-
compasses all other settings for K-theory.). The assembly map

HG
n (pr; KC) : HG

n (EVCY(G); KC)→ HG
n (G/G; KC) = πn

(
KC(I(G))

)
appearing in K-theoretic Farrell-Jones Conjecture 13.20 with coefficients in
higher G-categories reduces to the the assembly map

HG
n (pr; KA) : HG

n (EVCY(G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
appearing in Conjecture 13.11 if we take for C the higher G-category C(A)
associated to an additive G-category. Comment 12 (by W.): We have to
add an explanation probably referring to Chapter 8.

Moreover, the K-theoretic Farrell-Jones Conjecture 13.20 with coefficients
in higher G-categories implies the Farrell-Jones Conjecture 15.59 for A-theory
(with coefficients). Comment 13 (by W.): We have to add an explanation
probably referring to Chapter 8. This is also mentioned and references for
the proof are discussed in Theorem 15.63 (iii).

Recall from Remark 13.12 that Conjecture 13.11 and hence also Conjec-
ture 13.20 imply the K-theoretic Farrell-Jones Conjecture 13.2 with coeffi-
cients in rings. One may ask whether there is a version of the Farrell-Jones
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Conjecture for ring spectra as coefficients. Such a version is contained in
Farrell-Jones Conjecture 13.20. Comment 14 (by W.): Add a discussion.
There seem to be no place in the literature where a K-theoretic version of the
Farrell-Jones Conjecture is formulated for ring spectra. Note that one can
think of the Farrell-Jones Conjecture 15.59 for A-theory (with coefficients) as
the Farrell-Jones Conjecture with coefficients in the sphere spectrum. Com-
ment 15 (by W.): Add a discussion.

Remark 13.22 (L-theory version of Conjecture 13.20). It has not been
worked out in detail how to construct the assembly map for the L-theory
version of the K-theoretic Farrell-Jones Conjecture 13.20 with coefficients in
higher G-categories with Poincaré structure and to prove the conjecture for
the same class of groups as it has be done for the other versions. Such a
version should of course imply the L-theoretic Farrell-Jones Conjecture 13.16
with coefficients in additive G-categories with involution.

13.5 Finite Wreath Products

The versions of the Farrell-Jones Conjecture discussed above do not carry
over to overgroups of finite index. To handle this difficulty, we consider finite
wreath products.

Let G and F be groups. Their wreath product G o F is defined as the
semidirect product (

∏
F G) o F where F acts on

∏
F G by permuting the

factors. For our purpose the following elementary lemma is crucial.

Lemma 13.23.

(i) There is an embedding (H o F1) o F2 → H o (F1 o F2);
(ii) If F1 and F2 are finite, then F1 o F2 is finite;

(iii) Let G be an overgroup of H of finite index. Then there is subgroup N ⊆ H
of H that satisfies [G : N ] <∞ and is normal in G, and a finite group F
such that G embeds into N o F .

Proof. (i) See [578, Lemma 1.21].

(ii) This is obvious.

(iii) Let S denote a system of representatives of the cosets G/H. Since G/H
is by assumption finite, N :=

⋂
s∈S sHs

−1 is a finite index normal subgroup
of G and is contained in H. Now G can be embedded in N oG/N , see [297,
Section 2.6]. ut

Conjecture 13.24 (K-theoretic Farrell-Jones Conjecture with coef-
ficients in additive G-categories with finite wreath products). We
say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients
in additive G-categories with finite wreath products if for any finite group F
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the group G oF satisfies the K-theoretic Farrell-Jones Conjecture 13.11 with
coefficients in additive G o F -categories.

Conjecture 13.25 (L-theoretic Farrell-Jones Conjecture with coef-
ficients in additive G-categories with involution with finite wreath
products). We say that G satisfies the L-theoretic Farrell-Jones Conjecture
with coefficients in additive G-categories with involution with finite wreath
products if for any finite group F the group G o F satisfies the L-theoretic
Farrell-Jones Conjecture 13.16 with coefficients in additive G o F -categories
with involution.

Conjecture 13.26 (K-theoretic Farrell-Jones Conjecture with coef-
ficients in higher G-categories with finite wreath products). We
say that G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients
in higher G-categories with finite wreath products if for any finite group F
the group G oF satisfies the K-theoretic Farrell-Jones Conjecture 13.20 with
coefficients in higher G o F -categories.

13.6 The Full Farrell-Jones Conjecture

Next we can formulate the version of the Farrell-Jones Conjecture which is
the most general one, implies all other ones, and has the best inheritance
properties.

Conjecture 13.27 (Full Farrell-Jones Conjecture). We say that a
group satisfies the Full Farrell-Jones Conjecture if G satisfies the following
three conjectures:

• the K-theoretic Farrell-Jones Conjecture 13.24 with coefficients in additive
G-categories with finite wreath products;

• the L-theoretic Farrell-Jones Conjecture 13.25 with coefficients in additive
G-categories with involution with finite wreath products;

• the K-theoretic Farrell-Jones Conjecture 13.26 with coefficients in higher
G-categories with finite wreath products.

Despite the fact that Conjecture 13.26 implies Conjecture 13.24, see Re-
mark 13.21, we list Conjecture 13.24 above in Conjecture 13.27 for the
reader’s convenience. Recall that the version with rings as coefficients do
follow from the versions with additive categories as coefficients, see Re-
marks 13.12 and 13.17.
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13.7 Inheritance Properties of the Farrell-Jones
Conjecture

In this section we discuss the inheritance properties of the various versions
of the Farrell-Jones Conjectures above. Both the K-theoretic Farrell-Jones
Conjecture 13.2 with coefficients in rings and the L-theoretic Farrell-Jones
Conjecture 13.7 with coefficients in rings with involution do not have good
inheritance properties. The reason why we have introduced the other variants
is that they do have some remarkable inheritance properties.

Definition 13.28 (Farrell-Jones groups). Let FJ be the class of groups
that satisfy the Full Farrell-Jones Conjecture 13.27. We call a (discrete) group
G a Farrell-Jones group if G belongs to FJ .

Theorem 13.29 (Inheritance properties of the Full Farrell-Jones
Conjecture).

(i) Passing to subgroups
Let H ⊆ G be an inclusion of groups and G ∈ FJ , then H ∈ FJ ;

(ii) Passing to overgroups of finite index
Let G be an overgroup of H with finite index [G : H]. If H belongs to FJ ,
then G belongs to FJ ;

(iii) Passing to finite wreath products
If G belongs to FJ , then G o F belongs to FJ for any finite group F ;

(iv) Passing to finite direct products
If the groups G0 and G1 belong to FJ ; then G0 ×G1 belongs to FJ ,

(v) Group extensions
Let 1 → K → G → Q → 1 be an extension of groups. Suppose that the
groups K and Q belongs to FJ and that for any infinite cyclic subgroup
C ⊆ Q the group p−1(C) belongs to FJ .
Then G belongs to FJ ;

(vi) Colimits over directed systems
Let {Gi | i ∈ I} be a direct system of groups indexed by the directed set I
(with arbitrary structure maps). Suppose that for each i ∈ I the group Gi
belongs to FJ .
Then the colimit colimi∈I Gi belongs to FJ ;

(vii) Passing to free products
Consider a collection of groups {Gi | i ∈ I} such that Gi belongs to FJ
for each i ∈ I. Then ∗i∈IGi belongs to FJ .

Proof. (i) We begin with the case of additive G-categories as coefficients.
Assertion (i) is proved in [90, Theorem 4.5] for Conjecture 13.11, and in [76,

Theorem 0.10] for Conjecture 13.16. Now assertion (i) follows for the version
of Full Farrell-Jones Conjecture 13.27 for additive G-categories as coefficients
since H o F is a subgroup of G o F for every subgroup H ⊆ G.
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The proof of assertion (i) for the version with higher G-categories as coef-
ficients is analogous and can be found in [172, Theorem 1.6 (1)].

(ii) This follows from Lemma 13.23 and assertion (i).

(iii) This follows from Lemma 13.23 and assertion (i).

(iv) We begin with the case of additive G-categories as coefficients.
The versions of the Farrell-Jones Conjecture 13.11 and 13.16 are true for

virtually finitely generated abelian groups by [71, Theorem 3.1]. Hence they
hold in particular for the product of two virtually cyclic subgroups. By in-
specting the proof of [578, Lemma 3.15], we see that the assertion (iv) holds
for the Farrell-Jones Conjectures 13.11 and 13.16.

Next we prove assertion (iv) for the version of Full Farrell-Jones Conjec-
ture 13.27 with additive G-categories as coefficients. Suppose it holds for G1

and G2. Let F be any finite subgroup. We have to show that versions of the
Farrell-Jones Conjecture 13.11 and 13.16 holds for (G1×G2) oF . By assump-
tion they both hold for G1 o F and G2 o F . Since (G1 ×G2) o F is a subgroup
of (G1 oF )× (G2 oF ) by [578, Lemma 1.197] and Conjecture 13.11 and 13.16
pass to subgroups by the argument given in assertion (i), assertion (iv) holds
for the Full Farrell-Jones Conjecture 13.27 with additive G-categories as co-
efficients.

The proofs of assertions (iv) for the version of the Full Farrell-Jones Con-
jecture 13.27 for higher G-categories are analogous and can be found in
in [172, Theorem 1.7 (11)].

(v) We begin with the case of additive G-categories as coefficients.
The following version of assertion (v) is proved in [76, Theorem 0.9] for

Conjecture 13.16.

Property (E)
Let 1 → K → G → Q → 1 be an extension of groups. If for any virtu-
ally cyclic subgroup V ⊆ Q the group p−1(V ) and the group Q satisfy
Conjecture 13.16, then G satisfies Conjecture 13.16.

The proof of property (E) for Conjecture 13.11 is analogous. Finally we con-
clude from [578, Lemma 3.16] and assertion (iv) that property (E) holds also
for the Full Farrell-Jones Conjecture 13.27 for additive G-categories.

Because of assertion (ii), we can replace in property (E) the assumption
that V is virtually cyclic by the assumption that V is trivial or infinite cyclic.
This finishes the proof of assertions (v) for additive G-categories as coeffi-
cients.

The proofs of assertions (v) for the version of the Full Farrell-Jones Con-
jecture 13.27 for higher G-categories is analogous and can be found in in [172,
Theorem 1.7 (13)].

(vi) We begin with the case of additive G-categories as coefficients.
Assertion (vi) is proved in [76, Theorem 0.8] for Conjecture 13.16, the

proof for Conjecture 13.11 is completely analogous. Now assertion (vi) fol-
lows for the version of Full Farrell-Jones Conjecture 13.27 with additive G-
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categories since there is an obvious isomorphism for a finite group F , see [578,
Lemma 1.20],

colimi→∞(Gi o F )
∼=−→
(
colimi→∞Gi

)
o F.

The proof of assertion (vi) for the version of the Full Farrell-Jones Conjec-
ture 13.27 for higher G-categories is analogous and can be found in in [172,
Theorem 1.6 (12)].

(vii) Because of assertion (vi) it suffices to consider the case where I is finite.
An obvious induction argument over the cardinality of the finite set I reduces
the claim to the case I = {1, 2}.

Let G1 and G2 be groups. Let pr : G1 ∗ G2 → G1 × G2 be the canonical
projection. Let C ⊆ G1 × G2 be a cyclic subgroup. Then there exists a
free group F and a finite group H such that pr−1(C) is a subgroup of F oH,
see [578, Lemma 3.21]. (In the statement of [578, Lemma 3.21] the assumption
countable appears but the proof goes through in the general case without
modifications.) A finitely generated free group satisfies the Full Farrell-Jones
Conjecture 13.27 by [88, Remark 6.4] and [172, Theorem 1.6 (3)] since it is a
hyperbolic group. Hence F satisfies the Full Farrell-Jones Conjecture 13.27
by assertion (vi). We conclude from assertion (iii) that F oH satisfies the Full
Farrell-Jones Conjecture 13.27. Hence pr−1(C) satisfies the Full Farrell-Jones
Conjecture 13.27 for every cyclic subgroup C ⊆ G1 × G2 by assertion (i).
The product G1 × G2 satisfies the Full Farrell-Jones Conjecture 13.27 by
assertion (iv). Now assertion (v) implies that G1∗G2 satisfies the Full Farrell-
Jones Conjecture 13.27. ut

Exercise 13.30. Consider an epimorphism of groups G → Q whose kernel
is finite. Suppose that Q satisfies the Full Farrell-Jones Conjecture 13.27.

Show that G satisfies the Full Farrell-Jones Conjecture 13.27.

Exercise 13.31. Suppose that the Full Farrell-Jones Conjecture 13.27 holds
for all groups that occur as fundamental groups of a connected orientable
closed 4-manifold.

Show that then the Full Farrell-Jones Conjecture 13.27 holds for all
groups.

13.8 Splitting the Assembly Map from FIN to VCY

In the sequel we denote for two families F ⊆ G by

(13.32) ιF⊆G : EF (G)→ EG(G)

the up toG-homotopy uniqueG-map. Note that ιF⊆ALL : EF (G)→ EALL(G) =
G/G is the projection.
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Theorem 13.33 (Splitting the K-theoretic assembly map from FIN
to VCY). Let G be a group

(i) Let A be an additive G-category. Let n be any integer.
Then

HG
n

(
ιFIN⊆VCY ; KA

)
: HG

n

(
EFIN (G); KA

)
→ HG

n

(
EVCY(G); KA

)
is split injective. In particular we obtain a natural splitting

HG
n

(
EVCY(G); KA

) ∼=−→ HG
n

(
EFIN (G); KA

)
⊕HG

n

(
ιFIN⊆VCY ; KA

)
.

Moreover, there exists specific Or(G)-spectrum NKA and a natural iso-
morphism

HG
n

(
ιFIN⊆VCYI ; NKA

) ∼=−→ HG
n

(
ιFIN⊆VCY ; KA

)
where VCYI is the family of virtually cyclic subgroups of type I;

(ii) Let C be a right exact G-∞-category. Let n be any integer.
Then

HG
n

(
ιFIN⊆VCY ; KC

)
: HG

n

(
EFIN (G); KC

)
→ HG

n

(
EVCY(G); KC

)
is split injective.

Proof. (i) See [92, Theorem 1.3] or[670, Theorem 0.1].

(ii) This follows from [170, Corollary 1.13] and [169, Theorem 1.1.5]. ut

Whereas in [92, Theorem 1.3] just a splitting is established, in [670, The-
orem 0.1], an explicit Or(G)-spectra NKG

A is constructed and the relative
terms including the involution on the K-groups are further analyzed, in par-
ticular they are identified with K-groups of Nil-categories. Comment 16
(by W.): There may be gap in [670, Theorem 0.1] which we have to fix. For
rings see also Lafont-Ortiz [591].

For L-theory one has at least the following version that is mentioned af-
ter Theorem 1.3 in [92] for rings. The argument carries over to additive G-
categories with involution.

Theorem 13.34 (Splitting the L-theoretic assembly map from FIN
to VCY). Let A be an additive G-category with involution such that there
exists an integer Nwith the property that πn

(
KA(I(V ))

)
= 0 for all virtually

cyclic subgroups V of G and all n ≤ N .
Then

HG
n

(
ιFIN⊆VCY ; L

〈−∞〉
A

)
: HG

n

(
EFIN (G); L

〈−∞〉
A

)
→ HG

n

(
EVCY(G); L

〈−∞〉
A

)
is split injective.
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It is not clear whether the condition about πn
(
KA(I(V ))

)
appearing in

Theorem 13.34, which is needed for the proposed proof, is necessary. If we
consider group rings RG, this condition is automatically satisfied if R is
regular and the order of every finite subgroup of G is invertible in R, e.g., R
is a field of characteristic zero.

13.9 Splitting Rationally the Assembly Map from T R
to FIN

Lemma 13.35. Let G be a group and let R be a ring (with involution).
Then the relative assembly maps

Hn(ιT R⊆FIN ; KR) : Hn(ET R(G); KR)→ Hn(EFIN (G); KR);

Hn(ιT R⊆FIN ; L
〈−∞
R ) : Hn(ET R(G); L

〈−∞
R )→ Hn(EFIN (G); L

〈−∞
R );

KG
n (ιT R⊆FIN ) : KG

n (ET R(G)) → KG
n (EFIN (G));

KOGn (ιT R⊆FIN ) : KOGn (ET R(G)) → KOGn (EFIN (G)),

are split injective after applying −⊗Z Q for n ∈ Z.

Proof. This follows Lemma 12.18 (ii). ut

Remark 13.36. Note that Lemma 13.35 is only stated in the case that we
consider the untwisted coefficients rings R. It is conceivable that it holds also
in the case where we allow a twisting α : G → aut(R), but the details of a
proof of this statement has not been worked out in detail and are definitely
more complicated as in the untwisted case, see Remark 12.93.

The proof of Lemma 13.35 carries over to also for additive categories and
right-exact ∞-categories as coefficients provided that the G-actions on these
are trivial.

Example 13.37 (The L-theory assembly map for the trivial family
is not injective in general). Consider the group Z/3. Then

H1(BZ/3; L(Z))→ L1(Z[Z/3])

is not injective. Namely, the target is known to be trivial, but the source is
non-trivial. This can be seen by inspecting the Atiyah-Hirzebruch spectral
sequence converging to Hp+q(BZ/3; L(Z)) with E2-term

Hp(BZ/3, Lq(Z)) =


Z/3 p ≥ 1, p odd, q ≡ 0 mod 4;

Lq(Z) p = 0;

0 otherwise.
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Note that Wh(Z/3), K̃0(Z[Z/3]), and Kn(Z[Z/3]) for n ≤ −1 vanish by The-
orem 3.115, Theorem 3.116 (iva), Theorem 4.22 (i) and (v), Example 2.106
so that the decorations for the L-groups do not play a role by Theorem 9.106.

Example 13.38 (The K-theory assembly map for the trivial fam-
ily is not injective in general). An easy calculation using the Atyiah-
Hirzebruch spectral sequence shows that the K-theoretic assembly map
Hn(ιT R⊆FIN ; KR) : Hn(ET R(G); KR) → Hn(EFIN (G); KR) is not injec-
tive if n = 2, G = Z/2 × Z/2 and R = Fp for an odd prime p, see [943]. No
such example is known to the author for R = Z.

13.10 Reducing the Family of Subgroups for the
Farrell-Jones Conjecture

Next we explain that one sometimes can reduce the family of virtually cyclic
subgroups VCY to a smaller family.

A virtually cyclic group V is called of type I if it admits an epimorphism
to the infinite cyclic group, and of type II if it admits an epimorphism onto
the infinite dihedral group. The elementary proof of the following result can
be found in [670, Lemma 1.1].

Lemma 13.39. Let V be an infinite virtually cyclic group.

(i) V is either of type I or of type II;
(ii) The following assertions are equivalent:

(a) V is of type I;
(b) H1(V ) is infinite;
(c) H1(V )/ tors(V ) is infinite cyclic;
(d) The center of V is infinite;

(iii) There exists a unique maximal normal finite subgroup KV ⊆ V , i.e., KV is
a finite normal subgroup and every normal finite subgroup of V is contained
in KV ;

(iv) Let QV := V/KV . Then we obtain a canonical exact sequence

1→ KV
iV−→ V

pV−−→ QV → 1.

Moreover, QV is infinite cyclic if and only if V is of type I and QV is
isomorphic to the infinite dihedral group if and only if V is of type II;

(v) Let f : V → Q be any epimorphism onto the infinite cyclic group or onto
the infinite dihedral group. Then the kernel of f agrees with KV ;

Exercise 13.40. Let φ : V → W be a homomorphism of infinite virtually
cyclic groups with infinite image. Then φ maps KV to KW and we obtain
the following canonical commutative diagram with exact rows
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1 // KV
iV //

φK

��

V
pV //

φ

��

QV //

φQ

��

1

1 // KW
iW // W

pW // QW // 1

with injective φQ.

Exercise 13.41. Show that a group G is infinite virtually cyclic if and only
if it admits a proper cocompact isometric action on R.

In the sequel we denote by VCYI the family of subgroups that are either
finite or infinite virtually cyclic of type I.

Definition 13.42 (Hyperelementary group). Let p be a prime. A (pos-
sibly infinite) group G is called p-hyperelementary if it can be written as an
extension 1 → C → G → P → 1 for a cyclic group C and a finite group P
whose order is a power of p.

We call G hyperelementary if G is p-hyperelementary for some prime p.

If G is finite, this reduces to the usual definition. Note that for a finite
p-hyperelementary group G one can arrange that the order of the finite cyclic
group C appearing in the extension 1 → C → G → P → 1 for a finite p-
group P is prime to p. Subgroups and quotient groups of p-hyperelementary
groups are p-hyperelementary again. For a group G and a prime p let HEp
and HE respectively be the class of (possibly infinite) subgroups that are
p-hyperelementary or hyperelementary respectively.

The following result is taken from [71, Theorem 8.2].

Theorem 13.43 (Hyperelementary induction). Let G be a group and
let A be an additive G-category (with involution). Then both relative assembly
maps

Hn(ιHE,VCY ; KA) : HG
n

(
EHE(G); KA

)
→ HG

n

(
EVCY(G); KA

)
and

Hn(ιHE,VCY ; L
〈−∞〉
A ) : HG

n

(
EHE(G); L

〈−∞〉
A

)
→ HG

n

(
EVCY(G); L

〈−∞〉
A

)
induced by the up to G-homotopy unique G-map ιHE,VCY ;EHE(G)→ EVCY(G)
are bijective for all n ∈ Z.

Comment 17 (by W.): Does Theorem 13.43 has an analogue for ∞-
categories? Here Ullmann-Winges [942, Theorem 8.7] is relevant. (I doubt it
since one has to pass to Dress groups in the setting of higher categories).
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13.10.1 Reducing the Family of Subgroups for the Farrell-Jones
Conjecture for K-Theory

Theorem 13.44 (Passage from VCYI to VCY for K-theory). Let G be
a group.

(i) Let A be an additive G-category. Then the relative assembly map

HG
n

(
ιVCYI⊆VCY ; KA

)
: HG

n

(
EVCYI (G); KA

)
→ Hn

(
EVCY(G); KA

)
is bijective for all n ∈ Z;

(ii) Let C be a right exact G-∞-category. Then the relative assembly map

HG
n

(
ιVCYI⊆VCY ; KC

)
: HG

n

(
EVCYI (G); KC

)
→ Hn

(
EVCY(G); KC

)
is bijective for all n ∈ Z;

Proof. (i) See [271, Remark 1.6].

(ii) The argument for assertion (i) goes through, since the K-theoretic
Farrell-Jones Conjecture 13.20 with coefficients in higher G-categories holds
for finitely F-amenable groups, actually for finitely homotopy F-amenable
groups, see [172, Theorem 5.1]. ut

Theorem 13.45 (Passage from HEI to VCY for K-theory and additive
G-categories as coefficients). Let G be a group and A be an additive G-
category. Let HEI be the family of subgroups of G given by the intersection
VCYI ∩HE.

Then the relative assembly map

HG
n

(
ιHEI⊆VCY ; KA

)
: HG

n

(
EHEI (G); KA

)
→ Hn

(
EVCY(G); KA

)
is bijective for all n ∈ Z.

Proof. This follows from Theorem 13.43, Theorem 13.44 (ii), Theorem 15.9 (ii),
and Lemma 15.14. ut

Theorem 13.45 implies that we get equivalent conjectures if we replace in
Conjectures 13.1, 13.2, and 13.11 the family VCY by the smaller family HEI .

Exercise 13.46. Fix a prime p. Show that an infinite subgroup H ⊂ G
belongs to HEp ∩ VCYI if and only if H is isomorphic to P oφ Z for some
finite p-group P and an automorphism φ : P → P whose order is a power of
p.

Exercise 13.47. Let p be a prime. Let G be an infinite virtually cyclic group
of type I that is p-hyperelementary. Let R be a regular ring.

Show that the map induced by the projection pr : EFIN (G)→ G/G
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HG
n (EFIN (G); KR)→ HG

n (G/G; KR) = Kn(RG)

is bijective for all n ∈ Z after applying −⊗Z Z[1/p].

Theorem 13.48 (Reduction to the family FIN for algebraic K-
theory with regular rings as coefficients).

Let G be a group and let R be a regular ring coming with a homomorphism
G→ aut(R). Let P(G,R) be the set of primes which are not invertible in R
and for which G contains an element of order p.

Then for all m ∈ Z the assembly map

HG
m(EFIN (G); KR)→ HG

m(EVCY(G); KR)

is an P(G,R)-isomorphism, i.e., it becomes an isomorphism after inverting
all primes in P(G,R).

Proof. See [651, Theorem 1.2]. Actually, additive categories with coefficient
are treated in [651, Theorem 9.1]. ut

Exercise 13.49. Let G be a group and let R be a regular ring. Suppose that
Q ⊆ R or that G is torsionfree.

Then for all m ∈ Z the assembly map

HG
m(EFIN (G); KR)→ HG

m(EVCY(G); KR)

is an isomorphism.

One can reduce the families by extending the classical induction theorems
for finite groups due to Dress to our setting. This is carried out in detail
in [75]. There only rings as coefficients are treated but the proofs carry over
to the setting of additive G-categories. For instance for K-theory one has to
extend the relevant pairing of the Swan group for group rings to additive
categories. We leave the details to the reader and just record some results.
Recall that FCY is the family of finite cyclic subgroups.

Theorem 13.50 (Reductions to families contained in FIN for alge-
braic K-theory with rings as coefficients). Let G be a group and R be
a ring.

(i) Then the relative assembly map

HG
n

(
ι(HE∩FIN )⊆FIN ; KR

)
: HG

n

(
EHE∩FIN (G); KR

) ∼=−→ Hn

(
EFIN (G); KR

)
is bijective for all n ∈ Z;

(ii) Let p be a prime. Then the relative assembly map

HG
n

(
ι(HEp∩FIN )⊆FIN ; KR

)
: HG

n

(
EHEp∩FIN (G); KR

)
→ Hn

(
EFIN (G); KR

)
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is bijective for all n ∈ Z after applying Z(p) ⊗Z −;
(iii) The relative assembly map

HG
n

(
ιFCY⊆FIN ; KR

)
: HG

n

(
EFCY(G); KR

)
→ Hn

(
EFIN (G); KR

)
is bijective for all n ∈ Z after applying Q⊗Z −;

Proof. By the Transitivity Principle, see Theorem 15.13, it suffices to prove
the assertions only in the special case where G is finite and in particular
Hn

(
EFIN (G); KR

)
reduces to Kn(RG). Then the claim follows from [75,

Theorem 2.9 and Lemma 4.1]. ut

Note that in Theorem 13.50 we consider only rings with trivial G-action.
It is conceivable that it carries over twisted group rings and, more generally,
to additive G-categories, but we have not checked the details of a proof of
this claim.

Next we state and prove the following results, which will be needed for the
proof of Theorem 13.62 (v).

Lemma 13.51. Consider a ring R, a group G, and m ∈ Z. Suppose that,

for every finite group H and every group automorphism φ : H
∼=−→ H with the

property that the semidirect product H oΦ Z is isomorphic to a subgroup of
G, and every n ∈ Z, n ≥ 0, the assembly map

H
HoφZ
m (EZ; KR[Zn])→ H

HoφZ
m ({•}; KR[Zn]) = Km((R[Zn])[H oφ Z])

is an isomorphism where we consider the Z-CW -complex EZ as a H oφ Z-
CW -complex by restriction with the projection H oφ Z→ Z.

Then the canonical map

HG
i (EFIN (G),KR)

∼=−→ HG
i (EVCY(G),KR)

is bijective for i ≤ m.

Proof. Theorem 13.44 implies that for i ∈ Z the map

HG
i (EVCYI (H oφ Z),KR)→ HG

i (EVCY(H oφ Z),KR)

is bijective. Hence it suffices to show that, for i ∈ Z with i ≤ m, the canonical
map

HG
i (EFIN (G),KR)

∼=−→ HG
i (EVCYI (G),KR)

is bijective. Thanks to the Transitivity Principle appearing in Theorem 15.12,
this has only to be done in the special case where G is a virtually cyclic group
of type I.

Consider any finite group H and any group automorphism φ : H
∼=−→ H.

Since EZ with the HoφZ action coming from restriction with the projection
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HoφZ→ Z is a model for EFIN (H×φZ) and {•} is a model for EVCYI (H×φ
Z), it remains to show that the assembly map

H
HoφZ
i (EZ; KR)→ H

HoφZ
i ({•}; KR) = Ki(R[H oφ Z])

is bijective for i ≤ m. This will be achieved by proving inductively for
n = 0, 1, 2, . . . that this map is bijective for m − n ≤ i ≤ m provided that

H
HoφZ
m (EZ; KR[Zn])→ H

HoφZ
m ({•}; KR[Zn]) is bijective.

The induction beginning n = 0 is trivial. The induction step from (n− 1)
to n is done as follows. The Bass-Heller-Swan decomposition for the ring
R[Zn−1] can be implemented on the spectrum level, see for instance [668,
Theorem 4.2], and yields because of the identity (R[Zn−1])[Z] = R[Zn] for
every H oφ Z-CW -complex X and every i ∈ Z an isomorphism, natural in
X,

H
HoφZ
m (X; KR[Zn−1])⊕H

HoφZ
m−1 (X; KR[Zn−1])⊕H

HoφZ
m (X; NKR[Zn−1])

⊕HHoφZ
m (X; NKR[Zn−1])

∼=−→ H
HoφZ
m (X; KR[Zn]).

Since a direct sum of an isomorphism is again an isomorphism and we can
apply the latter isomorphism to X = EZ and X = {•}, the map

H
HoφZ
k (EZ; KR[Zn−1])→ H

HoφZ
k (E{•}; KR[Zn−1])

is bijective for k = m− 1,m. Now the induction hypothesis implies that

H
HoφZ
i (EZ; KR)→ H

HoφZ
i ({•}; KR)

is bijective for m− n ≤ i ≤ m. This finishes the proof of Lemma 4.14. ut

Consider a ring R together with a ring automorphism Ψ : R
∼=−→ R. We

can think of Ψ as a group homomorphism Ψ : Z → aut(R). For a subgroup
L ⊆ Z, let K(Rψ|L [L]) be the non-connective algebraic K-theory spectrum
of the Ψ |L-twisted group ring of L with coefficient in R for the group homo-
morphism Ψ |L : L → aut(R). We obtain a covariant Or(Z)-spectrum KR,Ψ

by sending Z/L to K(RΨ |L [L]). Note that for two subgroups L,L′ ⊆ Z the
set morOr(Z)(Z/L,Z/L′) is empty if L 6⊆ L′, and consists of precisely one
element, the canonical projection Z/L→ Z/L′ if L ⊆ L′. In the case L ⊆ L′
the functor KR,Ψ sends this morphism to the map of spectra induced by the
inclusion of rings RΨ |L [L]→ RΨ |L′ [L

′].

Lemma 13.52. Let R be a regular ring and Ψ : R → R be a ring automor-
phism. Then the map

HZ
m(EZ; KR,Ψ )→ HZ

m({•}; KR,Ψ ) = Km(RΨ [Z])

is an isomorphisms for all m ∈ Z.
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Proof. This is a special case of Theorem 13.48 but we describe as an illustra-
tion a more elementary proof.

There is a twisted Bass-Heller-Swan decomposition for non-negative K-
theory, see [671, Theorem 0.1], which reduces to the desired isomorphism
if the twisted Nil terms NKm(R,Ψ) vanish for m ∈ Z. By inspecting the
definition of the non-connective K-theory spectrum of [668] one sees that it
suffices to show the bijectivity

HZ
m(EZ; KR[Zn],Ψ [Zn])→ HZ

m({•}; KR[Zn],Ψ [Zn]) = Km((R[Zn])Ψ [Zn][Z])

for all n,m ∈ Z with m ≥ 1 and n ≥ 0. Since R is regular, Theorem 3.80 (ii)
shows that R[Zn] is regular for every n ≥ 0. Hence it suffices to prove
Lemma 13.52 only for m ≥ 1. This has already be done by Waldhausen [955,
Theorem 4 on page 138 and the Remark on page 216]. One may also refer
to [419, Remark on page 362].

One may also refer for the proof of Lemma 13.52 to [80, Theorem 7.8 and
Theorem 10.1], where more generally additive categories are treated. ut

Consider a group H together with an automorphism φ : H → H. Let
p : H oZ Z→ Z be the projection. Then we get from the adjunction between
p∗ and p∗, see [265, Lemma 1.9], for every Z-CW -complex X and all m,n ∈
Z, n ≥ 0 an isomorphism, natural in X

(13.53) H
HoφZ
m (p∗X; KR[Zn])

∼=−→ HZ
m(X; p∗KR[Zn]).

From the definitions we get

p∗KR[Zn](Z/L) = KR[Zn]((H oφ Z)/p−1(L)) = K(R[Zn][H oφ|L L])

for any object Z/L in Or(Z). Let Φ : RH → RH be the ring automorphism
induced by φ. It yields a ring automorphism Φ[Zn] : RH[Zn] → RH[Zn]. We
have defined a covariant Or(Z)-spectrum KRH[Zn],Φ[Zn] before Lemma 13.52,
just take Ψ = Φ[Zn]. There is a weak equivalence of covariant Or(Z)-spectra

KRH[Zn],Φ[Zn]

∼=−→ p∗KR[Zn]

coming from the identification R[H][Zn]Φ|L[Zn][L] = R[Zn][H oφ|L L]. This
implies using [265, Theorem 3.11] that the next lemma is true.

Lemma 13.54. We get for every Z-CW -complex X and all m,n ∈ Z, n ≥ 0
an isomorphism, natural in X

HZ
m(X; KRH[Zn],Φ[Zn])

∼=−→ H
H×φZ
m (p∗X; KR[Zn]).

Lemma 13.55. Let H be a finite group and let φ : H
∼=−→ H be an automor-

phism. Let R be a Artinian ring. Then the map
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H
HoφZ
0 (EZ; KR[Zn])→ H

HoφZ
0 ({•}; KR[Zn]) = K0((R[Zn])[H oφ Z])

is an isomorphisms for all n ∈ Z, n ≥ 0.

Proof. We conclude from Lemma 13.54 that it remains to show that the map

HZ
0 (EZ; KRH[Zn],Φ[Zn])→ HZ

0 ({•}; KRH[Zn],Φ[Zn]) = K0(RH[Zn]Φ[Zn][Z])

is bijective for all n ≥ 1.
Denote by J ⊆ RH the Jacobson radical of RH. Since RH is Artinian, J

is nilpotent, i.e., there exists a natural number m with Jm = {0}, see [594,
Theorem 4.12 on page 56]. The ring RH/J is a semisimple Artinian ring,
see [594, Definition 20.1 on page 311 and (20.3) on page 312], and in particular
regular.

The ring automorphism Φ : RH → RH induced by φ obviously satisfies
Φ(J) = J and hence induces a ring automorphism Φ : RH/J → RH/J . Hence
we get a commutative diagram induced by the projection RH → RH/J .

(13.56) HZ
0 (EZ; KRH[Zn],Φ[Zn]) //

��

K0(RH[Zn]Φ[Zn][Z])

��
HZ

0 (EZ; K(RH/J)[Zn],Φ[Zn])
// K0((RH/J)[Zn]Φ[Zn][Z]).

We have the short exact sequence of abelian groups 0 → J → RH →
RH/J → 0. It induces a short exact sequence of abelian groups

0→ J [Zn]Φ[Zn]|J[Zn]
[Z]→ RH[Zn]Φ[Zn][Z]→ (RH/J)[Zn]Φ[Zn][Z]→ 0.

Hence we can identify the ring (RH/J)[Zn]Φ[Zn][Z] with the quotient of the

ring RH[Zn]Φ[Zn][Z] by the ideal J [Zn]Φ[Zn]|J[Zn]
[Z]. Recall that an ideal I in

a ring is nilpotent if and only if there is a natural number l such that for any
collection of l elements i1, i2, . . . il in I the product i1i2 · · · il vanishes. Since J
is nilpotent, we conclude that the ideal J [Zn]oΦ[Zn]|J[Zn]

[Z] is nilpotent. Hence
the right vertical arrow in the diagram (13.56) is bijective by Lemma 2.124.

Next we show that the left vertical arrow in the diagram (13.56) is bijective.
Since EZ is a free Z-CW -complex, we conclude from the equivariant Atiyah-
Hirzebruch spectral sequence described in Theorem 12.48 that it suffices to
show for every i that the map Ki(RH[Zn]) → Ki((RH/J)[Zn]) is bijective
for all i ≤ 0.

Since J is a nilpotent two-sided ideal of RH, J [Zn] is a nilpotent two-
sided ideal of RH[Zn]. We can identify (RH/J)[Zn] with (RH[Zn])/(J [Zn]).
Hence K0(RH[Zn]) → K0((RH/J)[Zn]) is bijective by Lemma 2.124. We
conclude Ki(RH[Zn]) = 0 for i ≤ −1 from Theorem 4.16 (ii). Since RH/J
is regular and hence RH/J [Zn] is regular by Theorem 3.80 (ii), we conclude
from Theorem 4.7 that Ki((RH/J)[Zn]) = 0 for i ≤ −1. Hence the left
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vertical arrow in the diagram (13.56) is bijective. The lower vertical arrow
in the diagram (13.56) is bijective because of Lemma 13.52 applied to the
automorphism Φ[Zn]. We conclude that the upper vertical arrow in the dia-
gram (13.56) is bijective. This finishes the proof of Lemma 13.55 ut

13.10.2 Reducing the Family of Subgroups for the Farrell-Jones
Conjecture for L-Theory

Theorem 13.57 (Passage from FIN to VCYI for L-theory). Let G be
a group and let A be an additive G-category with involution. Let n be any
integer. Then

HG
n

(
ιFIN⊆VCYI ; L

〈−∞〉
A

)
: HG

n

(
EFIN (G); L

〈−∞〉
A

)
→ HG

n

(
EVCYI (G); L

〈−∞〉
A

)
is bijective.

Proof. The argument given in [639, Lemma 4.2] goes through since it is based
on the Wang sequence for a semidirect product GoZ which can be generalized
for additive G-categories with involutions as coefficients. ut

The last result is very useful when G does not contain virtually cyclic
subgroups of type II since then one can replace in Conjectures 13.4, 13.7
and 13.16 the family VCY by the family FIN . (This is not true for Con-
jecture 13.25 since G o F for a finite group F may contain a virtually cyclic
subgroup of type II even in the case that G does not contain a virtually cyclic
subgroup of type II.)

Exercise 13.58. Consider the group extension 1 → F → G
f−→ Zd → 1 for

a finite group F . Show that there exists a spectral sequence converging to

L
〈−∞〉
p+q (ZG) whose E2-term is given by Hp(C∗(EZd)⊗Z[Zd]L

〈−∞〉
q (ZF )) where

the Zd-action on L
〈−∞〉
q (ZF ) is induced by the conjugation action of G on

F .

Let p be a prime. A finite group G is called p-elementary if it is isomorphic
to C × P for a cyclic group C and a p-group P such that the order |C| is
prime to p. Let Ep be the class of of finite subgroups that are p-elementary.

Theorem 13.59 (Bijectivity of the L-theoretic assembly map from
FIN to VCY after inverting 2). Let G be a group and let R be a ring
with involution.

(i) The relative assembly map

HG
n

(
ιFIN⊆VCY ; L

〈−∞〉
R

)
: HG

n

(
EFIN (G); L

〈−∞〉
R

)
→ HG

n

(
EVCY(G); L

〈−∞〉
R

)
is bijective for all n ∈ Z after applying Z[1/2]⊗Z −;
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(ii) Put

F =
⋃

p prime,p6=2

Ep

Then the relative assembly map

HG
n

(
ιF⊆FIN ; L

〈−∞〉
R

)
: HG

n

(
EF (G); L

〈−∞〉
R

)
→ Hn

(
EFIN (G); L

〈−∞〉
R

)
is bijective for all n ∈ Z

Proof. (i) See [657, Proposition 74 on page 747].

(ii) This is a variation of the proof of assertion (ii) of Theorem 13.50 tak-
ing [75, Section 15] into account. ut

Theorem 13.59 shows that Conjecture 13.4 implies Conjecture 13.6 and
hence Conjecture 13.7 implies Conjecture 13.8.

Note that in Theorem 13.59 we consider only rings with involution with
trivial G-action. It is conceivable that it carries over twisted group rings, but
we have not checked the details of a proof of this claim. It is unclear whether
it carries over to additive categories with involutions since UNil-terms have
not been defined and investigated for additive categories.

13.11 The Full Farrell-Jones Conjecture Implies All Its
Variants

Recall that the Full Farrell-Jones Conjecture 13.27 implies the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, see
Remarks 13.12 and 13.17. In this section we give the proofs that Conjec-
tures 13.2 and 13.7 imply all the variants we have stated before at various
places for rings as coefficients. So the Full Farrell-Jones Conjecture is the
“master” conjecture that implies all variants stated in this book for rings as
coefficients.

For the reader’s convenience we recall all these variants below before we
show how they follow from Full Farrell-Jones Conjecture 13.27.

13.11.1 List of Variants of the Farrell-Jones Conjecture

We begin with the K-theoretic variants.

Conjecture 2.60 (Farrell-Jones Conjecture for K0(R) for torsionfree
G and regular R). Let G be a torsionfree group and let R be a regular ring.
Then the map induced by the inclusion of the trivial group into G
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K0(R)
∼=−→ K0(RG)

is bijective.
In particular we get for any principal ideal domain R and torsionfree G

K̃0(RG) = 0.

Conjecture 2.67 (Farrell-Jones Conjecture for K0(RG) for regular
R with Q ⊆ R). Let R be a regular ring with Q ⊆ R and G be a group.

Then the homomorphism

IFIN (G,F ) : colimH∈SubFIN (G)K0(RH)→ K0(RG).

coming from the various inclusions of finite subgroups of G into G is a bijec-
tion.

Here is a stronger version of Conjecture 2.67.
Conjecture 2.69. [Farrell-Jones Conjecture for K0(RG) for regular
R] Let R be a regular ring and let G be a group. Let P(G,R) be the set of
primes which are not invertible in R and for which G contains an element of
order p.

Then the homomorphism

IFIN (G,F ) : colimH∈SubFIN (G)K0(RH)→ K0(RG)

coming from the various inclusions of finite subgroups of G into G is
an P(G,R)-isomorphism, i.e., an isomorphism after inverting all prime in
P(G,R).

Conjecture 2.72 (Farrell-Jones Conjecture for K0(RG) for an Ar-
tinian ring R) Let G be a group and R be an Artinian ring. Then the
canonical map

IFIN (G,R) : colimH∈SubFIN (G)K0(RH)→ K0(RG)

is an isomorphism.

Conjecture 2.102 (The rational K̃0(ZG)-to-K̃0(QG)-Conjecture) The
change of ring maps

Q⊗Z K̃0(ZG)→ Q⊗Z K̃0(QG)

is trivial.

Conjecture 3.109 (Farrell-Jones Conjecture for K0(RG) and K1(RG)
for regular R and torsionfree G). Let G be a torsionfree group, and let
R be a regular ring. Then the maps defined in (3.26) and (3.27)
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A0 : K0(R)
∼=−→ K0(RG);

A1 : G/[G,G]⊗Z K0(R)⊕K1(R)
∼=−→ K1(RG),

are both isomorphisms. In particular the groups WhR0 (G) and WhR1 (G), see
Definition 3.28, vanish.

Conjecture 3.110 (Farrell-Jones Conjecture for K̃0(ZG) and Wh(G)

for torsionfree G). Let G be a torsionfree group. Then K̃0(ZG) and Wh(G)
vanish.

Conjecture 4.18 (The Farrell-Jones Conjecture for negative K-
theory and regular coefficient rings). Let R be a regular ring and G
be a group such that for every finite subgroup H ⊆ G the element |H| · 1R
of R is invertible in R. Then

Kn(RG) = 0 for n ≤ −1.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative K-
theory of the ring of integers in an algebraic number field). Let
R be the ring of integers in an algebraic number field. Then, for every group
G, we have

Kn(RG) = 0 for n ≤ −2,

and the map

colimH∈SubFIN (G)K−1(RH)
∼= // K−1(RG)

is an isomorphism.

Conjecture 4.21 (The Farrell-Jones Conjecture for negative K-
theory and Artinian rings as coefficient rings) Let G be a group and
let R be a Artinian ring. Then

Kn(RG) = 0 for n ≤ −1.

Conjecture 5.22 (Farrell-Jones Conjecture for Wh2(G) for torsion-
free G). Let G be a torsionfree group. Then Wh2(G) vanishes.

Conjecture 6.53 (Farrell-Jones Conjecture for torsionfree groups
and regular rings for K-theory). Let G be a torsionfree group. Let R be
a regular ring. Then the assembly map

Hn(BG; K(R))→ Kn(RG)

is an isomorphism for n ∈ Z.

Conjecture 6.59 (Nil-groups for regular rings and torsionfree groups).
Let G be a torsionfree group and let R be a regular ring. Then
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NKn(RG) = 0 for all n ∈ Z.

Conjecture 6.74 (Farrell-Jones Conjecture for torsionfree groups
for homotopy K-theory). Let G be a torsionfree group. Then the assembly
map

Hn(BG; KH(R))→ KHn(RG)

is an isomorphism for every n ∈ Z and every ring R.

Conjecture 6.76 (Comparison of algebraic K-theory and homotopy
K-theory for torsionfree groups). Let R be a regular ring and let G be
a torsionfree group. Then the canonical map

Kn(RG)→ KHn(RG)

is bijective for all n ∈ Z.

Conjecture 13.1 (K-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring R) Given a group G and a ring R, we say that G satisfies
the K-theoretic Farrell-Jones Conjecture with coefficients in the ring R if the
assembly map induced by the projection pr : EVCY(G)→ G/G

HG
n (pr) : HG

n (EVCY(G); KR)→ HG
n (G/G; KR) = Kn(RG)

is bijective for all n ∈ Z.

Next we list the L-theoretic variants.

Conjecture 9.114 (Farrell-Jones Conjecture for torsionfree groups
for L-theory) Let G be a torsionfree group. Let R be any ring with involu-
tion.

Then the assembly map

Hn(BG; L〈−∞〉(R))→ L〈−∞〉n (RG)

is an isomorphism for all n ∈ Z.

Conjecture 13.6 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring with involution R after inverting 2) Given a group
G and ring with involution R, we say that G satisfies the L-theoretic Farrell-
Jones Conjecture with coefficients in the ring with involution R after inverting
2 if the assembly map given by the projection EFIN (G)→ G/G

HG
n (pr) : HG

n (EFIN (G); L
〈−∞〉
R )→ HG

n (G/G; L
〈−∞〉
R ) = L〈−∞〉n (RG)

is bijective for all n ∈ Z after inverting 2.

Conjecture 13.4 (L-theoretic Farrell-Jones Conjecture with coeffi-
cients in the ring with involution R) Given a group G and ring with
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involution R, we say that G satisfies the L-theoretic Farrell-Jones Conjecture
with coefficients in the ring with involution R if the assembly map given by
the projection EVCY(G)→ G/G

HG
n (pr) : HG

n (EVCY(G); L
〈−∞〉
R )→ HG

n (G/G; L
〈−∞〉
R ) = L〈−∞〉n (RG)

is bijective for all n ∈ Z.

Finally we mention the following Novikov type conjectures.

Conjecture 13.60 (K-theoretic Novikov Conjecture). A group G sat-
isfies the K-theoretic Novikov Conjecture if the assembly map

Hn(BG; K(Z)) = HG
n (EG; K(Z))→ HG

n (G/G; K(Z)) = Kn(ZG)

is rationally injective for all n ∈ Z.

Conjecture 13.61 (L-theoretic Novikov Conjecture). A group G sat-
isfies the L-theoretic Novikov Conjecture if the assembly map

Hn(BG; L〈−∞〉(Z)) = HG
n (EG; L〈−∞〉(Z))

→ HG
n (G/G; L〈−∞〉(Z)) = L〈−∞〉n (ZG)

is rationally injective for all n ∈ Z.

13.11.2 Proof of the Variants of the Farrell-Jones Conjecture

Theorem 13.62 (The Full Farrell-Jones Conjecture implies all other
variants).

(i) The Full Farrell-Jones Conjecture 13.27 implies the K-theoretic Farrell-
Jones Conjecture 13.2 with coefficients in rings and the L-theoretic Farrell-
Jones Conjecture 13.7 with coefficients in rings with involution;

(ii) The K-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings
implies Conjecture 6.53, whereas the L-theoretic Farrell-Jones Conjec-
ture 13.7 with coefficients in rings with involutions implies Conjecture 13.6
and Conjecture 9.114;

(iii) Conjecture 6.53 implies Conjectures 2.60, 3.109, and 3.110;
(iv) The K-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings

implies Conjectures 2.67, 2.69, 2.102, and 4.18;
(v) The K-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings

implies Conjectures 2.72 and 4.21;
(vi) The K-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings

implies Conjecture 4.20;
(vii) Conjecture 6.53 implies Conjecture 5.22;
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(viii) Conjecture 6.53 implies Conjecture 6.59;
(ix) The K-theoretic Farrell-Jones Conjecture 13.2 with coefficients in rings

implies Conjectures 6.74 and 6.76;
(x) The K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring

Z implies the K-theoretic Novikov Conjecture 13.60;
(xi) The L-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the

ring Z implies the L-theoretic Novikov Conjecture 13.61. The L-theoretic
Novikov Conjecture 13.61 implies the Novikov Conjecture 9.137;

(xii) The Full Farrell-Jones Conjecture 13.27 implies all other variants of the
Farrell-Jones Conjecture.

Proof. (i) See Remarks 13.12 and 13.17.

(ii) Conjecture 13.4 implies Conjecture 13.6 by Theorem 13.59.
Next we show why Conjecture 13.2 implies Conjecture 6.53 and why Con-

jecture 13.7 implies Conjecture 9.114. Every torsionfree virtually cyclic group
is isomorphic to Z by Lemma 13.39. By the Transitivity Principle 15.13 ap-
plied to T R ⊆ VCY it suffices to show that the assembly maps

HZ
n(EZ; KR)→ Kn(RZ);

HZ
n(EZ; L

〈−∞〉
R )→ L〈−∞〉n (RZ),

are bijective for n ∈ Z. This follows for K-theory from the Bass-Heller-Swan
decomposition, see Theorem 6.16, and for L-theory from the Shaneson split-
ting, see (9.109).

(iii) Since R is regular, the negative K-groups of R vanish by Theorem 4.7.
Hence the Atiyah-Hirzebruch spectral sequence, which has E2-term E2

p,q =
Hp(BG;Kq(R)) and converges to Hp+q(BG; K(R)), is a first quadrant spec-

tral sequence. The edge homomorphism H0(BG;K0(R))
∼=−→ H0(BG; K(R))

at (0, 0) is bijective. There is an obvious identification H0(BG;K0(R)) ∼=
K0(R). Under this identification the edge homomorphism composed with the
assembly map appearing in Conjecture 6.53 turns out to be the change of
rings map K0(R)→ K0(RG). Hence we conclude from Conjecture 6.53 that
K0(R)→ K0(RG) is bijective as predicted by Conjecture 2.60. Inspecting the
Atiyah-Hirzebruch spectral yields an exact sequence 0→ H0(BG;K1(R))→
H1(BG; K(R)) → H1(BG;K0(R)) → 0. Under the obvious identification
H0(BG;K1(R)) = K1(R) the composite ofH0(BG;K1(R))→ H1(BG; K(R))
with the assembly map appearing in Conjecture 6.53 turns out to be the
change of rings map K1(R)→ K1(RG). Since H1(BG;K0(R)) = G/[G,G]⊗
K0(R), we obtain an exact sequence

0→ K1(R)→ K1(RG)→ G/[G,G]⊗K0(R)→ 0.

Next one checks that the composite of the map K1(RG)→ G/[G,G]⊗K0(R)
appearing in the sequence above with the map A1 appearing in Conjec-
ture 3.109 is the obvious projection. This implies Conjecture 3.109, and hence
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also Conjecture 3.110.

(iv) See [87, Theorem 1.5], [657, Proposition 87 on page 754] and [657,
paragraph before Conjecture 79 on page 750] for the proof for Conjec-
tures 2.67, 2.102, and 4.18. For the proof of Conjecture 2.69 is analogous
if one uses Theorem 13.48.

(v) We conclude from Lemma 13.51 and Lemma 13.55 that the assembly
map HG

n (EFIN (G),KR) → Kn(RG) is an isomorphism for n ≤ 0. We
have Ki(RH) = 0 for every finite group H and every i ≤ −1 by Theo-
rem 4.16 (ii). We conclude from the equivariant Atiyah-Hirzebruch spectral
sequence described in Theorem 12.48 that HG

n (EFIN (G),KR) = 0 holds for

n ≤ −1 and that H
HoφZ
0 (EFIN (H ×φ Z),KR) is the 0-th Bredon homology

of EFIN (H×φZ) with coefficients in the covariant functor Or(G)→ Z-MOD
sending G/K to Kn(RK). This 0-th Bredon homology can be identified
with colimG/H∈OrFIN (G)K0(RH). Under this identification the bijective as-
sembly map HG

n (EFIN (G),KR) → Kn(RG) becomes the canonical map
colimG/H∈OrFIN (G)K0(RH)→ K0(RG).

(vi) See [657, page 749]. The proof goes through if we replace Z by the ring
R of integers in an algebraic number field since the results appearing in [353]
for Z have been extended to R by Juan-Pineda [513].

(vii) We conclude from [619] that the second Whitehead group can be iden-
tified with the cokernel of the assembly map

H2(pr; KR) : HG
2 (EG; KR) = H2(BG; K(Z))→ HG

2 (EG; KR) = K2(ZG).

(viii) We conclude from Theorem 3.80 that R[t] is regular. We have the
obvious commutative diagram

Hn(BG; K(R[t]))
∼= //

∼=
��

Kn(R[t]G) = Kn(RG[t])

��
Hn(BG; K(R)) ∼=

// Kn(RG)

whose horizontal arrows are bijective by the assumption that Conjecture 13.2
holds and whose left vertical arrow is bijective since Kn(R[t]) → Kn(R) is
bijective for all n ∈ Z by Theorem 6.16 (ii). Hence the right vertical arrow is
bijective which implies by definition NKn(RG) = 0.

(ix) This follows from [74, Theorem 8.4 and Remark 8.6].

(x) This follows from Theorem 13.33 and Lemma 13.35.

(xi) The L-theoretic Novikov Conjecture 13.61 follows from the L-theoretic
Farrell-Jones Conjecture 13.4 because of Theorem 13.34 and Lemma 13.35.

For the proof that the L-theoretic Novikov Conjecture 13.61 for G implies
the Novikov Conjecture 9.137 forG, we refer to [570, Lemma 23.2 on page 192]
and [825, Proposition 6 on page 300]. Or just take a look at Remark 9.143
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and use the fact that under the Chern character the assembly map

asmbGn :
⊕
k∈Z

Hn+4k(BG;Q)→ Lhn(ZG)⊗Z Q,

appearing in Remark 9.143 can be identified with the assembly map appear-
ing in L-theoretic Novikov Conjecture 13.61 for G.

(xii) The Full Farrell-Jones Conjecture 13.27 implies Conjectures 13.2 and 13.7,
see Remarks 13.12 and 13.17. Now the claim follows from all the other asser-
tions which we have already proved. ut

13.12 Summary of the Applications of the Farrell-Jones
Conjecture

We have discussed at various places applications and consequences of the
various versions of the Farrell-Jones Conjecture. In Theorem 13.62 we have
explained that the Full Farrell-Jones Conjecture 13.27 implies all of these
variants of the Farrell-Jones Conjecture and hence all these applications and
consequences. For the reader’s convenience we list now all these applications
and where they are treated in this book or in the literature.

• Wall’s Finiteness Obstruction
Wall’s finiteness obstruction of a connected finitely dominated CW -complex
X takes values in K̃0(Z[π1(X)]) and vanishes if and only if X is homo-
topy equivalent to a finite CW -complex, see Section 2.5. For torsionfree
π1(X) Conjecture 2.60 predicts that K̃0(Z[π1(X)]) vanishes and hence X
is always homotopy equivalent to a finite CW -complex, see Remark 2.61.

• Kaplansky’s Idempotent Conjecture
Kaplansky’s Idempotent Conjecture 2.73 predicts for an integral domain
R and a torsionfree group G that all idempotents of RG are trivial. See
Section 2.9.

• The Bass Conjectures
The Bass Conjecture 2.91 for fields of characteristic zero as coefficients says
for a field F of characteristic zero and a group G that the Hattori-Stallings
homomorphism of (2.87) induces an isomorphism

HSFG : K0(FG)⊗Z F → classF (G)f .

This essentially generalizes character theory for finite dimensional repre-
sentations over finite groups to finitely generated projective modules over
infinite groups.
The Bass Conjecture 2.98 for integral domains as coefficients predicts for
a commutative integral domain R, a group G, and g ∈ G that for every
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finitely generated projective RG-module the value of its Hattori-Stallings
rank HSRG(P ) at (g) is trivial provided that either the order |g| is infinite
or that the order |g| is finite and not invertible in R.
For more information about the Bass Conjectures, we refer to Section 2.10.

• Whitehead torsion
One can assign to a homotopy equivalence f : X → Y of connected fi-
nite CW -complexes its Whitehead torsion τ(f), which takes values in the
Whitehead group Wh(π1(Y )), see Sections 3.3. It vanishes if and only f
is a simple homotopy equivalence, see Section 3.4
An h-cobordism of dimension ≥ 6 is trivial if and only if its Whitehead
torsion vanishes, see Theorem 3.47.
If the group G is torsionfree, then Conjecture 3.110 predicts that Wh(G)
vanishes. Hence Conjecture 3.110 implies that a homotopy equivalence of
connected finite CW -complexes is simple if π1(Y ) is torsionfree, and that
every connected h-cobordism W of dimension ≥ 6 with torsionfree π1(W )
is trivial, see Remark 3.112.

• Bounded h-cobordisms
There are so-called bounded h-cobordisms, controlled over Rk, for k ≥
1. They are trivial (for dimension ≥ 6) if and only if certain elements

in negative K-groups K̃1−k(ZG) vanish, see Section 4.3. Conjecture 4.18

predicts for a torsionfree group G the vanishing of K̃n(ZG) for n ≤ 0.

• Pseudoisotopy and the second Whitehead group
There is a certain obstruction for pseudoisotopies to be trivial, which take
values in Wh2(G), see Section 5.6. Conjecture 5.22 predicts for a torsionfree
group G the vanishing of Wh2(G).

• Whitehead spaces and pseudoisotopy spaces
One can assign to a compact manifold M its pseudoisotopy spaces P(M)
and PDIFF(M), Whitehead spaces WhPL(X) and WhDIFF(X), and its A-
theory A(X) in the sense of Waldhausen, see Section 7.2 and 7.3. There
also exist non-connective versions. There are various relations between
these spaces. The homotopy groups of A(M) are related to the K-groups
Kn(Z[π1(M)]).
Conjecture 6.53 predicts for a torsionfree group G and a regular ring R
that the assembly map

Hn(BG; K(R))→ Kn(RG)

is an isomorphism for n ∈ Z. It implies for an aspherical closed manifold
M for all n ≥ 0, see Theorem 7.27 and Theorem 7.32,
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πn(WhPL(M))⊗Z Q ∼= 0;

πn(P(M))⊗Z Q ∼= 0;

πn(WhDIFF(M))⊗Z Q ∼=
∞⊕
k=1

Hn−4k−1(M ;Q);

πn(PDIFF(M))⊗Z Q ∼=
∞⊕
k=1

Hn−4k+1(M ;Q).

• Automorphisms of manifolds
If Conjecture 6.53 and Conjecture 9.114 hold for the torsionfree group G
and the ring R = Z, then some rational computations of the homotopy
groups of the automorphism group of an aspherical closed manifold M
with G = π1(M) can be found in Theorems 9.192 and 9.193.

• Novikov Conjecture
The Novikov Conjecture 9.137 for a group G predicts the homotopy in-
variants of the higher signatures

signx(M,u) := 〈L(M) ∪ u∗x, [M ]Q〉 ∈ Q(13.63)

of a closed oriented manifold M coming with a reference map f : M → BG
for an element x ∈

∏
k≥0H

k(BG;Q), see Subsection 9.14.1.
We conclude from Theorem 13.62 (xi) that the L-theoretic Farrell Jones
Conjecture 13.4 for the group G and the ring Z implies the Novikov Con-
jecture 9.137 for G.

• Borel Conjecture
The Borel Conjecture 9.160 predicts that any aspherical closed topologi-
cal manifold M is topologically rigid, i.e, if N is another aspherical closed
topological manifold with π1(M) ∼= π1(N), then M and N are homeomor-
phic and any homotopy equivalence M → N is homotopic to a homeomor-
phism.
Let G be a finitely presented group. Suppose that it satisfies the versions
of the K-theoretic Farrell-Jones Conjecture stated in 3.110 and 4.20 and
the version of the L-theoretic Farrell-Jones Conjecture stated in 9.114 for
the ring R = Z. Then Theorem 9.168 shows that every aspherical closed
topological manifold of dimension ≥ 5 with G as fundamental group is
topologically rigid.

• Poincaré duality groups
Conjecture 9.180 predicts that a finitely presented group is an n-dimensional
Poincaré duality group if and only if it is the fundamental group of an as-
pherical closed n-dimensional topological manifold.
Suppose that the torsionfree group G is a finitely presented Poincaré dual-
ity group of dimension n ≥ 6 and satisfies the versions of the K-theoretic
Farrell-Jones Conjecture stated in 3.110 and 4.20 and the version of the
L-theoretic Farrell-Jones Conjecture stated in 9.114 for the ring R = Z.
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Let X be a Poincaré complex of dimension ≥ 6 with π1(X) ∼= G. Suppose
that its Spivak normal fibration has a TOP-reduction.
Then X is homotopy equivalent to a compact homology ANR-manifold
satisfying the disjoint disk property, see Theorem 9.181.

• Boundaries of hyperbolic groups
As a consequence of the Farrell-Jones Conjecture, we get Theorem 9.185
which says for a torsionfree hyperbolic group G and n ≥ 6 that the fol-
lowing statements are equivalent:

– The boundary ∂G is homeomorphic to Sn−1;
– There is an aspherical closed topological manifold M such that G ∼=
π1(M), its universal covering M̃ is homeomorphic to Rn, and the com-

pactification of M̃ by ∂G is homeomorphic to Dn;

Moreover the aspherical closed topological manifold M appearing above is
unique up to homeomorphism.

• Stable Cannon Conjecture
A stable version of the Cannon Conjecture is known to be true, see The-
orem 9.189.

• Product decompositions of aspherical closed manifolds
Theorem 9.191 deals with the question when for an aspherical closed to-
pological manifold M a given algebraic decomposition π1(M) = G1 ×G2

comes from the topological decompositionM = M1×M2. Theorem 9.191 is
a consequence of the K-theoretic Farrell-Jones Conjecture stated in 3.110
and 4.20 and the version of the L-theoretic Farrell-Jones Conjecture stated
in 9.114 for the ring R = Z.

• Classification of manifolds homotopy equivalent to certain torus bundles
over lens spaces.
The K-theoretic Farrell-Jones Conjecture 13.1 and the L-theoretic Farrell-
Jones Conjecture 13.4 play a key role in the paper [268] where a classifica-
tion of manifolds homotopy equivalent to certain torus bundles over lens
spaces is presented. See also [969].

• Fibering manifolds
The K-theoretic Farrell-Jones Conjecture 13.1 and the L-theoretic Farrell-
Jones Conjecture 13.4 play a key role in the paper [360] where the question
is treated when for an aspherical closed manifold B and a map p : M →
B from some closed connected manifold M the map p is homotopic to
Manifold Approximate Fibration.

• The Atiyah Conjecture
Conjecture 2.67 is related to the Atiyah Conjecture which makes predic-
tions about the possibly values of the L2-Betti numbers of coverings of
closed Riemannian manifolds, see Remark 2.71.

• Homotopy invariance of τ (2)(M)
Suppose that the L-theoretic Farrell-Jones Conjecture 13.4 with coeffi-
cients in the ring R with involution is rationally true for R = Z, i.e., the
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rationalized assembly map

Hn(BG; L〈−∞〉(Z))⊗Z Q→ L〈−∞〉n (ZG)⊗Z Q

is an isomorphism for n ∈ Z.
Then the Hirzebruch-type invariant τ (2)(M) is a homotopy invariant, see
Remark 14.60.

• Homotopy invariance of the (twisted) L2-torsion
The K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring
R = Z implies the homotopy invariance of L2-torsion and of the L2-torsion
function, see [647, Theorem 7.5 (4)]. The twisted L2-torsion function is
related to the Thurston norm for appropriate 3-manifolds in [390].

• Vanishing of κ-classes for aspherical closed manifolds
The vanishing of κ-classes for aspherical closed manifolds is analyzed
in [458] using as one input the Full Farrell-Jones Conjecture 13.27.

• Classification of 4-manifolds
Sometimes the Farrell-Jones Conjecture is needed as input in the (stable)
classification of certain 4-manifolds, see for instance [438, 439, 552].

• Group actions on manifolds
Applications of the Farrell-Jones Conjecture to manifolds with group ac-
tions are given for instance in [186, 237, 238, 243, 269, 650].

13.13 G-Theory

Instead of considering finitely generated projective modules, one may apply
the standard K-theory machinery to the category of finitely generated mod-
ules. This leads to the definition of the groups Gn(R) for n ≥ 0. One can
define them also for negative n using [884]. We have described G0(R) and
G1(R) already in Definitions 2.1 and 3.1. One may ask whether versions of
the Farrell-Jones Conjectures for G-theory instead of K-theory might be true.
The answer is negative as the following discussion explains.

For a finite group H the ring CH is semisimple. Hence any finitely gener-
ated CH-module is automatically projective and K0(CH) = G0(CH). Recall
that a group G is called virtually poly-cyclic if there exists a subgroup of
finite index H ⊆ G together with a filtration {1} = H0 ⊆ H1 ⊆ H2 ⊆ . . . ⊆
Hr = H such that Hi−1 is normal in Hi and the quotient Hi/Hi−1 is cyclic.
More generally for all n ∈ Z the forgetful map

f : Kn(CG)→ Gn(CG)

is an isomorphism if G is virtually poly-cyclic since then CG is regular [864,
Theorem 8.2.2 and Theorem 8.2.20] and the forgetful map f is an isomor-
phism for regular rings, compare [844, Corollary 53.26 on page 293]. In par-
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ticular this applies to virtually cyclic groups and so the left hand side of
the Farrell-Jones assembly map does not see the difference between K- and
G-theory if we work with complex coefficients. We obtain a commutative
diagram

colimH∈SubFIN (G)K0(CH)

∼=
��

// K0(CG)

f

��
colimH∈SubFIN (G)G0(CH) // G0(CG)

where, as indicated, the left hand vertical map is an isomorphism. Conjec-
ture 2.67 which follows from the K-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring C predicts that the upper horizontal arrow is an
isomorphism. A G-theoretic analogue of Conjecture 2.67 would say that the
lower horizontal map is an isomorphism. There are however cases where the
upper horizontal arrow is known to be an isomorphism, but the forgetful map
f on the right is not injective or not surjective, and hence the lower vertical
arrow cannot be injective or surjective.

If G contains a non-abelian free subgroup, then the class [CG] ∈ G0(CG)
vanishes [635, Theorem 9.66 on page 364] and hence the map f : K0(CG)→
G0(CG) has an infinite kernel since [CG] generates an infinite cyclic subgroup
in K0(CG). Note that Conjecture 13.1 is known for non-abelian free groups.

Conjecture 13.1 is also known for A =
⊕

n∈Z Z/2 and hence K0(CA)
is countable, whereas G0(CA) is not countable [635, Example 10.13 on
page 375]. Hence the map f cannot be surjective.

At the time of writing we do not know the answer to the following ques-
tions:

Question 13.64. If G is an amenable group for which there is an up-
per bound on the orders of its finite subgroups, is then the forgetful map
f : K0(CG)→ G0(CG) an isomorphism?

Question 13.65. If the group G is not amenable, is then G0(CG) = {0}?

To our knowledge the answer to Question 13.65 is not even known in the
special case G = Z ∗ Z.

For more information about G0(CG), we refer for instance to [635, Sub-
section 9.5.3].

Exercise 13.66. Let H ⊆ G be a subgroup of G possessing an epimorphism
f : H → Z. Show that the class of C[G/H] in G0(CG) is trivial.



13.14 Notes 399

13.14 Notes

The original formulation of the Farrell-Jones Conjecture with rings as coef-
ficients appears in [351, 1.6 on page 257]. Our formulation differs from the
original one, but is equivalent, see Remark 15.42.

Proofs of some of the inheritance properties above are also given in [447,
862].

The inheritance properties of the Farrell-Jones Conjecture under actions
of trees is discussed in [74], see also Section 6.9 and Section 15.7. The situa-
tion is much more complicated than for the Baum-Connes Conjecture 14.11
with coefficients where the optimal result holds, see Theorem 14.31 (v) and
Remark 14.35.

In the sequel we consider classes C of groups that are closed under taking
subgroups and passing to isomorphic groups. Examples are the classes of vir-
tually cyclic or of finite groups. Given a group G, let C(G) be the family of
subgroups of G that belong to C. The relevant family of subgroups appearing
in Conjectures 13.1, 13.2, 13.4, 13.7, 13.11, 13.16, 13.24, 13.25, and 13.27 is
always given by C(G) where C is the class of virtually cyclic subgroups. We
have proved various theorems where C could be chosen to be smaller, for
instance to be the class of virtually cyclic groups of type I or of hyperele-
mentary groups, see Theorems 13.43, 13.44, and 13.45. One may ask whether
there is always a class Cmin for which such a conjecture holds for all groups G
and which is minimal. Of course for the class of all groups such a conjecture
will hold for trivial reasons. In the worst case Cmin may be just the class of
all groups. A candidate for Cmin may be the intersection of all the classes C
of groups for which the conjecture is true for all groups, but we do not know
whether this intersection does satisfies the conjecture for all groups, see also
Section 15.15 and in particular Lemma 15.101. At least we know that the
intersection of two classes of groups C0 and C1 for which one of the Conjec-
tures 13.11, 13.16, 13.24, 13.25 and 13.27 holds for all groups, satisfies this
conjecture for all groups as well. We also know for two classes of subgroups
C ⊆ D such that D satisfies one of the Conjectures 13.11, 13.16, 13.24, 13.25
and 13.27 for all groups if C does. These claims follow from Theorem 15.9 (ii)
and (iv), Theorem 15.13 (ii) and Lemma 15.14.

Further variants of the Farrell-Jones Conjecture for other theories such as
A-theory, topological cyclic homology and Hochschild homology, homotopy
K-theory, and the K-theory of Hecke algebras of totally disconnected groups
will be discussed in Sections 15.10, 15.11, 15.12, and 15.13.

A coarse version of the Farrell-Jones Conjecture is treated in [1013].
A version of the Farrell-Jones Conjecture for polyhedra is proved in[140].
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Chapter 14

The Baum-Connes Conjecture

14.1 Introduction

In this chapter we discuss the Baum-Connes Conjecture 14.9 for the topolo-
gical K-theory of the reduced group C∗-algebra C∗r (G,F ) for F = R,C. It
predicts that certain assembly maps

KG
n (EFIN (G)) → Kn(C∗r (G,C));

KOGn (EFIN (G)) → KOn(C∗r (G,R)),

are bijective for all n ∈ Z. The target is the topological K-theory of C∗r (G,F ),
which one wants to understand. The source is an expression that depends only
on the values of these topological K-groups on finite subgroups of G and is
therefore much more accessible. The version above is often the one which is
relevant in concrete applications, but there is also a more general version,
the Baum-Connes Conjecture 14.11 with coefficients, where one allows co-
efficients in a G-C∗-algebra. Note that in contrast to the Full Farrell-Jones
Conjecture 13.27 it suffices to consider finite subgroups instead of virtually
cyclic subgroups.

A status report of the Baum-Connes Conjecture 14.9 and its version 14.11
with coefficients will be given in Section 16.4.

The main point about the Baum-Connes Conjecture 14.9 is that it implies
a great variety of other prominent conjectures such as the ones due to Kadison
and Novikov, and leads to very deep and interesting results about manifolds
and C∗-algebras, as we will record and explain in Section 14.8.

Variants of the Baum-Connes Conjecture 14.9 and its versions 14.11 with
coefficient are presented in Section 14.5.

We will discuss the inheritance properties of the Baum-Connes Conjec-
ture 14.11 with coefficients in Section 14.6.

We have tried to keep this chapter as much as possible independent of the
other chapters, so that one may start reading directly here.

401
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14.2 The Analytic Version of the Baum-Connes
Assembly Map

Let A be aG-C∗-algebra over F = R,C. Denote by AorG the C∗-algebra over
F given by the reduced crossed product, see [786, 7.7.4 on page 262]. If A is
R or C with the trivial G-action, this is the reduced real or complex reduced
group C∗-algebra C∗r (G,R) or C∗r (G,C), see Subsection 10.3.1. Denote by
Kn(A or G) and KO(A or G) their topological K-theory, as introduced in
Subsection 10.3.2.

Let X be a proper G-CW -complex. Denote by KG
∗ (X;A) and KOG∗ (X;A)

the complex and real equivariant topological K-theory of X with coefficients
in A, see Section 10.6. Note that KG

∗ (−;A) and KOG∗ (−;A) are G-homology
theories in the sense of Definition 12.1 such that KG

n (G/H;A) = Kn(AoH)
and KOGn (G/H;A) = KOn(A or H) hold for any finite subgroup H ⊆ G
and n ∈ Z, provided that we consider proper G-CW -complexes only.

We want to explain the analytic Baum-Connes assembly map

asmbG,CA (X)n : KG
n (X;A)→ Kn(Aor G);(14.1)

asmbG,RA (X)n : KOGn (X;A)→ KOn(Aor G).(14.2)

We will only treat the case F = C, the case F = R is analogous.
We first consider the special case where X is proper and cocompact and

then explain how the map extends by a colimit argument to arbitrary proper
G-CW -complexes. Note that for a proper and cocompact G-CW -complex X
we can identify KG

n (X;A) with the equivariant KK-groups KKG
n (C0(X), A),

see Section 10.6.
One description is in terms of indices with values in C∗-algebras. Namely,

one assigns to a Kasparov cycle representing an element in KKG
n (C0(X), A)

its C∗-valued index in Kn(AoG) in the sense of Mishchenko-Fomenko [723],
thus defining a map KKG

n (C0(X), A) → Kn(A o G), provided that X is
proper and cocompact. This is the approach appearing in [103].

The other equivalent approach is based on the Kasparov product. Given a
proper cocompact G-CW -complex X, one can assign to it an element [pX ] ∈
KKG

0 (C, C0(X) or G). Now define the map (14.1) by the composite of a
descent map and a map coming from the Kasparov product

KKG
n (C0(X), A)

jGr−−→ KKn(C0(X) or G,Aor G)

[pX ]⊗̂C0(X)orG−−−−−−−−−−−−→ KKn(C, Aor G) = Kn(AoG).

For some information about these two approaches and their identification,
we refer to [596] in the torsionfree case and to [171, 568] in the general case.

This extends to arbitrary proper G-CW -complexes X by the following ar-
gument. If f : X → Y is a G-map of proper cocompact G-CW -complexes,
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then f is a proper map (after forgetting the group action). Hence composition
with f defines a homomorphism of G-C∗-algebras C0(f) : C0(Y ) → C0(X).
Denote by KKG

n (C0(f), idA) : KKG
n (C0(X), A) → KKG

n (C0(Y ), A) the in-
duced map on equivariant KK-groups. One easily checks asmbG,C(Y )n ◦
KKG

n (C0(f), idA) = asmbG,C(X)n. We conclude by inspecting definition (10.67)
that for any proper G-CW -complex X the canonical map

colimC⊆X K
G
n (C)

∼=−→ KG
n (X)

is an isomorphism where C runs through the finite G-CW -subcomplexes of X
directed by inclusion. Hence by a colimit argument over the directed systems
of proper cocompact G-CW -subcomplexes the definition above for proper
compact G-CW -complexes extends to the desired assembly maps (14.1) for
any proper G-CW -complex X. Moreover, for any G-map of proper G-CW -
complexes f : X → Y , we obtain again by passing to the colimit a homomor-
phism KG

n (f) : KG
n (X;A)→ KG

n (Y ;A) satisfying

asmbG,C(Y )n ◦KG
n (f ;A) = asmbG,C(X)n;(14.3)

asmbG,R(Y )n ◦KOGn (f ;A) = asmbG,R(X)n.(14.4)

14.3 The Version of the Baum-Connes Assembly Map in
Terms of Spectra

There is also a version of the Baum-Connes assembly map, which is very close
to the construction of the one for the Farrell-Jones Conjecture. Namely, if we
apply Theorem 12.30, taking Remark 12.31 into account, to the functor

KTOP
F : GROUPOIDSinj → SPECTRA,

of (12.46) for F = R,C, then we obtain an equivariant homology theory
H?
∗(−; KTOP

F ) in the sense of Definition 12.9 such that we get for every inclu-
sion H ⊆ G of groups natural identifications

HG
n (G/H; KTOP

F ) ∼= HH
n (H/H; KTOP

F ) ∼= πn(KTOP
F ◦I(H)) = Kn(C∗r (H,F )).

Note that H?
n(X; KTOP

F ) is defined for any G-CW -complex X, whereas the
definition of KG

n (X) and KOn(X) in terms of KK-theory only makes sense
for proper G-CW -complexes.

We get assembly maps induced by the projection

HG
n (pr; KTOP

C ) : HG
n (X; KTOP

C ) → HG
n (G/G; KTOP

C ) = Kn(C∗r (G,C));(14.5)

HG
n (pr; KTOP

R ) : HG
n (X; KTOP

R )→ HG
n (G/G; KTOP

R ) = Kn(C∗r (G,R)).(14.6)
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The assembly maps (14.1) and (14.5) are identified in [265, Section 6]. Un-
fortunately, the proof is based on an unpublished preprint by Carlsson-
Pedersen-Roe. Another proof of the identification is given in [444, Corol-
lary 8.4] and [730].

The identification above in the general case where one allows coefficients
in a G-C∗-algebra A, is carried out in [171, 568].

Consider a proper G-CW -complex X. One sometimes finds in the literatur
the notation

RKG
n (X) := colimC⊆X KK

G
n (C0(X),C)(14.7)

where C runs through the finite G-CW -subcomplexes of X directed by in-
clusion. By definition and by the discussion above we get for every proper
G-CW -complex X identifications, natural in X,

(14.8) RKG
n (X) = KG

n (X) = HG
n (X; KTOP

C )

and analogous in the real case.

14.4 The Baum-Connes Conjecture

Recall that a model for the classifying space for proper G-actions is a G-CW -
complex EG = EFIN (G) such that EGH is non-empty and contractible for
each finite subgroup H ⊆ G and empty for each infinite subgroup H ⊆
G. Two such models are G-homotopy equivalent. See Definition 11.18 and
Theorem 11.19.

Conjecture 14.9 (Baum-Connes Conjecture). A group G satisfies the
Baum-Connes Conjecture if the assembly maps

asmbG,C(EG)n : KG
n (EG)→ Kn(C∗r (G,C));

asmbG,R(EG)n : KOGn (EG)→ KOn(C∗r (G,R)),

defined in (14.1) and (14.2) are bijective for all n ∈ Z in the special case that
A is C or R respectively with the trivial G-action.

Exercise 14.10. Show KG
n (EG) ∼= Zk for k, n ∈ Z, k ≥ 1 and G = Z×Z/k.

Conjecture 14.11 (Baum-Connes Conjecture with coefficients). A
group G satisfies the Baum-Connes Conjecture with coefficients if the assem-
bly maps

asmbG,CA (EG)n : KG
n (EG;A)→ Kn(Aor G);

asmbG,RA (EG)n : KOGn (EG;A)→ KOn(Aor G),
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defined in (14.1) and (14.2) are bijective for all n ∈ Z and all G-C∗-algebras
A over F = R,C.

Remark 14.12 (Counterexample to the Baum-Connes Conjecture 14.11
with coefficients and a modified version). We will discuss the status and
further applications of the Baum-Connes Conjecture 14.11 with coefficients
in Section 14.8 and 16.4, but immediately want to point out that there ex-
ists counterexamples to the version 14.11 with coefficients, see [470], but no
counterexample to the Baum-Connes Conjecture 14.9 is known.

In [105] a new formulation of the Baum-Connes Conjecture with coef-
ficients is given by considering a different crossed product for which the
counterexamples mentioned above are not counterexamples anymore, see
also [180], and no counterexample is known to the author’s knowledge. The
new version takes care of the problem that there exists groups G together
with short exact sequences of G-C∗-algebras 0→ I → A→ B → 0 for which
the induced sequence 0→ IoG→ AoG→ BoG→ 0 is not exact anymore
and it is hence not clear that there exists a long exact sequence

· · · → Kn(I oG)→ Kn(AoG)→ Kn(B oG)

→ Kn−1(I oG)→ Kn−1(AoG)→ Kn−1(B oG)→ · · ·

whose existence is a consequence of the Baum-Connes Conjecture 14.11 with
coefficients. The new version still has the flaw that the left hand side of the
assembly map is functorial under arbitrary group homomorphism, whereas
this is unknown for the right hand side, compare Remark 14.20.

The original source of the Baum-Connes Conjecture (with coefficients)
is [103, Conjecture 3.15 on page 254].

Remark 14.13 (The complex case implies the real case). The complex
version of the Baum-Connes Conjecture 14.9 and 14.11 implies automatically
the real version, see [110, 880].

Remark 14.14 (The torsionfree case). There are canonical isomorphisms

KG
∗ (EG)

∼=−→ K∗(BG) and KOG∗ (EG)
∼=−→ KO∗(BG). Suppose that G is tor-

sionfree. Then EG is a model for EG and under the identification above the
assembly map appearing in the Baum-Connes Conjecture 14.9 agrees with the
one appearing in the Baum-Connes Conjecture for torsionfree groups 10.44.
Hence the Baum-Connes Conjecture for torsionfree groups 10.44 is a special
case of the Baum-Connes Conjecture 14.9.

Exercise 14.15. Let f : H → G be a group homomorphism of torsionfree
groups. Suppose that H and G satisfy the Baum-Connes Conjecture 14.9
and the induced map on group homology Hn(f) : Hn(H) → Hn(G) is bi-
jective for n ∈ Z. Show that then Kn(C∗r (G,C)) ∼= Kn(C∗r (H,C)) and
KOn(C∗r (G,R)) ∼= KOn(C∗r (H,R)) holds for all n ∈ Z.
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14.5 Variants of the Baum-Connes Conjecture

In this section we discuss some variants of the Baum-Connes Conjecture.

14.5.1 The Baum-Connes Conjecture for Maximal Group
C∗-Algebras

There are also versions of the Baum-Connes assembly map using the maximal
crossed product A om G, see [786, 7.6.5 on page 257] for a G-C∗-algebra A
over F or the maximal group C∗-algebra C∗m(G,F ) for F = R,C. Namely,
there are assembly maps

asmbG,C,mA (X)∗ : KG
∗ (X;A)→ K∗(Aom G);(14.16)

asmbG,R,mA (X)∗ : KOG∗ (X;A)→ KO∗(Aom G),(14.17)

which reduce for A = R,C equipped with the trivial G-action to assembly
maps

asmbG,C,m(EG)n : KG
n (EG) → Kn(C∗m(G,C));(14.18)

asmbG,R,m(EG)n : KOGn (EG) → KOn(C∗m(G,R)).(14.19)

In the sequel we only consider the complex case, the corresponding state-
ments are true over R as well.

There is always a C∗-homomorphism p : AomG→ AorG, and we obtain
the following factorization of the Baum-Connes assembly map of (14.1)

asmbG,CA (X)∗ : KG
n (X;A)

asmbG,C,mA (X)∗−−−−−−−−−−→ K∗(Aom G)
K∗(p)−−−−→ K∗(Aor G).

The Baum-Connes Conjecture 14.11 implies that the map asmbG,C,mA (EG)∗
is always injective, and that it is surjective if and only if the map K∗(p) is
bijective.

Remark 14.20 (Functoriality of the Baum-Connes assembly map).
Note that the source of the assembly maps asmbG,C(EG)n : KG

n (EG) →
Kn(C∗r (G)) and asmbG,C.m(EG)n : KG

n (EG) → Kn(C∗m(G)) are functorial
in G. The target Kn(C∗m(G)) is also functorial in G since C∗m(G) is functorial
in G, and the assembly map asmbG,C.m(EG)n : KG

n (EG) → Kn(C∗m(G)) is
natural in G.

However, it is not known whether the target Kn(C∗r (G)) is functorial
in G and we have already explained in Subsection 10.3.1 that not every
group homomorphism α : G → H induces a homomorphism of C∗-algebras
C∗r (G) → C∗r (H). This is irritating since the Baum-Connes Conjecture 14.9
implies that Kn(C∗r (G)) is also functorial in G.
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The same problem is still present in the new formulation of the Baum-
Connes Conjecture with coefficients in [105].

Remark 14.21 (The Baum-Connes Conjecture does not hold in gen-
eral for the maximal group C∗-algebra). It is known that the assembly

map asmbG,C,mA (EG)∗ of (14.16) is in general not surjective. Namely, K0(p)
is not injective if G is any infinite group with property (T), compare for in-
stance the discussion in [519]. There are infinite groups with property (T)
for which the Baum-Connes Conjecture is known, see [582] and also [901].
Hence there are counterexamples to the conjecture that asmbG,C,m(EG)n is
surjective.

Remark 14.22 (The Baum-Connes Conjecture for the maximal group
C∗-algebra holds for A-T-menable groups). A countable group G
is called K-amenable if the map p : C∗max(G) → C∗r (G) induces a KK-
equivalence, see [253]. This implies in particular that the map Kn(p) above is
an isomorphism for all n ∈ Z. A-T-menable groups are K-amenable, see [469]
and they satisfy the Baum-Connes Conjecture 14.9, see Theorem 16.7 (ia).

Hence for A-T-menable groups the assembly map asmbG,C,mA (EG)∗ of (14.16)
is bijective for all n ∈ Z. This is also true for the real version of the assembly
map (14.19).

14.5.2 The Bost Conjecture

Some of the strongest results about the Baum-Connes Conjecture are proven
using the so-called Bost Conjecture, see [584, page 798]. The Bost Conjecture
is the version of the Baum-Connes Conjecture where one replaces the reduced
group C∗-algebra C∗r (G,F ) by the Banach algebra L1(G,F ). One still can
define the topological K-theory of L1(G,F ) and the assembly map in this
context.

Conjecture 14.23 (Bost Conjecture). The assembly maps

asmbG,C,L
1

(EG)n : KG
n (EG)→ Kn(L1(G,C));

asmbG,R,L
1

(EG)n : KOGn (EG)→ KOn(L1(G,R)),

are isomorphism for all n ∈ Z.

In the sequel we only consider the complex case, the corresponding state-
ments are true over R as well.

Again the left hand side coincides with the left hand side of the Baum-
Connes assembly map. There is a canonical map of Banach ∗-algebras
q : L1(G)→ C∗r (G). We obtain a factorization of the Baum-Connes assembly
map appearing in the Baum-Connes Conjecture 14.9
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(14.24) asmbG,CA (EG)∗ : KG
n (EG)

asmbG,C,L
1
(EG)∗−−−−−−−−−−−→ K∗(L

1(G))

K∗(q)−−−−→ K∗(C
∗
r (G))

Every group homomorphism G → H induces a homomorphism of Ba-
nach algebras L1(G) → L1(H) and the assembly map appearing in Conjec-
ture 14.23 is natural in G.

The disadvantage of L1(G) is however that indices of operators tend to
take values in the topological K-theory of the group C∗-algebras, not in
Kn(L1(G)). Moreover the representation theory of G is closely related to the
group C∗-algebra, whereas the relation to L1(G) is not well understood.

There is also a version of the Bost Conjecture with coefficients in a C∗-
algebra:

(14.25) asmbG,C,L
1

A (EG)∗ : KG
∗ (EG;A)→ K∗(AoL1 G)

For more information about the Bost Conjecture 14.23, we refer for in-
stance to [70, 584, 586, 773, 774, 901].

14.5.3 The Strong and the Integral Novikov Conjecture

We mention the following conjectures, which actually follow from the Baum-
Connes Conjecture 14.9.

Conjecture 14.26 (Strong Novikov Conjecture). A group G satisfies
the Strong Novikov Conjecture if the assembly maps appearing in (10.42)
or (10.43)

asmbG,C(BG)∗ : Kn(BG)→ Kn(C∗r (G,C));

asmbG,R(BG)∗ : KOn(BG)→ KOn(C∗r (G,R)),

are rationally injective for all n ∈ Z.

Conjecture 14.27 (Integral Novikov Conjecture).
A torsionfree group G satisfies the Integral Novikov Conjecture if the as-

sembly map appearing in (10.42) or (10.43) are injective for all n ∈ Z.

The assembly maps appearing in the Integral Novikov Conjecture 14.26
agree with the assembly maps appearing in the Baum-Connes Conjecture for
torsionfree groups.

The Integral Novikov Conjecture makes only sense for torsionfree groups.

Exercise 14.28. Find a finite group G for which there cannot be an injective
map from K1(BG) to K1(C∗r (G)).
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Theorem 14.29 (The Baum-Connes Conjecture implies the Novikov
Conjecture). Given a group G, the Baum-Connes Conjecture 14.9 for G
implies the Strong Novikov Conjecture 14.26 for G and the Strong Novikov
Conjecture 14.26 for G implies the Novikov Conjecture 9.137 for G.

Proof. The implication that the Baum-Connes Conjecture 14.9 implies the
Strong Novikov Conjecture 14.26 follows from Lemma 13.35. For proofs that
the Strong Novikov Conjecture 14.26 implies the Novikov Conjecture 9.137
we refer to Kasparov [547, § 9], [539] or Kaminker-Miller [525]. ut

14.5.4 The Coarse Baum Connes Conjecture

We briefly explain the Coarse Baum-Connes Conjecture, a variant of the
Baum-Connes Conjecture that applies to metric spaces and not only to
groups. Its importance lies in the fact that isomorphism results about
the Coarse Baum-Connes Conjecture can be used to prove injectivity re-
sults about the classical assembly map for topological K-theory, see Theo-
rem 16.15.

Let X be a metric space that is proper, i.e., closed balls are compact. Let
HX a separable Hilbert space with a faithful nondegenerate ∗-representation
of C0(X). Let T : HX → HX be a bounded linear operator. Its support
suppT ⊂ X×X is defined as the complement of the set of all pairs (x, x′) for
which there exist functions φ and φ′ ∈ C0(X) such that φ(x) 6= 0, φ′(x′) 6= 0
and φ′Tφ = 0. The operator T is said to be a finite propagation operator,
if there exists a constant α such that d(x, x′) ≤ α holds for all pairs in the
support of T . The operator is said to be locally compact if φT and Tφ are
compact for every φ ∈ C0(X). An operator is called pseudolocal if φTψ is a
compact operator for all pairs of continuous functions φ and ψ with compact
and disjoint supports.

The Roe-algebra C∗(X) is the operator-norm closure of the ∗-algebra
of all locally compact finite propagation operators on HX . The algebra
D∗(X) is the operator-norm closure of the pseudolocal finite propagation
operators. One can show that the topological K-theory of the quotient
K∗(D

∗(X)/C∗(X)) agrees with K-homology K∗−1(X). A metric space is
called uniformly contractible if for every R > 0 there exists S > R such that
for every x ∈ X the inclusion of open balls BR(x) → BS(x) is nullhomo-
topic. For a uniformly contractible proper metric space the coarse assembly
map Kn(X)→ Kn(C∗(X)) is the boundary map in the long exact sequence
associated to the short exact sequence of C∗-algebras

0→ C∗(X)→ D∗(X)→ D∗(X)/C∗(X)→ 0.

For general metric spaces one first approximates the metric space by spaces
with nice local behavior, compare [838].
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For simplicity we only explain the case where X is a discrete metric space.
Let Pd(X) be the Rips complex for a fixed distance d, i.e., the geometric
realization of the abstract simplicial complex with vertex set X where a
simplex is spanned by every collection of points in which every two points
are a distance less than d apart. Equip Pd(X) with the spherical metric,
compare [1006].

A discrete metric space has bounded geometry if for each r > 0 there exists
a natural number N(r) such that for all x the open ball of radius r centered
at x ∈ X contains at most N(r) elements.

Conjecture 14.30 (Coarse Baum-Connes Conjecture). Let X be a dis-
crete metric space of bounded geometry. Then for n ∈ Z the coarse assembly
map

colimd→∞Kn(Pd(X))→ colimd→∞Kn(C∗(Pd(X))) ∼= Kn(C∗(X))

is an isomorphism.

A counterexample to the surjectivity part is constructed in [470, Section 6].
The injectivity part of this conjecture is false if one drops the bounded geo-
metry hypothesis, see [299, 1007].

The Coarse Baum-Connes Conjecture for a finitely generated discrete
group G (considered as a metric space) can be interpreted as a case of the
Baum-Connes Conjecture 14.11 with coefficients for the group G with a cer-
tain specific choice of coefficients, see [1011].

Further information about the coarse Baum-Connes Conjecture can be
found for instance in [227, 374, 395, 396, 471, 472, 474, 752, 838, 994, 995,
1006, 1007, 1008, 1005].

14.6 Inheritance Properties of the Baum-Connes
Conjecture

Similar to the Farrell-Jones Conjecture, the Baum-Connes Conjecture 14.11
with coefficients has much better inheritance properties than the Baum-
Connes Conjecture 14.9. Namely, we have

Theorem 14.31 (Inheritance properties of the Baum-Connes Con-
jecture with coefficients).

(i) Passing to subgroups
Let H ⊆ G be an inclusion of groups. If G satisfies the Baum-Connes Con-
jecture 14.11 with coefficients, then H satisfies the Baum-Connes Conjec-
ture 14.11 with coefficients;

(ii) Group extensions

Let 1 → K → G
p−→ Q → 1 be an extension of groups. Suppose that for
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any finite subgroup H ⊆ Q the group p−1(H) satisfies the Baum-Connes
Conjecture 14.11 with coefficients and that the group Q satisfies the Baum-
Connes Conjecture 14.11 with coefficients.
Then G satisfies the Baum-Connes Conjecture 14.11 with coefficients;

(iii) Passing to finite direct products
If the groups G0 and G1 satisfy the Baum-Connes Conjecture 14.11 with
coefficients, then G0×G1 satisfies the Baum-Connes Conjecture 14.11 with
coefficients;

(iv) Directed unions
Let G be a union of the directed system of subgroups {Gi | i ∈ I}.
If each group Gi satisfies the Baum-Connes Conjecture 14.11 with coef-
ficients, then G satisfies the Baum-Connes Conjecture 14.11 with coeffi-
cients;

(v) Actions on trees
Suppose that G acts on a tree without inversion. Assume that the Baum-
Connes Conjecture 14.11 with coefficients holds for the stabilizers of any
of the vertices.
Then the Baum-Connes Conjecture 14.11 with coefficients holds for G;

(vi) Amalgamated free products
Let G0 be a subgroup of G1 and G2 and G be the amalgamated free product
G = G1 ∗G0

G2. Suppose Gi satisfies the Baum-Connes Conjecture 14.11
with coefficients for i = 0, 1, 2.
Then G satisfies Baum-Connes Conjecture 14.11 with coefficients;

(vii) HNN extension
Let G be an HN extension of the group H. Suppose that G satisfies the
Baum-Connes Conjecture 14.11 with coefficients.
Then G satisfies the Baum-Connes Conjecture 14.11 with coefficients;

Proof. (i) This has been stated in [103], a proof can be found for instance
in [209, Theorem 2.5].

(ii) See [770, Theorem 3.1].

(iii) This follows from assertion (ii).

(iv) See [70, Theorem 1.8 (ii)].

(v) This is proved by Oyono-Oyono [771, Theorem 1.1].

(vi) and (vii) These are special case of assertion (v). ut

Exercise 14.32. Show that the Baum-Connes Conjecture 14.11 with coeffi-
cients holds for any abelian group and any free group.

Exercise 14.33. Let G be the fundamental group of the orientable closed
surface of genus g ≥ 1. Show

Kn(C∗r (G,C)) =

{
Z2 n is even;

Zg n is odd.
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Remark 14.34 (The Baum-Connes Conjecture with coefficients is
is not compatible with colimits in general). The Baum-Connes Con-
jecture with coefficients is not compatible with colimits in general. This is in
contrast to the Full Farrell-Jones Conjecture 13.27, see Theorem 13.29 (vi)
and to the Bost Conjecture (14.25) with coefficients, see [70, Theorem 1.8 (i)].
The Baum-Connes Conjecture 14.11 with coefficients is known for hyperbolic
groups, see [582, 901]. Now let G be a colimit of a directed system of hyper-
bolic groups {Gi | i ∈ I} (whose structure maps Gi → Gj are not injective).
Suppose that the Baum-Connes Conjecture 14.11 with coefficients passes
to colimits of directed systems of groups. Then the Baum-Connes Conjec-
ture 14.11 with coefficients holds for G as well. However, there exists a group
G which is a colimit of hyperbolic groups and contains appropriate expanders
so that that [470] applies and hence the Baum-Connes Conjecture 14.11 with
coefficients does not hold for G. The construction of such a group is described
in [39, 767].

Remark 14.35 (The Farrell-Jones Conjecture and actions on trees).
The inheritance properties of the Baum-Connes Conjecture 14.11 with coef-
ficients for actions on trees, see Theorem 14.31 (v), is very useful. It does
not hold for the Full Farrell-Jones Conjecture 13.27. The main reason is
that in the Baum-Connes setting the family FIN suffices, whereas in the
Farrell-Jones setting we have to use the family VCY since in the Farrell-Jones
setting Nil-phenomenons occur which are not present in the Baum-Connes
setting. Nevertheless, some partial results about this question in the Farrell-
Jones setting can be found in [74]. Alternatively, one uses actions on trees to
compute HG

n (EFIN (G); KR), see Section 15.7, and treats the relative group
HG
n (EFIN (G) → EVCY(G); KR) separately, for which the results of Sec-

tion 13.10 are very useful. Thanks to the splitting results of Section 13.8
one can put these two computations together to get a full description of
HG
n (EVCY(G); KR). The analogous remark applies to L-theory.

Remark 14.36 (Passing to overgroups of finite index). It is not known
whether the Baum-Connes Conjecture 14.11 with coefficients passes to over-
groups of finite index. The same is true for the K- and L-theoretic Farrell-
Jones Conjecture with coefficients in additive G-categories (with involution),
see Conjecture 13.11 and Conjecture 13.16. This was the reason why we have
introduced in Section 13.5 the versions “with finite wreath products”. One
can do the same in the Baum-Connes setting.

14.7 Reducing the Family of Subgroups for the
Baum-Connes Conjecture

The following result is proved in [75, Theorem 0.5] based on a Comple-
tion Theorem, see [655, Theorem 6.5] and a Universal Coefficient Theorem,
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see [137, 508]. An argument for the complex case using equivariant Euler
classes is given by Mislin and Matthey [694] for the complex case. It is not
clear to us whether it is possible to extend the methods of [694] to the real
case.

Theorem 14.37 (Reducing the family of subgroups for the Baum-
Connes Conjecture). For any group G the relative assembly maps

KG
n (EFCY(G))→ KG

n (EFIN (G));

KOGn (EFCY(G)) → KOGn (EFIN (G)),

are bijective for all n ∈ Z where FCY is the family of finite cyclic subgroups.

Remark 14.38 (FCY is the smallest family for the Baum-Connes
Conjecture). Let C be a finite cyclic group and F be a family of subgroups
of C. Then the assembly map

KC
0 (EF (C)) → KC

0 (C/C) = RC(C)

is surjective if and only if F consists of all subgroups. This follows from [636,
Theorem 0.7 and Lemma 3.4] since they predict that the homomorphism
induced by the various inclusions⊕

D∈F
RC(D)→ RC(C)

is rationally surjective and hence C must be contained in F .
Let C be a class of groups that is closed under taking subgroups and passing

to isomorphic groups. Examples are the classes of finite cyclic groups or of
finite groups. Given a group G, let C(G) be the family of subgroups of G that
belong to G. Suppose that for any group G the assembly map

KG
n (EC(G)(G))→ KG

n (G/G)

is bijective. The considerations above imply that C has to contain all finite
cyclic subgroups. So, roughly speaking, FCY is the smallest family for which
one can hope that the Baum-Connes Conjecture 14.9 is true for all groups.

14.8 Applications of the Baum-Connes Conjecture

The Baum-Connes Conjecture for torsionfree groups 10.44 follows from the
Baum-Connes Conjecture 14.9, see Remark 14.14, and implies, see Subsec-
tions 10.4.1 and 10.4.2,

• Trace Conjecture 10.50 for torsionfree groups
For a torsionfree group G the image of
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trC∗r (G) : K0(C∗r (G))→ R

consists of the integers.

• Kadison Conjecture 10.52
If G is a torsionfree group, then the only idempotent elements in C∗r (G)
are 0 and 1.

The Baum-Connes Conjecture 14.9 implies by Theorem 14.29

• Strong Novikov Conjecture 14.26
The assembly maps

asmbG,C(BG)∗ : Kn(BG)→ Kn(C∗r (G,C));

asmbG,R(BG)∗ : KOn(BG)→ KOn(C∗r (G,R)).

of (10.42) and (10.43) are rationally injective for all n ∈ Z.

The strong Novikov Conjecture 14.26 (and hence also the Baum-Connes Con-
jecture 14.9) implies, see Subsection 10.4.3,

• Zero-in-the-spectrum Conjecture 10.55
If M̃ is the universal covering of an aspherical closed Riemannian manifold
M , then zero is in the spectrum of the minimal closure of the pth Laplacian
on M̃ for some p ∈ {0, 1, . . . ,dimM}.

Moreover, we have already shown in Theorem 14.29 that the Baum-Connes
Conjecture 14.9 implies

• Novikov Conjecture 9.137
Higher signatures are homotopy invariant.

Next we deal with some other conjectures which follows from the Baum-
Connes Conjecture.

14.8.1 The Modified Trace Conjecture

Denote by ΛG the subring of Q that is obtained from Z by inverting all orders
|H| of finite subgroups H of G, i.e.,

ΛG = Z
[
|H|−1 | H ⊂ G, |H| <∞

]
.(14.39)

The following conjecture generalizes Conjecture 10.50 to the case where the
group need no longer be torsionfree. For the standard trace see (10.48).

Conjecture 14.40 (Trace Conjecture, modified). Let G be a group.
Then the image of the homomorphism induced by the standard trace
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trC∗r (G) : K0(C∗r (G))→ R(14.41)

is contained in ΛG.

The following result is proved in [636, Theorem 0.3].

Theorem 14.42. Let G be a group. Then the image of the composite

KG
0 (EFIN (G))⊗Z Λ

G asmbG,C(EG)n⊗Zid−−−−−−−−−−−−→ K0(C∗r (G))⊗Z Λ
G

trC∗r (G)−−−−−→ R

is ΛG. Here asmbG,C(EG)n is the map appearing in the Baum-Connes Con-
jecture 14.9. In particular the Baum-Connes Conjecture 14.9 implies the
Modified Trace Conjecture 14.40.

The original version of the Trace Conjecture due to Baum and Connes [102,
page 21] makes the stronger statement that the image of trC∗r (G) : K0(C∗r (G))→
R is the additive subgroup of Q generated by all numbers 1

|H| where H ⊂ G
runs though all finite subgroups of G. Roy has constructed a counterexam-
ple to this version in [865] based on her article [866]. The examples of Roy
do not contradict the Modified Trace Conjecture 14.40 or the Baum-Connes
Conjecture 14.9.

Exercise 14.43. The G be a finite group. Show that the image of the trace
map trC∗r (G) : K0(C∗r (G))→ R is {n · |G|−1 | n ∈ Z}.

14.8.2 The Stable Gromov-Lawson-Rosenberg Conjecture

The Stable Gromov-Lawson-Rosenberg Conjecture is a typical conjecture re-
lating Riemannian geometry to topology. It is concerned with the question
when a given manifold admits a metric of positive scalar curvature. It is
related to the real version of the Baum-Connes Conjecture 14.9.

Let ΩSpin
n (BG) be the bordism group of closed Spin-manifolds M of di-

mension n with a reference map to BG. Given an element [u : M → BG] ∈
ΩSpin
n (BG), we can take the C∗r (G,R)-valued index of the equivariant Dirac

operator associated to the G-covering M → M determined by u. Thus we
get a homomorphism

indC∗r (G,R) : ΩSpin
n (BG) → KOn(C∗r (G,R)).(14.44)

A Bott manifold is any simply connected closed Spin-manifold B of dimension
8 whose Â-genus Â(B) is 1. We fix such a choice, the particular choice does
not matter for the sequel. Note that indC∗r ({1},R)(B) ∈ KO8(R) ∼= Z is a
generator and the product with this element induces the Bott periodicity

isomorphisms KOn(C∗r (G,R))
∼=−→ KOn+8(C∗r (G,R)). In particular
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indC∗r (G,R)(M) = indC∗r (G,R)(M ×B),(14.45)

if we identify KOn(C∗r (G,R)) = KOn+8(C∗r (G,R)) via Bott periodicity.

Conjecture 14.46 (Stable Gromov-Lawson-Rosenberg Conjecture).
Let M be a connected closed Spin-manifold of dimension n ≥ 5. Let
uM : M → Bπ1(M) be the classifying map of its universal covering. Then
M × Bk carries for some integer k ≥ 0 a Riemannian metric with positive
scalar curvature if and only if

indC∗r (π1(M),R)([M,uM ]) = 0 ∈ KOn(C∗r (π1(M),R)).

If M carries a Riemannian metric with positive scalar curvature, then
the index of the Dirac operator must vanish by the Bochner-Lichnerowicz
formula [841]. The converse statement that the vanishing of the index implies
the existence of a Riemannian metric with positive scalar curvature is the
hard part of the conjecture. The following result is due to Stolz. A sketch of
the proof can be found in [913, Section 3].

Theorem 14.47 (The Baum-Connes Conjecture implies the Stable
Gromov-Lawson-Rosenberg Conjecture). If the assembly map for the
real version of the Baum-Connes Conjecture 14.9 is injective for the group
G, then the Stable Gromov-Lawson-Rosenberg Conjecture 14.46 is true for
all closed Spin-manifolds of dimension ≥ 5 with π1(M) ∼= G.

The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-
Rosenberg Conjecture since in dimension four new obstructions, the Seiberg-
Witten invariants, occur. The unstable version of this conjecture says that
M carries a Riemannian metric with positive scalar curvature if and only
if indC∗r (π1(M),R)([M,uM ]) = 0. Schick [878] constructs counterexamples to
the unstable version using minimal hypersurface methods due to Schoen and
Yau, see also [306]. There are counterexamples with π ∼= Z4 × Z/3. However
for appropriate ρ : Z/3 → aut(Z4) the unstable version does hold for π ∼=
Z4 oρ Z/3 and dim(M) ≥ 5, see [267, Theorem 0.7 and Remark 0.9]. More
infinite groups for which the unstable version holds are presented in [490,
Theorem 6.3].

Since the Baum-Connes Conjecture 14.9 is true for finite groups (for the
trivial reason that EFIN (G) = {•} for finite groups G), Theorem 14.47
implies that the Stable Gromov-Lawson Conjecture 14.46 holds for finite
fundamental groups, see also [853]. It is not known at the time of writing
whether the unstable version is true for finite fundamental groups.

The index map appearing in (14.44) can be factorized as a composite
(14.48)

indC∗r (G,R) : ΩSpin
n (BG)

D−→ KOn(BG)
asmbG,C(BG)n−−−−−−−−−→ KOn(C∗r (G,R))

where D sends [M,u] to the class of the G-equivariant Dirac operator of the
G-manifold M given by u and asmbG,C(BG)n is the real version of the classi-
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cal assembly map. The homological Chern character defines an isomorphism

KOn(BG)⊗Z Q
∼=−→
⊕
p∈Z

Hn+4p(BG;Q).

Recall that associated to M there is the Â-class

Â(M) ∈
∏
p≥0

Hp(M ;Q)(14.49)

which is a certain polynomial in the Pontrjagin classes. The map D appearing
in (14.48) sends the class of u : M → BG to u∗(Â(M) ∩ [M ]Q), i.e., the

image of the Poincaré dual of Â(M) under the map induced by u in rational

homology. Hence D([M,u]) = 0 if and only if u∗(Â(M)∩ [M ]Q) vanishes. For

x ∈
∏
k≥0H

k(BG;Q) define the higher Â-genus of (M,u) associated to x to
be

Âx(M,u) = 〈Â(M) ∪ u∗x, [M ]Q〉 = 〈x, u∗(Â(M) ∩ [M ]Q)〉 ∈ Q.(14.50)

The vanishing of Â(M) is equivalent to the vanishing of all higher Â-genera

Âx(M,u). The following conjecture is a weak version of the Stable Gromov-
Lawson-Rosenberg Conjecture.

Conjecture 14.51 (Homological Gromov-Lawson-Rosenberg Conjec-
ture). Let G be a group. Then for any closed Spin-manifold M , which admits

a Riemannian metric with positive scalar curvature, the Â-genus Âx(M,u)
vanishes for all maps u : M → BG and elements x ∈

∏
k≥0H

k(BG;Q).

From the discussion above we obtain the following result.

Lemma 14.52. If the assembly map

KOn(BG)⊗Z Q→ KOn(C∗r (G,R))⊗Z Q

is injective for all n ∈ Z, then the Homological Gromov-Lawson-Rosenberg
Conjecture 14.51 holds for G.

The following conjecture is due to Gromov-Lawson [426, page 313].

Conjecture 14.53 (Aspherical closed manifolds carry no Rieman-
nian metric with positive scalar curvature). An aspherical closed ma-
nifold carries no Riemannian metric with positive scalar curvature.

Conjecture 14.53 is true in dimensions 4 and 5 by Chodosh-Li-Liokumovich [229]
and Gromov [425].

Lemma 14.54. Let M be an aspherical closed Spin-manifold whose funda-
mental group satisfies the Homological Gromov-Lawson-Rosenberg Conjec-
ture 14.51.
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Then M satisfies Conjecture 14.53, i.e., M carries no Riemannian metric
with positive scalar curvature.

Proof. Suppose M carries a Riemannian metric of positive scalar curvature.
Since M is aspherical, we can take M = BG for G = π1(M) and f = idG in

Conjecture 14.51. Since Â(M)0 = 1, we get for all x ∈ Hdim(M)(M ;Q) that
〈x, [M ]〉 = 0 holds, a contradiction. ut

Exercise 14.55. Let F → M → S1 be a fiber bundle such that F is an
orientable closed surface and M is a closed spin-manifold. Show that M
carries a Riemannian metric with positive scalar curvature if and only if F
is S2.

The (moduli) space of metrics of positive scalar curvature of closed spin
manifolds is studied in [147, 148, 250, 308, 449, 882].

14.8.3 L2-Rho-Invariants and L2-Signatures

Comment 18 (by W.): Continue here: 27.04 /23:50
Let M be an orientable connected closed Riemannian manifold. Denote by

η(M) ∈ R the eta-invariant of M and by η(2)(M̃) ∈ R the L2-eta-invariant of

the π1(M)-covering given by the universal covering M̃ →M . Let ρ(2)(M) ∈ R
be the L2-rho-invariant that is defined to be the difference η(2)(M̃)− η(M).
These invariants were studied by Cheeger and Gromov [225, 226]. They show
that ρ(2)(M) depends only on the diffeomorphism type ofM and is in contrast

to η(M) and η(2)(M̃) independent of the choice of Riemannian metric on M .
The following conjecture is taken from Mathai [693].

Conjecture 14.56 (Homotopy Invariance of the L2-Rho-Invariant
for Torsionfree Groups). If π1(M) is torsionfree, then ρ(2)(M) is a ho-
motopy invariant.

Theorem 14.57 (Homotopy Invariance of ρ(2)(M)). Let M be an ori-
ented connected closed manifold Mof odd dimension such that G = π1(M) is
torsionfree. Suppose that the assembly map K0(BG)→ K0(C∗max(G)) for the
maximal group C∗-algebra, see Subsection 14.5.1, is surjective.

Then ρ(2)(M) is a homotopy invariant.

Proof. This is proved by Keswani [560, 561]. ut

Remark 14.58 (L2-signature Theorem). Let X be a 4n-dimensional
Poincaré space over Q. Let X → X be a normal covering with torsionfree cov-
ering group G. Suppose that the assembly map K0(BG)→ K0(C∗max(G)) for
the maximal group C∗-algebra is surjective see Subsection 14.5.1, or suppose
that the rationalized assembly map for L-theory
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H4n(BG; L〈−∞〉(Z))⊗Z Q→ L
〈−∞〉
4n (ZG)⊗Z Q

is an isomorphism. Then the following L2-signature theorem is proved in
Lück-Schick [665, Theorem 0.3]

(14.59) sign(2)(X) = sign(X).

If one drops the condition that G is torsionfree this equality becomes
false. Namely, Wall has constructed a finite Poincaré space X with a finite
G covering X → X for which sign(X) 6= |G| · sign(X) holds, see [823, Ex-
ample 22.28], [966, Corollary 5.4.1]. If X is a closed topological manifold,
then (14.59) is true for all groups G, see [665, Theorem 0.2].

Remark 14.60. Chang-Weinberger [213] assign to an oriented connected
closed (4k−1)-dimensional manifoldM a Hirzebruch-type invariant τ (2)(M) ∈
R as follows. By a result of Hausmann [457] there is an oriented connected
closed 4k-dimensional smooth manifold W with M = ∂W such that the in-
clusion ∂W → W induces an injection on the fundamental groups. Define
τ (2)(M) as the difference sign(2)(W̃ ) − sign(W ) of the L2-signature of the

π1(W )-covering given by the universal covering W̃ → W and the signature
of W . This is indeed independent of the choice of W . We conjecture that
ρ(2)(M) = τ (2)(M) is always true. Chang-Weinberger [213] use τ (2) to prove
that, if π1(M) is not torsionfree, there are infinitely many diffeomorphically
distinct smooth manifolds of dimension 4k+ 3 with k ≥ 1 which are tangen-
tially simple homotopy equivalent to M .

Suppose that the L-theoretic Farrell-Jones Conjecture13.4 with coefficients
in the ring with involution is rationally true for R = Z, i.e., the rationalized
assembly map

Hn(BG; L〈−∞〉(Z))⊗Z Q→ L〈−∞〉n (ZG)⊗Z Q

is an isomorphism for n ∈ Z. We mention without proof that then τ (2)(M)
is a homotopy invariant.

Remark 14.61 (Obstructions for knots to be slice). Cochran-Orr-
Teichner give in [232] new obstructions for a knot to be slice, which are
sharper than the Casson-Gordon invariants. They use L2-signatures and the
Baum-Connes Conjecture 14.9. We also refer to the survey article [231] about
non-commutative geometry and knot theory.

14.9 Notes

The Baum-Connes Conjecture has also been formulated and proved for (not
necessarily discrete) topological groups, see for instance [103, 106, 210, 586].
It is interesting for representation theory, see for instance [107].
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The Baum-Connes assembly maps in terms of localizations of triangulated
categories are considered in [497, 498, 499, 701, 702, 703].

Certain so-called Cuntz-Lie C∗-algebras, see [254, 255], were classified
in [613, Corollary 1.3]. The main difficulty is to compute the topological
K-theory of these C∗-algebras, which boils down to the computation of the
topological C∗-algebra of certain crystallographic groups. This in turn leads
via the Baum-Connes Conjecture to an open conjecture about group homol-
ogy which was solved in the case needed for this application, see [603, 604].

Other classification results whose proof uses the Baum-Connes Conjec-
ture 14.9, can be found in [310, Theorem 0.1].

We propose that one should also construct a Baum-Connes assembly map
for the Fréchet algebra R(G) associated to a group G. This will lead to the
intriguing factorization of the Baum-Connes assembly map

KG
n (EG)→ Kn(R(G))→ Kn(L1(G))→ Kn(C∗r (G)).

There is some hope that the methods of proof for the K-theoretic Farrell-
Jones Conjecture carry over to group Fréchet algebras. This would lead for
instance to the proof of the bijectivity of KG

n (EG) → Kn(R(G)) for (not
necessarily cocompact) lattices in second countable locally compact Hausdorff
groups with finitely many path components. Note that the Baum-Connes
Conjecture 14.9 is open for SLn(Z) for n ≥ 3.

For more information about the Baum-Connes Conjecture and its appli-
cations we refer for instance to [103, 409, 467, 475, 476, 477, 584, 585, 657,
727, 791, 850, 879, 945].
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Chapter 15

The (Fibered) Meta- and Other
Isomorphism Conjectures

15.1 Introduction

In this section we deal with Isomorphism Conjectures in their most general
form. Namely, given a G-homology theory HG∗ , the Meta-Isomorphism Con-
jecture 15.2 predicts that, for a group G and a family F of subgroups of G,
the map induced by the projection EF (G)→ G/G

HGn (EF (G))→ HGn (G/G)

is bijective for all n ∈ Z.
If we take special examples forHG∗ and F , then we obtain the Farrell-Jones

Conjecture for a ring R (with involution), see Conjectures 13.1 and 13.4, and
the Baum-Connes Conjecture 14.9. We will also introduce a Fibered Meta-
Isomorphism Conjecture 15.8 which is more general and has much better
inheritance properties, see Section 15.6. The versions of the Farrell-Jones
Conjecture with coefficients in additive categories, see Conjectures 13.11
and 13.16, and the Baum-Connes Conjecture 14.11 with coefficients are auto-
matically fibered, see Theorem 15.9, and hence have good inheritance prop-
erties.

The main tool to reduce the family of subgroups is the Transitivity Prin-
ciple, which we discuss in Section 15.5.

Section 15.7 is devoted to actions on trees and their implications, such
as the existence of Mayer-Vietoris sequences associated to amalgamated free
products and Wang sequences associated to semidirect products with Z, or
more generally to HNN-extensions.

In Section 15.8 we pass to the special case where the homology theory
comes from a functor from spaces to spectra which respects weak homotopy
equivalences and disjoint unions, and discuss inheritance properties in this
framework.

By specifying the functor from spaces to spectra, we obtain the Farrell-
Jones Conjecture for Waldhausen’s A-theory for pseudoisotopy and White-
head spaces in Section 15.10 We also deal with topological Hochschild ho-
mology and cyclic homology in Section 15.11. We explain the Farrell-Jones
Conjecture for homotopy K-theory in Section 15.12. The only instance where
we will consider not necessarily discrete groups is the Farrell-Jones Conjec-
ture 15.78 for the algebraic K-theory of the Hecke algebra of a totally dis-
connected locally compact second countable Hausdorff group.

421
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In Section 15.14 interesting relations between these conjectures are dis-
cussed, namely, between the Farrell-Jones Conjecture for the K-theory of
groups rings, for A-theory, and for pseudoisotopy, between the L-theoretic
Farrell-Jones Conjecture and the Baum-Connes Conjecture, and between
the Farrell-Jones Conjecture for K-theory and homotopy K-theory. We will
briefly also relate the geometric surgery sequence in the topological category
to an analytic Surgery Exact Sequence.

15.2 The Meta-Isomorphism Conjecture

Let G be a (discrete) group. Let HG∗ be a G-homology theory with val-
ues in Λ-modules for some commutative associative ring with unit Λ. Recall
that it assigns to every G-CW -pair (X,A) and integer n ∈ Z a Λ-module
HGn (X,A) such that the obvious generalization to G-CW -pairs of the axioms
of a (non-equivariant generalized) homology theory for CW -complexes holds,
i.e., G-homotopy invariance, the long exact sequence of a G-CW -pair, exci-
sion, and the disjoint union axiom are satisfied. The precise definition of a
G-homology theory can be found in Definition 12.1 and of a G-CW -complex
in Definition 11.2, see also Remark 11.3.

Recall that we have defined the notion of a family of subgroups of a group
G in Definition 2.62, namely, to be a set of subgroups of G that is closed
under conjugation with elements of G and passing to subgroups. Let F be
a family of subgroups of G. Denote by EF (G) a model for the classifying
G-CW -complex for the family F of subgroups of G, i.e., a G-CW -complex
EF (G) whose isotropy groups belong to F and for which for each H ∈ F the
H-fixed point set EF (G)H is weakly contractible. Such a model always exists
and is unique up to G-homotopy, see Definition 11.18 and Theorem 11.19.

The projection pr : EF (G)→ G/G induces for all integers n ∈ Z a homo-
morphism of Λ-modules

(15.1) HGn (pr) : HGn (EF (G))→ HGn (G/G),

which is sometimes called assembly map.

Conjecture 15.2 (Meta-Isomorphism Conjecture). The group G satis-
fies the Meta-Isomorphism Conjecture with respect to the G-homology theory
HG∗ and the family F of subgroups of G if the assembly map

Hn(pr) : HGn (EF (G))→ HGn (G/G)

of (15.1) is bijective for all n ∈ Z.

If we choose F to be the family ALL of all subgroups, then G/G is a
model for EALL(G) and the Meta-Isomorphism Conjecture 15.2 is obviously
true. The point is to find an as small as possible family F . The idea of the
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Meta-Isomorphism Conjecture 15.2 is that one wants to compute HGn (G/G),
which is the unknown and the interesting object, by assembling it from the
values HGn (G/H) for H ∈ F , which are usually much more accessibly since
the structure of the groups H is easy. For instance F could be the family
FIN of finite subgroups or the family VCY of virtually cyclic subgroups.

The various Isomorphism Conjectures are now obtained by specifying the
G-homology theory HG∗ and the family F . For instance, the K-theoretic
Farrell-Jones Conjecture 13.1 with coefficients in the ring R and the L-
theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring with in-
volution R are equivalent to the Meta-Isomorphism Conjecture 15.2 if we

choose F to be VCY and HGn to be HG
n (−; KR) and HG

n (−; L
〈−∞〉
R ). The

Baum-Connes Conjecture 14.9 is equivalent the Meta-Isomorphism Conjec-
ture 15.2 if we choose F to be FIN and HGn to be KG

n (−) = HG
n (−; KTOP

C )
or KOGn (−) = HG

n (−; KTOP
R ). The analogous statement holds for the ver-

sions with coefficients in additive G-categories (with involutions), Conjec-
tures 13.11, 13.16, and 14.11.

Exercise 15.3. Let H?
∗ be an equivariant homology theory with values in Λ-

modules in the sense of Definition 12.9. Fix a class of groups C that is closed
under isomorphisms, taking subgroups and taking quotients, e.g., the class
of finite groups or the class of virtually cyclic subgroups. For a group G let
C(G) be the family of subgroups of G that belong to C. Then we obtain for
each group G an assembly map induced by the projection EC(G)(G)→ G/G.

HGn (EC(G)(G))→ HGn (G/G).

Explain that using the induction structure of H?
∗ we can turn the source

and target to be functors from the category of groups to the category of Λ-
modules such that the assembly maps yield a natural transformation of such
functors.

15.3 The Fibered Meta-Isomorphism Conjecture

Given a group homomorphism φ : K → G and a family F of subgroups of G,
define the family of subgroups of K by

φ∗F := {H ⊆ K | φ(H) ∈ F}.(15.4)

If φ is an inclusion of subgroups, we also write

F|K := φ∗F = {H ⊆ K | H ∈ F}.(15.5)

If ψ : H → K is another group homomorphism, then
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ψ∗(φ∗F) = (φ ◦ ψ)∗F .(15.6)

Exercise 15.7. Let φ : K → G be a group homomorphism. Consider a family
F of subgroups of G and a G-CW -model EF (G). Show that its restriction
to K by φ : K → G is a K-CW -complex which is a model for Eφ∗F (K).

Consider an equivariant homology theory H?
∗ over the group Γ with values

in Λ-modules in the sense of Definition 12.89.

Conjecture 15.8 (Fibered Meta-Isomorphism Conjecture). A group
(G, ξ) over Γ satisfies the Fibered Meta-Isomorphism Conjecture with respect
to H?

∗ and the family F of subgroups of G if for each group homomorphism
φ : K → G the group K satisfies the Meta-Isomorphism Conjecture 15.2 with
respect to the K-homology theory HK,ξ◦φ∗ and the family φ∗F of subgroups
of K.

15.4 The Farrell-Jones Conjecture with Coefficients in
Additive or Higher Categories is Fibered

We will see that it is important for inheritance properties to pass to the
fibered version. It turns out that the fibered version is automatically built
into the versions of the Farrell-Jones Conjecture with coefficients in additive
G-categories (with involution).

Theorem 15.9 (The Farrell-Jones Conjecture with coefficients in
additive G-categories (with involutions) is automatically fibered).

(i) Let φ : K → G be a group homomorphism. Let F be a family of subgroups
of G. Suppose that the assembly map

HG
n (pr) : HG

n (EF (G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
is bijective for every n ∈ Z and every additive G-category A.
Then the assembly map

HK
n (pr) : HK

n (Eφ∗F (K); KB)→ HK
n (K/K; KB) = πn

(
KB(I(K))

)
is bijective for every n ∈ Z and every additive K-category B.
The anlogous statement holds for higher categories as coefficients;

(ii) Suppose that G satisfies the K-theoretic Farrell-Jones Conjecture 13.11
with coefficients in additive G-categories.
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for the group
(G, idG) over G, the family VCY and the equivariant homology theory
H?
∗(−; KA) over G for every additive G-category A.

The anlogous statement holds for higher categories as coefficients;
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(iii) Let φ : K → G be a group homomorphism. Let F be a family of subgroups
of G. Suppose that the assembly map

HG
n (pr) : HG

n (EF (G); L
〈−∞〉
A )→ HG

n (G/G; L
〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
is bijective for every n ∈ Z and every additive G-category with involution
A.
Then the assembly map

HK
n (pr) : HK

n (Eφ∗F (G); L
〈−∞〉
B )→ HK

n (K/K; L
〈−∞〉
B ) = πn

(
L
〈−∞〉
B (I(K))

)
is bijective for every n ∈ Z and every additive K-category with involution
B;

(iv) Suppose that G satisfies the L-theoretic Farrell-Jones Conjecture 13.16
with coefficients in additive G-categories with involution.
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for the group
(G, idG) over G, the family VCY and the equivariant homology theory

H?
∗(−; L

〈−∞〉
A ) over G for every additive G-category with involution A;

Proof. (i) See [90, Corollary 4.3]. Comment 19 (by W.): Add a reference
for higher additive categories. See for instance [330, Remark 2.-10].

(ii) This follows from assertion (i) by taking B = φ∗A since a direct inspec-
tion of the definitions in [76, Section 9] shows that the K-homology theory
obtained by taking in H?

∗(−; KA) the variable ? to be φ is the same as the K-
homology theory HK

∗ (−; Kφ∗A) associated to the additive K-category φ∗A.
Comment 20 (by W.): Check that this argument passes to higher cate-
gories.

(iii) See [76, Theorem 11.3].

(iv) This follows from (iii) by the same proof as it appears in assertion (ii). ut

It is useful to have the Fibered Meta Conjecture 15.8 available since there
are other situations where it is not known to formulate it with adequate
coefficients, as it is possible in the Farrell-Jones setting for K- and L-theory.

15.5 Transitivity Principles

In this subsection we treat only equivariant homology theories H?
∗ to keep

the notation and exposition simple. The generalizations to an equivariant
homology theory over a group Γ are obvious, just equip each group occurring
below with the appropriate reference map to Γ .

Lemma 15.10. Let G be a group, and let F be a family of subgroups of
G. Let m be an integer. Let Z be a G-CW -complex. For H ⊆ G let F|H
be the family of subgroups of H given by {L ⊆ H | L ∈ F}. Suppose for
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each H ⊆ G occurring as isotropy group in Z that the maps induced by the
projection prH : EF|H (H)→ H/H

HHn (prH) : HHn (EF|H (H))→ HHn (H/H)

satisfy one of the following conditions

(i) They are bijective for n ∈ Z with n ≤ m;
(ii) They are bijective for n ∈ Z with n ≤ m− 1 and surjective for n = m.

Then the maps induced by the projection pr2 : EF (G)× Z → Z

HGn (pr2) : HGn (EF (G)× Z)→ HGn (Z)

satisfies the same condition.

Proof. We first prove the claim for finite dimensional G-CW -complexes by
induction over d = dim(Z). The induction beginning dim(Z) = −1, i.e.
Z = ∅, is trivial. In the induction step from (d − 1) to d we choose a G-
pushout ∐

i∈Id G/Hi × Sd−1 //

��

Zd−1

��∐
i∈Id G/Hi ×Dd // Zd

If we cross it with EF (G), we obtain another G-pushout of G-CW -complexes.
The various projections induce a map from the Mayer-Vietoris sequence of
the latter G-pushout to the Mayer-Vietoris sequence of the first G-pushout.
By the Five Lemma (or its obvious variant if we consider assumption (ii)) it
suffices to prove that the following maps

HGn (pr2) : HGn

(
EF (G)×

∐
i∈Id

G/Hi × Sd−1

)
→ HGn

(∐
i∈Id

G/Hi × Sd−1

)
;

HGn (pr2) : HGn (EF (G)× Zd−1)→ HGn (Zd−1);

HGn (pr2) : HGn

(
EF (G)×

∐
i∈Id

G/Hi ×Dd

)
→ HGn

(∐
i∈Id

G/Hi ×Dd

)
,

satisfy condition (i) or(ii). This follows from the induction hypothesis for
the first two maps. Because of the disjoint union axiom and G-homotopy
invariance of H?

∗ the claim follows for the third map if we can show for any
H ⊆ G which occurs as isotropy group in Z that the maps

HGn (pr2) : HGn (EF (G)×G/H)→ HG(G/H)(15.11)

satisfy condition (i) or(ii). The G-map
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G×H resHG EF (G)→ G/H × EF (G) (g, x) 7→ (gH, gx)

is a G-homeomorphism where resHG denotes the restriction of the G-action
to an H-action. Since F|H = {K ∩ H | K ∈ F}, the H-space resHG EF (G)
is a model for EF|H (H). We conclude from the induction structure that the
map (15.11) can be identified with the map

HHn (prH) : HHn (EF|H (H)) → HH(H/H)

which satisfies condition (i) or (ii) by assumption. This finishes the proof in
the case that Z is finite dimensional. The general case follows by a colimit
argument using Lemma 12.5. ut

Theorem 15.12 (Transitivity Principle for equivariant homology).
Suppose F ⊆ G are two families of subgroups of the group G. Suppose for
every H ∈ G that the maps induced by the projection

HHn (EF|H (H))→ HHn (H/H)

satisfy one of the following conditions

(i) They are bijective for n ∈ Z with n ≤ m;
(ii) They are bijective for n ∈ Z with n ≤ m− 1 and surjective for n = m.

Then the maps induced by the up to G-homotopy unique G-map ιF⊆G : EF (G)→
EG(G)

HGn (ιF⊆G) : HGn (EF (G))→ HGn (EG(G))

satisfy the same condition.

Proof. If we equip EF (G)×EG(G) with the diagonal G-action, it is a model
for EF (G). Now apply Lemma 15.10 in the special case Z = EG(G). ut

This implies the following transitivity principle for the Fibered Isomor-
phism Conjecture. At the level of spectra this transitivity principle is due to
Farrell and Jones [351, Theorem A.10].

Theorem 15.13 (Transitivity Principle). Suppose F ⊆ G are two fami-
lies of subgroups of G.

(i) Assume that for every element H ∈ G the group H satisfies the Meta-
Isomorphism Conjecture 15.2 or the Fibered Meta-Isomorphism Conjec-
ture 15.8 respectively for F|H .
Then the group G satisfies the Meta-Isomorphism Conjecture 15.2 or the
Fibered Meta-Isomorphism Conjecture 15.8 respectively with respect to G
if and only if G satisfies the Meta-Isomorphism Conjecture 15.2 or the
Fibered Meta-Isomorphism Conjecture 15.8 respectively with respect to F ;

(ii) The group G satisfies the Fibered Meta-Isomorphism Conjecture 15.8 with
respect to G if G satisfies the Fibered Meta-Isomorphism Conjecture 15.8
respectively with respect to F ;
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Proof. (i) We first treat the (slightly harder) case of the Fibered Meta-
Isomorphism Conjecture 15.8

Consider a group homomorphism φ : K → G. Then for every subgroup H
of K we conclude

(φ|H)∗(F|φ(H)) = (φ∗F)|H
from (15.6) where φ|H : H → φ(H) is the group homomorphism induced by
φ. For every element H ∈ φ∗G the map

HHn (E(φ|H)∗(F|φ(H))(H)) = HHn (Eφ∗F|H (H))→ HHn (H/H)

is bijective for all n ∈ Z by the assumption that the element φ(H) ∈ G satisfies
the Fibered Isomorphism Conjecture for F|φ(H). Hence by Theorem 15.12
applied to the inclusion φ∗F ⊆ φ∗G of families of subgroups of K we get an
isomorphism

HKn (ιφ∗F⊆φ∗G) : HKn (Eφ∗F (K))
∼=−→ HKn (Eφ∗G(K)).

Therefore the map HKn (Eφ∗F (K)) → HKn (K/K) is bijective for all n ∈ Z if
and only if the map HKn (Eφ∗G(K))→ HKn (K/K) is bijective for all n ∈ Z.

The argument for the Meta-Isomorphism Conjecture 15.8 is analogous,
just specialize the argument above to the case φ = idG.

(ii) We want to apply assertion (i). We have to show that for every element
H ∈ G the group H satisfies the Fibered Meta-Isomorphism Conjecture 15.8
for F|H , provided that G satisfies the Fibered Meta-Isomorphism Conjec-
ture 15.8 with respect to F . This follows from the elementary Lemma 15.16
below since F|H = i∗F for the inclusion i : H → G. ut

Note that assertion (ii) of Theorem 15.13 is only formulated for the fibered
version.

The Fibered Isomorphism Conjecture is also well behaved with respect to
finite intersections of families of subgroups.

Lemma 15.14. Let G be a group, and let F and G be families of subgroups.
Suppose that G satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for
both F and G.

Then G satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for the
family F ∩ G := {H ⊆ G | H ∈ F and H ∈ G}.

Proof. Obviously F ∪ G := {H ⊆ G | H ∈ F or H ∈ G} is a family of
subgroups of G.

Consider a group homomorphism φ : K → G. We have to show that the
Meta-Isomorphism Conjecture 15.2 holds for G with respect to φ∗(F ∩ G).

Choose G-CW -models EF∩G(G), EF (G) and EG(G) such that EF∩G(G)
is a G-CW -subcomplex of both EF (G) and EG(G). This can be arranged by
a mapping cylinder construction. Define a G-CW -complex
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X = EF (G) ∪EG(F∩G) EG(G).

For any subgroup H ⊆ G we get

XH = EF (G)H ∪EG(F∩G)H EG(G)H .

If EF (G)H and EG(G)H are empty, the same is true for XH . If EF (G)H

is empty, then EG(G)H = XH . If EG(G)H is empty, then EF (G)H = XH .
If EF (G)H , EG(G)H , and EF∩G(G)H are weakly contractible, the same is
true for XH . Hence X is a model for EF∪G(G). If we apply restriction with
φ, we get a decomposition of Eφ∗(F∪G)(K) = φ∗EF∪G(G) as the union of
Eφ∗F (K) = φ∗EF (G) and Eφ∗G(K) = φ∗EG(G) such that the intersection
of Eφ∗F (K) and Eφ∗G(K) is Eφ∗(F∩G)(K) = φ∗EF∩G(G). By assumption
and by Theorem 15.13 (ii) the Fibered Meta-Isomorphism Conjecture 15.8
holds for G with respect to F , G, and F ∪ G. Hence the Meta-Isomorphism
Conjecture 15.2 holds for G with respect to φ∗(F ∪G), φ∗F , and φ∗G. Using
the Mayer-Vietoris sequence for the decomposition of Eφ∗F∪φ∗G(K) above
and the Five Lemma, we conclude that Meta-Isomorphism Conjecture 15.2
holds for G with respect to φ∗(F ∩ G). Since φ : K → G is an arbitrary
group homomorphism with target G, the group G satisfies the Fibered Meta-
Isomorphism Conjecture 15.8 for the family F ∩ G. ut

Exercise 15.15. Assume that the Fibered Meta-Isomorphism Conjecture 15.8
holds for G = Z, the family F = FIN , and the equivariant homology theory
H?
∗(−; KR) for a given ring R.
Show that then we have NKn(RG) = 0 for every group G and n ∈ Z.

15.6 Inheritance Properties of the Fibered
Meta-Isomorphism Conjecture

The Fibered Meta-Isomorphism Conjecture 15.8 has better inheritance prop-
erties than the Meta-Isomorphism Conjecture 15.2.

In this subsection we treat only equivariant homology theories H?
∗ for sim-

plicity. The generalizations to an equivariant homology theory over a group
Γ are obvious.

Lemma 15.16. Let φ : K → G be a group homomorphism and F be a
family of subgroups. If (G,F) satisfies the Fibered Meta-Isomorphism Con-
jecture 15.8 then (K,φ∗F) satisfies the Fibered Meta-Isomorphism Conjec-
ture 15.8.

Proof. If ψ : L → K is a group homomorphism, then ψ∗(φ∗F) = (φ ◦ ψ)∗F
by (15.6). ut
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Exercise 15.17. Fix a class of groups C that is closed under isomorphisms
and taking subgroups, e.g., the class of finite groups or the class of virtually
cyclic subgroups. For a group G let C(G) be the family of subgroups of G that
belong to C. Suppose that the Fibered Meta-Isomorphism Conjecture 15.8
holds for (G, C(G)). Let H ⊆ G be a subgroup.

Show that (H, C(H)) satisfies the Fibered Meta-Isomorphism Conjec-
ture 15.8.

Lemma 15.18. Fix a class of groups C that is closed under isomorphisms,
taking subgroups, and taking quotients, e.g., the class of finite groups or the
class of virtually cyclic subgroups. For a group G let C(G) be the family of

subgroups of G that belong to C. Let 1→ K → G
p−→ Q→ 1 be an extension of

groups. Suppose that (Q, C(Q)) and (p−1(H), C(p−1(H)) for every H ∈ C(Q)
satisfy the Fibered Meta-Isomorphism Conjecture 15.8.

Then (G, C(G)) satisfies the Fibered Meta-Isomorphism Conjecture 15.8.

Proof. By Lemma 15.16 the pair (G, p∗C(Q)) satisfies the Fibered Meta-
Isomorphism Conjecture 15.8. Obviously C(G) ⊆ p∗C(Q). Because of the
Transitivity Principle 15.13 (i) it remains to show for each L ∈ p∗C(Q) that
the pair (L, C(L)) satisfies the Fibered Meta-Isomorphism Conjecture 15.8.
Since L ⊆ p−1(p(L)) and p(L) ∈ C(Q) holds, we conclude from Exercise 15.17
that this follows from the assumption that (p−1(H), C(p−1(H)) satisfy the
Fibered Meta-Isomorphism Conjecture 15.8 for every H ∈ C(Q). ut

Fix an equivariant homology theory H?
∗ with values in Λ-modules. Let X

be a G-CW -complex. Let α : H → G be a group homomorphism. Denote by
α∗X the H-CW -complex obtained from X by restriction with α. Recall that
α∗Y denotes the induction of an H-CW -complex Y and is a G-CW -complex.
The functors α∗ and α∗ are adjoint to one another. In particular the adjoint
of the identity on α∗X is a natural G-map

(15.19) f(X,α) : α∗α
∗X → X.

It sends an element in G×α α∗X given by (g, x) to gx. Define the Λ-map

an = an(X,α) : HHn (α∗X)
indα−−−→ HGn (α∗α

∗X)
HGn (f(X,α))−−−−−−−−→ HGn (X).

If β : G→ K is another group homomorphism, then by the axioms of an in-

duction structure the composite HHn (α∗β∗X)
an(β∗X,α)−−−−−−−→ HGn (β∗X)

an(X,β)−−−−−→
HKn (X) agrees with an(X,β ◦ α) : HHn (α∗β∗X) = HHn ((β ◦ α)∗X)→ HGn (X)
for a K-CW -complex X.

Consider a directed system of groups {Gi | i ∈ I} with G = colimi∈I Gi
and structure maps ψi : Gi → G for i ∈ I and φi,j : Gi → Gj for i, j ∈ I, i ≤ j.
We obtain for every G-CW -complex X a system of Λ-modules {HGin (ψ∗iX) |
i ∈ I} with structure maps an(ψ∗jX,φi,j) : HGin (ψ∗iX)→ HGjn (ψ∗jX). We get
a map of Λ-modules
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(15.20)
tGn (X,A) := colimi∈I an(X,ψi) : colimi∈I HGin (ψ∗i (X,A)) → HGn (X,A).

Definition 15.21 ((Strongly) continuous equivariant homology the-
ory). An equivariant homology theory H?

∗ is called continuous if for every
group G and every directed system of subgroups {Gi | i ∈ I} of G with
G =

⋃
i∈I Gi the Λ-map, see (15.20),

tGn ({•}) : colimi∈I HGin ({•})→ HGn ({•})

is an isomorphism for every n ∈ Z.
An equivariant homology theory H?

∗ over Γ is called strongly continuous
if for every group G and every directed system of groups {Gi | i ∈ I} with
G = colimi∈I Gi and structure maps ψi : Gi → G for i ∈ I the Λ-map

tGn ({•}) : colimi∈I HGin ({•})→ HGn ({•})

is an isomorphism for every n ∈ Z.

The next result is taken from [70, Lemma 3.4].

Lemma 15.22. Consider a directed system of groups {Gi | i ∈ I} with G =
colimi∈I Gi and structure maps ψi : Gi → G for i ∈ I. Let (X,A) be a G-
CW -pair. Suppose that H?

∗ is strongly continuous.
Then the Λ-homomorphism, see (15.20)

tGn (X,A) : colimi∈I HGin (ψ∗i (X,A))
∼=−→ HGn (X,A)

is bijective for every n ∈ Z.

The proof of the next result is based on Lemma 15.22.

Lemma 15.23. Fix a class of groups C that is closed under isomorphisms,
taking subgroups, and taking quotients, e.g., the class of finite groups or the
class of virtually cyclic subgroups. For a group G let C(G) be the family of
subgroups of G that belong to C. Let G be a group.

(i) Let G be the directed union of subgroups {Gi | i ∈ I}. Suppose that H?
∗

is continuous and for every i ∈ I the Meta-Isomorphism Conjecture 15.2
holds for Gi and C(Gi).
Then the Meta-Isomorphism Conjecture 15.2 holds for G and C(G);

(ii) Let G be the directed union of subgroups {Gi | i ∈ I}. Suppose that H?
∗ is

continuous and for every i ∈ I the assembly map appearing in the Meta-
Isomorphism Conjecture 15.2 for Gi and C(Gi) is injective for all n ∈ Z.
Then the assembly map appearing in the Meta-Isomorphism Conjecture 15.2
for G and C(G) is injective for all n ∈ Z;
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(iii) Let {Gi | i ∈ I} be a directed system of groups with G = colimi∈I Gi and
structure maps ψi : Gi → G. Suppose that H?

∗ is strongly continuous and
for every i ∈ I the Fibered Meta-Isomorphism Conjecture 15.8 holds for
Gi and C(Gi).
Then the Fibered Meta-Isomorphism Conjecture 15.8 holds for G and
C(G).

Proof. (i) is proved in [74, Proposition 3.4].

(ii) The proof of [74, Proposition 3.4] for isomorphism yields also a proof for
the injectivity version since the colimit over a directed system is an exact
functor and hence preserves injectivity.

(iii) See [70, Theorem 5.6]. ut

Remark 15.24 (Injectivity and the Transitivity principle). For col-
imits over a directed system of subgroups, we did get a statement about
injectivity in Lemma 15.23 (ii), essentially since the colimit over a directed
system is an exact functor. We cannot prove such injectivity statement for
assertion (iii) since its proof uses the Transitivity Principle 15.13 for which
the injectivity version is not true in general, essentially, because the Five
Lemma does not has a version for injectivity.

15.7 Actions on Trees

In this subsection we treat only equivariant homology theories H?
∗ for sim-

plicity. The generalizations to an equivariant homology theory over a group
Γ are obvious.

Given a subgroup H ⊆ G, we obtain a G-homeomorphism G×H EG|H
∼=−→

G/H ×EG sending (g, z) to (gH, gz) where G acts diagonally on the target.
The inverse sends (gH, z) to (g, g−1z). Since EG|H is a model for EH, we
obtain a G-homotopy equivalence

(15.25) µ(H) : G×H EH
'−→ G/H × EG.

Recall that we obtain for any subgroup H ⊆ G and n ∈ Z from the induction
structure an isomorphism

(15.26) indGH : HHn (EH)
∼=−→ HGn (G×H EH).

In the sequel we denote by pr the obvious projection and by ι the obvious
inclusion.

Lemma 15.27. Suppose that G acts on the tree T by automorphisms of trees
without inversion. Let H?

∗ be an equivariant homology theory.
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(i) We can write T as a G-pushout

∐
j∈J G/Kj × S0 q //

k

��

∐
i∈I G/Hi

k

��∐
j∈J G/Kj ×D1

q
// T

where there are for every j ∈ J two elements i(j,+) and i(j,−) in I such
that the restriction of q to G/Kj considered as G-subspace of

∐
j∈J G/Kj×

S0 by

G/Kj = G/Kj × {±1} ⊆ G/Kj × S0 ⊆
∐
j∈J

G/Kj × S0

is given by the composite of a G-map q̂j,±1 : G/Kj → G/Hi(j,±) with the
canonical inclusion G/Hi(j,±) →

∐
i∈I G/Hi;

(ii) We obtain a long exact sequence

· · · →
⊕
j∈J
HKjn (EKj)

tn(j,+)−tn(j,−)−−−−−−−−−−→
⊕
i∈I
HHin (EHi)

sn−→ HGn (EG)

→
⊕
j∈J
HKjn−1(EKj)

tn−1(j,+)−tn−1(j,−)−−−−−−−−−−−−−−→
⊕
i∈I
HHin−1(EHi)

sn−1−−−→ · · ·

where tn(j,±) is given by the composite

HKjn (EKj)
indGKj−−−−→ HGn (G×Kj EKj)

HGn (µ(Kj))−−−−−−−→ HGn (G/Kj × EG)

HGn (q̂j,±1×idEG)
−−−−−−−−−−−→ HGn (G/Hi(j,±)×EG)

HGn (µ(Hi(j,±)))
−1

−−−−−−−−−−−−→ HGn (G×Hi(j,±)
EHi(j,±))

(indGHi(j,±)
)−1

−−−−−−−−−→ HHi(j,±)
n (EHi(j,±))

ι−→
⊕
i∈I
HHin (EHi)

and sn is the direct sum of the maps for i ∈ I

HHin (E(Hi))
indGHi−−−−→ HGn (G×Hi E(Hi))

HGn (µ(Hi))−−−−−−−→ HGn (G/H × E(G))
HGn (pr)−−−−−→ HGn (EG).

Proof. (i) Since G acts on T by automorphisms of trees without inversion,
T is a 1-dimensional G-CW -complex and the G-pushout just describes how
the 1-skeleton is obtained from the 0-skeleton

∐
i∈I G/Hi.

(ii) If we cross the G-pushout of assertion (i) with EG using the diagonal
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G-action, we obtain the G-pushout

(15.28)
∐
j∈J G/Kj × EG× S0

q×idEG //

k×idEG

��

∐
i∈I G/Hi × EG

k×idEG

��∐
j∈J G/Kj × EG×D1

q×idEG

// T × EG

The H-fixed point set TH is a non-empty subtree and therefore contractible
for every finite subgroup H ⊆ G, see [894, Theorem 15 in 6.1 on page 58
and 6.3.1 on page 60]. We conclude that the projection EG×T → EG is a G-
homotopy equivalence from the Equivariant Whitehead Theorem, see for in-
stance [629, Theorem 2.4 on page 36]. The desired long exact sequence can be
derived from the Mayer-Vietoris sequence associated to theG-pushout (15.28)
using the identifications (15.25) and (15.26). ut

Lemma 15.29. Suppose that G acts on the tree T by automorphisms of trees
without inversion. Let H?

∗ be an equivariant homology theory, Suppose that the
Meta-Isomorphism Conjecture 15.2 holds for G with respect to FIN . Assume
that for any isotropy group H of the G-action on T the Meta-Isomorphism
Conjecture 15.2 holds for H with respect to FIN .

(i) The projection T → {•} induces for all n ∈ Z an isomorphism

HGn (T )
∼=−→ HGn ({•});

(ii) Write T as a G-pushout as described in Lemma 15.27 (i). Let g(j,±)
be an element in G such that g(j,±)Kjg(j,±))−1 ⊆ Hi(j,±) and the
G-map q̂j,±1 : G/Kj → G/Hi±(j) is given by gKj 7→ gg(j,±)−1Hi(j,±).
Let c(g(j,±)) : Kj → Hi(j,±) be the group homomorphism sending k to
g(j,±))kg(j,±))−1.
We get a long exact sequence

· · · →
⊕
j∈J
HKjn ({•}) t′n(j,+)−t′n(j,−)−−−−−−−−−−→

⊕
i∈I
HHin ({•}) s′−→ HGn ({•})

→
⊕
j∈J
HKjn−1({•})

t′n−1(j,+)−t′n−1(j,−)
−−−−−−−−−−−−−−→

⊕
i∈I
HHin−1({•})

s′n−1−−−→ · · ·

where t′n(j,±) is given by the composite

HKjn ({•})
indc(g(j,±))−−−−−−−→ HHi(j,±)

n (indc(g(j,±)){•})
pr−→ HHi(j,±)

n ({•}) ι−→
⊕
i∈I
HHin ({•})
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and s′n is the direct sum of the maps for i ∈ I

HHin ({•})
indGHi−−−−→ HGn (G×Hi {•})

HGn (pr)−−−−−→ HGn ({•}).

Proof. (i) We have already explained in the proof of Lemma 15.27 (ii)
that the projection EG × T → EG is a G-homotopy equivalence. By as-
sumption the projection EG → {•} induces for all n ∈ Z isomorphisms
HGn (EG) → HGn ({•}). Hence the projection EG × T → {•} induces for all
n ∈ Z isomorphisms HGn (EG × T ) → HGn ({•}). By Lemma 15.10 and the
assumptions on T the projection EG× T → T induces for all n ∈ Z isomor-
phisms HGn (EG × T ) → HGn (T ). Hence the projection T → {•} induces for
all n ∈ Z isomorphisms HGn (T )→ HGn ({•}).
(ii) This follows from Lemma 12.12 and Lemma 15.27 (ii). ut

Example 15.30 (Amalgamated free products). Let H?
∗ be an equiva-

riant homology theory with values in Λ-modules. Let G be the amalgamated
free product G1 ∗G0 G2 for a common subgroup G0 of the groups G1 and
G2. Suppose that Gi for i = 0, 1, 2 and G satisfy the Meta-Isomorphism
Conjecture 15.2 with respect to the family FIN . Then there is a long exact
sequence

· · · → HG0
n ({•})→ HG1

n ({•})⊕HG1
n ({•})→ HGn ({•})

→ HG0
n−1({•})→ HG1

n−1({•})⊕HG1
n−1({•})→ · · ·

Namely, there is a 1-dimensional G-CW -complex T whose underlying space
is a tree such that the 1-skeleton is obtained from the 0-skeleton by the
G-pushout

G/G0 × S0 q //

��

G/G1

∐
G/G2

��
G/G0 ×D1 // T

where q is the disjoint union of the canonical projection G/G0 → G/G1 and
G/G0 → G/G2, see [894, Theorem 7 in §4.1 on page 32]. Now the desired
long exact sequence is the one appearing in Lemma 15.29 (ii).

Suppose that G0, G1, G2 and G satisfy the Baum-Connes Conjecture 14.9,
which is equivalent the Meta-Isomorphism Conjecture 15.2 if we choose F to
be FIN and HGn to be HG

n (−; KTOP
C ). Then we obtain a long exact sequence
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(15.31)

· · · ∂n+1−−−→ Kn(C∗r (G0))
Kn(C∗r (i1))⊕Kn(C∗r (i2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G1))⊕Kn(C∗r (G2))

Kn(C∗r (j1))−Kn(C∗r (j2))−−−−−−−−−−−−−−−−→ Kn(C∗r (G))
∂n−→ Kn−1(C∗r (G0))

Kn−1(C∗r (i1))⊕Kn−1(C∗r (i2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G2))⊕Kn−1(C∗r (G1))

Kn−1(C∗r (j1))−Kn−1(C∗r (j2))−−−−−−−−−−−−−−−−−−−→ Kn−1(C∗r (G))
∂n−1−−−→ · · ·

where i1,i2, j1 and j2 are the obvious inclusions. Actually, such long exact
Mayer-Vietoris sequence exists always for an amalgamated free product G =
G1 ∗G0 G2, see Pimsner [796, Theorem 18 on page 632].

Suppose that G0, G1, G2 and G satisfy the K-theoretic Farrell Conjecture
Conjecture 13.1 with coefficients in the regular ring R with Q ⊆ R. Then we
obtain using Theorem 13.48 a long exact sequence

(15.32) · · · ∂n+1−−−→ Kn(RG0)
Kn(Ri1)⊕Kn(Ri2)−−−−−−−−−−−−→ Kn(RG1)⊕Kn(RG2)

Kn(Rj1)−Kn(Rj2)−−−−−−−−−−−−→ Kn(RG)
∂n−→ Kn−1(RG0)

Kn−1(Ri1)⊕Kn−1(Ri2)−−−−−−−−−−−−−−−→ Kn−1(RG2)⊕Kn−1(RG1)

Kn−1(Rj1)−Kn−1(Rj2)−−−−−−−−−−−−−−−→ Kn−1(RG)
∂n−1−−−→ · · · .

Without extra assumptions on R the long exact sequence above does not
exist, certain Nil-terms enter, see Theorem 6.62.

Suppose that G0, G1, G2 and G satisfy the L-theoretic Farrell-Jones Con-
jecture 13.1 with coefficients in the ring R with involution. Then we obtain
using Theorem 13.59 (i) a long exact sequence

(15.33) · · · ∂n+1−−−→ Ln(RG0)[1/2]

Ln(Ri1)[1/2]⊕Ln(Ri2)[1/2]−−−−−−−−−−−−−−−−−−→ Ln(RG1)[1/2]⊕ Ln(RG2)[1/2]

Ln(Rj1)[1/2]−Ln(Rj2)[1/2]−−−−−−−−−−−−−−−−−−→ Ln(RG)[1/2]
∂n−→ Ln−1(RG0)[1/2]

Ln−1(Ri1)[1/2]⊕Ln−1(Ri2)[1/2]−−−−−−−−−−−−−−−−−−−−−→ Ln−1(RG2)[1/2]⊕ Ln−1(RG1)[1/2]

Ln−1(Rj1)[1/2]−Ln−1(Rj2)[1/2]−−−−−−−−−−−−−−−−−−−−−→ Ln−1(RG)[1/2]
∂n−1−−−→ . · · ·

Note that the decoration of the L-groups does not play a role since we in-
vert 2. Actually, such long exact Mayer-Vietoris sequence exists always for
an amalgamated free product G = G1 ∗G0

G2, see Cappell [192]. Without
inverting 2 the long exact sequence above does not exist, certain UNil-terms
enter.

Exercise 15.34. Let H?
∗ be an equivariant homology theory. Let φ : G→ G

be a group automorphism. Let G×φ Z be the associated semidirect product.
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Denote by i : G→ Goφ Z the obvious inclusion. Suppose that G and G×φ Z
satisfy the Meta-Isomorphism Conjecture 15.2 with respect to the family
FIN .

Prove the existence of a long exact sequence

· · · → HGn ({•}) φ∗−id−−−−→ HGn ({•}) k∗−→ HGoφZ
n ({•})

→ HGn−1({•}) φ∗−id−−−−→ HGn−1({•}) k∗−→ · · ·

where φ∗ : HGn ({•}) → HGn ({•}) and k∗ come from the induction structure
and the identification indφ{•} = {•} and the projection indi{•} → {•}.

Explain that this reduces in the case of the Baum-Connes Conjecture to
the long exact sequence

· · · → Kn(C∗r (G))
Kn(C∗r (φ))−id−−−−−−−−−→ Kn(C∗r (G))

Kn(C∗r (k))−−−−−−−→ Kn(C∗r (Goφ Z))

→ Kn−1(C∗r (G))
Kn−1(C∗r (φ))−id−−−−−−−−−−−→ Kn−1(C∗r (G))

Kn−1(C∗r (k))−−−−−−−−→ · · · ,

and similar for the K-theoretic Farrell-Jones Conjecture for a regular ring R
with Q ⊆ R and the L-theoretic Farrell-Jones Conjecture after inverting 2.

15.8 The Meta-Isomorphism Conjecture for Functors
from Spaces to Spectra

Let S : SPACES→ SPECTRA be a covariant functor. Throughout this section
we will assume that it respects weak equivalences and disjoint unions, i.e., a
weak homotopy equivalence of spaces f : X → Y is sent to a weak homotopy
equivalence of spectra S(f) : S(X) → S(Y ) and for a collection of spaces
{Xi | i ∈ I} for an arbitrary index set I the canonical map∨

i∈I
S(Xi)→ S

(∐
i∈I

Xi

)
is weak homotopy equivalence of spectra. We obtain a covariant functor

(15.35) SB : GROUPOIDS→ SPECTRA, G 7→ S(BG)

where BG is the classifying space of the category G which is the geometric
realization of the simplicial set given by its nerve and denoted by BbarG
in [265, page 227]. Denote by H?

n(−; SB) be the equivariant homology theory
in the sense of Definition 12.9 which is associated to SB by the construction
of Theorem 12.30. It has the property that for any group G and subgroup
H ⊆ G we have canonical identifications



438 15 The (Fibered) Meta- and Other Isomorphism Conjectures

HG
n (G/H; SB) ∼= HH

n (H/H; SB) ∼= πn(S(BH)).

Conjecture 15.36 (Meta-Isomorphism Conjecture for functors from
spaces to spectra). Let S : SPACES → SPECTRA be a covariant functor
that respects weak equivalences and disjoint unions. The group G satisfies
the Meta-Isomorphism Conjecture for S with respect to the family F of
subgroups of G if it satisfies the Meta-Isomorphism Conjecture 15.2 for the
G-homology theory HG

∗ (−; SB), i.e., the assembly map

HG
n (pr) : HG

n (EF (G); SB)→ HG
n (G/G; SB)

is bijective for all n ∈ Z.

Example 15.37 (The Farrell-Jones Conjecture in the setting of func-
tors from spaces to spectra). In the sequel Π(X) denotes the fundamental
groupoid of a space X. If we take the covariant functor to be the one that

sends a space X to KR(Π(X)), L
〈−∞〉
R (Π(X)), or KTOP

F (Π(X)) respectively,
see Theorem 12.43, then the Meta-Isomorphism Conjecture 15.36 for S for a
group G and the family VCY, VCY, or FIN respectively is equivalent to the
K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring R, the
L-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring with
involution R, or the Baum-Connes Conjecture 14.9 respectively. This follows

from the obvious natural weak equivalence of groupoids G '−→ Π(BG).

Let G be a group and Z be a G-CW -complex. Define a covariant Or(G)-
spectrum

(15.38) SGZ : Or(G)→ SPECTRA, G/H 7→ S(G/H ×G Z)

where G/H×GZ is the orbit space of the diagonal left G-action on G/H×S.

Note that there is an obvious homeomorphism G/H ×G Z
∼=−→ H\Z.

Conjecture 15.39 (Meta-Isomorphism Conjecture for functors from
spaces to spectra with coefficients). Let S : SPACES→ SPECTRA be a
covariant functor that respects weak equivalences and disjoint unions. The
group G satisfies the Meta-Isomorphism Conjecture for S with coefficients
with respect to the family F of subgroups of G if for any free G-CW -
complex Z the pair (G,F) satisfies the Meta-Isomorphism Conjecture 15.2
for HG

∗ (−; SGZ ), i.e., the assembly map

HG
n (EF (G); SGZ )→ HG

n (G/G; SGZ )

is bijective for all n ∈ Z.

Exercise 15.40. Let S : SPACES → SPECTRA be a covariant functor that
respects weak equivalences and disjoint unions. Suppose that it satisfies the
Meta-Isomorphism Conjecture 15.39 for every group G and the trivial family
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T R consisting of one element, the trivial subgroup. Show that then we obtain
for every connected CW -complex X a weak homotopy equivalence

Eπ1(X)+ ∧π1(X) S(X̃)→ S(X).

Show that πn
(
Eπ1(X)+ ∧π1(X) S(X̃)

)
and πn

(
Bπ1(X)+ ∧ S({•})

)
are not

isomorphic in general, but that they are isomorphic if X̃ is contractible or S is
of the shape Y 7→ T(Π(Y )) for some covariant functor T : GROUPOIDS→
SPECTRA.

Example 15.41 (Z = EG). If we take Z = EG in Conjecture 15.39, then
Conjecture 15.39 reduces to Conjecture 15.36 since there is a natural ho-

motopy equivalence G/H ×G EG
'−→ BGG(G/H) and hence we get a weak

homotopy equivalence of Or(G)-spectra SGEG
'−→ SB(GG(G/?)).

Remark 15.42 (Relation to the original formulation). In [351, Sec-
tion 1.7 on page 262] Farrell and Jones formulate a fibered version of their
conjectures for a covariant functor S : SPACES→ SPECTRA for every (Serre)
fibration ξ : Y → X over a connected CW-complex X. In our setup this cor-
responds to choosing Z to be the total space of the fibration obtained from
Y → X by pulling back along the universal covering X̃ → X. This space Z is
a free G-CW for G = π1(B). Note that an arbitrary free G-CW -complex Z
can always be obtained in this fashion from the fiber bundle EG×GZ → BG
up to G-homotopy, compare [351, Corollary 2.2.1 on page 263].

We sketch the proof of this identification. Let A be a G-CW -complex. Let
E(X) be the G-quotient of the diagonal G = π1(X)-action on A × X̃ and
let f : E(X)→ X be the obvious projection. Denote by p̂ : E(ξ)→ E(X) the
pullback of ξ with f . Let q : E(ξ) → A/G be the composite of p̂ with the
map E(X)→ A/G induced by the projection A×X → A. This is a stratified
fibration, and one can consider the spectrum H(A/G;S(q)) in the sense of
Quinn [808, Section 8]. Put

HGn (A; ξ) := πn(H(A/G;S(q)).

The projection pr : A→ G/G induces a map

(15.43) an(A) : HGn (A; ξ)→ HGn (G/G; ξ) = πn(S(Y ))

which is the assembly map in [351, Section 1.7 on page 262] if we take
A = EVCY(G). The construction of HGn (A; ξ) := H(A/G;S(q)) is very com-
plicated, but, fortunately, for us only two facts are relevant. We obtain by
HG∗ (−; ξ) a G-homology theory in the sense of Definition 12.1, and for ev-
ery H ⊆ G we get a natural identification HGn (G/H; ξ) = SGZ (G/H). Hence
the functor G-CW-COM→ SPECTRA sending A→ H(A/G;S(q)) is weakly
excisive and its restriction to Or(G) is the functor SGZ . Corollary 18.16 im-
plies that the map (15.43) can be identified with the map induced by the
projection A→ G/G
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HG
n (A; SGZ )→ HG

n (G/G; SGZ ) = πn(S(Z/G)) = πn(S(Y ))

which appears in Meta-Isomorphism Conjecture 15.39 for functors from
spaces to spectra with coefficients.

Remark 15.44 (The condition free is necessary in Conjecture 15.39).
In general Conjecture 15.39 is not true if we drop the condition that Z is free.
Take for instance Z = G/G. Then Conjecture 15.39 predicts that the projec-
tion EF (G)/G→ G/G induces for all n ∈ Z an isomorphism

Hn(pr; S({•})) : Hn(EF (G)/G; S({•}))→ Hn({•},S({•}))

where H∗(−; S({•})) is the (non-equivariant) homology theory associated to
the spectrum S({•}). This statement is in general wrong, except in extreme
cases such as F = ALL.

The proof of the next theorem will be given at the end of Section 15.9.

Theorem 15.45 (Inheritance properties of the Meta-Isomorphism
Conjecture 15.39 for functors from spaces to spectra with coeffi-
cients). Let S : SPACES → SPECTRA be a covariant functor that respects
weak equivalences and disjoint unions. Fix a class of groups C that is closed
under isomorphisms, taking subgroups, and taking quotients.

(i) Suppose that the Meta-Isomorphism Conjecture 15.39 for functors from
spaces to spectra with coefficients holds for the group G and the family of
subgroups C(G) := {K ⊆ G,K ∈ C} of G. Let H ⊆ G be a subgroup.
Then Conjecture 15.39 holds for (H, C(H));

(ii) Let 1 → K → G
p−→ Q → 1 be an extension of groups. Suppose that

(Q, C(Q)) and (p−1(H), C(p−1(H)) for every H ∈ C(Q) satisfy Conjec-
ture 15.39.
Then (G, C(G)) satisfies Conjecture 15.39;

(iii) Suppose that Conjecture 15.39 is true for (H1×H2, C(H1×H2)) for every
H1, H2 ∈ C.
Then for two groups G1 and G2 Conjecture 15.39 is true for the direct
product G1 × G2 and the family C(G1 × G2), if and only it is true for
(Gk, C(Gk)) for k = 1, 2;

(iv) Suppose that, for any directed systems of spaces {Xi | i ∈ I} indexed over
an arbitrary directed set I, the canonical map

hocolimi∈I S(Xi)→ S
(
hocolimi∈I Xi

)
is a weak homotopy equivalence. Let {Gi | i ∈ I} be a directed system
of groups over a directed set I (with arbitrary structure maps). Put G =
colimi∈I Gi. Suppose that Conjecture 15.39 holds for (Gi, C(Gi)) for every
i ∈ I;
Then Conjecture 15.39 holds for (G, C(G)).
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Exercise 15.46. Let C be the class of finite groups or let C be the class of
virtually cyclic subgroups. Suppose that Conjecture 15.39 holds for (H, C(H))
if H contains a subgroup K of finite index such that K is a finite product of
finitely generated free groups.

Show that for a collection of groups {Gi | i ∈ I} Conjecture 15.39 is true
for the free product ∗i∈IGi and the family C(∗i∈IGi), if and only it is true
for (Gi, C(Gi)) for every i ∈ I.

Lemma 15.47. Suppose that there is a spectrum E such that S : SPACES→
SPECTRA is given by Y 7→ Y+ ∧E.

(i) Then, for any group G, any G-CW -complex X that is contractible (after
forgetting the G-action), and any free G-CW -complex Z, the projection
X → G/G induces for all n ∈ Z an isomorphism

HG
n (X; SGZ )

∼=−→ HG
n (G/G; SGZ );

(ii) Both Conjecture 15.36 and Conjecture 15.39 for S hold for every group G
and every family F of subgroups of G.

Proof. (i) There are natural isomorphisms of spectra

mapG(G/?, X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

)
∼=−→
(
(mapG(G/?), X)×Or(G) G/?)×G Z

)
+
∧E

∼=−→ (X ×G Z)+ ∧E

where the second isomorphism comes from the G-homeomorphism

mapG(G/?), X)×Or(G) G/?
∼=−→ X

of [265, Theorem 7.4 (1)]. Since Z is a free G-CW -complex and X is con-
tractible (after forgetting the group action), the projection X ×G Z →
G/G ×G Z is a homotopy equivalence and hence induces a weak homotopy
equivalence

(X ×G Z)+ ∧E
'−→ (G/G×G Z)+ ∧E,

Thus we get a weak homotopy equivalence

mapG(G/?), X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

)
→ (G/G×G Z)+ ∧E.

Under the identifications coming from the definitions

HG
n (X; SGZ ) := πn

(
mapG(G/?), X)+ ∧Or(G)

(
(G/?×G Z)+ ∧E

))
,

HG
n (G/G; SGZ ) = πn ((G/G×G Z)+ ∧E) ,

this weak homotopy equivalence induces on homotopy groups the isomor-
phism HG

n (X; SGZ )→ HG
n (G/G; SGZ ).
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(ii) This follows from assertion (i). ut

Lemma 15.48. Let S,T,U : SPACES → SPECTRA be covariant functors
that respects weak equivalences and disjoint unions. Let i : S → T and
p : T → U be natural transformations such that for any space Y the map

of spectra S(Y )
i(Y )−−−→ T(Y )

p(Y )−−−→ U(Y ) is up to weak homotopy equivalence
a cofibration of spectra.

(i) Then we obtain for every group G and all G-CW -complexes X and Z a
natural long exact sequence

· · · → HG
n (X; SGZ )→ HG

n (X; TG
Z )→ HG

n (X; UG
Z )

→ HG
n−1(X; SGZ )→ HG

n−1(X; TG
Z )→ HG

n−1(X; UG
Z )→ · · · ;

(ii) Let G be a group and F be a family of subgroups of G. Then Conjec-
ture 15.36 or Conjecture 15.39 respectively holds for all three functors S,
T and U for (G,F) if Conjecture 15.36 or Conjecture 15.39 respectively
holds for two of the functors S, T and U for (G,F).

Proof. (i) This is a consequence of the fact following from the version for spec-
tra of [265, Theorem 3.11] that we obtain an up to weak homotopy equivalence
cofiber sequence of spectra

mapG(G/?, X)+∧Or(G)S(G/?×GZ)→ mapG(G/?, X)+∧Or(G)T(G/?×GZ)

→ mapG(G/?, X)+ ∧Or(G) U(G/?×G Z).

(ii) This follows from assertion (i) and the Five Lemma. ut

15.9 Proof of the Inheritance Properties

This section is entirely devoted to the proof of Theorem 15.45.
Let S : SPACES → SPECTRA be a covariant functor. Throughout this

section we will assume that it respects weak equivalences and disjoint unions.

Lemma 15.49. Let ψ : K1 → K2 be a group homomorphism.

(i) If Z is a K1-CW -complex and X is a K2-CW -complex, then there is a
natural isomorphism

HK1
n (ψ∗X; SK1

Z )
∼=−→ HK2

n (X; SK2

ψ∗Z
);

(ii) If Z is a K2-CW -complex and X is a K1-CW -complex, then there is a
natural isomorphism

HK1
n (X; SK1

ψ∗Z)
∼=−→ HK2

n (ψ∗X; SK2

Z ).
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Proof. (i) The fourth isomorphisms appearing in [265, Lemma 1.9] implies
that it suffices to construct a natural weak homotopy equivalence of Or(K2)-
spectra

u(ψ,Z) : ψ∗S
K1

Z

∼=−→ SK2

ψ∗Z

where ψ∗S
K1

Z is the Or(K2)-spectrum obtained by induction in the sense
of [265, Definition 1.8] with the functor Or(ψ) : Or(K1)→ Or(K2), K1/H 7→
ψ∗(K1/H) applied to the Or(K1)-spectrum SK1

Z . For a homogeneous space
K2/H, we define u(ψ,Z)(K2/H) to be the composite

ψ∗S
K1

Z (K2/H) := mapK2
(ψ∗(K1/?),K2/H)×Or(K1) S (K1/?×K1

Z)
∼=−→ mapK1

(K1/?, ψ
∗(K2/H))×Or(K1) S(K1/?×K1

Z)
∼=−→ S(ψ∗(K2/H)×K1 Z)
∼=−→ S(K2/H ×K2

ψ∗Z)

=: SK2

ψ∗Z
(K2/H).

Here the first map comes from the adjunction isomorphism

mapK2
(ψ∗(K1/?),K2/H)

∼=−→ mapK1
(K1/?, ψ

∗(K2/H)),

and the third map comes from the canonical homeomorphism

ψ∗(K2/H)×K1
Z
∼=−→ K2/H ×K2

ψ∗Z.

The second map is the special case T = ψ∗K2/? of the natural weak homotopy
equivalence defined for any K1-set T

κ(T ) : mapK1
(K1/?, T )×Or(K1) S (K1/?×K1 Z)

∼=−→ S(T ×K1 Z)

that is given by (u : K1/? → T ) × s 7→ S(u ×K1
idZ)(s). If T is a homoge-

neous K1-set, then κ(T ) is an isomorphism by the Yoneda Lemma. Since ψ
is compatible with disjoint unions, S is compatible with disjoint unions up to
weak homotopy equivalence by assumption, and every K1-set is the disjoint
union of homogeneous K1-set, κ(T ) is a weak homotopy equivalence for all
K1-sets T .

(ii) The third isomorphisms appearing in [265, Lemma 1.9] implies that it
suffices to construct a natural weak homotopy equivalence of Or(K1)-spectra

v(ψ,Z) : ψ∗SK2

Z

∼=−→ SK1

ψ∗Z

where ψ∗SK2

Z is the Or(K1)-spectrum obtained by restriction in the sense
of [265, Definition 1.8] with the functor Or(ψ) : Or(K1)→ Or(K2), K1/H 7→
ψ∗(K1/H) applied to the Or(K2)-spectrum SK2

Z . Actually, we obtain even an
isomorphism v(ψ,Z) using the adjunction
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ψ∗(K1/H)×K2
Z ∼= K1/H ×K1

ψ∗Z

for any subgroup H ⊆ K1. ut

Note that for a homomorphism φ : H → G the restriction φ∗Z of a free
G-CW -complex Z is free again if and only if φ is injective. We have already
explained in Remark 15.44 that the assumption that Z is free is needed in
Conjecture 15.39. In the Fibered Meta-Isomorphism Conjecture 15.8 it is
crucial not to require that φ : H → G is injective since we want to have
good inheritance properties such as the one appearing in assertion (iii) of
Lemma 15.23, which will be crucial for the proof of assertion (iv) of Theo-
rem 15.45. Therefore we are forced to introduce the following construction.

Consider a group G and a G-CW -complex Z. We want to define an equi-
variant homology theory H?

∗(−; S↓GZ ) over G in the sense of Definition 12.89.
Given a group homomorphism φ : K → G, define the associated K-homology
theory

HK,φ
∗ (−; S↓GZ ) := HK

∗ (−; SKEK×φ∗Z).

Given group homomorphisms ψ : K1 → K2, φ1 : K1 → G, and φ2 : K2 → G
with φ2 ◦ ψ = φ1, a K1-CW -complex X, and n ∈ Z, we have to define a
natural map

HK1
n (X; SK1

EK1×φ∗1Z
)→ HK2

n (ψ∗X; SK2

EK2×φ∗2Z
).

We get the isomorphism HK2
n (ψ∗X; SK2

EK2×φ∗2Z
) = HK1

n (X; SK2

ψ∗(EK2×φ∗2Z))

from Lemma 15.49 (ii). Hence it suffices to specify a K1-map

EK1 × φ∗1Z → ψ∗(EK2 × φ∗2Z) = ψ∗(EK2)× φ∗1Z.

The homomorphism ψ : K1 → K2 induces a K1-map EK1 → ψ∗(EK2) and
we can take its product with idφ∗1Z .

The proof of the next Lemma is left to the reader.

Lemma 15.50. Given a group G and a G-CW -complex Z, all the axioms of
an equivariant homology theory over G, see Definition 12.89, are satisfied by
H?
∗(−; S↓GZ ).

Exercise 15.51. Let G be a group and Z be a G-CW -complex. Consider
the functor

E : GROUPOIDS ↓ G→ SPECTRA, p : G → I(G) 7→ S
(
EG ×G p∗Z

)
.

Here EG is the classifying G-CW -complex associated to G, see [265, Defini-
tion 3.8] for which we use the functorial model EbarG of [265, page 230], we
consider Z as a I(G)-CW -complex and hence get a G-CW -complex p∗Z by
restriction with p : G → I(G), and the space EG ×G p∗Z is defined in [265,
Definition 1.4].
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Show that the equivariant homology theory H?
∗(−; E) over G associated

to E in Theorem 12.91 is isomorphic to H?
∗(−; S↓GZ ).

Lemma 15.52. Let φ : H → K and ψ : K → G be a group homomorphisms.

(i) Let X be a G-CW -complex and let Z be a K-CW -complex. Then we obtain
a natural isomorphism

HH,φ
n (φ∗ψ∗X; S↓KZ )

∼=−→ HG
n (X; SG(ψ◦φ)∗(EH×φ∗Z));

(ii) Let X be a H-CW -complex and let Z be a G-CW -complex. Then we obtain
a natural isomorphism

HH,φ
n (X; S↓Kψ∗Z)

∼=−→ HH,ψ◦φ
n

(
X; S↓GZ

)
.

Proof. (i) We have by definition

HH,φ
n (φ∗ψ∗X; S↓KZ ) := HH

n (φ∗ψ∗X; SHEH×φ∗Z).

Now apply Lemma 15.49 (i).

(ii) We get by definition

HH,φ
n (X; S↓Kψ∗Z) := HH

n (X; SHEH×φ∗ψ∗Z)

= HH
n (X; SHEH×(ψ◦φ)∗Z) =: HH,ψ◦φ

n

(
X; S↓GZ

)
.

ut

Conjecture 15.53 (Fibered Meta-Isomorphism Conjecture for a func-
tor from spaces to spectra with coefficients). We say that S satisfies
the Fibered Meta-Isomorphism Conjecture for a functor from spaces to spec-
tra with coefficients for the group G and the family of subgroups F of G
if for any G-CW -complex Z the equivariant homology theory H?

∗(−; S↓GZ )
over G satisfies the Fibered Meta-Isomorphism Conjecture 15.8 for the group
(G, idG) over G and the family F .

Note that Conjecture 15.39 is a statement about HG
∗ (−SGZ ), whereas Con-

jecture 15.53 is a statement about HG
∗ (−; S↓GZ ).

Lemma 15.54. Let ψ : K → G be a group homomorphism.

(i) Suppose that the Meta Conjecture 15.39 with coefficients holds for the
group G and the family F . Then the Fibered Meta Conjecture 15.53 with
coefficients holds for the group K and the family ψ∗F ;

(ii) If the Fibered Meta Conjecture 15.53 with coefficients holds for the group
G and the family F , then the Meta Conjecture 15.39 with coefficients holds
for the group G and the family F ;
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(iii) Suppose that the Fibered Meta Conjecture 15.53 with coefficients holds for
K and the family F . Then for every G-CW -complex Z the Fibered Meta-
Isomorphism Conjecture 15.8 holds for the equivariant homology theory
Hn(−; S↓GZ ) over G for the group (K,ψ) over G and the family F of sub-
groups of K.

Proof. (i) This follows from Lemma 15.52 (i) since in the notation used
there we have φ∗ψ∗EF (G) = φ∗Eψ∗F (K) and φ∗ψ∗G/G = H/H, and (ψ ◦
φ)∗(EH × φ∗Z) is a free G-CW -complex.

(ii) This follows from the fact that for a free G-CW -complex Z the projection
EG × Z → Z is a G-homotopy equivalence and hence we get a natural
isomorphism

HG,idG
n (X; S↓GZ ) := HG

n (X; SGEG×Z)
∼=−→ HG

n (X; SGZ )

for every G-CW -complex X and n ∈ Z.

(iii) This follows from Lemma 15.52 (ii). ut

Lemma 15.55. Suppose that, for any directed systems of spaces {Xi | i ∈ I}
indexed over an arbitrary directed set I, the canonical map

hocolimi∈I S(Xi)→ S
(
hocolimi∈I Xi

)
is a weak homotopy equivalence.

Then for every group G and G-CW -complex Z the equivariant homology
theory over G given by H?

∗(−S↓GZ ) is strongly continuous.

Proof. We only treat the case idG : G→ G, the case of a group ψ : K → G over
G is completely analogous. Consider a directed system of groups {Gi | i ∈ I}
with G = colimi∈I Gi. Let ψi : Gi → G be the structure map for i ∈ I.

The canonical map

(15.56) hocolimi∈I S(EGi ×Gi ψ∗i Z)→ S
(
hocolimi∈I(EGi ×Gi ψ∗i Z)

)
is by assumption a weak homotopy equivalence. We have the homeomor-
phisms

EGi ×Gi ψ∗i Z
∼=−→ (ψi)∗EGi ×G Z;(

hocolimi∈I(ψi)∗EGi
)
×G Z

∼=−→ hocolimi∈I
(
(ψi)∗EGi ×G Z

)
.

They induce a homeomorphism

(15.57) S(hocolimi∈I(EGi ×Gi ψ∗i Z)
) ∼=−→ S

(
(hocolimi∈I(ψi)∗EGi)×G Z

)
The canonical map

hocolimi∈I(ψi)∗EGi → EG
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is a G-homotopy equivalence. The proof of this fact is a special case of the
argument appearing in the proof of [673, Theorem 4.3 on page 516]. It induces
a weak homotopy equivalence

(15.58) S
(
(hocolimi∈I(ψi)∗EGi)×G Z)→ S(EG×G Z).

Hence we get by taking the composite of the maps (15.56), (15.57) and (15.58)
a weak homotopy equivalence

hocolimi∈I S(EGi ×Gi ψ∗i Z)→ S(EG×G Z).

It induces after taking homotopy groups for every n ∈ Z an isomorphism

colimi∈I πn
(
S(EGi ×Gi ψ∗i Z)

)
→ πn

(
S(EG×G Z)

)
which is by definition the same as the canoncial map

colimi∈I H
Gi,ψi
n (Gi/Gi; S

↓G
Z )→ HG,idG

n (G/G; S↓GZ ).

This finishes the proof of Lemma 15.55. ut

Proof of Theorem 15.45. (i) Consider a free H-CW -complex Z. Let i : H →
G be the inclusion. Then i∗Z is a free G-CW -complex, i∗EC(G)(G) is a model
for EC(H)(H),and i∗G/G = K/K. From Lemma 15.49 (i), we obtain a com-
mutative diagram with isomorphisms as vertical maps

HH
n (EC(H)(H); SHZ ) //

∼=
��

HH
n (H/H; SGZ )

∼=
��

HG
n (EC(G)(G); SGi∗Z) // HG

n (G/G; SGi∗Z)

where the horizontal maps are induced by the projections. The lower map is
bijective by assumption. Hence the upper map is bijective as well.

(ii) Since (Q, C(Q)) and (p−1(H), C(p−1(H))) for every H ∈ C(Q) satisfy the
Meta-Isomorphism Conjecture Conjecture 15.39 with coefficients by assump-
tion, we conclude from Lemma 15.54 (i) that the Fibered Meta-Isomorphism
Conjecture 15.53 with coefficients holds for the group G and the family
p∗C(Q) and that for every H ∈ C(Q) the Fibered Meta-Isomorphism Con-
jecture 15.53 with coefficients holds for p−1(H) and the family C(p−1(H)) =
C(G)|p−1(H). Lemma 15.54 (iii) implies that for every H ∈ C(Q) and G-CW -
complex Z the Fibered Meta-Isomorphism Conjecture 15.8 holds for the equi-
variant homology theory H?

n(−; S↓GZ ) over G for the group (p−1(H) ⊆ G)
over G and the family C(G)|p−1(H). Since for every L ∈ p∗C(Q) we have
p(L) ∈ C(Q) and hence L ⊆ p−1(p(L)), we conclude from Lemma 15.16 that
for every L ∈ p∗C(Q) and G-CW -complex Z the Fibered Meta-Isomorphism

Conjecture 15.8 holds for the equivariant homology theory H?
n(−; S↓GZ ) over
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G for the group (L ⊆ G) over G and the family C(G)|L. The Transitiv-
ity Principle 15.13 (i) implies that for every G-CW -complex Z the Fibered
Meta-Isomorphism Conjecture 15.8 holds for the equivariant homology the-
ory H?

n(−; S↓GZ ) over G for the group (G, idG) over G and the family C(G),
in other words, the Fibered Meta-Isomorphism Conjecture 15.53 with coeffi-
cients holds for G and the family C(G). We conclude from Lemma 15.54 (ii)
that the Meta-Isomorphism Conjecture 15.39 holds for the group G and the
family C(G).

(iii) If the Meta-Isomorphism Conjecture 15.39 with coefficients holds for
(G1×G1, C(G1×G2)), it holds for Gk and the family C(Gk) = C(G1×G2)|Gk
for k = 1, 2 by assertion (i).

Suppose that the Meta-Isomorphism Conjecture 15.39 with coefficients
holds for (Gk, C(Gk)) for k = 1, 2. By assertion (ii) applied to the obvious
exact sequence 1 → H2 → G1 × H2 → G1 → 1, Conjecture 15.39 holds for
(G1×H2, C(G1×H2)) for every H2 ∈ C(G2). By assertion (ii) applied to the
obvious exact sequence 1→ G1 → G1×G2 → G2 → 1 Conjecture 15.39 with
coefficients holds for (G1 ×G2, C(G1 ×G2)).

(iv) Since the Meta-Isomorphisms Conjecture Conjecture 15.39 holds for Gi
and C(Gi) for every i ∈ I by assumption, we conclude from Lemma 15.54 (i)
that the Fibered Meta-Isomorphism Conjecture 15.53 with coefficients holds
for the group Gi and the family C(Gi) for every i ∈ I. Lemma 15.54 (iii)
implies that for every i ∈ I and G-CW -complex Z the Fibered Meta-
Isomorphism Conjecture 15.8 holds for the equivariant homology theory
Hn(−; S↓GZ ) over G for the group ψi : Gi → G over G and the family C(Gi).
We conclude from Lemma 15.23 (iii) and Lemma 15.55 that for every G-
CW -complex Z the Fibered Meta-Isomorphism Conjecture 15.8 holds for
the equivariant homology theory H?

∗(−; S↓GZ ) over G for the group (G, idG)
over G and the family C(G), in other words, the Fibered Meta-Isomorphism
Conjecture 15.53 with coefficients holds for the group G and the family C(G).
We conclude from Lemma 15.54 (ii) that the Meta-Isomorphism Conjecture
Conjecture 15.39 with coefficients holds for the group G and the family C(G).
This finishes the proof of Theorem 15.45. ut

15.10 The Farrell-Jones Conjecture for A-Theory,
Pseudoisotopy, and Whitehead Spaces

Conjecture 15.59 (Farrell-Jones Conjecture for A-theory (with co-
efficients)). A group G satisfies the Farrell-Jones Conjecture for A-theory
if the Meta-Isomorphism Conjecture 15.36 for functors from spaces to spec-
tra applied to the case S = A for the functor non-connective A-theory A
introduced in (7.12) holds for (G,VCY).
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A group G satisfies the Farrell-Jones Conjecture for A-theory with coef-
ficients if the Meta-Isomorphism Conjecture 15.39 for functors from spaces
to spectra with coefficients applied to the case S = A for the functor non-
connective A-theory A introduced in (7.12) holds for (G,VCY).

Note that A respects weak equivalences and disjoint unions, see Theo-
rem 7.16.

Exercise 15.60. Suppose that G is torsionfree and satisfies the Farrell-Jones
Conjecture 15.59 for A-theory. Show that πn(A(BG)) = 0 for n ≤ −1 and
π0(A(BG)) ∼= Z.

Conjecture 15.61 (Farrell-Jones Conjecture for (smooth) pseudoiso-
topy (with coefficients)). A group G satisfies the Farrell-Jones Conjec-
ture for (smooth) pseudoisotopy if the Meta-Isomorphism Conjecture 15.36
for functors from spaces to spectra applied to the case S = P or S = PDIFF

for the functor non-connective (smooth) pseudoisotopy P and PDIFF of Def-
inition 7.1 holds for (G,VCY).

A group G satisfies the Farrell-Jones Conjecture for (smooth) pseudoiso-
topy with coefficients if the Meta-Isomorphism Conjecture 15.39 for func-
tors from spaces to spectra with coefficients applied to the case S = P or
S = PDIFF(X) for the functor non-connective (smooth) pseudoisotopy P and
PDIFF of Definition 7.1 holds for (G,VCY).

Conjecture 15.62 (Farrell-Jones Conjecture for (smooth) White-
head spectra (with coefficients)). A group G satisfies the Farrell-Jones
Conjecture for (smooth) Whitehead spectra if the Meta-Isomorphism Conjec-
ture 15.36 for functors from spaces to spectra applied to the case S = Wh
or S = WhDIFF for the functor non-connective (smooth) Whitehead spectra
Wh and WhDIFF of Remark 7.34 holds for (G,VCY).

A group G satisfies the Farrell-Jones Conjecture for (smooth) Whitehead
spectra with coefficients if the Meta-Isomorphism Conjecture 15.39 for func-
tors from spaces to spectra with coefficients applied to the case S = Wh
or S = WhDIFF for the functor non-connective (smooth) Whitehead spectra
Wh and WhDIFF of Remark 7.34 holds for (G,VCY).

Note that P and PDIFF respect weak equivalences and disjoint unions, see
Theorem 7.3.

Theorem 15.63.

(i) The following assertions are equivalent for a group G:

(a) The Farrell-Jones Conjecture 15.59 for A-theory holds for G;
(b) The Farrell-Jones Conjecture 15.61 for pseudoisotopy holds for G;
(c) The Farrell-Jones Conjecture 15.61 for smooth pseudoisotopy holds for

G;
(d) The Farrell-Jones Conjecture 15.62 for Whitehead spectra holds for G;
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(e) The Farrell-Jones Conjecture 15.62 for smooth Whitehead spectra holds
for G;

(ii) Assertion (i) holds also for the versions of the conjectures with coefficients;
(iii) Suppose that the K-theoretic Farrell-Jones Conjecture with coefficients in

higher G-categories, see Conjecture 13.20 holds for G. Then the versions
with coefficients of the Conjectures 15.59, 15.61 and 15.62

Proof. Assertions (i) and (ii) are proved in [330, Lemma 3.3].

(iii) is proved in [169, Example 1.9 and Corollary 7.71] Comment 21 (by
W.): This reference seems correspond to the version v1. What is the correct
reference in v3? Maybe Example 1.1.11 and Corollary 7.5.6 Comment 22
(by W.): The proof of this assertion may also be discussed in Chapter 8 and
we have to add an appropriate reference. It has also to be synchronized with
Remark 13.21. ut

15.11 The Farrell-Jones Conjecture for Topological
Hochschild and Cyclic Homology

There are the notions of Hochschild homology and cyclic homology of alge-
bras, which are defined in the algebraic setting, see for instance Connes [236]
or Loday [621]. One of the important insights of Waldhausen was that one
can define an analogue of algebraic K-theory for rings where one “spaci-
fies” the constructions. This led to A-theory which we have described in
Chapter 7. These circle of ideas motivated also the definition of topological
Hochschild homology by Bökstedt and then of topological cyclic homology
by Bökstedt-Hsiang-Madsen [141], which are better approximations of the
algebraic K-theory than their original algebraic counterparts. A systematic
study how much algebraic cyclic homology detects from algebraic K-theory
of group rings is presented in [658] showing that the topological versions are
much more effective. Roughly speaking, in the topological versions one re-
places rings by ring spectra and tensor products by (highly structured and
strictly commutative) smash products. The role of the ring Z of integers,
which is initial in the category of rings, is now played by the sphere spectrum
S, which is initial in the category of ring spectra. We refer for further infor-
mation to the book by Dundas-Goodwillie-McCarthy [302] and the survey
article by Madsen [681].

Given a symmetric ring spectrum A and a prime p, one can define functors
see [659, (14.1) and Example 14.3]

THHA : GROUPOIDS → SPECTRA;(15.64)

TCA;p : GROUPOIDS → SPECTRA,(15.65)
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such that for a group G considered as groupoid I(G) the value of these func-
tors is the topological Hochschild homology and the topological cyclic homol-
ogy with respect to the prime p of the group ring spectrum A[G] := A∧G+.
From Theorem 12.30 we obtain equivariant homology theoriesH?

∗(−; THHA)
and H?

∗(−; TCA;p) satisfying for any group G and subgroup H ⊆ G

HGn (G/H; THHA) = HHn (H/H; THHA) = πn
(
THH(A[H])

)
;

HGn (G/H; TCA;p) = HHn (H/H; TCA;p) = πn
(
TC(A[H]; p)

)
.

15.11.1 Topological Hochschild Homology

The following theorem is taken from [659, Theorem 1.19]. The notion of a
very well pointed spectrum and of a connective+-spectrum are introduced
in [659, Subsection 4J]. These are mild condition that are satisfied by the
sphere spectrum S and the Eilenberg-MacLane spectrum of a discrete ring.

Theorem 15.66 (The Farrell-Jones Conjecture holds for topological
Hochschild homology). Let G be a group and F be a family of subgroups.
Let A be a very well pointed symmetric ring spectrum. Then the map induced
by the projection pr: EF (G)→ G/G

HG
n (EF (G); THHA)→ HG

n (G/G; THHA) = πn
(
THH(A[G])

)
is split injective for all n ∈ Z. If F contains all cyclic subgroups, then it is
bijective for all n ∈ Z.

Topological Hochschild homology is one of the rare instances where an
Isomorphism Conjecture is known for all groups and an interesting family of
subgroups, namely the family of all cyclic subgroups, and the reasons are not
completely elementary.

15.11.2 Topological Cyclic Homology

For the rest of this subsection we assume that A is connective+.
The assembly map for topological cyclic homology

HG
n (EVCY(G); TCA.p)→ HG

n (G/G; TCA.p) = πn
(
TCp(A[G])

)
for the family VCY of virtually cyclic subgroups is not bijective in general.
For instance, it is not surjective for n = −1 if A = Z(p) and G is either finitely
generated free abelian or torsionfree hyperbolic, but not cyclic, see [660, Theo-
rem 1.5]. More counterexamples against surjectivity are presented in [660, Re-
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mark 6.7]. Counterexamples against rational injectivity are described in [660,
Remark 1.9] based on [659, Remark 3.7].

There are also some positive results.

Theorem 15.67 (Bijectivity of the assembly map for topological
cyclic homology for finite groups and the family of cyclic sub-
groups). If G is finite, then the assembly map for the family of cyclic
subgroups

HG
n (ECYC(G); TCA.p)→ HG

n (G/G; TCA.p) = πnl(TCp(A[G]))

is bijective for all n ∈ Z.

Proof. See [660, Theorem 1.1]. ut

Exercise 15.68. Let S3 be the symmetric group on the set {1, 2, 3}. Let C2

and C3 be any cyclic subgroups of S3 of order 2 and 3.
Show that for any prime p there is a weak equivalence

TC(A[C2]; p) ∨
(
(EC2)+ ∧C2

T̃C(A[C3]; p)
) '−→ TC(A[S3]; p)

where C2 acts on C3 by sending the generator to its inverse, and T̃C(A[G]; p)
is the homotopy cofiber of the map TC(A; p)→ TC(A[G]; p) induced by the
inclusion.

Theorem 15.69. Let G be a group and p be a prime.

(i) Assume that there is a G-CW -model for EFIN (G) of finite type. Then the
map induced by the projection pr: EFIN (G)→ G/G

HG
n (EFIN (G); TCA.p)→ HG

n (G/G; TCA;p) = πn
(
TC(A[G]; p)

)
is split injective for all n ∈ Z;

(ii) Assume that G is hyperbolic or virtually finitely generated abelian. Then
the map induced by the projection pr: EVCY(G)→ G/G

HG
n (EVCY(G); TCA.p)→ HG

n (G/G; TCA;p) = πn
(
TC(A[G]; p)

)
is injective for all n ∈ Z;

Proof. See [660, Theorem 1.4], ut

A more general result about rational injectivity of the assembly map for
topological cyclic homology can be found in [660, Theorem 1.8].

One of the reasons why topological cyclic homology is much harder than
topological Hochschild homology is that in the construction of topological
cyclic homology a homotopy inverse limits occurs and taking smash product
does not commute with homotopy inverse limits in general, see [661]. This is
the main reason for the existence of the counterexamples above.
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Remark 15.70 (Pro-systems). If one does not pass to the assembly maps
but argues on the level of pro-systems, then there is a kind of assembly map
for pro-systems for any group G and the family CYC of cyclic subgroups
which is indeed a pro-isomorphism, see [660, Theorem 1.3]. In other words,
a pro-system version of the Farrell-Jones Conjecture for topologically cyclic
homology holds for any group G and any connective+ spectrum A for the
family CYC of cyclic subgroups.

More information about topological cyclic homology and its applications
to algebraic K-theory via the cyclotomic trace can be found for instance
in [302, 462, 742].

15.12 The Farrell-Jones Conjecture for Homotopy
K-Theory

Let E : ADDCAT → SPECTRA be a (covariant) functor from the category
ADDCAT of small additive categories. In [668, Definition 8.1] its homotopy
stabilization is constructed that consists of a covariant functor

EH : ADDCAT → SPECTRA

together with a natural transformation

h : E→ EH

We call E homotopy stable if h(A) is an equivalence for any object A in
ADDCAT .

This construction has the following basic properties. Given an automor-
phism Φ : A → A, let AΦ[t] be the additive category of twisted polynomials
with coefficients in A, see [671, Definition 1.2]. Let ev+

0 : AΦ[t] → A be the
functor of additive categories given by taking t = 0 and let i+ : A → AΦ[t]
be the obvious inclusion see [671, (1.10) and (1.12)].

Lemma 15.71. Let E : ADDCAT → SPECTRA be a covariant functor.

(i) EH is homotopy stable;
(ii) Suppose that E is homotopy stable. Let A be any additive category with an

automorphism Φ : A
∼=−→ A. Then the maps

E(ev+
0 ) : E(AΦ[t])

'−→ E(A);

E(i+) : E(A)
'−→ E(AΦ[t]),

are weak homotopy equivalences;
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(iii) The functor E is homotopy stable if and only if for every additive category
A the inclusion A → A[t] induces a weak homotopy equivalence E(A) →
E(A[t]).

Proof. (i) and (ii) See [668, Lemma 8.2].

(iii) The only if statement follows from assertion (ii). The if-statement is a
direct consequence of the definition of EH, see [668, Definition 8.1]. ut

Lemma 15.71 (ii) essentially says that homotopy stable automatically im-
plies homotopy stable in the twisted sense.

Remark 15.72 (Universal property of EH). Note that Lemma 15.71 (i)
says that up to weak homotopy equivalence the transformation h : E→ EH
is universal (from the left) among transformations f : E → F to homotopy
stable functors F : ADDCAT → SPECTRA since we obtain a commutative
square whose lower vertical arrow is a weak homotopy equivalence

E
h //

f
��

EH

Hf
��

F
h

' // FH

Definition 15.73 (Homotopy K-theory). Let K : ADDCAT → SPECTRA
be the covariant functor that sends an additive category to its non-connective
K-theory spectrum, see for instance [197, 668, 783]. Define the homotopy K-
theory functor

KH : ADDCAT → SPECTRA

to be the homotopy stabilization of K.

The next result is taken from [668, Lemma 8.6].

Theorem 15.74 (Bass-Heller-Swan decomposition for homotopy K-

theory). Let A be an additive category with an automorphism Φ : A
∼=−→ A.

Then we get for all n ∈ Z a weak homotopy equivalence

a : TK(Φ−1)
'−→ KH(AΦ[t, t−1])

where TKH(Φ−1) is the mapping torus of the selfmap KH(Φ−1) : KH(A) →
KH(A).

Remark 15.75 (Identification with Weibel’s definition). Weibel has
defined a version of homotopy K-theory for a ring R by a simplicial con-
struction in [977]. It is not hard to check using Remark 15.72, which applies
also to the constructions of [977] instead of H, that πi(KH(R)) can be identi-
fied with the one in [977] ifR is a skeleton of the category of finitely generated
free R-modules.
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Conjecture 15.76 (Farrell-Jones Conjecture for homotopy K-theory
with coefficients in additive G-categories). We say that G satisfies the
Farrell-Jones Conjecture with coefficients for homotopy K-theory in additive
G-categories if for every additive G-category A and every n ∈ Z the assembly
map given by the projection pr : EFIN (G)→ G/G

HG
n (EFIN (G); KHA)→ HG

n (G/G; KHA) = πn
(
KHA(I(G))

)
is bijective where KHA : GROUPOIDS ↓ G → SPECTRA is analogously
defined as the functor appearing in (13.10) but with K replaced by KH.

The version of Conjecture 15.76 has been treated for rings in [74].

Conjecture 15.77 (Farrell-Jones Conjecture for homotopy K-theory
with coefficients in additive G-categories with finite wreath prod-
ucts). We say that G satisfies the Farrell-Jones Conjecture with coefficients
for homotopy K-theory in additive G-categories with finite wreath products if
for any finite group F the group G o F satisfies the Farrell-Jones Conjecture
with coefficients for homotopy K-theory in additive G o F -categories 15.76.

15.13 The Farrell-Jones Conjecture for Hecke Algebras

There is one instance where one can formulate the Farrell-Jones Conjecture
for non-discrete groups, namely, for the algebraic K-theory of a Hecke algebra
H(G) of a totally disconnected locally compact second countable Hausdorff
group G.

Denote by H(G) the Hecke algebra of G that consists of locally constant
functions G→ C with compact support and inherits its multiplicative struc-
ture from the convolution product. The Hecke algebra H(G) plays the same
role for G as the complex group ring CG for a discrete group G and reduces
to this notion if G happens to be discrete. There is a G-homology theory HG∗
with the property that for any open and closed subgroup H ⊆ G and all n ∈ Z
we have HGn (G/H) = Kn(H(H)) where Kn(H(H)) is the algebraic K-group
of the Hecke algebra H(H). There is also the notion of a classifying space
EKO(G) for the family of compact-open subgroups of G. Note that KO is
not closed under passing to subgroups but at least under finite intersections,
which suffices to our purposes. The space EKO(G) is characterized by the
property that for any G-CW -complex X whose isotropy groups are compact-
open, there is up to G-homotopy precisely one G-map from X to EKO(G).
More information about this space and the comparison with the classifying
space for numerable G-spaces JKO(G) can be found in [640]. The following
conjecture has appeared already in [657, Conjecture 119 on page 773].

Conjecture 15.78 (The Farrell-Jones Conjecture for the algebraic
K-theory of Hecke-Algebras). For a totally disconnected locally compact
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second countable Hausdorff group G the assembly map

HGn (EKO(G))→ HG({•}) = Kn(H(G))(15.79)

induced by the projection pr : EKO(T )→ {•} is an isomorphism for all n ∈ Z.

In the case n = 0 this reduces to the statement that

colimG/H∈OrKO(G)K0(H(H)) → K0(H(G))(15.80)

is an isomorphism. Some evidence for this comes for instance from [260],
where the bijectivity of (15.80) has been proved rationally for a reductive
p-adic group G. For n ≤ −1 one obtains the statement that Kn(H(G)) = 0.
The Hecke algebra H(G) and its projective class group K0(H(G)) are
closely related to the theory of smooth representations of G, see for in-
stance [122, 885, 886]. The G-homology theory can be constructed using an
appropriate functor KH : OrKO(G)→ SPECTRA and the recipe explained in
Theorem 12.27. The desired functor KH is constructed in [873].

All this is explained and carried out in the preprints [83, 81, 84] actually
also for twisted Hecke algebras with respect to a central character and more
general coefficient than C. Moreover, the following result is proved in [81,
Corollaries 1.8 and 1.18] and [84, Theorem 1.1].

Theorem 15.81. Suppose that G is a modulo a compact subgroup isomorphic
to a closed subgroup of a reductive p-adic group. Then Conjecture 15.78 is
true, the map (15.80) is bijective, and Kn(H(G)) vanishes for n ≤ −1.

15.14 Relations among the Isomorphisms Conjectures

15.14.1 The Farrell-Jones Conjecture for K-Theory and for
A-Theory

Let G be a group and let X be a G-CW -complex. We get from the lineariza-
tion map of (7.17) a natural map

(15.82) LGn (X) : HG
n (X; AB)→ HG

n (X; KZ).

if we take Example 15.37 into account and AB is defined by (15.35) for
S = A for the functor A of (7.12). We conclude from Theorem 7.18 and the
equivariant Atiyah Hirzebruch spectral sequence, see Theorem 12.48, that
LGn (X) is bijective for n ≤ 1, surjective for n = 2 and rationally bijective for
all n ∈ Z. If we take X = EVCY(G) and X = G/G we obtain a commutative
diagram where the horizontal maps are assembly maps and the vertical maps
are given by the maps (15.82).
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HG
n (EVCY(G); AB) //

��

HG
n (G/G; AB) = πn(A(BG))

��
HG
n (EVCY(G); KZ) // HG

n (G/G; KZ) = Kn(ZG).

We conclude that for n ∈ Z with n ≤ 1 the upper arrow is bijective if and
only if the lower arrow is bijective We also conclude for every for n ∈ Z and
that the lower arrow is rationally bijective if and only if the lower arrow is
rationally bijective for n ∈ Z. This gives some interesting relations between
the K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring Z
and the Farrell-Jones Conjecture 15.59 for A-theory (without coefficients).
For instance, they are equivalent in degrees n ≤ 1, and they are rationally
equivalent.

The case where we allow in the Farrell-Jones Conjecture 15.59 for A-theory
coefficients is more complicated since in Theorem 7.18 (ii) the assumption
occurs that the space under consideration has to be aspherical. Consider a free
G-CW -complex Z that is simply connected (but not necessarily contractible).
Then π1(G/H ×G Z) ∼= H. We still get a commutative diagram

HG
n (EVCY(G); AG

Z ) //

��

HG
n (G/G; AG

Z ) = πn(A(G\Z))

��
HG
n (EVCY(G); KZ) // HG

n (G/G; KZ) = Kn(ZG)

but we only know that the vertical arrows are bijective for n ≤ 1 and sur-
jective for n = 2, but not anymore that they are rationally bijective for all
n ∈ Z.

15.14.2 The Farrell-Jones Conjecture for A-Theory,
Pseudoisotopy, and Whitehead Spaces

The Farrell Jones Conjecture 15.59 for A-theory (with coefficients) and the
Farrell-Jones Conjecture 15.61 for (smooth) pseudoisotopy (with coefficients)
andf the Farrell-Jones Conjecture 15.62 for Whitehead spaces are equivalent.
This follows from the non-connective analogues of (7.24) and (7.26) for pseu-
doisotopy, and from the non-connective analogues of (7.30), and (7.31) for
smooth pseudoisotopy, see [794], using Lemma 15.47 (ii) and Lemma 15.48 (ii).
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15.14.3 The Farrell-Jones Conjecture for K-Theory and for
Topological Cyclic Homology

The basic reason why topological cyclic homology is a powerful approxima-
tion of algebraic K-theory is the cyclotomic trace due to Bökstedt-Hsiang-
Madsen [141]. It can extended to the equivariant setting and thus be used
together with the linearization map (7.17) to construct the following commu-
tative diagram, which is closely related to the main diagram in [659, (3.1)]
for n ≥ 0,
(15.83)

HG
n (EVCY(G); K≥0

Z ) // HG
n (G/G; K≥0

Z ) = Kn(ZG)

HG
n (EFCY(G); K≥0

Z ) //

Hn(ιFCY⊆VCY ;K
≥0
Z ) ∼=Q

OO

HG
n (G/G; K≥0

Z ) = Kn(ZG)

id∼=Q

OO

HG
n (EFCY(G); A≥0) //

Hn(EFCY(G);L≥0) ∼=Q

OO

Hn(EFCY(G);ct≥0)

��

HG
n (G/G; A≥0) = An(BG)

Ln∼=Q

OO

ctn

��
HG
n (EFCY(G); TCS) // HG

n (G/G; TCS,p) = TCn(BG, p)

where FCY is the family of finite cyclic subgroups of G, the superscript
≥ 0 indicates that we consider the 0-connective covers, the vertical arrows
from the third row to the second row come from the linearization map,
and the vertical arrows from the third row to the fourth row come from
the cyclotomic trace. All arrows marked with ∼=Q are known to be ratio-
nally bijective. This follows from the maps induced by the linearization from
Theorem 7.18. For the map Hn(ιFCY⊆VCY ; K≥0

Z ), this follows from Theo-
rem 13.48 and further computations based equivariant Chern characters us-
ing Theorem 12.79 and [659, Example 12.12]. Rationally the natural map

HG
n (EVCY(G); K≥0

Z )→ HG
n (EVCY(G); KZ) is split injective and has a coker-

nel that is given by an expression involving the groups K−1(ZC) for finite
cyclic subgroups C ⊆ G. Thus the diagram (15.83) implies that the K-
theoretic Farrell-Jones assembly map is rationally injective, ignoring certain
contributions from the collection of the groups K−1(ZC) for finite cyclic sub-
groups C ⊆ G, provided that the lowermost horizontal arrow is rationally
injective. This is the basic idea in the proof of rational injectivity results for
the K-theoretic Farrell-Jones assembly map presented in [659, Theorem 1.13],
where the actual argument is more involved and uses the C-functors as well.

A rational computation of Kn(ZG) is given in Theorem 17.4, provided that
if G satisfies the satisfies the K-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring Z. With the methods mentioned above, one can detect
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under certain conditions the source of the map appearing in Theorem 17.4 if
one ignores the summand for q = −1

15.14.4 The L-Theoretic Farrell-Jones Conjecture and the
Baum-Connes Conjecture

In the sequel [1/2] stands for inverting 2 at the level of spectra or abelian

groups. Note that for a spectrum E we have a natural isomorphism πn(E)[1/2]
∼=−→

πn(E[1/2]).
One can construct the following commutative diagram

(15.84) HG
n (EG; L

〈−∞〉
Z )[1/2] //

l ∼=
��

L
〈−∞〉
n (ZG)[1/2]

id ∼=
��

HG
n (EG; L

〈−∞〉
Z [1/2]) // L〈−∞〉n (ZG)[1/2]

HG
n (EG; LpZ[1/2])

i1 ∼=
��

i0 ∼=

OO

// Lpn(ZG)[1/2]

j1∼=
��

j0∼=

OO

HG
n (EG; LpQ[1/2])

i2 ∼=
��

// Lpn(QG)[1/2]

j2

��
HG
n (EG; LpR[1/2])

i3 ∼=
��

// Lpn(RG)[1/2]

j3

��
HG
n (EG; LpC∗r (?,R)[1/2]) // Lpn(C∗r (G,R))[1/2]

HG
n (EG; KTOP

R [1/2]) //

i4 ∼=

OO

KTOP
n (C∗r (G,R))[1/2]

j4∼=

OO

HG
n (EG; KTOP

R )[1/2]
��

i5

��

l∼=

OO

KTOP
n (C∗r (G,R))[1/2]

��

j5

��

∼=id

OO

HG
n (EG; KTOP

C )[1/2] // Kn(C∗r (G))[1/2]

where all horizontal maps are assembly maps and the vertical arrows are
induced by transformations of functors GROUPOIDS → SPECTRA. These
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transformations are induced by change of rings maps except the one from
KTOP

R [1/2] to LpC∗r (?,R)[1/2], which is much more complicated and carried out

in [599, 600]. Actually, it does not exists without inverting two on the spec-
trum level. Since it is a weak equivalence, the maps i4 and j4 are bijections.

On the level of homotopy groups the comparison between the algebra L-
theory and the topological K-theory of a real and of a complex C∗-algebra
have already been explained in Theorem 10.78, namely we obtain isomor-
phisms

KOn(A)[1/2]
∼=−→ Lpn(A)[1/2], if A is a real C∗-algebra;(15.85)

Kn(A)
∼=−→ Lpn(A), if A is a complex C∗-algebra.(15.86)

Since for any finite group H each of the following maps is known to be a
bijection because of [823, Proposition 22.34 on page 252] and RH = C∗r (H,R)

Lpn(ZH)[1/2]
∼=−→ Lpn(QH)[1/2]

∼=−→ Lpn(RH)[1/2]
∼=−→ Lpn(C∗r (H,R)),

we conclude from the equivariant Atiyah Hirzebruch spectral sequence, see
Theorem 12.48, that the vertical arrows i1, i2, and i3 are isomorphisms. The
arrow j1 is bijective by [821, page 376]. The maps l are isomorphisms for
general results about localizations.

The lowermost vertical arrows i5 and j5 are known to be split injective, a
splitting comes by restriction with the inclusions C∗r (G,R)→ C∗r (G,C). The
following conjecture is already raised as question in [570, Remark 23.14 on
page 197], see also [599, Conjecture 1 in Subsection 5.2].

Conjecture 15.87 (Passage for L-theory from QG to RG to C∗r (G,R)).
The maps j2 and j3 appearing in diagram (15.84) are bijective.

One easily checks

Lemma 15.88. Let G be a group.

(i) Suppose that G satisfies the L-theoretic Farrell-Jones Conjecture 13.4 with
coefficients in the ring R for R = Q and R = R and the complex version
of the Baum-Connes Conjecture 14.9. Then G satisfies Conjecture 15.87;

(ii) Suppose that G satisfies Conjecture 15.87. Then G satisfies the L-theoretic
Farrell-Jones Conjecture 13.4 for the ring Z after inverting 2 if and only
if G satisfies the real version of the Baum-Connes Conjecture 14.9 after
inverting 2;

(iii) Suppose that the assembly map appearing in the complex version of the
Baum-Connes Conjecture 14.9 is (split) injective after inverting 2. Then
the assembly map appearing in L-theoretic Farrell-Jones Conjecture 13.4
with coefficients in the ring for R = Z is (split) injective after inverting 2.

Proof. This follows from Theorem 13.59 (i), Remark 14.13 and the dia-
gram (15.84). ut
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15.14.5 Mapping Surgery to Analysis

Let X be a connected CW -complex with fundamental group π. Let X̃ →
X be its universal covering. Denote by ε one of the decorations s, h or p.
We have constructed functors LεZ and KTOP

R : GROUPOIDS→ SPECTRA in
Theorem 12.43. We obtain maps of spectra

X+ ∧ LεZ({∗}) X̃+ ∧π LεZ(Gπ(π)) //'oo LεZ(Gπ(π/π));

X+ ∧KTOP
R ({∗}) X̃ ∧π KTOP

R (Gπ(π)) //'oo KTOP
R (Gπ(π/π)).

Here {∗} denotes the trivial groupoid with one object, the horizontal arrows
pointing to the left are defined in the obvious way and are weak homotopy
equivalences since X̃ is a free π-CW -complex with π\X̃ = X and Gπ(π) →
{∗} is an equivalence of groupoids, and the horizontal arrows to the right are

assembly maps composed with maps induced by a fixed π-map X̃ → Eπ. (If

one wants to get rid of the dependency of a choice of π-map X̃ → Eπ, one
can consider Π(π/H ×π X̃) instead of Gπ(π/H) for objects π/H in Or(π).)

Denote by Sε(X) and D(X) respectively the homotopy fiber of the arrow
pointing to the right in the first and second row above.

After taking homotopy groups we obtain long exact sequences

(15.89) · · · → Hn+1(X; LεZ({∗}))→ Lεn+1(Zπ)→ πn(Sε(X))

→ Hn(X; LεZ({∗}))→ Lεn(Zπ)→ · · · ,

and

(15.90) · · · → KOn+1(X)→ KOn+1(C∗r (π,R))→ πn(D(X))

→ KOn(X)→ KOn(C∗r (π,R))→ · · · .

After inverting 2 there is a zigzag of natural transformation from KTOP
R [1/2]

LεZ[1/2] as explained in Subsection 15.14.4. It yields a map between long
exact sequence
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(15.91)
...

��

...

��
KOn+1(X)[1/2] //

��

Hn+1(X; LεZ({∗}))[1/2]

��
KOn+1(C∗r (π,R)) //

��

Lεn+1(Zπ)[1/2][1/2]

��
πn(D(X))[1/2] //

��

πn(Sε(X))[1/2]

��
KOn(X)[1/2] //

��

Hn(X; LεZ({∗}))[1/2]

��
KOn(C∗r (π,R))[1/2] //

��

Lεn(Zπ)[1/2]

��
...

...

Lemma 15.92. Suppose that π satisfies the L-theoretic Farrell-Jones Con-
jecture 13.4 with coefficients in the ring with involution Z and the Baum-
Connes Conjecture 14.9 for the real group C∗-algebra.

Then the map

πn(D(M))[1/2]
∼=−→ πn(Sε(M))[1/2]

is bijective for n ∈ Z.

Proof. The first and fourth horizontal arrow in the diagram 15.91 are bijec-
tive since there are given by transformation of homology theories and their
evaluation at {•} is known to be bijective. The Rothenberg sequences of
Subsection 9.10.4, Theorem 13.59 (i), and the diagram (15.84) together with
the assumption that π satisfies the L-theoretic Farrell-Jones Conjecture 13.4
with coefficients in the ring with involution Z and the Baum-Connes Conjec-
ture 14.9 for the real group C∗-algebra imply that the second and fifth hori-
zontal arrow in the diagram 15.91 are bijective. Now apply the Five Lemma
to the diagram (15.91). ut

Now consider the case X = M for a closed orientable topological manifold
M of dimension d. Then the part of the sequence (15.89) for n ≥ d can
identified with the long exact surgery sequence in the topological category,
see Theorem 9.130 see for instance [823, Theorem 18.5 on page 198] or [579].
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Some extra care is necessary at the end in degree d since one has to pass
to the 1-connective cover of the L-theory spectrum. In particular we get an
identification of πd(S

s(M)) with the topological structure set STOP,s
d (M), see

Subsection 9.12.1, which is the central object of study in the classification of
topological manifolds. Note that in view of Lemma 15.92 one can hope for
an identification of STOP,s

d (M) after inverting 2 with πd(D(M)), which is an
object related to topological K-theory of spaces and C∗-algebras. An analytic
Surgery Exact Sequence in terms of the topological K-theory of C∗-algebra
associated to M is constructed in [477, Section 1]

Problem 15.93 (Identification of analytic Surgery Exact Sequences).
Identify the real version of the analytic Surgery Exact Sequence appearing

in [477, Section 1] with the exact sequence (15.90) for a closed orientable
manifold of dimension d.

Note that Higson-Roe have to work with smooth manifolds since they
want to apply index theory. So they have to consider the surgery sequence in
the smooth category. They construct a diagram relating the Surgery Exact
Sequence in the smooth category to their analytic Surgery Exact Sequence.

A more direct approach to the map comparing the surgery sequence in the
smooth category to the analytic Surgery Exact Sequence is given in Piazza-
Schick [792].

A comparison map starting with the Surgery Exact Sequence in the topo-
logical category is constructed in Zenobi [1014] using the approach of [792]
and Lipschitz structures.

Recall that the Surgery Exact Sequence in the topological category is an
exact sequence of abelian groups, what is not true for the smooth category.
It is not clear whether the construction in Zenobi [1014] is compatible with
the structures of an abelian groups on the topological and analytic structure
sets.

Note that that the comparison maps appearing in [477, 792, 1014] go in
the opposite direction, namely from L-theory to KO-theory, in comparison
with the transformations appearing in [599, 600].

So one can state the following problem after Problem 15.93 has been
solved:

Problem 15.94 (Identification of transformations from the Surgery
Exact Sequence to its analytic counterpart). Identify the comparison
map (15.91) from the Surgery Exact Sequence in the topological category to
the analytic surgery sequence appearing in [477, Section 5] with the compar-
ison map appearing in Zenobi [1014].
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15.14.6 The Baum-Connes Conjecture and the Bost Conjecture

We have the a factorization of the Baum-Connes assembly map appearing in
the Baum-Connes Conjecture 14.11 with coefficients

asmbG,CA (EG)∗ : KG
n (EG;A)

asmbG,C,L
1

A (EG)∗−−−−−−−−−−−→ K∗(AoL1 G)

K∗(q)−−−−→ K∗(Aor G).

Recall that the Bost Conjecture with coefficients predicts the bijectivity of
the first map. We have also mentioned that there are counterexamples to the
Baum-Connes Conjecture Conjecture 14.11 with coefficients. The group G in-
volved in these counterexamples can be constructed as colimits of hyperbolic
groups. For such colimits the Bost Conjecture with coefficients is known to be
true. Hence for such a group G the map K∗(q) : K∗(AoL1 G)→ K∗(AorG)
fails to be bijective. More details about this discussion can be found in [70,
Section 1.5].

15.14.7 The Farrell-Jones Conjecture for K-Theory and for
Homotopy K-theory

Theorem 15.95 (The K-theoretic Farrell-Jones Conjecture implies
the Farrell-Jones Conjecture for homotopy K-theory). If G satisfies
the K-theoretic Farrell-Jones Conjecture 13.11 with coefficients in additive
G-categories, then G satisfies also the Farrell-Jones Conjecture 15.76 for
homotopy K-theory with coefficients in additive G-categories.

Proof. See [668, Theorem 9.1 (iii)]. ut

Remark 15.96 (Implications of the homotopy K-theory version to
the K-theory version). Next we discuss some cases where the Farrell-
Jones Conjecture 15.76 for homotopy K-theory with coefficients in additive
G-categories gives implications for the injectivity part of the K-theoretic
Farrell-Jones Conjecture 13.1 with coefficients in the ring R. These all follow
by inspecting for a ring R the following commutative diagram

HG
n (EVCY(G); KR) // HG

n ({•}; KR) = Kn(RG)

KH(h)

��

HG
n (EFIN (G); KR)

ιFIN⊆VCY ∼=

OO

h ∼=
��

HG
n (EFIN (G); KHR) // HG

n ({•}; KHR) = KHn(RG)
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where the two vertical arrows pointing downwords are induced by the trans-
formation h : K → KH, the map ιFIN⊆VCY is induced by the inclusion of
families FIN ⊆ VCY and the two horizontal arrows are the assembly maps
for K-theory and homotopy K-theory.

Suppose that R is regular and the order of any finite subgroup of G is
invertible in R. Then the two left vertical arrows are known to be bijections.
This follows for ιFIN⊆VCY from [657, Proposition 70 on page 744] and for h
from [265, Lemma 4.6] and the fact that RH is regular for all finite subgroups
H of G and hence Kn(RH) → KHn(RH) is bijective for all n ∈ Z by
Theorem 6.16. Hence the (split) injectivity of the lower horizontal arrow
implies the (split) injectivity of the upper horizontal arrow.

Suppose that R is regular. Then the two left vertical arrows are rational
bijections. This follows for ιFIN⊆VCY from [670, Theorem 0.3]. To show it for
h it suffices because of [265, Lemma 4.6] to show that Kn(RH)→ KHn(RH)
is rationally bijective for each finite group H and n ∈ Z. By the version of
the spectral sequence appearing in [977, 1.3] for non-connective K-theory, it
remains to show that NpKn(RH) vanishes rationally for all n ∈ Z. Since R[t]
is regular if R is, this boils down to show that NKp(RH) is rationally trivial
for any regular ring R and any finite group H. The proof that NKp(RH)
is rationally trivial for any regular ring R and any finite group H can be
found for instance in [670, Theorem 9.4]. Hence the upper horizontal arrow
is rationally injective if the lower horizontal arrow is rationally injective.

The next conjecture generalizes Conjecture 6.76 from torsionfree groups
to arbitrary groups.

Conjecture 15.97 (K-theory versus homotopy K-theory for regular
rings). Let G be a group. Suppose that R is regular and the order of any
finite subgroup of G is invertible in R.

Then the natural map

Kn(RG)→ KHn(RG)

is an isomorphism for all n ∈ Z.

Exercise 15.98. Suppose that G satisfies the K-theoretic Farrell-Jones Con-
jecture 13.11 with coefficients in additive G-categories. Then G satisfies Con-
jecture 15.97.

Exercise 15.99. Let G be a group. Suppose that R is regular and the order
of any finite subgroup of G is invertible in R. Suppose that Conjecture 15.97
is true for G. Show that then NKn(RG) = 0 holds for all n ∈ Z.
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15.15 Notes

One can also define a version of the Meta-Isomorphism Conjecture 15.2 or of
the Fibered Meta-Isomorphism Conjecture 15.8 with finite wreath products,
compare Section 13.5. Let C be a class of groups closed under isomorphisms
and taking subgroups and quotients. Let H?

∗ be an equivariant homology
theory.

Definition 15.100 (Fibered Meta-Isomorphism Conjecture with fi-
nite wreath products).

A group G satisfies the Fibered Isomorphism Conjecture with finite wreath
products with respect toH?

∗ and C if for any finite group F the wreath product
G o F satisfies the Fibered Meta-Isomorphism Conjecture 15.8 with respect
to H?

∗ and the family C(G o F ) consisting of subgroups of G o F that belong
to C.

The inheritance properties for the Fibered Meta-Isomorphism Conjec-
ture 15.8 plus the passage to overgroups of finite index do also hold for the
Fibered Meta-Isomorphism Conjecture 15.100 with finite wreath products ,
see [578, Section 3].

Proofs of some of the inheritance properties above are also given in [447,
862].

One may ask whether one can find abstractly for the Fibered Meta-
Isomorphism Conjecture 15.8 a smallest family for which it is true. For in-
stance what happens if one takes the intersection of all families for which the
Fibered Meta-Isomorphism Conjecture 15.8 is true. This questions turns out
to be equivalent to the difficult and unsolved question whether the Fibered
Meta-Isomorphism Conjecture 15.8 holds for an infinite product of groups,
provided that for each of these groups the Fibered Meta-Isomorphism Con-
jecture 15.8 is true,

The following observation is taken from [803, Section 7]. Fix an equivariant
homology theory H?. Take for simplicity Γ to be the trivial group when
considering the Fibered Meta Isomorphism Conjecture 15.8.

We consider the following properties:

• (P)
For any set {(Gi,Fi) | i ∈ I} for Gi a group and Fi a family of sub-
groups of Gi such that (Gi,Fi) satisfies the Fibered Meta Isomorphism
Conjecture 15.8 for every i ∈ I, the group

∏
i∈I Gi with respect to the

family

∏
i∈I
Fi :=

{
H ⊆

∏
i∈I

Gi

∣∣∣∣∣ ∃Hi ∈ Fi for every i ∈ I with H ⊆
∏
i∈I

Hi

}

satisfies the Fibered Meta Isomorphism Conjecture 15.8.
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• (I)
For any group G and families of subgroups {Fi | i ∈ I} of G such that
(G,Fi) satisfies the Fibered Meta Isomorphism Conjecture 15.8 for ev-
ery i ∈ I, the pair (G,

⋂
i∈I Fi) satisfies the Fibered Meta Isomorphism

Conjecture 15.8.

Lemma 15.101. The properties (I) and (P) are equivalent.

Exercise 15.102. Prove Lemma 15.101 using Lemma 15.16.
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Chapter 16

Status

16.1 Introduction

In this chapter we give a status report about the class of groups for
which the Full Farrell-Jones Conjecture 13.27, see Theorem 16.1, the Baum-
Connes 14.11 with coefficients, see Theorem 16.7, the Baum-Connes Con-
jecture 14.9, see Theorem 16.12, and the Novikov Conjecture 9.137, see Sec-
tion 16.7 have been proved. We discuss also injectivity results in Sections 16.5
and 16.6. In order to restrict the length of the exposition, we do not present
the long history of these results and concentrate only on the current state
of art, although this unfortunately means that certain papers, which were
spectacular breakthroughs at the time of their writing and had a big impact
on the following papers, may not appear here.

A review of and a status report for some classes of groups is given in Sec-
tion 16.8. This may be helpful for a reader who is interested in a certain class
of groups, although this means that there are some repetitions of statements
of results.

At the time of writing no counterexamples to the Full Farrell-Jones Con-
jecture 13.27, the Baum-Connes Conjecture 14.9 without coefficients, and
the Novikov Conjecture 9.137 are known to the author. These conjectures
are open in general. In Section 16.10 we explain that the search for coun-
terexamples is not easy at all. In Subsection 16.10.5 we mention a few results
that are consequences of the K-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring R and for which there exist independent proofs for all
groups.

16.2 Status of the Full Farrell-Jones Conjecture

The most general form of the Farrell-Jones Conjecture is the Full Farrell-
Jones Conjecture 13.27. It has the best inheritance properties and all variants
of the Farrell-Jones Conjecture presented in this book are special cases of it.

Theorem 16.1 (Status of the Full Farrell-Jones Conjecture 13.27).
Let FJ be the class of groups for which the Full Farrell-Jones Conjec-

ture 13.27 is true. Then

(i) The following classes of discrete groups belong to FJ :

469
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(a) Hyperbolic groups;
(b) Finite dimensional CAT(0)-groups;
(c) Virtually solvable groups;
(d) (Not necessarily cocompact) lattices in path connected second countable

locally compact Hausdorff groups.
More generally, if L is a (not necessarily cocompact) lattice in a second
countable locally compact Hausdorff group G such that π0(G) is discrete
and belongs to FJ , then L belongs to FJ ;

(e) Fundamental groups of (not necessarily compact) connected manifolds
(possibly with boundary) of dimension ≤ 3;

(f) The groups GLn(Q) and GLn(F (t)) for F (t) the function field over a
finite field F ;

(g) S-arithmetic groups;
(h) The mapping class group Γ sg,r group of a closed orientable surface of

genus g with r boundary components and s punctures for g, r, s ≥ 0;
(i) Fundamental groups of graphs of abelian groups;
(j) Fundamental groups of graphs of virtually cyclic groups;
(k) Artin’s full braid groups Bn;
(l) Coxeter groups;

(m) Groups in the class AC(VSOLV) defined in (20.46) for the class
VSOLV of virtually solvable groups;

(n) Groups which acts properly and cocompactly on a finite product of hy-
perbolic graphs.

(ii) The class FJ has the following inheritance properties:

(a) Passing to subgroups
Let H ⊆ G be an inclusion of groups. If G belongs to FJ , then H
belongs to FJ ;

(b) Passing to finite direct products
If the groups G0 and G1 belong to FJ , then also G0 × G1 belongs to
FJ ;

(c) Group extensions
Let 1 → K → G → Q → 1 be an extension of groups. Suppose that
for any infinite cyclic subgroup C ⊆ Q the group p−1(C) belongs to FJ
and that the groups K and Q belong to FJ .
Then G belongs to FJ ;

(d) Group extensions with virtually torsionfree hyperbolic groups as kernel
Let 1 → K → G → Q → 1 be an extension of groups such that K is
virtually torsionfree hyperbolic and Q belongs to FJ . Then G belongs
to FJ ;

(e) Colimits over directed systems
Let {Gi | i ∈ I} be a direct system of groups indexed by the directed set
I (with arbitrary structure maps). Suppose that for each i ∈ I the group
Gi belongs to FJ .
Then the colimit colimi∈I Gi belongs to FJ ;
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(f) Passing to free products
Consider a collection of groups {Gi | i ∈ I} such that Gi belongs FJ
for each i ∈ I. Then ∗i∈IGi belongs to FJ ;

(g) Passing to overgroups of finite index
Let G be an overgroup of H with finite index [G : H]. If H belongs to
FJ , then G belongs to FJ ;

(h) Graph products
A graph product of groups, each of which belongs to FJ , belongs to FJ
again.

Proof. We begin with assertion (i) about classes of groups belong to FJ .

(ia) This is proved for K-theory with coefficients in additive G-categories
in [86, Main Theorem] and for L-theory with coefficients in additive G-
categories in [77, Theorem B], but not including the “with finite wreath
product” property. How this can be included, is explained in [88, Remark 6.4].
The proof for K-theory with coefficients in higher G-categories can be found
in [172, Theorem 1.7 (3)].

(ib) This is proved for K-theory with coefficients in additive G-categories
in degree ≤ 1 and for L-theory with coefficients in additive G-categories in
all degrees in [77, Theorem B]. The argument why the K-theory case with
coefficients in additive G-categories holds in all degrees can be found in [973,
Theorem 1.1 and Theorem 3.4]. Note that for a finite dimensional CAT(0)-
group G and a finite group F the wreath product G oF is a finite dimensional
CAT(0)-group again so that the passage to the version with finite wreath
products is automatically true. The proof for K-theory with coefficients in
higher G-categories can be found in [172, Theorem 1.71.7 (2)].

(ic) See [974, Theorem 1.1]. (The special case of nearly crystallographic
groups is treated by Farrell-Wu [359].) and [172, Theorem 1.7 (4)].

(id) See [526, Theorem 8] whose proof is based on the case of a cocompact
lattices in an almost connected Lie groups handled in [71, Theorem 1.2 and
Remark 1.4] and [172, Theorem 1.7 (6)].

(ie) In dimension 3 this is proved in [71, Corollary 1.3 and Remark 1.4],
where Roushon’s papers [862, 863] are used, and in [172, Theorem 1.7 (7)].
The dimensions 1 and 2 can be handled directly or reduced to dimension 3
by crossing with D1.

(if) See [868, Theorem 8.13] and [172, Theorem 1.7 (5)].

(ig) This follows from assertion (if) and the inheritance property passing to
subgroups, see assertion (iia) since any S-arithmetic group is a subgroup of
GLn(Q) or of GLn(F (t)) for F (t) the function field over a finite field F .

(ih) See Bartels-Bestvina [69, Theorem A and Remark 9.4] and [172, Theo-
rem 1.7 (9)].

(ii) See Gandini-Meinert-Rüping [399] and [172, Theorem 1.7 (8)].

(ij) See Wu [1000] and [172, Theorem 1.7 (8)].
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(ik) The pure Artin braid group Pn is a strongly poly-surface group in the
sense of Definition 16.23 by [37, Theorem 2.1]. Hence it satisfies the Full
Farrell-Jones Conjecture 13.27 by Theorem 16.24. Since the full braid group
Bn contains Pn as a subgroup of finite index, Bn satisfies the Full Farrell-
Jones Conjecture 13.27 by assertion (iig).

(il) The argument in Bartels-Lück [77, page 636] for the version without “fi-
nite wreath products” extends directly to the case with “finite wreath prod-
ucts”.

(im) See Theorem 20.47.

in Such a groupG is strongly transfer reducible in the sense of Definition 20.38
by inspecting the proof of [554, Theorem 6.1 and Example 2.9] and Theo-
rem 23.45. Now apply Theorem 20.39.

Finally we deal with the assertion (ii) about inheritance properties. Here we
can refer to Theorem 13.29 except for assertions (iid) and (iih).

Assertion (iih) is proved by Gandini-Rüping [400] for additive G-categories
as coefficients. The argument carries over to the setting of higher G-categories
as coefficients since it is based only on inheritance properties which do also
hold for higher G-categories as coefficients.

Assertion (iid) follows from assertion (im) and from Bestvina-Fujiwara-
Wigglesworth [129, Theorem 2.3].

This finishes the proof of Theorem 16.1. ut
Exercise 16.2. Let G be a cocompact torsionfree lattice in an almost con-
nected Lie group L with dim(L) ≥ 5. Let M be an aspherical closed manifold
with fundamental group G. Let K ⊆ L be a maximal compact subgroup.
Show that then M is homeomorphic to G\L/K.

Exercise 16.3. Let U be a group that is universal finitely presented, i.e.,
any finitely presented group is isomorphic to a subgroup of G. (Such a group
exists by Higman [463, page 456], and there is even a universal finitely pre-
sented groups which is the complement of an embedded S2 in S4, see [412,
Corollary 3.4].) Show that the Full Farrell-Jones Conjecture 13.27 holds for
all groups if and only if it holds for U .

Exercise 16.4. Let S ⊆ R be a subring of R such that R as right S-module
is finitely generated free. Suppose that for every natural number m the group
GLm(S) belongs to FJ . Show that GLn(R) belongs to FJ for every natural
number n.

16.3 Status of the Farrell-Jones Conjecture for
Homotopy K-Theory

Theorem 16.5 (Status of the Farrell-Jones Conjecture for homo-
topy K-theory). Let FJKH be the class of groups for which the Farrell-
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Jones Conjecture 15.77 for homotopy K-theory with coefficients in additive
G-categories with finite wreath products is true.

(i) The class FJKH contains the class FJ of groups for which the Full
Farrell-Jones Conjecture 13.27 holds. (The class FJ is analyzed in The-
orem 16.1.) Moreover, FJKH contains all elementary amenable groups
and all one-relator groups;

(ii) The class FJKH has the following inheritance properties:

(a) Passing to subgroups
Let H ⊆ G be an inclusion of groups. If G belongs to FJKH, then also
H belongs to FJKH;

(b) Passing to finite direct products
If the groups G0 and G1 belong to FJKH, then G0 × G1 belong to
FJKH;

(c) Group extensions
Let 1 → K → G → Q → 1 be an extensions of groups. If K and Q
belong to FJKH, then G belongs to FJKH;

(d) Directed colimits
Let {Gi | i ∈ I} be a direct system of subgroups indexed by the directed
set I (with arbitrary structure maps). Suppose that for each i ∈ I the
group Gi belongs to FJKH, then colimi∈I Gi belongs to FJKH;

(e) Passing to free products
Consider a collection of groups {Gi | i ∈ I} such that Gi belongs FJKH
for each i ∈ I. Then ∗i∈IGi belongs to FJKH;

(f) Passing to overgroups of finite index
Let G be an overgroup of H with finite index [G : H]. If H belongs to
FJKH, then G belongs to FJKH;

(g) Graph products
A graph product of groups each of which belongs to FJKH belongs to
FJKH again;

(h) Actions on trees
If G acts on a tree T without inversion such that every stabilizer group
Gx of any vertex x in T belongs to FJKH. Then G belongs to FJKH.

Proof. This follows from Theorem 15.95 and [668, Remark 9.3] except for
assertion (iig). Here the arguments of [400] apply also directly to homotopy
K-theory, the situation is actually easier because of assertion (iic). ut

The class of groups FJKH is larger and has better inheritance properties
than the class FJ . The decisive difference is that we can use for the homotopy
K-theory the family FIN instead of the family VCY. This is essentially a
consequence of and reflected by Theorem 15.74.

Exercise 16.6. Let G be a torsionfree elementary amenable group and let
R be regular.
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Show that then the assembly map Hn(BG; K(R)) → Kn(RG) is split
injective.

Comment 23 (by W.): Is there a version of homotopy K-theory for
higher categories? Compare with the construction in [668, Section 8].

16.4 Status of the Baum-Conjecture (with coefficients)

We have introduced the Baum-Connes Conjecture 14.11 with coefficients in
Section 14.4.

Theorem 16.7 (Status of the Baum-Connes 14.11 with coefficients).
Let BC be the class of groups for which the Baum-Connes Conjecture 14.11

with coefficients holds.

(i) The following classes of groups belong to BC.

(a) A-T-menable groups;
(b) CAT(0)-cubical groups in the sense of [158], i.e., groups which act prop-

erly and cocompactly on a finite-dimensional CAT(0)-cubical complex
with bounded geometry.

(c) G is a countable subgroup of GL2(F ) for a field F ;
(d) Hyperbolic groups;
(e) One-relator groups;
(f) Fundamental groups of compact 3-manifolds (possibly with boundary);
(g) Artin’s full braid groups Bn;
(h) Thompson’s groups F , T , and V ;
(i) Coxeter groups;

(ii) The class BC has the following inheritance properties:

(a) Passing to subgroups
Let H ⊆ G be an inclusion of groups. If G belongs to BC, then H belongs
to BC;

(b) Passing to finite direct products
If the groups G0 and G1 belong to BC, the also G0 ×G1 belongs to BC;

(c) Group extensions
Let 1→ K → G→ Q→ 1 be an extension of groups. Suppose that for
any finite subgroup F ⊆ Q the group p−1(F ) belongs to BC and that the
group Q belongs to BC.
Then G belongs to BC;

(d) Directed unions
Let {Gi | i ∈ I} be a direct system of subgroups of G indexed by the
directed set I such that G =

⋃
i∈I Gi. Suppose that Gi belongs to BC for

every i ∈ I.
Then G belongs to BC;
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(e) Actions on trees
Let G be a countable group acting without inversion on a tree T . Then
G belongs to BC if and only if the stabilizers of each of the vertices of
T belong to BC.
In particular BC is closed under amalgamated products and HNN-
extensions.

Proof. We begin with assertion (i) about classes of groups belong to BC.

(ia). This is proved by Higson-Kasparov [469, Theorem 1.1].

(ib) See [158]. This follows also from assertion (ia).

(ic) Such groups are a-T-menable by [429, Theorem 4]. Now apply asser-
tion (ia).

(id) This is proved by Lafforgue [587, Théorème 0.4], see also [802]. The proof
without coefficients can be found in Mineyev-Yu [717].

(ie) See Oyono-Oyono [771, Corollary 1.3].

(if) Let M be a closed Seifert manifold. Then there is an extension 1→ Z→
π1(M) → Q → 1 such that Q contains a subgroup H of finite index that is
isomorphic to the fundamental group of a closed surface S, see [460, Theo-
rem 12.2 on page 118]. If S carries the structure of a hyperbolic manifold,
π1(S) and hence Q are hyperbolic and belongs to BC by assertion (id). If S
does not carry the structure of a hyperbolic manifold, its fundamental group
and hence Q are virtually finitely generated abelian and hence belong to BC
by assertion (ia). Now assertions (ia) and (iic) imply that π1(M) belongs to
BC.

Let M be a closed hyperbolic 3-manifold. Then its fundamental group is
hyperbolic and hence belongs to BC by assertion (id).

Let M be a compact irreducible manifold with infinite fundamental group
such that its boundary is non-trivial or is Haken. Then π1(M) can be obtained
from the trivial group by a finite number of HNN extensions and free amalga-
mated products. See [957, proof of Proposition 19.5 (6) on page 253] where the
condition orientable is only assumed for simplicity, or see [460, Theorem 13.3
on page 141]. Hence π1(M) belongs to BC by assertion (iie). Let M be an
irreducible closed 3-manifold. If it does not contain an incompressible torus,
it is either Seifert or hyperbolic by the proof of Thurston’s Geometrization
Conjecture due to Perelman, see for instance Morgan-Tian [734] and hence
belongs to BC. If it contains an incompressible torus, it is Haken and hence
belongs to BC by the argument above. We conclude that π1(M) belongs to
BC for any compact irreducible 3-manifold. Since any prime 3-manifold that
is not irreducible is an S1-bundle over S2, see [460, Lemma 3.13 on page 28],
and hence belongs to BC by assertion (ia), any compact prime 3-manifold M
belongs to BC. Since any compact 3-manifold is a connected sum of prime
compact 3-manifolds, see [460, Theorem 3.15 on page 31], assertion (if) fol-
lows from assertion (iie).

(ig) See Schick [881, Theorem 20].
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(ih) These groups are a-T-menable by Farley [333], and hence we can apply
assertion (ia).

(ii) Since a finitely generated Coxeter group is a-T-menable, it satisfies the
Baum-Connes Conjecture 14.11 with coefficients by Theorem 16.7 (ia). By a
colimit argument based on Theorem 16.7 (iid) every Coxeter group satisfies
the Baum-Connes Conjecture 14.11 with coefficients.

Finally we deal with the assertion (ii) about inheritance properties.

(iia) See Chabert-Echterhoff [209, Theorem 2.5].

(iib) See Chabert-Echterhoff [209, Theorem 3.17], or Oyono-Oyono [770,
Corollary 7.12].

(iic) See Oyono-Oyono [770, Theorem 3.1].

(iid) This follows from Bartels-Echterhoff-Lück [70, Theorem 5.6 (i) and
Lemma 6.2].

(iie) This is proved by Oyono-Oyono [771, Theorem 1.1]. ut

Exercise 16.8. Let 1 → K → G → Q → 1 be an extension of groups such
that K and Q satisfy the Baum-Connes Conjecture 14.11 with coefficients
and Q is torsionfree. Show that then G satisfies the Baum-Connes Conjec-
ture 14.11 with coefficients.

Exercise 16.9. Let G be a torsionfree group. Suppose that CG has an idem-
potent different from 0, 1. Show that then G cannot be a subgroup of a
hyperbolic group, a finite dimensional CAT(0)-group, a lattice in an almost
connected Lie group, the fundamental group of a manifold of dimension ≤ 3,
an amenable group, a mapping class group, or a one-relator group.

Remark 16.10 (Passing to overgroups of finite index). It is not known
in general whether a group G belongs to BC, i.e., G satisfies the Baum-Connes
Conjecture 14.11 with coefficients if a subgroup of finite index does. Partial
answers to this question are given by Schick [881, Theorem 20].

This suggests to systematically implement the with “finite wreath product
version” in the Baum-Connes setting, as we did in the Farrell-Jones setting,
see Section 13.5.

Remark 16.11 (The Status of the Baum-Connes Conjecture for to-
pological groups). We have only dealt with the Baum-Connes Conjecture
for discrete groups. The Baum Connes Conjecture (with coefficients) makes
also sense for second countable locally compact Hausdorff groups. Here some
results in this setting.

Higson-Kasparov [469] treat the Baum-Connes Conjecture with coefficients
for second countable locally compact Hausdorff groups which are a-T-menable

Julg-Kasparov [521, Theorem 5.4 (i)] prove the Baum-Connes Conjecture
with coefficients for connected Lie groups L whose Levi-Malcev decomposi-
tion L = RS into the radical R and semisimple part S is such that S is locally
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of the form

S = K × SO(n1, 1)× · · · × SO(nk, 1)× SU(m1, 1)× · · · × SU(ml, 1)

for a compact group K. The Baum-Connes Conjecture with coefficients for
Sp(n, 1) is proved by Julg [520].

The Baum-Connes Conjecture without coefficients has been proven by
Chabert-Echterhoff-Nest [210] for second countable almost connected Haus-
dorff groups, based on the work of Higson-Kasparov [469] and Lafforgue [586].

Next we deal with the Baum-Connes Conjecture 14.9 without coeffi-
cients for (discrete) groups. Recall that all groups which satisfy the Baum-
Connes 14.11 with coefficients do in particular satisfy the Baum-Connes Con-
jecture 14.9. Below are some case some of which are not covered by this
implication.

A length function on G is a function L : G → R≥0 such that L(1) = 0,
L(g) = L(g−1) for g ∈ G and L(g1g2) ≤ L(g1) + L(g2) for g1, g2 ∈ G holds.
The word length metric LS associated to a finite set S of generators is an
example. A length function L on G has property (RD) (“rapid decay”) if
there exist C, s > 0 such that for any u =

∑
g∈G λg · g ∈ CG we have

||ρG(u)||∞ ≤ C ·

∑
g∈G
|λg|2 · (1 + L(g))2s

1/2

where ||ρG(u)||∞ is the operator norm of the bounded G-equivariant opera-
tor l2(G) → l2(G) coming from right multiplication with u. A group G has
property (RD) if there is a length function which has property (RD). This no-
tion is due to Jolissaint [512]. More information about property (RD) can be
found for instance in [221, 223], [583], and [945, Chapter 8]. Bolicity general-
izes Gromov’s notion of hyperbolicity for metric spaces. A simply connected
complete Riemannian manifold with non-positive sectional curvature is bolic.
We refer to [540, Section 2] for a precise definition.

Theorem 16.12 (Status of the Baum-Connes Conjecture (without
coefficients)). A group G satisfies the Baum-Connes Conjecture 14.9 (with-
out coefficients) if it satisfies one of the following conditions.

(i) The group G is a discrete subgroup of a connected Lie groups L whose Levi-
Malcev decomposition L = RS into the radical R and semisimple part S
is such that S is locally of the form

S = K × SO(n1, 1)× · · · × SO(nk, 1)× SU(m1, 1)× · · · × SU(ml, 1)

for a compact group K;
(ii) The group G has property (RD) and admits a proper isometric action on

a strongly bolic weakly geodesic uniformly locally finite metric space;
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(iii) The group G is a discrete finite covolume subgroup of the isometry groups
of a simply connected complete Riemannian manifold with pinched negative
sectional curvature;

(iv) The group G is a discrete subgroup of Sp(n, 1).

Proof. (i) See Julg-Kasparov [521].

(ii) See Lafforgue [582] or [901].
(iii) See [223, Corollary 0.3].

(iv) See Julg [520]. ut

16.5 Injectivity Results in the Baum-Connes Setting

There are cases where one can show that the assembly maps appearing in the
Farrell-Jones setting or Baum-Connes setting are injective without knowing
that they are bijective. There is no case where one can prove surjectivity but
does not know bijectivity as well. This is a common phenomenon in algebraic
topology where surjectivity arguments often contain an injectivity argument,
essentially one applies the surjectivity argument to a cycle whose boundary
is the image of a cycle representing an element in the kernel of the assembly
map. Moreover, this shows that in general surjectivity results are harder than
injectivity results.

The main value of surjectivity statements is that they allow to interprete
elements in the K- or L-groups homologically and thus to obtain valuable
information. The injectivity statements are interesting since they imply the
Novikov Conjecture or give some idea how large the K- and L-groups are.

Theorem 16.13 (Split injectivity of the assembly map appearing in
the Baum-Connes Conjecture 14.9 (without coefficients) for funda-
mental groups of complete Riemannian manifolds with non-positive
sectional curvature). The assembly map appearing in the Baum-Connes
Conjecture 14.9 is split injective if G is the fundamental group of complete
Riemannian manifold with non-positive sectional curvature.

Proof. See Kasparov [546, Theorem 6.7]. ut

More general results for bolic spaces are proved in Kasparov-Skandalis [541].
A metric space (X, d) admits a uniform embedding into Hilbert space or

sometimes also called coarse embedding into Hilbert space if there exist a sep-
arable Hilbert space H, a map f : X → H, and non-decreasing functions ρ1

and ρ2 from [0,∞)→ R such that ρ1(d(x, y)) ≤ ||f(x)− f(y)|| ≤ ρ2(d(x, y))
for x, y ∈ X and limr→∞ ρi(r) =∞ for i = 1, 2. A metric is proper if for each
r > 0 and x ∈ X the closed ball of radius r centered at x is compact. The
question whether a discrete group G equipped with a proper left G-invariant
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length metric d admits a uniform embedding into Hilbert space is indepen-
dent of the choice of d since the induced coarse structure does not depend
on d, see [902, page 808]. We mention that for a finitely generated group any
left invariant word length metric is an example of a proper left G-invariant
length metric.

For more information about groups admitting a uniform embedding into
Hilbert space we refer to [300, 429].

The next result is due to Yu [1008, Theorem 2.2 and Proposition 2.6].

Theorem 16.14 (Status of the Coarse Baum-Connes Conjecture).
The Coarse Baum-Connes Conjecture 14.30 is true for a discrete metric

space X of bounded geometry if X admits a uniform embedding into Hilbert
space. In particular a countable group G satisfies the Coarse Baum-Connes
Conjecture 14.30 if G equipped with a proper left G-invariant length metric
admits a uniform embedding into Hilbert space.

Theorem 16.15 (Split injectivity of the assembly map appearing in
the Baum-Connes Conjecture 14.11 with coefficients). Let G be a
countable group. Then for any C∗-algebra A the assembly map appearing in
the Baum-Connes Conjecture 14.11

KG
n (EG;A)→ Kn(Aor G);

is split injective if the group G has one of the following properties:

(i) The group G admits a proper left G-invariant length metric for which G
admits a uniform embedding into Hilbert space;

(ii) The group G admits a proper left G-invariant length metric for which G
admits a uniform embedding into a Banach space with property (H);

(iii) The group G is a subgroup of GLn(F ) for some field F and natural number
n;

(iv) The group G is a subgroup of an almost connected Lie group.

Proof. (i) This is proved by Skandalis-Tu-Yu [902, Theorem 6.1] using ideas
of Higson [468] and Theorem 16.14.

(ii) See Kasparov-Yu [542, Theorem 1.3].

(iii) Assertion (i) applies to G by Guentner-Higson-Weinberger [429, Theo-
rem 2 and 3].

(iv) Assertion (i) applies to G by Guentner-Higson-Weinberger [429, Theo-
rem 7]. ut

Exercise 16.16. Let G be a group such that for any finitely generated sub-
group H ⊆ G and every H-C∗-algebra A the assembly map KH

n (EH;A) →
Kn(Aor H) injective.

Show that then the assembly map KG
n (EG;A)→ Kn(Aor G) is injective

for every G-C∗-algebra A. Prove the analogous statement for the K-theoretic



480 16 Status

and L-theoretic assembly maps with coefficients in additive categories (with
involution) and the family of virtually cyclic subgroups.

Split injectivity of the Baum-Connes assembly map (for trivial coefficients)
is proved under certain conditions about the compactifications of the model
for the space for proper G-actions by Rosenthal [859] based on techniques
developed by Carlsson-Pedersen [202].

Remark 16.17 (Groups Acting Amenably on a Compact Space). A
continuous action of a discrete group G on a compact space X is called
topologically amenable if there exists a sequence

pn : X →M1(G) = {f : G→ [0, 1] |
∑
g∈G

f(g) = 1}

of weak-∗-continuous maps such that for each g ∈ G one has

lim
n→∞

sup
x∈X
||g ∗ (pn(x)− pn(g · x))||1 = 0.

More information about this notion can be found for instance in [25, 26]. It
should not be confused with the notion of an amenable action of a group
G on a set X, where amenable in this context means that there exists a a
G-invariant mean on X. Note that the following statements are equivalent:

• the group G is amenable;
• The action of G on G by multiplication is amenable;
• The obvious action on G on the one-point-space is topologically amenable.

A group G is called boundary amenable, if admits a topologically amenable
action on a compact metric space in the sense above.

Higson-Roe [473, Theorem 1.1 and Proposition 2.3] show that a finitely
generated group is boundary amenable if and only if it belongs to the class
A defined in [1008, Definition 2.1], and hence admits a uniform embedding
into Hilbert space. Hence Theorem 16.15 (i) implies the result of Higson [468,
Theorem 1.1] that the assembly map KG

n (EG;A)→ Kn(Aor G) appearing
in the Baum-Connes Conjecture 14.11 with coefficients is split injective if G
is boundary amenable.

Finally we mention that a finitely generated groupG is boundary amenable
if and only if the reduced group C∗-algebra C∗r (G) is exact, i.e., the minimal
tensor product with it preserves short exact sequences of C∗-algebras, see for
instance [409, Proposition 9.9].

16.6 Injectivity Results in the Farrell-Jones Setting

Theorem 16.18 (Split injectivity of the assembly map appearing in
the L-theoretic Farrell Jones Conjecture with coefficients in the
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ring Z for fundamental groups of complete Riemannian manifolds
with non-positive sectional curvature). The assembly map appearing
in the L-theoretic Farrell Jones Conjecture 13.4 with coefficients in the ring
Z is split injective if G is the fundamental group of complete Riemannian
manifold with non-positive sectional curvature.

Proof. See [371, Theorem 2.3]. ut

The asymptotic dimension of a proper metric space X is the infimum over
all integers n such that for any R > 0 there exists a cover U of X with
the property that the diameter of the members of U is uniformly bounded
and every open ball of radius R intersects at most (n + 1) elements of U ,
see [424, page 29]. The asymptotic dimension of a finitely generated group
is the asymptotic dimension of its Cayley graph (and is independent of the
choice of set of finite generators.)

For a torsionfree group G with finite asymptotic dimension and a finite
model for BG and any ring R the split injectivity of Hn(BG; K(R)) →
Kn(RG) is proved by Bartels [93, Theorem 1.1] and by Carlsson-Goldfarb [201,
Main Theorem on page 406]. The L-theory version is proved in Bartels [93,
Section 7] as well, provided that there exists a natural number N with
K−i(R) = 0 for i ≥ N .

The notion of finite decomposition complexity was introduced and studied
by Guentner-Tessera-Yu [430, 431]. It is a weaker notion than finite asymp-
totic dimension. The split injectivity of the assembly maps Hn(BG; K(R))→
Kn(RG) and of Hn(BG; L〈−∞〉(R)) → L

〈−∞〉
n (RG) for a torsionfree group

G with finite model for BG and finite decomposition complexity is proved
by Ramras-Tessera-Yu [815, Theorem 1.1] and Guentner-Tessera-Yu [430,
page 334] for any ring R (with involution), provided that in the L-theory
case there exists a natural number N with K−i(R) = 0 for i ≥ N .

Kasprowski [549, Theorem 8.1] proved for a group G with finite dimensio-
nal model for EFIN (G) and finite quotient finite decomposition complexity, a
strengthening of the notion of finite decomposition complexity, and a global
upper bound on the orders of the finite subgroups that the assembly map
HG
n (EFIN (G); KR) → Kn(RG) is split injective for all n ∈ Z. An L-theory

version is proved in [549, Theorem 9.1].
The paper [549] uses ideas of [91]. Kasprowski [549, page 566] points out

a gap in the proof of [91] which has the consequence that the results in [91]
are only proved under the additional assumption that there is a finite model
for EFIN (G).

The papers by Kasprowski [550, 551] are based on [549] and lead to the
following two results.

Theorem 16.19 (Injectivity of the Farrell-Jones assembly map for
FIN for subgroups of almost connected Lie groups). Let G be a
subgroup of an almost connected Lie group. Suppose that G admits a finite
dimensional model for the classifying space EFIN (G).
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(i) Let A be an additive G-category. Then the assembly map

HG
n (EFIN (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
is split injective for all n ∈ Z;

(ii) Let A be an additive G-category with involution. Suppose that there exists
N ≥ 0 such that π−i(KA(I(A))

)
= 0 holds for all i ≥ N and all virtually

abelian subgroups A ⊆ G.
Then the assembly map

HG
n (EFIN (G); L

〈−∞〉
A )→ HG

n (G/G; L
〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
is split injective for all n ∈ Z;

(iii) Let C be a right exact G-∞-category. Then the assembly map

HG
n (EFIN (G); KC)→ HG

n (G/G; KC) = πn
(
KC(I(G))

)
is split injective for all n ∈ Z, provided that G is finitely generated; Com-
ment 24 (by W.): Christoph says that one get rid of the assumption
“finitely generated” using Kasprowski’s argument in [550, Section 7]. Shall
we mention or explain this?

(iv) A subgroup G of an almost connected Lie group admits a finite dimensional
model for EFIN (G) if and only if there exists N ∈ N such that every
finitely generated abelian subgroup of G has rank at most N .

Proof. (i) and (ii) IfG is finitely generated, this is proved in [550, Theorem 1.1
and Theorem 6.1]. Since every group is the union of its finitely generated
subgroups, the general case for injectivity follows from Lemma 15.23 (ii).
One obtains even split injectivity since also the retraction is natural, see [550,
Section 7].

(iii) This is proved in [169, Theorem 1.1].

(iv) See [550, Proposition 1.3]. ut

Theorem 16.20 (Injectivity of the Farrell-Jones assembly map for
FIN for linear groups). Let R be a commutative ring with unit and let
G ⊆ GLn(R) be a subgroup. Suppose that G admits a finite dimensional model
for the classifying space EFIN (G).

(i) Let A be any additive G-category. Then the assembly map

HG
n (EFIN (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
is split injective for all n ∈ Z;

(ii) Let A be any additive G-category with involution. Suppose that there exists
N ≥ 0 such that π−i(KA(I(H)) = 0 holds for all i ≥ N and all virtually
nilpotent subgroups H ⊆ G.
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Then the assembly map

HG
n (EFIN (G); L

〈−∞〉
A )→ HG

n (G/G; L
〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
is split injective for all n ∈ Z;

(iii) Let C be a right exact G-∞-category. Then the assembly map

HG
n (EFIN (G); KC)→ HG

n (G/G; KA) = πn
(
KC(I(G))

)
is split injective for all n ∈ Z;

Proof. If G is finitely generated, this is proved in [551, Theorem 1.1]. Since
every group is the union of its finitely generated subgroups, the general case
for injectivity follows from Lemma 15.23 (ii). One obtains even split injectiv-
ity since also the retraction is natural, as explained in [550, Section 7]. The
case of higher G-categories is proved in [169, Theorem 1.1]. ut

Split injectivity of the K- and L-theoretic Farrell-Jones assembly map (for
trivial coefficients) is proved under certain conditions about the compactifi-
cations of the model for the space for proper G-actions by Rosenthal [855,
856, 857], based on techniques developed by Carlsson-Pedersen [202].

16.7 Status of the Novikov Conjecture

Recall that the Novikov Conjecture 9.137 holds for a group G if one of the
following conditions is satisfied:

• The assembly map

Hn(BG; L〈−∞〉(Z)) = HG
n (EG; L〈−∞〉(Z))

→ HG
n (G/G; L〈−∞〉(Z)) = L〈−∞〉n (ZG)

is rationally injective for all n ∈ Z, see Theorem 13.62 (xi);
• The assembly map

HG
n (EFIN (G); L

〈−∞〉
Z )→ HG

n (G/G; L
〈−∞〉
Z ) = L〈−∞〉n (ZG)

is rationally injective, see Lemma 13.35 and Theorem 13.62 (xi);
• The L-theoretic Farrell-Jones Conjecture 13.4 with coefficients in the ring

Z holds, see Theorem 13.62 (xi);
• The assembly map

Kn(BG)→ Kn(C∗r (G))

is rationally injective for all n ∈ Z, see Theorem 14.29;
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• The assembly map

KG
n (EFIN (G)))→ Kn(C∗r (G))

is rationally injective for all n ∈ Z, see Lemma 13.35 and Theorem 14.29;
• The Baum-Connes Conjecture 14.9 holds for G, see Theorem 14.29.

Hence all groups appearing in Theorems 16.1, 16.7, 16.12, 16.13, 16.15, 16.18,
or 16.19 satisfy the Novikov Conjecture 9.137. In particular a group G satis-
fies Novikov Conjecture 9.137 if G is a countable discrete subgroup of one of
the following type of groups:

• Hyperbolic groups (or more generally directed colimits of hyperbolic
groups);

• Finite dimensional CAT(0)-groups;
• Almost connected Lie groups;
• (Not necessarily cocompact) lattices in second countable locally compact

Hausdorff groups G for which π0(G) is discrete and belongs to FJ ;
• GLn(F ) for a field F and some natural number n;
• S-arithmetic groups;
• mapping class groups;
• Fundamental groups of (not necessarily compact) connected manifolds

(possibly with boundary) of dimension ≤ 3;
• A-T-menable groups and hence also amenable and elementary amenable

groups;
• One-relator groups;
• Coxeter groups;
• Thompson’s groups F , T and V ;
• Artin’s full braid groups Bn;
• Out(Fn) or more generally, Out(Γ ) for a torsionfree hyperbolic group or

a right-angled Artin group Γ , see [130].

Furthermore, the Novikov Conjecture 9.137 is satisfied for a countable
group G if one of the following conditions are satisfied:

• G is the fundamental group of a complete Riemannian manifold with non-
positive sectional curvature;

• The group G admits a proper left G-invariant length metric for which G
admits a uniform embedding into Hilbert space;

• The group G admits a proper left G-invariant length metric for which G
admits a uniform embedding into a Banach space with property (H);

• G has a finite model for BG and finite asymptotic dimension, see [1007],
or, more generally, has a finite model for BG and finite decomposition
complexity, Guentner-Tessera-Yu [430, page 334];

• G is a geometrically discrete subgroup of a volume preserving diffeomor-
phism of any smooth compact manifold, see [411]. See also [410] where the
condition volume preserving does not occur anymore.
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A Banach version of the strong Novikov conjecture is proved in [327] for
groups having polynomially bounded higher-order combinatorial functions.
This includes all automatic groups. If the group G is of type F∞, is polyno-
mially contractible, and has property (RD), it satisfies the strong Novikov
Conjecture 14.26.

More information about the Novikov Conjecture and its status can be
found for instance in [1010].

16.8 Review of and Status Report for Some Classes of
Groups

16.8.1 Hyperbolic Groups

The definition and the basic properties of the notion of a hyperbolic group can
be found for instance in [155, 278, 408, 642]. Examples are free groups and
fundamental groups of closed Riemannian manifolds with negative sectional
curvature.

Almost all conjectures in this book about groups are satisfied for hyper-
bolic groups since they satisfy both the Full Farrell-Jones Conjecture 13.27,
see Theorem 16.1 (ia), and the Baum-Connes Conjecture 14.11 with coeffi-
cients, see Theorem 16.7 (id).

16.8.2 Lacunary Hyperbolic Groups

A finitely generated group is a lacunary hyperbolic group if one of its asymp-
totic cones is an R-tree, see Olshanskii-Osin-Sapir [764]. Since they are di-
rected colimits of hyperbolic groups, see [764, Theorem 1.1], they satisfy the
Full Farrell-Jones Conjecture 13.27, see Theorem 16.1 (ia) and (iie). It is not
known whether lacunary hyperbolic groups satisfy the Baum-Connes Con-
jecture 14.9.

A lacunary hyperbolic group is finitely presented if and only if it is hyper-
bolic. This is due to Kapovich-Kleiner, see [764, Theorem 8.1].

There are rather exotic examples of lacunary hyperbolic group. For in-
stance a finitely generated torsionfree non-cyclic group all whose proper sub-
groups are cyclic is constructed by Ol’shanskii [762]. It is a lacunary hyper-
bolic group. This follows from [764, Theorem 1.1].

Other examples of lacunary hyperbolic groups are constructed in [39].
These finitely generated groups do contain (in a weak sense) an infinite ex-
pander. Hence they admit no uniform embedding into a Hilbert space (or into
any lp with 1 ≤ p < ∞) and any infinite dimensional linear representation
of these groups has infinite image. Note that for these group a counterex-
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ample to the Baum-Connes Conjecture 14.11 with coefficients is constructed
by Higson-Lafforgue-Skandalis [470]. (This lead Baum-Guentner-Willet [105]
to reformulate the Baum-Connes Conjecture 14.11 with coefficients by intro-
ducing a new crossed product, see also [180] for which no counterexamples
are known so far.)

The class of lacunary groups contains some non–virtually cyclic elementary
amenable groups and and some infinite torsion groups. More examples of
exotic lacunary hyperbolic groups are discussed in [764] and [872, Section 4].

16.8.3 Relative Hyperbolic Groups

For the definition and basic information about relative hyperbolic groups we
refer for instance to [150, 167, 331, 423, 769, 926, 927].

The following result is taken from Bartels [67, Remark 4.7] where the
notion of a relative hyperbolic groups following Bowditch [150] is used.

Theorem 16.21 (The Full Farrell-Jones Conjecture and relatively
hyperbolic groups). Let G be a countable group which is relatively hy-
perbolic to the subgroups P1, P2, . . . , Pn. If P1, P2, . . . , Pn satisfy the Full
Farrell-Jones Conjecture 13.27, then G satisfies the Full Farrell-Jones Con-
jecture 13.27.

The analogue of assertion (iid) of Theorem 16.1, which is due to Bestvina-
Fujiwara-Wigglesworth [129, Theorem 2.3], has been studied for certain rel-
ative hyperbolic groups by Andrew-Guerch-Hughes [31]. The strategy of the
proof of Bartels [67] is used by Knopf [564, Corollary 4.2] to study the Farrell-
Jones Conjecture for groups acting acylindrically on a simplicial tree.

16.8.4 Systolic Groups

Let G be a group which acts cocompactly and properly on a systolic complex
with the Isolated Flats Property by simplicial automorphisms. Then G is
relatively hyperbolic to the family of virtually abelian groups by Elsner [321,
Theorem B]. Hence Theorem 16.21 implies that G satisfies the Full Farrell-
Jones Conjecture 13.27.

16.8.5 Finite Dimensional CAT(0)-Groups

A CAT(0)-group is a group admitting a cocompact proper isometric action
on a CAT(0)-space X. We call it a finite dimensional CAT(0)-group if we can
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additionally arrange that X has finite topological dimension. Basic properties
of this notion of a can be found for instance in [155, 642]. Examples for finite
dimensional CAT(0)-groups are fundamental groups of closed Riemannian
manifolds with non-positive sectional curvature.

A finite dimensional CAT(0)-group satisfies the Full Farrell-Jones Conjec-
ture 13.27, see Theorem 16.1 (ib).

It is not known whether every finite dimensional CAT(0)-group satisfies
the Baum-Connes Conjecture 14.11 with coefficients or the Baum-Connes
Conjecture 14.9. If G admits a cocompact proper isometric action on a
CAT(0)-space with the Isolated Flats Property in the sense of [223, Defi-
nition 3.1], then the Baum-Connes Conjecture 14.9 holds for G, see [223,
Corollary 0.3 b]. If G is a CAT(0)-cubical groups in the sense of [158], then
the Baum-Connes Conjecture 14.9 holds for G, see [158].

16.8.6 Limit Groups

Limit groups as they appear for instance in [891] have been in the focus of
geometric group theory for the last years. Expositions about limit groups
are for instance [212, 778]. Alibegović-Bestvina [22] have shown that limit
groups are CAT(0)-groups. It is not hard to check that their proof shows
that a limit group is even a finite dimensional CAT(0)-group. Hence every
limit group satisfies the Full Farrell-Jones Conjecture 13.27.

16.8.7 Fundamental Groups of Complete Riemannian Manifolds
with Non-Positive Sectional Curvature

Let π be the fundamental group of a complete Riemannian manifold M . Let
sec denote its sectional curvature.

• M closed and sec(M) < 0
If M is closed and has negative sectional curvature, then π is hyperbolic
and hence satisfies both the Full Farrell-Jones Conjecture 13.27, see The-
orem 16.1 (ia), and the Baum-Connes Conjecture 14.11 with coefficients,
see Theorem 16.7 (id).

• M closed and sec(M) ≤ 0
If M is closed and has non-positive sectional curvature, then π is a fi-
nite dimensional CAT(0)-group and satisfies the Full Farrell-Jones Con-
jecture 13.27, see Theorem 16.1 (ib). It is not known whether all such π
satisfy the Baum-Connes Conjecture 14.11 with coefficients or the Baum-
Connes Conjecture 14.9.

• C1 ≤ sec(M) ≤ C2 < 0 and finite volume
Let M be a complete Riemannian manifold which is pinched negatively
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curved and has finite volume. Then π satisfies the Full Farrell-Jones Con-
jecture 13.27 since π is relatively hyperbolic with respect to the family
of virtually finitely generated nilpotent groups, see [150], or [331, Theo-
rem 4.11], and we can apply Theorem 16.1 (ic) and Theorem 16.21.
If we additionally assume that the curvature tensor has bounded deriva-
tives, then also the Baum-Connes Conjecture 14.9 holds forG by Chatterji-
Ruan [223, Corollary 0.3 a]. Lattices in rank one Lie groups are examples
for π.

• M A-regular and sec(M) ≤ 0
A complete Riemannian manifold M is called A-regular if there exists a
sequence of positive real numbers A0, A1, A2, . . . such that ||∇nK|| ≤ An
where ||∇nK|| is the supremum-norm of the n-th covariant derivative of
the curvature tensor K. Every locally symmetric space is A-regular since
∇K is identically zero.
Let M be a complete Riemannian manifold with non-positive sectional
curvature that is A-regular. Then π = π1(M) satisfies the K-theoretic
Farrell-Jones Conjecture 13.1 with coefficients in the ring Z in degree n ≤
1 and the L-theoretic Farrell-Jones Conjecture 13.4 with coefficients in
the ring with involution Z, see Farrell-Jones [355, Proposition 0.10 and

Lemma 0.12]. Since π is torsionfree, this implies that Wh(π), K̃0(Zπ) and
Kn(Zπ) for n ≤ −1 all vanish and Conjecture 9.114 holds for R = Z.

• C1 ≤ sec(M) ≤ C2 < 0
Let M be a complete Riemannian manifold with pinched negative cur-
vature. Then there is another Riemannian metric for which M is nega-
tively curved complete and A-regular. This fact is mentioned in Farrell-
Jones [355, page 216] and attributed there to Abresch [2] and Shi [897].
Hence the conclusions above for complete Riemannian manifold M with
non-positive sectional curvature that is A-regular do also hold for pinched
negatively curved complete Riemannian manifolds.

• sec(M) ≤ 0
If M is a complete Riemannian manifold with non-positive sectional curva-
ture, we have already stated some injectivity results for π in Theorem 16.13
and Theorem 16.18.
In particular π satisfies the Novikov Conjecture 9.137 by Theorem 13.62 (xi)
or Theorem 14.29.

16.8.8 Lattices

A discrete subgroup G of a locally compact second countable Hausdorff group
Γ is called a lattice if the quotient space Γ/G has finite covolume with respect
to the Haar measure of Γ .

Every lattice G in Γ satisfies the Full Farrell-Jones Conjecture 13.27 if
π0(Γ ) is discrete and belongs to the class FJ introduced and analyzed in
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Theorem 16.1, for instance if Γ is path connected or an almost connected Lie
group. This follows from Theorem 16.1 (id).

It is a prominent open problem to decided whether lattices satisfy the
Baum-Connes Conjecture 14.11 with coefficients or the Baum-Connes Con-
jecture 14.9. This is not even known for lattices in almost connected Lie
groups. The case SLn(Z) is still open for n ≥ 3. By [223, Corollary 0.3 a]
lattices G in rank one Lie groups satisfy the Baum-Connes Conjecture 14.9.
Some other lattices satisfying the Baum-Connes Conjecture 14.9 come from
Theorem 16.12.

16.8.9 S-Arithmetic Groups

Every S-arithmetic group satisfies the Full Farrell-Jones Conjecture 13.27, see
Theorem 16.1 (ig). This is not known for the Baum-Connes Conjecture 14.11
with coefficients or the Baum-Connes Conjecture 14.9, the group SLn(Z) for
n ≥ 3 is still an open problem.

16.8.10 Linear Groups

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
in general open for linear groups, i.e., GLn(F ) for some field F . The same
statement holds for the Baum-Connes Conjecture.

The Novikov-Conjecture holds by Theorem 14.29 and Theorem 16.15 (iii)
and Exercise 16.16 for any countable subgroup of GLn(F ) for a field F .

16.8.11 Subgroups of Almost Connected Lie Groups

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
open for discrete subgroups of almost connected Lie groups in general. The
same statement holds for the Baum-Connes Conjecture 14.9.

The Novikov-Conjecture holds by Theorem 14.29 and Theorem 16.15 (iv)
and Exercise 16.16 for any countable subgroup of an almost connected Lie
group.
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16.8.12 Virtually Solvable Groups

Virtually solvable groups satisfy both the Full Farrell-Jones Conjecture 13.27,
see Theorem 16.1 (ic) and the Baum-Connes Conjecture 14.11 with coeffi-
cients, see Theorem 16.7 (ia).

16.8.13 A-T-menable, Amenable and Elementary Amenable
Groups

A group G is called amenable if there is a (left) G-invariant linear operator
µ : L∞(G,R)→ R with µ(1) = 1 that satisfies for all f ∈ l∞(G,R)

inf{f(g) | g ∈ G} ≤ µ(f) ≤ sup{f(g) | g ∈ G}.

The latter condition is equivalent to the condition that µ is bounded and
µ(f) ≥ 0 if f(g) ≥ 0 for all g ∈ G.

The class of elementary amenable groups is defined as the smallest class
of groups that has the following properties:

(i) It contains all finite and all abelian groups;
(ii) It is closed under taking subgroups;

(iii) It is closed under taking quotient groups;
(iv) It is closed under extensions, i.e., if 1 → H → G → K → 1 is an exact

sequence of groups and H and K belong to the class, then also G;
(v) It is closed under directed unions, i.e., if {Gi | i ∈ I} is a directed system

of subgroups such that G =
⋃
i∈I Gi and each Gi belongs to the class, then

G belongs to the class.

Since the class of amenable groups has all the properties mentioned above,
every elementary amenable group is amenable. The converse is not true. For
more information about amenable and elementary amenable groups, we refer
for instance to [635, Section 6.4.1] or [776].

A group G is a-T-menable, or, equivalently, has the Haagerup property, if
G admits a metrically proper isometric action on some affine Hilbert space.
Metrically proper means that for any bounded subset B the set {g ∈ G |
gB ∩B 6= ∅} is finite.

An extensive treatment of such groups is presented in [228, 946]. Any
a-T-menable group is countable. The class of a-T-menable groups is closed
under taking subgroups, under extensions with finite quotients, and under
finite products. It is not closed under semidirect products. Examples of a-T-
menable groups are countable amenable groups, countable free groups, dis-
crete subgroups of SO(n, 1) and SU(n, 1), Coxeter groups, countable groups
acting properly on trees, products of trees, or simply connected CAT(0) cu-
bical complexes. A group G has Kazhdan’s property (T) if, whenever it acts
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isometrically on some affine Hilbert space, it has a fixed point. For more
information about this property we refer for instance to [113]. An infinite
a-T-menable group does not have property (T). Since SL(n,Z) for n ≥ 3 has
property (T), it cannot be a-T-menable.

Every a-T-menable, every amenable, and every elementary-amenable group
satisfies the Baum-Connes Conjecture 14.11 with coefficients. This follows
from Theorem 16.7 (ia) in the a-T-menable case. Since every group is the
directed union of its finitely generated subgroups, every finitely generated
group is countable, and every countable amenable group is a-T-menable, the
claim follows for amenable groups and hence also for elementary amenable
groups from Theorem 16.7 (iid).

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
open for elementary amenable groups. The main problem in the Farrell-Jones
setting is that one has to deal with virtually cyclic subgroups in its formula-
tion and for the inheritance property under extensions, see Theorem 16.7 (iic),
whereas in the Baum-Connes setting finite subgroups suffice. This also ex-
plains that elementary amenable groups satisfy the Farrell-Jones Conjec-
ture 15.77 for homotopy K-theory with coefficients in additive G-categories
with finite wreath products, see Theorem 16.5 (i).

The L-theoretic Farrell-Jones Conjecture 13.8 with coefficients in rings
with involution after inverting 2 holds for elementary amenable groups
by [458, Theorem 5.2.1].

16.8.14 Three-Manifold Groups

Let M be a (not necessarily compact) manifold (possibly with boundary) of
dimension ≤ 3. Then π1(M) satisfies the Full Farrell-Jones Conjecture 13.27,
see Theorem 16.1 (ie).

If we additionally assume that M is compact, π1(M) satisfies the Baum-
Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (if).

The reason why in the Farrell-Jones setting we do not need compact, is the
inheritance property under directed colimits of directed systems of subgroups,
see Theorem 16.1 (iie), which is not available in the Baum-Connes setting
where we need that all structure maps are injective, see Theorem 16.7 (iid).

Exercise 16.22. Let G be the fundamental group of a knot complement.
Show for any regular ring R that the projection pr : G → G/[G,G] ∼= Z

induces for every ring R an isomorphism Kn(RG) → Kn(R[G/[G,G]]) and
we get an isomorphism Kn(RG) ∼= Kn(R)⊕Kn−1(R).

Show for any ring R with involution L
〈−∞〉
n (RG) ∼= L

〈−∞〉
n (R)⊕L〈−∞〉n (R).
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16.8.15 One-Relator Groups

The Baum-Connes Conjecture 14.11 with coefficients holds for one-relator
groups by Theorem 16.7 (ie).

A consequence of Newman’s spelling theorem, see [740], is that a one-
relator groups which is not torsionfree is hyperbolic and hence satisfies the
Full Farrell-Jones Conjecture 13.27 by Theorem 16.1 (ia).

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
open for torsionfree one-relator groups. Note that not all one-relator groups
are solvable, hyperbolic, or finite dimensional CAT(0)-groups, so that we
cannot apply Theorem 16.1 in general.

Nevertheless the K-theoretic Farrell-Jones Conjecture 13.1 with coeffi-
cients in the ring R is known if R is regular and G is a subgroup of a tor-
sionfree one-relator group by Waldhausen [957, Theorem 19.4 on page 249]
in the connective case and by Bartels-Lück [74, Theorem 0.11] for the non-
connective version. Recall that in this special case Conjecture 13.1 boils down
to Conjecture 6.53.

The L-theoretic Farrell-Jones Conjecture 13.4 with coefficients in any ring
with involution R holds after inverting two for torsionfree one-relator groups
by Cappell [192, Corollary 8].

All Baumslag-Solitar groups satisfy the Full Farrell-Jones Conjecture 13.27,
see Farrell-Wu [361] for the version without “finite wreath products” and
Gandini-Meinert-Rüping [399, Corollary 1.1].

16.8.16 Selfsimilar Groups

We use the notion of selfsimilar group as presented in [94, Section 3] which is
slightly more general than the classical notion defined for instance in [95, 739].
Selfsimilar groups are groups acting in a recursive manner on a regular rooted
tree RTd. If the recursion of every element involves only a linearly growing
subtree of Td, the group is said to be bounded.

The Full Farrell-Jones Conjecture 13.27 is proved by Bartholdi [94, The-
orem A] for bounded selfsimilar groups since these are subgroups of finite
dimensional CAT(0)-groups and hence Theorem 16.1 (ib) and (iia) applies.
Using Theorem 16.1 (ib) and (iib) Bartholdi [94, Theorem C] proves the Full
Farrell-Jones Conjecture 13.27 for Aleshin-Grigorchuk groups, Gupta-Sidki
groups, and generalized Grigorchuk groups whose definition and intriguing
properties are reviewed in [94, Section 4].
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16.8.17 Strongly Poly-Surface Groups

Definition 16.23 (Strongly poly-surface group). Let G be a group with
a finite filtration {1} = G0 ⊆ G1 ⊆ . . . ⊆ Gd = G.

We call G strongly poly-surface if the filtration satisfies the following con-
ditions:

(i) Gi is normal in G for i = 0, 1, 2, . . . , d;
(ii) For every i ∈ {1, 2, . . . , d} and g ∈ G, there is a (not necessarily compact)

surface S (possibly with boundary) with torsionfree π1(S), a diffeomor-

phism f : S → S, and an isomorphism α : Gi/Gi−1

∼=−→ π1(S) such that the
following diagram commutes

Gi/Gi−1

cg //

α

��

Gi/Gi−1

α

��
π1(S)

π1(f) // π1(S)

where cg is induced by conjugation with g ∈ G.

Note that condition (ii) is automatically satisfied if S is a closed surface.

Theorem 16.24 (The Full Farrell-Jones Conjecture for strongly poly-
surface groups). A strongly poly surface group G satisfies the Full Farrell-
Jones Conjecture 13.27.

Proof. Fix a filtration {1} = G0 ⊆ G1 ⊆ . . . ⊆ Gd = G as it occurs in
Definition 16.23. We show by induction over i = 0, 1, 2, . . . , d that G/Gd−i
satisfies the Full Farrell-Jones Conjecture 13.27. The induction beginning
i = 0 is trivial, the induction step from (i− 1) to i done as follows.

Consider the exact sequence 1→ Gd−i+1/Gd−i → G/Gd−i
p−→ G/Gd−i+1 →

1. By induction hypothesis G/Gd−i+1 satisfies the Full Farrell-Jones Conjec-
ture 13.27. Since Gd−i+1/Gd−i ∼= π1(S), the group Gd−i+1/Gd−i satisfies the
Full Farrell-Jones Conjecture 13.27 by Theorem 16.1 (ie). Consider any infi-
nite cyclic subgroup C ⊆ G/Gd−i+1. Choose g ∈ G such that the image of
g under p : G/Gd−i → G/Gd−i+1 sends g to a generator of C. Hence p−1(C)
is isomorphic to Gd−i+1/Gd−i ocg Z. From the assumptions about G, we get
a diffeomorphism f : S → S of a surface S such that p−1(C) is isomorphic
to π1(Tf ). Since Tf is a 3-manifold, π1(Tf ) satisfies the Full Farrell-Jones
Conjecture 13.27 by Theorem 16.1 (ie). We conclude from Theorem 16.1 (iic)
that G/Gd−i satisfies the Full Farrell-Jones Conjecture 13.27. ut

Exercise 16.25. Let G be a group with a filtration {1} = G0 ⊆ G1 ⊆ . . . ⊆
Gd = G such that Gi−1 is normal in Gi and Gi/Gi−1 is torsionfree and
isomorphic to the fundamental group of a compact manifold of dimension
≤ 3 (possibly with boundary) for all i. Show that the Baum-Connes Conjec-
ture 14.11 with coefficients holds for G.
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16.8.18 Normally Poly-Free Groups

A group G is called poly-free if there is a finite filtration {1} = G0 ⊆ G1 ⊆
. . . ⊆ Gd = G such that Gi−1 ⊆ Gi is normal and Gi/Gi−1 is free (of possibly
infinite rank) for i = 1, 2, . . . , d. The Baum-Connes Conjecture 14.11 with
coefficients holds for poly-free groups G by Theorem 16.7 (iic), (iid), and (iie).

The Full Farrell-Jones Conjecture 13.27 is not known for all poly-free
groups.

We call a group a normally poly-free group if there is a finite filtration
{1} = G0 ⊆ G1 ⊆ . . . ⊆ Gd = G such that Gi−1 ⊆ G is normal and Gi/Gi−1

is free (of possibly infinite rank) for i = 1, 2, . . . , d.

Theorem 16.26 (The Full Farrell-Jones Conjecture for normally
poly-free groups). A normally poly-free group satisfies the Full Farrell-
Jones Conjecture 13.27.

Proof. This is proved by Brück-Kielak-Wu [163] using the proof for the case
of a finitely generated free group extended by Z due to Bestvina-Fujiwara-
Wigglesworth [129]. ut

Exercise 16.27. Let 1 → K → G → Q → 1 be an extension of groups
such that K is the fundamental group of a (possibly non-compact) connected
manifold (possibly with boundary) of dimension ≤ 2.

Show that G satisfies the Full Farrell-Jones Conjecture 13.27 if Q does.

16.8.19 Virtually Torsionfree Hyperbolic by Infinite Cyclic
Groups

If H is a virtually torsionfree hyperbolic group and φ : H → H is an automor-
phism, then G = HoφZ satisfies the Full Farrell-Jones Conjecture 13.27. This
follows from [129, Proposition 2.2 and Theorem 2.3] using [69, Remark 9.4].
Note that this implies the more general assertion (iid) appearing in Theo-
rem 16.1.

There is no counterexample to the conjecture that every hyperbolic group
is virtually torsionfree.

16.8.20 Coxeter Groups

For the definition of and information about Coxeter groups we refer to [274].
Every Coxeter group satisfies the Full Farrell-Jones Conjecture 13.27 by The-
orem 16.1 (il) and the Baum-Connes Conjecture 14.11 with coefficients by
Theorem 16.7 (ii).
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16.8.21 Right-Angled Artin groups

Every right-angled Artin group can be embedded into a right-angled Cox-
eter groups as a subgroup of finite index, see [277]. Hence every right-
angled Artin group satisfies the Full Farrell-Jones Conjecture 13.27 by The-
orem 16.1 (il) and (iia) Baum-Connes Conjecture 14.11 with coefficients by
Theorem 16.7 (ii) and (iia).

For more information about Right-Angled Artin groups for refer for in-
stance to [219].

16.8.22 Artin groups

The Full Farrell-Jones Conjecture 13.27 and the Baum-Connes Conjec-
ture 14.11 are open for Artin groups, only some partial results are known.

It is an open problem whether every Artin groups admits a cocompact
proper isometric action on a complete CAT(0)-space. This is known in some
cases, see for instance Haettel [435, 436]. It seems to be also an open question
whether Artin groups are A-T-menable.

Even Artin groups of type FC satisfy the Full Farrell-Jones Conjec-
ture 13.27 by Huang-Osajda [489, Corollary], see also [163, Corollary B]
and [1001].

The Baum-Connes Conjecture 14.11 with coefficients is proved for some
Artin groups by Haettel [436, Corollary C].

16.8.23 Braid Groups

Artin’s full braid groups Pn satisfies satisfy both the Full Farrell-Jones Con-
jecture 13.27, see Theorem 16.1 (ik) and the Baum-Connes Conjecture 14.11
with coefficients, see Theorem 16.7 (ig).

16.8.24 Mapping Class Groups

Let F sg,r be the orientable compact surface of genus g with r boundary compo-
nents and s punctures where s punctures means the choice of s pairwise dis-
tinct points. Let Diff(F sg,r, rel) be the group of orientation preserving diffeo-
morphisms F sg,r → F sg,r that leave the boundary and the punctures pointwise
fixed. Then the mapping class group Γ sg,r is defined to be π0(Diff(Ssg,r, rel)),
the group of isotopy classes of such diffeomorphisms. All mapping class groups
satisfy the Full Farrell-Jones Conjecture 13.27 by Theorem 16.1 ih.
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16.8.25 Out(Fn)

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
open for Out(Fn) for n ≥ 3. The same statement holds for the Baum-Connes
Conjecture.

The group Out(Fn) is boundary amenable by a result of Bestvina-Guiardel-
Horbez [130]. Hence the assembly map appearing in the Baum-Connes Con-
jecture 14.11 with coefficients is rationally injective, see Remark 16.17, and
therefore also the Novikov Conjecture holds for any subgroup of Out(Fn),
see Section 14.8. Actually, in [130] also other groups than Fn, for instance
torsionfree hyperbolic groups, and right-angled Artin groups, are treated.

At least the rational injectivity of the K-theoretic Farrell-Jones assembly
map with coefficients in Z (disregarding some K−1-term contribution) follows
from [659] for Out(Fn).

16.8.26 Thompson’s Groups

Thompson defined the groups F , T , and V in some handwritten notes from
1965. Thompson’s group V is the group of right-continuous automorphisms
f of [0, 1] that map dyadic rational numbers to dyadic rational numbers, that
are differentiable except at finitely many dyadic rational numbers, and such
that, on each interval on which f is differentiable, f is affine with derivative a
power of 2. The group F is the subgroup of V consisting of homeomorphisms.
The group T is the subgroup of V consisting of those elements that induce
homeomorphisms of the circle where the circle is regarded as [0, 1] with 0 and 1
identified. These groups have some unusual properties. It is an open question
whether F is amenable. It is known that F is not elementary amenable.

Farley [333] has shown that F , T , and V are a-T-menable and hence satisfy
the Baum-Connes Conjecture 14.11 with coefficients, see Theorem 16.7 (ia).

The Full Farrell-Jones Conjecture 13.27, and actually even the K-theoretic
Farrell-Jones Conjecture 13.2 with coefficients in rings and the L-theoretic
Farrell-Jones Conjecture 13.7 with coefficients in rings with involution, are
open for F , T , and V .

At least the rational injectivity of the K-theoretic Farrell-Jones assembly
map with coefficients in Z (disregarding some K−1-term contribution) follows
from [659] for T using [404].
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16.8.27 Helly Groups

The Full Farrell-Jones Conjecture 13.27 is proved for Helly groups by Chalopin-
Chepoi-Genevois-Osajda [211, Section 7.5] using [554]. This implies that the
Full Farrell-Jones Conjecture 13.27 holds also for weak Garside groups of
finite type, see Huang-Osajda [489, Theorem and Corollary].

16.8.28 Groups Satisfying Homological Finiteness Conditions

So far the groups for which we were able to prove the Farrell-Jones Conjecture
or the Baum-Connes Conjecture satisfy some geometric conditions, often a
reminiscence of non-positive sectional curvature. At least for the K-theoretic
Farrell-Jones Conjecture there are results where no geometric conditions but
some finiteness conditions are required. The celebrated prototype of such a
result is the following theorem due to Boekstedt-Hsiang-Madsen [141].

Theorem 16.28 (Bökstedt-Hsiang-Madsen Theorem). Let G be a
group such that Hi(G;Z) is finitely generated for all i ≥ 0. Then G satis-
fies the K-theoretic Novikov Conjecture 13.60, i.e., the assembly map

Hn(BG; K(Z))→ Kn(ZG)

is rationally injective for all n ∈ Z.

This raises the question under which finiteness conditions one can show
that the assembly map appearing in the K-theoretic Farrell-Jones Conjec-
ture 13.1 with coefficients in the ring Z is rationally injective. Recall from
Theorem 13.48 that for a group G and a regular ring R the map

(16.29) HG
n (ιFIN⊆VCY ; KR

)
: HG

n (EFIN (G); KR)
∼=−→ HG

n (EVCY(G); KR)

is bijective for all n ∈ Z after applying Q⊗Z −.
The source of the map (16.29) has already been computed rationally using

equivariant Chern characters in Theorem 12.79

(16.30)
⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗R Kq(RC)

)
∼=−→ Q⊗R HG

n (EFIN (G); KR).

By the isomorphisms (16.29) and (16.30), the assembly map appearing in the
Farrell-Jones Conjecture 13.1 with coefficients in the regular ring R becomes
rationally a map
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(16.31)
⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗R Kq(RC)

)
→ Q⊗R Kn(RG).

So the question above is equivalent to the question whether the map (16.31)
is rationally injective.

From now on we consider the special case R = Z. The restriction of the
map (16.31) to the summand corresponding to C = {1} is rationally the same
as the map appearing in in Theorem 16.28. Hence a positive answer to the
question above implies Theorem 16.28.

The main result of [659] says that under certain finiteness assumptions,
which are for instance satisfied if there is a model for EFIN (G) of finite type,
and certain number theoretic conditions, which are implied by the Leopoldt-
Schneider Conjecture, the assembly map (16.31) is rational injective if we
ignore the summands for q = −1. This summand cannot be detected since
topological cyclic homology does not see K−1. Note that Theorem 16.30 just
detects the summand for C = {1} and does not see the ones for non-trivial C.
Nevertheless, the methods and proofs of [659] are based on the ideas of [141].

As an illustration we mention two easy to formulate consequences of the
results of [659, Main Theorem 1.13] where the necessary input from number
theory is known to be true and therefore does not appear in the assumptions,
similar to the situation in Theorem 16.28.

Theorem 16.32 (Rationally injectivity of the colimit map for finite
subgroups for the Whitehead group). Let G be a group. Assume that
for every finite cyclic subgroup C of G the abelian groups H1(BCGC;Z) and
H2(BCGC;Z) associated to their centralizers CGC are finitely generated.

Then the canonical map

colimH∈SubG(FIN ) Q⊗Z Wh(H)→ Q⊗Z Wh(G)

is injective.

Theorem 16.33 (Eventual injectivity of the rational K-theoretic as-
sembly map for R = Z). Let G be a group. Assume that there is a finite
G-CW -model for EFIN (G).

Then there exists an integer L > 0 such that the rationalized Farrell-Jones
assembly map (16.31) is injective for all n ≥ L. The bound L only depends
on the dimension of EFIN (G) and on the orders of the finite cyclic subgroups
of G.
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16.9 Open Cases

Here is a list of interesting groups for which the Full Farrell-Jones Conjec-
ture 13.27 is open in general:

• elementary amenable, amenable, a-T-menable groups;
• Out(Fn);
• Artin groups;
• Thompson’s groups F , V , and T ;
• Torsionfree one-relator groups;
• Linear groups;
• Subgroups of almost connected Lie groups;
• Residual finite groups;
• (Bi-)Automatic groups

Here is a list of interesting groups for which the Baum-Connes Conjec-
ture 14.11 with coefficients is open in general:

• Finite dimensional CAT(0)-groups.
• Fundamental groups of closed Riemannian manifolds with non-positive

sectional curvature;
• Lattices in almost connected Lie groups, for instance SLn(Z) for n ≥ 3;
• S-arithmetic groups;
• Out(Fn) for n ≥ 3;
• Mapping class groups (of higher genus);
• Linear groups;
• Subgroups of almost connected Lie groups;
• Residual finite groups;
• (Bi-)Automatic groups

16.10 How Can We Find Counterexamples?

We are not aware of any group for which the Full Farrell-Jones Con-
jecture 13.27 is known to be false. The same statement holds for the
Baum-Connes Conjecture 14.9 without coefficients and the Novikov Con-
jecture 9.137.

16.10.1 Is the Full Farrell-Jones Conjecture True for All Groups?

It is hard to believe that the Full Farrell-Jones Conjecture 13.27 is true for
all groups since there have been so many prominent conjectures about groups
which were open for some time and for which finally counterexamples were
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found. On the other hand the conjecture is known for so many groups so that
we currently have no strategy to find counterexamples, as we will illustrate
below.

We have already mentioned that the groups that come from the construc-
tion of Arzhantseva-Delzant [39] and yield counterexamples to the Baum-
Connes Conjecture 14.11 with coefficients by Higson-Lafforgue-Skandalis [470]
are colimits of hyperbolic groups and hence satisfy the Full Farrell-Jones Con-
jecture 13.27 by Theorem 16.1 (ia) and (iie).

Baum-Guentner-Willet [105] give a reformulation of the Baum-Connes
Conjecture 14.11 with coefficients by introducing a new crossed product, see
also [180], for which no counterexamples are known so far.

We have already discussed the problem about the Baum-Connes Conjec-
ture 14.9, which does not occur for the Full Farrell-Jones Conjecture 13.27,
that the left hand side of the Baum-Connes Conjecture is functorial under
group homomorphism and there is no reason why the right hand side should
have this property, see Remark 14.12. The new version of Baum-Guentner-
Willet [105] still faces this problem. This sheds additional doubts on the
Baum-Connes Conjecture.

16.10.2 Exotic Groups

One does not know of a property of a group for which one may expect that
groups with this property are automatically counterexamples to the Full
Farrell-Jones Conjecture 13.27 or to the Baum-Connes Conjecture 14.9. Next
we list some groups with an exotic property for which the Full Farrell-Jones
Conjecture 13.27 is known to be true at least for some groups with this exotic
property.

• Finitely generated infinite torsion p-groups
Given a large enough prime p, there exists an infinite finitely generated
group all of whose proper subgroups are finite cyclic groups of order p,
see [763]. These groups are lacunary hyperbolic groups and hence satisfy
the Full Farrell-Jones Conjecture 13.27, see Subsection 16.8.2.
Other examples of finitely generated infinite torsion p-groups are men-
tioned in Subsection 16.8.16.

• Groups with expanders
There exists a group G that is a colimit of hyperbolic groups and contains
appropriate expanders, see [39]. It satisfies the Full Farrell-Jones Conjec-
ture 13.27 by Theorem 16.1 (ia) and (iie).

• Selfsimilar groups
See Subsection 16.8.16.

• Infinite torsionfree simple groups
There exists finitely presented torsionfree simple CAT(0)-groups, see [175,
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Corollary 5.4 and Theorem 5.5]. They satisfy the Full Farrell-Jones Con-
jecture 13.27 by Theorem 16.1 (ib).

• Groups which do not possess a finite dimensional model or a model of
finite type for BG or BG
Examples of such groups satisfying the Full Farrell-Jones Conjecture 13.27
can easily be constructed using Theorem 16.1 (iif).

• Groups with property (T)
There are hyperbolic groups that have property (T). They satisfy the Full
Farrell-Jones Conjecture 13.27 by Theorem 16.1 (ia).

• Groups for which certain decision problems are unsolvable.
A lot of groups for which the Full Farrell-Jones Conjecture 13.27 is known
and some decision problems such as the isomorphism problem, conjugacy
problem and membership problem are unsolvable can be found in Brid-
son [154].

Also the results about groups with some homological finiteness conditions
of Subsection 16.8.28 indicate that the search for counterexamples for the
Farrell-Jones Conjecture is not easy.

In order to find counterexamples one seems to need completely new ideas,
maybe from random groups or logic. It is unlikely that the counterexample
is a concrete group, but rather a group with certain strange properties, for
which existence can be shown by abstract methods but not by a concrete
construction.

It is probably easier to find counterexamples to surjectivity than to injec-
tivity.

16.10.3 Infinite Direct Products

Nothing is known about infinite products. It would be very interesting if
one can show that for family of groups {Gi | i ∈ I} (with infinite I) the
Full Farrell-Jones Conjecture 13.27 is true for the direct product

∏
i∈I Gi

if it holds for each Gi. (Note that the corresponding statement is true for
the direct sum

⊕
i∈I Gi by Theorem 16.1 (iib) and (iie).) In view of Theo-

rem 16.1 (iia) this would imply that the Full Farrell-Jones Conjecture 13.27 is
stable under inverse limits over directed systems of groups. This would have
the immediate consequence that the Full Farrell-Jones Conjecture 13.27 is
true for all residually finite groups. On the other hand it may be worthwhile
to look at infinite direct products in order to find a counterexample.

For this discussion see also Lemma 15.101.
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16.10.4 Exotic Aspherical Closed Manifolds

One may look also for counterexamples to one of the conjecture which fol-
low from the Full Farrell-Jones Conjecture 13.27, for instance to the Borel
Conjecture 9.160. There are indeed aspherical closed manifolds with unusual
properties, but the fundamental groups of some of them do satisfy the Full
Farrell-Jones Conjecture 13.27 and hence the Borel Conjecture. Note that we
have already discussed aspherical closed manifolds with exotic properties in
Subsection 9.15.1.

Davis constructed for every n ≥ 4 aspherical closed manifolds of dimension
n whose universal covering is not homeomorphic to Euclidean space [273,
Corollary 15.8]. In particular, these manifolds do not support metrics of non-
positive sectional curvature. The fundamental groups of these examples are
finite index subgroups of Coxeter groupsW . Thus they satisfy the Full Farrell-
Jones Conjecture 13.27 by Theorem 16.1 (il) and (iia). In particular these
manifolds are indeed topologically rigid, provided that n ≥ 5.

Davis and Januszkiewicz [276, Theorem 5b.1] used Gromov’s hyperboliza-
tion technique to construct for every n ≥ 5 an aspherical closed n-dimensional
manifold M such that the universal covering M̃ is a finite dimensional
CAT(0)-space whose fundamental group at infinite is non-trivial. In par-
ticular, these universal covers are not homeomorphic to Euclidean space.
Because these examples are in addition non-positively curved polyhedron,
their fundamental groups are finite dimensional CAT(0)-groups. There is a
variation of this construction that uses the strict hyperbolization of Charney-
Davis [220] and produces an aspherical closed manifold M whose universal
cover is not homeomorphic to Euclidean space and whose fundamental group
is hyperbolic. The fundamental groups of these manifolds M satisfy the Full
Farrell-Jones Conjecture 13.27 by Theorem 16.1 (ia) and (ib). In particular
these manifolds M are topologically rigid.

Davis-Januszkiewicz [276, Theorem 5a.1 and Corollary 5a.4] constructed
a 4-manifold N such that π1(N) is a finite dimensional CAT(0)-group and
N×T k for k ≥ 1 is not homotopy equivalent to a PL-manifold. Since π1(N×
T k) is a finite dimensional CAT(0)-group and dim(N × T k) ≥ 5 for k ≥ 1,
the manifolds N ×T k for k ≥ 1 are topologically rigid by Theorem 16.1 (ib).

Davis-Fowler-Lafont [275] constructed using the work of Manolescu [691,
690] non-triangulable aspherical closed manifolds with hyperbolic fundamen-
tal group in all dimensions ≥ 6. In particular these manifolds M are topo-
logically rigid since hyperbolic groups satisfy the Full Farrell-Jones Conjec-
ture 13.27 by Theorem 16.1 (ia).

Belegradek [114, Corollary 5.1], and Weinberger, see [272, Section 13],
proved that for every n ≥ 4 there is an aspherical closed manifold of dimension
n whose fundamental group has an unsolvable word problem. Note that a
finitely presented group with unsolvable word problem is not a CAT(0)-group,
not hyperbolic, not automatic, not asynchronously automatic, not residually
finite, and not linear over any commutative ring, see [114, Remark 5.2]. So
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we do not know whether it satisfies the Full Farrell-Jones Conjecture 13.27
or the Borel Conjecture 9.160.

The proofs of the results above are based on the reflection group trick as
it appears for instance in [272, Sections 8,10 and 13]. It can be summarized
as follows.

Theorem 16.34 (Reflection group trick). Let G be a group that pos-
sesses a finite model for BG. Then there is an aspherical closed manifold M
and a map i : BG→M and r : M → BG such that r ◦ i = idBG.

An interesting immediate consequence of the reflection group trick is that
many well-known conjectures about groups hold for every group that pos-
sesses a finite model for BG if and only if it holds for the fundamental group
of every aspherical closed manifold, see also [272, Sections 11].

Exercise 16.35. Suppose that Farrell-Jones Conjecture 6.53 for torsionfree
groups and regular rings holds for the fundamental group of any aspherical
closed manifold. Show that it then holds for all groups G with a finite model
for BG.

Prove the analogous statement for the L-theoretic Farrell-Jones Conjec-
ture 9.114 for torsionfree groups.

The upshot of the discussion is that one does not know of a property of
aspherical closed manifolds, such as being not triangulable, for which one may
expect that the Borel Conjecture 9.160 automatically fails if this property is
satisfied.

16.10.5 Some Results Which Hold for All Groups

Here is a result which holds for all (discrete) groups, is non-trivial and re-
lated to the Farrell-Jones Conjecture. Let i : H → G be the inclusion of a
normal subgroup H ⊂ G. It induces a homomorphism i0 : Wh(H)→Wh(G).
The conjugation actions of G on H and on G induce G-actions on Wh(H)
and on Wh(G) which turns out to be trivial on Wh(G). Hence i0 induces
homomorphisms

i1 : Z⊗ZG Wh(H)→Wh(G);(16.36)

i2 : Wh(H)G →Wh(G).(16.37)

Theorem 16.38 (Rational injectivity of Z ⊗ZG Wh(H) → Wh(G) for
normal finite H ⊆ G). Let i : H → G be the inclusion of a normal finite
subgroup H into an arbitrary group G. Then the maps i1 and i2 defined
in (16.36) and (16.37) have finite kernel.

Proof. See [635, Theorem 9.38 on page 354]. ut
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We omit the details of the proof that the result of Theorem 16.38 can
be also deduced from the K-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring Z.

Exercise 16.39. Let G be a group with vanishing Whitehead group. Show
that each element in the center has order order 1, 2, 3, 4, or 6.

We have already stated a more advanced detection result for Q and C as
coefficients, see Theorem 6.78, which also holds for all groups. Recall also
Theorem 16.32, which requires only very mild conditions on the group G,
and Theorem 16.33, which holds for all groups.

Another non-trivial consequence of the Farrell-Jones Conjecture which
holds for all groups has been discussed in Remark 2.97.

Furthermore, Yu [1009, Theorem 1.1], see also Cortinas-Tartaglia [247],
proved that the K-theoretic assembly map HG

n (EVCY(G); KS) → Kn(SG)
appearing in the K-theoretic Farrell-Jones Conjecture 13.1 with coefficients
in the ring R is rationally injective for every group G, provided that R is
the ring S of Schatten class operators of an infinite dimensional separable
Hilbert space.

16.11 Notes

There are groups for which the Full Farrell-Jones Conjecture 13.27 is not
known to be true but weaker versions of it have been proved. For example,
the K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring
R is known if R is regular and G belongs to the class CL′ described in [74,
Definition 0.10]. The class CL′ contains for instance all torsionfree 1-relator
groups.

The class of groups for which the L-theoretic Farrell-Jones Conjecture 13.8
with coefficients in rings with involution after inverting 2 is analyzed in [458,
Proposition 5.2.2 and Lemma 5.2.3]; actually the more general fibered version
is treated. It contains for instance all elementary amenable groups. The result
and its proof is analogous to Theorem 16.5.

A proof of the Full Farrell-Jones Conjecture 13.27 for finite-dimensional
CAT(0)-groups has been extended to a larger class of group which also con-
tains all hyperbolic groups by Kasprowski-Rüping [554, Theorem 6.1]. In
particular they prove it for all groups acting properly and cocompactly on
a finite products of hyperbolic graphs, see [554, Theorem 1.1] as already
mentioned in Theorem 16.1 (in).

The bijectivity of the algebraic K-theoretic assembly map for certain coef-
ficients coming from C∗-algebras is proved by Cortinas-Tartaglia [245, Corol-
lary 1.5] for a-T-menable groups G by reducing it to the Baum-Connes Con-
jecture.
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Gonzalez-Acuna-Gordon-Simon [412, Theorem 5.6, Corollary 5.7, Theo-
rem 5.8] show that the problem whether the projective class group, the White-
head group, or the L-groups of a group is trivial, cannot be decided. So it
is possible that the problem, whether a group G satisfies the Farrell-Jones
Conjecture holds, cannot be decided.
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Chapter 17

Guide for Computations

17.1 Introduction

One major goal is to compute K- and L-groups such as Kn(RG), L
〈−∞〉
n (RG),

andKn(C∗r (G)). Assuming that theK-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring R, the L-theoretic Farrell-Jones Conjecture 13.4
with coefficients in the ring with involution R, or the Baum-Connes Con-
jecture 14.9 hold for G, this reduces to the computation of the left hand
side of the corresponding assembly maps, namely, of HG

n (EVCY(G); KR),

HG
n (EVCY(G); L

〈−∞〉
R ), or HG

n (EFIN (G); KTOP) = KG
n (EFIN (G)). This is

much easier since here we can use standard methods from algebraic topology.
The main general tools are the equivariant Atiyah-Hirzebruch spectral se-
quence, see Theorem 12.48, the p-chain spectral sequence, see Theorem 12.50,
and equivariant Chern characters, see Theorem 12.58. Nevertheless such com-
putations can be pretty hard. Roughly speaking, one can obtain a general
reasonable answer after rationalization, but integral computations have only
been done case by case, and there seems to be no general pattern for a general
answer. Often the key is a good understanding of how one can built EFIN (G)
from EG and how one can built EVCY(G) from EFIN (G). These passages
have already been studied in Theorems 11.32 and 11.36.

17.2 K- and L-Groups for Finite Groups

For the computations of HG
n (EFIN (G); KR), HG

n (EFIN (G); L
〈−∞〉
R ), and

HG
n (EFIN (G); KTOP) = KG

n (EFIN (G)), one needs to understand Kn(RH),

L
〈−∞〉
n (RH), and Kn(C∗r (H)) for finite groups H since these are the values

of HG
n (G/H; KR), HG

n (G/H; L
〈−∞〉
R ), and HG

n (G/H; KTOP) = KG
n (G/H) for

homogeneous spaces G/H for finite subgroups H ⊆ G.
For a finite group G we have given information about K0(ZG) in Sec-

tion 2.12, about K1(ZG) and Wh(G) in Section 3.12, about Kn(ZG) for
n ≤ −1 in Example 4.12, Section 4.5 and Example 5.15, about K2(ZG) and

Wh2(G) in Section 5.8, about L
〈j〉
n (ZG) in Section 9.22 and about Kn(C∗rG)

and KOn(C∗r (G;R)) in Section 10.9.
Let us summarize. There is a complete formula forK−1(ZG) andKn(ZG) =

0 for n ≤ −2. One has a good understanding of Wh(G). A complete com-

putation of K̃0(Z[Z/p]) for arbitrary primes p is out of reach. A complete

507
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computation of Kn(Z) is not known for all n ∈ Z. We have already men-
tioned Borel’s formula for Kn(Z) ⊗Z Q for all n ∈ Z in Theorem 6.24. The
L-groups of ZG are pretty well understood for finite groups G. The values of
Kn(C∗r (G)) and Kn(C∗r (G;R)) are explicitly known for finite groups G and
are in the complex case in contrast to the real case always torsionfree.

17.3 The Passage from FIN to VCY

In the Baum-Connes setting it is enough to consider the family FIN . In the
Farrell-Jones Conjecture we have to pass from FIN to VCY. This passage
has been discussed on detail already in Section 13.8. We get splittings

HG
n

(
EVCY(G); KR

)
∼= HG

n

(
EFIN (G); KR

)
⊕HG

n

(
EFIN (G)→ EVCY(G); KA

)
,

and under mild K-theoretic assumptions

HG
n

(
EVCY(G); L

〈−∞〉
R

)
∼= HG

n

(
EFIN (G); L

〈−∞〉
R

)
⊕HG

n

(
EFIN (G)→ EVCY(G); L

〈−∞〉
R

)
.

We have also explained in Theorem 13.44 that in K-theory it suffices to
replace VCY by VCYI and in Theorem 13.57 that in L-theory there is no
difference between FIN and VCYI .

If we are only interested in rational information, then there is no difference
between FIN and VCY when we are dealing with the algebraic K-theory of
groups rings RG for regular rings R, see Theorem 13.48, and when we are
dealing with L-theory, see Theorem 13.59 (i).

For L-theory the Tate cohomology of the K-theory is important when one
is comparing different decoration, see Subsection 9.10.4. Therefore the next
result is sometimes useful.

In [670, Definition 8.5] the condition is formulated that the infinite vir-
tually cyclic subgroups of type I of G are orientable. This condition is au-
tomatically satisfied if one of the following conditions is satisfied, see [670,
Lemma 8.7 and Lemma and 8.8], [360, Theorem 9.1].

• Let G is hyperbolic and all infinite virtually cyclic subgroups of G are of
type I;

• G is a torsionfree hyperbolic group;
• G is a CAT(0)-group which does not contain the Klein bottle group ZoZ

as subgroup and all of whose infinite virtually cyclic subgroups of G are
of type I;

• G is a torsionfree CAT(0)-group that does not contain the Klein bottle
group Z o Z as subgroup.
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Lemma 17.1. Let R be a ring with involution. Suppose that the infinite vir-
tually cyclic subgroups of type I of G are orientable.

Then for all j, n ∈ Z the obvious map between the Tate cohomology groups

Ĥn(Z/2;HG
j (EFIN (G); KR))

∼=−→ Ĥn(Z/2;HG
j (EVCY(G); KR))

is an isomorphism.

Proof. It suffices to show

Ĥn(Z/2;HG
j (EFIN (G)→ EVCY(G); KR)) = 0.

This is a direct consequence of [670, Theorem 0.1 and Theorem 0.2]. ut

17.4 Mayer-Vietoris Sequences and Wang Sequences

We have explained in Section 15.7 how an action of G on a tree T yields a
long exact sequence involving the isotropy groups. In particular we get for
an amalgamated free product a Mayer-Vietoris sequence and for a semidirect
product with Z, or, more generally, for HNN-extension, a long exact Wang
sequence.

We want to illustrate this in the case G = SL2(Z). We have already ex-
plained in Subsection 11.6.11 that SL2(Z) is the free amalgamated product
Z/4∗Z/2Z/6. Since the inclusion Z/2→ Z/6 is split injective, we obtain from
the long exact sequence appearing in Theorem 15.27 (ii) for every equivariant
homology theory H?

∗ an isomorphism

HZ/4
n ({•})⊕ coker

(
HZ/2
n ({•})→ HZ/6

n ({•})
) ∼=−→ HSL2(Z)

n (E SL2(Z)).

This yields isomorphisms

Kn(C∗r (Z/4;C))⊕ coker
(
Kn(C∗r (Z/2;C))→ Kn(C∗r (Z/6;C))

)
∼= Kn(C∗r (SL2(Z);C));

KOn(C∗r (Z/4;R))⊕ coker
(
KOn(C∗r (Z/2;R))→ KOn(C∗r (Z/6;R))

)
∼= KOn(C∗r (SL2(Z);R));

L〈−∞〉n (R[Z/4])[1/2]⊕ coker
(
L〈−∞〉n (R[Z/2])[1/2] → L〈−∞〉n (R[Z/6])[1/2]

)
∼= L〈−∞〉n (R[SL2(Z)])[1/2];
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L〈−∞〉n (R[Z/4])⊕ coker
(
L〈−∞〉n (R[Z/2])→ L〈−∞〉n (R[Z/6])

)
∼= HSL2(Z)

n (E SL2(Z); L
〈−∞〉
R );

Kn(R[Z/4])⊕coker
(
Kn(R[Z/2])→ Kn(R[Z/6])

) ∼= HSL2
n (Z)(E SL2(Z); KR).

Since SL2(Z) is hyperbolic, we get from Theorem 11.36, Theorem 13.44, and
Theorem 13.57 isomorphisms

HSL2(Z)
n (E SL2(Z); L

〈−∞〉
R )⊕

⊕
V

HV
n (EV → {•}; L〈−∞〉R ) ∼= L〈−∞〉n (R[SL2(Z)]);

HSL2(Z)
n (E SL2(Z); KR)⊕

⊕
V

HV
n (EV → {•}; KR), ∼= Kn(R[SL2(Z)])

where V runs through a complete system of representatives of infinite virtu-
ally cyclic subgroups of type II in the L-theory case and through a complete
system of representatives of infinite virtually cyclic subgroups of type I in the
K-theory case.

Since every infinite cyclic subgroup of type I of SL2(Z) is isomorphic to Z
or Z×Z/2, we conclude from Theorem 4.3, and Theorem 6.21 that HV

n (EV →
{•}; KZ) vanishes for n ≤ 1 for any infinite virtually cyclic subgroup of type
I of SL2(Z). Hence we get for n ≤ 1 an isomorphism

Kn(Z[Z/4])⊕ coker
(
Kn(Z[Z/2])→ Kn(Z[Z/6])

) ∼= Kn(Z[SL2(Z)]).

We conclude from Theorem 2.112 (i), Theorem 3.115, Theorem 3.116 (iv), Ex-

ample 4.10, and Theorem 4.22 (i) and (v) that Wh(SL2(Z)), K̃0(Z[SL2(Z)]),
and Kn(Z[SL2(Z)]) for n ≤ −2 vanish and the inclusion Z/6 → SL2(Z)
induces an isomorphism K−1(Z[Z/6]) ∼= Z→ K−1(Z[SL2(Z)]).

Exercise 17.2. Prove

Kn(C∗r (SL2(Z);C)) ∼=

{
Z8 n even;

0 n odd,

and

KOn(C∗r (SL2(Z);R)) ∼=



Z5 n ≡ 0 mod (8);

(Z/2)2 n ≡ 1 mod (8);

(Z/2)2 ⊕ Z3 n ≡ 2 mod (8);

{0} n ≡ 3 mod (8);

Z5 n ≡ 4 mod (8);

{0} n ≡ 5 mod (8);

Z3 n ≡ 6 mod (8);

{0} n ≡ 7 mod (8).
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Exercise 17.3. Let D8 be the dihedral group of order eight and C be its
center, which is a group of order two. Let G be the group D8 ∗C D8. Prove

K0(CG) ∼= Z8 ⊕ Z/2;

Kn(C∗r (G)) ∼=

{
Z8 ⊕ Z/2 if n is even;

{0} if n is odd.

17.5 Rational Computations for Infinite Groups

Next we state what is known rationally about the K- and L-groups of an
infinite (discrete) group, provided the Farrell-Jones Conjectures 13.1 or 13.4
or the Baum-Connes Conjecture 14.9 holds.

17.5.1 Rationalized Algebraic K-Theory

The next result follows from Theorem 12.79 and Theorem 13.48. For R = Z
see also Grunewald [427, Corollary on page 165].

Theorem 17.4 (Rational computations of Kn(RG) for regular R).
Let R be regular ring, e.g., R is Z. Suppose that the group G satisfies the
K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in the ring R.

Then we have for all n ∈ Z a natural isomorphism⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗Z Kq(RC)

) ∼=−→ Q⊗Z Kn(RG)

where we use the notation from Theorem 12.79.

Computations of Kq(RC) as Z[aut(C)]-module for finite cyclic groups C
and R = Z or R a field of characteristic zero can be found in [777].

Exercise 17.5. If in Theorem 17.4 we drop the condition that R is regular,
show that then we still know that the map appearing there is split injective.

Example 17.6 (A Formula for K0(RG)⊗ZQ for R the ring of integers
in an algebraic number field). Let R be the ring of integers in an algebraic
number field, e.g., R = Z. Note that then R is regular by Theorems 2.21
and 2.23. Suppose that the K-theoretic Farrell-Jones Conjecture 13.1 with
coefficients in the ring R is true for G. Then Conjecture 4.20 is true by
Theorem 13.62. Hence we obtain from Theorem 2.104, Theorem 4.22 (i), and
Theorem 17.4 an isomorphism
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K̃0(RG)⊗Z Q ∼=
⊕

(C)∈(FCY)

H1(BCGC;Q)⊗Q[WGC] θC ·K−1(RC)⊗Z Q.

Note that K̃0(RG)⊗ZQ contains only contributions from K−1(RC)⊗ZQ for
finite cyclic subgroups C ⊆ G.

Exercise 17.7. Suppose that the K-theoretic Farrell-Jones Conjecture 13.1
with coefficients in the ring Z is true for G and that any element of finite
order has prime power order. Show that then K̃0(ZG)⊗Z Q vanishes.

17.5.2 Rationalized Algebraic L-Theory

The next result follows from Theorem 9.106, Theorem 12.79, and Theo-
rem 13.59 (i).

Theorem 17.8 (Rational computation of algebraic L-theory). Sup-
pose that the group G satisfies the L-theoretic Farrell-Jones Conjecture 13.8
with coefficients in rings with involution after inverting 2.

Then we get for all j ∈ Z, j ≤ 2 and n ∈ Z an isomorphism⊕
p+q=n

⊕
(C)∈J

Hp(CGC;Q)⊗Q[WGC] ΘC ·
(
Q⊗Z L

〈j〉
q (RC)

) ∼=−→ Q⊗Z L
〈j〉
n (RG)

where we use the L-theoretic version of the notation of Theorem 12.79.

Exercise 17.9. Let F be a finite group of odd order. Put G = F o Z. Show
for all decorations j ∈ Z, j ≤ 2

Q⊗Z L
〈j〉
n (ZG) ∼=

{
Q n ≡ 1 mod 4;

{0} n ≡ 3 mod 4.

17.5.3 Rationalized Topological K-Theory

The next result is taken from [636, Theorem 0.7]. Let ΛG be the ring Z ⊆
ΛG ⊆ Q that is obtained from Z by inverting the orders of the finite subgroups
of G.

Theorem 17.10 (Rational computation of topological K-theory).
Suppose that the group G satisfies the Baum-Connes Conjecture 14.9.

Then there is an isomorphism
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p+q=n

⊕
(C)∈(FCY)

Kp(BCGC)⊗Z[WGC] ΘC ·Kq(C
∗
r (C))⊗Z Λ

G

∼=−→ Kn(C∗r (G))⊗Z Λ
G

where we use the notation of Theorem 12.79.
If we tensor with Q, we get an isomorphism⊕
p+q=n

⊕
(C)∈(FCY)

Hp(BCGC;Q)⊗Q[WGC] θC ·Kq(C
∗
r (C))⊗Z Q.

∼=−→ Kn(C∗r (G))⊗Z Q.

17.5.4 The Complexified Comparison Map from Algebraic to
Topological K-theory

If we consider R = C as coefficient ring and apply −⊗ZC instead of −⊗ZQ,
the formulas simplify. Suppose that G satisfies the Baum-Connes Conjec-
ture 14.9 and K-theoretic Farrell-Jones Conjecture 13.1 with coefficients in
the ring C. Recall that con(G)f is the set of conjugacy classes (g) of ele-
ments g ∈ G of finite order. We denote for g ∈ G by 〈g〉 the cyclic subgroup
generated by g.

Then we get the following commutative square whose horizontal maps are
isomorphisms and whose vertical maps are induced by the obvious change of
theory homomorphisms, see [634, Theorem 0.5],

⊕
p+q=n

⊕
(g)∈con(G)f

Hp(CG〈g〉;C)⊗Z Kq(C)
∼= //

��

Kn(CG)⊗Z C

��⊕
p+q=n

⊕
(g)∈con(G)f

Hp(CG〈g〉;C)⊗Z K
TOP
q (C)

∼= // Kn(C∗r (G))⊗Z C.

Suslin [917, Theorem 4.9] has proved that the algebraic K-theory of C in
dimensions 2n for n ≥ 1 a unique divisible group and hence admits no non-
trivial map to Z. This implies that the canonical map from the algebraic
K-theory of C to the topological K-theory of C is trivial in all dimensions
except dimension zero where it is a bijection. Thus rationally we understand
by the diagram above the comparison map from algebraic K-theory of the
complex group ring to the topological K-theory of the group C∗-algebra
provided that G satisfies the Baum-Connes Conjecture 14.9 and K-theoretic
Farrell-Jones Conjecture 13.1 with coefficients in the ring C.

Remark 17.11 (Separation of Variables). In Theorems 17.4, 17.8, and 17.10
and in Subsection 17.5.4 we see a principle which we call separation of vari-
ables: There is a group homology part that is independent of the coefficient
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ring R and the K- or L-theory under consideration and a part depending
only on the values of the theory under consideration on RC or C∗r (C) for all
finite cyclic subgroups C ⊆ G.

17.6 Integral Computations for Infinite Groups

As mentioned above, no general pattern for integral calculations is known
or expected. We give some examples where computations are possible and
which shall illustrate the techniques.

17.6.1 Groups Satisfying Conditions (M) and (NM)

We mention at least one situation where a certain class of groups can be
treated systematically. Let MFIN be the subset of FIN consisting of ele-
ments in FIN that are maximal in FIN .

Consider the following assertions concerning G:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal
finite subgroup;

(NM) M ∈MFIN ,M 6= {1} =⇒ NGM = M .

Denote by K̃n(C∗r (G)) the cokernel of Kn(C∗r ({1})) → Kn(C∗r (G)), by

K̃On(C∗r (G;R)) the cokernel ofKOn(C∗r ({1};R))→ KOn(C∗r (G;R)), and by

L
〈j〉
n (RG) the cokernel of L

〈j〉
n (R) → L

〈j〉
n (RG). This coincides with L̃

〈j〉
n (R),

that is defined for any ring R with involution to be the cokernel of L
〈j〉
n (Z)→

L
〈j〉
n (R) if R = ZG, but not in general if we replace Z by other coefficients.

Recall that WhRn (G) is the (n − 1)-th homotopy group of the homotopy
fiber of the assembly map BG+ ∧K(R)→ K(RG). The next result is taken
from [266, Theorem 5.1], except for assertion (ii). It is a direct consequence
of the existence of a nice model for EFIN (G), see Theorem 11.32, the long
exact sequence (12.84) and Lemma 12.18 (ii). Recall that we abbreviate EG =
EFIN (G) and BG = G\EFIN (G).

Theorem 17.12 (Fundamental exact sequences for groups satisfying
conditions (M) and (NM)). Let Z ⊆ Λ ⊆ Q be a ring such that the
order of any finite subgroup of G is invertible in Λ. Suppose that the group
G satisfies conditions (M) and (NM). Let {Mi | i ∈ I} be a complete set of
representatives for the conjugacy classes of maximal finite subgroups of G.
Then:

(i) If G satisfies the Baum-Connes Conjecture 14.9, then there is a short exact
sequence of topological K-groups
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0→
⊕
i∈I

K̃n(C∗r (Mi))→ Kn(C∗r (G))→ Kn(BG)→ 0

where the maps K̃n(C∗r (Mi))→ Kn(C∗r (G)) are induced by the inclusions
H → G.
It splits after applying −⊗Z Λ;

(ii) If G satisfies the Baum-Connes Conjecture 14.9, then there is a long exact
sequence of topological K-groups

· · · → KOn+1(BG)→
⊕
i∈I

K̃On(C∗r (Mi;R))→ KOn(C∗r (G;R))

→ KOn(BG)→
⊕
i∈I

K̃On−1(C∗r (Mi;R))→ · · ·

where the maps K̃On(C∗r (H;R)) → KOn(C∗r (G;R)) are induced by the
inclusions H → G.
It splits after applying − ⊗Z Λ, more precisely the Λ-homomorphism
KOn(C∗r (G;R))⊗Z Λ→ KOn(BG)⊗Z Λ is split surjective;

(iii) Suppose that every infinite virtually cyclic subgroup of G is of type I, and
G satisfies the L-theoretic Farrell-Jones Conjecture 13.4 with coefficients
in the ring with involution R.
Then for all n ∈ Z there is an exact sequence

. . .→ Hn+1(BG; L〈−∞〉(R))→
⊕
i∈I

L
〈−∞〉
n (RMi)

→ L〈−∞〉n (RG)→ Hn(BG; L〈−∞〉(R))→ . . .

where the maps L
〈−∞〉
n (RH)→ L

〈−∞〉
n (RG) are induced by the inclusions

H → G.
It splits after applying −⊗Z Λ, more precisely

L〈−∞〉n (RG)⊗Z Λ→ Hn(BG; L〈−∞〉(R))⊗Z Λ

is a split-surjective map of Λ-modules;
(iv) If G satisfies the K-theoretic Farrell-Jones Conjecture 13.1 with coeffi-

cients in the ring R, then there is for n ∈ Z an isomorphism

Hn(EFIN (G)→ EVCY(G); KR)⊕
⊕
i∈I

WhRn (Mi)
∼=−→WhRn (G)

where the maps WhRn (H) →WhRn (G) are induced by the inclusions H →
G.

Remark 17.13 (Role of BG). Theorem 17.12 illustrates that for such com-
putations a good understanding of the geometry of the orbit space BG is
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necessary. This can be hard to figure out, even for at the first glance nice
groups with pleasant geometric properties such as crystallographic groups.
In general BG can be very complicated, see Theorem 11.62.

Remark 17.14. In [266] it is explained that the following classes of groups do
satisfy the assumption appearing in Theorem 17.12 and what the conclusions
are in the case R = Z.

• Extensions 1→ Zn → G→ F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn;

• Fuchsian groups F ;
• One-relator groups G.

Theorem 17.12 is generalized in [639], in order to treat for instance the
semidirect product of the discrete three-dimensional Heisenberg group by
Z/4. For this group BG is S3.

Exercise 17.15. Let G be a group satisfying conditions (M) and (NM) ap-
pearing in Subsection 11.7.1. Show that then we obtain for any ring R an
isomorphism⊕

(V )

HV
n (EFIN (V )→ {•}; KR)

∼=−→ HG
n (EFIN (G)→ EVCY(G); KR)

where (V ) runs through the conjugacy classes of maximal infinite virtual
cyclic subgroups.

In general the L-theoretic Farrell-Jones assembly map is not an isomor-
phism if one replace the decoration 〈−∞〉 by the decoration p, h, or s, see
Remark 13.9. This can be very unpleasant since for applications one needs
the decorations s or h. The situation is better when G is torsionfree, as ex-
plained in Theorem 9.106. Here is a situation where the situation is still
optimal although G is not torsionfree.

Theorem 17.16. Consider a group G with an orientation character w : G→
{±1} satisfying the following conditions:

• Conditions (M) and (NM) are satisfied;
• All virtually cyclic subgroups are of type I;
• The infinite virtually cyclic subgroups of type I of G are orientable in the

sense of [670, Definition 8.5];
• G satisfies the K-theoretic Farrell-Jones Conjectures 13.1 and the L-

theoretic Farrell-Jones Conjectures 13.1 with coefficients in Z.

Then:

(i) The assembly maps

HG
n

(
EFIN (G); L

〈j〉
Z
)
→ L〈j〉n (ZG,w)

are bijective for all n ∈ Z and j ∈ {2, 1, 0,−1, . . .} q {−∞};
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(ii) Let M = {Mi | i ∈ I} be a complete set of representative of the conju-
gacy classes of maximal finite subgroups of G. There are canonical isomor-
phisms for n ∈ Z and j ∈ {2, 1, 0,−1, . . .} q {−∞}⊕

i∈I
HMi
n (EMi →Mi/Mi; L

〈j〉
Z )

∼=−→ HG
n (EG→ G/G; L

〈j〉
Z )

Proof. (i) In the sequel of this proof we omit the orientation characters from
the notaion.

We conclude from the L-theoretic Farrell-Jones Conjecture 13.4 and The-
orem 13.57 that the assembly map

HG
n

(
EFIN (G); L−∞Z

)
→ L−∞n (ZG)

is bijective.
Consider j ∈ {−2,−3, . . .}. There is a commutative diagram

HG
n

(
EFIN (G); L

〈j+1〉
Z

)
//

∼=
��

L
〈j+1〉
n (ZG)

∼=
��

HG
n

(
EFIN (G); L

〈j〉
Z
)

// L〈j〉n (ZG)

where the vertical maps are change of decoration maps, which can be imple-
mented on the level of spectra, and the horizontal arrows are the assembly
maps. Since K̃j(ZH) = 0 holds for finite groups and j ≤ −2 by Theo-
rem 4.22 (i), we conclude from the Rothenberg sequences of Subsection 9.10.4

that the map L
〈j+1〉
n (ZH)

∼=−→ L
〈j〉
n (ZH) is bijective for j ≤ −2 and n ∈ Z. By

the equivariant Atiyah-Hirzebruch spectral sequence, see Theorem 12.48, the
left vertical arrow is bijective. We conclude from theK-theoretic Farrell-Jones
Conjectures 13.1 that K̃j(ZG) = 0 holds for j ≤ −2, see Conjecture 4.20 and
Theorem 13.62 (vi). The Rothenberg sequence (9.102) implies that the right
vertical arrow is bijective.

There is by construction a commutative diagram

colimj→−∞HG
n

(
EFIN (G); L

〈j〉
Z
)

//

∼=
��

colimj→−∞ L
〈j〉
n (ZG)

∼=
��

HG
n

(
EFIN (G); L

〈−∞〉
Z

)
// L〈−∞〉n (ZG)

with bijective vertical arrows. This implies that

HG
n

(
EFIN (G); L

〈j〉
R

)
→ L〈j〉n (RG)

is bijective for all n ∈ Z and j ∈ {−1,−2, . . .} q {−∞}.
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It remains to show for j ∈ {1, 0,−1} that the map above is bijective for j
and all n ∈ Z if it is bijective for j − 1 and all n ∈ Z.

The Tate spectra constructions of [984] imply that there is a covariant

GROUPOIDS-spectrum T
〈j〉
Z such that there is a cofibration sequence of

covariant GROUPOIDS-spectra L
〈j+1〉
Z → L

〈j〉
Z → T

〈j〉
Z such that for every

group G and subgroup H ⊆ G the associated long exact sequence

· · · → HG
n (G/H,L

〈j+1
Z )→ HG

n (G/H,L
〈j〉
Z )→ HG

n (G/H; T
〈j〉
Z )

HG
n−1(G/H,L

〈j+1
Z )→ HG

n−1(G/H,L
〈j〉
Z )→ · · ·

can be identified with the Rothenberg sequence of (9.102)

. . .→ L〈j+1〉
n (ZH)→ L〈j〉n (ZH)→ Ĥn(Z/2; WhZ

j (H))

→ L
〈j+1〉
n−1 (ZH)→ L

〈j〉
n−1(ZH)→ . . . .

Next we consider the commutative diagram

...

��

...

��
HG
n

(
EFIN (G); L

〈j〉
Z
)

//

��

L
〈j〉
n (ZG)

��
HG
n

(
EFIN (G); T

〈j〉
Z
)

//

��

Ĥn(Z/2; WhZ
j (G))

��
HG
n−1

(
EFIN (G); L

〈j+1〉
Z

)
//

��

L
〈j+1〉
n−1 (ZG)

��
HG
n−1

(
EFIN (G); L

〈j〉
Z
)

//

��

L
〈j〉
n−1(ZG)

��
HG
n−1

(
EFIN (G); T

〈j〉
Z
)

//

��

Ĥn−1(Z/2; WhZ
j (G))

��
...

...

where the horizontal maps are the assembly maps, the left long exact column
comes from the cofibration sequence of GROUPOIDS-spectra above and the
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right column is the long exact Rothenberg sequence of (9.102). By the Five
Lemma it suffices to show that the map induced by EFIN (G)→ G/G

HG
n

(
EFIN (G); T

〈j〉
Z
)
→ HG

n

(
G/G; T

〈j〉
Z
)

= Ĥn(Z/2; WhZ
j (G))

is bijective for j ≤ 1 and n ∈ Z. This will follow from the following commu-
tative diagram

HG
n

(
EFIN (G); T

〈j〉
Z
)

//

∼=
��

Ĥn(Z/2; WhZ
j (G))

HG
n

(
EG→ EFIN (G); T

〈j〉
Z
)

⊕
i∈I H

F
n

(
EF → F/F ; T

〈j〉
Z
)∼=

OO

Ĥn
(
Z/2, HG

j (EG→ EVCY(G); KZ)
)

∼=

OO

⊕
i∈I H

F
n

(
F/F ; T

〈j〉
Z
)∼=

OO

Ĥn
(
Z/2, HG

j (EG→ EFIN (G); KZ)
)∼=

OO

⊕
i∈I πn(T〈j〉(ZMi)

)∼=

OO

Ĥn
(
Z/2,

⊕
i∈I H

Mi
j (EMi →Mi/Mi; KZ)

)∼=

OO

⊕
i∈I Ĥ

n(Z/2,Whj(ZMi))

∼=

OO

∼=
// Ĥn

(
Z/2,

⊕
i∈I Whj(ZMi)

)∼=

OO
∼=

OO

as soon as we have shown that all arrows except the upper horizontal one
are bijective. The bijectivity of these arrows come from the following observa-
tions. Since WhZ

j ({1}) and hence πn(Tj
Z)(G/{1}) = H2(Z/2; WhZ

j ({1})) van-

ishes for j ≤ 1 and n ∈ Z, the groups HG
n

(
EG; T

〈j〉
Z
)

and HMi
n

(
EMi; T

〈j〉
Z
)

vanish and one can consider the long exact sequences associated to EG →
EFIN (G) and EMi → Mi/Mi. One can apply excision to the G-pushout
appearing in Theorem 11.32. The map

HG
j (EG→ EVCY(G); KZ)

∼=−→ HG
j (EG→ G/G; KZ) = WhZ

j (G)

is bijective since G satisfies the K-theoretic Farrell-Jones-Conjecture. The
map

Ĥn
(
Z/2, HG

j (EG→ EFIN (G); KZ)
) ∼=−→ Ĥn

(
Z/2, HG

j (EG→ EVCY(G); KZ)
)

is bijective by Lemma 17.1.
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(ii) This follows from assertion (i) and excision applied to G-pushout appear-
ing and excision applied to the Theorem 11.32. This finishes the proof of
Theorem 17.16. ut

More information about HG
n (EFIN (V )→ {•}; KR) can be found in The-

orem 13.33 or in [670] where also identifications with twisted Nil-categories
are discussed.

Many of the following results are based on Theorem 17.12.

Exercise 17.17. Let G be a one-relator group that is not torsionfree. Let C
be a maximal finite subgroup of G. Suppose that m := |C| is odd. Show that
the canonical map

HC
n (EC → C/C; L

〈j〉
Z )→ HG

n (EG→ G/G; L
〈j〉
Z )

is an isomorphism for j ∈ {2, 1, 0, . . .} q {−∞} and n ∈ Z.

17.6.2 Torsionfree One-Relator Groups

Let G = 〈si, i ∈ I | r〉 be the presentation of a one-relator group G. Denote
by F the free group on the set of generators {si | i ∈ I}. Note that r is an
element in F . The group G is torsionfree if and only for any element s ∈ F
and natural number m satisfying r = sm we get m = 1, see [536] or [678,
Proposition 5.17 on page 107]. Throughout this section we will assume that
G is torsionfree.

We begin with the following lemma.

Lemma 17.18. Let X be the 2-dimensional CW -complex given by the pushout

(17.19) S1 q //

i

��

∨
i∈I S

1

i

��
D2

Q
// X.

Let di ∈ Z be the degree of the composition S1 q−→
∨
i∈I S

1 pri−−→ S1 where pri
is the projection onto the i-th summand. Let H∗ be any (non-equivariant)
generalized homology theory satisfying the disjoint union axiom.

(i) Suppose that di = 0 holds for all i ∈ I. Then we get for n ∈ Z an isomor-
phism

Hn(X) ∼= Hn({•})⊕
⊕
i∈I
Hn−1({•})⊕Hn−2({•});

(ii) Suppose that there is one i ∈ I with di 6= 0. Then we have an isomorphism
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Hn(X)
∼=−→ Hn(X, {•})⊕Hn({•}),

and a short exact sequence

0→ H1(X)⊗ZHn−1({•})→ Hn(X, {•})→ TorZ1 (H1(X),Hn−2({•}))→ 0;

(iii) Let d be the common greatest divisor of the finite set {|di| | i ∈ I, di 6= 0},
provided that {|di| | i ∈ I, di 6= 0} is non-empty.
Then H1(X) ∼=

⊕
i∈I Z if {|di| | i ∈ I, di 6= 0} is empty or if d = 1. If

d ≥ 2, then H1(X) ∼= Z/d
⊕

i∈J Z where the set |J | has cardinality |I| − 1
if |I| is finite, and the same cardinality as |I| if I is infinite.

Proof. We can assume without loss of generality that the pushout (17.19)
above consists of base point preserving maps, otherwise change q up to ho-
motopy to be base point preserving. From the Mayer-Vietoris sequence of the
pair (X, {•}) and the projection X → {•}, we obtain an isomorphism

Hn(X)
∼=−→ Hn(X, {•})⊕Hn({•}).

(i) If we apply S1 ∧ − to (17.19), we obtain a pushout of pointed spaces

S2 q //

i

��

∨
i∈I S

2

i
��

D3

Q
// S1 ∧X

Since S2 is simply connected, one gets using the Hurewicz Theorem an

isomorphism
⊕

i∈I H2(S2)
∼=−→ π2

(∨
i∈I S

2
)
. We conclude that idS1 ∧q is

pointed nullhomotopic. Hence we obtain a pointed homotopy equivalence

S1∧X '−→ S3∨
∨
i∈I S

2. Now assertion (i) from the suspension isomorphism.

(ii) Since S1 is compact, only finitely many of the numbers di are different
from zero. We get for any abelian group A a group homomorphism

D(A) : A→
⊕
i∈I

A, a 7→ (di · a)i∈I .

The long exact sequence

(17.20) · · ·Hn−1({•}) D(Hn−1({•}))−−−−−−−−−→
⊕
i∈I
Hn−1({•})→ Hn(X, {•})

→ Hn−2({•}) D(Hn−2({•}))−−−−−−−−−→
⊕
i∈I
Hn−2({•})→ · · ·

comes from the long Mayer-Vietoris sequence of the pushout of pointed
spaces (17.19) above and with the identification derived from the disjoint
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union axiom and the suspension isomorphism

⊕
i∈I
Hn−1({•})

∼=−→ Hn

(∨
i∈I

S1, {•}

)
.

If we take H∗ to be singular homology with integer coefficients, we see that
D(A) is obtained from D(Z) by D(A) = D(Z) ⊗A idA and there is a short

exact sequence 0→ Z D(Z)−−−→
⊕

i∈I Z→ H1(X)→ 0. This implies

coker(D(A)) = H1(X)⊗Z A;

ker(D(A)) = TorZ1 (H1(X), A).

(iii) This follows from the short exact sequence Z D(Z)−−−→
⊕

i∈Z Z→ H1(G)→
0. ut

We denote by Hn(Y ;A) the singular homology of a space Y with coeffi-
cients in the abelian group A and abbreviate Hn(Y ) := Hn(Y ;Z). Note that
the group homology Hn(G) is Hn(BG) and H1(G) = G/[G,G].

Lemma 17.21. Suppose that the one-relator-group G is torsionfree. Let H∗
be any (non-equivariant) generalized homology theory.

(i) If r lies in [F, F ], we get isomorphisms

Hn(BG) ∼= Hn({•})⊕
⊕
i∈I
Hn−1({•})⊕Hn−2({•});

(ii) If r does not lie in [F, F ], then we get isomorphisms

Hn(BG) ∼= Hn({•})⊕Hn(BG, {•}),

and a short exact sequence

0→ H1(BG)⊗Z Hn−1({•})→ Hn(BG, {•})
→ TorZ1 (H1(BG);Hn−2({•}))→ 0;

(iii)

Hn(BG;A) ∼=



A n = 0;⊕
i∈I A n = 1 and r ∈ [F, F ];

H1(X)⊗Z A n = 1 and r /∈ [F, F ];

A n = 2 and r ∈ [F, F ];

TorZ1 (H1(X);A) n = 2 and r /∈ [F, F ];

0 n ≥ 3.
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Proof. Consider the pushout

S1 q //

i

��

∨
i∈I S

1

i

��
D2

Q
// Z

where the upper vertical arrow is given by the word r ∈ ∗i∈IZ = π1

(∨
i∈I S

1
)
.

Then Z is a model for BG, see [678, Chapter III §§9 -11].

(i) This follows from Lemma 17.18 (i).

(ii) This follows from Lemma 17.18 (ii).

(iii) This follows from assertions (i) and (ii) applied to the special case that
H∗ is singular homology with coefficients in the abelian group A. ut

Recall that the Baum-Connes-Conjecture 10.44 for torsionfree groups
holds for every torsionfree one-relator group G predicting isomorphisms

asmbG,C(BG)n : Kn(BG)→ Kn(C∗r (G;C));

asmbG,R(BG)n : KOn(BG)→ KOn(C∗r (G;R)).

Hence we get from Lemma 17.21 (i) in the case that r belongs to [F, F ]

Kn(C∗r (G;C)) ∼= Kn({•})⊕
⊕
i∈I

Kn−1({•})⊕Kn−2({•}) ∼=

{⊕
i∈Z Z n even;

Z2 n odd,

and

KOn(C∗r (G;R)) ∼= KOn({•})⊕
⊕
i∈I

KOn−1({•})⊕KOn−2({•}).

If r does not belong to [F, F ], then get from Lemma 17.21 (ii)

Kn(C∗r (G;C)) ∼=

{
Z n even;

H1(G) n odd,

KOn(C∗r (G;R)) ∼= KOn({•})⊕KOn(BG, {•}),

and a short exact sequence

0→ H1(G)⊗Z KOn−1({•})→ KOn(BG, {•})
→ TorZ1 (H1(G),KOn−2({•}))→ 0.

The computation for K∗(C
∗
r (G)) agrees with the one in [111].
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Recall that Farrell-Jones Conjecture 6.53 for torsionfree groups and reg-
ular rings for K-theory holds for torsionfree one-relator groups predicting
for a regular ring R an isomorphism Hn(BG; K(R)) → Kn(RG) for n ∈ Z,
and one can apply Lemma 17.21 to Hn(BG; K(R)). Moreover, the Farrell-
Jones Conjecture 9.114 for torsionfree groups for L-theory predicts that the

assembly map Hn(BG; L〈−∞〉(R))→ L
〈−∞〉
n (RG) is bijective for n ∈ Z, and

is known for torsionfree one-relator groups to be true after inverting 2. So

Lemma 17.21 can also be used to compute Kn(RG) and L
〈−∞〉
n (RG)[1/2] if

one understands Kn(R) and L
〈−∞〉
n (R)[1/2].

Exercise 17.22. Let G = 〈s1, s2, . . . , sn | r〉 be a finitely generated (not
necessarily torsionfree) one-relator group where r is given by the word
sm1
i1
sm2
i2
· · · smlil for ij ∈ {1, 2, . . . , n} and mj ∈ Z. Define for j = 1, 2, . . . , n

dj =
∑

k∈{1,2,...,n}
ik=j

mk.

Show that H1(G) ∼= Zn if all the numbers dj are trivial, and H1(G) ∼=
Zn−1 ⊕ Z/d if not all the numbers dj are zero and d is the common greatest
divisor of {|dj | | j = 1, 2 . . . , l, dj 6= 0}.

Exercise 17.23. Consider the 1-relator group G = 〈s1, s2 | s1s2s1s
−1
2 s−2

1 〉.
Compute the algebraic K-groups Kn(C[Z/m×G]) for n ≤ 1 and any natural
number m.

Exercise 17.24. Let G be the non-trivial semidirect product ZoZ. Compute
Lsn(Z[G]) for n ∈ Z.

17.6.3 One-Relator Groups with Torsion

Let G = 〈si, i ∈ I | r〉 be the presentation of a one-relator group G. For the
remainder of this subsection we assume that G is not torsionfree.

Then there exists a maximal non-trivial finite subgroup C ⊆ G, unique
up to conjugation. It is cyclic. Let m ≥ 2 be its order. Denote by F the free
group on the set of generators {si | i ∈ I}. Note that then r is an element in
F . The natural number m can be characterized as the largest natural number
for which there exists a word s ∈ F with r = sm. Note that for such s the
cyclic group C of order m is generated by the class s in G represented by
s and every torsion element in G is conjugated to some power of s. This
was proved by Karras-Magnus-Solitar, see [536] or [678, Proposition 5.17 on
page 107].

Let p : BG → BG be the up to homotopy unique canonical map and let
i : C → A be the inclusion. The Mayer-Vietoris sequence of the G-quotient
of the G-pushout appearing in Theorem 11.32 yields the long exact sequence
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(17.25) · · · → Hn(BC, {•}) Hn(Bi)−−−−−→ Hn(BG, {•}) Hn(p)−−−−→ Hn(BG, {•})

→ Hn−1(BC, {•}) Hn−1(Bi)−−−−−−→ Hn−1(BG, {•}) Hn−1(p)−−−−−→ Hn−1(BG, {•})→ · · ·

for any (non-equivariant) generalized homology theory H∗. Let Z ⊆ Λ ⊆ Q
be a ring such that the order of any finite subgroup of G is invertible in Λ.
Then sequence (17.25) splits into short split exact sequences after applying
−⊗Z Λ, more precisely, the Λ-map Hn(BG, {•})⊗Z Λ→ Hn(BG, {•})⊗Z Λ
is split surjective for every n ∈ Z, see Lemma 12.18 (ii).

By inspecting the model for EG of Subsection 11.6.13 and dividing out
the G-action, we obtain a pushout

(17.26) S1
q
//

i

��

∨
i∈I S

1

i

��
D2

Q
// BG

where the attaching map q is given by the element s. Note that we can apply
Lemma 17.21 and get information about Hn(BG) for any (non-equivariant)
generalized homology theory H∗. As an illustration we compute the singular
homology Hn(BG;A) with coefficients in the abelian group A

Lemma 17.27.(i) The inclusion C → G induces isomorphisms

Hn(Bi;A) : Hn(BC;A)
∼=−→ Hn(BG;A)

for n ≥ 3;
(ii) We obtain an exact sequence

0→ H2(BC;A)
H1(Bi;A)−−−−−−→ H2(BG;A)

H2(p;A)−−−−−→ H2(BG;A)→ H1(BC;A)

H1(Bi;A)−−−−−−→ H1(BG;A)
H1(p;A)−−−−−→ H1(BG;A)→ 0.

We have

Hn(BC,A) ∼=

{
ker(m · id : A→ A) n ≥ 2, n even;

coker(m · id : A→ A) n ≥ 1, n odd,

and

Hn(BG;A) ∼=


A n = 2 and s ∈ [F, F ];

TorZ1 (C,A) n = 2 and s /∈ [F, F ];

{0} n ≥ 3;

(iii) If A = Z and s ∈ [F, F ], we get a short exact sequence
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0→ H2(BG)
H2(p;A)−−−−−→ H2(BG)→ C → 0,

the groups H2(BG) and H2(BG) are infinite cyclic, and the homomor-

phisms H1(p) : H1(BG)
∼=−→ H1(BG) is bijective.

If A = Z and s /∈ [F, F ], we get a short exact sequence

0→ C = H1(BC)
H1(Bi)−−−−−→ H1(BG)

H2(p)−−−−→ H1(BG)→ 0,

and the groups H2(BG) and H2(BG) are trivial.

Proof. (i) and (ii) These follow from the long exact sequence (17.25), and the
fact that dim(BG) is two, and Lemma 17.21 applied to the pushout (17.26).

(iii) This follows from assertions (i) and (ii) using the fact that the class
s ∈ G represented by s is a generator of the finite cyclic group C. ut

Recall that the Baum-Connes Conjecture 14.11 with coefficients holds for
one-relator groups. Hence the assembly maps

KG
n (EG)→ Kn(C∗r (G;C));

KOGn (EG)→ KOn(C∗r (G;R)),

are bijective for all n ∈ Z.
Recall that the Full Farrell-Jones Conjecture 13.27 holds for one-relator

groups with torsion. If R is a regular ring with Q ⊆ R then we obtain an
isomorphism for every n ∈ Z, see Theorem 13.48

HG
n (EG; KR)

∼=−→ Kn(RG).

If m is odd, any virtually cyclic subgroup of G is of type I, and we obtain for
any ring with involution and n ∈ Z an isomorphism, see Theorem 13.57,

HG
n (EG; L

〈−∞〉
R )

∼=−→ L
〈−∞〉
R (RG).

If m is even, we know at least that this map is bijective after inverting two.
In any cases we want to compute the source of the assembly maps. A far

reaching strategy is to use Theorem 17.12 after one has computed KG(BG),
KOG(BG), Hn(BG; K(R)), or Hn(BG; L〈−∞〉) by applying Lemma 17.18
to (17.26)

Example 17.28 (Topological K-theory in the complex case). We
carry this out for Kn(C∗r (G)). Since Kn({•}) is Z for even n and trivial for
odd n, we get from Lemma 17.18 applied to (17.26) and Lemma 17.27 (iii)
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Kn(BG) ∼=


Z2 s ∈ [F, F ] and n even;⊕

i∈Z Z s ∈ [F, F ] and n odd

Z s /∈ [F, F ] and n even;

H1(BG) ∼= coker
(
H1(C)→ H1(G)

)
s /∈ [F, F ] and n odd.

We get from Theorem 17.12 (i) the short exact sequence

0→ K̃n(C∗r (C))→ Kn(C∗r (G))→ Kn(BG)→ 0

which splits after inverting m. Since K̃n(C∗r (Z/m)) ∼= Zm−1 for even n and
is {0} for odd n, we get

Kn(C∗r (G)) ∼=


Zm+1 s ∈ [F, F ] and n even;⊕

i∈Z Z s ∈ [F, F ] and n odd;

Zm s /∈ [F, F ] and n even;

coker
(
H1(i) : H1(C)→ H1(G)

)
s /∈ [F, F ] and n odd.

This computation for K∗(C
∗
r (G)) agrees with the one in [111] since F/[F, F ]

is torsionfree and hence r ∈ [F, F ]⇐⇒ s ∈ [F, F ].

The following example is illuminating since it combines a lot of the material
and methods we have presented so far in this book.

Example 17.29. Consider the finitely generated one-relator group

G = 〈s1, s2, s3 | r〉 for r = s6
1s

9
2s

21
1 s

9
2s

21
1 s

9
2s

15
1 .

Put s = s6
1s

9
2s

15
1 . Then r = s3. If m is a natural number for which r = s′m

for some word s′, then m = 1, 3. Hence G has a maximal finite subgroup C
generated by the element s ∈ G represented by s and C is cyclic of order
3. We can compute H1(G) using the recipe stated in Exercise 17.22 and
obtain H1(G) ∼= Z2 ⊕ Z/9. Since s does not belong to [F, F ], we get from
Lemma 17.27

Hn(G) ∼=


Z/3 n ≥ 3 and n odd;

0 n ≥ 2 and n even;

Z2 ⊕ Z/9 n = 1;

Z n = 0.

We get from Example 17.28

Kn(C∗r (G)) ∼=

{
Z3 n even;

Z/3 n odd.
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We conclude from Theorem 10.79 (ii) that K̃On(C∗r (C;R)) is Z for n even
and {0} for n odd.

We conclude from Lemma 17.18 (ii) in the case H∗ = KO∗ applied to the
pushout (17.26) an isomorphism

KOn(BG)
∼=−→ KOn(BG, {•})⊕KOn({•}),

and a short exact sequence

0→ H1(BG)⊗Z KOn−1({•})→ KOn(BG, {•})
→ TorZ1 (H1(BG),KOn−2({•}))→ 0.

Since H1(BG) ∼= Z2 ⊕ Z/3 by Lemma 17.27 (iii), this implies

KOn(BG) ∼= KOn({•})⊕KOn−1({•})⊕KOn−1({•})⊕Z/3⊗ZKOn−1({•}).

Since K̃On(C∗r (C;R)) is Z or trivial, we obtain from Theorem 17.12 (ii) for
every n ∈ Z a short exact sequence

0→ K̃On(C∗r (C;R))→ KOn(C∗r (G;R))→ KOn(BG)→ 0

which splits after inverting 3.
Next we consider the case where n is odd. Then K̃On(C∗r (C;R)) vanishes,

and we get an isomorphism KOn(C∗r (G;R)) ∼= KOn(BG). Thus we get

KOn(C∗r (G;R)) ∼=


Z/2⊕ Z⊕ Z⊕ Z/3 n ≡ 1 mod 8;

Z/2⊕ Z/2 n ≡ 3 mod 8;

Z⊕ Z⊕ Z/3 n ≡ 5 mod 8;

{0} n ≡ 7 mod 8.

Next we consider the case where n is even. Then KOn(BG) contains no
3-torsion and we get

KOn(C∗r (G;R)) ∼= K̃On(C∗r (C;R))⊕KOn(BG)

∼=


Z⊕ Z n ≡ 0 mod 8;

Z⊕ Z/2⊕ Z/2⊕ Z/2 n ≡ 2 mod 8;

Z⊕ Z n ≡ 4 mod 8;

Z n ≡ 6 mod 8.

Let V ⊆ G be an infinite virtually cyclic subgroup of type I. Then we can
find an exact sequence 1 → H → V → Z → 0. Any finite subgroup of G is
subconjugated to C and hence we can find g ∈ G with gHg−1 ⊆ C. Since
gV g−1 ⊆ NG(gHg−1) and NGC = C, we get H = {1} and hence V ∼= Z.
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Suppose that there exists an infinite virtually cyclic subgroup V ⊆ G be
of type II. It contains an infinite cyclic subgroup V ′ of type I satisfying
[V : V ′] = 2. Since we have already proved that V ′ is infinite cyclic. V ′

must be Z/2×Z/2. This contradicts the fact that an finite subgroup of G is
subconjugated to C ∼= Z/3. Thus we have shown that any infinite virtually
cyclic subgroup of G is infinite cyclic.

We conclude from Theorem 6.16, and the Transitivity Principle 15.12 that
the assembly map HG

n (EFIN (G); KZ) → HG
n (EVCY(G); KZ) is bijective for

all n ∈ Z. Theorem 13.57 implies that the assembly mapHG
n (EFIN (G); L

〈−∞〉
Z )→

HG
n (EVCY(G); L

〈−∞〉
Z ) is bijective for all n ∈ Z.

We conclude from Theorem 17.12 (iv) that the inclusion C →M induces
for all n ∈ Z an isomorphism

WhZ
n(C)

∼=−→WhZ
n(G).

Since Wh(Z/3) by Theorem 3.115 and Theorem 3.116 (iii), K̃0(Z[Z/3]) by
Theorem 2.112 (i), and Kn(Z[Z/3]) for n ≤ −1 by Theorem 4.10 all vanish,

also the groups Wh(G), K̃0(ZG), and Kn(ZG) for n ≤ −1 vanish.
We conclude from Theorem 9.106 that the L-groups of ZG are independent

of the decoration, namely, for every j ∈ Z, j ≤ −1 and every n ∈ Z the
forgetful maps induce isomorphisms

Lsn(ZG)
∼=−→ Lhn(ZG)

∼=−→ Lpn(ZG)
∼=−→ L〈j〉n (ZG)

∼=−→ L〈−∞〉n (ZG).

The same statement is true for the L-groups of ZC. We conclude from The-
orem 9.196

L
〈−∞〉
n (ZC) ∼=


Z n ≡ 0 mod (4);

0 n ≡ 1 mod (4);

Z n ≡ 2 mod (4);

0 n ≡ 3 mod (4).

Hence we get from Theorem 17.12 (iii) for n ∈ Z a short exact sequence

0→ L
〈−∞〉
n (ZC)→ L〈−∞〉n (ZG)→ Hn(BG; L〈−∞〉(Z))→ 0

which splits after inverting 3.
We obtain from Theorem 17.18 (ii) an isomorphism

Hn(BG; L〈−∞〉(Z)) ∼= Hn(BG, {•}; L〈−∞〉(Z))⊕Hn({•}; L〈−∞〉(Z))

and the short exact sequence

0→ H1(BG)⊗Z L
〈−∞〉
n−1 (Z)→ Hn(BG, {•}; L〈−∞〉(Z))

→ TorZ1 (H1(BG), L
〈−∞〉
n−2 (Z))→ 0.
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We get from Lemma 17.27 (ii) and (iii)

Hn(BG) ∼=


Z n = 0;

Z2 ⊕ Z/3 n = 1;

0 otherwise

Hence we get for every decoration j

L〈j〉n (ZG) ∼=


Z n ≡ 0 mod (4);

Z2 ⊕ Z/3 n ≡ 1 mod (4);

Z/2 n ≡ 2 mod (4);

Z/2⊕ Z/2 n ≡ 3 mod (4).

17.6.4 Fuchsian Groups

Let F be a cocompact Fuchsian group with presentation

F = 〈a1, b1, . . . , ag, bg, c1, . . . , ct |
cγ11 = · · · = cγtt = c−1

1 · · · c
−1
t [a1, b1] · · · [ag, bg] = 1〉

for integers g, t ≥ 0 and γi > 1. Then BF is a closed orientable sur-
face of genus g. The following is a consequence of Theorem 17.12 and Re-
mark 17.14, see [667] for details. Lower algebraic K-theory has also been
computed in [120].

Theorem 17.30 (K-and L-groups of Fuchsian groups).

(i) There are isomorphisms

Kn(C∗r (F )) ∼=

{(
2 +

∑t
i=1(γi − 1)

)
· Z n = 0;

(2g) · Z n = 1;

(ii) The inclusions of the maximal subgroups Z/γi = 〈ci〉 induce an isomor-
phism

t⊕
i=1

Whn(Z/γi)
∼=−→Whn(F )

for n ≤ 1;
(iii) There are isomorphisms
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Ln(ZF )[1/2] ∼=



(
1 +

∑t
i=1

⌊
γi
2

⌋)
· Z[1/2] n ≡ 0 (4);

(2g) · Z[1/2] n ≡ 1 (4);(
1 +

∑t
i=1

⌊
γi−1

2

⌋)
· Z[1/2] n ≡ 2 (4);

0 n ≡ 3 (4),

where brc for r ∈ R denotes the largest integer less than or equal to r.
From now on suppose that each γi is odd. Then we get for ε = p and s

Lεn(ZF ) ∼=


Z/2

⊕(
1 +

∑t
i=1

γi−1
2

)
· Z n ≡ 0 (4);

(2g) · Z n ≡ 1 (4);

Z/2
⊕(

1 +
∑t
i=1

γi−1
2

)
· Z q ≡ 2 (4);

(2g) · Z/2 n ≡ 3 (4).

For ε = h we do not know an explicit formula for Lεn(ZF ). The problem is

that no general formula is known for the 2-torsion contained in L̃h2q(Z[Z/m]),

for m odd since it is given by the term Ĥ2(Z/2; K̃0(Z[Z/m])), see [60, The-
orem 2].

Exercise 17.31. Let F be a Fuchsian group as above. Show that its White-
head group Wh(F ) is a free abelian group of rank

⊕t
i=1bγi/2c + 1 − δ(γi)

where δ(γi) is the number of divisors of γi.

17.6.5 Torsionfree Hyperbolic Groups

Theorem 17.32 (Farrell-Jones Conjecture for torsionfree hyperbolic
groups for K-theory). Let G be a non-trivial torsionfree hyperbolic group.

(i) We obtain for all n ∈ Z an isomorphism

Hn(BG; K(R))⊕
⊕
C

(
NKn(R)⊕NKn(R)

) ∼=−→ Kn(RG)

where C runs through a complete system of representatives of the conjugacy
classes of maximal infinite cyclic subgroups;

(ii) The abelian groups Kn(ZG) for n ≤ −1, K̃0(ZG), and Wh(G) vanish;
(iii) We get for every ring R with involution and n ∈ Z an isomorphism

Hn(BG; L〈−∞〉(R))
∼=−→ L〈−∞〉n (RG).

For every j ∈ Z, j ≤ 2, and n ∈ Z, the natural map

L〈j〉n (ZG)
∼=−→ L〈−∞〉n (ZG)
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is bijective;
(iv) We get for any n ∈ Z isomorphisms

Kn(BG)
∼=−→ Kn(C∗r (G));

KOn(BG)
∼=−→ KOn(C∗r (G;R)).

Proof. (i) By [673, Corollary 2.11, Theorem 3.1 and Example 3.6], see also
Theorem 11.36, there is a G-pushout∐

C G×C EC

p

��

i // EFIN (G)

��∐
C G/C

// EVCY(G)

where i is an inclusion of G-CW -complexes, p is the obvious projection. Hence
we obtain using Theorem 6.16 an isomorphism

HG
n

(
EFIN (G)→ EVCY(G); KR

) ∼= ⊕
C

HG
n

(
G×C EC → G/C; KR

)
∼=
⊕
C

HC
n

(
EC → {•}; KR

)
∼=
⊕
C

(
NKn(R)⊕NKn(R)

)
.

We obtain from Theorem 13.33 an isomorphism

HG
n

(
EVCY(G); KR

) ∼= HG
n

(
EG; KA

)
⊕HG

n

(
EFIN (G)→ EVCY(G); KR

)
∼= Hn(BG; K(R))⊕

⊕
C

(
NKn(R)⊕NKn(R)

)
.

SinceG satisfies the Full Farrell-Jones Conjecture 13.27, see Theorem 16.1 (ia)
Theorem 13.62 implies that G satisfies the K-theoretic Farrell-Jones Conjec-
ture 13.1 with coefficients in the ring R.

(ii) Since G satisfies the Full Farrell-Jones Conjecture 13.27, see Theo-
rem 16.1 (ia) and hence by Theorem 13.62 Conjectures 3.110 and 4.18, as-
sertion (ii) follows.

(iii) Since G satisfies the Full Farrell-Jones Conjecture 13.27, see Theo-
rem 16.1 (ia), Theorem 13.62 implies that G satisfies Conjecture 9.114. Now
assertion (iii) follows from assertion (ii) and Theorem 9.106.

(iv) This follows from the fact that G satisfies the Baum-Connes Conjec-
ture 14.11 with coefficients by Theorem 16.7 (id) and from Remark 14.14. ut
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17.6.6 Hyperbolic Groups

Not necessarily torsionfree hyperbolic groups are treated in [663, Theo-
rem 1.1] which says the following.

Theorem 17.33 (Hyperbolic groups). Let G be a hyperbolic group in the
sense of Gromov [423], and let M be a complete system of representatives of
the conjugacy classes of maximal infinite virtually cyclic subgroups of G.

(i) For each n ∈ Z there is an isomorphism

HG
n

(
EG; KR

)
⊕
⊕
V ∈M

HV
n

(
EV → {•}; KR

) ∼=−→ Kn(RG);

(ii) For each n ∈ Z there is an isomorphism

HG
n

(
EG; L

〈−∞〉
R

)
⊕
⊕
V ∈M

HV
n

(
EV → {•}; L〈−∞〉R

) ∼=−→ L〈−∞〉n (RG),

provided that there exists n0 ≤ −2 such that Kn(RV ) = 0 holds for all
n ≤ n0 and all virtually cyclic subgroups V ⊆ G. (The latter condition is
satisfied if R = Z or if R is regular with Q ⊆ R.)

17.6.7 L-Theory of Torsionfree Groups

Throughout this subsection, let G be a torsionfree group satisfying Conjec-
ture 9.114, i.e., we have the isomorphism

Hn(BG; L〈−∞〉(Z))
∼=−→ L〈−∞〉n (ZG).

Thus we obtain from Subsection 15.14.4 an isomorphism

(17.34) KO(BG)[1/2]
∼=−→ L〈−∞〉n (ZG)[1/2].

Example 17.35 (p-torsion in L-groups). Let n ≥ 3 be an odd natural
number. Consider the group automorphism

α : Z2 → Z2, (a, b) 7→ (a+ nb, b).

Let G be the semidirect product Z2 o Z. Obviously there is an orientable
aspherical closed smooth 3-manifold M that is the total space in a locally
trivial fiber bundle T 2 → M → S1 whose fundamental group is G, namely,
the mapping torus of the selfdiffeomorphism S1 × S1 → S1 × S1 sending
(z1, z2) to (z1z

n
2 , z2). The group G satisfies the Full Farrell-Jones Conjecture

and hence Conjecture 9.114. One easily computes
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Hk(M ;Z) ∼= H1(G) ∼=


Z k = 0, 2, 3;

Z⊕ Z/n k = 1;

0 otherwise.

An elementary spectral sequence argument shows

L〈−∞〉n (ZG)[1/2] ∼= KOk(M ;Z)[1/2] ∼=


Z[1/2] k = 0, 2, 3 mod 4;

Z[1/2]⊕ Z/n k = 1 mod 4;

0 otherwise.

Hence L
〈−∞〉
n (ZG) can contain p-torsion for any odd prime p. Recall that for

finite groups G only 2-torsion occurs in L
〈−∞〉
n (ZG) by Theorem 9.196 (ii).

Exercise 17.36. Let p be a prime. Show for any n ≥ 6 and any decoration
j ∈ {2, 1, 0,−1, . . .} q {−∞} that there is an orientable aspherical closed

smooth manifold M of dimension n such that L
〈j〉
k (Zπ1(M)) contains non-

trivial p-torsion for every k ∈ Z.
Since we have the decomposition of spectra after localization at 2

L〈−∞〉(Z)(2) =
∏
k∈Z

K(Z(2), 4k)×
∏
k∈Z

K(Z/2, 4k − 2),

see Remark 9.133 in the connective case and [928, Theorem A(2) on page 178]
in the periodic case, we obtain for any torsionfree group G satisfying Conjec-
ture 9.114

(17.37) L〈−∞〉n (ZG)(2)
∼=
∏
k∈Z

Hn+4k(BG;Z(2))×
∏
k∈Z

Hn+4k−2(BG;Z/2).

17.6.8 Cocompact NEC-Groups

A calculation of Whn(G), L
〈−∞〉
n (ZG), and Kn(Cr∗(G)) for 2-dimensional

crystallographic groups G and more general cocompact NEC-groups G is
presented in [667], see also [779]. For these groups the orbit spaces BG are
compact surfaces possibly with boundary.

17.6.9 Crystallographic Groups

A crystallographic group of dimension n is a discrete group that acts cocom-
pactly, properly, and isometrically on the Euclidean space Rn for some n ≥ 0.
One does not have a complete calculation of K-and L-groups of integral group
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rings or reduced group C∗-algebras of crystallographic groups except in di-
mension two as mentioned above in Subsection 17.6.8. Computations of the
lower and middle algebraic K-theory of the integral group ring of split three-
dimensional crystallographic groups are carried out by Farley-Ortiz [334], see
also [24].

As an illustration we mention the following result taken from [604, Theo-
rem 0.1].

Theorem 17.38 (Computation of the topological K-theory of Zn o
Z/m for free conjugation action). Consider the extension of groups
1 → Zn → G → Z/m → 1 such that the conjugation action of Z/m on
Zn is free outside the origin 0 ∈ Zn. Let M be the set of conjugacy classes
of maximal finite subgroups of G.

(i) We obtain an isomorphism

ω1 : K1(C∗r (G))
∼=−→ K1(BG).

Restriction with the inclusion k : Zn → G induces an isomorphism

k∗ : K1(C∗r (G))
∼=−→ K1(C∗r (Zn))Z/m.

Induction with the inclusion k yields a homomorphism

k∗ : Z⊗Z[Z/m] K1(C∗r (Zn))→ K1(C∗r (G)).

It fits into an exact sequence

0→ Ĥ−1(Z/m,K1(C∗r (Zn)))→ Z⊗Z[Z/m]K1(C∗r (Zn))
k∗−→ K1(C∗r (G))→ 0

where Ĥ∗(Z/m;M) denotes the Tate cohomology of Z/m with coefficients
in a Z[Z/m]-module M . In particular k∗ is surjective and its kernel is
annihilated by multiplication with m;

(ii) There is an exact sequence

0→
⊕

(M)∈M

R̃C(M)

⊕
(M)∈M iM

−−−−−−−−→ K0(C∗r (G))
ω0−→ K0(BG)→ 0

where R̃C(M) is the kernel of the map RC(M)→ Z sending the class [V ] of
a complex M -representation V to dimC(C⊗CM V ) and the map iM comes
from the inclusion M → G and the identification RC(M) = K0(C∗r (M)).
We obtain a homomorphism

k∗ ⊕
⊕

(M)∈M

iM : Z⊗Z[Z/m] K0(C∗r (Zn))⊕
⊕

(M)∈M

R̃C(M)→ K0(C∗r (G)).

It is injective. It is bijective after inverting m;
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(iii) We have
Ki(C

∗
r (G)) ∼= Zsi

where

si =

{(∑
(M)∈M(|M | − 1)

)
+
∑
l∈Z rkZ

(
(Λ2lZn)Z/m

)
if i even;∑

l∈Z rkZ
(
(Λ2l+1Zn)Z/m

)
if i odd;

(iv) If m is even, then s1 = 0 and

K1(C∗r (G)) ∼= {0}.

The numbers si can be made more explicite, see [604]. For instance, if
m = p for a prime number p, then there exists a natural number k that is
determined by the property n = (p− 1) · k, and we get:

si =


pk · (p− 1) + 2n+p−1

2p + pk−1·(p−1)
2 p 6= 2 and i even;

2n+p−1
2p − pk−1·(p−1)

2 p 6= 2 and i odd;

3 · 2k−1 p = 2 and i even;

0 p = 2 and i odd.

(17.39)

Exercise 17.40. Consider the automorphism φ : Z2 → Z2, (a, b) 7→ (b,−a−
b). Then φ3 = id. Show

Ki

(
C∗r (Z2 oφ Z/3)

) ∼= {Z8 i even;

{0} i odd.

Theorem 17.38 in the special case where m is a prime number, is treated
in [267].

The groups appearing in Theorem 17.38 are crystallographic groups,
see [604, Lemma 3.1].

The proof of Theorem 17.38 is surprisingly complicated. It is based on
computations of the group homology of Zn o Z/m by Langer-Lück [603,
Theorem 0.5]. They prove a conjecture of Adem-Ge-Pan-Petrosyan [17, Con-
jecture 5.2] which says that the associated Lyndon-Hochschild-Serre spectral
sequence collapses in the strongest sense, in the special case that the con-
jugation action of Z/m of Zn is free outside the origin 0 ∈ Zn. Moreover,
it uses generalizations of the Atiyah-Segal Completion Theorem for finite
groups to infinite groups, see Lück-Oliver [655, 656]. Interestingly the conjec-
ture of Adem-Ge-Pan-Petrosyan is disproved in general by Langer-Lück [603,
Theorem 0.6].
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17.6.10 Virtually Finitely Generated Free Abelian Groups

One does not have a complete calculation of the K-groups and L-groups
of integral group rings or group C∗-algebras of crystallographic groups and
hence not of virtually finitely generated abelian groups. The favorite situation
is the one occurring in Remark 17.14 when one considers groups G occurring
in an extensions 1→ Zn → G→ F → 1 for finite F such that the conjugation
action of F on Zn is free outside 0 ∈ Zn. Then the computation can be found
in [663, Theorem 1.7].

17.6.11 SL3(Z)

Since SL3(Z) satisfies the Full Farrell-Jones Conjecture 13.27, see Theo-
rem 16.1 (id), Theorem 13.62 implies that G satisfies the K-theoretic Farrell-
Jones Conjecture 13.1 with coefficients in Z. Using this fact the following
result is proved in [908] and [944].

Theorem 17.41 (Lower and middle K-theory of the integral group

ring of SL3(Z)). The groups Kn(Z[SL3(Z)]) for n ≤ −2, K̃0(Z[SL3(Z)]),
and Wh(SL3(Z)) are trivial. For an appropriate subgroup C6 ⊆ SL3(Z), which
is cyclic of order six, the inclusion C6 → SL3(Z) induces an isomorphism

Z ∼= K−1(Z[C6])
∼=−→ K−1(Z[SL3(Z)]).

The following result is taken from [869, Corollary 2] in the complex case
and from [490, Theorem 4.2] in the real case.

Theorem 17.42 (Topological equivariant K-theory of EFIN (SL3(Z))).

(i) The abelian group K
SL3(Z)
n (EFIN (SL3(Z))) is Z8 for even n and vanishes

for odd n;
(ii) We have for n = 0, 1, 2, . . . , 7

KOSL3(Z)
n (EFIN (SL3(Z))) = Z8,Z/28,Z/28, {0},Z8, {0}, {0}, {0}

and the remaining groups are given by 8-fold Bott periodicity.

The groups K
GL3(Z)
n (EFIN (GL3(Z))) are determined in [869, Corollary 4],

and the groups KO
GL3(Z)
n (EFIN (GL3(Z))) are determined in [490, Corol-

lary 3.3].
Recall that the Baum-Connes Conjecture is not known to be true for

SL3(Z). So it would be interesting to compute Kn(C∗r (SL3(Z);C)) and
KOn(C∗r (SL3(Z);R)) directly and to compare the result with the compu-
tations of Theorem 17.42.
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17.6.12 Right Angled Artin Groups

The group homology, the algebraic K- and L-groups, and the topological K-
groups of right-angled Artin groups, and, more generally, of graph products
is computed in [553, Section 6] where more generally graph products are
handled.

Let X be a finite simplicial graph on the vertex set V and suppose that
we are given a collection of groups W = {Wv | v ∈ V }. Then the graph
product W (X,W) is defined as the quotient of the free product ∗v∈VWv of
the collection of groups W by introducing the relations

{[g, g′] = 1 | v, v′ ∈ V, there is an edge joining v and v′, g ∈Wv, g
′ ∈Wv′}.

In other words, elements of subgroups Wv and Wv′ commute if there is an
edge joining v and v′. This notion is due to Green [420].

A right-angled Artin group is a graph product W = W (X,W) for which
each of the groups Wv is infinite cyclic. For general information about right-
angled Artin groups we refer for instance to Charney [219]. Denote by Σ be
flag complex associated to the finite simplicial graph X. Let P be the poset
of simplices of Σ, both ordered by inclusion where the empty subcomplex
and the empty simplex are allowed and the dimension of the empty simplex
is defined to be −1. Note that W is torsionfree. In the sequel we denote by
rk the number of k-simplices in P.

Let K∗ be any generalized non-equivariant homology theory with values
in Λ-modules. Then⊕

σ∈P
Kn−dim(σ)−1({•})

∼=−→ Kn(BW ).

If we take for K∗ singular homology H∗(−;Λ) with coefficients in Λ, this
boils down to the well-known isomorphism of Λ-modules

(17.43) Λrn−1
∼=−→ Hn(BW ;Λ).

In particular we get the following relation for the Euler characteristics

χ(BW ) = 1− χ(Σ).

Theorem 17.44 (The algebraic K-theory and L-theory of right-
angled Artin groups).

(i) Let R be a regular ring. Then there is an explicit isomorphism of abelian
groups ⊕

σ∈P
Kn−dim(σ)−1(R)

∼=−→ Kn(RW ).

In particular we get Kn(RW ) = 0 for n ≤ −1.
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If we take R = Z, we conclude that Kn(ZW ) for n ≤ −1, K̃0(ZW ), and
Wh(W ) vanish.

(ii) Let R be a ring with involution. Then there is an explicit isomorphism of
abelian groups ⊕

σ∈P
L
〈−∞〉
n−dim(σ)−1(R)

∼=−→ L〈−∞〉n (RW ).

Theorem 17.45 (The topological K-theory of right-angled Artin
groups). There are explicit isomorphisms of abelian groups⊕

σ∈P
Kn−dim(σ)−1(C)

∼=−→ Kn(C∗m(W )) ∼= Kn(C∗r (W ));

⊕
σ∈P

KOn−dim(σ)−1(R)
∼=−→ KOn(C∗m(W ;R)) ∼= KOn(C∗r (W ;R)).

In particular we get an isomorphism of abelian groups

Kn(C∗m(W )) ∼= Kn(C∗r (W )) ∼= Ztn ,

if we put tn =
∑
k∈{−1,0,1,2,...,dim(Σ)}

(n−k) odd

rk.

Exercise 17.46. Let G be Z2 ∗ZZ2 where we consider Z as a subgroup of Z2

by sending n to (n, 0). Compute H∗(G), K∗(C
∗
r (G;C)), and KO∗(C

∗
r (G;R))

17.6.13 Right Angled Coxeter Groups

Recall that a right-angled Coxeter group is a graph product W = W (X,W)
for which each of the groups Wv is cyclic of order two. The group homology,
the algebraic K- and L-groups, and the topological K-groups of right-angled
Coxeter groups, and, more generally, of graph products is computed in [553,
Section 7]. The result are nearly as explicite as in the case of right-angled
Artin groups which we have presented in Subsection 17.6.12.

For instance, the integral group homology Hn(W ;Z) is in degree n ≥ 1 an

explicite F2-vector space, Kn(ZW ) = 0 for n ≤ −1, K̃0(ZW )⊗Z Z[1/2] = 0,
and K1(ZW ) ⊗Z Z[1/2] = 0. Next we state the result for the topological
K-theory.

Theorem 17.47 (The topological K-theory of right-angled Coxeter
groups). There are for every n ∈ Z isomorphisms
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σ∈P

Kn(C)
∼=−→ Kn(C∗m(W )) ∼= Kn(C∗r (W ));

⊕
σ∈P

KOn(R)
∼=−→ KOn(C∗m(W ;R)) ∼= KOn(C∗r (W ;R)).

In particular there are isomorphisms of abelian groups

Kn(C∗m(W )) ∼= Kn(C∗r (W )) ∼=

{
Zr if n is even;

{0} otherwise;

KOn(C∗m(W ;R)) ∼= KOn(C∗r (W ;R)) ∼=


Zr if n ≡ 0 mod 4;

(Z/2)r if n ≡ 1, 2 mod 8;

{0} otherwise,

where r is the number of simplices (including the empty simplex) in P.

The computation of the topological K-theory of the complex reduced
group C∗-algebra of a right-angled Coxeter group is also done by Sanchez-
Garcia [870] using the Davis complex as a model for EW . The real case is
treated by Fuentes [394].

Exercise 17.48. Let G be a group that is isomorphic to some amalgamated
free product of the form (Z/2)3 ∗Z/2 (Z/2)2. Compute Kn(C∗r (G;C)) and
KOn(C∗r (G;R)) for n ∈ Z.

17.6.14 Fundamental Groups of 3-Manifolds

The algebraic K-theory Kn(R[π1(M)]) has been computed for a compact
connected 3-manifoldM in [517] based on Theorem 16.1 (ie) and [510] modulo
Nil-terms of the ring R. We at least present the computation for an already
interesting special case, also including the algebraic L-theory.

Theorem 17.49 (K-and L-groups of 3-manifolds). Let M be a compact
connected orientable 3-manifold with fundamental group π and prime decom-
position M ∼= M1]M2] · · · ]Mr.

(i) Suppose that R is a regular ring. Then we get for n ∈ Z

Kn(Rπ) ∼=
n⊕
i=1

Kn(R[π1(Mi)]);

Kn(Rπ) ∼= 0 if n ≤ −1,

where Kn(RG) is the cokernel of the split injective map Kn(R) →
Kn(RG). If π is torsionfree, then there is an isomorphism
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Hn(Bπ; KR)
∼=−→ Kn(Rπ);

(ii) Let R be a ring with involution. Suppose that π contains no 2-torsion. We
get for n ∈ Z

L
〈−∞〉
n (Rπ) ∼=

n⊕
i=1

L
〈−∞〉
n (R[π1(Mi)])

where L
〈−∞〉
n (RG) is the cokernel of the split injective map L

〈−∞〉
n (R) →

L
〈−∞〉
n (RG).

If π is torsionfree, then there is an isomorphism

Hn(Bπ; L
〈−∞〉
R )

∼=−→ L〈−∞〉n (Rπ).

Proof. We conclude from Theorem 16.1 (ie) that π satisfies the Full Farrell-
Jones Conjecture 13.27.

Note that π ∼= ∗ri=1π1(Mi). The Kurosh Subgroup Theorem, see [678,
Theorem 1.10 on page 178], says for a subgroup H ⊆ π that H ∼= (∗j∈JHj)∗F
where each Hj is the intersection of H with some conjugate of π1(Mi) and
F is a free group. Note that π1(Mi) is either finite or torsionfree since every
irreducible 3-manifold with infinite fundamental group is aspherical by the
Sphere Theorem, see [460, 4.3 on page 40], and a prime 3-manifold that is
not irreducible is a S2 bundle over S1, see [460, Lemma 3.13 on page 28].
Every torsionfree virtually cyclic group is isomorphic to Z. A virtually cyclic
group V is isomorphic to a non-trivial free product L1 ∗ L2 if and only if V
is isomorphic to Z/2 ∗ Z/2. Hence any virtually cyclic subgroup V of π is
isomorphic to Z or Z/2 ∗ Z/2.

(i) Since R is regular, we conclude from Lemma 13.51 and Lemma 13.52 that
the assembly map

Hπ
n (Eπ; KR)→ Kn(Rπ)

is an isomorphism for n ∈ Z. We conclude from Example 15.30 that the
obvious map

⊕n
i=1Kn(R[π1(Mi)])→ Kn(Rπ) is bijective. The claim in the

special case that π is torsionfree follows from Conjecture 6.53, which holds
for π by Theorem 13.62 (xii).

(ii) The assembly map

Hπ
n (Eπ; L

〈−∞〉
R )→ L〈−∞〉n (Rπ)

is an isomorphism by Theorem 13.57 since every virtually cyclic subgroup of
π is isomorphic to Z. We conclude from Example 15.30 that the obvious map⊕n

i=1 L
〈−∞〉
n (R[π1(Mi)])→ L

〈−∞〉
n (Rπ) is bijective. The claim in the special

case that π is torsionfree follows from Conjecture 9.114, which holds for π by
Theorem 13.62 (xii). ut
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Exercise 17.50. Let M be a connected orientable irreducible closed 3-
manifold with infinite fundamental group π. Show that L

〈i〉
n (Zπ) is indepen-

dent of the decoration and that we have isomorphisms

L0(Zπ) ∼= Z⊕ homZ(π,Z/2);

L1(Zπ) ∼= π/[π, π]⊕ Z/2;

L2(Zπ) ∼= Z/2⊕ homZ(π,Z);

L3(Zπ) ∼= Z⊕ (π/[π, π]⊗Z Z/2).

17.7 Applications of Some Computations

17.7.1 Classification of Some C∗-algebras

Theorem 17.38 is an important input in the classification of certain C∗-
algebras associated to number fields by Li-Lück [613]. Here the key point
is the rather surprising result that the topological K-groups are all torsion-
free what is not the case for the group homology. Actually, it is intriguing that
the topological complex K-groups are finitely generated free abelian groups
in many of the examples presented in Subsection 17.6.

Another application of the computation of the topological K-theory of
group C∗-algebras can be found in [310], namely, to the structure of crossed
products of irrational rotation algebras by finite subgroups of SL2(Z).

17.7.2 Unstable Gromov-Lawson Rosenberg Conjecture

We have already discussed in Subsection 14.8.2 that Schick [878] constructed
counterexamples to the unstable version of the Gromov-Lawson-Rosenberg
Conjecture with fundamental group π ∼= Z4 × Z/3. However for appropri-
ate ρ : Z/3 → aut(Z4) the unstable version does hold for π ∼= Z4 oρ Z/3
and dim(M) ≥ 5. This is proved by Davis-Lück [267, Theorem 0.7 and Re-
mark 0.9] based on explicite calculations of the topological K-theory of the
reduced real group C∗-algebra of Z4 oρ Z/3. More infinite groups for which
the unstable version holds are presented in [490, Theorem 6.3].
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17.7.3 Classification of Certain Manifolds with Infinite Not
Torsionfree Fundamental Groups

Manifolds homotopy equivalent to the total space of certain fiber bundles over
lens spaces with tori as fiber are classified by Davis-Lück [268]; see also [969].
Here the key input is the calculation of algebraic K-and L-groups of integral
group rings of groups of the shape π = Zoρ Z/p for odd primes p where the
conjugation action of Z/p on Zn is free outside the origine. Note that π is
infinite and not torsionfree. This is one of the few classification result about
a class of closed manifolds whose fundamental group is not obtained from
torsionfree and finite groups using amalgamated free products and HNN-
extensions.

17.8 Notes

The lower and middle algebraic K-theory of integral group rings of certain
reflection groups has been computed by Lafont-Ortiz [590] and by Lafont-
Margurn-Ortiz [588], of Γ3 := O+(3, 1) ∩ GL4(Z) by Ortiz [765, 766], of
Bianchi groups by Berkove-Farrell-Pineda-Pearson [118], and of pure braid
groups by Aravinda-Farrell-Roushon [37]. The lower and middle algebraic
K-theory of integral group rings or mapping class group of genus 1 is com-
puted in [119]. The topological K-theory of the complex group C∗-algebra
of cocompact 3-dimensional hyperbolic reflection group is computed by by
Lafont-Ortiz-Rahm-Sanchez-Gracia [592]. Computations of the algebraic K-
groups Kn(RG) for Artin groups G of dihedral type can be found in [33].
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Chapter 18

Assembly Maps

18.1 Introduction

In this chapter we discuss assembly maps and the assembly principle im
general.

We recall the homological approach in Section 18.2 which we have used in
this book.

We give the version in terms of spectra in Section 18.3. Actually, in all
concrete situations, such as in the Farrell-Jones Conjecture for K-and L-
theory and pseudoisotopy or the Baum-Connes Conjecture, the assembly map
can be implemented in terms of spectra. This can easily be identified with the
elementary approach in terms of homotopy colimits, which nicely illustrates
the name assembly, but works only, if we confine ourselves to classifying
spaces of families of subgroups, see Section 18.4. The approach in terms of
homotopy colimits is the quickest and most natural approach for a homotopy
theorist.

The universal property of assembly is explained in Section 18.5. Roughly
speaking, it says that the assembly map is the best approximation of a weakly
homotopy invariant functor E : G-CW-COM → SPECTRA from the left by
a weakly excisive functor G-CW-COM → SPECTRA, where weakly excisive
essentially means that after taking homotopy groups the functor yields a G-
homology theory. This is very helpful to identify the various versions of the
assembly maps appearing in the literature with our homological approach
since the constructions of the assembly maps can be very complicated and is
much easier to use the universal property to establish the desired identifica-
tions than to go through the actual definitions. The universal property will
be exploited to identify the various assembly maps in Section 18.6.

This universal approach explains the philosophical background of assembly
and presents a uniform approach to the assembly map in all cases, such as
the Farrell-Jones Conjecture or the Baum-Conjecture. It is important to have
also the other more geometric or operator-theoretic definitions of assembly
maps in terms of surgery theory or index theory at hand in order to apply
the Farrell-Jones Conjecture and the Baum-Connes Conjecture to geometric
problems, such as the topological rigidity of closed aspherical manifolds or
the existence of a Riemannian metric with positive sectional curvature.

The homological or homotopy theoretic approach to assembly maps is
best suited for computations based on the Isomorphism Conjectures, but
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not necessarily for their proofs, where the approach using index theory or
controlled topology come into play.

18.2 Homological Approach

The homological version of assembly is manifested in the Meta-Isomorphism
Conjecture 15.2. Recall that it predicts for a group G, a family F of subgroups
of G, and a G-homology theory HG∗ in the sense of Definition 12.1 that the
map induced by the projection pr : EF (G)→ G/G for EF (G) the classifying
space of the family F in the sense of Definition 11.18,

(18.1) Hn(pr) : HGn (EF (G))→ HGn (G/G)

is bijective for all n ∈ Z. The various conjectures due to Baum-Connes and
Farrell-Jones are special cases where one specifies F and HG∗ .

18.3 Extension from Homogenous Spaces to
G-CW -Complexes

Let E be a covariant Or(G)-spectrum, i.e., a covariant functor E : Or(G)→
SPECTRA. We get an extension of E to the category G-CW-COM of G-CW -
complexes by

(18.2) E% : G-CW-COM→ SPECTRA, X 7→ mapG(−, X)+ ∧Or(G) E,

where mapG(−, X) and ∧Or(G) have been defined in Example 12.24 and
in (12.25). The projection pr : EF (G) → G/G for EF (G) induces a map of
spectra

(18.3) E%(pr) : E%(EF (G))→ E%(G/G).

After taking homotopy groups we get for all n ∈ Z a homomorphism

(18.4) πn
(
E%(pr)

)
: πn

(
E%(EF (G))

)
→ πn

(
E%(G/G)

)
.

We have constructed a G-homology theory HG
∗ (−; E) with the property that

HG
n (G/H; E) ∼= πn(E(G/H)) holds for all n ∈ Z and subgroups H ⊆ G in

Theorem 12.27. The G-homology theories relevant for the Baum-Connes and
the Farrell-Jones Conjecture are given by specifying such covariant functors
E. It follows essentially from the definitions that the map (18.1) for HG∗ =
HG
∗ (−; E) agrees with the map (18.4).
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18.4 Homotopy Colimit Approach

Consider a covariant functor E : Or(G) → SPECTRA. Recall that OrF (G)
denotes the F-restricted orbit category, see Definition 2.64. If theG-homology
theory HG∗ is given by HG

∗ (−; E), one can identify the assembly map (18.4)
with the map

(18.5) πn(p) : πn
(
hocolimOrF (G) E

)
→ πn(E(G/G))

where the map of spectra

p : hocolimOrF (G) E→ hocolimOr(G) E = E(G/G)

comes from the inclusion of categories OrF (G) → Or(G) and the fact that
G/G is a terminal object in Or(G). For more information about homotopy
colimits and the identification of the maps (18.1), (18.4), and (18.5) we refer
to [265, Sections 3 and 5].

This interpretation is one explanation for the name assembly. If the assem-
bly map (18.5) is bijective for all n ∈ Z, or, equivalently, the map p above is
is a weak homotopy equivalence, we have a recipe to assemble E(G/G) from
its values E(G/H), where H runs through F . The idea is tha F consists
of well-understood subgroups, for which one knows the values E(G/H) for
H ⊆ G and hence hocolimOrF (G) E, whereas E(G/G) is the object, which
one wants to understand and is very hard to access.

18.5 Universal Property

In this section we characterize assembly maps by a universal property. This
is useful for identifying different constructions of assembly maps.

Lemma 18.6. Let E be a covariant Or(G)-spectrum. Then:

(i) The canonical map

E%(X) ∪E%(f) E%(Y )→ E%(X ∪f Y )

is an isomorphism of spectra where (X,A) is a G-CW -pair and f : A→ Y
is a cellular G-map;

(ii) The canonical map

colimi∈I E%(Xi)→ E%(X)

is an isomorphism of spectra where {Xi | i ∈ I} is a directed system of
G-CW -subcomplexes of the G-CW -complex X directed by inclusion and
satisfying X =

⋃
i∈I Xi;
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(iii) The canonical map

Z+ ∧E%(X)→ E%(Z ×X)

is an isomorphism of spectra where Z is a CW -complex (with trivial G-
action) and X is a G-CW -complex;

(iv) The canonical map
E%(G/H)→ E(G/H)

is an isomorphism of spectra for all H ∈ F .

Proof. One easily checks that the H-fixed point set functor mapG(G/H,−)
commutes with attaching a G-space to a G-space along a G-map and with
directed unions of G-CW -subcomplexes. Assertions (i) and (ii) follow from
the fact that − ∧Or(G) E commutes with colimits since it has an right ad-
joint, see [265, Lemma 1.5]. Assertions (iii) and (iv) follow by inspecting the
definition of E%. ut

Lemma 18.7. Let E be a covariant Or(G)-spectrum. Then the extension
E 7→ E% is uniquely determined up to isomorphism of G-CW-COM-spectra
by the properties of Lemma 18.6.

Proof. Let E 7→ E$ be another such extension. There is a (a priori not nec-
essarily continuous) set-theoretic natural transformation

T(X) : E%(X) = X+ ∧Or(G) E −→ E$(X)

which sends an element represented by (x : G/H −→ X, e) in mapG(G/H,X)×
E(G/H) to E$(x)(e). Since any G-CW -complex is constructed from orbits
G/H with H ∈ F via products with disks and disjoint unions, attaching
a G-space to a G-space along a G-map, and is the directed union over its
skeletons, and T(G/H) is an isomorphism of spectra for H ⊆ G, T(X) is an
isomorphism of spectra for all G-CW -complexes X. ut

Lemma 18.7 is a characterization of E 7→ E% up to isomorphism. Next we
give a homotopy theoretic characterization.

Definition 18.8 ((Weakly) excisive). We call a covariant functor

E : G-CW-COM→ SPECTRA

(weakly) homotopy invariant if it sends G-homotopy equivalences to (weak)
homotopy equivalences of spectra.

The functor E is (weakly) excisive if it has the following four properties:

• It is (weakly) homotopy invariant;
• The spectrum E(∅) is (weakly) contractible;



18.5 Universal Property 549

• It respects homotopy pushouts up to (weak) homotopy equivalence, i.e.,
if the G-CW -complex X is the union of G-CW -subcomplexes X1 and X2

with intersection X0, then the canonical map from the homotopy pushout
of E(X2)←− E(X0) −→ E(X2) to E(X) is a (weak) homotopy equivalence
of spectra;

• It respects disjoint unions up to (weak) homotopy, i.e., the natural map∨
i∈I E(Xi)→ E(

∐
i∈I Xi) is a (weak) homotopy equivalence for all index

sets I.

Exercise 18.9. Let E : CW-COM → SPECTRA be an excisive functor for
the trivial group. Show that the functor G-CW-COM → SPECTRA sending
X to E(X/G) is excisive.

Notation 18.10. If E : G-CW-COM→ SPECTRA is a covariant functor, we
denote (E|Or(G))% by E% again where E|Or(G) is the composite of E with
the obvious inclusion Or(G)→ G-CW-COM.

The following result has been proved for G = {1} in Weiss-Williams [982].

Theorem 18.11 (Universal Property of assembly).

(i) Suppose E : Or(G)→ SPECTRA is a covariant functor. Then E% is exci-
sive;

(ii) Suppose E : Or(G)→ SPECTRA is a covariant functor. Then we obtain a
G-homology theory HG

n (−; E) in the sense of Definition 12.1 from Theo-
rem 12.27, and we get for every pair (X,A) of G-CW -complexes (X,A) a
natural isomorphism

HG
n (X,A; E) ∼= coker

(
πn(E%(∅+))→ πn(E%(X/A))

)
.

If A = ∅, this becomes an isomorphism

HG
n (X; E) ∼= πn(E%(X));

(iii) Let T : E → F be a transformation of (weakly) excisive functors E and
F from G-CW-COM to SPECTRA so that T(G/H) is a (weak) homotopy
equivalence of spectra for all H ⊆ G.
Then T(X) is a (weak) homotopy equivalence of spectra for all G-CW -
complexes X;

(iv) For any (weakly) homotopy invariant functor E from G-CW-COM to
SPECTRA, there is a (weakly) excisive functor

E% : G-CW-COM→ SPECTRA

and natural transformations

AE : E% → E;

BE : E% → E%,
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which induce (weak) homotopy equivalences of spectra AE(G/H) for all
H ⊆ G and (weak) homotopy equivalences of spectra BE(X) for all G-
CW -complexes X.
The constructions E%, E%, AE and BE are natural in E.
Moreover, E is (weakly) excisive if and only if AE(X) is a (weak) homo-
topy equivalence of spectra for all G-CW -complexes X.

Proof. (i) follows from Lemma 18.6 after one has shown that in the situation
of Lemma 18.6 (i) the canoncial map from the homotopy pushout of spectra
to the pushout of spectra is a weak homotopy equivalence. This follows from
the fact that the inclusion of E%(A)→ E%(X) is on each level a cofibration
of spaces.

(ii) There is an obvious G-homotopy equivalence of pointed G-CW -complexes
X+ ∪A+

cone(A+)→ X/A. Hence we get from the definitions

HG
n (X,A; E) = πn

(
mapG(−, X/A) ∧Or(G) E

)
.

Now the assertion follows from the cofibration sequence of spectra

E%(∅+) = mapG(−, ∅+)+ ∧Or(G) E

→ E%(X/A) = mapG(−, X/A)+ ∧OrF (G) E→ mapG(−, X/A)∧OrF (G) E.

(iii) Use the fact that a (weak) homotopy colimit of homotopy equivalences
of spectra is again a (weak) homotopy equivalence of spectra.

(iv) See [265, Theorem 6.3]. ut

Exercise 18.12. Show that a covariant functor E : G-CW-COM→ SPECTRA
is weakly excisive if and only if the assignment sending a pair (X,A) of G-
CW -complexes to coker

(
πn(E(∅+)) → πn(E(X/A))

)
defines a G-homology

in the sense of Definition 12.1.

Exercise 18.13. Let E : G-CW-COM → SPECTRA be a weakly excisive
functor such that πn(E(G/H)) is finitely generated for every H ⊆ G and
n ∈ Z. Then πn(E(X)) is finitely generated for every finite G-CW -complex
X and n ∈ Z.

Definition 18.14 (Homotopy theoretic assembly transformation).
Given a covariant functor E : G-CW-COM → SPECTRA, we call the trans-
formation appearing in Theorem 18.11 (iv)

AE : E% → E

the homotopy theoretic assembly transformation.

Remark 18.15 (No continuity condition E). One may be tempted to
define a natural transformation S : E% → E as indicated in the proof of
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Lemma 18.7. Then S(X) is a well-defined bijection of sets but is not neces-
sarily continuous because we do not want to assume that E is continuous, i.e.,
that the induced map from homC(X,Y ) to homC(E(X),E(Y )) is continuous
for all G-CW -complexes X and Y . This is the reason why we have to pass
to the more complicated construction of E% and only obtain a zigzag

E%
BE←−− E% AE−−→ E,

which suffices for all our purposes. The construction of this zigzag uses the
(weak) homotopy invariance of E and does not require any continuity condi-
tion for E.

Theorem 18.11 implies

Corollary 18.16. Let E : G-CW-COM → SPECTRA be a weakly excisive
functor. Denote by E|Or(G) its restriction to a covariant functor Or(G) →
SPECTRA.

Then we obtain for all n ∈ Z and G-CW -complex X an isomorphism,
natural in X,

πn(E(X))
∼=−→ HG

n (X; E|Or(G)).

In particular we get for every family of subgroups F and n ∈ Z a commutative
diagram with isomorphisms as vertical arrows

πn(E(EF (G)))
πn(E(pr)) //

∼=
��

πn(E(G/G))

∼=
��

HG
n (EF (G); E|Or(G))

HGn (pr;E|Or(G)) // HG
n (G/G; E|Or(G)).

Exercise 18.17. Consider the covariant functor

E : G-CW-COM→ SPECTRA, X 7→ KR(Π(EG×G X))

where Π(EG×GX) is the fundamental groupoid of the space EG×GX and
KR : GROUPOIDS → SPECTRA has been defined in (12.44). Suppose that
E is weakly excisive.

Show that then for every family F of subgroups the assembly map induced
by the projection EF (G)→ G/G

HG
n (EF (G); KR)→ HG

n (G/G; KR) = Kn(RG)

is bijective for all n ∈ Z.

Remark 18.18 (Universal property of the homotopy theoretic as-
sembly transformation). Next we explain why Theorem 18.11 character-
izes the homotopy theoretic assembly map
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AE : E% −→ E

in the sense that it is the universal approximation from the left by a
(weakly) excisive functor of a (weakly) homotopy invariant functor E from
G-CW-COM to SPECTRA up to (weak) homotopy equivalence. Namely, let
T : F → E be a transformation of covariant functors from G-CW-COM to
SPECTRA such that F is (weakly) excisive and T(G/H) is a (weak) homo-
topy equivalence for all H ⊆ G. Then for any G-CW -complex X the following
diagram commutes

F%(X)

T%(X)

��

AF(X) // F(X)

T(X)

��
E%(X)

AE(X)
// E(X)

and AF(X) and T%(X) are (weak) homotopy equivalences. Hence one may
say that T(X) factorizes over AE(X) up to (weak) homotopy equivalence.

In particular we obtain for every G-CW -complex X a commutative dia-
gram with an isomorphism as vertical arrow

πn(F(X))

πn(T(X))

++
∼=πn(T%(X))◦πn(AF(X))−1

��

πn(E(X)).

πn(E%(X))

πn(AE(X))

44

18.6 Identifying Assembly Maps

In this section we explain and summarize that we can identify all the various
assembly maps we have studied so far.

We recall that we have the following versions of assembly maps.

• The Meta-Isomorphism Conjecture 15.2 with respect to the G-homology
theory HG∗ and the family F of subgroups of G, where the assembly map

Hn(pr) : HGn (EF (G))→ HGn (G/G)

comes from the projection pr : EF (G)→ G/G;
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• The Meta-Isomorphism Conjecture 15.2, where the equivariant homology
theory comes from a functor GROUPOIDS→ SPECTRA respecting equiv-
alences, see Theorem 12.30 and Section 12.5;

• The Meta-Isomorphism Conjecture 15.36 for functors from spaces to spec-
tra;

• The homotopy theoretic assembly transformation in the sense of Defini-
tion 18.14;

• For the L-theoretic Farrell-Jones Conjecture and G the fundamental group
of an aspherical closed manifold, the assembly map given by taking surgery
obstructions, see the sketch of the proof of Theorem 9.168 in Subsec-
tion 9.15.3;

• For the Baum-Connes Conjecture in terms of index theory, see Sec-
tion 14.2.

Remark 18.19 (The homotopy theoretic assembly transformation
and the Meta-Isomorphism Conjecture 15.39 for functors from
spaces to spectra with coefficients). Consider a functor S : SPACES →
SPECTRA which respects weak equivalences and disjoint unions. Given a
group G and a free G-CW -complex Z, we get a functor functor

SGZ : G-CW-COM→ SPECTRA, X 7→ S(X ×G Z)

whose restriction to Or(G) is denoted in the same way and has already been
introduced in (15.38). The Meta-Isomorphism Conjecture 15.39 for functors
from spaces to spectra with coefficients predicts for a family F of subgroups
of G that the map

(18.20) HG
n (pr; SGZ ) : HG

n (EF (G); SGZ )→ HGn (G/G; SGZ )

induced by the projection pr : EF (G)→ G/G is bijective for all n ∈ Z. This
map can be identified with the corresponding map for the homotopy theoretic
assembly map

(18.21) πn
(
ASGZ

(EF (G))
)

: πn
(
(SGZ )%(EF (G))

)
→ πn

(
SGZ (EF (G))

)
by the following argument. Because of Theorem 18.11 (ii) the map (18.20)
can be identified with the map induced by the projection pr : EF (G)→ G/G

πn
(
(SGZ )%(pr)

)
: πn

(
(SGZ )%(EF (G))

)
→ πn

(
(SGZ )%(G/G)

)
,

and hence by Theorem 18.11 (iv) with the map

(18.22) πn
(
(SGZ )%(pr)

)
: πn

(
(SGZ )%(EF (G))

)
→ πn

(
(SGZ )%(G/G)

)
.

We have the following commutative diagram
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(SGZ )%(EF (G))
(SGZ )%(pr) //

A
SG
Z

(EF (G))

��

(SGZ )%(G/G)

A
SG
Z

(G/G)

��
SGZ (EF (G))

(SGZ )%(pr)

// SGZ (G/G).

The right vertical arrow is a weak homotopy equivalence by Theorem 18.11 (iv).
Since Z is a free G-CW -complex and EF (G) is contractible (after forgetting
the group action), the map id×G pr: Z ×G EF (G)→ Z ×G G/G is a homo-
topy equivalence and hence the lower horizontal arrow is a weak homotopy
equivalence. Hence we get an identification of the maps (18.21) and (18.22).
Thus we have identified the maps (18.20) and (18.21).

Example 18.23 (The Farrell-Jones Conjecture and the Baum-Connes
Conjecture in the setting of the homotopy theoretic assembly trans-
formation). In the sequel Π(X) denotes the fundamental groupoid of a
space X. If we take in Remark 18.19 the covariant functor S : SPACES →
SPECTRA to be the one, which sends a spaceX to KR(Π(X)) or L

〈−∞〉
R (Π(X))

respectively, see Theorem 12.43, then we conclude from Example 15.37 and
Remark 18.19 that the assembly map appearing in the K-theoretic Farrell-
Jones Conjecture 13.1 with coefficients in the ring R

HG
n (pr) : HG

n (EVCY(G); KR)→ HG
n (G/G; KR) = Kn(RG)

or the assembly map appearing in the L-theoretic Farrell-Jones Conjec-
ture 13.4 with coefficients in the ring with involution R

HG
n (pr) : HG

n (EVCY(G); L
〈−∞〉
R )→ HG

n (G/G; L
〈−∞〉
R ) = L〈−∞〉n (RG)

respectively can be identified with the map induced on homotopy groups by
the homotopy theoretic assembly map

πn
(
SGEG(EVCY(G))%(pr)

)
: πn

(
(SGEG)%(EVCY(G))

)
→ πn

(
(SGEG)%(EVCY(G))

)
.

In the Baum-Connes setting we get an identification of the assembly map

HG
n (pr; KTOP) : HG

n (EFIN (G); KTOP)→ HG
n (G/G; KTOP) = Kn(C∗r (G))

with the map

πn
(
SGEG(EFIN (G))%(pr)

)
: πn

(
(SGEG)%(EFIN (G))

)
→ πn

(
(SGEG)%(EFIN (G))

)
,

if we take S = KTOP(Π(X)), see Theorem 12.43, and analogously in the real
case.
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We have explained in Remark 15.42 the identification of the original for-
mulation of the fibered Farrell-Jones Conjecture for covariant functors from
SPACES to SPECTRA, e.g., for pseudoisotopy, K-theory and L-theory, due to
Farrell-Jones [351, Section 1.7 on page 262] with the setting we are using in
the Meta-Isomorphism Conjecture 15.39 for functors from spaces to spectra
with coefficients.

We have discussed the various Baum-Connes assembly maps and their
relations already in Sections 14.2 and 14.3.

We have explained the relationship between the L-theoretic assembly map
in terms of spectra, which we are using here, and the surgery obstruction
map appearing in the geometric Surgery Exact Sequence the sketch of the
proof of Theorem 9.168 in Subsection 9.15.3.

18.7 Notes

The Baum-Connes assembly maps in terms of localizations of triangulated
categories are considered in [497, 498, 499, 701, 702, 703]. A categorial ap-
proach in terms of codescent is presented in [61].

Chain complex versions of the L-theoretic assembly map for additive cat-
egories are intensively studied by Ranicki [823] and Kühl-Macko-Mole [579,
Section 11] emphasizing the aspect of comparing local Poincaré duality and
global Poincaré duality.

The idea of the geometric assembly map is due to Quinn [807, 812] and its
algebraic counterpart was introduced by Ranicki [823]. See also Loday [620].
The basic and uniform approach to assembly as presented in this chapter is
sometimes called the Davis-Lück approach and was developed in [265].

For more information about assembly maps we refer for instance to the
survey article [648].

Comment 25 (by W.): Are there other places where we should say
something about the name assembly, for instance in the introduction or in
part III?
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Chapter 19

Motivation, Summary, and History of
the Proofs of the Farrell-Jones
Conjecture

19.1 Introduction

The purpose of this chapter is to present basic ideas and motivations for the
proofs of the Farrell-Jones Conjecture and some information about their long
history without getting lost in technical details. So it will be a soft introduc-
tion to the methods of proofs conveying only ideas. Moreover, we also want
to provide some insight why some input such as controlled topology, trans-
fers, and flows occurs, which one might not expect at the first glance since so
far the assembly maps are purely homotopy theoretic notions. We refer the
interested reader, who wants to see more details, to Chapters 21, 22, 23, 24,
and 25.

We also want to explain why it is rather difficult to say something about all
the proofs in full detail since the proofs and their methods have been moving
targets; many new ideas and technical modifications have entered during
the last decades until today so that sometimes the original ideas cannot
be recognized anymore and the overwhelming variety of the different proofs
cannot be presented in detail in this book. The most advanced presentation
of a framework of a proof will be given in Chapter 25 where we will work
in the setting of higher categories as coefficients, which is more general than
considering additive categories or rings as coefficients. We will not deal with
the Farrell-Jones Conjecture for reductive p-adic groups, see Bartels-Lück [81,
83], which is the next level of complexity since we refine ourselves in this book
to discrete groups and do not consider topological groups.

The original formulation of the Farrell-Jones Conjecture appears in [351,
1.6 on page 257]. Of course it had many previous versions, some of them can
be found in Subsection 13.11.1.

19.2 Homological Aspects

We have already explained in the Introduction of this book, see Chapter 1,
how homological aspects concerning the topological K-theory K∗(C

∗
r (G))

of the reduced group C∗-algebra C∗r (G) of G and the algebraic K-theory

K∗(RG) and algebraic L-theory L
〈−∞〉
∗ (RG) of the group ring RG lead to

the assembly maps

557
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KG
n (EVCY(G))

∼=−→ Kn(C∗r (G));

HG
n (EVCY(G); KR)

∼=−→ Kn(RG);

HG
n (EFIN (G); L

〈−∞〉
R )

∼=−→ L〈−∞〉n (RG).

They appear in the Baum-Connes Conjecture 1.1 and the Farrell-Jones Con-
jectures 1.2 and 1.3 which predict that these assembly maps are bijections
for all n ∈ Z. Moreover we have explained in Chapter 18 that, after passing

to the spectrum version of K∗(C
∗
r (G)), K∗(RG), and L

〈−∞〉
∗ (RG) as functors

from the category of G-CW -complexes to the category of spectra, these as-
sembly maps are characterized by the universal property that they are the
best approximation from the left by an excisive functor and do have inter-
pretations in terms of homotopy colimits over the orbit category. So the first
attempt to prove these conjectures is to show that these functors are exci-
sive. However, this direct strategy has never really worked out, at least not
with further sophisticated input. The problem is to isolate the reason why
these functors are excisive in general. It is unclear which basic properties of
the K- and L-theory of group rings or reduced group C∗-algebras guarantee
excisiveness.

19.3 Constructing Detection maps

The next idea is just to construct an inverse to these assembly maps. In the
Baum-Connes setting this is a successful strategy relying on the equivariant
Kasparov product and the Dirac-Dual Dirac Method, see Section 26.2. In the
Farrell-Jones setting this has nearly never worked out. The main reason is
that it is hard to construct detecting maps with the algebraic K- or L-theory
of group rings as source. There are interesting attempts to do this, most
prominently the cyclotomic trace for the algebraic K-theory of groups rings,
or Chern characters for the topological K-theory of C∗-algebras with values
in cyclic homology, but these give inverses to the assembly maps only in a
very few instances. However, they can be used to show injectivity results, as
explained, see Sections 16.5 and 16.6. Note that surjectivity results are more
valuable than injectivity results since they give some insight about elements
in the K- or L-groups under consideration and imply many other conjectures,
whereas injectivity only describes some portion of the K- or L-groups under
consideration and do not have so many consequences with the exception of the
Novikov Conjecture which is essentially an injectivity claim about assembly
maps. Moreover, surjectivity result can often be easily turned into bijectivity
results by considering relative versions.

In the Farrell-Jones setting the most successful method for proving bijec-
tivity results is controlled topology, as motivated and explained next.
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19.4 Controlled Topology

19.4.1 Two Classical Results

Let α be an open cover of a space Y . Two maps f, g : X → Y are called
α-close if for every x ∈ X there is Ux ∈ α satisfying f(x), g(x) ∈ Ux. They
are called α-homotopic if there exists a homotopy h : X × [0, 1] → Y such
that h0 = f and h1 = g hold and for every x ∈ X there is Ux ∈ α satisfying
h({x} × [0, 1]) ⊆ Ux. A map f : X → Y is an α-domination if there is a
map g : Y → X such that f ◦ g is α-homotopic to the identity idY . In such
a situation, g is called a right α-homotopy inverse for f . We call f : X → Y
an α-homotopy equivalence if f is an α-domination and, for some right α-
homotopy inverse g, the composite g ◦ f is f−1(α)-homotopic to the identity
idX where f−1(α) denotes the cover {f−1(U) | U ∈ α} of X. We call g an
α-homotopy inverse of f .

Recall that a map f : X → Y is proper if f−1(C) is compact for every
compact subset C ⊆ Y .

Obviously a homeomorphism f : X → Y is an α-homotopy equivalence for
every α and a proper map.

The next result is due to Chapman and Ferry, see [218].

Theorem 19.1 (α-Approximation Theorem). Let N be a topological
manifold of dimension n and α be an open cover of N . Then there is an open
cover β of N with the following property: If M is a topological manifold and
f : (M,∂M) → (N, ∂N) is a proper β-homotopy equivalence of pairs such
that either n ≥ 6 or (n ≥ 5 and ∂f is a homeomorphism) hold, then f is
α-close to a homeomorphism.

The following result is a special case of a theorem due to Ferry [364,
Theorem 1]. Its proof relies on the α-Approximation Theorem 19.1.

Theorem 19.2. Let M be a closed topological manifold of dimension n ≥ 5.
Equip M with a metric generating the given topology. Then there is ε > 0
with the following property: Every surjective map f : M → N to some closed
manifold N of dimension n for which the diameter of f−1(y) for every y ∈ N
is less than ε is homotopic to a homeomorphism.

The next result follows from Quinn [808, Theorem 2.7] which is closely
related to the work of Chapman and Ferry [217, 218, 363].

Let M0 be a closed topological manifold of dimension n ≥ 5. Equip M with
a metric generating the given topology. An h-cobordism (W ;M0,M1, f0, f1)

is called ε-controlled if for i = 0, 1 the composite Mi
fi−→ ∂iW

ji−→ W for ji
the inclusion possesses a retraction ri : W → Mi coming with a homotopy
Hi : ji ◦ ri ' idW such that for every w ∈ W the subset of M0 given by
r0 ◦Hi({w}× [0, 1]) has a diameter less than ε, in other words, the images of



560 19 Motivation, Summary, and History of the Proofs of the Farrell-Jones Conjecture

all the tracks of the two homotopies H0 and H1 under r0 have diameter less
than ε.

An ε-controlled h-cobordism (W ;M0,M1, f0, f1) has an ε-product structure

if there is additionally a homeomorphism F : W
∼=−→ M0 × [0, 1] such that

F ◦ j0 ◦ f0 sends x ∈ M0 to (x, 0) and r0 and prM0
◦F for the projection

prM0
: M0 × [0, 1] → M0 are ε-homotopic, in the sense that there exists a

homotopy L : W × [0, 1] → M0 between them such that the diameter of the
subset L({x}×[0, 1]) of M0 is less than ε for every w ∈W . In particular every
ε-controlled h-cobordism (W ;M0,M1, f0, f1) with an ε-product structure is
trivial and hence has vanishing Whitehead torsion.

Theorem 19.3 (Thin h-Cobordism Theorem). Let M0 be a closed to-
pological manifold of dimension n ≥ 5. Equip M0 with a metric generating
the given topology.

Then for every ε > 0 there exists δ with 0 < δ < ε such that every topo-
logical h-cobordism (W ;M0,M1, f0, f1) over M0 which is δ-controlled has an
ε-product structure. In particular there exists a δ > 0 such that every every
topological h-cobordism (W ;M0,M1, f0, f1) over M0 which is δ-controlled is
trivial.

19.4.2 The Strategy of Gaining Control

Let N and M0 be closed topological manifold of dimension n ≥ 5 equipped
with a metric generating the given topology. Then there exists ε > 0 with
the following properties:

• Let M be a closed manifold and f : M → N be a homotopy equivalence
which is ε-controlled in the sense that it is α-homotopy equivalence for the
open covering α of N consisting of all open balls of radius ε/2. Then by the
α-Approximation Theorem 19.1 f is homotopic to a homeomorphism and
in particular has trivial Whitehead torsion. So in order to prove that N is
topological rigid in the sense of Definition 9.159, it suffices to show that
a given homotopy equivalence g : M → N is homotopic to an ε-controlled
homotopy equivalence. Roughly speaking, to achieve up to homotopy a
homeomorphism, it suffices to gain ε-control.

• An h-cobordism (W ;M0,M1, f0, f1) over M0 is trivial and hence has van-
ishing Whitehead torsion if we can show that it is ε-controlled. This follows
from the Thin h-Cobordism Theorem 19.3. In particular in order to show
that Wh(π1(N)) vanishes, it suffices to show because of the s-Cobordism
Theorem 3.47 that, for any h-cobordism (W ;M0,M1, f0, f1) over M0, we
can find another an h-cobordism (W ′;M0,M

′
1, f
′
0, f
′
1) over M0 such that

(W ;M0,M1, f0, f1) and (W ′;M0,M
′
1, f
′
0, f
′
1) have the same Whitehead tor-

sion and the new h-cobordism (W ′;M0,M
′
1, f
′
0, f
′
1) is ε-controlled.
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Hence to prove the Farrell-Jones Conjecture 3.110 for K̃0(ZG) and Wh(G)
for torsionfree G or the Borel Conjecture 9.160, a promising strategy is to
gain control, i.e., turning an h-cobordism or a homotopy equivalence to an ε-
controlled one without changing the associated class in the Whitehead group.
(One can also achieve the K̃0(ZG) part of Conjecture 3.110 using the Bass-
Heller-Swan decomposition 3.73 and replacing N by N × Tn.)

This turns to be out a major breakthrough since it allows to bring in
completely new methods, namely, geometric methods, into the play. This
was pioneered by Farrell and Jones, in particular in their seminal papers [344,
345]. They used the Thin h-Cobordism Theorem 19.3, which did not play a
role anymore in more recent proofs.

19.4.3 Controlled Algebra

Fix an infinite cardinal κ. Let Fκ(R) be a small model for the category of
all free R-modules which admit a basis B with card(B) ≤ κ and possesses
direct sums over index sets of cardinality ≤ κ.

We have to consider this cardinal κ and Fκ(R) and consider only countable
groups and spaces whose cardinality is less or equal to κ for set theoretic
reasons which the reader may ignore in the sequel. Denote by Ff (R) ⊆ Fκ(R)
the full subcategory consisting of all free R-modules which admit a finite basis
B. For more information about these issues and Fκ(R) see for instance [90,
Lemma 9.2].

Definition 19.4 (Geometric modules). Let G be a group, R be a ring,
and X be a free G-space with card(X) ≤ κ. We define the additive category
GMG(X) of geometric modules over X as follows.

An object M is a collection {Mx | x ∈ X} of objects in Fκ(R) such that
Mgx = Mx holds for every x ∈ X and g ∈ G. Define the support of an object

supp(M) = {x ∈ X |Mx 6= {0}} ⊆ X.

Given two objects M = {Mx | x ∈ X} and N = {Ny | y ∈ X}, a morphism
f : M → N consists of a collection of R-homomorphisms f = {fx,y : Mx →
Ny | x, y ∈ X} such that fgx,gy = fx,y holds for x, y ∈ X and g ∈ G and for
every x ∈ x the set {y ∈ Y | fx,y 6= 0} is finite and for every y ∈ X the set
{x ∈ x | fx,y 6= 0} is finite. Define the support of a morphism

supp(f) = {(x, y) ∈ X ×X | fx,y 6= {0}} ⊆ X ×X.

If P = {Pz | z ∈ X} is an object and g : N → P is a morphism, define the
composite

g ◦ f = {(g ◦ f)x,z : Mx → Pz | x, z ∈ X} : M → P
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by (g ◦ f)x,z =
∑
y∈Y gy,z ◦ fx,y. Define the identity

idM = (idM )x,y | x, y ∈ X} : Mx →My

of the object M by (idM )x,y = idMx for x = y and by (idM )x,y = 0 for x 6= y.
Given two morphisms f, g : M → N and m,n ∈ Z, define the morphism

m · f + n · g : M → N by (m · f + n · g)x,y = m · fx,y + n · gx,y for x, y ∈ X.
The direct sum of two objects M and N is defined by (M ⊕N)x = Mx⊕Nx
for x ∈ X.

Denote by GMG(X)f the full additive subcategory of GMG(X) consisting
of those objects M = {Mx | x ∈ X} such that Mx belongs to Ff (R) for all
x ∈ X and the support supp(M) = {x ∈ X | Mx 6= {0}} is G-cofinite,
i.e., there is a finite subset S of X with supp(M) = G · S, or, equivalently,
G\ supp(M) is finite.

The additive category GMG(X) is equivalent to the additive category
Fκ(RG). Namely, there is an equivalence of additive categories

(19.5) F : GMG(X)→ Fκ(RG)

defined as follows. Given an object M = {Mx | x ∈ X} in GMG(X), we
obtain an RG-module whose underlying R-module is

⊕
x∈XMx and g ∈ G

acts by sending {mx | x ∈ X} to {mg−1x | x ∈ X}. The G-action is well-
defined since Mx = Mgx holds for x ∈ X and g ∈ G by assumption. Since G
acts freely on X, each Mx is free, F (M) is isomorphic to the free RG-module
RG⊗R

(⊕
y∈SMy

)
for a set S with supp(M) = G · S. Hence we can choose

an object VM in Fκ(RG) and an RG-isomorphism ξM :
⊕

x∈XMx

∼=−→ VM
and define F (M) = VM .

Given a morphism f = {fx,y : Mx → Ny | x, y ∈ X} : M → N we get an
RG-homomorphism ηf :

⊕
x∈XMx →

⊕
y∈X Ny by sending (ux | x ∈ X} to

{vy | y ∈ X} with vy =
∑
x∈X fx,y(ux). Now define F (f) to be the composite

ξN ◦ ηf ◦ ξ−1
M .

The functor F induces an equivalence of additive categories

(19.6) F f : GMG(X)f → Ff (RG)

Exercise 19.7. Show that the functors F and F f are equivalences of additive
categories.

The additive categories GMG(X) and GMG(X)f becomes much more
interesting than Fκ(RG) and Ff (RG) if we bring the notion of control into
play. Namely, suppose that we have a metric space Z = (Z, d) with free
isometric G-action together with a G-map p : X → Z. Given ε ≥ 0, we
call a morphism f = {fx,y : Mx → Ny | x, y ∈ X} : M → N ε-controlled
if the implication x, y ∈ X, fx,y 6= 0 =⇒ d(p(x), p(y)) ≤ ε holds. An

automorphism f : M
∼=−→M is called an ε-controlled automorphism if both f

and f−1 are ε-controlled.
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Geometric modules were introduced by Connell-Hollowingsworth [234].
Their theory was developed further by, among others, Pedersen and Quinn
and is sometimes referred to as controlled algebra. More information can be
found in the survey article [785]. One can find an algebraic proof of the to-
pological invariance of Whitehead torsion in [785, Section 5].

Next we give a kind of algebraic version of the Thin h-Cobordism Theo-
rem 19.3 taken from [66, Theorem 1.2.8].

An abstract simplicial complex Σ = (Σ,V ) consists of a set V and a
family Σ of non-empty finite subsets of V such that for every element σ in
Σ, and every non-empty subset τ ⊆ σ, the subset τ also belongs to Σ and
for each v ∈ V the subset {v} belongs to Σ. In the sequel we will often
identify v ∈ V with {v} ∈ Σ. The dimension dim(σ) of a simplex is defined
to be |σ|− 1. The dimension dim(Σ) is the supremum of the dimension of all
simplices of Σ. A map of simplicial complexes f : (Σ,V )→ (Σ′, V ′) is a map
f : V → V ′ such that for any element σ ∈ Σ the subset f(σ) ⊆ V ′ belongs
to Σ′. The barycentric subdivision Σ′ of an abstract simplicial complex Σ is
the abstract simplicial complex whose set of vertices is Σ and whose set of
simplices consists of non-empty finite subsets of Σ which are totally ordered.
Note that a d-simplex in Σ′ is the same as a flag σ0 ( σ1 ( · · · ( σd of
elements σi ∈ Σ.

We equip the geometric realization |Σ| of Σ, which consists of functions
b : V → [0, 1] whose support supp(b) = {v ∈ V | f(v) 6= 0} is finite and
belongs to Σ and satisfies

∑
v∈V b(v) = 1, with the L1-metric given by

dL1(b, b′) =
∑
v∈V |b(v)− b′(v)|.

An abstract simplicial G-complex is an abstract simplicial complex Σ to-
gether with G-action by simplicial automorphisms. The G-action on Σ in-
duces an isometric G-action on |Σ| equipped with its L1-metric. Let F be a
family of subgroups. We call Σ an abstract simplicial (G,F)-complex if the
isotropy group Gb = {g ∈ G | gb = b} for every b ∈ |Σ| belongs to F . Note
that |Σ| is not necessarily a G-CW -complex, but |Σ′| for the barycentric
subdivision Σ′ of Σ is. If the isotropy group of each vertex v ∈ V belongs
to F and F ′ is the family of subgroups of G consisting of those subgroups
which contain a subgroup of finite index belonging to F , then Σ and Σ′ are
abstract simplicial (G,F ′)-complexes and |Σ′| is a G-CW -complex whose
isotropy groups belong to F ′.

Theorem 19.8 (Algebraic Thin h-Cobordism Theorem). Given a nat-
ural number N , there exists εN > 0 with the following property. Consider

(i) A family F of subgroups of G;
(ii) An abstract simplicial (G,F)-complex Z of dimension ≤ N ;

(iii) A free G-space X together with a map p : X → |Z|;
(iv) An automorphism a : M → M in GMG(X)f which is εN -controlled with

respect to p and the L1-metric on |Z|.

Then the class [F f (a)] ∈ K1(ZG) of the RG-automorphism F f (a) : F (M)
∼=−→

F (M) of the finitely generated free RG-module F f (M) for the functor F f
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of (19.6) is contained in the image of the assembly map H1(EF (G); KZ) →
K1(ZG).

The Algebraic Thin h-Cobordism Theorem 19.8 follows from [77, Theo-
rem 5.3] and implies the Thin h-Cobordism Theorem 19.3 as explained in [66,
Remark 1.2.11 and Remark 1.2.9]. There is also a converse to the Algebraic
Thin h-Cobordism Theorem 19.8 as discussed in [66, Remark 1.2.11 and Re-
mark 1.2.15]. It says, roughly speaking, that any element appearing in the
image of the assembly map can be realized as [F f (a)] for appropriate Z, X,
p, and a.

Remark 19.9 (Control-Strategy). The considerations above lead to the
following Control-Strategy for proving the Farrell-Jones Conjecture.

(i) Interprete elements in the target group Kn(ZG) of the assembly map as
a kind of cycles and the source of the assembly map HG

n (EF (G); KR) as
controlled cycles, i.e., cycles satisfying certain control conditions related to
the family F ;

(ii) Identify the assembly map as a kind of forget control map;
(iii) For a specific group G and a specific family F , develop a strategy how to

change a cocycle without changing its class in Kn(ZG) such that the new
representative satisfies the necessary control conditions to ensure that the
it defines an element in HG

n (EF (G); KR). This proves surjectivity of the
assembly map. One may call this process gaining control ;

(iv) Use a relative version of part (iii) to prove injectivity of the assembly map.
One may call this process gaining relative control ;

The strategy for L-theory is completely analogous.

Example 19.10 (Singular homology). Next we illustrate this strategy in
a much easier and classical instance, namely, singular homology, by repeating
how one proves excision for it.

Let X be a topological space, and let Csing
∗ (X;R) be the singular chain

complex of X with coefficients in the ring R. Let U = {Ui | i ∈ I} be a
cover of X, i.e., a collection of subsets Ui such that the union of their in-
teriors U◦i is X. Denote by SUn (X) the subset of the set Sn(X) of those
singular n-simplices σ : ∆n → X for which there exists i ∈ I satisfying
im(σ) ⊆ Ui. Let Csing,U

∗ (X;R) be the R subchain complex of Csing
∗ (X;R)

whose nth chain module consists of elements of the shape
∑
σ∈SUn (X) rσ · σ.

Let iU∗ : Csing,U
∗ (X;R) → Csing

∗ (X;R) be the inclusion. The main ingredient
in the proof of excision is to show that i∗ is a homology equivalence. Then ex-
cision follows by applying the result above to U = {X \A,B} for A ⊆ B ⊆ X
with A ⊆ B◦.

The proof that iU∗ : Csing,U
∗ (X;R)→ Csing

∗ (X;R) is a homology equivalence
is based on the construction of the subdivision operator which subdivides
∆n into a bunch of smaller copies of ∆n and replaces the singular simplex
σ : ∆n → X by the sum of the singular simplices obtained by restricting
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to these smaller pieces. This process does not change the homology class
but can be used to arrange that the representing cycle lies in Csing,U

∗ (X;R).

This implies surjectivity of Hn(iU∗ ) : Hn(Csing,U
∗ (X;R)) → Hn(Csing

∗ (X;R)).
One obtains injectivity by applying these construction to an (n+ 1)-simplex
τ : ∆n+1 → X, provided that the restriction of τ to faces of∆n+1 does already
lie in SUn (X).

Roughly speaking, the process of gaining control is realized by subdivision.

19.4.4 Controlled Algebra Defined Using the Open Cone

In order to carry out the Control Strategy discussed in Remark 19.9, one
needs to find the equivalent setup of the homotopy theoretic construction
of HG

n (EF (G); KR), but now in the controlled setting. The basic idea is
to construct additive categories (with involution) which encode F and the
relevant control conditions and to consider their K- or L-groups.

An obvious drawback of the notion of ε-controlled morphisms between
geometric modules, see Subsection 19.4.3, is that they do not form a subcat-
egory of the additive category of geometric modules. The composite of two
ε-controlled morphism is 2ε-controlled but not necessary ε-controlled. The
same applies to ε-controlled automorphisms. In order to fix this problems,
Pedersen-Weibel [784] considered for a finite PL-subcomplex X of Sn (for
large n) the open cone O(X) = {sx | s ∈ R, s > 0, x ∈ X} ⊆ Rn+1 with the
metric induced from maximums metric on Rn+1 and introduced a quotient
category in which every morphism has for any ε > 0 a representative that is
ε-controlled. They used this construction to produce a geometric homology
theory digesting these finite PL-complexes X ⊆ Sn with coefficients in the
K-theory spectrum KR of a ring R, which is a delooping of the homology
theory associated to the algebraic K-theory spectrum KR sending X to the
homotopy groups of the spectrum X+ ∧ KR. This construction can easily
be extended to additive categories A as coefficients instead of a ring R as
coefficient.

The idea of the open cone O(X) is that, given a constant C > 0, for two
points x and y in X the implication d(sx, sy) ≤ C =⇒ d(x, y) ≤ C

s holds
for s > 0. Hence d(x, y) becomes arbitrary small if d(sx, sy) ≤ C holds for
large enough s. More generally, given constants C > 0 and R > 0, we can
find for every ε > 0 a real number T > 0 such that for x, y ∈ X and s, t > 0
the implication

d(sx, ty) ≤ C, |t− s| ≤ R, t ≥ T =⇒ d(x, y) ≤ ε

holds. These points sx and ty will be points contained in the support
supp(f) = {sx, ty) ∈ O(X)×O(X) | fsx,ty 6= 0} of a morphism f = {fsx,ty}
in GM{1}(O(X)). Our setup ensures the we get an additive subcategory of
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GM{1}(O(X)) if we consider only those morphisms f = {fsx,ty} for which
there exists constants C > 0 and R ≥ 0 satisfying d(tx, sy) ≤ C and
|t − s| ≤ R for every (sx, ty) ∈ supp(f). One may think of the inclusion

of this subcategory to GM{1}(O(X)) as a forget control functor.

19.4.5 Continuous Control

Roughly speaking, the idea is to introduce a new non-compact coordinate,
for instance the distance from the origin in Rn+1 in the open cone O(X)
appearing in Subsection 19.4.4, so that bounded control for objects or mor-
phisms over the given space X correspond to ε-controlled morphisms in the
new extended space for which the ε can be chosen to be smaller and smaller
the farer out the objects and morphisms are with respect to this new coor-
dinate. In principle one uses the observation that bounded plus bounded is
bounded (in contrasts to the wrong statement ε plus ε is ε) so that bounded
controlled morphisms form a subcategory. One has to consider germs of mor-
phisms where it is allowed to ignore everything which is only bounded in this
new coordinate, or, equivalently, where only the asymptotic behaviour at ∞
matters. Therefore one takes the quotient by the category of those objects
and morphisms that live in a bounded region with the respect to the new
coordinate, in other word, do not get arbitrary close to ∞, This quotient
has the desired property that for every morphism and ε > 0, we can find a
representative that is ε-controlled. Taking this quotient has the side effect
that one deals with a delooping of the desired homology theory.

The constructions of Pedersen-Weibel [784] have undergone a long lasting
mutation through various steps, in order to get a better and better setting.
For instance, one needs to design equivariant versions, and the theory should
just digest G-CW -complexes without any choice of embeddings into an open
cone or so.

For these development we refer to the papers by Bartels-Farrell-Jones-
Reich [72, 73], Bartels-Lück-Reich [86], and Bartels-Lück [77]. The most ad-
vanced setup is presented in Bartels-Lück [81] where for the first time the
Farrell-Jones Conjecture is considered for topological groups, namely, for to-
tally disconnected groups such as reductive p-adic groups. We will not discuss
this long process but we will give details about the constructions in [81] in
the discrete case in Chapter 22, where we also give the full proof that we
indeed get a G-homology theory digesting arbitrary G-CW -complexes. The
construction of the T OD-sequence in Section 22.5 is the detailed and math-
ematically complete manifest of the discussion above.

As an illustration we want to describe the notion of continuous control (in
the non-equivariant setting) which will replace the open cone construction,
can digest any CW -complex X without any embedding into Sn, and does
not need a choice of a metric.
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We define an additive subcategory O(X) of GM{1}(X × N) as follows,
where N denotes the natural numbers. The suport of an object M = {M(x,s) |
(x, s) ∈ X × N} is defined to be supp(M) = {(x, s) ∈ X × N | Mx,s 6= {0}}.
We require for an object M in O(X):

• Compact support over X
The set {x ∈ X | ∃s ∈ N with (x, s) ∈ supp(M)} is contained in a compact
subset of X;

• Locally finiteness over N
For every n ∈ N the set {x ∈ X | (x, n) ∈ supp(M)} is finite.

We require for the support

supp(f) = {((x, s), (y, t)) ∈ (X × N)× (X × N) | {f(x,s),(y,t) 6= 0}

of a morphism f = {f(x,s),(y,t)} in O(X):

• Bounded control in the N direction
There is N ∈ N such that |t− s| ≤ N holds for ((x, s), (y, t)) ∈ supp(f);

• Continuous control
For every z ∈ X, open neighborhood V of z, and r ∈ N, there exists an
open neighborhood U of z with U ⊆ V and R ∈ N with r ≤ R such that
the implication

((x, s), (y, t)) ∈ supp(f), x ∈ U, s ≥ R =⇒ y ∈ V, t ≥ r

holds.

The condition above ensures that the morphisms become more and more
controlled in the X direction as farer we go out in the N-direction. The
other conditions will be needed to construct the transfer or certain quotient
categories. One may also consider the full additive subcategory τ(X) of O(X)
where we additionally require for an object M that there exists a natural
number m ∈ N for which the implication (x, s) ∈ supp(M) =⇒ s ≤ m
holds. Then the quotient category D(X) = O(X)/T (X) can be thought
of equivalence classes of objects and morphism in O(X) where we identify
two of them if they agree outside of a bounded region in the N-direction.
In this category D(X) we can always find representatives in O(X) which
are with respect to the X direction arbitrary good controlled since we can
put all modules and morphism to be zero in any region bounded in the N-
direction. The precise definition of the quotient categoryD(X) will be given in
Chapter 21, where also a weak homotopy fibration sequence of non-connective
spectra,

(19.11) K(T (X))→ K(O(X))→ K(D(X))

is established. It will be the key ingredient to show that the functor sending X
to K(D(X)) is weakly excisive in the sense of Definition 18.8 for G = {1}, or,



568 19 Motivation, Summary, and History of the Proofs of the Farrell-Jones Conjecture

equivalently, that we get a homology theory with values in abelian groups by
sending a CW -complex X to Kn+1(D(X)) for n ∈ Z. An Eilenberg swindle
towards infinity in the N-direction will show that Kn(O({•})) vanishes for all

n ∈ Z. It is not hard to see that T (X) is equivalent to GM{1}(X)f and hence
we get from the equivalence (19.6) an identification Kn(τ(X)) = Kn(R).
Thus we obtain an identification Kn(R) = Kn+1(D({•})). We conclude
from the universal property of assembly maps, see Theorem 18.11 and Re-
mark 18.18 that we get natural identifications Hn(X; K(R)) ∼= πn+1(D(X)).
Furthermore, if we take X = BG, the assembly map

Hn(BG; K(R))→ Kn(RG)

appearing in Conjecture 6.53 can be identified with a map

πn+1(D(BG))→ Kn(RG)

which can be thought of as a forget control map.
All this will be fully explained in Chapter 22, also in the equivariant set-

ting. In particular there is for any G-CW -complex X an equivariant version
of (19.11)

K(T G(X))→ K(OG(X))→ K(DG(X))

such that the assembly map

HG
n (pr) : HG

n (EVCY(G); KR)→ HG
n (G/G; KR) = Kn(RG)

appearing in the K-theoretic Farrell-Jones Conjecture 13.1 with coefficients
in the ring R can be identified with the homomorphism

Kn+1(DG(EVCY(G)))→ Kn+1(DG(G/G))

induced by the projection pr : EVCY(G) → G/G which can be thought of as
a forget control map.

Exercise 19.12. Show that the inclusion I : GM{1}(X) → T (X) coming
from the inclusion X → X × N sending x to (x, 0) is an equivalence of
additive categories

19.5 Gaining Control by Using Flows and Transfers

In this Section we briefly sketch the basic ideas appearing in the seminal
papers by Farrell-Jones [344, 345]. These papers do of course rely on earlier
work by Farrell and Jones and other mathematicians, which we will not ex-
plain here. For us it is important to explain briefly the main idea in these two
papers to prove the vanishing of the Whitehead group Wh(G) for torsionfree
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groups G which occur as fundamental groups of certain closed manifolds. For
simplicity we only consider the case G = π1(M) for an orientable hyperbolic
closed smooth Riemannian manifold of dimension d ≥ 5.

The key ingredient is to lift an element x in the Whitehead group
Wh(π1(M)) to the Whitehead group Wh(π1(STM)) of the fundamental
group of the total space STM of the sphere tangent bundle p : STM → M
by a transfer map p∗ : Wh(π1(M)) → Wh(π1(STM)) and to use the geo-
metric flow on STM and the hyperbolic structure on M to show that
this element p∗(x) has a representative with good enough control ensur-
ing that p∗(x) vanishes. The composite of the transfer p∗ with the obvi-
ous map p∗ : Wh(π1(STM)) → Wh(π1(M)) induced by the isomorphism
π1(p) : π1(STM)→ π1(M) satisfies p∗ ◦ p∗ = 2 · idWh(π1(M)) if d is odd, since

the fiber of p is an even dimensional sphere Sd−1 and hence has Euler char-
acteristic 2. This implies 2x = 0, if d is odd, To get rid of the factor 2, Farrell
and Jones replaced the sphere bundle p : STM → M by a kind of upper
hemisphere bundle p+ : S+TM → M whose fiber is the upper hemisphere
Sd−1

+ and hence contractible and therefore has Euler characteristic 1. Then

the composite Wh(π1(M))
(p+)∗−−−→Wh(π1(S+TM))

(p+)∗−−−→Wh(π1(M)) is the
identity for all d ≥ 5, and one can still show using the geometric flow on
S+TM and the hyperbolic structure on M that (p+)∗(x) vanishes if d ≥ 5.
(All this claims about the transfers will be explained in Example 24.14, which
is a consequence of Theorem 24.13.)

We will give more information about the transfer in Chapter 24 and will
refine ourself for the remainder of this section to explain why every element
in Wh(STM) vanishes if M is a hyperbolic closed smooth Riemannian mani-
fold. Farrell and Jones used the Algebraic Thin h-Cobordism Theorem 19.8
and the fact that every element in the Whitehead group Wh(π1(STM)) can
be realized by the Whitehead torsion of an h-cobordism over STM , see The-
orem 3.47 (i). The main ingredients in proof of Farrell and Jones was to use
the geodesic flow and its specific properties due to the hyperbolic structure
to convert an arbitrary h-cobordism into a thin one without changing its
Whitehead torsion in Wh(π1(M)). Having the Algebraic Thin h-Cobordism
Theorem 19.8 in mind, we just will explain how the geodesic flow can be used
to turn automorphism of geometric modules into ε-controlled ones without
changing their Whitehead torsion in the Whitehead group. For this we look
at the very specific case, namely, the geodesic flow on the half plane model
H2 for the two-dimensional hyperbolic space.

Consider two points with coordinates (x1, y1) and (x2, y2) in H2. We want
to use the geodesic flow to make their distance smaller in a functorial fashion.
This is achieved by letting these points flow towards the boundary at infinity
along the geodesic given by the vertical line through these points, i.e., towards
infinity in the y-direction. However, there is a fundamental problem: if y1 6=
y2, then the distance of these points will be bounded from below by a constant
C > 0, regardless how long we let them flow to infinity. Therefore we make the
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following prearrangement. Suppose that y1 < y2. Then we first let the point
(x1, y1) flow so that it reaches a position where y1 = y2 and do nothing to the
point (x2, y2), and then we let both points flow simultaneously. Inspecting
the hyperbolic metric, one sees that the distance between the two points
(x1, τ) and (x2, τ) goes to zero if τ goes to infinity. This is the basic idea
to gain control in the negatively curved case. In some sense we will see this
wait and then flow together principle in the more general theorems about
flows which we will present in Chapter 23. Note that moving along a flow is a
continuous process and therefore should not change the associated homology
class or element in the Whitehead group. It should also be clear what it
means for instance to move an object or a morphism in GM{1}(X × N)
a long flow, just move the positions of the modules M(x,s) and morphisms
f((x,s),(y,t)) accordingly. All of this works also in the case, where M is a closed
Riemannian manifold with strictly negative sectional curvature.

Exercise 19.13. Consider two points (x1, y1) and (x2, y2) in the half plane
model H2. Denote by γ(xk,yk)(t) the point obtained by flowing upwards start-
ing with (xk, xk) along the geodesic given by the vertical line though (xk, yk)
for k = 1, 2. Show for the hyperbolic metric dhyp

lim
t→∞

dhyp(γ(x1,y1)(t), γx2,y2(t)) = | ln(y2)− ln(y1)|.

Later Farrell-Jones could also deal with the case where M is a closed Rie-
mannian manifold with non-positive sectional curvature, see for instance [350].
This case is significantly harder as illustrated next. Again, consider the half
plane model, but this time equip it with the flat Riemannian metric com-
ing from Euclidean inner product on R2. Then the same construction makes
sense, but the distance between two points (x1, τ) and (x2, τ) is unchanged if
we change τ . The basic first idea is to choose a so-called focus point far away,
say f :=

(
(x1 + x2)/2, τ + 169356991

)
, and then let (x1, τ) and (x2, τ) flow

along the rays emanating from them and passing through the focus point f .
In the beginning the effect is indeed that the distance becomes smaller, but
as soon as we have passed the focus point the distance grows again. Either
one uses the idea of simultaneously moving the focus point towards infinity
while the points x1 and x2 flow towards it, as Farrell and Jones did, or stops
flowing when has reached the focus point. We will use the second solution.
In particular we want to fix a base point x0 and want to carry out all the
construction inside the closed ball BR(x0) for large R > 0.

The problem with this ideas is obvious, we must describe this process in a
functorial way and carefully check all the estimates to guarantee the desired
effects.

Another problem is that we later need to make everything equivariant. So
if the group G acts isometrically (and does not necessarily leave the origin
x0 fixed), there are points x ∈ BR(x0) and g ∈ G such that gx lands outside
BR(x). Then we have to use the radial projection to pull back gx to BR(x0).
With this modification we of course do not get a strict G-action on BR(x0)



19.6 Notes 571

but an up to homotopy (and actually up to higher homotopies) well-defined
G-action. This is the reason why in the CAT(0)-setting one has to deal with
these kind of non-strict G-actions. Moreover, we also have to deal with the
problem that the focus point f may also not be fixed under the G-action.

We give a quantitative version of the sketch of ideas above for Rn with the
Euclidian metric d. For two distinct points a, b ∈ R, define

ca,b : R→ Rn, t 7→


a t ≤ 0;

a+ t
d(a,b) · (b− a) 0 ≤ t ≤ d(a, b);

b t ≥ d(a, b).

Note that the restriction of c to [0, d(a, b)] is the geodesic line starting at a
and ending at b and is constant for t ≤ 0 and t ≥ d(a, b).

Lemma 19.14. Fix x0 ∈ Rn and real numbers r′, r′′, β, and L satisfying
r′, L, β > 0 and r′′ > 2β. Put T := r′′+ r′. Fix x1, x2 ∈ Bβ(x0). Let x be any
point in Br′+r′′+L(x0). Put τ := d(x2, x)− d(x1, x).

Then we get for all t ∈ [T − r′, T + r′]

d(cx1,x(t), cx2,x(t+ τ)) ≤ 4 · β · (r′ + β + L)

r′′
;

cx1,x(t) ∈ B2r′+r′′+2β(x1);

cx2,x(t+ τ) ∈ B2r′+r′′+2β(x2).

Note that the larger we take r′′ (without changing r′, β, and L), the smaller
d(cx1,x(t), cx2,x(t+ τ)) becomes for t ∈ [T − r′, T + r′] and that the geodesic
triangle with x,x1, and x2 as vertices lies in Br′+r′′+β+L(x0). Actually, the
obvious analogon of Lemma 19.14 holds in any CAT(0)-space. The contents
of Lemma 19.14 will be stated in more generality in Proposition 23.30 and
Theorem 23.34.

In the situation of Lemma 19.14 the points x1 and x2 flow towards the focal
point x and everything takes place in a fixed ball around a fixed base point
x0. The wait and then flow together principle is reflected in Lemma 19.14 by
the appearance of τ .

Exercise 19.15. Give the proof of Lemma 19.14.
More details about the discussion of this subsection will be given in Chap-

ter 23.

19.6 Notes

Farrell-Hsiang used in [340] a beautiful combination of controlled topology
and induction theory a la Dress to prove that the Whitehead group of funda-
mental groups of compact flat Riemannian manifolds is trivial. This general
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method, often called Farrell-Hsiang method, has been refined and used fur-
ther, see for example [78, 342, 343, 346, 813, 942, 996]. This will be explained
in some more detail in Chapter 20, notably in Sections 20.2 and 20.9.

There is a survey articles about continuously controlled algebra by Rosen-
thal [858] and about controlled K-theory by Quinn [814],
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Chapter 20

Conditions about a Group Implying
the Farrell-Jones Conjecture

20.1 Introduction

In this chapter we want to isolate geometric properties about a group G which
guarantee that the strategy of proofs discussed in Chapter 19 works out. So
we want to describe a bunch of geometric conditions which imply the Farrell-
Jones Conjecture but do not contain any K-theoretic or homotopy theoretic
data. This may be useful for someone who wants to show the Farrell-Jones
Conjecture for a new class of groups since she or he needs only to check
that this class satisfies one of the properties (or some appropriate variation
or generalization) appearing below without having to deal with the proofs
relying on homotopy theory and K-theory that these properties do imply the
Farrell-Jones Conjecture.

We do this in chronological order taking into account that these conditions
have been reformulated and generalized over the last decades. Here is a list
of the different notions which will treat:

• Farrell-Hsiang groups in Section 20.2;
• Strictly transfer reducible groups – almost equivariant version in Sec-

tion 20.3;
• Strictly transfer reducible groups – cover version in Section 20.4;
• Transfer reducible groups in Section 20.5;
• Strongly transfer reducible groups in Section 20.6;
• Finitely F-amenable groups in Section 20.7;
• Finitely homotopy F-amenable groups in Section 20.8;
• Dress-Farrell-Hsiang groups in Section 20.9;
• Dress-Farrell-Hsiang-Jones groups in Section 20.10.

Remark 20.1. These various notions come in two flavours, in terms of cov-
ers or in terms of almost equivariant maps, where in general the first version
implies the second. This is essentially a consequence of results such as Propo-
sition 20.22 or Lemma 20.42.

Some of the notions above imply one another as the next result shows.

Lemma 20.2.

(i) Strictly transfer reducible groups – cover version =⇒ strictly transfer
reducible groups – almost equivariant version;

(ii) Strictly transfer F-reducible – almost equivariant version and finitely pre-
sented =⇒ transfer F-reducible;

573
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(iii) Strictly transfer reducible groups – cover version =⇒ finitely F-
amenable;

(iv) Strongly transfer F-reducible =⇒ finitely homotopy F-amenable;
(v) Strongly transfer F-reducible =⇒ transfer F-reducible;

(vi) Finitely F-amenable =⇒ finitely homotopy F-amenable;
(vii) Farrell-Hsiang over F =⇒ Dress-Farrell-Hsiang over F ;

(viii) Dress-Farrell-Hsiang over F =⇒ Dress-Farrell-Hsiang-Jones over F ;
(ix) Finitely homotopy F-amenable =⇒ Dress-Farrell-Hsiang-Jones over F .

Proof. (i) see Lemma 20.25.

(ii) This follows directly from the definitions.

(iii) An N -transfer space is a compact metrizable finite-dimensional con-
tractible ANR by Lemma 20.15, A compact metrizable topological space X
is an ER if and only if it is a finite-dimensional contractible ANR. Com-
ment 26 (by W.): Is there a reference for this claim? Hence any N -transfer
space is a compact ER. Now the assertion follows from Lemma 20.42.

(iv) This follows from the argument appearing in the proof of assertion iv
using a variation of Lemma 20.42. and the fact that an ANR is an AR if
and only if it is contractible, see [488, Theorem 7.1 and Proposition 7.2 in
Chapter III on page 96].

(v) This follows directly from the definitions.

(vi) This follows from Lemma 20.42.

(vii) This follows directly from the definitions.

(viii) see [172, Remark 7.2 (2)].

(ix) see [172, Remark 7.2 (1)]. ut

Remark 20.3. Note that by Lemma 20.2 the notion of a Dress-Farrell-
Hsiang-Jones group is the most general one if we ignore transfer reducible
groups. Namely every Farrell-Hsiang group, strictly transfer reducible group
– almost equivariant version, strictly transfer reducible group – cover version,
strongly transfer reducible group, finitely F-amenable group, finitely homotopy
F-amenable group, or Dress-Farrell-Hsiang group is a Dress-Farrell-Hsiang-
Jones group.

The notion of transfer reducible groups deals only with homotopy G-
actions and not with strong homotopy G-actions or strict G-actions and
does therefore not imply Dress-Farrell-Hsiang-Jones group. Note that also the
conclusions for transfer reducible groups predicts only that the K-theoretic
assembly map is 1-connected and not that it is a weak equivalence, cf. The-
orem 20.31 and Theorem 20.61.

Proofs of the Farrell-Jones Conjecture for prominent classes such as hy-
perbolic groups or finite-dimensional CAT(0)-groups are based on showing
that they fall into one of the classes above. We will explain for the various
classes which versions of the Farrell-Jones Conjecture is known for them.



20.2 Farrell-Hsiang Groups 575

20.2 Farrell-Hsiang Groups

The next definition is equivalent to [78, Definition 1.1].

Definition 20.4 (Farrell-Hsiang group). Let G be a finitely generated
group G and F be a family of subgroups. We call G a Farrell-Hsiang group
with respect to F , if there exists a natural number N such that for one (and
hence all) finite set S of generators we can find for every ε > 0:

(i) A finite group F together with a group homomorphism p : G→ F ;
(ii) For every H ∈ H(F ) an abstract simplicial (G,F)-complex ΣH of

dimension ≤ N where H(F ) denotes the set of hyperelementary subgroups
of F ;

(iii) For every H ∈ H(F ) a map fH : p−1(H) → |ΣH | that is (ε, S)-almost
G-equivariant, i.e., we have dL1(fH(sx), sfH(x)) ≤ ε for all x ∈ p−1(H)
and all s ∈ S.

The appearance of the hyperelementary subgroups in Definition 20.4 is due
to the result of Swan [919, Corollary 4.2] that for a finite group F and the
family H(F ) of hyperelementary subgroup there are elements τH ∈ Swp(H)
for H ∈ H(F ) satisfying

(20.5) 1Swp(F ) =
∑
H∈H

indFH(τH) ∈ Swp(F ),

where Swp(F ) denotes the Swan ring defined in Definition 12.65 and the
homomorphisms indFH : Swp(H) → Swp(F ) are induced by induction. This
is the key ingredient in induction theorems a la Dress, see for instance [75,
Section 2], and leads for instance to Theorem 13.43. There is also an L-
theoretic version due to Dress [301, Theorem 2]

(20.6) 1GW(F ) =
∑
H∈H

indFH(σH) ∈ GW(F )

for Dress’ equivariant Witt ring GW(F ) and elements σH ∈ GW(H) for
H ∈ H(F ).

It is often not so easy to check that a finitely generated group G is a Farrell-
Hsiang group. The proof for Z2 o Z/2 can be found in [71, Lemma 3.8].

The proof of the next theorem can be found in [78, Theorem 1.2]. It com-
bines methods from controlled geometry and induction theory.

Theorem 20.7 (Hsiang-Farrell groups and the Farrell-Jones Conjec-
ture). Let G be a finitely generated group G and F be a family of subgroups
such that G is a Hsiang-Farrell group with respect to the family F in the
sense of Definition 20.4.

Then the assembly maps
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HG
n (pr; ; KA) : HG

n (EF (G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
and

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF (G); L
〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
are bijective for every additive G-category (with involution) and n ∈ Z.

Remark 20.8. Definition 20.4 can be weakened if one is only interested in
the L-theoretic Farrell–Jones conjecture. Then it suffices to consider all sub-
groups H of F that are either 2-hyperelementary or p-elementary for some
odd prime p. In other words p-hyperelementary subgroups that are not p-
elementary can be ignored for all odd primes p.

In the setting of higher categories one has to enlarge the class of hyperele-
mentary groups as explained in Section 20.9.

20.3 Strictly Transfer Reducible Groups – Almost
Equivariant version

Definition 20.9 (N-transfer space X). Let N be a natural number. An
N -transfer space is a compact metric space X possessing the following prop-
erty:

For any δ > 0 there exists an abstract simplicial complexK of dimension at
most N , maps i : X → |K| and r : |K| → X, and a homotopy h : X× [0, 1]→
X from r ◦ i to idX which is δ-controlled, i.e., for every x ∈ X the diameter
of the subset h({x} × [0, 1]) of X is smaller than δ.

Remark 20.10 (No uniform bound on the dimensions). In Defini-
tion 20.9 and also in [66, Definition 1.3.1] it is required that there is a natural
number N such that the dimensions of the simplicial complexes K appear-
ing in Definition 20.9 is uniformly bounded by N . It turns out that this
condition is not needed, cf., Remark 20.49. However, it is satisfied in all the
applications, e.g., to hyperbolic groups, finite-dimensional CAT(0)-groups, or
mapping class groups. Comment 27 (by W.): Check this Remark 20.10
later when Chapter 25 is finished.

Definition 20.11 (Strictly F-transfer reducible group– almost equi-
variant version). Let G be a finitely generated group, and let F be a family
of subgroups. We call G strictly F-transfer reducible if there exists a natural
number N such that for one (and hence all) finite set S of generators there
exists for any given ε > 0

(i) an N -transfer space X in the sense of Definition 20.9 equipped with a
G-action;
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(ii) an abstract simplicial (G,F)-complex Σ of dimension ≤ N ;
(iii) a map f : X → |Σ| that is (ε, S)-almost G-equivariant, i.e., we have

dL1(f(sx), sf(x)) ≤ ε for every s ∈ S and every x ∈ X.

Note that [85, Theorem 1.2] implies that hyperbolic groups are strictly
VCY-transfer reducible. If there exists a group G which is strictly F-transfer
reducible, then F must contain all cyclic subgroups of G, see [66, Re-
mark 1.3.9].

In the sequel we denote for a family of subgroups F of G by F2 the family
of subgroups of G consisting of those group H ⊆ G for which H or a subgroup
H ′ ⊆ H of index [H : H ′] = 2 belong to F . For instance, (VCYI)2 = VCY
and FIN2 = FIN .

Theorem 20.12 (Strictly transfer F-reducible groups and the Farrell-
Jones Conjecture). Let G be a finitely generated group, and let F be a
family of subgroups such that G is strictly F-transfer reducible in the sense
of Definition 20.11.

Then the assembly maps

Hn(pr; KA) : HG
n (EF (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
;

HG
n (pr; HC) : HG

n (EF (G); HC)→ HG
n (G/G; HC) = πn

(
KC(I(G))

)
,

are bijective for every additive G-category A, every right exact G-∞-category
C, and every n ∈ Z, and the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF2
(G); L

〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
,

is bijective for every additive G-category with involution A and every n ∈ Z.

Later we will give as an illustration a proof of a special case of Theo-
rem 20.12 in Proposition 24.24.

Remark 20.13 (Meaning and proof of Theorem 20.12). Theorem 20.12
implies that every strictly VCY-transfer reducible group satisfies both the K-
theoretic Farrell-Jones Conjecture 13.11 and the L-theoretic Farrell-Jones
Conjecture 13.16 with coefficients in additive G-categories with involution.

The K-theoretic part of Theorem 20.12 for additive categories is a mi-
nor reformulation of [86, Theorem 1.1], as explained in [66, Theorem A,
Remark 1.3.7 and Remark 1.3.8]. So the K-theoretic part of the proof of
Theorem 20.12 follows from [86, Theorem 1.1].

The same ideas apply also to the L-theoretic part, see [77, Theorem B].
Note that the passage from F to F2 for L-theory is due to [77, Lemma 9.2
and Remark 9.3]. This is consistent with the fact that Theorem 13.44 holds
for the K-theoretic version but not for the L-theoretic version.
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The K-theory part for higher categories (and hence also the one for addi-
tive categories) follows from Theorem 20.61 using Remark 20.3.

The passage to almost equivariant maps as pursued by Bartels [66] is
illuminating, since it better isolates what is needed for proofs of the Farrell-
Jones Conjecture, see also Remark 20.26.

Exercise 20.14. Let Σ be a finite simplicial complex such that |Σ| is con-
tractible. Let G be a group which acts simplicially on Σ. Denote by F(Σ)
the family of subgroups of Σ which occur as subgroups of isotropy groups of
|Σ|. Show:

(i) The assembly maps appearing in Theorem 20.12 are isomorphisms for the
family F(Σ);

(ii) Each isotropy group of |Σ| has finite index in G.

In connection with Exercise 20.14 Theorem 20.53 is interesting.
Next we prove the following lemma which we have already used in the

proof of Lemma 20.2.

Lemma 20.15. Let X be an N -transfer space in the sense of Definition 20.9.
Then X is a compact metrizable ANR with dim(X) ≤ N .

Proof. By definition X is a compact metric space.
Next we show that X satisfies dim(X) ≤ N . Consider an open cover U of

X. Since X is compact, there exists a finite subcover V = {V1, . . . , Vl} of U .
Let δ > 0 be a Lebesgue number for V. Define V ′i = {x ∈ Vi | Bδ/2(x) ⊆ Vi}
for i = 1, 2, . . . , l where Bδ/2(x) is the closed ball of radius δ/2 around x.
Then V ′ = {V ′1 , . . . , V ′l } is an open cover of X. Choose an abstract simplicial
complex K of dimension at most N , maps i : X → |K| and r : |K| → X, and
a homotopy h : X × [0, 1]→ X from r ◦ i to idX which is δ/2-controlled, i.e.,
for every x ∈ X the diameter of the subset h({x}× [0, 1]) of X is smaller than
δ/2. Note that this implies that for every x ∈ X we have dX(x, r◦i(x)) < δ/2.
Since the image of i is compact, it is contained in K0 for a finite subcomplex
K0 of K. Hence we can assume without loss of generality that K itself is a
finite abstract simplicial complex of dimension ≤ N . This implies dim(|K|) ≤
N . Consider the open covering r−1(V ′) = {r−1(V ′1), . . . , r−1(V ′l )}. Choose an
open coverW of |K| which is a refinement of r−1(V ′) and satisfies dim(W) ≤
N . Consider the open cover i−1(W) = {i−1(W ) | W ∈ W} of X. Obviously
we have dim(i−1(W)) ≤ N and i−1(W) is a refinement of the open cover
i−1(r−1(V ′)) = {(r ◦ i)−1(U ′1), . . . , (r ◦ i)−1(U ′l )}. We have (r ◦ i)−1(V ′i ) ⊆ Vi
for i = 1, . . . , l. Hence i−1(W) is a refinement of V and hence of U .

An N -transfer space is an ANR by [488, Theorem 6.3 in Chapter IV on
page 139] since for every δ > 0 there exists a finite simplicial complex Σ,
maps i : X → |K| and r : |K| → X, and a homotopy h : X × [0, 1]→ X from
r ◦ i to idX which is δ-controlled. ut
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20.4 Strictly Transfer Reducible Groups – Cover Version

Next we state the version of strictly transfer reducible as it appears [86,
Theorem 1.1]. and give more details about some of the claims appearing in
Remark 20.13.

We begin with recalling the criterion of [86, Theorem 1.1], where only
the K-theoretic version is treated. Its extension to L-theory follows from the
proof of [77, Theorem B].

Definition 20.16 (Strictly F-transfer reducible group – cover ver-
sion). Let G be a finitely generated group. Let F be a family of subgroups
of G. Suppose:

(i) There exists a G-space X such that the underlying space X is the realiza-
tion of a finite-dimensional abstract simplicial complex K;

(ii) There exists a G-space X which contains X as an open G-subspace such
that the underlying space of X is compact, metrizable, and contractible;

(iii) Assumption 20.17 holds;
(iv) Assumption 20.19 holds for F .

Next we give some explanations about the conditions appearing in Defini-
tion 20.16.

Assumption 20.17 (Weak Z-set condition).
There exists a homotopy H : X × [0, 1] → X, such that H0 = idX and
Ht(X) ⊂ X for every t > 0.

In order to state the second assumption we introduce the notion of an
open F-cover.

Definition 20.18 ((Open) F-cover). Let Y be a G-space. Let F be a
family of subgroups of G. An F-cover of Y is a collection U of subsets of Y
such that the following conditions are satisfied:

(i) Y =
⋃
U∈U U ;

(ii) For g ∈ G, U ∈ U the set g(U) := {gx | x ∈ U} belongs to U ;
(iii) For g ∈ G and U ∈ U we have g(U) = U or U ∩ g(U) = ∅;
(iv) For every U ∈ U , the subgroup {g ∈ G | g(U) = U} lies in F .

We call an F-cover U of Y open if each U ∈ U is open.

Consider an open F-cover U . Then its nerve Nerv(U) is a simplicial com-
plex with cell preserving simplicial G-action and hence a G-CW -complex. (A
G-action on a simplicial complex is called cell preserving, if for every simplex
σ and element g ∈ G such that the intersection of the interior σ◦ of σ with
gσ◦ is non-empty we have gx = x for every x ∈ σ. Note that a simplicial
action is not necessarily cell preserving, but the induced simplicial action on
the barycentric subdivision is cell preserving.) Moreover all isotropy groups
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of its geometric realization |Nerv(U)| lie in F , in other words, Nerv(U) is a
simplicial (G,F)-complex. Recall that by definition the dimension dim(U) of
an open cover is the dimension of the CW -complex |Nerv(U)|.

If G is a finitely generated discrete group, then dG denotes the word metric
with respect to some chosen finite set of generators. Recall that dG depends on
the choice of the set of generators but its quasi-isometry class is independent
of it.

Assumption 20.19 (Wide open F-covers). There exists N ∈ N, which only
depends on the G-space X, such that for every β ≥ 1 there exists an open
F-cover U(β) of G×X equipped with the diagonal G-action with the following
two properties:

(i) For every g ∈ G and x ∈ X there exists U ∈ U(β) such that

Bδ(g)× {x} ⊂ U.

Here Bδ(g) denotes the open β-ball around g in G with respect to the word
metric dG, i.e., the set {h ∈ G | dG(g, h) < β};

(ii) The dimension of the open cover U(β) is smaller than or equal to N .

Exercise 20.20. Let X be a G-space. Let G ×1 X be the topological space
G × X with the G-action given by g′ · (g, x) = (g′g, x) and let G ×d X be
the topological space G×X with the diagonal G-action given by g′ · (g, x) =
(g′g, g′x). Show that G×1 X and G×d X are G-homeomorphic.

Next we describe some of the geometric constructions in [86].
Let (Z, d) be a metric space. Let U be a finite dimensional cover of Z

by open sets. Recall that points in the geometric realization of the nerve
|Nerv(U)| are formal sums x =

∑
U∈U xUU , with xU ∈ [0, 1] such that∑

U∈U xU = 1 and such that the intersection of all the U -s with xU 6= 0
is non-empty, i.e., {U | xU 6= 0} is a simplex in the nerve of U . There is a
well-defined map

(20.21) f = fU : Z → |Nerv(U)|, x 7→
∑
U∈U

fU (x)U

where

fU (x) =
aU (x)∑
V ∈U aV (x)

with aU (x) = d(x, Z −U) = inf{d(x, u) | u /∈ U}.

If Z is a G-space, d is G-invariant, and U is an open F-cover, then the map
f = fU is G-equivariant.

The proof of the following proposition can be found in [86, Proposition 5.3].

Proposition 20.22. Let Z = (Z, d) be a metric space and let β ≥ 1. Suppose
U is an open cover of Z of dimension less than or equal to N with the property



20.4 Strictly Transfer Reducible Groups – Cover Version 581

that for every z ∈ Z there exists U ∈ U such that the open ball Bδ(z) of radius
δ around z lies in U .

Then the map fU : Z → |Nerv(U)| of (20.21) has the contracting property
that for z, z′ ∈ X satisfying d(z, z′) ≤ β

4N we get

dL1(fU (z), fU (z′)) ≤ 16N2

β
· d(z, z′).

Note that if β gets bigger, the estimate applies more often and fU contracts
stronger.

Let X be as in Definition 20.16. Next we define a G-invariant metric dC
depending on a constant C > 0 on the G-space G×X. Recall that X is as-
sumed to be metrizable. We choose some (not necessarily G-invariant) metric
dX onX which generates the topology. Recall that we have already fixed some
choice of a word-metric dG on G.

Definition 20.23. Let C > 0. For (g, x), (h, y) ∈ G×X set

dC((g, x), (h, y)) = inf

n∑
i=1

CdX(g−1
i xi−1, g

−1
i xi) + dG(gi−1, gi)

where the infimum is taken over all finite sequences (g0, x0), . . . , (gn, xn) with
(g0, x0) = (g, x) and (gn, xn) = (h, y).

The elementary proof of the next proposition can be found in [86, Propo-
sition 4.3].

Proposition 20.24.

(i) We obtain a G-invariant metric dC on G×X equipped with the diagonal
action by dC ;

(ii) We get dG(g, h) ≤ dC((g, x), (h, y)) for all g, h ∈ G and x, y ∈ X;
(iii) We get dG(g, h) = dC((g, x), (h, x)) for all g, h ∈ G and x ∈ X.

The next lemma illustrates Remark 20.1.

Lemma 20.25. Let G be a finitely generated group and F be a family of
subgroups. Suppose that G is strictly transfer F-reducible in the sense of
Definition 20.16

Then G is strictly F-transfer reducible in the sense of Definition 20.11.

Proof. Let N be the number appearing in Assumption 20.19. By possibly
enlarging N we can arrange that the dimension of the finite dimensional
abstract simplicial complex K whose geometric realization is X is less or
equal to N . Consider any ε > 0. As N -transfer space, as it is required in
Definition 20.11, we take X. Note that X is indeed an N -transfer space by
Assumption 20.17 since any compact subset of X is a contained in |L| for a
finite simplicial subcomplex L of K for which obviously dim(L) ≤ N holds.
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Let U be the open covering appearing in Assumption 20.19. Then we take
Σ to be the simplicial complex given by the nerve of U and we have by
definition |Σ| = |Nerv(U)|.

Fix a finite set of generators S and let dG be the corresponding word met-
ric on G. Fix C > 0. The function X → R sending x to dC((e, x), (s, sx))
is continuous. Since X is compact, we can find a constant D such that
dC((e, x), (s, sx)) ≤ D holds for every x ∈ X and s ∈ S. Choose β > 0

satisfying 4ND ≤ β and 16N2

ε < β. Then we get dC((e, x), (s, sx)) ≤ β
4N for

every x ∈ X and s ∈ S. Let fU : G ×X → |Nerv(U)| be the G-map defined
in (20.21). Proposition 20.22 implies that dL1(fU (e, x), fU (s, sx)) < ε holds
for every x ∈ X and s ∈ S.

Define the desired map f : X → |Nerv(U)| by sending x to fU (e, x). Since
we have

dL1(f(sx), sf(x)) = dL1(fU (e), sfU (e, x)) = dL1(fU (e), fU (s, sx)) < ε,

the group G is strictly F-transfer reducible group in the sense of Defini-
tion 20.11. ut

Because of Lemma 20.25 Theorem 20.12 applies also to groups which are
strictly transfer F-reducible in the sense of Definition 20.16

In some sense one can also get the other direction of the implication ap-
pearing in Lemma 20.25 since maps from a topological space to the geometric
realization of a finite dimensional simplicial space translate to finite dimen-
sional covers of the source, as we can pull back standard coverings of the
simplicial complex.

Remark 20.26 (Role of the compactification). Note that in Defini-
tion 20.11 the compactification X appearing in Definition 20.16 does not
occur anymore and hence the criterion may be easier to verify. Moreover,
this formulation isolates in a nice fashion what is really needed for the proof
of the Farrell-Jones Conjecture. On the other hand, in many cases where
the Farrell-Jones Conjecture has been proved, such as hyperbolic groups,
finite dimensional CAT(0)-groups, or mapping class groups, these compacti-
fications X and in particular their boundary ∂X = X \X were well-known
and did play a role and did lead to the necessary constructions, often, since
the elements on the boundary corresponds to geodesic rays emanating in the
space X and going to infinity. It is conceivable that for future proofs for new
groups Definition 20.11 may be more appropriate, but we also expect that
some shadow of the notion of a compactification and its boundary and of
non-positive curvature will occur in future proofs which follow and generalize
the actual ones.
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20.5 Transfer Reducible Groups

The strict versions of transfer reducible of the previous Sections 20.3 and 20.4
were sufficient to treat hyperbolic groups. In order to handle CAT(0) groups,
one has to pass to the following generalizations of this notion where homotopy
coherent group actions come in and one has to drop strict.

Definition 20.27 (Homotopy action of a (finitely presented) group
on a space). A homotopy action of a group G on a space X is a group
homomorphism ρ : G → [X,X] to the monoid of homotopy classes of self
homotopy equivalences of X.

Let G be finitely presented group with a finite presentation 〈S | R〉. A
homotopy action of the finitely presented group (ϕ, h) of G on X is given by
the following data:

(i) For every s ∈ S ∪ S−1 = {s ∈ G, s or s−1 belongs to S}, we have a map

ϕs : X → X;

(ii) For every word r = s1s2 · · · sn ∈ R for si ∈ S ∪ S−1, we have a homotopy

hr : ϕs1 ◦ ϕs2 ◦ · · · ◦ ϕsn ' idX .

Note that a homotopy action of the finitely presented group G yields a ho-
motopy G-action, but is a stronger notion since the choice of the homotopies
h for the relations is part of the structure.

The next definition is just the condition appearing in [66, Theorem B] and
motivated by [77, Definition 1.8].

Definition 20.28 (Transfer F-reducible group). Let G be a finitely gen-
erated presented group and let F be a family of subgroups. We call G transfer
F-reducible if for one (and hence all) finite presentation 〈S | R〉 there exists
a natural number N such that there is for any given ε > 0

(i) an N -transfer space X in the sense of Definition 20.9 equipped with a
homotopy G-action (ϕ, h) in the sense of Definition 20.27;

(ii) an abstract simplicial (G,F)-complex Σ of dimension ≤ N ;
(iii) a map f : X → |Σ| that is (ε, 〈S | R〉)-almost G-equivariant, i.e., it satisfies:

(a) We have dL1(f(sx), sf(x)) < ε for every s ∈ S and every x ∈ X;
(b) For every x ∈ X and r ∈ R, the diameter of the subset hr({x} × [0, 1])

of X is ≤ ε.

Remark 20.29. Definition 20.28 is just the condition appearing in [66, The-
orem B] and motivated by [77, Definition 1.8], one replaces the formulation
in terms of open coverings by the formulation in terms of almost equiva-
riant maps, in the spirit of Remark 20.1 or of Lemma 20.25 and its proof. In
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particular a group which satisfies the notion of transfer reducible over F in
the sense of [77, Definition 1.8] is transfer F-reducible group in the sense of
Definition 20.28.

Remark 20.30. Note that [79, Main Theorem] implies that finite-dimensional
CAT(0)-groups are finitely presented and transfer VCY-reducible. A sketch
of this proof can also be found in [66, Section 1.5]. We recall that a finite-
dimensional CAT(0)-group is a group admitting a cocompact proper isomet-
ric action on a CAT(0)-space which has finite topological dimension.

Theorem 20.31 (Transfer reducible groups and the Farrell-Jones
Conjecture). Let F be a family of subgroups. Let G be a finitely presented
group coning with a presentation 〈S | R〉 such that G is transfer F-reducible
in the sense of Definition 20.28.

Then the assembly map

HG
n (pr; KA) : HG

n (EF (G); KA)→ HG
n (G/G; KA) = πn

(
KA(I(G))

)
is bijective for n ≤ 0 and surjective for n = 1 for every additive G-category,
and the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF2
(G); L

〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
is bijective for every n ∈ Z and every additive G-category with involution.

Theorem 20.31 is a reformulation of [86, Theorem 1.1] as pointed out
in [66, Remarks 1.3.15 and 1.3.18] for the K-theory version. Its extension to
L-theory follows from the proof of [77, Theorem B].

20.6 Strongly Transfer Reducible Groups

In Theorem 20.31 we deal only with lower and middle K-theory. In order
to treat also higher algebraic K-theory, one needs to take higher homotopies
into account.

The next definition is taken from [172, Definition 5.2], see also Wegner [973,
Definition 2.1].

Definition 20.32 (Strong homotopy action). A strong homotopy ac-
tion, sometimes also called homotopy coherent G-actionindexhomotopy ac-
tion!homotopy coherent G-action of a group on a space, (Γ,Z) of a group G
on a topological space Z consists of a map

Γ :

∞∐
k=0

 k∏
j=1

G× [0, 1]

×G× Z
→ Z



20.6 Strongly Transfer Reducible Groups 585

satisfying

Γ (gk, tk, . . . , g1, t1, g0, z)

=



Γ (gk, tk, . . . , gj , Γ (gj−1, tj−1, . . . , g0, z)) tj = 0, 1 ≤ j ≤ k;

Γ (gk, tk, . . . , tj+1, gjgj−1, tj−1, . . . , g0, z) tj = 1, 1 ≤ j ≤ k;

Γ (gk, tk, . . . , g2, t2, g1, z) g0 = e;

Γ (gk, tk, . . . , gj+1, tj+1tj , gj−1, . . . , g0, z) gj = e, 1 ≤ j ≤ k − 2;

Γ (gk−1, tk−1, . . . , g0, z) gk = e;

x g0 = e, k = 0.

Here we use the convention that non-existing entries are dropped, e.g., gk, tk
in the first line if j = k or the entry tj−1 in the second line if j = 1.

Next we present the notion of strongly transfers reducible over F , which
we prefer to call strongly F-transfer reducible, due to Wegner [973, Defini-
tion 3.1], where all the higher homotopies are taken into account.

Given a strong homotopy action Γ in the sense of Definition 20.32, we need
to introduce the following notions. For k ∈ N, g ∈ G, and a subset S ⊆ G
containing e and g we define a subset of map(X,X)
(20.33)
Fg(Γ, S, k) := {Γ (gk, tk, . . . g0, ?) : X → X | gi ∈ S, tj ∈ [0, 1], gk · · · g0 = g}

For (g, x) ∈ G×X we define

(20.34) S0
Γ,S,k(g, x) = {(g, x)} ⊆ G×X

and

(20.35) S1
Γ,S,k(g, x) ⊆ G×X

as the subset of all (h, y) ∈ G×X with the property that here are a, b ∈ S,
f ∈ Fa(Γ, S, k), and f ′ ∈ Fb(Γ, S, k) satisfying both f(x) = f ′(y) and h =
ga−1b. For n ≥ 2 define inductively

(20.36) SnΓ,S,k(g, x) ⊆ G×X

by

SnΓ,S,k(g, x) =
⋃

{(h,y)∈Sn−1
Γ,S,k(g,x)}

S1
Γ,S,k(h, y).

Exercise 20.37. Let X be a G-space X. Consider the G-action as a homo-
topy G-action in the sense of Definition 20.32 in the obvious way. Define the
subsets of G by

S[k] := {g0g1 · · · gk | gi ∈ S};
S[k, n] := {a−1

1 b1 · · · a−1
n bn | a1, . . . an, b1, . . . bn ∈ S[k]}.
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Show that then the sets Fg(Γ, S, k) of (20.33), S1
Γ,S,k(g, x) of (20.35), and

SnΓ,S,k(g, x) of (20.36) reduce to

Fg(Γ, S, k) = {lg : X → X | g ∈ S[k]} ⊆ map(X,X);

S1
Γ,S,k(g, x) = {(gu, u−1x) | u ∈ S[k, 1]};
SnΓ,S,k(g, x) = {(gv, v−1x) | v ∈ S[k, n]}.

Definition 20.38 (Strongly transfer F- reducible). A groupG is strongly
F-transfer reducible, if there exists a natural number N with the following
property: For all subsets S ⊆ G, which satisfy S = {g−1 | g ∈ S} and contain
the unit e ∈ G, and all natural numbers n, k there are

• a N -transfer space X in the sense of Definition 20.9;
• a strong homotopy action Γ in the sense of Definition 20.32;
• An open F-cover U of G ×X, where the G-action on G ×X is given by
g′ · (g, x) = (g′g, x), of dimension at most N such that for every (g, x) ∈
G×X there exists U ∈ U with SnΓ,S,k(g, x) ⊆ U .

Hyperbolic groups are strongly transfer reducible over VCY by the proof
of [77, Proposition 2.1], as explained in [973, Example 3.2]. Wegner [973,
Theorem 3.4] explains that finite-dimensional CAT(0)-groups are strongly
transfer reducible over VCY by [79, Main Theorem].

Theorem 20.39 (Strongly transfer F-reducible groups and the Farrell-
Jones Conjecture). Let G be a group and F be a family of subgroups such
that G is strongly F-transfer reducible.

Then the assembly maps

Hn(pr; KA) : HG
n (EF (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
;

HG
n (pr; HC) : HG

n (EF (G); HC)→ HG
n (G/G; HC) = πn

(
KC(I(G))

)
,

are bijective for every additive G-category A, every right exact G-∞-category
C, and every n ∈ Z, and the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF2(G); L
〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
,

is bijective for every additive G-category with involution A and every n ∈ Z.

Proof. For the K-theoretic part in the setting of additive categories we re-
fer to [973, Theorem 1.1], whose prove is based on [77, Theorem B]. The
more general proof of the K-theory version for higher categories follows from
Remark 20.3 and Theorem 20.61.

The L-theory part follows already from Theorem 20.31 since strongly F-
transfer reducible implies transfer F-reducible by Lemma 20.2 (v). ut
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We have explained in Section 19.5 why in the CAT(0)-setting one needs
to consider strong homotopy G-actions instead of strict G-actions.

Theorem 20.40 (Strongly transfer VCY-reducible groups and the
Full Farrell-Jones Conjecture). Let G be a group such that G is strongly
VCY-transfer reducible.

Then G is a Farrell-Jones group, i,e., it satisfies the Full Farrell-Jones
Conjecture 13.27.

Proof. Let F be a finite subgroup. Let VCY l be the family of subgroups H
of G o F such that there is subgroup H ′ ⊆ H of finite index such that H ′ is
isomorphic to a finite product V1 × V2 · · · × ×Vk for virtually cyclic groups
Vi. Then G o F satisfies the Farrell-Jones Conjecture for K and L-theory
with additive G-categories as coefficients, see Conjecture 13.11 and Conjec-
ture 13.16, with respect to the family VCY o by [88, Theorem 5.1 (ii)]. Every
element in VCY o is virtually abelian and hence satisfies the Farrell-Jones
Conjecture for K and L-theory with additive G-categories as coefficients, see
Theorem 16.1 (ic). We conclude from the Transitivity principle 15.13 that
G oF satisfies the Farrell-Jones Conjecture for K and L-theory with additive
G-categories as coefficients. Hence G satisfies the K-theoretic and the L-
theoretic Farrell-Jones Conjecture with coefficients in additive G-categories
with finite wreath products, see Conjecture 13.24 and Conjecture 13.25. It
remains to show that G satisfies the K-theoretic Farrell-Jones Conjecture
with coefficients in higher G-categories with finite wreath products, see Con-
jecture 13.26. This follows from Remark 20.3 and Theorem 20.62. ut

20.7 Finitely F-Amenable Groups

Let G be a group and let F be a family of subgroups. The next definition is
taken from [69, Introduction] which is motivated by [86, Theorem 1.1].

Definition 20.41 (Finitely F-amenable group action). For a natural
number N , a G-action on a space X is called N -F-amenable, if for all finite
subsets S of G there exists an open F-cover U in the sense of Definition 20.18
of G×X equipped with the diagonal G-action g · (h, x) = (gh, gx) satisfying:

• The dimension of U is at most N ;
• The open F-cover cover U is S-long (in the group coordinate), i.e., for

every (g, x) ∈ G×X there is U ∈ U with gS × {x} ⊆ U .

A G-action on a space X is called finitely F-amenable if it is N -F-
amenable for some natural number N .

The proof of the next lemma can be found in [69, Lemma 4.2], whose
proof is based on [432, Proposition 4.2]. It is useful for studying how N -F-
amenability behaves under finite extensions, see [69, Section 4.1].



588 20 Conditions about a Group Implying the Farrell-Jones Conjecture

Lemma 20.42. Let G be a group G and F be a family of subgroups. Then
the following statements are equivalent for a compact metric space X and a
G-action on it:

(i) The G-action on X is N -F-amenable in the sense of Definition 20.41;
(ii) For every finite subset S ⊆ G and every ε > 0, there exists an ab-

stract simplicial (G,F)-complex Σ of dimension at most N together with
a map f : X → |Σ| that is (ε, S)-almost G-equivariant, i.e., we have
dL1(f(sx), sf(x)) ≤ ε for every s ∈ S and every x ∈ |Σ|.

Exercise 20.43. Suppose that G is finitely generated. Let S1 and S2 be two
finite sets of generators. Then the second condition appearing in Lemma 20.42
holds for S1 if and only if holds for S2.

Recall that a metric space X is an ER (= Euclidean retract) if it can be
embedded in some Rn as a retract. A compact metric space X is an ER
if and only if it is a finite-dimensional contractible ANR, Comment 28
(by W.): Do we have a reference for this claim? or, equivalently, if it is
finite-dimensional, locally contractible, and contractible.

Definition 20.44 (Finitely F-amenable group). We call a group G
finitely F-amenable if G admits a finitely F-amenable action on a compact
ER.

Theorem 20.45 (Finitely F-amenable actions and the Farrell-Jones
Conjecture). Let G be a group and F be a family of subgroups. Suppose
that G is finitely F-amenable.

Then the assembly maps

Hn(pr; KA) : HG
n (EF (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
;

HG
n (pr; HC) : HG

n (EF (G); HC)→ HG
n (G/G; HC) = πn

(
KC(I(G))

)
,

are bijective for every additive G-category A, every right exact G-∞-category
C, and every n ∈ Z, and the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF2
(G); L

〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
,

is bijective for every additive G-category with involution A and every n ∈ Z.

Proof. This follows from the axiomatic results in [77, Theorem 1.1] and [86,
Theorem 1.1], as explained in [69, Theorem 4.8] for additive G-categories
(with involution) as coefficients. (In [69, Theorem 4.8] it is required that F is
closed under passage to over groups of finite index but this is not necessary,
see also [67, Theorem 4.3]). The K-theoretic version for higher G-categories
as coefficients follows from Remark 20.3 and Theorem 20.62. ut
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Let C be a class of groups that is closed under isomorphisms and tak-
ing subgroups. Let ac(C) be the class of all groups G that admit a finitely
generated C(G)-amenable action on an ER where C(G) is the family of sub-
groups of G which belong to C. Because of the action on a one-point-space
we get C ⊆ ac(C). Starting with ac0(C) = C, we can define inductively
acn+1(C) = ac(acn(C)). We set

(20.46) AC(C) =

∞⋃
n=0

acn(C).

Let VNIL be the class of virtually nilpotent groups and VSOLV be the class
of virtually solvable groups.

Theorem 20.47 (Groups in AC(VSOLV) satisfy the Full Farrell-
Jones Conjecture). Every group in AC(VSOLV) satisfies the Full Farrell-
Jones Conjecture 13.27.

Proof. This follows from the Transitivity Principle, see Theorem 15.13, The-
orem 16.1 (ic), and Theorem 20.45 for additive G-categories as coefficients as
explained in [69, Corollary 4.10 and Remark 9.4]. For the setting of higher
G-categories one needs to replace Theorem 20.45 by [172, Theorem 1.4]. ut

The main result in [69, Lemma 9.3] says that mapping class groups belong
to AC(VNIL) and hence satisfy the Full Farrell-Jones Conjecture 13.27,
see [69, Theorem A and Remark 9.4].

20.8 Finitely Homotopy F-Amenable Groups

Next we state the version of finitely homotopy F-amenable groups appearing
in [172, Definition 5.4] which goes back to [86, 77, 973] and is essentially the
one appearing in Bartels [68, Definition 2.11 and Theorem 2.12].

An AR (= absolute retract) is a metrizable topological space such that for
every embedding i : X → Y as a closed subspace into a metric space Y there
is a retraction r : Y → X, or, equivalently, for every metric space Z, every
closed subset Y ⊆ Z, and every (continuous) map f : Y → X, there exists an
extension F : Z → X of f . An ANR is an AR if and only if it is contractible,
see [488, Theorem 7.1 and Proposition 7.2 in Chapter III on page 96].

Definition 20.48 (Finitely homotopy F-amenable group). Let G be
a group and let F be a family of subgroups. We call G finitely homotopy
F-amenable if there exist

(i) A sequence {Γn, Zn}n∈N of homotopy coherent G-actions in the sense of
Definition 20.32;
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(ii) A sequence {Σn}n∈N of abstract simplicial complexes coming with a sim-
plicial G-action;

(iii) A sequence {fn}n∈N of continuous maps fn : Zn → |Σn|,

such that the following holds:

(a) For every n ∈ N the space Zn is a compact contractible AR;
(b) For every n ∈ N the isotropy groups of |Σn| belong to F ;
(c) There exists a natural number N with dim(Σn) ≤ N for all n ∈ N;
(d) For every k ∈ N and elements g0, g1, . . . , gk in G we have

lim
n→∞

sup
(t1,...,tk)∈[0,1]k,

z∈Zn

dΣnL1

(
fn(Γn(gk, tk, . . . , g1, t1, g0, z)), gk . . . g0fn(z)

)
= 0.

Note that a finitely homotopy F-amenable group is in particular a Dress-
Farrell-Hsiang-Jones group, see [172, Remark 7.2 (1)]. Hence Theorem 20.61
and Theorem 20.62 apply to homotopy F-amenable groups, see also [172,
Theorem 5.1].

Remark 20.49. The condition formulated in Definition 20.48 is slightly
weaker than the assumptions in Bartels [68, Theorem 2.12] since we do not
require a uniform bound on the dimension of the AR-s Zn. In practice, how-
ever, the dimensions of the simplicial complexes Σn are usually bounded in
terms of the dimensions of the spaces Zn. In this case Zn is a sequence of
ER-s with uniformly bounded covering dimension.

20.9 Dress-Farrell-Hsiang Groups

Definition 20.50 (Dress group). A finite group D is called a Dress group
if there exist (not necessarily distinct) prime numbers p and q and subgroups
P ⊆ C ⊆ D such that P is normal in C and C is normal in D, P is a p-group,
C/P is cyclic, and D/C is a q-group.

For F a finite group, we denote the family of Dress subgroups of F by
D(F ).

Exercise 20.51. Show for a finite group F that H(F ) ⊆ D(F ) holds.
The next definition is taken from [172, Definition 6.3].

Definition 20.52 (Dress-Farrell-Hsiang group). Let G be a finitely gen-
erated group and let F be a family of subgroups. Given a natural number N ,
we call G a Dress-Farrell-Hsiang group over F if there exist

(i) A sequence {Fn}n∈N of finite groups;
(ii) A sequence {αn}n∈N of surjective group homomorphism αn : G→ Fn;

(iii) A collection {(Σn, D) | n ∈ N, D ∈ D(Fn)} where Σn is an abstract
simplicial complex with a simplicial α−1

n (D)-action;
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(iv) A collection {fn | n ∈ N, D ∈ D(Fn)} of maps of sets fn,D : G→ Σn,D,

such that the following holds:

(a) For every n ∈ N and D ∈ F(Fn), the α−1
n (D)-isotropy groups of |Σn,D|

belong to the family F|α−1
n (D) = {H ∩ α−1

n (D) | H ∈ F};
(b) There exists a natural number N with dim(Σn,D) ≤ N for all n ∈ N and

D ∈ D(Fn);
(c) For every n ∈ N and D ∈ F(Fn), the map fn,D is α−1

n (D)-equivariant
where α−1

n (D) acts on G from the left;
(d) For every g ∈ G we have

lim
n→∞

sup
D∈D(Fn),γ∈G

d
Σn,D
L1

(
fn,D(γg), fn,D(γ)

)
= 0.

Note that a Dress-Farrell-Hsiang group is in particular a Dress-Farrell-
Hsiang-Jones group, See [172, Remark 7.2 (2)]. Hence Theorem 20.61 and
Theorem 20.62 apply to Dress-Farrell-Hsiang groups, see also [172, Theo-
rem 6.1].

The next result is due to Oliver [753, Theorem 7].

Theorem 20.53 (Fixed point free smooth actions of finite groups on
disks). Let G be a finite group. Then G is not a Dress group if and only if
G acts smoothly on some disk Dn such that (Dn)G is empty.

Exercise 20.54. Let G be a finite abelian group. Show that G admits a
smooth action on some disk Dn with (Dn)G = ∅ if and only if there are
three distinct primes p1, p2, and p3 such that the pk-Sylow subgroup of G is
non-cyclic for k = 1, 2, 3.

The following definition is equivalent to the one in [942, Definition 8.1].

Definition 20.55 (A-theoretic Swan ring SwA(G)). For a group G define
the A-theoretic Swan ring SwA(G) as follows. The underlying abelian group
is defined as follows. Every compact G-CW -complexes X, or, equivalently G-
CW -complexes X, whose underling CW -complex is finite, or, equivalently,
G-CW -complexes X such that X has finitely many equivariant cells and the
isotropy group of each x ∈ X has finite index in G, defines an element [X]
in SwA(G). The relations are given as follows. If X and Y are compact G-
CW -complexes and there is a G-map f : X → Y such that f is a homotopy
equivalence (after forgetting the G-actions), then we require [X] = [Y ]. If
the compact G-CW -complex X is the union of sub G-CW -complexes X1

and X2 and X0 is the intersection of X1 and X2, then we require [X] =
[X1] + [X2] − [X0]. The multiplication comes from the cartesian product of
two compact G-CW -complexes equipped with the diagonal G-action. The
zero element is represented by the empty set and the unit by G/G.

The group SwA(G) is the A-theoretic analogue of the Swan group Swp(G)
introduced in Definition 12.65.
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Exercise 20.56. Let G be a (not necessarily finite) group. Define for a com-
pact G-CW -complex X the element

s(X) :=
∑
n≥0

(−1)n · [Ccn(X)] ∈ Swp(G)

where Cc∗(X) is the cellular ZG-chain complex of X. Show that we obtain
well-defined ring homomorphism

s : SwA(G)→ Swp(G), [X] 7→ s(X).

Exercise 20.57. Let G be a (not necessarily finite) group. Let A(G) be the
Burnside ring defined in Example 12.63. Show that we obtain a well-defined
surjective ring homomorphism a : A(G)→ SwA(G) by viewing a finite G-set
as a compact 0-dimensional G-CW -complex.

Exercise 20.58. Let p be a prime. Then we get a well-defined sequence of
isomorphisms of abelian groups

Z⊕ Z u−→ A(Z/p) a−→ SwA(Z/p) c−→ Z⊕ Z

where u sends (m,n) to m · [Z/p] + n · [{∗}], the map a has been defined in
Exercise 20.57, and c sends [M ] to (rkZ(M), rkZ(MZ/p)).

The appearance of the Dress subgroups in Definition 20.60 is due to the
result of Ullmann-Winges [942, Theorem 8.7 ] that for a finite group F and
the family D(F ) of Dress subgroup there are elements µH ∈ SwA(H) for
H ∈ D(F ) satisfying

(20.59) 1SwA(F ) =
∑
H∈H

indFH(µH) ∈ SwA(F )

where the homomorphisms indFH : SwA(H)→ SwA(F ) are induced by induc-
tion. The proof of (20.59) is based on Oliver’s Theorem 20.53. Note that one
needs to pass to the A-theoretic Swan ring in the context of higher categories
since Swp(F ) acts on Kn(RF ) but for instance not on πn(A(BG)).

Note that a Dress-Farrell-Hsiang group is in particular a Dress-Farrell-
Hsiang-Jones group, see [172, Remark 7.2 (2)]. Hence Theorem 20.61 and
Theorem 20.62 apply to Dress-Farrell-Hsiang groups.

20.10 Dress-Farrell-Hsiang-Jones Groups

The next definition is taken from [172, Definition 7.1].
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Definition 20.60 (Dress-Farrell-Hsiang-Jones group). LetG be a finitely
generated group and F be a family of subgroups. Given a natural number
N , we call G a Dress-Farrell-Hsiang-Jones group over F if there exist

(i) A sequence {Fn}n∈N of finite groups;
(ii) A sequence {αn}n∈N of surjective group homomorphism αn : G→ Fn;
(iii) A collection {Γn,D, Zn,D | n ∈ N, D ∈ D(Fn)} of homotopy coherent G-

action in the sense of Definition 20.32;
(iv) A collection {Σn,D | n ∈ N, D ∈ D(Fn)} where Σn,D is an abstract sim-

plicial complex with a simplicial α−1
n (D)-action;

(v) A collection {fn,D | n ∈ N, D ∈ D(Fn)} of continuous maps fn,D : G ×
Zn,D → |Σn,D|,

such that the following holds:

(a) For every n ∈ N and every D ∈ D(Fn), the topological space Zn,D is a
compact AR;

(b) For every n ∈ N and every D ∈ D(Fn), the α−1
n (D)-isotropy groups of

|Σn,D| belong to the family F|α−1
n (D) = {H ∩ α−1

n (D) | H ∈ F};
(c) The exists a natural number N with dim(Σn,D) ≤ N for all n ∈ N and

D ∈ D(Fn);
(d) For every n ∈ N and everyD ∈ D(Fn), the map fn,D is α−1

n (D)-equivariant
where α−1

n (D) acts on G× Zn,D diagonally from the left;
(e) For every k ∈ N and elements g0, g1, . . . , gk in G we have

lim
n→∞

(
sup

D∈D(Fn),γ∈G
(t1,...,tk)∈[0,1]k,

z∈Zn,D

un

)
= 0

for

un := d
Σn,D
L1

(
fn,D(γ, Γn,D(gk, tk, . . . , g1, t1, g0, z), fn,D(γkgk . . . g0, z)

)
.

The next result is taken from [172, Theorem 7.4]. We will give more details
of its proof in Chapter 25. Comment 29 (by W.): Make the reference later
more precise when Chapter 25 is written.

Theorem 20.61 (Dress-Farrell-Hsiang-Jones groups and the K-theo-
retic Farrell-Jones Conjecture).

Let G be a finitely generated group which is a Dress-Farrell-Hsiang-Jones
group over F in the sense of Definition 20.60.

Then the assembly maps

Hn(pr; KA) : HG
n (EF (G); KA)→ HG

n (G/G; KA) = πn
(
KA(I(G))

)
;

HG
n (pr; HC) : HG

n (EF (G); HC)→ HG
n (G/G; HC) = πn

(
KC(I(G))

)
,
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are bijective for every additive G-category A, every right exact G-∞-category
C, and every n ∈ Z.

Theorem 20.62 (Dress-Farrell-Hsiang-Jones groups and the K-theo-
retic Farrell-Jones Conjecture with finite wreath products).

Let G be finitely generated group which is a Dress-Farrell-Hsiang-Jones
group over VCY in the sense of Definition 20.60.

Then G satisfies the K-theoretic Farrell-Jones Conjecture with coefficients
in additive G-categories with finite wreath products, see Conjecture 13.24
and the K-theoretic Farrell-Jones Conjecture with coefficients in higher G-
categories with finite wreath products, see Conjecture 13.26.

Proof. This follows from the last paragraph starting on page 127 in [172] and
Theorem 16.1 (ic). ut

Remark 20.63. Note that we need for the proof of Theorem 20.61 and The-
orem 20.62 the assumption that G is finitely generated. If G is finitely gen-
erated, then it suffices in Definitions 20.48, 20.52, and 20.60 to check the last
requirement appearing there only for the elements g1, g2, . . . , gk or g con-
tained in one fixed finite set S of generators, since then it hold automatically
for any finite subset of G or any element of G, essentially because of the
tringle inquality.

20.11 Notes

It is conceivable that, if G is a Dress-Farrell-Hsiang-Jones group over F in
the sense of Definition 20.60. the assembly map

HG
n (pr; L

〈−∞〉
A ) : HG

n (EF2
(G); L

〈−∞〉
A )

→ HG
n (G/G; L

〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
,

is bijective for every additive G-categoryA (with involution) and every n ∈ Z.
Details of this claim have not been checked. If this claim is true, one would
get that a group G, which is a Dress-Farrell-Hsiang-Jones group over VCY, is
a Farrell-Jones group, i.e., it satisfies the Full Farrell-Jones Conjecture 13.27.

So far the L-theoretic version of the Farrell-Jones Conjecture has only
been established for additive categories with involution. Christoph Winges
and the author of the book expect that it can be generalized to the setting
of higher categories and proved for all Dress-Farrell-Hsiang-Jones groups.

Sawicki [874] discusses the notion of equivariant asymptotic dimension
which is closely related to the notions of a transfer F-reducible group, see
Definition 20.28, and of finitely F-amenable group, see Definition 20.44.

There is also the notion of an almost transfer F-reducible group which
is introduced in [88, Definition 5.3] and is weaker than transfer F-reducible
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group. Both conditions are equivalent if the family F is closed under the
passage to overgroups of finite index, see for instance [874, Corollary 2.6].

last edited on 19.04.2024
last compiled on April 28, 2024

name of texfile: ic





Chapter 21

Karoubi Filtrations

21.1 Introduction

This chapter is devoted to the notion of a Karoubi filtration, which is given
by a full additive subcategory U of an additive category A satisfying cer-
tain conditions, and the existence of the associated weak homotopy fibration
sequences

K(U)→ K(A)→ K(A/U);

L〈−∞〉(U)→ L〈−∞〉(A)→ L〈−∞〉(A/U),

which induce long exact sequences of K- and L-groups. This will be a basic
tool in Chapter 22, where we will define G-homology theories in terms of
controlled topology and need to check the axioms of a G-homology theory
such as the long exact sequence of a pair or excision. All this is presented in
Section 21.2, and that is all we need for this book.

For the reader’s convenience we give a mild generalization of the notion of
a Karoubi fibration in Section 21.3, which may be useful in other contexts.
In Section 21.2 we extend the proof of the existence of the associated weak
homotopy fibration sequence K(U) → K(A) → K(A/U) of [197] to this
setting, also taking care of a bug in [197].

For the proof presented here we use the definition of the non-connective
K-theory spectrum of homotopical Waldhausen categories due to Bunke-
Kasprowski-Winges [173]. Then the proof becomes conceptually very clear,
it is essentially a consequence of the non-connective analogues of standard
theorems such as the Fibration Theorem 21.17, Cisinski’s Approximation
Theorem 21.18, and the Cofinality Theorem 21.19. We also identify this no-
tion with the one we have used so far for the non-connective K-theory of
additive categories, see Theorem 21.39.

21.2 Karoubi Filtration and the Associated Weak
Homotopy Fibration Sequence

If U is a full additive subcategory of A, then one can define the quotient
category A/U as follows. The set of objects of A/U agrees with the set of
objects of A. The set of morphism morA/U (A,A′) for objects A and A′ in

597
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A/U is defined to be morA(A,A′)/ ∼ for the equivalence relation ∼ where
we call two morphisms f, f ′ : A → A′ in A equivalent, if their difference
f − f ′ : A → A′ factorizes in A as a composition A → U → A′ for some
object U in U . We leave the elementary proof to the reader, that A/U inherits
from A the structure of an additive category such that the obvious projection
p : A → A/U is a functor of additive categories. For a morphism f : A→ A′

in A, we denote by [f ] : A→ A′ the morphism in A/U represented by f .

Definition 21.1 (Quotients for additive categories). We call the addi-
tive category A/U the quotient category of A by U .

Definition 21.2 (U-filtered). We say that A is U-filtered or, equivalently,
that the inclusion U → A is a Karoubi filtration, if the following holds:

The additive subcategory U ⊆ A is full. Moreover, given an object A in A,
objects U, V ∈ U , and morphisms f : A → U and g : V → A in A, there are
objects AU in U and A⊥ in A and morphisms iU : AU → A and i⊥ : A⊥ → A
satisfying:

• iU ⊕ i⊥ : AU ⊕A⊥
∼=−→ A is an isomorphism in A;

• There exists a morphism fU : AU → U such that the following diagram
commutes

A
f // U

AU ⊕A⊥

∼=iU⊕i⊥

OO

prAU
// AU

fU

OO

where prAU : AU ⊕A⊥ → AU is the canonical projection;
• There exists a morphism gU : V → AU such that the following diagram

commutes

V
g //

gU

��

A

AU
iAU
// AU ⊕A⊥

∼= iU⊕i⊥

OO

where iAU : AU → AU ⊕A⊥ is the canoncial inclusion.

Exercise 21.3. Show that the morphisms fU and gU appearing in Defini-
tion 21.2 are uniquely determined by the desired properties.

Remark 21.4 (Relation to the classical definition of a Karoubi fil-
tration). If one requires in Definition 21.2 additionally that U = V , then
it reduces to [549, Definition 5.4]. One easily checks that Definition 21.2
and [549, Definition 5.4] are equivalent, the special case U = V in [549, Def-
inition 5.4] implies the general case of Definition 21.2 by considering U ⊕ V .
Note that [549, Definition 5.4] agrees with the more complicated notion of a
U-filtration due to Karoubi [530], see [549, Lemma 5.6].
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The main result of this chapter is:

Theorem 21.5 (The weak homotopy fibration sequence of a Karoubi
filtration). Let A be an additive category and i : U → A be the inclusion
of a full additive subcategory. Let p : A → A/U be the canonical projection.
Suppose that A is U-filtered.

(i) The sequence of spectra

K(U)
K(i)−−−→ K(A)

K(p)−−−→ K(A/U)

is a weak homotopy fibration sequence of non-connective spectra, i.e., the
composite K(p) ◦K(i) admits a preferred nullhomotopy, since there is a
preferred natural transformation from p ◦ i to the trivial functor, and the
induced map

K(U)→ hofib
(
K(p) : K(A)→ K(A/U)

)
is a weak homotopy equivalence.
In particular we get a long exact sequence, infinite to both sides,

· · · ∂n+1−−−→ Kn(U)
Kn(i)−−−−→ Kn(A)

Kn(p)−−−−→ Kn(A/U)
∂n−→ Kn−1(U)

Kn−1(i)−−−−−→ Kn−1(A)
Kn−1(p)−−−−−→ Kn−1(A/U)

∂n−1−−−→ · · · ;

(ii) Suppose additionally that A is an additive category with involution such
that the involution induces the structure of an additive category with invo-
lution on U .
Then A/U inherits the structure of an additive category with involution
and the sequence of spectra

L〈−∞〉(U)
L〈−∞〉(i)−−−−−−→ L〈−∞〉(A)

L〈−∞〉(p)−−−−−−→ L〈−∞〉(A/U)

is a weak homotopy fibration sequence of non-connective spectra.
In particular we get a long exact sequence, infinite to both sides,

· · · ∂n+1−−−→ L〈−∞〉n (U)
L〈−∞〉n (i)−−−−−−→ L〈−∞〉n (A)

L〈−∞〉n (p)−−−−−−→ L〈−∞〉n (A/U)

∂n−→ L
〈−∞〉
n−1 (U)

L
〈−∞〉
n−1 (i)
−−−−−−→ L

〈−∞〉
n−1 (A)

L
〈−∞〉
n−1 (p)
−−−−−−→ L

〈−∞〉
n−1 (A/U)

∂n−1−−−→ · · · .

Proof. (i) See [197, 199, 784] based on the work of Karoubi [530].

(ii) See [202, Theorem 4.2]. ut

Theorem 21.5 (i) follows also from [883, Example 1.8 and Theorem 2.10].



600 21 Karoubi Filtrations

Comment 30 (by W.): Shall we already here mention that one can prove
Theorem 21.5 also in the setting of Right-Exact ∞-Categories?

Exercise 21.6. Suppose that U → A is a Karoubi filtration and A is flasque.

Then there is weak homotopy equivalence K(U)
'−→ ΩK(A/U).

21.3 Stable Karoubi Filtration

Let A be an additive category and i : U → A be the inclusion of a full additive
subcategory.

Definition 21.7 (Stably U-filtered). We say that A is stably U-filtered, or,
equivalently, that the inclusion U → A is a stable Karoubi filtration,, if the
following holds:

Given an object A in A, objects U, V ∈ U , and morphisms f : A → U
and g : V → A in A, there are objects Ã in A and ÃU in U , and morphisms
ĩ : A→ Ã, r̃ : Ã→ A, iU : ÃU → Ã and rU : Ã→ ÃU satisfying:

• r̃ ◦ ĩ = idA and rU ◦ iU = idÃU in A;

• There exists a morphism fU : ÃU → U such that the following diagram
commutes

A
f // U

Ã

r̃

OO

rU
// ÃU ;

fU

OO

• There exists a morphism gU : V → ÃU such that the following diagram
commutes

V
g //

gU

��

A

ĩ
��

ÃU
iU
// Ã.

Here is a stronger version where retractions are replaced by direct sum
decompositions.

Definition 21.8 (Strongly stably U-filtered). We say that A is strongly
stably U-filtered, or, equivalently, that the inclusion U → A is a strongly stable
Karoubi filtration, if the following holds:

Given an object A in A, objects U, V ∈ U , and morphisms f : A→ U and
g : V → A in A, there are objects A′ ∈ A, (A ⊕ A′)U in U and (A ⊕ A′)⊥
in A and morphisms iU : (A⊕ A′)U → A⊕ A′ and i⊥ : (A⊕ A′)⊥ → A⊕ A′
satisfying:
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• iU ⊕ i⊥ : (A⊕A′)U ⊕ (A⊕A′)⊥
∼=−→ A⊕A′ is an isomorphism in A;

• There exists a morphism fU : (A ⊕ A′)U → U such that the following
diagram commutes

A
f // U

A⊕A′

prA

OO

(A⊕A′)U ⊕ (A⊕A′)⊥

∼=iU⊕i⊥

OO

pr(A⊕A′)U
// (A⊕A′)U

fU

OO

where prA : A⊕A′ → A and pr(A⊕A′)U : (A⊕A′)U⊕(A⊕A′)⊥ → (A⊕A′)U
are the canonical projections;

• There exists a morphism gU : V → AU such that the following diagram
commutes

V
g //

gU

��

A

iA

��
A⊕A′

(A⊕A′)U
i(A⊕A′)U

// (A⊕A′)U ⊕ (A⊕A′)⊥

∼= iU⊕i⊥

OO

where iA : A → A ⊕ A′ and i(A⊕A′)U : (A ⊕ A′)U → (A ⊕ A′)U ⊕ (A ⊕ A′)⊥
are the canoncial inclusions.

Lemma 21.9.

(i) We have the implications

U-filtered =⇒ strongly stably U-filtered =⇒ stably U-filtered;

(ii) If A is idempotent complete, then stably U-filtered implies strongly stably
U-filtered.

Proof. (i) For U-filtered =⇒ strongly stably U-filtered take A′ = {0} in the
Definition 21.8 of strongly stably U-filtered. For strongly stably U-filtered =⇒
stably U-filtered take Ã in Definition 21.7 to be A⊕A′.
(ii) In an idempotent complete additive category every retraction comes from
a direct sum decomposition. ut

Let A[t, t−1] the Laurent category associated to A, see for instance [668,
Section 1].
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Lemma 21.10. Suppose that A is stably U-filtered.
Then A[t, t−1] is stably U [t, t−1]-filtered and there is an isomorphism of

additive categories

A[t, t−1]/U [t, t−1]
∼=−→ (A/U)[t, t−1].

Proof. Consider an object A in A[t, t−1], objects U, V in U [t, t−1], and mor-
phisms f : A→ U and g : V → A in A[t, t−1]. By definition A is an object in
A, U and V are objects in U , and f =

∑
n∈Z fn · tn and g =

∑
n∈Z gn · tn such

that fn : A→ U and gn : V → A are morphisms in A and there exists a natu-
ral number N such that fn = 0 and gn = 0 holds for |n| > N . Note that in an
additive category finite sums are finite direct products. We can consider the
morphisms

∏N
n=−N fn : A →

∏n
n=−N U and

⊕N
n=−N gn :

⊕N
n=−N V → A in

A. Since A is stably U-filtered, there are objects Ã in A and ÃU in U , and
morphisms ĩ : A→ Ã, r̃ : Ã→ A, iU : ÃU → Ã and rU : Ã→ ÃU satisfying:

• r̃ ◦ ĩ = idA and rU ◦ iU = idÃU in A;

• There exists a morphism
(∏N

n=−N fn
)U

: ÃU →
∏n
n=−N U such that the

following diagram commutes

A

∏N
n=−N fn // ∏n

n=−N U

Ã

r̃

OO

rU
// ÃU ;

(
∏N
n=−N fn)U

OO

• There exists a morphism (
⊕N

n=−N gn)U : V → ÃU such that the following
diagram commutes

⊕N
n=−N V

⊕N
n=−N gn //

(
⊕N
n=n

gn)U

��

A

ĩ

��
ÃU

iU
// Ã.

Define fUn : A → U to be zero, if |n| > N , and to be the composite of(∏N
n=−N fn

)U
with the projection

∏n
n=−N U → U onto the factor for n, if

|n| ≤ N . Define gUn : V → A to be zero, if |n| > N , and to be the composite of(⊕N
n=−N gn

)U
with the injection U →

∏n
n=−N U of the factor for n, if |n| ≤

N . Now define a morphisms fU : A → U in A[t, t−1] by fU =
∑
n∈Z f

U
n · tn

and a morphism gU : V → A by
∑
n∈Z g

U
n · tn. Note that the morphism r̃, ĩ,

iU and rU in A define morphisms in A[t, t−1] by r̃ · t0, ĩ · t0, iU · t0 and rU · t0.

Obviously we have r̃ · t0 ◦ ĩ · t0 = idA and rU · t0 ◦ iU · t0 = idAU . The following
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diagrams in A[t, t−1]

A
f // U

Ã

r̃·t0
OO

rU ·t0
// ÃU

fU

OO

and

V
g //

gU

��

A

ĩ·t0
��

ÃU
iU ·t0

// Ã

commute. Hence A[t, t−1] is stably U [t, t−1]-filtered.
The canonical projection A[t, t−1] → A[t, t−1]/U [t, t−1] induces a functor

of additive categories

F : A[t, t−1]/U [t, t−1]→ (A/U)[t, t−1]

by the following argument. Consider a morphism f =
∑
n∈Z fn · tn whose

image under the projection A[t, t−1] → A[t, t−1]/U [t, t−1] is zero, i.e., it can

be written as a composite composite A
u−→ U

v−→ B in A[t, t−1] for U in
U [t, t−1]. Recall that U is by definition an object in U . If we write u =∑
k∈Z uk · tk and v =

∑
l∈Z vl · tl, then we get fn =

∑
k∈Z vn−k ◦ uk in A for

each n ∈ Z. This implies [fn] = 0 in A/U for every n ∈ Z. Hence f is sent
under the projection A[t, t−1]→ (A/U)[t, t−1] to zero. This shows that F is
well-defined.

The canonical projection A[t, t−1] → (A/U)[t, t−1] induces a functor of
additive categories

G : (A/U)[t, t−1]→ A[t, t−1]/U [t, t−1]

by the following argument. Consider a morphism f =
∑
n∈Z fn · tn : A → B

whose image under the projection A[t, t−1] → (A/U)[t, t−1] is zero, i.e., for

each n ∈ Z we can write fn : A → B as a composite A
un−−→ Un

vn−→ B for an
object Un in U . We have to show that the image of f under the projection
A[t, t−1] → A[t, t−1]/U [t, t−1] is zero. Obviously it suffices to show for each
m ∈ Z that fm · tm has this property. But this follows from the equation
fm · tm = vm · tm ◦ um · t0 in A[t, t−1] and the fact that Um belongs to
U [t, t−1]. Hence G is well-defined. One easily checks that F and G are inverse
to one another. ut

The canonical inclusion A → Idem(A) of the additive category A into
its idempotent completion induces a functor of unital additive categories
F : A/U → Idem(A)/ Idem(U), which in turn induces a functor of unital
additive categories
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(21.11) Idem(F ) : Idem(A/U)→ Idem
(
Idem(A)/ Idem(U)

)
.

Lemma 21.12.(i) The functor Idem(F ) is an equivalence of unital additive
categories;

(ii) If A is stably U-filtered, Idem(A) is strongly stably Idem(U)-filtered.

Proof. (i) We have to show:

(a) For every object y in Idem
(
Idem(A)/ Idem(U)

)
there exists an object x

in Idem(A/U) such that F (x) and y are isomorphic;
(b) For every two objects x0 and x1 in Idem(A/U) the functor Idem(F )

induces a bijection

morIdem(A/U)(x0, x1)
∼=−→ morIdem(Idem(A)/ Idem(U))(F (x0), F (x1)).

(a) An object (A, p) in Idem(A)/ Idem(U)
)

is the same as an object in
Idem(A) and hence given by an object A and a morphism p : A → A with
p◦p = p in A. An object y = ((A, p), [q]) in Idem

(
Idem(A)/ Idem(U)

)
is given

by an object (A, p) in Idem(A) and a morphism q : A→ A with p ◦ q ◦ p = q
in A such that [q] ◦ [q] = [q] holds in Idem(A)/ Idem(U), i.e., there exists
an object U ∈ U , a morphism u : U → U in U with u ◦ u = u in U and
morphisms a : A→ U and b : U → A in A with u◦a◦p = a, p◦ b◦u = b, and
q ◦ q − q = b ◦ a in A. Our candidate for the desired object x ∈ Idem(A/U)
is given by (A, [q]). This makes sense since [q] ◦ [q] = [q] in A/U follows from
q ◦ q − q = b ◦ a in A.

The object F (x) in Idem
(
Idem(A)/ Idem(U)

)
is given by ((A, idA), [q]) for

the object (A, idA) in Idem(A) and the morphism [q] : (A, idA) → (A, idA)
in Idem(A)/ Idem(U) given by the morphism q : (A, idA) → (A, idA) in
Idem(A). This makes sense since [q] ◦ [q] = [q] in Idem(A)/ Idem(U) fol-
lows from [q] ◦ [q] = [q] in A/U . We want to define to one another inverse
isomorphisms in Idem

(
Idem(A)/ Idem(U)

)
between F (x) and y by

[q] : ((A, idA), [q])→ ((A, p), [q])

and
[q] : ((A, p), [q])→ ((A, idA), [q]).

These are indeed morphisms in Idem
(
Idem(A)/ Idem(U)

)
since the following

diagrams commute in Idem(A)/ Idem(U)

(A, idA)
[q] //

[q]

��

(A, idA)

[q]

��
(A, p)

[q]
// (A, p)

and
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(A, p)
[q] //

[q]

��

(A, p)

[q]

��
(A, idA)

[q]
// (A, idA)

where the vertical arrows are well-defined because of the equalities p◦q◦p = q
and p ◦ p = p in A. Since the identity morphisms on both ((A, idA), [q]) and
((A, p), [q]) in Idem

(
Idem(A)/ Idem(U)

)
are given by the morphism q : A→ A

and [q] ◦ [q] = [q] holds in A/U , claim (a) is proved.

(b) The object xi = (Ai, [qi]) in Idem(A/U) is given an object Ai in A and
a morphism [qi] : Ai → Ai in A/U such that [qi] ◦ [qi] = [qi] holds in A/U . A
morphism [f ] : x0 → x1 in Idem(A/U) is given by a morphism [f ] : A0 → A1

in A/U such that [q1] ◦ [f ] ◦ [q0] holds in A/U .
As already explained above, the object F (xi) in Idem

(
Idem(A)/ Idem(U)

)
is given by ((Ai, idAi), [qi]) for the object (Ai, idAi) in Idem(A) and the mor-
phism [qi] : (Ai, idAi) → (Ai, idAi) in Idem(A)/ Idem(U) given by the mor-
phism qi : (Ai, idAi)→ (Ai, idAi) in Idem(A). The morphism F ([f ]) : F (x0)→
F (x1) in Idem

(
Idem(A)/ Idem(U)

)
is given by the morphism [f ] : (A0, idA0)→

(A1, idA1
) in Idem(A)/ Idem(U) represented by the morphism f : (A0, idA0

)→
(A1, idA1

) in Idem(A).
A morphism

[g] : F (x0) = ((A0, idA0
), [q0])→ F (x1) = ((A1, idA1

), [q1])

in Idem
(
Idem(A)/ Idem(U)

)
is given by a morphism g : (A0, idA0

)→ (A1, idA1
)

in Idem(A) such that [q1] ◦ [g] ◦ [q0] = [g] holds in Idem(A)/ Idem(U). Note
that g is the same as a morphism g : A0 → A1 since idA1

◦g ◦ idA0
= g al-

ways holds. Moreover, we have [q1] ◦ [g] ◦ [q0] = [g] in Idem(A)/ Idem(U)
if and only if we have [q1] ◦ [g] ◦ [q0] = [g] in A/U . Two morphisms
g0, g1 : (A0, idA0

)→ (A1, idA1
) in Idem(A) satisfying [q1]◦ [gi]◦ [q0] = [gi] for

i = 0, 1 in Idem(A)/ Idem(U) define the same morphism F (x0) → F (x1) in
Idem

(
Idem(A)/ Idem(U)

)
if and only if there is an object (U, u) ∈ Idem(U)

and morphisms a : (A0, idA0
) → (U, u) and b : (U, u) → (A1, idA1

) with
g1− g0 = b◦a in Idem(A). The latter condition is equivalent to the existence
of an object U and morphisms a : A0 → U and b : U → B in A such that
g1−g0 = b◦a holds in A since one may choose u = idU . Thus we have shown
that a morphism [g] : F (x0) = ((A0, idA0

), [q0]) → F (x1) = ((A1, idA1
), [q1])

in Idem
(
Idem(A)/ Idem(U)

)
is the same as a morphism [g] : A0 → A1 in A/U

satisfying [q1] ◦ [g] ◦ [q0] = [g]. Now claim (b) follows. This finishes the proof
of assertion (i) of Lemma 21.12.

(ii) Because of Lemma 21.9 (ii) it suffices to show that Idem(A) is stably
Idem(U)-filtered. We give the argument only for a morphism f : (A, p) →
(U, q) in Idem(A) with (U, q) in Idem(U), the one for a morphism g : (V, r)→
(A, p) in Idem(A) with with (V, r) in Idem(U) is analogous.
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Since A is stably U-filtered, we can find objects Ã in A and ÃU in U , and
morphisms ĩ : A → Ã, r̃ : Ã → A, iU : ÃU → Ã and rU : Ã → ÃU such that
r̃ ◦ ĩ = idA, and rU ◦ iU = idÃU holds and a morphism fU : ÃU → U such that
the diagram

A
f // U

Ã

r̃

OO

rU
// ÃU .

fU

OO

commutes. Define objects (Ã, idÃ) in Idem(A) and (ÃU , idÃU ) in Idem(U).
Then we get morphisms in Idem(A)

p ◦ r̃ : (Ã, idÃ)→ (A, p);

ĩ ◦ p : (A, p)→ (Ã, idÃ);

rU : (Ã, idÃ)→ (ÃU , idÃU );

iU : (ÃU , idÃU );→ (Ã, idÃ);

q ◦ fU : (ÃU , idÃU )→ (U, q),

such that the composite (p◦ r̃)◦ (̃i◦p) is the identity on (A, p), the composite

rU ◦ iU is the identity on (ÃU , idÃU ) and the diagram in Idem(A)

(A, p)
f // (U, q)

(Ã, idÃ)

p◦r̃

OO

rU
// (ÃU , idÃU ).

q◦fU

OO

commutes. This finishes the proof of Lemma 21.12. ut

21.4 Non-Connective K-Theory for Homotopical
Waldhausen Categories

Recall that we have defined the negative K-theory of an additive category us-
ing the delooping construction based on the Bass-Heller-Swan decomposition
of [668].

In this section we present another definition based on the non-connective
K-theory spectrum associated to appropriate Waldhausen categories due to
Bunke-Kasprowski-Winges [173]. These different approaches have advantages
and disadvantages and we want to compare them so that finally we can use
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the advantages of both in the setting of additive categories. We begin with
explaining the one appearing in [173].

In the sequel we use the definitions and notation of Waldhausen [960].
Given a Waldhausen categoryW, Waldhausen [960] has defined its connective
K-theory spectrum KW,con(W) and proved some basic tools such as the
Approximation Theorem and the Fibration Theorem. Next we explain how
one can define for a homotopical Waldhausen category W a non-connective
K-theory spectrum KW(W).

The next definition is taken from [173, Definition 2.1].

Definition 21.13.

(i) The Waldhausen category W admits factorizations, if every morphism in
W can be factorized into a cofibration followed by a weak equivalence; no
functoriality of this factorization is assumed;

(ii) The Waldhausen category W is homotopical, if it admits factorizations
and the weak equivalences satisfy the two-out-of-six property, i.e., if for

composable morphisms C0
f1−→ C1

f2−→ C2
f3−→ C3 in W both f2 ◦ f1 and

f3 ◦ f2 are weak equivalences, then also then also f1, f2, f3 and f3 ◦ f2 ◦ f1

are weak equivalences.

Exercise 21.14. Show that the category R-MODfgp of finitely generated
projective R-modules becomes a Waldhausen category if we declare split
injective R-homomorphisms to be the cofibrations and isomorphisms to be
the weak equivalences. Prove that the Waldhausen category R-MODfgp is
not homotopical.

Let Waldho be the category of homotopical Waldhausen categories. In the
sequel we denote by

(21.15) KW : Waldho → SPECTRA

the non-connective K-theory functor constructed in [173, Definition 2.37].

Remark 21.16. Let A be an additive category. Then A becomes a Wald-
hausen category, if we define the weak equivalences to be the isomorphisms
and the cofibration to be the morphisms f : A→ B, for which there exists an

object A⊥ and an isomorphism u : A⊕A⊥
∼=−→ B such that the composite of

u with the canonical inclusion A→ A⊕A⊥ is f . Note that this Waldhausen
category is not homotopical, as it does not satisfy factorization. So we cannot
apply (21.15) to the Waldhausen category A.

Let Ch(A) be the Waldhausen category of bounded chain complexes over
A, where a cofibration f∗ : C∗ → D∗ is a chain map such that fn : Cn → Dn

is a cofibration in A and the weak equivalences are the chain homotopy
equivalences. Then Ch(A) is homotopical thanks to the mapping cylinder
construction. Hence we can apply (21.15) to the Waldhausen category Ch(A)
and can consider its non-connective K-theory spectrum KW(Ch(A)).
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More generally, if A is an exact category, then the Waldhausen category
Ch(A) can be defined analogously and is homotopical.

Suppose that W is a category with cofibrations and that W is equipped
with two categories of weak equivalences, one finer than the other meaning
vW ⊆ wW. Thus W becomes a Waldhausen category in two ways. Suppose
that in both cases W is a homotopical Walhausen category. Let Ww denote
the full subcategory of W given by the objects C in W having the property
that the map C → {•} belongs to wW. Then Ww inherits two Waldhausen
structures if we put vWw = Ww ∩ vW and wWw = Ww ∩ wW. Both yield
homotopical Waldhausen categories.

Theorem 21.17 (Fibration Theorem). Under the assumptions above we
get a weak homotopy fibration of spectra

KW(Ww, vWw)→ KW(W, vW)→ KW(W, wW).

Proof. This follows from [173, Theorem 2.35]. ut

Theorem 21.18 (Cisinski’s Approximation Theorem). Let F : W0 →
W1 be an exact functor of homotopical Waldhausen categories. Assume:

(i) An arrow in W0 is a weak equivalence in W0 if and only if its image in
W1 is a weak equivalence in W1;

(ii) Given any object C0 in W0 and any map f : F (C0) → C1 in W1, there
exists a commutative diagram in W1

F (C0)
f //

F (u)

��

C1

v'
��

F (D0)
w

' // D1

for a morphism u : C0 → D0 in W0 and weak equivalences v : C1 → D1

and w : F (D0)→ D1 in W1.

Then the map of spectra KW(F ) : KW(W0)
'−→ KW(W1) is a weak homo-

topy equivalence.

Proof. This follows from [173, Theorem 2.16]. ut

Theorem 21.19 (Cofinality Theorem). Let I : W0 → W1 be the inclu-
sion of a full homotopical Waldhausen subcategory W0 into a homotopical
Waldhausen category W1. Assume:

(i) The functor F admits a mapping cylinder argument, i.e., for every mor-
phism f : C0 → C1 in W1 such that C0 belongs to W0 and C1 is the target
of a weak equivalence with some object in W0 as source, there is a factor-
ization in W1
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C0
f ′−→ C ′

f ′′−−→ C1

such that C ′ belongs to W0 and f ′′ is a weak equivalence;
(ii) The category W1 is dominated by W0, i.e., for any object C1 in W1 there

exists an object C0 inW0 and an object C ′1 inW1 and morphisms r : C0 →
C1 and i : C ′1 → C0 such that r ◦ i is a weak equivalence.

Then KW(I) : KW(W0)→ KW(W1) is a weak homotopy equivalence.

Proof. This follows from [173, Theorem 2.30] and the fact that on the level of
stable ∞-categories non-connective K-theory is inverting the passage to the
idempotent completion. ut

There is also an Additivity Theorems in this setting, see [173, Corol-
lary 2.36] which is the non-connective version of Theorem 7.38.

21.5 Non-Connective K-Theory and Karoubi Filtrations
for Waldhausen Categories

Theorem 21.20 (The weak homotopy fibration sequence of a stable
Karoubi filtration for K-theory in the setting of Waldhausen cate-
gories). Let A be a additive category and i : U → A be the inclusion of a full
additive subcategory. If the additive category A is strongly stably U-filtered,
then

KW(Ch(U))→ KW(Ch(A))→ KW(Ch(A/U))

is a weak homotopy fibration of non-connective spectra, where KW has been
defined in (21.15),

The remainder of this section of this devoted to the proof of Theorem 21.20
which needs some preparation. We will follow the ideas of the proof of [197]
and correct a bug in it. We begin with proving some lemmas, which will be
needed as input.

We can consider an additive category A as (not necessarily homotopical)
Waldhausen category as explained in Remark 21.16. Let Ch(A) be the homo-
topical Waldhausen category of bounded chain complexes over A, i.e., chain
complexes C∗ in A such that there exists a natural number N (depending
on C∗) satisfying Cn = 0 for |n| > N . A cofibration i∗ : C∗ → D∗ is a chain
map such that in : Cn → Dn is a cofibration in A for each n ∈ Z. Weak
equivalences are just the chain homotopy equivalences of bounded A-chain
complexes.

We will consider on Ch(A) also the structure of a Waldhausen category
where the cofibrations are the same as before, namely chain maps which are
levelwise inclusions of direct summand up to isomorphism, and weak equiv-
alences are those chain maps f∗ : C∗ → D∗ which become weak homotopy
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equivalences in Ch(A/U). We will denote the corresponding Waldhausen cat-
egory by Ch(A, w(A/U)).

Lemma 21.21. Suppose that A is strongly stably U-filtered. Then the functor

F : Ch(A, w(A/U))→ Ch(A/U)

induced by the projection of additive categories A → A/U is a functor of
Waldhausen categories and induces a weak homotopy equivalence

KW(F ) : KW
(
Ch(A, w(A/U))

)
→ KW

(
Ch(A/U)

)
.

Proof. Obviously Ch(A, w(A/U)) → Ch(A/U) is a functor of homotopical
Waldhausen categories. We want to apply Cisinski’s Approximation Theo-
rem 21.18. A morphism in Ch(A, w(A/U)) is a weak equivalence if and only
if its image under F is a weak equivalence in Ch(A/U). Hence it remains to
show that for any object C∗ in Ch(A, w(A/U)), any object D∗ ∈ Ch(A/U)
and any morphism f∗ : F (C∗)→ D∗ in Ch(A/U) we can construct an object
C ′∗ in Ch(A, w(A/U)), a morphism f ′∗ : C∗ → C ′∗ in Ch(A, w(A/U)), and a
morphism g∗ : F (C ′∗) → D∗ in Ch(A/U) such that g∗ is a chain homotopy
equivalence in Ch(A/U) and the diagram in Ch(A/U) commutes

(21.22) F (C∗)

F (f ′∗)

��

f∗ // D∗

F (C ′∗)

g∗

'

77

commutes. For this purpose we will carry out the following construction.
Note that the construction here is more involved than the one in the proof
of [197, Proposition 7.2] since we are only assuming strongly stably U-filtered
instead of U-filtered. Moreover we have to fix the bug in the proof of [197,
Proposition 7.2] that it is not clear that the chain map denoted there by φx
lives already over A, which is needed to ensure that T (φx) lives over A. (Note
that in [197] the role of A and U are interchanged.)

Consider a sequence of morphisms in A of the shape

· · ·

cn+1 xn+1

0 en+1


−−−−−−−−−−→ Cn ⊕ En

cn xn
0 en


−−−−−−−→ Cn−1 ⊕ En−1

cn−1 xn−1

0 en−1


−−−−−−−−−−→ · · ·

such that there exists a natural number N with Cn = En = 0 for |n| > N ,

we have cn+1 ◦ cn = 0 in A and

(
cn xn
0 en

)
◦
(
cn+1 xn+1

0 en+1

)
= 0 in A/U for all

n ∈ Z. In other words (C∗, cn) is a bounded chain complex over A and the
sequence above considered in A/U is a bounded chain complex over A/U .
It is not necessarily a bounded chain complex over A since the composite
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cn xn
0 en

)
◦
(
cn+1 xn+1

0 en+1

)
may not be zero in A. The purpose of the following

construction is to replace it by a chain complex over A which is A/U-chain
homotopy equivalent to the given one in A/U where Cn and cn are not
changed at all. More precisely, we want to construct a diagram in A

· · ·

cn+1 x
′
n+1

0 e′n+1


// Cn ⊕ E′n

cn x′n
0 e′n


//

idCn ⊕fn
��

Cn−1 ⊕ E′n−1

cn−1 x
′
n−1

0 e′n−1


//

idCn−1
⊕fn−1

��

· · ·

· · · cn+1 xn+1

0 en+1


// Cn ⊕ En cn xn

0 en


// Cn−1 ⊕ En−1 cn−1 xn−1

0 en−1


// · · ·

such that the upper row is a chain complex over A, the diagram commutes
over A/U and the chain map over A/U induced by the vertical arrows from
the upper row to the lower row is a chain homotopy equivalence over A/U
and E′n = 0 for |n| > N . We do this inductively over n, where we arrange

all the desired statements hold except that we only know

(
cm−1 x

′
m−1

0 e′m−1

)
◦(

cm x′m
0 e′m

)
= 0 in A for m ≤ n. The induction beginning n = 1 − N is

trivial, take the lower row to be the upper row. The induction step from n
to n+ 1 is done as follows. By the induction hypothesis we can assume that(
cm−1 xm−1

0 em−1

)
◦
(
cm xm
0 em

)
= 0 in A for m ≤ n. Recall that cn ◦ cn+1 = 0

holds in A by assumption. The composite

En+1

xn+1

en+1


−−−−−−→ Cn ⊕ En

cn xn
0 en


−−−−−−−→ Cn−1 ⊕ En−1

is by assumption trivial, when considered inA/U . Hence we can find an object
U in U and morphisms u : En+1 → U and v : U → Cn−1⊕En−1 such that the
composite above is equal to the composite v ◦u : En+1 → Cn−1⊕En−1 in A.
Since by assumption A is strongly stably U-filtered, we can find objects E′n+1

and (En+1 ⊕ E′n+1)⊥ in A, an object (En+1 ⊕ E′n+1)U in U and morphisms
iU : (En+1 ⊕ E′n+1)U → En+1 ⊕ E′n+1, i⊥ : (En+1 ⊕ E′n+1)⊥ → En+1 ⊕ E′n+1

and uU : (En+1⊕E′n+1)U → U such that iU⊕i⊥ : (En⊕E′n)U⊕(En⊕E′n)⊥ →
En ⊕ E′n is an isomorphism in A and the diagram in A
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(21.23)

En+1 ⊕ E′n+1

prEn+1 // En+1
u // U

(En+1 ⊕ E′n+1)U ⊕ (En+1 ⊕ E′n+1)⊥

∼=iU⊕i⊥
OO

pr(En+1⊕E′n+1
)U
// (En+1 ⊕ E′n+1)U

uU

OO

commutes. Now we modify the given row

· · ·

cn+1 xn+1

0 en+1


−−−−−−−−−−→ Cn ⊕ En

cn xn
0 en


−−−−−−−→ Cn−1 ⊕ En−1

cn−1 xn−1

0 en−1


−−−−−−−−−−→ · · ·

by first adding the elementary chain complex which is concentrated in di-
mension n + 1 and n and has as n + 1-th differential id : E′n+1 → E′n+1 and
then the n+1-th chain module Cn+1⊕En+1⊕E′n+1 is cut down to the direct
summand Cn+1⊕ (En+1⊕E′n+1)⊥. We record the result of this operation in
dimensions (n+ 2), (n+ 1), n and (n− 1) only since nothing changes in the
other dimensions. Namely, we get the following diagram in A
(21.24)

Cn+2 ⊕ En+2

An+2 //

id

��

Cn+1 ⊕ (En+1 ⊕ E
′
n+1)⊥

An+1//

idCn
⊕ prEn+1

◦i⊥

��

Cn ⊕ En ⊕ E′n+1

An //

idCn−1
⊕ prEn

��

Cn−1 ⊕ En−1

id

��
Cn+2 ⊕ En+2(

cn+2 xn+2
0 en+2

)// Cn+1 ⊕ En+1 (
cn+1 xn+1

0 en+1

) // Cn ⊕ En (
cn xn
0 en

) //
Cn−1 ⊕ En−1

for the matrices

An+2 =

(
cn+2 xn+2

0 pr(En+1⊕E′n+1)⊥ ◦(iU ⊕ i⊥)−1 ◦ iEn+1
◦ en+2

)
;

An+1 =

cn+1 xn+1 ◦ prEn+1
◦i⊥

0 en+1 ◦ prEn+1
◦i⊥

0 prE′n+1
◦i⊥

 ;

An =

(
cn xn 0
0 en 0

)
.

A direct computation shows that the diagram (21.24) commutes. In oder
to ensure that the upper row is a A-chain complex, we have to check that
An ◦An+1 = 0 holds in A. Now An ◦An+1 is given by the matrix(

cn ◦ cn+1 cn ◦ xn+1 ◦ prEn+1
◦i⊥ + xn ◦ ◦en+1 ◦ prEn+1

◦i⊥
0 en ◦ ◦en+1 ◦ prEn+1

◦i⊥
)

We have by assumption cn ◦ cn+1 = 0. Hence it remains to show that
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cn ◦ xn+1 ◦ prEn+1

◦i⊥ + xn ◦ ◦en+1 ◦ prEn+1
◦i⊥

en ◦ en+1 ◦ prEn+1
◦i⊥

)
: (En+1 ⊕ E′n+1)⊥

→ Cn−1 ⊕ En−1

is the zero homomorphism in A. This is the composite

(En+1 ⊕ E′n+1)⊥
i⊥−→ En+1 ⊕ E′n+1

prEn+1−−−−−→ En+1xn+1

en+1


−−−−−−→ Cn ⊕ En

cn xn
0 en


−−−−−−−→ Cn−1 ⊕ En−1

and therefore agrees with the composite

(En+1 ⊕ E′n+1)⊥
i⊥−→ En+1 ⊕ E′n+1

prEn+1−−−−−→ En+1
u−→ U

v−→ Cn−1 ⊕ En−1.

Hence it suffices to show that the composite

(En+1 ⊕ E′n+1)⊥
i⊥−→ En+1 ⊕ E′n+1

prEn+1−−−−−→ En+1
u−→ U

is trivial in A. This follows from the diagram (21.23).
Now the diagram (21.24) yields a chain map of A-chain complexes which

is a chain homotopy equivalence when viewed in A/U since an elementary
chain complex is contractible and i⊥ : (En+1⊕E′n+1)⊥ → En+1⊕E′n+1 is an
isomorphism when viewed in A/U .

This finishes the induction step in the construction above. The construc-
tion above is finished, if we have reached n = N .

Now we can construct the desired diagram (21.22). Consider the mapping
cylinder cyl(f∗) of the chain map f∗ : F (C∗)→ D∗ in A/U . Let p∗ : cyl(f∗)→
D∗ be the projection and i∗ : F (C∗)→ cyl(f∗) be the inclusion. Then p∗ is a
chain homotopy equivalence over A/U and p∗ ◦ i∗ agrees with f∗. If we put
En = Cn−1 ⊕Dn, then we can find a sequence in A of the shape

· · ·

cn+1 xn+1

0 en+1


−−−−−−−−−−→ Cn ⊕ En

cn xn
0 en


−−−−−−−→ Cn−1 ⊕ En−1

cn−1 xn−1

0 en−1


−−−−−−−−−−→ · · ·

such that its image in A/U is cyl(f∗). Now apply the construction above
to this sequence. The result is a chain complex C ′∗ over A together with
an inclusion f ′∗ : C∗ → C ′∗ of chain complexes over A together with a chain
homotopy equivalence g′∗ : F (C ′∗)→ cyl(f∗) over A/U such that g′∗ ◦F (f ′∗) =
i∗ holds over A/U . Now put g∗ = p∗ ◦ g′∗. This finishes the construction of
the diagram (21.22) and hence the proof of Lemma 21.21. ut

The following result is the extension of the corresponding result in [202,
Proposition 7.4] from U-filtered to stably U-filtered.
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Lemma 21.25. Suppose that A is strongly stably U-filtered. Then a bounded
A-chain complex C∗ is finitely dominated by a bounded U-chain complex in
A if and only if C∗ is contractible over A/U .

Proof. If C∗ is dominated in A by a U-chain complex, then it is finitely dom-
inated by 0∗ and hence chain homotopy equivalent to 0∗, when considered
over A/U . It remains to show for a bounded A-chain complex C∗, which is
contractible over A/U , that it is finitely dominated by a bounded U-chain
complex.

Fix a natural number N such that Cn = 0 for |n| > N . Fix morphisms
γn : Cn → Cn+1 in A for n ∈ Z such that idcn +cn+1 ◦γn+γn−1 ◦ cn becomes
trivial in A/U for all n ∈ Z. Suppose we have the following diagram in A for
some k ∈ Z with 0 ≤ k

(21.26)

CUN
cUN //

jN

��

. . .
cUN−k+2 // CUn−k+1

cn−k+1◦jn−k+1//

jn−k+1

��

Cn−k
cn−k //

id

��

· · ·

CN
cN // . . .

cN−k+2 // Cn−k+1

cn−k+1 // Cn−k
cn−k // · · ·

where the lower row is the given bounded A-chain complex C∗. Moreover, for
every integer i with 0 ≤ i ≤ k− 1 the object CUN−i belongs to U , ji : C

U
N−i →

CN−i is the inclusion of a direct summand up to isomorphism, and there
exist morphisms δN−i : CN−i → CUN−i such that the following diagram in A
commutes

CUN−i

jN−i

��
CN−i

idcN−i +cN−i+1◦γN−i+γN−i−1◦cN−i
//

δN−i

33

CN−i

Now we perform the following construction to improve the situation above in
the sense that we can replace k− 1 by k, where we will have to add to C∗ an
elementary chain complex concentrated in dimensions (N−k) and (N−k−1).
By assumption there is an object U in U and morphisms u : CN−k → U and
v : U → CN−k such that the diagram

CN−k
idcN−k +cn−k+1◦γN−k+γN−k−1◦cN−k

//

u

))

CN−k

U

v

55

commutes. Since A is strongly stably U-filtered, we can find objects A and
(CN−k ⊕A)⊥ in A, an object (CN−k ⊕A)U in U , and morphisms
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i⊥ : (CN−k ⊕A)⊥ → CN−k ⊕A;

iU : (CN−k ⊕A)U → CN−k ⊕A;

cUN−k : CN−k+1 → (CN−k ⊕A)U ;

δ′ : U → (CUN−k ⊕A)U ,

such that the diagram

CUN−k+1 ⊕ U
(cN−k+1◦jN−k+1)⊕v //

cUN−k+1⊕δ
′

��

CN−k

iCN−k // CN−k ⊕A

(CN−k ⊕A)U
i
(CN−k⊕A)U

// (CN−k ⊕A)U ⊕ (CN−k ⊕A)⊥

∼= iU⊕i⊥

OO

commutes. Define CUN−k to be (CN−k⊕A)U . Then cUN−k+1 becomes a homo-

morphism CUN−k+1 → CUN−k. Let jN−k : CUN−k → CN−k ⊕A be iU . Then we
obtain the following commutative diagram in A

CUN−k+1

cUN−k+1 //

jN−k+1

��

CUN−k
(cN−k⊕idA)◦jN−k//

jN−k

��

CN−k−1 ⊕A
cN−k−1◦prCN−k−1//

id

��

CN−k−2

id

��
CN−k+1

iCN−k◦cN−k+1
// CN−k ⊕A

cN−k⊕idA // CN−k−1 ⊕A
cN−k−1◦prCN−k−1// CN−k−2

which is a modification of the diagram (21.26) and agrees with it in dimen-
sions ≥ N − k + 1 and ≤ N − k − 2.

Let C ′∗ be the chain complex given by the lower row. It is the direct
sum of C∗ and the elementary chain complex concentrated in dimensions
(N − k) and (N − k − 1) whose (N − k)th differential is id : A → A. Define
δ′N−i : C

′
N−i ⊕ A → CUN−i to be δi : CN−i → CUN−i for i ≤ k − 1 and to be

the composite

δN−k : CN−k ⊕A
prCN−k−−−−−→ CN−k

u−→ U
δ′−→ CUN−k := (CN−k ⊕A)U

for i = k.
Note that this elementary chain complex has a chain null homotopy which

is given by id: A → A. We extend the morphisms γi : Ci → Ci+1 to mor-
phisms γ′i : C

′
i → C ′i+1 by putting γ′N−k = γN−k ◦ prCN−k , γ′N−k−1 =

γN−k ⊕ idA, γN−k−2 = iCN−k−1
◦ γN−k−2 and γ′i = γi for i /∈ {N − k −

2, N − k − 1, N − k}. Note that then γ∗ is a chain contraction of C ′∗ when
considered in A/U , and C∗ and C ′∗ are chain homotopy equivalent over A.
Moreover, the diagram
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CUN−i

jN−i

��
C ′N−i

idc′
N−i

+c′N−i+1◦γ
′
N−i+γ

′
N−i−1◦c

′
N−i

//

δ′N−i

33

C ′N−i

commutes for i ≤ k. Hence we have improved the situation of diagram (21.26)
from (k−1) to k after replacing C∗ by a chain homotopy equivalent bounded
chain complex C ′∗.

We do this inductively starting with k = 0 until k reaches N . Note that
CU ′′i = 0 for i < N , whereas C ′′i = 0 for i < −N − 1 and C−N−1 = A.
Thus we have constructed a bounded A chain complex C ′′∗ which is chain
homotopy equivalent to C∗ over A, a bounded U-chain complex C ′′U∗ , a chain
map j′′∗ : C ′′U∗ → C ′′∗ such that ji is an inclusion of a direct summand up to
isomorphism for i ∈ Z, morphism γ′′i : C ′′i → C ′′i+1 which fit together to a
chain contraction of C ′′∗ over A/U , and morphisms δ′′i : C ′′i → C ′′Ui such that
for every i ∈ Z the following diagram in A commutes

C ′′Ui

ji

��
C ′′i

idC′′
i

+c′′i+1◦γ
′′
i +γ′′i−1◦c

′′
i

//

δ′′i

33

C ′′i

One easily checks that the collection of the δ′′i -s yields a chain map δ∗ : C ′′∗ →
C ′′U∗ and the collection of the γi-s yields a chain homotopy j′′∗ ◦δ′′∗ ' id. Hence
the bounded U-chain complex C ′′U∗ dominates C ′′∗ and hence C∗. This finishes
the proof of Lemma 21.25. ut

Exercise 21.27. Construct a Z[Z/23]-chain complex C∗ which is finitely
dominated but not Z[Z/23]-chain homotopic to a finite free Z[Z/23]-chain
complex.

Proof of Theorem 21.20. Let Ch(Aw(A/U)) be the full homotopical Wald-
hausen subcategory of Ch(A) consisting of those A-chain complexes whose
the image under Ch(p) : Ch(A)→ Ch(A/U) is contractible in Ch(A/U). Let
I : Ch(U) → Ch(Aw(A/U)) be the inclusion of full homotopical Waldhausen
categories induced by the inclusion i : U → A. We conclude from the Cofi-
nality Theorem 21.19 that we get a weak homotopy equivalence

(21.28) K(I) : K(Ch(U))→ K(Ch(Aw(A/U)))

after we have shown that the two conditions appearing in the Cofinality
Theorem 21.19 are satisfied.The second condition follows from Lemma 21.25,
the first one is proved as follows. Consider objects C∗, C

′
∗ ∈ Ch(U) and

D ∈ Ch(Aw(A/U)) together with morphisms f : C → D, u : C ′ → D, and
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v : D → C ′ in Ch(Aw(A/U)) such that u and v are to one another chain
homotopy inverse chain homotopy equivalences. Then the mapping cylinder
cyl(v ◦ f) and the canonical inclusion i : C∗ → cyl(v ◦ f) live in Ch(U). Let
p : cyl(v ◦ f) → D be the canonical projection, which is a chain homotopy
equivalence in Ch(Aw(A/U)). Since u ◦ p ◦ i ' u ◦ v ◦ f ' f holds, and
i : C∗ → cyl(v ◦ f) is a cofibration, we can change u ◦ p up to chain homotopy
to a chain homotopy equivalence q : cyl(v ◦ f)→ D satisfying q ◦ i = f . This
finishes the proof that (21.28) is a weak homotopy equivalence.

We obtain from the Fibration Theorem 21.17 a weak homotopy fibration

(21.29) K(Ch(Aw(A/U)))→ K(Ch(A))→ K(Ch(A, w(A/U))).

Now Theorem 21.20 follows from Lemma 21.21, and the weak homotopy
equivalences (21.28) and (21.29). ut

21.6 Non-Connective K-Theory and Stable Karoubi
Filtration

Theorem 21.30 (The weak homotopy fibration sequence of a sta-
ble Karoubi filtration for K-theory). Let A be an additive category
and i : U → A be the inclusion of a full additive subcategory. If the additive
category A is stably U-filtered, then

K(U)
K(i)−−−→ K(A)

K(p)−−−→ K(A/U)

is a weak homotopy fibration of non-connective spectra.

Proof. Firstly we reduce the claim to the special case where U and A are
idempotent complete. Namely, we obtain a commutative diagram of spectra

K(U)
K(i) //

K(j)'

��

K(A)
K(p) //

K(j)'

��

K(A/U)

K(j)'

��
K(Idem(U))

K(Idem(i)) //

K(id)

��

K(Idem(A))
K(Idem(p)) //

K(id)

��

K(Idem(A/U))

K(Idem(F ))'

��
K(Idem(U))

K(Idem(i)) // K(Idem(A))
K(F◦Idem(p))// K(Idem(Idem(A)/ Idem(U)))

K(Idem(U))
K(Idem(i)) //

K(id)

OO

K(Idem(A))
K(q) //

K(id)

OO

K(Idem(A)/ Idem(U))

K(j)'

OO
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where j denotes always the inclusion of an additive category in its idempotent
completion, the functor F has been introduced in (21.11) and q is the canon-
ial projection. By Lemma 21.12 the map K(Idem(F )) is a weak homotopy
equivalence. Each map K(j) is a weak homotopy equivalence by see [668,
Definition 4.1 and the following paragraph]. Therefore every vertical arrow
in the diagram above is a weak homotopy equivalence. Hence the canonical
map

K(U)→ hofib
(
K(p) : K(A)→ K(A/U)

)
induces an isomorphism on πn if and only if the canonical map

K(Idem(U))→ hofib
(
K(q) : K(Idem(A)→ K(Idem(A)/ IdemU)

)
induces an isomorphism on πn. Now Lemma 21.9 implies that we can assume
without loss of generality that U and A are idempotent complete and that A
is strongly stably U-filtered.

For both KW and K, there are natural transformations KW,con → KW

and Kcon → K with their connective versions as source such that each of
them induces on πn for n ≥ 1 an isomorphism. Recall that KW,con, in con-
trast to KW, is defined for Waldhausen categories in general, the condition
homotopical is not needed, and that by definition KW,con(W) = Kcon(W)
for any Waldhausen category W.

Note that for the connective K-theory spectrum the obvious inclusion
I0 : A → Ch(A), which assigns to an object the associated chain complex
concentrated in degree 0, is an exact functor of Waldhausen categories and
induces the weak homotopy equivalence on the connective K-theory by the
Gillet-Waldhausen Theorem, see [931, 1.11.7] or [671, Theorem 4.1],

(21.31) KW,con(I0) : Kcon(A) = KW,con(A)→ KW,con(Ch(A)).

Hence we conclude from Theorem 21.20, the long homotopy sequence as-
sociated to hofib

(
K(p) : K(A) → K(A/U)

)
, and the Five Lemma that the

canonical map

f : K(U)→ hofib
(
K(p) : K(A)→ K(A/U)

)
induces an isomorphism on πn for n ≥ 1.

Next we show by induction over N = 1, 0,−1,−2, . . . that it induces an
isomorphism for n ≥ N . The induction beginning has already been explained,
the induction step from N to (N − 1) is done as follows.

We conclude from Lemma 21.10 that A[t, t−1] is stably U [t, t−1]-filtered
and that (A/U)[t, t−1] is isomorphic to A[t, t−1]/U [t, t−1]. Hence we obtain
from the induction hypothesis that the canonical map

f ′ : K(U [t, t−1])→ hofib
(
K(A[t, t−1])→ K((A/U)[t, t−1])

)
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is an isomorphism for n ≥ N . We get from the Bass Heller-Swan decomposi-
tion, see for instance [668, Theorem 6.2], weak equivalences

K(U) ∧ (S1)+ ∨N+K(U) ∨N−K(U)
'−→ K(U [t, t−1]);

K(A) ∧ (S1)+ ∨N+K(A) ∨N−K(A)
'−→ K(A[t, t−1]);

K(A/U) ∧ (S1)+ ∨N+K(A/U) ∨N−K(A/U)
'−→ K((A/U)[t, t−1]).

The maps f ′ and f are compatible with these weak isomorphisms. This implies
that the map

πn−1(f) : πn−1

(
K(U))

)
→ πn−1

(
hofib(K(A)→ K(A/U))

)
is a direct summand of the map

πn(f ′) : πn
(
K(U [t, t−1])

)
→ πn

(
hofib(K(A[t, t−1])→ K(A/U [t, t−1]))

)
Since πn(f ′) is bijective for n ≥ N , the map πn−1(f) is bijective for n ≥ N−1.
This finishes the proof of Theorem 21.30. ut

Remark 21.32. The definition of the non-connective K-theory spectrum of
homotopical Waldhausen categories due to Bunke-Kasprowski-Winges [173]
is based on higher categories. If one wants to avoid this, one can first prove

a version of the desired weak homotopy fibration K(U)
K(i)−−−→ K(A)

K(p)−−−→
K(A/U) on the level of connective K-theory, where all the ingredients such
as the Fibration Theorem of the Gillet-Waldhausen Theorem are available
and then use the delooping construction of [668] to pass from the connective
K-theory to the non-connective K-theory. This is more or less a variation of
the proof of Theorem 21.30 described above.

21.7 Comparing the Non-Connective K-Theory Spectra

Next we want to compare the non-connective K-theory spectra K(A) and
KW(Ch(A)) for any additive category. Note that we have compared the
connective versions already in (21.31), but we also have explained in Re-
mark 21.16, why this does not work any more for the non-connective K-
theory. This will be rectified as follows.

Consider an additive category A. Define a new additive category ΛA as
follows. An object in ΛA is a sequence A = (An)n∈N of objects in A. A mor-
phism f : A→ A′ is a collection {fn,n′ : An → A′n′ | n, n′ ∈ N} of morphisms
in A such that there exists a natural number N (depending on f) such that
fn,n′ 6= 0 =⇒ |n− n′| ≤ N holds. Let i : A → ΛA be the obvious inclusion
sending an object A to the object given by the sequence A with A0 = A
and An = 0 for n ≥ 1. Let ΛfA be the full subcategory of ΛA consisting
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of objects A such that only finitely many of the objects An are different
from zero. Then the inclusion ΛfA → ΛA is a Karoubi filtration and we
define ΣA to be the quotient ΛA/ΛfA. The obvious inclusion A → ΛfA is
an equivalence of additive categories and hence induces a weak equivalence
KW(Ch(A)) → KW(Ch(ΛfA)). There is an obvious Eilenberg swindle on
ΛA coming from the shift to the right functor, which sends an object A to
the object A′ satisfying A′0 = {0} and A′n+1 = An for n ∈ N. The Eilen-
berg swindle on A yields an Eilenberg swindle on Ch(A). This implies that
the inclusion ∗ → KW(Ch(ΛA)) of the trivial trivial spectrum ∗ is a weak
homotopy equivalence. Thus we get a weak homotopy equivalence

ΩKW(Ch(ΣA))
'−→ hofib

(
KW(Ch(ΛA))→ KW(Ch(ΣA))

)
.

For k ∈ Z and a spectrum E, let ΣkE be the spectrum obtained by shifting,
i.e., (ΣkE)n = En−k. Denote by ΩE the spectrum with n-space ΩEn. From
the structure maps of a spectrum E, which can be written as maps En →
ΩEn−1, we get a canonical map E

'−→ ΣΩE, which is a weak homotopy
equivalence. Hence we get a weak homotopy equivalence

Σ−1KW(Ch(ΣA))
'−→ hofib

(
KW(Ch(ΛA))→ KW(Ch(ΣA))

)
.

We get a weak homotopy equivalence

KW(Ch(ΛfA))
'−→ hofib

(
KW(Ch(ΛA))→ KW(Ch(ΣA))

)
from Theorem 21.20. Composing it with the weak homotopy equivalence

KW(Ch(A))
'−→ KW(Ch(ΛfA)) yields a weak homotopy equivalence

KW(Ch(A))→ hofib
(
KW(Ch(ΛA))

'−→ KW(Ch(ΣA))
)

Thus we obtain a two stage zigzag of weak homotopy equivalence

(21.33) KW(Ch(A))
'−→ hofib

(
KW(Ch(ΛA))

'←− Σ−1KW(Ch(ΣA))
)
,

which is natural in A. For simplicity we assume in the sequel that the two
stage zigzag (21.33) is a weak homotopy equivalence

KW(Ch(A))
'−→ Σ−1KW(Ch(ΣA))

and leave it to the reader to extend the argument below to the general case,
which actually only requires to replace the homotopy colimits below by more
sophisticated diagrams.

We can iterate this and obtain a string of weak homotopy equivalences

KW(Ch(A))
'−→ Σ−1KW(Ch(ΣA))

'−→ Σ−2KW(Ch(Σ2A))
'−→ · · · .
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Define hocolimn→∞Σ−nKW(Ch(ΣnA)) to be the homotopy colimit. The
canonical map

(21.34) KW(Ch(A))
'−→ hocolimn→∞Σ−nKW(Ch(ΣnA))

is a weak homotopy equivalence.
There is a natural transformation from the connective K-theory to the

non-connective K-theory spectrum, which induces isomorphism on homotopy
groups in degree ≥ 1, see (21.31). It yields a weak homotopy equivalence of
spectra, natural in A,
(21.35)

hocolimn→∞Σ−nKW,con(Ch(ΣnA))
'−→ hocolimn→∞Σ−nKW(Ch(ΣnA))

since there is a natural isomorphism πk(Σ−nE)
∼=−→ πk+n(E) for any spectrum

E and the canonical map colimn→∞ πk(En)
∼=−→ πk(hocolimn→∞En) is an

isomorphism for a sequence E0 → E1 → E2 → · · · of spectra for every
k ∈ Z.

Since KW,con(W) = Kcon(W) holds for any Waldhausen category W, we
get from (21.35) the weak homotopy equivalence
(21.36)

hocolimn→∞Σ−nKcon(ΣnA)
'−→ hocolimn→∞Σ−nKW(Ch(ΣnA)).

Since also the functor sending A to K(A) is compatible with Karoubi fil-
trations, see Theorem 21.30, we get analogously to (21.34) and (21.35) weak
homotopy equivalences

(21.37) K(A)
'−→ hocolimn→∞Σ−nK(ΣnA)

and

(21.38) hocolimn→∞Σ−nKcon(ΣnA)
'−→ hocolimn→∞Σ−nK(ΣnA),

which are natural in A. Putting (21.34), (21.36), (21.37), and (21.38) together
shows

Theorem 21.39 (Gillet-Waldhausen zigzag for non-connective K-
theory). There is a zigzag of weak homotopy equivalences, natural in A,
from the non-connective K-theory spectrum KW(Ch(A)) in the sense of
Bunke-Kasprowski-Winges [173] to the non-connective K-theory spectrum
K(A) in the sense of Lück-Steimle [668].

Remark 21.40. Arguing as in the proof of Theorem 21.39, one can show
that the definition of the non-connective K-theory spectra as they appear
in [197, 668, 783] agree up to natural zigzags of weak homotopy equivalences.
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21.8 Notes

We have not checked the details, but are convinced that the proof of [202,
Theorem 4.2] of the existence of the long exact weak homotopy fibration
L〈−∞〉(U)→ L〈−∞〉(A)→ L〈−∞〉(A/U) associated to a Karoubi filtration of
additive categories with involution carries over to stable Karoubi filtrations.
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Chapter 22

Controlled Topology Methods

22.1 Introduction

In this chapter we explain and prove in detail for any group G and any G-
CW -complex X what we have briefly discussed in Subsection 19.4.5. We will
allow more general coefficients than rings or additive G-categories, namely,
categories with G-support, see Definition 22.1. This notion seems to be the
most general one and illustrates nicely what is needed to successfully establish
the desired constructions and theorems appearing in this chapter.

Given such a category with G-support B, we will construct covariant func-
tors

OG(−;B), T G(−;B),DG(−;B) : G-CW-COM→ ADDCAT

and for every G-CW -complex X in Theorem 22.19 the so-called T OD-
sequence,

K(T G(X;B))→ K(OG(X;B))→ K(DG(X;B))

which is a weak homotopy fibration of spectra and natural in X.
Actually, the functor DG(−;B) digests G-CW -pairs, and we will prove in

Theorem 22.26 that we obtain a G-homology theory with values in Z-modules
in the sense of Definition 12.1 by the covariant functor from the category of
G-CW -pairs to the category of Z-graded abelian groups sending (X,A) to
K∗(DG(X,A;B)). We will analyze the coefficients of this G-homology theory,
namely the covariant functor

K(DG(?;B)) : Or(G)→ SPECTRA, G/H 7→ K(DG(G/H;B))

in Section 22.8.
In Lemma 22.76 (i) we will identify the assembly map appearing in the

Meta-Isomorphism Conjecture 15.2 associated to the G-homology theory
HG
∗ (−; K(B(?)⊕)) and the family F

HG
n (EF (G); K(B(?)⊕))→ HG

n ({•}; K(B(?)⊕)) = Kn(B⊕)

with the homomorphism induced by the projection EF (G)→ G/G

Kn+1(DG(EF (G);B))→ Kn+1(DG(G/G;B)) = Kn(B⊕)

623
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for every n ∈ Z. Moreover we show in Lemma 22.76 (ii) that the Meta-
Isomorphisms Conjecture 15.2 for the G-homology theory HG

∗ (−; K(B(?)))
and the family F is true if and only if the spectrum K(OG(EF (G);B)) is
weakly contractible.

Note that for a G-Z-category A we can define the a category with G-
support A[G], see Example 22.2, and obtain an isomorphism

Kn(A[H]⊕)
∼=−→ Kn+1(DG(G/H;A[G]))

for every n ∈ Z and every subgroup H ⊆ G, see Remark 22.82. This boils
down for a ring R coming with a group homomorphism ρ : G → aut(R) to
an isomorphism, see Example 22.83

Kn(Rρ|H [H])
∼=−→ Kn+1(DG(G/H;R[G])).

So for an adequate choice of B, the homomorphism Kn+1(DG(EF (G);B))→
Kn+1(DG(G/G;B)) can be identified with the map appearing K-theoretic
Farrell-Jones Conjecture 13.11 with coefficients in additive G-categories, and
of course analogously for rings as coefficients. All this carries over to L-theory.

We also deal with a version DG0 (X;B) with zero-control over N which also
yields a G-homology, see Theorem 22.126 and is related to DG by a weak
homotopy pushout, see Theorem 22.109.

K(DG0 (X))
K(VρE (X))

//

K(VρO (X))

��

K(DG0 (X))

��
K(DG0 (X)) // K(DG(X)).

These functors DG0 (X;B) occur in the transfer criterion for the Farrell-Jones
Conjecture appearing in Theorem 24.70. The benefit of Theorem 24.70 is that
it suffices to construct the transfer only on homogeneous spaces and for the
functor DG0 which has the pleasant feature that it is defined with zero-control
in the N-direction. This has for instance been exploited in [81, Remarks 6.14
and 7.17].

The setup with categories with G-support as coefficients is too general to
expect that the Farrell-Jones Conjecture holds with them as coefficients, see
Remark 22.85.

There are many different versions of the categories DG(X) constructed
below and also the control conditions may vary. We have decided to con-
centrate in this chapter on one case, namely to the setting with continuous
control, as it has been established in [73], and to use the version of the setup
for totally disconnected groups, see [81] reduced to discrete groups where it
simplifies considerably. The hope is that the reader can easily understand the
arguments in other but related situations if she or he has absorbed the cases
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presented in this chapter. Moreover, we give all the details, whereas in the
literature the arguments are sometimes rather sketchy.

22.2 The Definition of a Category with G-Support

Let G be a discrete group. A Z-category is a small category A enriched over
the category of Z-modules, i.e., for every two objects A and A′ in A the
set of morphisms morA(A,A′) has the structure of a Z-module for which
composition is a Z-bilinear map.

Definition 22.1 (Category with G-support). A category with G-support
is a pair B = (B, suppG) consisting of:

• A Z-category B;
• A map called support function

suppG : mor(B)→ {finite subsets of G}.

We require that the following axioms are satisfied for all objects B in B
and all morphisms u, u′ : B1 → B2, v : B2 → B3 in B:

(i) suppG(u) = ∅ ⇐⇒ u = 0;
(ii) suppG(v ◦ u) ⊆ suppG(v) · suppG(u) =: {gg′ | g ∈ suppG(v), g′ ∈

suppG(u)};
(iii) suppG(u+ u′) ⊆ suppG(u) ∪ suppG(u′);
(iv) suppG(u) = suppG(−u);
(v) For every object B in B its support suppG(B) := suppG(idB) is {e}.

Example 22.2. Let A be a G-Z-category, i.e., a Z-category with G action
by isomorphisms of Z-categories. Define the category with G-support A[G] as
follows. The set of objects in A[G] is the set of objects in A. For two objects
A and A′ in A, a morphism φ : A→ A′ in A[G] is a formal sum

∑
g∈g φg · g

where φg : gA→ A′ is a morphism in A from gA to A′ and its G-support

suppG(φ) := {g ∈ G | φg 6= 0}

is assumed to be finite. The composite of φ : A → A′ and ψ : A′ → A′′ is
given by convolution, i.e.,

(ψ ◦ φ)g =
∑

g′,g′′∈G
g=g′g′′

ψg′ ◦ g′φg′′ : gA→ A′′.

The identity of the object A is given by
∑
g∈g φg · g where φe = idA and

φg = 0 for g 6= e. The Z-structure on morA[G](A,A
′) is given by
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m ·

(∑
g

φg · g

)
+ n ·

(∑
g

ψg · g

)
=
∑
g

(m · φg + n · ψg) · g.

One easily checks that A[G] is a Z-category and becomes with the notion of
the support above a category with G-support.

Given a Z-category, let A⊕ be the associated additive category whose
objects are finite tuples of objects in A and whose morphisms are given by
matrices of morphisms in A (of the right size) and the direct sum is given by
concatenation of tuples and the block sum of matrices, see for instance [671,
Section 1.3].

Let R be a ring. We denote by R the Z-category with precisely one object
whose Z-module of endomorphisms is given by R with its Z-module structure
and composition is given by the multiplication in R. Then we can consider the
additive category R⊕. It can be identified with the version of R⊕ appearing
in Section 6.6

Example 22.3. Let R be a unital ring coming with a group homomorphisms
ρ : G→ aut(R) to the group of ring automorphisms of R. We can consider R
as a G-Z-category. We have defined the Z-category R[G] in Example 22.2. It
yields the additive category R[G]⊕.

Denote by Rρ[G] the twisted group ring. We have defined the additive
category Rρ[G]

⊕
above. One easily checks that the additive categories R[G]⊕

and Rρ[G]
⊕

are isomorphic. Recall that Rρ[G]
⊕

is equivalent to the category

Rρ[G]-MODfgf of finitely generated free Rρ[G]-modules, see (6.42).

22.3 The Additive Category OG(X;B)

22.3.1 The Definition of OG(X;B)

Let X be a G-CW -complex and B be a category with G-support in the sense
of Definition 22.1. We define an additive category OG(X;B) as follows.

Definition 22.4 (OG(X;B)). An object in OG(X;B) is a quadruple B =
(S, π, η,B) consisting of a set S and maps π : S → X, η : S → N, and B : S →
ob(B) satisfying:

• Compact support over X
The image of π : S → X is contained in a compact subset of X;

• Locally finiteness over N
For every t ∈ N the preimage η−1(t) is a finite subset of S.

Given two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′), a morphism
φ : B → B′ is given by a collection {φs,s′ : B(s) → B′(s′) | s ∈ S, s′ ∈ S′} of
morphisms in B satisfying the following conditions:
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• Finite G-support
There exists a finite subset F ⊂ G such that

suppG(φs,s′) ⊆ F

holds for all s ∈ S and s′ ∈ S′;
• Bounded control over N

There exists a natural number n such that for s ∈ S and s′ ∈ S′ the
implication

φs,s′ 6= 0 =⇒ |η(s)− η′(s′)| ≤ n

holds;
• Continuous control

For every x ∈ X and every open Gx-invariant neighborhood U ⊆ X of
x, there exists an open Gx-invariant neighborhood U ′ ⊆ X of x satisfying
U ′ ⊆ U and a natural number r′ such that for s ∈ S, s′ ∈ S′, and
g ∈ suppG(φs,s′) the implications

gπ(s) ∈ U ′, η(s) ≥ r′ =⇒ π′(s′) ∈ U ;(22.5)

g−1π′(s′) ∈ U ′, η′(s′) ≥ r′ =⇒ π(s) ∈ U,(22.6)

hold.

Given three objects B = (S, π, η,B), B′ = (S′, π′, η′,B′), and B′′ =
(S′′, π′′, η′′,B′′) and morphisms φ : B → B′ and φ′ : B′ → B′′, define their
composite φ′ ◦ φ : B→ B′′ by

(φ′ ◦ φ)s,s′′ =
∑
s′∈S′

φ′s′,s′′ ◦ φs,s′

for s ∈ S and s′′ ∈ S′′.
Define the identity idB for the object B = (S, π, η,B) by (idB)s,s = idB(s)

for s ∈ S and by (idB)s,s′ = 0 for s, s′ ∈ S with s 6= s′.
Given two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′) and two mor-

phism φ, φ′ : B→ B′ and m,n ∈ Z, define the morphism m · φ+ n · φ′ by

(m · φ+ n · φ′)s,s′ = m · φs,s′ + n · φ′s,s′

for s ∈ S and s′ ∈ S′.

We have to check that Definition 22.4 makes sense. The conditions locally
finiteness over N and bounded control over N ensure that the sum occurring
in the definition of the composition is indeed a finite sum, namely,

(φ′ ◦ φ)s,s′′ =
∑
s′∈S′

φ′
s′,s′′ ,φs,s′ 6=0

φ′s′,s′′ ◦ φs,s′ .
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Since φ and φ′ satisfy finite G-support, we can choose finite subsets F and
F ′ of G such that suppG(φs,s′) ⊆ F and suppG(φ′s′,s′′) ⊆ F ′ holds for s ∈ S,
s′ ∈ S′, and s′′ ∈ S′′. We get for s ∈ S and s′′ ∈ S′′

suppG((φ′ ◦ φ)s,s′′) = suppG

(∑
s′∈S′

φ′s′,s′′ ◦ φs,s′
)

⊂
⋃
s′∈S′

φ′
s′,s′′ ,φs,s′ 6=0

suppG(φ′s′,s′′ ◦ φs,s′)

⊂
⋃
s′∈S′

φ′
s′,s′′ ,φs,s′ 6=0

suppG(φ′s′,s′′) · suppG(φs,s′)

⊂
⋃
s′∈S′

φ′
s′,s′′ ,φs,s′ 6=0

F ′ · F

⊂ F · F ′.

Since F ′ · F is a finite subset of G, the composite φ′ ◦ φ satisfies finite G-
support.

Since both φ and φ′ satisfy bounded control over N, there exist natural
numbers n and n′ such that the implications φs,s′ 6= 0 =⇒ |η(s)−η′(s′)| ≤ n
and φ′s′,s′′ 6= 0 =⇒ |η′(s′)−η′′(s′′)| ≤ n′ hold for s ∈ S, s′ ∈ S′ and s′′ ∈ S′′.
Hence we have the implication (φ′ ◦ φ)s,s′′ 6= 0 =⇒ |η(s)− η′′(s′′)| ≤ n+ n′

for s ∈ S, and s′′ ∈ S′′. This shows that φ′ ◦ φ satisfies bounded control over
N

Finally we show that continuous control is satisfied by φ′ ◦ φ. Consider
x ∈ X and an open Gx-invariant neighborhood U ⊆ X of x. Since φ′ satisfies
continuous control, we can find an open Gx-invariant neighborhood U ′ ⊆ X
of x satisfying U ′ ⊆ U and a natural number r′ such that the implication

(22.7) g′π′(s′) ∈ U ′, η′(s′) ≥ r′ =⇒ π′′(s′′) ∈ U

holds for all s′ ∈ S′, s′′ ∈ S′′ and g′ ∈ suppG(φ′s′,s′′). Because of condition
finite G-support, there exists a finite subset F ′ ⊆ G with suppG(φ′s′,s′′) ⊆ F ′
for s′ ∈ S′, and s′′ ∈ S′′. Fix g′ ∈ F ′. Then g′−1U ′ is an open Gg′−1x-
invariant neighborhood of g′−1x. Since φ satisfies bounded control over N
and continuous control, we can find an open Gg′−1x-invariant neighborhood
U ′′g′ ⊆ X of g′−1x satisfying U ′′g′ ⊆ g′−1U and a natural number r′′g′ with
r′′g′ ≥ r′ such that the implication

(22.8) gπ(s) ∈ U ′′g′ , η(s) ≥ r′′g′ =⇒ π′(s′) ∈ g′−1U ′, η′(s′) ≥ r′

holds for all s ∈ S′, s′ ∈ S′, and g ∈ suppG(φs,s′). Put
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U ′′ :=
⋂
g′∈F ′

g′U ′′g′ ;

r′′ := max{r′′g′ | g′ ∈ F ′}.

Then U ′′ ⊆ X is an open Gx-invariant neighborhood of x. Moreover, we get
for s ∈ S, s′ ∈ S′, s′′ ∈ S′, and g ∈ suppG(φs,s′), g

′ ∈ suppG(φ′s′,s′′)

g′gπ(s) ∈ U ′′, η(s) ≥ r′′ =⇒ gπ(s) ∈ g′−1U ′′, η(s) ≥ r′′

=⇒ gπ(s) ∈ U ′′g′ , η(s) ≥ r′′g′
(22.8)
=⇒ π′(s′) ∈ g′−1U ′, η′(s′) ≥ r′

=⇒ g′π′(s′) ∈ U ′, η′(s′) ≥ r′
(22.7)
=⇒ φ′′(s′′) ∈ U.

Since suppG(φ′ ◦ φ)s
′′

s ⊆
⋃
s′∈S′ suppG(φ′s′,s′′) · suppG(φs,s′) holds, we have

shown for s ∈ S, s′′ ∈ S′′ and g′′ ∈ suppG((φ′ ◦ φ)s,s′)

g′′π(s) ∈ U ′′, η(s) ≥ r′′ =⇒ φ′′(s′′) ∈ U.

This finishes the proof of implication (22.5). We leave the analogous proof
of the other implication (22.6) to the reader. This finishes the proof that
φ′ ◦ φ satisfies the condition continuous control and hence the proof that the
composition is well-defined.

One easily checks that the identity morphism is well-defined.
Obviously the definition of the Z-structure makes sense.
Given two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′), we have to

define their direct sum B⊕B′. We put

B⊕B′ = (S q S′, π q π′, η q η′,Bq B′)

and define the desired morphisms B → B ⊕ B′ and B′ → B ⊕ B′ in the
obvious way. This finishes the proof that OG(X;B) is a well-defined additive
category.

Notation 22.9. When B is clear from the context, we will often omit it in
the notation and write for instance OG(X) instead of OG(X;B).

Lemma 22.10.(i) We can replace in Definition 22.4 the condition (22.5) by
the condition

(22.11) π(s) ∈ U ′, η(s) ≥ r′ =⇒ g−1 · π′(s′) ∈ U

without changing OG(X);
(ii) We can replace in Definition 22.4 the condition (22.6) by the condition

(22.12) π′(s′) ∈ U ′, η′(s′) ≥ r′ =⇒ g · π(s) ∈ U
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without changing OG(X);
(iii) We can replace in Definition 22.4 simultaneously the condition (22.5) by

the condition (22.11) and the condition (22.6) by the condition (22.12)
without changing OG(X).

Proof. We give the proof only for assertion (ii), the one for the other assertions
is analogous.

We first show that the condition (22.12) is automatically satisfied. Con-
sider x ∈ X and an open Gx-invariant neighborhood U of x. Let φ : B→ B′

be a morphisms in OG(X). Since it satisfies finite G-support, we can find a fi-
nite subset F ⊆ G such that suppG(φs,s′) ⊆ F holds for all s ∈ S and s′ ∈ S′.
Fix g ∈ F . We can apply condition (22.6) to the open Gg−1x-invariant neigh-
borhood g−1U of g−1x, and obtain an open Gg−1x-invariant neighborhood
U ′g of g−1x with U ′g ⊆ g−1U ′ and a natural number r′g such that for all s ∈ S,
s′ ∈ S′ and g0 ∈ suppG(φs,s′) the implication

(22.13) g−1
0 π′(s′) ∈ U ′g, η′(s′) ≥ r′g =⇒ π(s) ∈ g−1U

holds. Define

r′ = max{r′g | g ∈ F};

U ′ =
⋂
g∈G

gU ′g.

Then U ′ is an open Gx-invariant neighborhood of x with U ′ ⊆ U and condi-
tion (22.12) is satisfied since for s ∈ S, s′ ∈ S′ and g ∈ suppG(φs,s′) ⊆ F we
get

π′(s′) ∈ U ′, η′(s′) ≥ r′ =⇒ g−1π′(s′) ∈ g−1U ′, η′(s′) ≥ r′

=⇒ g−1π′(s′) ∈ U ′g, η′(s′) ≥ r′g
(22.13)
=⇒ π(s) ∈ g−1U

=⇒ gπ(s) ∈ U.

The proof in the case where we replace in Definition 22.4 the condition (22.6)
by the condition (22.12) and then show that condition (22.6) is satisfied, is
analogous and left to the reader. ut

The next result gives a criterion when we can modify the map π for an
object B = (S, π, η,B) in OG(X) without changing its isomorphism class.

Lemma 22.14. Consider two objects in OG(X) of the form B = (S, π, η,B)
and B′ = (S, π′, η,B). Suppose that for every x ∈ X and open Gx-invariant
neighborhood U of x there exists an open Gx-invariant neighbourhood U ′ of x
in X with U ′ ⊆ U and a natural number r′ such that for s ∈ S the implications
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π(s) ∈ U ′, η(s) ≥ r′ =⇒ π′(s) ∈ U ;

π′(s) ∈ U ′, η′(s) ≥ r′ =⇒ π(s) ∈ U,

hold.
Then B and B′ are isomorphic

Proof. Define to one another inverse morphisms φ : B→ B′ and φ′ : B′ → B
by φs,s = φ′s,s = idB(s) for s ∈ S and by φs,s′ = φ′s′,s = 0 for s, s′ ∈ S
with s 6= s′. One has to check that φ and φ′ are well-defined. Note that
suppG(φs,s′) and suppG(φs′,s) are empty if s 6= s′ and agree with {e} if
s = s′. Hence φ and φ′ satisfy finite G-support and bounded control over N
for obvious reasons and the assumptions appearing in Lemma 22.14 imply
continuous control. ut

22.4 Functoriality of OG(X;B)

Consider a G-map f : X → Y of G-CW -complexes. Next we show that it
induces a functor of additive categories

(22.15) OG(f) : OG(X)→ OG(Y ).

It sends an object B = (S, π, η,B) in OG(X) to the object (S, f ◦ π, η,B) in
OG(Y ). One easily checks that the conditions compact support over X and
locally finiteness over N are satisfied for (S, f ◦ π, η,B).

For two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′) and a morphism
φ : B → B′ given by a collection {φs,s′ : B(s) → B′(s′) | s ∈ S, s′ ∈ S′} in
OG(X), define the morphism OG(f)(φ) : OG(f)(B)→ OG(f)(B′) in OG(Y )
by the same collection {φs,s′ : B(s) → B′(s′) | s ∈ S, s′ ∈ S′}. Obviously
conditions finite G-support and bounded control over N are satisfied for
OG(f)(φ). The hard part is the proof of continuous control which we will
give next. We only deal with the implication (22.5), the one for the implica-
tion (22.6) is completely analogous.

Suppose that the implication (22.5) is not satisfied for OG(f)(φ). Then
we can find a point y ∈ Y and an open Gy-invariant neighborhood U of y
such that for every open Gy-invariant neighborhood U ′ of y with U ′ ⊆ U
and natural number r′ there exist elements s ∈ S and s′ ∈ S and an element
g ∈ suppG(φs,s′) such that gπ(s) ∈ U ′, η(s) ≥ r′, and π′(s′) /∈ U hold.
Since Y is a G-CW -complex, we can find a sequence of nested open Gy-
invariant neighbourhoods V0 ⊇ V1 ⊇ V2 ⊇ · · · of y such that

⋂
n≥0 Vn = {y}.

Hence we can find a sequence of nested open Gy-invariant neighbourhoods
U ′0 ⊇ U ′1 ⊇ U ′2 ⊇ · · · of y satisfying

⋂
n≥0 U

′
n = {y}, a sequence of natural

numbers r′n satisfying limn→∞ r′n =∞, a sequence (sn)n≥0 in S, a sequence
(s′n)n≥0 in S′, and elements g ∈ supp(φsn,s′n) such that g · f ◦ π(sn) ∈ U ′n,
η(sn) ≥ r′n, and f ◦ π′(s′n) /∈ U hold for all n ∈ N.
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Since φ satisfies finite G-support, we can arrange by passing to subse-
quences that there exists g ∈ G such that g = gn holds for all n ≥ 0.
Since φ satisfies compact support over X, we can arrange by passing to sub-
sequences that there exists x ∈ X such that limn→∞ π(sn) = x holds. We
get limn→∞ f ◦ π(sn) = f(x). Since g · f ◦ π(sn) ∈ U ′n holds for all n ≥ 0,
we conclude limn→∞ g · f ◦ π(sn) = y. This implies f(gx) = y. Note that
f−1(U) is an open Ggx-invariant neighborhood of gx. Since φ satisfies con-
tinuous control, there exists an open Ggx-invariant neighborhood V ′′ of gx
with V ′′ ⊆ f−1(U) and a natural number r′′ such that for s ∈ S, s′ ∈ S′, and
g′′ ∈ suppG(φs,s′), the implication

g′′π(s) ∈ V ′′, η(s) ≥ r′′ =⇒ π′(s′) ∈ f−1(U)

holds. Hence we get for all n ∈ N the implication

gπ(sn) ∈ V ′′, η(sn) ≥ r′′ =⇒ π′(s′n) ∈ f−1(U).

Since limn→∞ r′n = ∞, limn→∞ gπ(sn) = gx, and V ′′ is an open neighbor-
hood of gx, we can arrange by passing to subsequences that gπ(sn) ∈ V ′′ and
η(sn) ≥ r′′ holds for all n ≥ 0. Hence we get π′(s′n) ∈ f−1(U) for all n ≥ 0.
This implies f ◦ π′(s′n) ∈ U for all n ≥ 0, a contradiction.

Obviously we get a covariant functor OG(−;B) from the category of G-
CW -spaces with arbitrary G-maps as morphisms to the category of additive
categories.

22.5 The T OD-Sequence

Let X be a G-CW -complex and B be a category with G-support in the sense
of Definition 22.1.

Definition 22.16 (T G(X)). Let T G(X) be the full additive subcategory of
OG(X) consisting of those objects B = (S, π, η,B) for which there exists a
natural number n satisfying η(s) ≤ n for all s ∈ S.

Lemma 22.17. The inclusion T G(X) → OG(X) is a Karoubi filtration in
the sense of Definition 21.2.

Proof. Consider an object B = (SB, πB, ηB,BB) in OG(X), two objects
U = (SU, πU, ηU,BU) and V = (SV, πV, ηV,BV) in T G(X), and morphisms
f : B → U and g : V → B in OG(X). By definition we can find natural
numbers n0 and n1 such that ηU(s′) ≤ n0 for s′ ∈ SU and ηV(s) ≤ n0 for
s ∈ SV hold and we have the implications

s ∈ SB, s
′ ∈ SU, fs,s′ 6= 0 =⇒ |ηB(s)− ηU(s′)| ≤ n1;

s ∈ SV, s
′ ∈ SB, gs,s′ 6= 0 =⇒ |ηV(s)− ηB(s′)| ≤ n1.
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Now define objects BU = (SBU , πBU , ηBU ,BBU ) in T G(X), and B⊥ =
(SB⊥ , πB⊥ , ηB⊥ ,BB⊥) in OG(X) by

SBU := {s ∈ SB | ηB(s) ≤ n0 + n1};
SB⊥ := {s ∈ SB | ηB(s) > n0 + n1},

and restricting the maps πB, ηB, and BB. There are obvious morphisms

iU : BU → B and i⊥ : B⊥ → B in OG(X) such that iU ⊕ i⊥ : BU ⊕B⊥
∼=−→ B is

an isomorphism. We leave it to the reader to figure out the obvious definition
of the maps fU and gU and the proof of the commutativity of the relevant
diagrams. Hence inclusion T G(X)→ OG(X) is a Karoubi filtration. ut

Definition 22.18 (DG(X)). Let DG(X) be the additive category given by
the quotient OG(X)/T G(X) in the sense of Definition 21.1.

Theorem 22.19 (T OD-sequence). The so-called T OD-sequence

K(T G(X))→ K(OG(X))→ K(DG(X))

is a weak homotopy fibration of spectra.

Proof. This follows from Lemma 22.17 and Theorem 21.5 (i). ut

Given a map f : X → Y of G-CW -complexes, the functor of additive
categories OG(f) : OG(X) → OG(Y ) of (22.15) induces functors of additive
categories

T G(f) : T G(X)→ T G(Y );(22.20)

DG(f) : DG(X)→ DG(Y ).(22.21)

Lemma 22.22. Let f : X → Y be a G-map between G-CW -complexes.

Then τG(f) : τG(X)
'−→ τG(Y ) is an equivalence of additive categories.

Proof. We can assume without loss of generality that Y = {•}.
Consider an object B = (S, π, η,B) in τG({•}). Then S is finite. Choose

any map π′ : S → X and define an object B′ = (S, π′, η,B) in τG(X). Since
T G(f)(B′) = B, we have shown that τG(f) is surjective on objects. Obviously
T G(f) induces for two objects B0 and B1 in τG(X) a bijection

morT G(X)(B0,B1)
∼=−→ morT G({•})(T G(f)(B0), T G(f)(B1)), φ 7→ T G(f)(φ)

since for T G(X) the conditions finite G-support, bounded control over N, and
continuous control are automatically satisfied. Hence T G(f) is an equivalence
of additive categories. ut
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22.6 The Definition for Pairs

Let (X,A) be a G-CW -pair. Denote by i : A→ X the inclusion.

Lemma 22.23.(i) The functor OG(i) : OG(A)→ OG(X) of (22.15) induces
an isomorphism of additive categories from OG(A) onto its image. The
image is a full additive subcategory of OG(X) which is a Karoubi filtration;

(ii) The same statement holds for the functor DG(i) : DG(A) → DG(X)
of (22.21).

Proof. (i) The image of OG(i) can be identified with the full additive subcat-
egory OG(X)A of OG(X) whose objects B = (S, π, η,B) satisfy im(π) ⊆ A.

The functor OG(i,B) induces an isomorphism OG(A)
∼=−→ OG(X)A since for

every x ∈ A and open Gx-invariant neighbourhood U of x in A there exists
an open Gx-invariant neighbourhood V of x in X with U = A∩X. It remains
to show that the inclusion OG(X)A ⊆ OG(X) is a Karoubi filtration.

Consider three objects B0 = (S0, π0, η0,B0), B1 = (S1, π1, η1,B1), and
B = (S, π, η,B) in OG(X) with im(π0) ⊆ A and im(π1) ⊆ A, and two
morphism a0 : B → B0 and a1 : B1 → B in OG(X). Define subsets of S
which consists of those elements which are interacting with S0 and S1 via a0

and a1

Ŝ0 := {s ∈ S | ∃s0 ∈ S0 with (a0)s,s0 6= 0};
Ŝ1 := {s′ ∈ S \ Ŝ0 | ∃s1 ∈ S1 with (a1)s1,s 6= 0}.

Define objects BU = (SU , πU , ηU ,BU ) and B⊥ = (S⊥, π⊥, η⊥,B⊥) by

putting SU := Ŝ0q Ŝ1 and S⊥ = S \SU and defining πU , ηU , BU , π⊥,η⊥, and
B⊥ by restricting π, η, and B. There are obvious morphisms iU : BU → B

and i⊥ : B⊥ → B in OG(X)A such that iU ⊕ i⊥ : BU ⊕ B⊥
∼=−→ B is an iso-

morphism and morphisms aU0 : BU → B0 and aU1 : BU1 → B such that the
relevant diagrams as they appear in the definition of a Karoubi filtration
commute. However, we are not done since BU is not an object in OG(X)A.
In order to finish the proof of assertion (i) it suffices to construct an object

B̂ = (Ŝ, π̂, η̂, B̂) in OG(X)A together with an isomorphism φ : B̂
∼=−→ BU in

OG(X).

Choose functions u0 : Ŝ0 → S0, g0 : Ŝ0 → G, u1 : Ŝ1 → S1, and g1 : Ŝ1 →
G such that g0(s) ∈ supp((a0)s,u0(s)) holds for s ∈ Ŝ0 and g1(s) ∈
supp((a1)u1(s),s) holds for s ∈ Ŝ1. Define a new object B̂ = (Ŝ, π̂, η̂, B̂) in
OG(X)A by



22.7 The Proof of the Axioms of a G-Homology Theory 635

Ŝ := Ŝ0 q Ŝ1;

π̂(s) :=

{
g0(s)−1 · π0 ◦ u0(s) if s ∈ Ŝ0;

g1(s) · π1 ◦ u1(s) if s ∈ Ŝ1;

η̂(s) := η(s) for s ∈ Ŝ;

B̂(s) := B(s) for s ∈ Ŝ.

Recall SU = Ŝ0 q Ŝ1 = Ŝ. In order to show that B̂ and BU are isomorphic,
we want to apply the criterion appearing of Lemma 22.14.

Consider an element x ∈ X and an open Gx-invariant neighbourhood U
of x in X. Since a0 and a1 satisfy continuous control, we can find an open
Gx-invariant neighbourhood U ′ of x in X with U ′ ⊆ U and r′ ∈ N such that
for s ∈ S, s0 ∈ S0, g0 ∈ suppG((a0)s,s0) the implication

g−1
0 · π0(s0) ∈ U ′, η(s0) ≥ r′ =⇒ π(s) ∈ U

and for s1 ∈ S1, s ∈ S, g1 ∈ suppG((a1)s1,s) the implication

g1π1(s1) ∈ U ′, η1(s1) ≥ r′ =⇒ π(s) ∈ U

hold. This implies that for s ∈ Ŝ0 q Ŝ1 the implication

π̂(s) ∈ U ′, η̂(s) ≥ r′ =⇒ πU (s) ∈ U

is valid. The proof of the other implication

πU (s) ∈ U ′, ηU (s) ≥ r′ =⇒ π̂(s) ∈ U

for s ∈ Ŝ0q Ŝ1 is analogous and left to the reader. Now Lemma 22.14 implies
that B̂ and BU are isomorphic.

(ii) The constructions appearing in the proof of assertion (i) yield the desired
result for DG(i) using Lemma 22.22. ut

Definition 22.24 (DG(X,A)). Define the additive category DG(X,A) to be
the quotient of DG(X) by the image of DG(i) : DG(A)→ DG(X).

Obviously a G-map of G-CW -pairs f : (X,A)→ (Y,B) induces a functor
of additive categories

DG(f) : DG(X,A)→ DG(Y,B).(22.25)

22.7 The Proof of the Axioms of a G-Homology Theory

The main result of this chapter is
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Theorem 22.26 (The algebraic K-groups of DG(X,A) yield a G-
homology theory). Let B be a category with G-support in the sense of
Definition 22.1.

Then we obtain a G-homology theory with values in Z-modules in the
sense of Definition 12.1 by the covariant functor from the category of G-
CW -pairs to the category of Z-graded abelian groups sending (X,A) to
K∗(DG(X,A;B)).

22.7.1 The Long Exact Sequence of a Pair

Proposition 22.27. Given a G-CW -pair (X,A), we have the inclusions
i : A → X and j : X → (X,A) and obtain a long exact sequence, infinite
to both sides and natural in (X,A),

· · · ∂n+1−−−→ Kn(DG(A))
Kn(D(i))−−−−−−→ Kn(DG(X))

Kn(D(j))−−−−−−→ Kn(DG(X,A))

∂n−→ Kn−1(DG(A))
Kn−1(D(i))−−−−−−−→ Kn−1(DG(X))

Kn−1(D(j))−−−−−−−−→ Kn−1(DG(X,A))
∂n−1−−−→ · · · .

Proof. This follows from Lemma 22.23 (ii) and Theorem 21.5 (i). ut

22.7.2 Some Eilenberg Swindles on OG(X)

Remark 22.28 (Eilenberg swindles on additive categories defined in
terms of controlled topology). Sometimes we want to show that the alge-
braic K-theory of certain additive categories defined by controlled topology
is weakly contractible. This is done in all cases by constructing an Eilenberg
swindle. The basic strategy is illustrated for OG(X) as follows.

One defines a functor sh: OG(X)→ OG(X), which shifts one position to
the right over N, as follows. It sends an object B = (S, π, η,B) to the object
sh(B) = (sh(S), sh(π), sh(η), sh(B)) where sh(S) = S, sh(B) = B, sh(π) = π,
sh(η) = η + 1. Roughly speaking, nothing is changed, only the objects are
moved one position to the right in the N-direction. (Sometimes one also has
to vary π.) One easily checks that sh(B) satisfies compact support over X and
locally finiteness over N. The definition of sh(φ) for morphisms φ : B → B′

is the tautological one. Again it is easy to check that sh(φ) will again satisfy
finite G-support, bounded control over N, and continuous control. Moreover

there is an obvious natural equivalence t : id
∼=−→ sh of functors of additive

categories OG(X)→ OG(X).
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The basic idea which works in some special cases, is to the define a functor
SH: OG(X)→ OG(X) on objects by SH(B) =

⊕∞
n=0 shn(B). This definition

makes indeed sense since B satisfies locally finiteness over N and hence the
set

{(s, n) ∈ S × N | η(s) ≤ n,B(s) 6= 0} =

n∐
k=0

η−1(k)

is finite. However, the obvious definition on morphisms will not work in gen-
eral. The conditions compact support over X and locally finiteness over N
cause no difficulties, whereas conditions continuous control is the problem.
The reason is that in SH(B) the objects are moved arbitrary far to the right
concerning N and the continuous control condition becomes more and more
restrictive the larger the position with respect to N is. One example where
this problem does not occur is for instance the case X = {•} which we will
handle in Lemma 22.29. If SH is well-defined, then one obtains the desired

natural equivalence using t : id
∼=−→ sh by

id⊕SH = sh0⊕
∞⊕
n=0

shn
∼=−→ sh0⊕ sh

( ∞⊕
n=0

shn

)
∼= sh0⊕

∞⊕
n=1

shn = SH .

Lemma 22.29. If B is a category with G-support, then OG({•}) is flasque.
In particular K(OG({•})) is weakly contractible.

Proof. The desired Eilenberg swindle described in Remark 22.28 is con-
structed in detail as follows. Next we define a functor of additive categories

SH: OG({•})→ OG({•}).

For an object B = (S, π, η,B) in OG({•}), define SH(B) by the quadruple
(SH(S),SH(π),SH(η),SH(B)) where for s ∈ S and n ∈ N we put

SH(S) = {(s, n) ∈ S × N | η(s) ≤ n};
SH(π)(s, n) = π(s);

SH(η)(s, n) = n;

SH(B)(s, n) = B(s).

Obviously SH(B) satisfies compact support over {•}. Since B satisfies locally
finiteness and SH(η′)−1(n) =

⋃n
m=0 η

−1(m) holds for n ∈ N, B′ satisfies
locally finiteness.

For two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′) and a morphism
φ : B→ B′ given by a collection {φs,s′ : B(s)→ B′(s′) | s ∈ S, s′ ∈ S′}, define
the morphism SH(φ) : SH(B)→ SH(B′) by the collection

{SH(φ)(s,n),(s′,n′) : B(s)→ B′(s′) |
s ∈ S, s′ ∈ S′, n ∈ N, n′ ∈ N, η(s) ≤ n, η′(s′) ≤ n′}
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for SH(φ)(s,n),(s′,n′) = φs,s′ if n− η(s) = n′ − η′(s′) and SH(φ)(s,n),(s′,n′) = 0
otherwise.

Since φ satisfies finite G-support, the same is true for SH(φ). Since φ
satisfies bounded control over N, we can find a natural number N such that
φs,s′ 6= 0 =⇒ |η(s)− η′(s′)| ≤ N holds for s ∈ S and s′ ∈ S′. Now consider
(s, n) ∈ SH(S) and (s′, n′) ∈ SH(S′) with SH(φ)(s,n),(s′,n′) 6= 0. Since then
n− η(s) = n′ − η′(s′) and φs,s′ 6= 0 hold, we get

|SH(η)(s, n)− SH(η′)(s′, n′)| = |n− n′| = |η(s)− η′(s)| ≤ N.

Hence SH(φ) satisfies bounded control over N. Obviously SH(φ) satisfies con-
tinuous control since we are working over {•}. One easily checks that SH is
a well-defined functor of additive categories.

It remains to construct a natural equivalence T : id⊕SH
∼=−→ SH of functors

of additive categories. We have to define for any object B = (S, π, η,B) an

isomorphism T (B) : B⊕ SH(B)
∼=−→ SH(B). We obtain a bijection of sets

u : S
∐

SH(S)
∼=−→ SH(S)

by sending s ∈ S to (s, η(s)) and (s, n) ∈ SH(S) to (s, n + 1). Note
that for s ∈ S we have B(s) = SH(B) ◦ u(s) and for (s, n) ∈ SH(S) we
have SH(B(s, n)) = B(s) = SH ◦u(s, n). Now we can define T (B)t,t′ for
t ∈ S

∐
SH(S) and t′ ∈ SH(S) to be idB(t′) if u(t) = t′ and to be 0 if

u(t) 6= t′. We leave the elementary proof to the reader to check that T (B)
is a well-defined isomorphism in OG({•}) which is natural in B and hence

defines the desired natural equivalence T : id⊕SH
∼=−→ SH.

Thus we have defined an Eilenberg swindle (SH, T ) on OG({•}). The weak
contractibility of K(OG({•})) follows from Theorem 6.37 (iii). ut

The next result generalizes Lemma 22.29. The basic idea of the proof is
the same but becomes much more complicated since now we have to deal
with the condition continuous control.

Lemma 22.30. Let X be a G-CW -complex which is G-contractible, i.e, G-
homotopy equivalent to {•}.

Then K(OG(X)) is weakly contractible.

Proof. Denote by cone(X) the cone of X. As X is G-contractible, there are
G-maps i : X → cone(X) and r : cone(X) → X with r ◦ i = idX . Hence the
composite of maps of spectra

K(OG(X))
K(OG(i))−−−−−−→ K(OG(cone(X)))

K(OG(r))−−−−−−→ K(OG(X))

is the identity. Therefore it suffices to show that K(cone(X)) is weakly con-
tractible.
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We explain the basic idea of the proof before we give the details. In the
construction of an Eilenberg swindle for a given object B = (S, π, η,B) one
assigns to B a new object SH(B) where one adds for s ∈ S a copy of B(s) at n
for each natural number n ≥ η(s). The problem is to specify where this copy
over n sits in cone(X), i.e., to define the image of this object under πSH. The
idea is to move the copies of the object B(s) with the right speed to the cone
point. This has to be done fast enough so that the obvious definition of SH(φ)
for a morphism φ : B→ B′ still defines continuous control but slow enough so

that the desired obvious transformation T (B) : B⊕SH(B)
∼=−→ SH(B) satisfies

continuous control. This will lead to the properties of the function ρ below.
Recall that cone(X) is defined as the G-pushout, where i0 : X → X× [0, 1]

sends x to (x, 0)

X
i0 //

��

X × [0, 1]

pr

��
{•}

i0

// cone(X)

In the sequel we write [x, t] = pr(x, t) for (x, t) ∈ X × [0, 1]. For t′ ∈ [0, 1] we
define t′ · [x, t] := [x, t′t]. Denote by ∗ the cone point [x, 0] for any x ∈ X,
or, equivalently, ∗ = i0({•}). For z = [x, t] ∈ cone(X) we denote zI = t. For
z = [x, t] ∈ cone(X) \ {∗} we denote zX = x. In particular pr(x, t)X = x for
x ∈ X, t ∈ (0, 1], and pr(x, t)I = t for x ∈ X and t ∈ [0, 1].

Next we define a functor of additive categories

SH: OG(cone(X))→ OG(cone(X)).

For this purpose we choose a function ρ : N × N → (0, 1] with the following
three properties.

• We have

(22.31) lim
m→∞

ρ(m, 0) = 1;

• For every m ∈ N, we have

(22.32) lim
n→∞

ρ(m,n) = 0;

• For every N ∈ N and µ > 0, there is M ∈ N such that for all m,m′, n ∈ N
the implication

(22.33) m ≥M, |m−m′| ≤ N =⇒ |ρ(m,n)− ρ(m′, n)| < µ

holds;
• For every µ > 0, there exists N ∈ N such that for all m,n ∈ N the

implication
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(22.34) n ≥ N,m ≤ n =⇒ 1− µ ≤ ρ(m,n+ 1−m)

ρ(m,n−m)
≤ 1

holds.

If (ak)k∈N is any sequence of elements in (0, 1] such that limk→∞ ak = 0 and∑∞
k=0 ak = ∞, then we can take ρ(m,n) := exp(−

∑m+n
k=m ak). An example

for (ak)k∈N is ak = 1/k.
The functor SH sends an object B = (S, π, η,B) to the object SH(B) =

(SH(S),SH(π),SH(η),SH(B)) where for s ∈ S we put

SH(S) = {(s, n) | s ∈ S, n ∈ N, η(s) ≤ n}

and define for (s, n) ∈ SH(S)

SH(π)(s, n) = ρ(η(s), n− η(s)) · π(s);

SH(η)(s, n) = n;

SH(B)(s, n) = B(s).

Since B satisfies compact support over X, there exists a compact subset C of
cone(X) with im(π) ⊆ C. This implies

im(SH(π)) ⊆ [0, 1] · C := {t · c | t ∈ [0, 1], c ∈ C}.

Since [0, 1] · C is compact, SH(B) satisfies compact support over X.
Since B satisfies locally finiteness over N and SH(η)−1(m) =

∐m
n=0 η

−1(n)
holds, SH(B) satisfies locally finiteness over N.

Consider a morphism φ : B = (S, π, η,B) → B′ = (S′, π′, η,B′) given by
the collection {φs,s′ : B(s)→ B′(s′) | s ∈ S, s′ ∈ S′}. Define SH(φ) : SH(B)→
SH(B′) by

SH(φ)(s,n),(s′,n′) =

{
φs,s′ if n′ − η′(s′) = n− η(s);

0 otherwise,

for (s, n) ∈ SH(B) and (s′, n′) ∈ SH(B′).
Since φ satisfies finite G-support, there exists a finite subset F ⊆ G such

that suppG(φs,s′) ⊆ F holds for every s ∈ S, and s′ ∈ S′. This implies
suppG(SH(φ)(s,n),(s′,n′)) ⊆ F for every (s, n) ∈ SH(S), and (s′, n′) ∈ SH(S′).
Hence SH(φ) satisfies finite G-support.

Since φ satisfies bounded control over N, there exists a natural number N
with |η(s) − η′(s′)| ≤ N for all s ∈ S and s′ ∈ S′ with φs,s′ 6= 0. Consider
(s, n) ∈ SH(B) and (s′, n′) ∈ SH(B′) with SH(φ)(s,n),(s′,n′) 6= 0. Then n′ −
η′(s′) = n− η(s) and |η(s)− η′(s′)| ≤ N . This implies

(22.35) |SH(η)(s, n)− SH(η′)(s′, n′)| = |n− n′| = |η(s)− η′(s′)| ≤ N.

Hence SH(φ) satisfies bounded control over N.
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The hard part is to show that SH(φ) satisfies continuous control. We only
deal with the implication (22.5). The proof for the other implication (22.6)
is completely analogous.

Consider [x, t] ∈ cone(X) and an open G[x,t]-invariant neighborhood U of
[x, t] in cone(X). We have to find an open G[x,t]-invariant neighborhood U ′

of [x, t] in cone(X) satisfying U ′ ⊆ U and a natural number r′ such that for
all (s, n) ∈ SH(S), (s′, n′) ∈ SH(S′), and g ∈ suppG(SH(φ)(s,n),(s′,n′)) the
implication

(22.36) g · SH(π)(s, n) ∈ U ′,SH(η)(s, n) ≥ r′ =⇒ SH(π′)(s′, n′) ∈ U

holds.
We begin with the case where [x, t] is different from the cone point ∗, or,

equivalently 0 < t ≤ 1. In the sequel we denote for t ∈ (0, 1] and ε > 0 by
Iε(t) the open neighborhood of t in [0, 1] given by (t− ε, t+ ε) ∩ [0, 1].

Choose an open Gx-invariant neighbourhood V0 of x in X and ε > 0
satisfying

pr(V0 × Iε(t)) ⊆ U ;(22.37)

ε ≤ t/2.(22.38)

Since φ satisfies continuous control, we can find for t′ ∈ [t/2, 1] an open Gx-
invariant neighborhood V ′[t′] of x, a real number δ′[t′] > 0, and r′[t′] ∈ N
such that for s ∈ S, s′ ∈ S′, and g ∈ suppG(φs,s′) the implication

(22.39) gπ(s)X ∈ V ′[t′], π(s)I ∈ Iδ′[t′](t′), η(s) ≥ r[t′]
=⇒ π′(s′)X ∈ V0, π

′(s′)I ∈ Iε/8(t′)

holds. Obviously we can arrange 0 < δ′[t′] < ε/8. Since [t/2, 1] is compact,
we can find finitely many elements t′1, t

′
2, . . . , t

′
l in [t/2, 1] such that for each

t′ ∈ [t/2, 0] there exists an element i[t′] ∈ {1, 2 . . . , l} satisfying t′ ∈ Iδ′[t′i](ti).
Put

V ′ =

l⋂
i=1

V ′[t′i];

r′0 = max{r′[t′i] | i = 1, 2, . . . , l}.

Then V ′ is an open Gx-invariant neighbourhood of x in X. Moreover, for
s ∈ S, s′ ∈ S′, g ∈ suppG(φs,s′), and t′ ∈ [t/2, 1] the implication

(22.40) gπ(s)X ∈ V ′, π(s)I ≥ t/2, η(s) ≥ r′0
=⇒ π′(s′)X ∈ V0, |π′(s′)I − π(s)I | < ε/4

holds, since π(s)I ≥ t/2 implies the existence of i ∈ {1, 2 . . . , l} satisfying
π(s)X ∈ V ′[ti] and π(s)I ∈ Iδ′[t′i](ti), we conclude π′(s′)X ∈ V0 and π′(s′)I ∈
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Iε/8(ti) from (22.39), and now one can apply the triangle inequality to π(s)I ,
π′(s′)I , and ti using δ′[t′i] + ε/8 < ε/8 + ε/8 = ε/4.

Let N be the number appearing in (22.35). Choose a natural number M
such that (22.33) holds if we put µ = ε/2. Since limn→∞ ρ(m,n) = 0 holds
for m ∈ {0, 1, . . . ,max{r′0,M}} by (22.32), we can find a natural number r′

satisfying r′ ≥ max{r′0,M} such that for every m,n ∈ N the implication

(22.41) m ≤ max{r′0,M}, n ≥ r′ −max{r′0,M} =⇒ ρ(m,n) < t/2

holds. Next we show that the desired implication (22.36) holds if we put
U ′ := V ′ × Iε/4(t) and use the number r′ above.

Consider (s, n) ∈ SH(S), (s′, n′) ∈ SH(S′), and g ∈ suppG(φs,s′) satisfying
SH(π)(s, n) ∈ U ′ and η(s, n) := n ≥ r′. Since SH(π)(s, n) ∈ U ′ implies that
SH(π)(s, n)I = ρ(η(s), n− η(s)) · π(s)I belongs to Iε/4(t), we get

(22.42) ρ(η(s), n− η(s)) ≥ ρ(η(s), n− η(s)) · π(s)I ≥ t− ε/4
(22.38)

≥ t/2.

We conclude from (22.41) and (22.42) that η(s) > max{r′0,M} holds. In
particular we get η(s) ≥ r′0 and η(s) ≥M .

Since n′ − η′(s′) = n− η(s), we conclude from (22.33) and (22.35)

(22.43) |ρ(η′(s′), n′ − η′(s′))− ρ(η(s), n− η(s))| ≤ ε/2.

We have SH(π)(s, n)I = ρ(η(s), n− η(s)) · π(s)I ∈ Iε/4(t). This implies

π(s)I ≥ ρ(η(s), n− η(s)) · π(s)I ≥ t− ε/4
(22.38)

≥ t/2.

Since g · SH(π)(s)X = gπ(s)X ∈ V ′ and π(s)I ≥ t/2 hold, we get

π′(s′)X ∈ V0;(22.44)

|π′(s′)I − π(s)I | < ε/4,(22.45)

from (22.40). We estimate
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|SH(π′)(s′)I − t|
≤ | SH(π′)(s′)I − SH(π)(s)I |+ |SH(π)(s)I − t|
= |ρ(η′(s′), n′ − η′(s′)) · π′(s′)I − ρ(η(s), n− η(s)) · π(s)I |

+|SH(π)(s)I − t|
≤ |ρ(η′(s′), n′ − η′(s′)) · π′(s′)I − ρ(η′(s′), n′ − η′(s′)) · π(s)I |

+|ρ(η′(s′), n′ − η′(s′)) · π(s)I − ρ(η(s), n− η(s)) · π(s)I |
+|SH(π)(s)I − t|

= |ρ(η′(s′), n′ − η′(s′))| · |π′(s′)I − π(s)I |
+|ρ(η′(s′), n′ − η′(s′))− ρ(η(s), n− η(s))| · |π(s)I |+ ε/4

≤ |π′(s′)I − π(s)I |+ |ρ(η′(s′), n′ − η′(s′))− ρ(η(s), n− η(s))|+ ε/4

(22.43), (22.45)

≤ ε/4 + ε/2 + ε/4

= ε.

This implies together with (22.37) and (22.44) that SH(π′)(s′) ∈ U holds.
This finishes the proof of the implication (22.36) in the case [x, t] 6= ∗.

Next we show the implication (22.36) in the case [x, t] = ∗. Consider an
open G-invariant neighborhood U of ∗. We have to find an open G-invariant
neighbourhood U ′ of ∗ and a natural number r′ such that for all (s, n) ∈
SH(S), (s′, n′) ∈ SH(S′) and g ∈ suppG(SH(φ)(s,n),(s′,n′)) the implication

(22.46) g · SH(π)(s, n) ∈ U ′,SH(η)(s, n) ≥ r′ =⇒ SH(π′)(s′, n′) ∈ U

holds.
For ε > 0, we define Vε to be the open G-invariant neighborhood of ∗ in

cone(X) given by
Vε = {[x, t] | x ∈ X, t < ε}.

Since B′ satisfies compact support over cone(X), the subset [0, 1] · im(π′) of
cone(X) is compact. Hence there exists an ε > 0 satisfying

Vε ∩ [0, 1] · im(π′) ⊆ U.

Since im(SH(π′)) ⊆ [0, 1] · im(π′) holds, it suffices to prove (22.46) in the
special case U = Vε.

Since φ satisfies continuous control, there exists an open G-invariant neigh-
borhood U ′0 of ∗ in cone(X) and a natural number r′2 such that for all s ∈ S,
s′ ∈ S′ and g ∈ suppG(φs,s′) the implication

(22.47) gπ(s) ∈ U ′0, η(s) ≥ r′2 =⇒ π′(s′) ∈ Vε

holds. Since B satisfies compact support over cone(X), there exists δ > 0
satisfying

Vδ ∩ [0, 1] · im(π) ⊆ U ′0.
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We get from (22.47) the implication

(22.48) suppG(φs,s′) 6= ∅, π(s)I < δ, η(s) ≥ r′2 =⇒ π′(s′) ∈ Vε.

Let N be the number appearing in (22.35). Choose a natural number M
such that (22.33) holds if we put µ = ε/2. Since limn→∞ ρ(m,n) = 0 holds for
m ∈ {0, 1, . . . , N + max{r′,M}} by (22.32), we can find a natural number r′

satisfying r′ ≥ N + max{r′2,M} such that for every m,n ∈ N the implication

(22.49) m ≤ N+max{r′2,M}, n ≥ r′−N−max{r′2,M} =⇒ ρ(m,n) < ε/2

holds.
Next we want to prove the implication (22.46) in the special case U = Vε,

were we take r′ to be the natural number above and U ′ = Vεδ/2. Consider
(s, n) ∈ SH(s), (s′, n′) ∈ SH(S′) and g ∈ suppG(SH(φ)(s,n),(s′,n′)) satisfying
SH(π)(s, n)I ≤ εδ/2 and SH(η)(s, n) := n ≥ r′. We have to show π′(s′)I ≤ ε.

If ρ(η′(s′), n′ − η′(s′)) < ε holds, then we get

SH(π′)(s′) = ρ(η′(s′), n′ − η′(s′)) · π′(s′) ∈ Vε.

Hence we can assume without loss of generality that

(22.50) ρ(η′(s′), n′ − η′(s′)) ≥ ε.

We conclude from (22.49) and (22.50) that η′(s′) > N+max{r′2,M} holds.
In particular we have η′(s′) ≥ N + r′2 and η′(s′) ≥ M . Since n′ − η′(s′) =
n− η(s) holds, we conclude from (22.33) that

|ρ(η′(s′), n′ − η′(s′))− ρ(η(s), n− η(s))| ≤ ε/2

holds. This implies together with (22.50)

(22.51) ρ(η(s), n− η(s)) ≥ ε/2.

Hence we get

π(s)I =
SH(π)(s)I

ρ(η(s), n− η(s))

(22.51)
<

2 · SH(π)(s)I
ε

≤ 2 · δ · ε/2
ε

= δ

Since η′(s′) ≥ N + r′2, we conclude η(s) ≥ r′2 from (22.35). Finally (22.48)
implies π′(s′) ∈ Vε.

This finishes the poof that SH(φ) is a well-defined morphism. Now one
easily checks that SH is a well-defined functor of additive categories.

Next we define a natural equivalence of covariant functors of additive cat-
egories OG(cone(X))→ OG(cone(X))

T : id⊕SH
∼=−→ SH .
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We have to define for an object B = (S, π, η,B) an isomorphism T (B) : B⊕
SH(B)

∼=−→ SH(B) in OG(cone(X)). Define a bijection

u : S
∐

SH(S)
∼=−→ SH(S)

by sending s ∈ S to (s, η(s)) and (s, n) ∈ SH(S) to (s, n + 1). For z ∈
S
∐

SH(S) and (s, n) ∈ SH(S) define T (B)z,(s,n) by idB(s) for (s, n) = u(z)
and by 0 otherwise. Note that suppG(T (B)r,(s,n)) is empty or {e}. Obviously
T (B) satisfies finite G-support and bounded control over N, whereas contin-
uous control is proved as follows. We only deal with the implication (22.5).
The proof for the other implication (22.6) is completely analogous.

Consider an element [x, t] ∈ cone(X) and a G[x,t]-invariant neighbourhood
U of [x, t] in cone(X). It remains to construct a G[x,t]-invariant neighbour-
hood U ′ of [x, t] in cone(X) with U ′ ⊆ U and a natural number r′ such that
for s ∈ S the implication

(22.52) π(s) ∈ U ′, η(s) ≥ r′ =⇒ SH(π)(s, η(s)) ∈ U

and for (s, n) ∈ SH(S) the implication

(22.53) SH(π)(s, n) ∈ U ′,SH(η)(s, n) ≥ r′ =⇒ SH(π)(s, n+ 1) ∈ U

hold.
Next we show that we can choose µ ∈ (0, 1] and an open a G[x,t]-invariant

neighbourhood U ′ of [x, t] in cone(X) satisfying

(22.54) t′ · U ′ ⊆ U for all t′ ∈ [1− µ, 1].

We first consider the case [x, t] = ∗. Recall that pr : X × [0, 1] → cone(X)
is the obvious projection. Let p : X → X/G be the canonical projection. We
have X × {0} ⊆ pr−1(U) ⊆ X × [0, 1] as ∗ ∈ U . This implies

X/G× {0} ⊆ p(pr−1(U)) ⊆ X/G× [0, 1].

SinceX/G is a CW -complex and hence paracompact, see [731], and p(pr−1(U))
is open, we can find a continuous map ε : X/G → (0, 1) such that {(xG, t) |
xG ∈ X/G, t < ε(xG)} is contained in p(pr−1(U)). Define

U ′ = pr
(
{(x, t) | x ∈ X, t < ε ◦ p(x)}

)
.

This is an open G-invariant neighborhood of ∗ in cone(X) satisfying U ′ ⊆ U
and [0, 1] · U ′ = U ′. Hence we choose for µ any value in (0, 1].

Next we consider the case [x, t] 6= ∗, or, equivalently, t > 0. Let p : X →
X/Gx be the projection. Then pr−1(U) is an open Gx-invariant neighbour-
hood of (x, t) ∈ X × [0, 1] and p(pr−1(U)) is an open neighbourhood of
(p(x), t) in X/Gx × [0, 1]. Choose an open neighborhood V ′ of p(x) in X/Gx
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and ε ∈ R with 0 < ε < t/2 such that V ′ × (t − ε, t + ε) is contained in
p(pr−1(U)). Put V = p−1(V ′). Then V is an open Gx-invariant neighborhood
of x such that V × (t − ε, t + ε) is contained in pr−1(U). Choose µ ∈ (0, 1]
such that (1− µ) · (t− ε/2) > t− ε holds. Then t′t′′ ∈ (t− ε, t+ ε) holds for
t′ ∈ [1− µ, 1] and t′′ ∈ (t− ε/2, t+ ε/2). Put

U ′ = pr
(
(V × (t− ε/2, t+ ε/2)

)
.

This is an open Gx-invariant neighbourhood of [x, t] satisfying(22.54). This
finishes the proof that we can choose µ ∈ (0, 1] and an open a G[x,t]-invariant
neighbourhood U ′ of [x, t] in cone(X) satisfying (22.54).

Because of (22.31) and (22.34) we can choose a natural number r′ such
that for all m ∈ N with m ≥ r′ we have

(22.55) 1− µ ≤ ρ(m, 0) ≤ 1

and for all m,n ∈ N with m ≤ n and n ≥ r′ we have

(22.56) 1− µ ≤ ρ(m,n+ 1−m)

ρ(m,n−m)
≤ 1.

Now (22.52) follows from (22.54) and (22.55) since SH(π)(s, η(s)) = ρ(η(s), 0)·
π(s) holds. Moreover, (22.53) follows from (22.54) and (22.56) since we have

SH(η)(s, n) = n and SH(π)(s, n+ 1) = ρ(η(s),n+1−η(s))
ρ(η(s),n−η(s)) · SH(π)(s, n).

One easily checks that T (B) is an isomorphism and the collection of the
T (B)-s fit together to define the desired natural equivalence T .

Thus we have defined an Eilenberg swindle (SH, T ) on OG(cone(X)). The
weak contractibility of K(OG(cone(X))) follows from Theorem 6.37 (iii). This
finishes the proof of Lemma 22.30. ut

22.7.3 Excision and G-Homotopy Invariance

Lemma 22.57. Let (X,A) be a G-CW -pair and let B = (S, π, η,B) be an
object in OG(X). Choose a nested sequence of open G-invariant sets

X ⊇ V0 ⊇ V1 ⊇ V2 ⊇ V3 ⊇ · · · ⊇ A

together with a G-map ρ : V0 → A such that
⋂
n≥0 Vn = A and ρ|A = A

hold. Fix a non-decreasing function ω : N → N with limn→∞ ω(n) = ∞ and
a natural number w ∈ N. Define new objects Bω,w = (Sω,w, πω,w, ηω,w,Bω,w)
and B⊥ = (S⊥, π⊥, η⊥,B⊥) by

Sω,w := {s ∈ S | η(s) < w or π(s) ∈ Vω◦η(s)};
S⊥ = S \ Sω,w,
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and by defining πω,w, ηω,w, Bω,w, π⊥, η⊥, and B⊥ by restricting π, η, and
B.

(i) The desired sequences (Vn)n≥0 and the G-map ρ exist;
(ii) There are obvious morphisms iω,w : Bω,w → B and i⊥ : B⊥ → B such that

iω,w ⊕ i⊥ : Bω,w ⊕B⊥
∼=−→ B is an isomorphism, and im(π⊥) ⊆ X \A;

(iii) There is an object B̂ = (Ŝ, π̂, η̂, B̂) in OG(A) such that Bω,w and B̂ are
isomorphic in OG(X);

(iv) Consider an object B′ = (S′, π′, η′,B′) in OG(A) and a morphism φ : B′ →
B in OG(X). Then we can find (ω,w) and a morphism φ′ : B′ → Bω,w

such that φ factorizes as

φ : B′
φ′−→ Bω,w iω,w−−−→ B.

Proof. (i) The inclusion A→ X is aG-cofibration, or, equivalently, aG-NDR-
pair. The proofs of these facts in the non-equivariant case carry over to the
equivariant case. This implies assertion (i). For some information and relevant
references we refer for instance to [629, Chapter 1]. The basic ideas of the
proof can also be derived from the construction appearing in the proof of [672,
Theorem 7.1]. The basic idea is to use the retraction r : Dn \ {0} → Sn−1

given by the radial projection and the continuous function u : Dn → [0, 1]
given by the Euclidean norm which obviously satisfies u−1(1) = Sn−1 and
u−1(0, 1]) = Dn \ {0}.
(ii) This is obvious.

(iii) We define B̂ = (Ŝ, π̂, η̂, B̂) by

Ŝ := Sω,w;

π̂(s) :=

{
a0 if η(s) < w;

ρ ◦ π(s) if η(s) ≥ w;

η̂(s) := η(s);

B̂(s) := B(s),

where s ∈ Sω,w and a0 is some point in A. In order to show that Bω,w and B̂
are isomorphic in OG(X), we check the criterion appearing in Lemma 22.14.

So consider x ∈ X and an open Gx-invariant neighborhood U of x in X.
Since B satisfies compact support over X, we can find a compact subset C ⊆
X such that im(π) ⊆ C holds. Choose an open Gx-invariant neighbourhood
U ′0 of x ∈ X with U ′0 ⊆ U . Next we show that there exists a natural number
r′0 satisfying the implication

(22.58) y ∈ C, ρ(y) ∈ U ′0, y ∈ Vω(r′0) =⇒ y ∈ U.

Suppose that this is not the case. Since Vm ⊆ Vn holds for m ≥ n, and
limn→∞ ω(n) =∞, we can find a sequence (yn)n≥0 of elements in C such that



648 22 Controlled Topology Methods

ρ(yn) ∈ U ′0, yn ∈ Vn, and yn /∈ U holds for n ≥ 0. Since C is compact, there
is a strictly monotone increasing function u : N→ N with limn→∞ u(n) =∞
and an element y ∈ C satisfying limn→∞ yu(n) = y. Since for each natural

number n we have yu(m) ∈ Vu(n) for m ≥ n, we get y ∈ Vu(n) for every n ≥ 0.

This implies y ∈
⋂
n≥0 Vu(n) = A and hence ρ(y) = y. From limn→∞ yu(n) = y

we conclude limn→∞ ρ(yu(n)) = ρ(y) = y. Since ρ(yu(n)) ∈ U ′0 for n ≥ 0, we

conclude y ∈ U ′0 and hence y ∈ U . Since limn→∞ yu(n) = y holds, there exists
a natural number n0 with yu(n) ∈ U for n ≥ n0, a contradiction. This finishes
the proof of (22.58).

Suppose that the element x ∈ X does not belong to A. Then we can find an
open Gx-invariant neighborhood U ′1 of x and a natural number r′1 satisfying
the implication

(22.59) y ∈ C, y ∈ Vω(r′1) =⇒ y /∈ U ′1.

Suppose the contrary. The same ideas as they appear in the sketch of the
proof of assertion (i) lead to the construction of a sequence of open Gx-
invariant sets X ⊇ W0 ⊇ W1 ⊇ W2 ⊇ · · · ⊇ {x} with

⋂
n≥0Wn = {x}. Fix

n ∈ N. Since (22.59) does not hold for U ′1 = Wn, Vm ⊆ Vn holds for m ≥ n,
and limn→∞ ω(n) = ∞, we can find an element yn in X satisfying yn ∈ C,
yn ∈ Vn and yn ∈ Wn. Since C is compact, there is a strictly monotone
increasing function u : N → N and y ∈ C with limn→∞ yu(n) = y. This

implies y ∈
⋂
n≥0 Vu(n) = A and y ∈

⋂
n≥0Wu(n) = {x}, a contradiction.

This finishes the proof of the implication (22.59).
Now we define the desired open Gx-invariant neighborhood U ′ of x in X

by U ′0 ∩ U ′1 and the desired natural number r′ = max{r′0, r′1, w}. We get for
s ∈ Sω,w

π̂(s) ∈ U ′, η̂(s) ≥ r′

=⇒ π(s) ∈ C, π̂(s) ∈ U ′0, η(s) ≥ w, η(s) ≥ r′0
=⇒ π(s) ∈ C, ρ ◦ π(s) ∈ U ′0, π(s) ∈Wω◦η(s), η(s) ≥ r′0
=⇒ π(s) ∈ C, ρ ◦ π(s) ∈ U ′0, π(s) ∈Wω(r′0)

(22.58)
=⇒ πω,w(s) = π(s) ∈ U.

Moreover, we have for s ∈ Sω,w

ηω,w(s) ≥ r′ =⇒ π(s) ∈ C, η(s) ≥ w, η(s) ≥ r′1
=⇒ π(s) ∈ C, π(s) ∈ Vω◦η(s), η(s) ≥ r′1
=⇒ π(s) ∈ C, π(s) ∈ Vr′1

(22.59)
=⇒ π(s) /∈ U ′1
=⇒ πω,w(s) = π(s) /∈ U ′.
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Hence there is no s ∈ Sω,w satisfying πω,w(s) ∈ U ′, ηω,w(s) ≥ r′ and hence
the implication

πω,w(s) ∈ U ′, ηω,w(s) ≥ r′ =⇒ π̂(s) ∈ U

obviously holds. This finishes the proof of assertion (iii) in the case that
x /∈ A.

It remains to treat the case x ∈ A. Then define the desired open Gx-
invariant neighborhood U ′ of x in X by U ′0 ∩ ρ−1(U) and the desired natural
number r′ = max{r′0, w}. Then we get analogously to the argument above

π̂(s) ∈ U ′, η̂(s) ≥ r′ =⇒ πω,w(s) ∈ U

and

πω,w(s) ∈ U ′, ηω,w(s) ≥ r′ =⇒ π(s) ∈ ρ−1(U), η(s) ≥ w
=⇒ ρ ◦ π(s) ∈ U, η(s) ≥ w
=⇒ π̂(s) = ρ ◦ π(s) ∈ U.

This finishes the proof of assertion (iii).

(iv) Choose a compact subset C ⊆ A satisfying im(π′) ⊆ C and a finite
subset F ⊆ G such that suppG(φs′,s) ⊆ F holds for all s′ ∈ S′ and s ∈ S. Fix
n ∈ N. Consider a ∈ F ·C. Then Vn is an open Ga-invariant neighborhood of
a in X. Since φ satisfies continuous control, we can find an open Ga-invariant
neighbourhood Un(a) of a in X and a natural number rn(a) such for s′ ∈ S′,
s ∈ S and g ∈ suppG(φs′,s) the implication

(22.60) g · π′(s′) ∈ Un(a), η′(s′) ≥ rn(a) =⇒ π(s) ∈ Vn

holds. Since F · C is compact and contained in
⋃
a∈F ·C Un(a), we can find a

finite subset {a1, a2, . . . , ak} ⊆ F · C satisfying F · C ⊆
⋃k
i=1 Un(ak). Define

a natural number

rn := max{rn(ai) | i = 1, 2 . . . , k}.

Consider s′ ∈ S′ and s ∈ S with φs′,s 6= 0. Then we get the implication

(22.61) η′(s′) ≥ rn =⇒ π(s) ∈ Vn

by the following argument. Suppose η′(s′) ≥ rn. Since φs′,s 6= 0, we can choose
g ∈ suppG(φs′,s). Because of g ·π′(s′) ∈ F ·C we can find i ∈ {1, 2, . . . , k} with
g ·π′(s) ∈ Un(ai). Since rn ≥ rn(ai), we conclude from the implication (22.60)
that π(s) ∈ Vn holds.

We can additionally arrange that rn < rn+1 holds for n ∈ N. Since φ
satisfies bounded control over N, we can find a natural number N such that
|η(s′)− η(s)| ≤ N holds for all s′ ∈ S′ and s ∈ S with φs′,s 6= 0.
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Now define a function
ω : N→ N

by requiring that for m,n ∈ N with rn+N ≤ m < rn+1+N we have ω(m) = n
and ω(m) = 0 for m < r0 + N . Then ω is a non-decreasing function with
limm→∞ =∞. Put w = r0 +N .

Consider any s ∈ S such that there exists s′ ∈ S′ with φs′,s 6= 0. Next we
want to show s ∈ Sω,w, or, equivalently, the implication

η(s) ≥ w =⇒ π(s) ∈ Vω◦η(s).

Suppose η(s) ≥ w. Then we can choose n ∈ N such that rn + N ≤ η(s) <
rn+1+N holds. Then ω◦η(s) = n and η′(s′) ≥ rn. We conclude π(s) ∈ Vω◦η(s)

from implication (22.61). Hence φ induces the desired morphism φ′ : B′ → Bω

by putting φ′s′,s = φs′,s for s′ ∈ S′ and s ∈ Sω,w. This finishes the proof of
Lemma 22.57. ut

Lemma 22.62. Let X be G-CW -complex with sub G-CW -complexes X0,
X1, and X0 satisfying X = X1 ∪X2 and X0 = X1 ∩X2.

(i) The inclusion i : (X2, X0) → (X,X1) induces an equivalence of additive
categories

DG(i) : DG(X2, X0)
'−→ DG(X,X1);

(ii) The square induced by the various inclusions

K(DG(X0)) //

��

K(DG(X1))

��
K(DG(X2)) // K(DG(X))

is weakly homotopy cocartesian.

Proof. (i) Consider an object B in OG(X). We get from Lemma 22.57 (ii)
and (iii) applied to the pair (X,X1) and the object B the decomposition
B = Bω,w ⊕ B⊥ such that Bω,w is isomorphic to an object in OG(X1)
and im(π⊥) ⊆ X \ X1 holds. Therefore the inclusion B⊥ → B yields an
isomorphisms in DG(X,X1). The object B⊥ is in the image of DG(i) since
the inclusion X2 \X0 → X \X1 is a G-homeomorphism. We conclude that
DG(i) is surjective on the set of isomorphism classes of objects.

Consider a morphism φ : B→ B′ in OG(X). It can be written in terms of
the decomposition of Lemma 22.57 (ii) applied to the pair (X,X1) and the
objects B and B′ as

φ =

(
a b
c d

)
: Bω,w ⊕B⊥ → B′ω,w ⊕B′⊥.

Define a morphism in OG(X) by the composite
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ψ : Bω,w ⊕B⊥

id 0
0 b


−−−−−→ Bω,w ⊕B′ω,w

a id
c 0


−−−−−→ B′ω,w ⊕B′⊥.

Then Bω,w ⊕ B′ω,w is isomorphic to an object in the image of OG(X1) →
OG(X) by Lemma 22.57 (iii), the morphism φ−ψ : Bω,w⊕B⊥ → B′ω,w⊕B′B

is of the shape

(
0 0
0 d

)
, and d : B⊥ → B′⊥ is in the image ofOG(X2)→ OG(X)

since im(π⊥) and im(π′⊥) are contained in X \X1 ⊆ X2. This implies that
the morphism in DG(X,X1) represented by φ is in the image of DG(i). Hence
DG(i) is full.

In order to show that DG(i) is an equivalence, it remains to show that
DG(i) is faithful. This is done as follows.

Consider a morphism φ : B → B′ in OG(X2). Suppose that its class [φ]
in DG(X2, X0) is sent under DG(i) to zero. Hence there is an object B0

in OG(X1), an object B1 in T G(X), morphisms ψ : B → B0, ψ′ : B0 → B,
µ : B → B1, and µ′ : B1 → B′ such that φ− ψ′ ◦ ψ factorizes as

(φ− ψ′ ◦ ψ) : B µ−→ B1
µ′−→ B′.

Because of Lemma 22.22 the object B1 is isomorphic to an object in τG(X0).
Therefore we can replace φ by φ − µ′ ◦ µ without changing the element it
represents in OG(X2, X0). Hence we can assume without loss of generality
that φ factorizes as

φ : B ψ−→ B0
ψ′−→ B′.

We conclude from Lemma 22.57 (iii) and (iv) applied the pair (X,X2) and
ψ that for appropriate (ω,w) ψ : B → B0 factorizes as in DG(X) as

ψ : B
ν−→ Bω,w

0
iω,w−−−→ B0

and there is an object B̂0 in OG(X2) and an isomorphism ζ : Bω,w
0

∼=−→ B̂0

in OG(X). In the construction of B̂0 an element a ∈ X2 and a retraction
ρ : V0 → X2 occurs. One easily checks by going through the constructions
appearing in Lemma 22.57 (i) and (iii) that we can pick a ∈ X0 and can

arrange that ρ(V0 ∩X1) ⊆ X0 holds. Since B0 belongs to X1 the object B̂0 is
actually an object in OG(X0). Hence we obtain the factorization in OG(X)

φ : B ζ◦ν−−→ B̂0
φ′◦iω,w◦ζ−1

−−−−−−−−→ B′.

Since OG(X2) → OG(X) is faithful, the factorization above can be viewed
as a factorization in OG(X2). Hence the class [φ] in DG(X2, X0) represented
by φ is trivial.

(ii) This is a direct consequence of assertion (ii) and Proposition 22.27. This
finishes the proof of Lemma 22.62 ut
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Lemma 22.63. The inclusion i : (X,A)→ (X,A)× [0, 1] sending x to (x, 0)
induces a weak homotopy equivalence

K(DG(i)) : K(DG(X,A))
'−→ K(DG((X,A)× [0, 1])).

Proof. Because of the Five Lemma and Proposition 22.27 it suffices to treat
the case A = ∅.

Since we can apply Lemma 22.62 (ii) to the G-CW -complex cone(X) ∪X
X × [0, 1] with the subcomplexes cone(X), X × [0, 1], and X, it suffices to
show that the map induced by the obvious inclusion

K(DG(cone(X)))
'−→ K(DG(cone(X)×X X × [0, 1]))

is a weak homotopy equivalence. Because of Lemma 22.17, Lemma 22.22, and
Theorem 21.5 (i), it suffices to show that the map induced by the obvious
inclusion

K(OG(cone(X)))
'−→ K(OG(cone(X) ∪X ×[0, 1]))

is a weak homotopy equivalence. Since cone(X) and cone(X) ∪X X × [0, 1]
are G-homeomorphic, both its source and its target are weakly contractible
by Lemma 22.30. This finishes the proof of Lemma 22.63. ut

Proposition 22.64. Let f0, f1 : (X,A) → (Y,B) be G-maps of G-CW -
pairs which are G-homotopic. Then for every n ∈ Z the homomorphism
Kn(DG(f0)) and Kn(DG(f1)) from Kn(DG(X,A)) to Kn(DG(Y,B)) agree.

Proof. Let ik : (X;A) → (X,A) × [0, 1] be the map sending x to (x, k)
for k = 0, 1 and let pr : (X,A) × [0, 1] → (X,A) be the projection. Since
pr ◦ik = id(X,A) holds for k = 0, 1, we conclude from Lemma 22.63 that
the two homomorphisms Kn(DG(i0)) and Kn(DG(i1)) from Kn(DG(X,A))
to Kn(DG((X,A) × [0, 1])) agree. Let h : (X;A) × [0, 1] → (Y,B) be a
G-homotopy between f0 and f1. Now the claim follows from the equality
Kn(DG(fk)) = Kn(DG(h)) ◦Kn(DG(ik)) for k = 0, 1. ut

Proposition 22.65. Consider a G-CW -pair (X,A), a G-CW -complex B
and a cellular G-map f : A→ B. Put Y = X ∪f B. Then:

(i) The pair (Y,B) is a G-CW -pair and the canonical map (F, f) : (X,A)→
(Y,B) is a cellular G-map;

(ii) The functor DG(F, f) : DG(X,A)
'−→ DG(Y,B) is an equivalence of addi-

tive categories and induces for all n ∈ Z an isomorphism

Kn(DG(F, f)) : Kn(DG(X,A))
'−→ Kn(DG(Y,B));

(iii) Let i : A → X and j : B → Y be the inclusions. We obtain a long exact
Mayer-Vietoris sequence, infinite to both sides and natural in (X,A) and
f : A→ B,
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· · · ∂n+1−−−→ Kn(DG(A))
−Kn(DG(i))×Kn(DG(f))−−−−−−−−−−−−−−−−−→

Kn(X)⊕Kn(B)
Kn(F )⊕Kn(j)−−−−−−−−−→ Kn(DG(Y ))

∂n−→ Kn−1(DG(A))

−Kn−1(DG(i))×Kn−1(DG(f))−−−−−−−−−−−−−−−−−−−−→ Kn−1(X)⊕Kn−1(B)

Kn−1(F )⊕Kn−1(j)−−−−−−−−−−−−→ Kn−1(DG(Y ))
∂n−1−−−→ · · · .

Proof. (i) This is obvious.

(ii) Apply Lemma 22.62 (i) to X∪A cyl(f) and the G-subcomplexes X, cyl(f)
and A and then Proposition 22.64 to the obvious G-homotopy equivalences

X ∪A cyl(f)
'−→ Y and cyl(f)

'−→ B.

(iii) This follows from assertion (ii) and Proposition 22.27. ut

22.7.4 The Disjoint Union Axiom

Proposition 22.66. Let {Xi | i ∈ I} be a collection of G-CW -complexes.
Let ji : Xi →

∐
i∈I Xi be the obvious inclusion for i ∈ I.

(i) The obvious map of additive categories⊕
i∈I
DG(ji) :

⊕
i∈I
DG(Xi)→ DG

(∐
i∈I

Xi

)
is an equivalence

(ii) The obvious map of abelian groups⊕
i∈I

Kn(DG(ji)) :
⊕
i∈I

Kn(DG(Xi))→ Kn

(
DG
(∐
i∈I

Xi

))
is an isomorphism for every n ∈ Z.

Proof. (i) In the sequel we put Y =
∐
i∈I Xi. Consider an object B =

(S, π, η,B) in DG(Y ). Since it satisfies compact support over Y , there is a
finite subset I0 ⊆ I such that im(π) ⊆

∐
i∈I0 Yi. For i ∈ I0 define Bi =

(Si, πi, ηi,Bi) where Si = π−1(Xi) and πi, ηi, and Bi are obtained from π,
η, and B by restriction. Then B is the finite sum

⊕
i∈I0 Bi and Bi is in the

image of DG(ji) : DG(Xi) → DG(Y ) for i ∈ I0. We leave it to the reader to
check that this implies that the functor

⊕
i∈I DG(ji) is surjective on objects,

full, and faithful. Hence
⊕

i∈I DG(ji) is an equivalence of additive categories.

(ii) This follows from assertion (i) and fact that Kn commutes with finite
products, or, equivalently, with finite direct sums and is compatible with
colimits over direct systems, see for instance [668, Corollary 7.2]. ut
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Now Theorem 22.26 follows from Propositions 22.27, 22.64, 22.65, and 22.66.

22.8 The Computation of Kn(DG(G/H))

In this section we analyze the coefficients Kn(DG(G/H)) of the G-homology
theory appearing in Theorem 22.26.

22.8.1 Reduction to Kn(B(G/H))

Consider a category with G-support B in the sense of Definition 22.1. Given a
G-set T , define a Z-category B(T ) as follows. Objects are pairs (t, B) for t ∈ T
and B ∈ ob(B). A morphism φ : (t, B) → (t′, B′) is a morphism φ : B → B′

in B satisfying suppG(φ) ⊆ Gt,t′ for Gt,t′ := {g ∈ G | t′ = gt}. Composition
in B(S) comes from the composition in B. The identity on (t, B) is given
by idB . The structure of a Z-category on B(S) comes from the one on B.
Given a map f : T → T ′, we get a functor of Z-categories B(f) : B(T ) →
B(T ′) by sending an object (t, B) to the object (f(t), B) and a morphism
φ : (t, B)→ (t′, B′) given by the morphism φ : B → B′ in B to the morphism
(f(s), B) → (f(s′), B′) in B(S′) given by φ : B → B′ again. This definition
makes sense as Gt,t′ ⊆ Gf(t),f(t′) holds. Thus we obtain a covariant functor

(22.67) B(?) : G-SETS→ Z-CAT

from the category of G-sets to the category of Z-categories by sending T to
B(T ). It induces a covariant Or(G)-spectrum

(22.68) K(B(?)⊕) : Or(G)→ SPECTRA, G/H 7→ K(B(G/H)⊕).

We obtain another covariant Or(G)-spectrum

(22.69) K(DG(?;B)) : Or(G)→ SPECTRA, G/H 7→ K(DG(G/H;B)).

Proposition 22.70. There is a weak homotopy equivalence of covariant
Or(G)-spectra

K(B(?)⊕)
'−→ ΩK(DG(?);B).

In particular we get for n ∈ Z an isomorphism, natural in G/H,

Kn(B(G/H)⊕)
∼=−→ Kn+1(DG(G/H;B)).
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Proof. Any Z-category can be viewed as a category with G-support over the
trivial group {1}. Hence we can consider for any G-set T the additive cate-
gories T {1}({•},B(T )),O{1}({•},B(T )), andD{1}({•},B(T )). Next we define
a functor of additive categories

F (T ) : O{1}({•},B(T ))→ OG(T ;B).

It sends an object B = (S, π, η,B) to the object B′ = (S′, π′, η′,B′)
where S′ = S, η′ = η and B′ and π′ are determined by the equality
B(s) = (π′(s),B′(s)). It induces a functor of additive categories

F (T ) : D{1}({•},B(T ))→ D{1}(T,B).

Next we show that F (T ) is full. Consider any morphism in D{1}(T,B) from
B = (S, π, η,B) to B′ = (S′, π′, η′,B′). Choose a morphism φ : B → B′

in O{1}(T,B) representing it. Since T is discrete and φ satisfies continuous
control, we can find for every t ∈ T a natural number r(t) such that for all
s ∈ S, S′ ∈ S′, and g ∈ suppG(φs,s′) the implication

g · π(s) = t, η(s) ≥ r(t) =⇒ π′(s) = t

holds. Since the object B satisfies compact support over T , φ satisfies finite G-
support, and T is discrete, there is a finite subset T0 ⊆ T satisfying g·π(s) ∈ T0

for all s ∈ S, s′ ∈ S′ and g ∈ suppG(φs,s′). Define r := max{r(t) | t ∈ T0}.
Then for s ∈ S, s′ ∈ S′ and g ∈ suppG(φs,s‘) the implication

η(s) ≥ r =⇒ gπ(s) = π′(s′)

is true. Since φ satisfies bounded control over N, we can change φ such that
φs,s′ = 0 holds for s ∈ S, s′ ∈ S′ satisfying η(s) < r and that the class
represented by φ in D{1}(T,B) is unchanged. Hence we can assume without
loss of generality that g ∈ Gπ(s),π′(s′) holds for s ∈ S, s′ ∈ S′ and g ∈
suppG(φs,s′).

Define objects B̂ = (Ŝ, π̂, η̂, B̂) and B̂′ = (Ŝ′, π̂′, η̂′, B̂′) in O{1}({•},B(T ))

by requiring that Ŝ = S, Ŝ′ = S′, η̂ = η, and η̂′ = η′ hold and we have B̂(s) =

(π(s),B(s)) for s ∈ S and B̂′(s) = (π′(s′),B(s′)) for s′ ∈ S. Then F (B̂) = B

and F (B̂′) = B′. Define a morphism ψ : B̂→ B̂′ in O{1}({•},B(T )) by defin-
ing the morphisms ψs,s′ : (π(s),B(s)) → (π′(s′),B(s′)) in B(T ) by the mor-
phism φs,s′ : B(s)→ B′(s′) in B. One easily checks that ψ is well-defined and
sent under F (T ) to φ. Hence the class represented by ψ in D{1}({•},B(T ))
is sent by F (T ) to the class represented by φ in D{1}(T,B). This finishes the
proof that F (T ) is full.

Since F (T ) is faithful, one easily checks that F (T ) is faithful. As F (T )
is bijective on objects, F (T ) is bijective on objects. We conclude that
F (T ) : D{1}({•},B(T ))→ D{1}(T,B) is an equivalence of additive categories.
In particular we see that the in T natural map



656 22 Controlled Topology Methods

(22.71) K(F (T )) : K(D{1}({•},B(T )))
'−→ K(D{1}(T,B))

is a weak homotopy equivalence of spectra.
The canonical map

K(T {1}({•};B(T )))
'−→ hofib

(
K(O{1}({•};B(T )))→ K(D{1}({•};B(T )))

)
is natural in T and is a weak homotopy equivalence by Theorem 21.5 (i).
The projection from K(O{1}({•};B(T ))) to the trivial spectrum is a weak
homotopy equivalence by Lemma 22.29. It induces an in T natural weak
homotopy equivalence

hofib
(
K(O{1}({•};B(T )))→ K(D{1}({•};B(T )))

) '−→ ΩK(D{1}({•};B(T ))).

The composite of the two maps above gives a weak homotopy equivalence of
spectra, natural in T ,

(22.72) K(T {1}({•};B(T )))
'−→ ΩK(D{1}({•};B(T ))).

Define the inclusion of Z-categories I : B(T )→ T {1}({•};B(T )) by sending
an object (t, B) to the object ({∗}, π, η,B) given by π(∗) = {•}, η(∗) =
0, and π(∗) = s. It induces a functor of additive categories I⊕ : B(T )⊕ →
T {1}({•};B(T )). Obviously I⊕ is full and faithful. We leave it to the reader
to show that any object in T {1}({•};B(T )) is isomorphic to an object in the
image of I⊕. Hence I⊕ is an equivalence of additive categories and induces a
weak homotopy equivalence, natural in T ,

(22.73) K(I⊕) : K(B(T )⊕)
'−→ K(T {1}({•};B(T )))

Now the desired weak homotopy equivalence of covariant Or(G)-spectra
from K(B(?)⊕) to ΩK(DG(?);B) comes from the maps (22.71), (22.72),
and (22.73). ut

We have proved in Lemma 22.29 that OG(G/G) is flasque. The next ex-
ercise shows that this is not true in general for OG(G/H) if H 6= G.

Exercise 22.74. Suppose that the category OG(G/H) is flasque. Show that
then the map Kn(B[G/H]⊕) → Kn(B⊕) induced by the projection G/H →
G/G and the obvious identification B(G/G) = B is bijective for all n ∈ Z.

22.8.2 Assembly and Controlled G-homology

We have the G-homology theory K∗(DG(−;B)), see Theorem 22.26. The
covariant Or(G)-spectrum K(B(?))⊕ of (22.68) determines a G-homology
theory HG

∗ (−; K(B(?))) see Theorem 12.27.
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Proposition 22.75. There is an equivalence of G-homology theories

T (−) : K∗+1(DG(−;B))
∼=−→ HG

∗ (−; K(B(?)⊕)).

Proof. This follows from Corollary 18.16 and Proposition 22.70. ut

Lemma 22.76. Let B be a category with G-support and let F be a family of
subgroups. Let pr: EF (G)→ G/G be the projection.

(i) The assembly map appearing in the Meta-Isomorphism Conjecture 15.2
for the G-homology theory HG

∗ (−; K(B(?)⊕)) and the family F

HG
n (EF (G); K(B(?)⊕))→ HG

n (G/G; K(B(?)⊕)) = Kn(B⊕)

can be identified for every n ∈ Z with the homomorphism induced by the
projection EF (G)→ G/G

Kn+1(DG(EF (G);B))→ Kn+1(DG(G/G;B)) = Kn(B⊕);

(ii) The Meta-Isomorphisms Conjecture 15.2 for the G-homology theory
HG
∗ (−; K(B(?))) and the family F is true if and only if the spectrum

K(OG(EF (G);B)) is weakly contractible.

Proof. (i) This follows from Proposition 22.75.

(ii) This follows from assertion (i), Lemma 22.22, Lemma 22.29, and the
commutative diagram of spectra

T G(EF (G)) //

T G(pr)

��

OG(EF (G)) //

OG(pr)

��

DG(EF (G))

DG(pr)

��
T G(G/G) // OG(G/G) // DG(G/G)

whose rows are weak homotopy fibrations by Theorem 22.19. ut

Remark 22.77. The benefit of Lemma 22.76 (ii) is that the proof of the
Meta-Isomorphism Conjecture is reduced to the proof of the weak con-
tractibility of the K-theory of the specific category OG(EF (G);B) defined
in terms of controlled topology and not just to the weak contractibility of
some abstract homotopy fiber. This will allow us to use geometric tools for
a proof of the Farrell-Jones Conjecture as described in Chapter 19.

22.8.3 The Definition of a Strong Category with G-support

In this subsection we will upgrade the notion of a category with G-support of
Definition 22.1 to the one of a strong category with G-support by additional
implementing a G-action B and a homotopy trivilization for it.



658 22 Controlled Topology Methods

Definition 22.78 (Strong category with G-support). A strong category
with G-support over G is a triple B = (B, suppG, Ω) consisting of:

• A G-Z-category B;
• A map called support function

suppG : mor(B)→ {finite subsets of G};

• A homotopy trivilization of the G-action on B, i.e., a collection Ω = {Ωg |
g ∈ G} where Ωg is a natural equivalence of functors of Z-categories B → B

Ωg : idB
∼=−→ Λg,

for Λg : B → B the functor given by multiplication with g such that con-
dition (vii) and (viii) below are satisfied.

We require that the following axioms are satisfied for all objects B in B,
all morphisms u, u′ : B1 → B2, v : B2 → B3 in B, and all g, g′ ∈ G:

(i) suppG(u) = ∅ ⇐⇒ u = 0;
(ii) suppG(v ◦ u) ⊆ suppG(v) · suppG(u);

(iii) suppG(u+ u′) ⊆ suppG(u) ∪ suppG(u′);
(iv) suppG(−u) = suppG(u);
(v) suppG(B) = {e};
(vi) suppG(gu) = g suppG(u)g−1;

(vii) Ωg′(gB) ◦Ωg(B) = Ωg′g(B);
(viii) Ωe(B) = idB ;
(ix) suppG(Ωg(B)) = {g}.

Remark 22.79. In Example 22.2 we actually get the structure of a strong
category with G-support. Namely, for g0 ∈ G and object A in A[G] which is
given by an object A in A, we define Λg0(A) to be g0A using by the given G-
action on the objects of A. For a morphism φ =

∑
g∈G φg ·g : A→ A′ in A[G],

we define Λg0(φ) : g0A→ g′0A
′ by (g0φ)g = g0 · φg−1

0 g. The desired homotopy

trivilization Ω is given assigning to g0 ∈ G the isomorphism Ωg0(A) : A
∼=−→

Λg0(A) in A[G] given by Ωg0(A)g0 = idg0A and Ωg0(A)g1 = 0 for g0 6= g1.

22.8.4 Reduction to Kn(B〈H〉)

Let B be a strong category with G-support in the sense of Definition 22.78.

Definition 22.80 (B〈H〉). For a subgroup H ⊆ G define B〈H〉 to be the Z-
subcategory of B which has the same set of objects and for which a morphism
φ : B → B′ of B belongs to B〈H〉 if suppG(φ) ⊆ H holds.
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Define a functor I : B〈H〉 → B(G/H) of Z-categories by sending an ob-
ject B to the object (eH,B) and a morphism φ : B → B′ to the morphism
(eH,B)→ (eH,B′) given by φ.

Proposition 22.81. The functor I : B〈H〉 → B(G/H) is an equivalence of
Z-categories. In particular the homomorphism

Kn(I⊕) : Kn(B〈H〉⊕)→ Kn(B(G/H)⊕)

is bijective for all n ∈ N.

Proof. Obviously I is full and faithful. Consider an object (gH,B) in B(G/H).

ThenΩg(g
−1B) : g−1B

∼=−→ B is an isomorphism in B with supp(Ωg(g
−1B)) =

{g} and hence induces an isomorphism (e, g−1B)
∼=−→ (g,B) in B(G/H). This

shows that any object in B(G/H) is isomorphic to an object in the image of
I. Hence I is an equivalence. ut

Remark 22.82. Let A be a G-Z-category. Recall from Example 22.2 and
Remark 22.79 that the additive category A[G] is a strong category with G-
support. One easily checks for any subgroup H ⊆ G.

A[H] = A[G]〈H〉.

Hence we get from Proposition 22.70 and Proposition 22.81 for every n ∈ Z
an isomorphism

Kn(A[H]⊕)
∼=−→ Kn+1(DG(G/H;A[G])).

Example 22.83. Let R be a unital ring and let ρ : G → aut(R) be a group
homomorphism. We have defined the G-Z-category R in Example 22.3.
Denote by Rρ|H [H] the twisted group ring of H ⊂ G with respect to
ρ|H : H → aut(R)

We conclude from Example 22.3 and Remark 22.82 that there is for every
n ∈ Z an isomorphisms

Kn(Rρ|H [H])
∼=−→ Kn+1(DG(G/H;R[G])).

Exercise 22.84. Let R be a ring. Let B be the Z-linear category with one
object whose endomorphism ring is the group ring R[Z/2]. Let t be the gen-
erator of R[Z/2]. We define the support of an endomorphism at0 + bt1 to be
the subset of Z

suppZ(at0 + bt1) =


∅ if a = b = 0;

{0} if a 6= 0, b = 0;

{0, 1} otherwise.
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Show that the axioms of a category with Z-support are satisfied assembly
map, we get isomorphisms

HZ
n(EZ; KB) ∼= Kn(R);

HZ
n(Z/Z; KB) ∼= Kn(R[Z/2]),

and under this identification the assembly mapHZ
n(EZ; KB)→ HZ

n(Z/Z; KB)
agrees with the map Kn(R) → Kn(R[Z/2]) induced by the inclusion R →
R[Z/2].

Remark 22.85 (Morphism Additivity). The version of the Farrell Jones
Conjecture with categories with G-support is too general to expect that the
Farrell-Jones Conjecture holds with them as coefficients, as Exercise 22.84
illustrates. It may hold for strong categories with G-support in the sense of
Definition 22.78 if one additionally assumes

• Morphism Additivity
Let u : B → B′ be a morphism. Suppose that suppG(u) = L1 t L2 is a
disjoint union. Then we require the existence of morphisms ui : B → B′

for i = 1, 2 satisfying u = u1 + u2 and suppG(ui) = Li for i = 1, 2.

But then B is already of the shape A[G], see Exercise 22.88.

Exercise 22.86. Show that the two morphisms u1 and u2 appearing in the
axiom Morphism Additivity stated in Remark 22.85 are unique.

Exercise 22.87. Let A be a G-Z-category. Show that A[G] defined in Exam-
ple 22.2 is a strong category withG-coefficients in the sense of Definition 22.78
satisfying Morphism Additivity.

Exercise 22.88. Consider a strong category B with G-support satisfying
Morphism Additivity. Let A the G-Z-subcategory of B which has the same
set of objects and for which a morphism u : B → B′ in B belongs to A if
and only if suppG(u) ⊆ {e} holds for the unit element e ∈ G. Construct an
isomorphism of G-Z-categories

F : A[G]
∼=−→ B

which is compatible with the support functions.
In view of the last exercise it is superfluous to consider strong categories

with G-support satisfying the axiom Morphism Additivity for discrete groups.
This is different when one considers totally disconnected groups, see [81,
Definition 3.2], where also a new condition Support Cofinality enters which
is void for discrete groups.

Exercise 22.89. Show that the structure of a category with Z-support on
the category B of Exercise 22.84 does not extend to the structure of a strong
category with Z-support.
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22.9 Induction

Let H ⊆ G be a subgroup of G. Let B be a strong category with G-support
in the sense of Definition 22.78. We have defined the Z-category B〈H〉 in
Definition 22.80. Obviously it inherits from B the structure of a strong
category with G-support over H. Given an H-space X, we have denoted
by indιX = G ×H X the G-space given by induction with the inclusion
ι : H → G, see (12.8).

Next we construct a functor of additive categories, natural in X,

(22.90) indι : OH(X;B〈H〉)→ OG(indιX;B).

Let j : X → indιX be the ι-equivariant map sending x to (e′, x). An object
B = (S, π, η,B) of OH(X;B〈H〉) is sent to the object indι B = (S, j ◦π, η,B)
of OG(indιX;B). Obviously indι(B) satisfies compact support over indιX
and locally finiteness over N as B satisfies compact support over X and locally
finiteness over N. For two objects B = (S, π, η,B) and B′ = (S′, π′, η′,B′)
and a morphism φ : B → B′ given by the collection {φs,s′ : B(s) → B′(s′) |
s ∈ S, s′ ∈ S′} of OH(X;B〈H〉), define the morphism indι(φ) : indι(B) →
indι(B

′) of OG(indιX;B) by the same collection {φs,s′ : B(s) → B′(s′) | s ∈
S, s′ ∈ S′}. Obviously conditions finite G-support and bounded control over N
are satisfied for indι(φ). Next we give the proof of continuous control. We only
deal with the condition (22.5), the proof for the condition (22.6) is analogous
and left to the reader.

Consider a point (g, x) in indιX and an open G(g,x)-invariant neighbor-
hood U of (g, x) in indιX. Note for the sequel that G(g,x) = g′Hxg

−1 holds
and the map j : X → indιX is an open ι-equivariant embedding. We have
to find an open G(g,x)-invariant neighborhood U ′ of (g, x) in indιX satisfy-
ing U ′ ⊆ U and a natural number r′ such that for all s ∈ S, s′ ∈ S′, and
g ∈ suppG((indι φ)s,s′) = suppH(φs,s′) the implication

(22.91) g · j ◦ π(s) ∈ U ′, η(s) ≥ r′ =⇒ j ◦ π′(s′) ∈ U ′

holds.
Suppose that (g, x) 6∈ im(j). Then U ′ = g ·im(j) is an open G(g,x)-invariant

neighborhood of (g, x) satisfying U ′∩ im(j) = ∅. Then the implication (22.91)
is satisfied for trivial reasons since suppG((indι φ)s,s′) = suppH(φs,s′) ⊆ H
holds and h · j ◦ π(s) belongs to im(j) and hence never belongs to U ′ for
h ∈ H.

Next we treat the case (g, x) ∈ im(j), or, equivalently, the case g = e. Since
φ satisfies continuous control and j−1(U) is an open Hx-invariant neighbor-
hood of x, we can find an open Hx-invariant neighborhood V ′ of x in X
with V ′ ⊆ j−1(U) such that for all s ∈ S, s′ ∈ S′ and h ∈ suppH(φs,s′) the
implication

h · π(s) ∈ U ′, η(s) ≥ r′ =⇒ π′(s′) ∈ j−1(U)
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holds. Put U ′ = j(V ). Then (22.91) is satisfied for the open Gj(x)-invariant
neighborhood U ′ of j(x) in indιX and the number r′ above.

One easily checks that the functor indι of (22.90) induces for every G-
CW -pair (X,A) functors of additive categories

indι : OH(X,A;B〈H〉)→ OG(indιX, indιA;B);(22.92)

indι : T H(X,A;B〈H〉)→ OG(indιX, indιA;B);(22.93)

indι : DH(X,A;B〈H〉)→ DG(indιX, indιA;B).(22.94)

Proposition 22.95. For every G-CW -pair (X,A) and every strong category
with G-support B over G, the functor indι of (22.94) induces a weak homo-
topy equivalence

K(indι) : K(DH(X,A;B〈H〉)) '−→ K(DG(indιX, indιA;B)).

Proof. We offer two proofs, a short one using basic facts about G-homology
theories, and one direct proof which illustrates the role of the condition con-
tinuous control.

We can view the functors sending an H-CW -pair to the Z-graded abelian
groups K∗(DH(X,A;B〈H〉)) and K∗(DG(indιX, indιA;B)) as H-homology
theories. Then we get a natural transformation of H-homology theories by

K∗(indι) : K∗(DH(X,A;B〈H〉))→ K∗(DG(indιX, indιA;B)).

In order to show that this is an isomorphism for every CW -pair (X,A), it
suffices to do this in the special case X = H/K and A = ∅ for every subgroup
K ⊆ H, see Theorem 12.6. We have already constructed isomorphisms, see
Proposition 22.70 and Proposition 22.81,

K∗(DH(H/K;B〈H〉))
∼=−→ K∗−1

(
((B〈H〉)〈K〉)⊕

)
= K∗−1(B〈K〉⊕),

and

K∗(DG(indιH/K;B)) = K∗(DG(G/K;B))
∼=−→ K∗−1(B〈K〉⊕).

Under these identifications

K∗(indι) : K∗(DH(H/K;B〈H〉))→ K∗(DG(indιH/K;B))

becomes the identity on K∗−1(B〈K〉⊕). This finishes the first proof of Propo-
sition 22.95.

Next we present the second proof. Because of Proposition 22.27 we can
assume without loss of generality A = ∅. It suffices to show that the func-
tor of (22.94)

indι : DH(X;B〈H〉)→ DG(indιX;B).
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is an equivalence of additive categories
We first show that indι is full and faithful, in other words, that for two

objects B = (S, π, η,B) and B′ = (S′, π, η′,B′) in DH(X;B〈H〉) the map
induced by indι

(22.96) morDH(X;B〈H〉)(B,B
′)→ morDG(indιX;B)(indι(B), indι(B

′)),

is bijective. The elementary proof of injectivity is left to the reader. Surjec-
tivity is proved a follows.

Recall indι(B) = (S, j ◦ π, η,B). Consider any element in the target
of (22.96). Choose a morphism φ′ : (S, j ◦ π, η,B) → (S′, j ◦ π′, η′,B′) in
OG(indιX;B) representing it. Next we show that we can assume without
loss of generality

(22.97) suppG(φ′s,s′) ⊆ H for s ∈ S, s′ ∈ S′.

Consider x ∈ X. Since φ′ satisfies continuous control and im(j) is an
open Gj(x)-invariant neighborhood of j(x) in indιX, we conclude from
Lemma 22.10 (ii) that there are an open Gj(x)-invariant neighborhood U ′x
of j(x) in indιX with U ′x ⊆ im(j) and a natural number r′x such that for all
s ∈ S, s′ ∈ S′, and g ∈ suppG(φ′s,s′) the implication

(22.98) j ◦ π′(s) ∈ U ′x, η′(s′) ≥ r′x =⇒ g · j ◦ π(s) ∈ im(j)

holds. Since B′ satisfies compact support over X, there is a compact subset
C ⊆ X with im(π) ⊆ C. Since j(C) ⊆

⋃
x∈C U

′
x and j(C) ⊆ indιX is

compact, there is a finite subset {x1, x2, . . . , xm} ⊆ C satisfying j(C) ⊆⋃m
i=1 U

′
xi . Define a natural number r′ := max{r′xi | i = 1, 2 . . . ,m}. Then we

get for all s ∈ S, s′ ∈ S′, and g ∈ suppG(φ′s,s′) the implication

(22.99) η′(s′) ≥ r′ =⇒ g · j ◦ π(s) ∈ im(j)

since for any s′ ∈ S′ there exists i ∈ {1, 2, . . . ,m} with j◦π(s′) ∈ U ′xi and r′ ≥
r′i and we can apply the implication (22.98). Since φ′ satisfies bounded control
over N, we can modify φ′ without changing the class which it represent in
OG′(indιX;B′) such that for all s ∈ S, s′ ∈ s′ and g ∈ suppG′(φ

′
s,s′) we have

g · j ◦π(s) ∈ im(j). Now (22.97) follows since g · j ◦π(s) ∈ im(j) =⇒ g ∈ H.
We conclude from (22.97) that φ′s,s′ belongs to B〈H〉. Define a morphism

φ : B→ B′ in OH(X;B〈H〉) by φs,s′ = φ′s,s′ for s ∈ S and s′ ∈ S′. One easily
checks that φ satisfies finite support over H, bounded control over N, and con-
tinuous control since φ′ satisfies finite support over G, bounded control over N,
and continuous control. Hence φ is well-defined. Its class in DH(X;B〈H〉) is
mapped by construction under the map (22.96) to the class in DG(indιX;B)
represented by φ′. This shows that the map (22.96) is bijective.

It remains to shows show that for every object B′ = (S′, π′, η′,B′) in
OG(indιX;B) there is an object B = (S, π, η,B) in OH(X;B〈H〉) and an
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isomorphism φ : indι(B)
∼=−→ B′ in OG(indιX;B). We put S = S′ and η = η′.

Choose functions γ : S → G and π : S → X such that γ(s) · j ◦ π(s) = π′(s)
holds for all s ∈ S. Define B : S → ob(B) by sending s to γ(s)−1 ·B′(s). Then
we can define the desired isomorphism φ by putting φs,s′ = 0 for s, s′ ∈ S
with s 6= s′ and by φs,s = Ωγ(s)(B(s)) : B(s)

∼=−→ B′(s) for s ∈ S. The proof
that φ is well-defined is mild generalization of the proof of Lemma 22.14.
This finishes the second proof of Proposition 22.95. ut

22.10 The Version with Zero Control over N

We also deal with a versionDG0 (X;B) ofDG0 (X;B) where we have zero-control
over N.

22.10.1 Control Categories with Zero Control in the N-Direction

Definition 22.100 (DG0 (X;B)). Define OG0 (X) to be the additive subcate-
gory of OG(X) which has the same set of objects and for which a morphism
φ : B = (S, π, η,B)→ B′ = (S′, π′, η′,B′) in OG(X) belongs to OG0 (X) if and
only if the implication

φs,s′ 6= 0 =⇒ η(s) = η(s′)

holds for all s ∈ S and s′ ∈ S′.
Let T G0 (X;B) be the full subcategory of O0

G(X) consisting of those objects
B = (Σ, π, η,B) for which there exists a natural number n such that B(σ) = 0
holds for σ ∈ Σ with η(σ) ≥ n.

Define DG0 (X) to be the quotient category OG0 (X)/T G0 (X) in the sense of
Definition 21.1.

Lemma 22.101. The inclusion T G0 (X)→ OG0 (X) is a Karoubi filtration in
the sense of Definition 21.2. In particular we get a weak homotopy fibration
sequence

T G0 (X)→ OG0 (X)→ DG0 (X).

Proof. The proof of Lemma 22.17 carries directly over. Now apply Theo-
rem 21.5 (i). ut

Exercise 22.102. Show for m ∈ Z

Km(D{1}0 ({•})) ∼=
( ∞∏
n=0

Km(B⊕)

)/( ∞⊕
n=0

Km(B⊕)

)
.
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Let ρ : N → N be a function which is finite-to-one, i.e., the preimage of
every element in N under ρ is finite. Next we construct a functor of additive
categories

V ′ρ(X) : OG0 (X)→ OG0 (X)

which is essentially given by moving an object at the position n to the position
ρ(n) and leaving the position in X fixed. More precisely, Vρ sends an object

B = (S, π, η,B) to the object Vρ(X)(B) = (Ŝ, π̂, η̂, B̂) given by

Ŝ = S;

π̂ = π;

η̂ = ρ ◦ η;

B̂ = B.

Its definition on morphisms is the tautological one, i.e., a morphism φ : B =
(S, π, η,B) → B = (S′, π′, η′,B′) is sent to the morphism V ′ρ(φ) given by
V ′ρ(X)(φ)s,s′ = φs,s′ for s ∈ S and s′ ∈ S.

We have to check that this is well-defined. Since ρ is finite-to-one, the new
object V ′ρ(X)(B) satisfies the conditions compact suport over X and locally
finiteness over N as B does. For every natural number N , there exists a
natural number N ′ such that the implication ρ(n) ≥ N ′ =⇒ n ≥ N holds
for every n ∈ N since ρ is finite-to-one, Hence the new morphism V ′ρ(X)(φ)
satisfies finite G-support and and continuous control as φ does. Obviously we
have for s ∈ S, s′ ∈ S′

V ′ρ(X)(φ)s,s′ 6= 0 =⇒ φs,s′ 6= 0 =⇒ η(s) = η′(s′)

=⇒ ρ ◦ η(s) = ρ ◦ η′(s′) =⇒ η̂(s) = η̂′(s′).

Since V ′ρ(X) maps T G0 (X) to T G0 (P ;B), it induces a functor of additive
categories

Vρ(X) : DG0 (X)→ DG0 (X).(22.103)

22.10.2 Relating the K-Theory of DG and DG
0

We have explained in Section 22.4 that DG(X;B) yields a covariant functor
DG : G-CW-COM → ADDCAT . One easily checks that the same construc-
tion yields a covariant functor

(22.104) DG0 : G-CW-COM→ ADDCAT .

Composition with the functor non-connective K-theory yields the covariant
functors
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K ◦ DG : CW-COM → SPECTRA;(22.105)

K ◦ DG0 : CW-COM → SPECTRA.(22.106)

By precomposing with the inclusion Or(G) → CW-COM, we get covariant
Or(G)-spectra

KD
G

: Or(G)→ SPECTRA;(22.107)

KD
G
0 : Or(G)→ SPECTRA.(22.108)

The main result of this section is

Theorem 22.109 (Relating the K-theory of DG(X) and DG0 ). Define
two functions ρO, ρE : N→ N by

ρO(n) =

{
n+2

2 if n is even;
n+1

2 if n is odd;

ρE(n) =

{
n
2 if n is even;
n+1

2 if n is odd.

Let HPO be the covariant functor G-CW-COM → SPECTRA given for a
G-CW -complex by the homotopy pushout

K(DG0 (X))
K(VρE (X))

//

K(VρO (X))

��

K(DG0 (X))

��
K(DG0 (X)) // HPO(X),

Then there exists a zigzag of weak homotopy equivalences of covariant func-
tors G-CW-COM→ SPECTRA from HPO to K ◦ DG.

The remainder of this section is devoted to the proof of Theorem 22.109.
This needs some prepration.

For a subset J ⊆ N define

OGJ (X) ⊆ OG(X);(22.110)

DGJ (X) ⊆ DG(X),(22.111)

to be the full subcategory of OG(X) and OG(X) respectively consisting of
those objects B = (Σ, π, η,B) for which im(η) ⊆ J holds.

Fix a sequence of natural numbers 0 = i0 < i1 < i2 < i3 < · · · such that

lim→∞(ij − ij−1) =∞ holds, for instance we can take ij = j(j+1)
2 since then

i0 = 0 and ij − ij−1 = j holds for j ≥ 1. Define Nj := {i ∈ N | ij ≤ i ≤ ij+1}.
Put
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E :=

∞⋃
j=0

N2j ;

O :=

∞⋃
j=0

N2j+1;

I := {i1, i2, . . .};
IE := {i2, i4, . . .};
IO := {i1, i3, i5, . . .}.

Note that DGN (X) = DG(X), N = E ∪ O, E ∩ O = I, I = IO ∪ IE , and
IO ∩ IE = ∅ hold.

Consider the following commutative diagram of additive categories

(22.112) DGI (X) //

��

DGE(X)

��
DGO(X) // DG(X)

whose arrows are all inclusions of full additive subcategories and which is
natural in X.

Lemma 22.113.

(i) The following inclusions are Karoubi filtrations

DGI (X)→ DGE(X);

DGIE (X)→ DGO(X);

DGIO (X)→ DGE(X);

DGO(X)→ DG(X);

(ii) The functor induced on the Karoubi quotients

DGE(X)/DGI (X)→ DG(X)/DGO(X)

is an equivalence of additive categories;
(iii) The diagram (22.112) is weakly homotopy cocartesian.

Proof. (i) We only show that the inclusion DGI (X) → DGE(X) is a Karoubi
filtration, the proof for the other inclusions is an obvious variation. Consider
an object B = (Σ, π, η,B) in OGE(X), objects U = (ΣU, πU, ηU,BU) and
V = (ΣV, πV, ηV,BV) in OG(X)I , and morphisms φ : B→ U and ψ : V →
B in DGE(X). Let the morphisms φ : B → U and ψ : V → B in OGE(X) be
representatives of φ and ψ. Choose a number t such that φσ,τ = 0 holds for
σ ∈ Σ and τ ∈ ΣU with |η(σ)− ηU(τ)| ≥ t, and ψρ,σ = 0 holds for ρ ∈ ΣV

and σ ∈ Σ with |η(σ) − ηV(ρ)| ≥ t. Since limj→∞(ij − ij−1) = ∞, we can
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find a natural number j0 ≥ 1 such that (ij − ij−1) > 2t+ 1 for j ≥ j0 holds.
We can change the representatives φ and ψ such that φσ,τ = ψρ,σ = 0 holds
for σ ∈ Σ, τ ∈ ΣU, and ρ ∈ ΣV, provided that πN(σ) ≤ ij0 is true. Hence we
get for every natural number j the following implications for σ ∈ Σ, τ ∈ ΣU,
and ρ ∈ ΣV

η(σ) ∈ Ni2j , πU
N (τ) ∈ I, φσ,τ 6= 0

=⇒ i2j ≤ η(σ) ≤ i2j + t or i2j+1 − t ≤ η(σ) ≤ i2j+1;

η(σ) ∈ Ni2j , πV
N (ρ) ∈ I, ψρ,σ 6= 0

=⇒ i2j ≤ η(σ) ≤ i2j + t or i2j+1 − t ≤ η(σ) ≤ i2j+1.

Define new objects B⊥ = (Σ⊥, π⊥, η⊥,B⊥) and B′ = (Σ′, π′, η′,B′) in
OGE(X) by putting

Σ⊥ = {σ ∈ Σ | η(σ) < i2j0}
q {σ ∈ Σ | i2j + t < η(σ) < i2j+1 − t, for some j ∈ N with 2j ≥ j0};

π⊥ = π|Σ⊥ ;

η⊥ = η|Σ⊥ ;

B⊥ = B|Σ⊥ ;

Σ′ = {σ ∈ Σ | i2j ≤ η(σ) ≤ i2j + t or i2j+1 − t ≤ η(σ) ≤ i2j+1

for some j ∈ N with 2j ≥ j0};
π′ = π|Σ′ ;
η′ = η|Σ′ ;
B′ = B|Σ′ .

Since Σ = Σ′ q Σ⊥, there are obvious morphisms i′ : B′ → B and
i⊥ : B⊥ → B in OGE(X) given by the morphisms idB′(σ′) and idB⊥(σ⊥) for

σ′ ∈ Σ′ and σ⊥ ∈ Σ⊥ such that i ⊕ i⊥ : B′ ⊕ B⊥ → B is an isomorphism.
Moreover, there are morphisms φ′ : B′ → U and ψ′ : U→ B′ in OGE(X) such
that φ ◦ (i⊕ i⊥) = φ′ ◦ pr′ and i′ ◦ ψ′ = ψ holds where pr′ : B′ ⊕B⊥ → B′ is
the canonical projection.

Define the object BU = (ΣU , πU , ηU ,BU ) inOG(X)I by putting for σ′ ∈ Σ′

ΣU = Σ′

πU = π′;

ηU (σ′) =

{
i2j if i2j ≤ η(σ′) ≤ i2j + t;

i2j+1 if i2j+1 − t ≤ η(σ′) ≤ i2j+1;

BU = B′.
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We can consider BU also as an object in OGE(X). Since ΣU = Σ′ and
BU = B′, one easily checks that taking for σ ∈ Σ′ the identity idB′(σ) yields
well-defined to one another inverse isomorphisms u : BU → B′ and v : B′ →
BU in OGE(X). Define morphisms in OGE(X)

iU := i′ ◦ u : BU → B;
prU := v ◦ pr′ : B → BU ;
φU := φ′ ◦ u : BU → U;
ψU := v ◦ ψ′ : V → BU .

One easily checks that the images of iU , i⊥, prU , φU and ψU under the pro-
jection OGE(X)→ DGE(X) yield the data required for a Karoubi filtration.

(ii) Next we show that for two objects B = (Σ, π, η,B) and B′ = (Σ′, π′, η′,B′)
in OGE(X) the obvious map

(22.114) morDGE (X)/DGI (X)(B,B
′)→ morDG(X)/DGO(X)(B,B

′)

is bijective.
We begin with the proof of surjectivity. It is based on the following con-

struction. Consider a morphism φ : B→ B′ in OG(X). Since N = E ∪O, one
can construct objects BE and B′E in OGE(X) and BO and B′O in OGO(X)
such that we get in OG(X) identifications BO⊕BE = B and B′O⊕B′E = B′.
Then φ can be written as

φ =

(
a b
c d

)
: BO ⊕BE → B′O ⊕B′E .

Define a morphisms in OG(X) by the composite

ψ : BO ⊕BE

id 0
0 b


−−−−−→ BO ⊕B′O

a id
c 0


−−−−−→ B′O ⊕B′E .

Then BO ⊕B′O is an object in DGO(X), the difference φ− ψ is of the shape(
0 0
0 d

)
, and d : BE → B′E belongs to OGE(X).

It remains to prove injectivity. Consider a morphism [φ] : B → B′ in
DGE(X)/DGI (X) whose image under (22.114) is zero. We have to show that
[φ] itself is zero. Choose a representative φ in DGE(X) of [φ]. By assumption
there is an object U = (ΣU, πUηU,BU) in OGO(X) such that ν ◦ µ = φ holds
in DG(X) for appropriate morphisms µ : B→ U and ν : U→ B′. in Choose
a representative φ in OGE(X) of φ, and representatives µ and ν in OG(X)
respectively of µ and ν respectively. Fix a number t such that for σ ∈ Σ,
σ′ ∈ Σ′ and τ ∈ ΣU the implications
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φσ,σ′′ 6= 0 =⇒ |η(σ)− η′(σ′)| ≤ t;
µσ,τ 6= 0 =⇒ |η(σ)− ηU(τ)| ≤ t;
ντ,σ′′ 6= 0 =⇒ |ηU(τ)− η′(σ′)| ≤ t,

hold. Since limj→∞(ij − ij−1) = ∞, we can find a natural number j0 ≥ 1
such that (ij − ij−1) > 2t + 1 holds for j ≥ j0. By possibly enlarging j0 we
can additionally arrange that φσ,σ′ =

∑
τ∈ΣU ντ,σ′ ◦ µσ,τ holds for σ ∈ Σ,

σ′ ∈ Σ′ with η(σ), π′N(σ′) ≥ ij0 . Define an object V = (ΣV, πV, ηV,BV) in
DGI (X) by putting

ΣV = {τ ∈ ΣU | η(τ) ≥ ij0 and ∃n ∈ I with |n− ηU(τ)| ≤ t};
πV = πU|ΣV ;

ηV(τ) = n for τ ∈ ΣV and n ∈ I with |n− ηU(τ)| ≤ t;
BV = BU|ΣV .

Define morphisms α : B → V and β : V → B′ in OGE(X) by putting for
σ ∈ Σ, σ′ ∈ Σ′ and τ ∈ ΣV

ασ,τ = µσ,τ ;

βτ,σ′ = ντ,σ′ .

Then φσ,σ′ =
∑
τ∈ΣU βτ,σ′ ◦ ασ,τ holds for σ ∈ Σ and σ′ ∈ Σ′ with

η(σ), η(σ′) ≥ ij0 . Hence we get φ = β ◦ α in DGE(X). Since V belongs to
DGI (X), we get [φ] = 0 in DGE(X)/DGI (X). Hence (22.114) is bijective.

It remains to construct for an object B = (Σ, π, η,B) in OG(X) an object
B′ in OGE(X) and morphisms i : B′ → B and r : B → B′ in OG(X) such
that [r] ◦ [i] = idB′ and [i] ◦ [r] = idB hold in DG(X)/DGO(X). We define
B′ = (Σ′, π′, η′,B′) by

Σ′ = {σ ∈ Σ | η(σ) ∈ E};
π′
P̂

= π|Σ′ ;
η′ = η|Σ′ ;
B′ = B|Σ′ ,

and the morphisms i and r for σ ∈ Σ and σ′ ∈ Σ′ by

iσ′,σ = rσ,σ′ =

{
idB(σ′) if σ = σ′;

0 otherwise.

Obviously r ◦ i = idB′ holds already in OG(X) which implies [r] ◦ [i] = idB′

in DG(X)/DGO(X). Define an object U = (ΣU, πU, ηU,BU) in OGO(X) by
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ΣU = {σ ∈ Σ | η(σ) /∈ E};
πU = π|σU ;

ηU = η|σU ;

B′ = B|σU .

Obviously i ◦ r − idB = idU holds in OG(X). This implies [i] ◦ [r] = idB in
DG(X)/DGO(X).

(iii) This follows from assertions (i) and (ii) and Theorem 21.30. This finishes
the proof of Lemma 22.113. ut

Lemma 22.115. The inclusions DGIO (X)→ DGE(X) and DGIE (X)→ DGO(X)
induce weak equivalences

K(DGIO (X))
'−→ K(DGE(X));

K(DGIE (X))
'−→ K(DGO(X)).

Proof. We give the proof only for the first map, the one for the second is
completely analogous. We have already shown in Lemma 22.113 (i) that the
inclusion DGIO (X)→ DGE(X) is a Karoubi filtration. Hence it suffices to show

that K
(
DGE(X)/DGIO (X)

)
is weakly contractible. This we will do by construct-

ing an Eilenberg swindle as follows.
Next we define a functor of additive categories

(22.116) SH: DGE(X)/DGIO (X)→ DGE(X)/DGIO (X).

The idea is to move the objects one position to the right in the N-direction,
to discard the objects sitting at right endpoints of the intervals N2j since
they would be moved outside the set E, and leaving the position in the X-
direction fixed. AS the union of the right endpoints of the intervals N2j for
j ≥ 0 is IO, this gives a well-defined functor. Here are more details.

An object B = (Σ, π,η,B) of DGE(X)/DGIO (X) which is the same as an

object in OGE(X), is sent to the object SH(B) = (ΣSH, πSH, ηSH,BSH) in
OGE(X) given by

ΣSH = {σ ∈ Σ | η(σ) ∈ E \ IO};
πSH = π|ΣSH ;

ηSH(σ) = η(σ) + 1 for σ ∈ ΣSH;

BSH = B|ΣSH .

Consider a morphism [φ] : B = (Σ, πN, [πP̂ ]P ,B)→ B′ = (Σ′, π′N, [π
′
P̂

]P ,B
′)

in DGE(X)/DGIO (X). Let φ : B → B′ be a morphism in OGE(X) representing

[φ]. Define a morphism SH(φ) in OGE(X) by

SH(φ)σ,σ′ = φσ,σ′ for σ ∈ ΣSH, σ′ ∈ (Σ′)SH.
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Define SH(φ) to be the class [SH(φ)] of SH(φ). Note that SH(φ) depends on
the choice of φ ∈ [φ]. We leave it to the reader to check that [SH(φ)] depends
only on [φ]. Moreover, let [φ] : B → B′ and [ψ] : B′ → B′′ be composable
morphisms in DGE(X). Choose representatives φ ∈ [φ] and ψ ∈ [ψ]. Then it is
not true that SH(ψ) ◦ SH(φ) and SH(ψ ◦ φ) agree, but one easily checks that
the classes [SH(ψ)◦SH(φ)] = [SH(ψ◦φ)] in DGE(X)/DGIO (X) agree. Therefore
the functor announced in (22.116) is well-defined.

Next we construct a natural equivalence

(22.117) R1 : idDGE (X)/DGIO (X)

∼=−→ SH .

of functors DGE(X)/DGIO (X)→ DGE(X)/DGIO (X) of additive categories.

We specify for every object B in OGE(X) morphisms φ : B = (Σ, π, η,B)→
SH(B) = (ΣSH, πSH, ηSH,BSH) and ψ : SH(B)→ B in OGE(X) by putting for
σ ∈ Σ and σSH ∈ ΣSH

φσ,σSH =

{
idB(σ) if σSH = σ;

0 otherwise;

ψσSH,σ =

{
idB(σ) if σ = σSH;

0 otherwise.

We have φ◦ψ = idSH(B) in OGE(X). We do not have ψ ◦φ = idB in OGE(X)
but [ψ ◦ φ] = [idB] holds in OGE(X)/DGIO (X). Now one easily checks that the
natural equivalence R1 announced in (22.117) is well-defined.

Next we define another functor

(22.118) S : DGE(X)/DGIO (X)→ DGE(X)/DGIO (X).

The informal definition is S(B) =
⊕∞

m=0 SHm(B) and analogous for mor-
phisms where SHm is the m-fold composite of SH. This makes sense since
over a given element in N this direct sum is finite. Here are the more details
of the definition.

An object B = (Σ, π, η,B) in DGE(X)/DGIO (X) which is the same as an

object in OGE(X), is sent to the object S(B) = (ΣS , πS , ηS ,BS) in DGE(X)
given by

ΣS =
∐
j∈N

∐
n∈N2j

n∐
k=i2j

η−1(k);

πS = π|ΣS ;

ηS(σ) = n for σ ∈
n∐

k=i2j

η−1(k);

BS = B|ΣS .
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Consider a morphism [φ] : B→ B′ in DGE(X)/DGIO (X). Let the morphism

φ : B = (Σ, π, η,B) → B′ = (Σ′, π′, η′,B′) in OGE(X) be a representative of
[φ]. Define a morphism S(φ) in OGE(X) by putting for σ ∈ ΣS and σ′ ∈ (Σ′)S

S(s)σ,σ′ =


φσ,σ′ if ∃j ∈ N, n, n′ ∈ N2j with i2j ≤ η(σ) ≤ n, i2j ≤ π′N(σ′) ≤ n′

and n− η(σ) = n′ − π′N(σ′);

0 otherwise.

Now define S([φ]) to be [S(φ)].
Next we construct a natural equivalence

(22.119) R2 : idOGE (X)⊕(SH ◦S)
∼=−→ S

of functors OGE(X)/DGIO (X) → OGE(X)/DGIO (X) of additive categories. The
idea comes from the formula

B⊕ SH(S(B)) = B⊕ SH

( ∞⊕
m=0

SHm(S(B))

)

= B⊕
∞⊕
m=1

SHm(S(B)) =

∞⊕
m=0

SHm(S(B)) = S(B).

Here are the some details of the construction. Note that for an object
B = (Σ, π, η,B) in OGE(X) the source of R2(B) is given by the quadruple
(Σ′, π′, η′,B′) and the target by the quadruple (ΣS , πS , ηS ,BS) such that

Σ′ = Σ q (ΣS)SH

= Σ q {σ ∈ ΣS | ηS(σ) ∈ E \ I0}

=

∐
j∈N

i2j+1∐
n=i2j

η−1(n)

q
σ ∈∐

j∈N

∐
n∈N2j

n∐
k=i2j

η−1(k)

∣∣∣∣∣∣ ηS(σ) ∈ E \ IO


=

∐
j∈N

i2j+1∐
n=i2j

η−1(n)

q
∐
j∈N

∐
n∈N2j ,
n 6=i2j+1

n∐
k=i2j

π−1
N (k)



=

∐
j∈N

i2j+1∐
n=i2j

η−1(n)

q
∐
j∈N

∐
n∈N2j ,
n 6=i2j

n−1∐
k=i2j

π−1
N (k)


=
∐
j∈N

∐
n∈N2j

n∐
k=i2j

η−1(k)

= ΣS .
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Note that any element σ ∈ Σ′ belongs to Σ. Moreover, under the identifi-
cation Σ′ = ΣS above we have B′(σ) = BS(σ) = B(σ) for σ ∈ Σ′. So we can
define an isomorphism in OGE(X)

R′2(B) : B⊕ (SH ◦S)(B) = (Σ′, π′, η′,B′)→ S(B) = (ΣS , πS , ηS ,BS)

by putting R′2(B)σ0,σ1
= idB(σ0) if σ0 = σ1 and R2(B)σ0,σ1

= 0 if σ0 6= σ1

for σ0 ∈ Σ′ and σ1 ∈ ΣS . Now define R2(B) by [R′2(B)]. We leave it to
the reader to check that the natural equivalence announced in (22.119) is
well-defined.

Putting R1 and R2 together yields a natural equivalence of functors of
additive categories DGE(X)/DGIO (X)→ DGE(X)/DGIO (X)

R : idDGE (X)/DGIO (X)⊕ S
'−→ S.

Theorem 6.37 (iii) implies that the spectrum K
(
DGE(X)/DGIO (X)

)
is weakly

contractible. This finishes the proof of Lemma 22.115. ut

Define injective function ρI , ρIO , ρIE : N→ N

ρI(j) = ij+1;

ρIE (j) = i2j+2.

ρIO (j) = i2j+1.

By construction they induce bijections from N to I, IE , and IO respectively.

Lemma 22.120. Let J be I, IO, or IE. Then the functor VρJ (X) : DG0 (X)→
DG0 (X) of (22.103) induces an isomorphism of additive categories

VJ(X) : DG0 (X)
∼=−→ DGJ (X).

Proof. We only treat the case J = I, the other cases are completely analogous.
The functor VI(X) is bijective on the set of objects since the function N→ I
sending j to ij+1 is a bijection. Hence it remains to show for two objects
B = (S, π, η,B) and B′ = (S′, π′, η′,B′) in OG0 (X) that the map induced by
VI(X)

morDG0 (X)(B,B
′)→ morDG(X)I (VI(X)(B), VI(X)(B′)), [φ] 7→ VI(X)([φ])

is bijective. It is obvious that it is injective. Hence we give only more details for
the proof of surjectivity. Consider a morphism [ψ] : VI(X)(B) → VI(X)(B′)
in DGI (X). Choose a representative ψ : VI(X)(B) → VI(X)(B′) in OGI (X).
There is a natural number n such that the implication ψs,s′ 6= 0 =⇒ |η̂(s)−
η̂′(s′)| ≤ n holds for s ∈ S and s′ ∈ S′. Choose a natural number j0 ≥ 1
such that ij − ij−1 > n holds for j ≥ j0. Then the implication ψs,s′ 6=
0 =⇒ η̂(s) = η̂′(s′) holds for s ∈ S and s′ ∈ S′ with η̂(s), η̂′(s′) ≥ ij0 . We
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can additionally arrange without changing [ψ] that that ψs,s′ = 0 holds for
η(s) ≤ ij0 + n. Then the implication ψs,s′ 6= 0 =⇒ η̂(s) = η̂(s′) holds for
s ∈ S and s′ ∈ S′. Since η̂(s) = η̂(s′) =⇒ η(s) = η′(s′), we can construct
a morphism φ : B → B′ in OG0 (X) satisfying F ′I(X)(φ) = ψ. Note that φ
satisfies continuous control as ψ satisfies continuous control and for every
natural number N there is a natural number N ′ such that for all j ∈ N the
implication j ≥ N ′ =⇒ ij ≥ N holds. This implies that [ψ] is in the image
of the map above. This finishes the proof of Lemma 22.120. ut

Next we define functors of additive categories, natural in X,

RO(X) : DGO(X)→ DGIE (X);(22.121)

RE(X) : DGE(X)→ DGIO (X),(22.122)

satisfying

RO(X)|DGIE (X) = idDGIE (X);(22.123)

RE(X)|DGIO (X) = idDGIO (X) .(22.124)

We only explain the construction of RO(X), the one for RE(X) is completely
analogous. It will be induced by the following functor of additive categories

R′O(X) : OGO(X) → OGIE (X)

whose definition we describe next. An object B = (S, π, η,B) is sent by

R′O(X) to the object B̂ = (Ŝ, π̂, η̂, B̂) given by

Ŝ = S;

π̂ = π;

η̂(s) = i2j+2 if η(s) ∈ N2j+1;

B̂ = B.

The idea is to move an object with position in N2j+1 to the right endpoint
of N2j+1, namely to i2j+2, whereas nothing is changed concerning the X-

direction. Obviously B̂ satisfies the conditions compact support over X and lo-
cally finiteness over N since B does and N2j+1 is finite. The definition on mor-
phisms is the tautological one. If φ : B = (S, π, η,B) → B′ = (S′, π′, η′,B′)
is given by the collection {φs,s′ | s ∈ S, s′ ∈ S′}, define R′O(φ) by the same
collection. Obviously RO(φ) satisfies finite G-support as φ does. Since φ sat-
isfies bounded control over N, we can find a natural number n such that for
s ∈ S and s′ ∈ S′ the implication φs,s′ 6= 0 =⇒ |η(s) − η′(s′)| ≤ n holds.
Choose a natural number m such that i2j+1 − i2j > n holds for j ≥ m. If

η(s) ∈ N2j+1 for j ≥ m, we conclude η′(s′) ∈ N2j+1 and hence η̂(s) = η̂′(s′).
Put l = i2m + n. Then we have for s ∈ S and s′ ∈ S′ the implication
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φs,s′ 6= 0 =⇒ |η̂(s) − η̂′(s′)| ≤ l. This shows that R′O(φ) satisfies bounded
control over N. Since φ satisfies continuous control and for every natural num-
ber N there exists a natural number N ′ satisfying η̂(s) ≥ N ′ =⇒ η(s) ≥ N
for s ∈ S and η̂′(s′) ≥ N ′ =⇒ η′(s) ≥ N for s′ ∈ S′, continuous control
holds also for RO(φ).

Obviously R′O(X) induces the identity on OGIE (X) and sends τGO (X) to

τGIE (X). Hence R′φ induces the desired functor RO announced in (22.121)
and satisfying (22.123).

Lemma 22.125. The functors RO(X) of (22.121) and RE(X) of (22.122)
induces weak equivalences, natural in X,

K(RO(X)) : K(DGO(X))
'−→ K(DGIE (X));

K(RE(X)) : K(DGE(X))
'−→ K(DGIO (X)).

Proof. Because of (22.123) and (22.124) it suffices to show that the inclusions
DGIE (X) → DGO(X) and DGIO (X) → DGE(X) induce weak homotopy equiva-
lences on K-theory. This has already been done, see Lemma 22.115. ut

Proof of Theorem 22.109. Consider the following diagram of additive cate-
gories, natural in X,

DGO(X)

VIE (X)−1◦RO(X)

��

DGI (X)

VI(X)−1

��

oo // DGE(X)

VIO (X)−1◦RE(X)

��
DG0 (X) DG0 (X)

VρO (X)
oo

VρE (X)
// DG0 (X)

where the upper two horizontal arrows are the inclusions, the functors VρO (X)
and VρE (X) have been defined in (22.103), the isomorphisms of additive
categories VIE (X), VI , and VIO (X) come from Lemma 22.120, the functors
RO(X) and RE(X) have been defined in (22.121) and (22.122). If we apply
the K-theory functor, we obtain a commutative diagram of spectra, natural
in X

K(DGO(X))

'
��

K(DGI (X))

'
��

oo // K(DGE(X))

'
��

K(DG0 (X)) K(DG0 (X))
K(VρO (X))
oo

K(VρE (X))
// K(DG0 (X))

whose horizontal arrows are weak homotopy equivalences by Lemma 22.125.
It induces a weak homotopy equivalence from the homotopy pushout HPO(X)
of the upper row to the lower row, natural in X. We have already constructed
a weak homotopy equivalences from HPO(X) to K(DG(X)), natural in X,
in Lemma 22.113 (iii). This finishes the proof of Theorem 22.109. ut
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22.11 The Proof of the Axioms of a G-Homology
Theory for DG

0

Next we state the main result of this section.

Theorem 22.126 (The algebraic K-groups of DG0 (X,A) yield a G-
homology theory). Let B be a control coefficient category in the sense of
Definition 22.1.

Then we obtain a G-homology theory with values in Z-modules in the
sense of Definition 12.1 by the covariant functor from the category of G-
CW -pairs to the category of Z-graded abelian groups sending (X,A) to
K∗(DG0 (X,A;B)).

First we start with G-homotopy invariance. Here the proof for DG of
Lemma 22.30 does not carry over since there we are shifting in the N-direction
and the construction of the natural equivalence in the relevant Eilenberg-
swindle cannot be done with zero-control in the N-direction. Therefore we
have to construct a different Eilenberg-swindle where we do not move the
objects in the N-direction.

Proposition 22.127. The inclusion X × {0} → X × [0, 1] induces a weak
homotopy equivalence

K(DG0 (X × {0}))→ K(DG0 (X × [0, 1])).

Proof. We define a functor of additive categories

(22.128) SH: OG0 (X × [0, 1])→ OG0 (X × [0, 1])

as follows.
Consider an object B = (S, π, η,B) in OG0 (X × [0, 1]). In the sequel let

πX : S → X and π[0,1] : S → [0, 1] be the maps for which π = πX × π[0,1]. We
define SH(B) to be the object (SH(S),SH(π),SH(η),SH(B)) given by

SH(S) = {(s, n) ∈ S × N | n ≤ η(s) · π[0,1](s)};

SH(π)(s, n) =

{
π(s) if η(s) = 0;(
πX(s), π[0,1](s)− n

η(s)

)
if η(s) ≥ 1;

SH(η)(s, n) = η(s);

SH(B)(s, n) = B(s).

The idea is to shift an object B(s) from position π[0,1](s) to position π[0,1](s)−
1
η(s) if η(s) ≥ 1 and π[0,1](s) − 1

η(s) ≥ 0 hold, to forget it if η(s) ≥ 1 and

π[0,1](s)− 1
η(s) < 0 hold, and to leave it at π[0,1](s) if η(s) = 0 holds, whereas

πX(s) and η(s) are unchanged. Then take the infinite direct sum over k ∈ N
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for the k-fold composition. So here we are shifting in the direction of [0, 1]
and not in the direction of N.

We have to check that is well-defined. Since im(SH(π)) ⊆ im(πX) × [0, 1]
and B satisfies compact support over X × [0, 1], SH(B) satisfies compact sup-
port over X × [0, 1]. As B satisfies locally finiteness over N, the same is true
for SH(B), as we get for m ∈ N

SH(η)−1(m) = {(s, n) | η(s) = m,n ≤ η(s) · π[0,1](s)}

⊆
⋃

s∈η−1(m)

{m ∈ N | n ≤ m}.

The definition on morphisms is the tautological one. If the morphism φ : B =
(S, π, η,B) → B′ = (S′, π′, η′,B′) is given by the collection {φs,s′ : B(s) →
B(s′) | s ∈ S, s′ ∈ S′}, then define SH(φ) by the collection {SH(φ(s,n),(s′,n′)) |
(s, n) ∈ SH(S), (s′, n′) ∈ SH(S′)} where

SH(φ(s,n),(s′,n′)) =

{
φs,s′ if n = n′;

0 otherwise.

We have to check that this is well-defined. Since φ satisfies finite G-support
and SH(φ)(s,n),(s′,n′) is zero or φs,s′ , SH(φ) satisfies finite G-support. If
SH(φ)(s,n),(s′,n′) 6= 0 holds, then φs,s′ 6= 0 and hence we get SH(η)(s, n) =
η(s) = η′(s′) = SH(η′)(s′, n′). The more complicated part is to show that
SH(φ) satisfies continuous control what we do next. We only deal with the
implication (22.5). The proof for the other implication (22.6) is completely
analogous.

Consider (x, t) ∈ X×[0, 1] and an open G(x,t)-invariant neighborhood U of
(x, t) in X×[0, 1]. Choose an open Gx-invariant neighborhood V of x in X and
ε > 0 such that V × I3ε(t) ⊆ U holds where Iε(t) = (t− ε, t+ ε)∩ [0, 1]. Since
φ satisfies continuous control, we can find δ(x, t, ε) > 0 with δ(x, t, ε) ≤ ε,
r′(x, t, ε) ∈ N, and an open Gx-invariant neighborhood V ′(x, t, ε) of x in X
such that V (x, t, ε) ⊆ V and δ(x, t, ε) ≤ ε hold and we have for every s ∈ S,
s′ ∈ S′ and g ∈ G the implication

(22.129) gπX(s) ∈ V ′(x, t, ε), π[0,1](s) ∈ Iδ(x,t,ε)(t), η(s) ≥ r′(x, t, ε)
=⇒ π′X(s′) ∈ V, π′[0,1](s

′) ∈ Iε(t).

Since [0, 1] is compact, we can find a finite subset {t1, t2, . . . , tl} ⊆ [0, 1]

satisfying
⋃l
i=1 Iδ(x,ti,ε)(ti) = [0, 1]. Put

r′ = max{r′(x, ti, ε) | i = 1, 2 . . . , l};

V ′ =

l⋂
i=1

V ′(x, ti, ε).
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Then r′ is a natural number and V ′ is an open Gx-invariant neighborhood
of x in X.

Now we are ready to prove the implication (22.5) for SH(φ). Consider
(s, n) ∈ SH(S), (s′, n′) ∈ SH(S′), and g ∈ suppG(SH(φ)(s,n),(s′,n′)). We want
to show

g SH(π)(s, n) ∈ V ′ × Iε(t),SH(η)(s, n) ≥ r′ =⇒ SH(π′)(s′, n′) ∈ U.

As SH(φ)(s,n),(s′,n′) = φs,s′ , we get g ∈ suppG(φs,s′) and SH(φ)(n,n),(n′,s′) 6=
0. Choose i ∈ {1, 2, . . . , l} with π[0,1](s) ∈ Iδ(x,ti,ε)(ti). As V ′ ⊆ V ′(x, ti, ε) and
r′(x, ti, ε) ≤ r′ hold, we get π′X(s′) ∈ V and π′[0,1](s

′) ∈ Iε(ti) from (22.129).

Since δ′ ≤ δ(x, ti, ε) ≤ ε holds and we have π[0,1](s) ∈ Iδ(x,ti,ε)(ti) and
π′[0,1](s

′) ∈ Iε(ti), we conclude from the triangle inequality |π[0,1](s) −
π′[0,1](s

′)| ≤ 2ε. Since SH(φ)(s,n),(s′,n′) = φs,s′ 6= 0, we have n = n′ and

η(s) = η′(s′). Hence we get for η(n) ≥ 1

|SH(π)[0,1](s, n)− SH(π′)[0,1](s
′, n′)|

=
∣∣(π[0,1](s)−

n

η(s)

)
−
(
π′[0,1](s

′)− n′

η′(s′)

)∣∣
= |π[0,1](s)− π′[0,1](s

′)|
≤ 2ε.

If η(s) = 0, we get |SH(π)[0,1](s, n) − SH(π′)[0,1](s
′, n′)| = |π[0,1](s) −

π′[0,1](s
′)| ≤ 2ε. Hence we get for (s, n) ∈ SH(S), (s′, n′) ∈ SH(S′), and

g ∈ suppG(SH(φ)(s,n),(s′,n′)) satisfying g SH(π)(s, n) ∈ V ′ × Iδ′(t) and
SH(η)(s, n) ≥ r′

SH(π′)X(s, n′) ∈ V ;

|SH(π)[0,1](s, n)− SH(π′)[0,1](s
′, n′)| ≤ 2ε.

The latter implies using SH(π)[0,1](s, n) ∈ Iε(t) and the triangle inequality
SH(π′)[0,1](s

′, n′) ∈ I3ε(t). Hence we get

SH(π′)(s′, n′) ∈ V × I3ε(t) ⊆ U.

This finishes the proof that SH(φ) is a well-defined morphisms. One easily
checks that SH is a functor of additive categories.

Consider an object B = (S, π, η,B) in OG0 (X × [0, 1]). Next we define two
morphisms in OG0 (X × [0, 1])

T0(B) : B⊕ SH(B)→ SH(B);

T1(B) : SH(B)→ B⊕ SH(B).

Recall that B⊕ SH(B) = (S q SH(S), πq SH(π), ηq SH(η),Bq SH(B)). For
s ∈ S and (s′, n′) ∈ SH(S) we define
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T0(B)s,(s′,n′) =

{
idB(s) if s′ = s and n′ = 0;

0 otherwise.

For (s, n) ∈ SH(B) and (s′, n′) ∈ SH(B) define

T0(B)(s,n),(s′,n′) =

{
idB(s) if s′ = s and n′ = n+ 1;

0 otherwise.

We have to check that this is well-defined. Note that suppG(T0(B)) is either
empty or {e}. In particular the condition finite G-support is satisfied. For
s ∈ S and (s′, n′) ∈ SH(S) we have T0(B)s,(s′,n′) 6= 0 =⇒ s = s′ and hence
η(s) = η(s′) = SH(η′)(s′, n′). For (s, n) ∈ S and (s′, n′) ∈ SH(S) we have
T0(B)(s,n),(s′,n′) 6= 0 =⇒ s = s′ and hence SH(η)(s, n) = η(s) = η(s′) =
SH(η′)(s′, n′). It remains to show continuous control. We only deal with the
implication (22.5). The proof for the other implication (22.6) is completely
analogous.

Consider (x, t) ∈ X × [0, 1] and an open G(x,t)-invariant neighborhood U
of (x, t) in X × [0, 1]. Choose an open Gx-invariant neighborhood V of x
in X and ε > 0 such that V × I2ε(t) ⊆ U holds. Choose a natural number
r′ satisfying r′ ≥ 1/ε. Then U ′ := V × Iε(t) is an open G(x,t)-invariant
open neighborhood of (x, t) in X × [0, 1] with U ′ ⊆ U . Consider s ∈ S,
(s′, n′) ∈ SH(S), and g ∈ suppG(T0(B))s,(s′,n′) such that gπ(s) ∈ U ′. Then
g = e and T0(B)s,(s′,n′) 6= 0. This implies s′ = s and n′ = 0 and hence
π(s) = SH(π)(s′, n′). We conclude SH(π)(s′, n′) ∈ U ′ ⊆ U . Consider (s, n) ∈
S, (s′, n′) ∈ SH(S), and g ∈ suppG(T0(B)(s,n),(s′,n′)) such that g SH(π)(s) ∈
U ′ and SH(η)(S, n) ≥ r′ hold. Then g = e and T0(B)(s,n),(s′,n′) 6= 0. This
implies s′ = s and n′ = n + 1. We get SH(π)X(s, n) = πX(s) = πX(s′) =
SH(π)X(s′, n′) and hence SH(π)X(s′, n′) ∈ V . Moreover

|SH(π)[0,1](s, n)− SH(π′)[0,1](s
′, n′)|

=
∣∣(π[0,1](s)−

n

η(s)

)
−
(
π[0,1](s

′)− n′

η(s′)

)
=
∣∣(π[0,1](s)−

n

η(s)

)
−
(
π[0,1](s)−

n+ 1

η(s)

)
=

1

η(s)

≤ 1

r′

≤ ε.

Since SH(π)[0,1](s, n) ∈ Iε(t), we get SH(π)[0,1](s
′, n′) ∈ I2ε(t) from the trian-

gle inequality. Hence SH(π)(s′, n′) ⊆ V × I2ε(t) ⊆ U ′. This finishes the proof
that T0(B) is well-defined.

Next we define T1(B). For (s, 0) ∈ SH(S) and s′ ∈ S we define
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T1(B)(s,n),s′ =

{
idB(s) if s′ = s and n = 0;

0 otherwise.

For (s, n) ∈ SH(B) and (s′, n′) ∈ SH(B) define

T1(B)(s,n),(s′,n′) =

{
idB(s) if s′ = s, n ≥ 1, and n′ = n− 1;

0 otherwise.

We omit the proof that T1(B) is well-defined since it is very similar to the
one for T0(B). Roughly speaking, T0(B) shifts to the right in [0, 1], whereas
T1(B) shifts to the left.

Obviously T0(B) ◦ T1(B) = idSH(B). It is not true that T1(B) ◦ T0(B) =
idB⊕SH(B). At least we can show that idB⊕SH(B)−T1(B) ◦ T0(B) factorizes
as a composite

(22.130) idB⊕SH(B)−T1(B) ◦ T0(B) : B⊕ SH(B)→ B′0 → B⊕ SH(B)

for an object B′0 in OG0 (X × {0}) as follows.
We define a kind of subobject B0 = (S0, π0, η0.B0) of SH(B) by

S0 = {(s, n) ∈ S × N | η(s) ≥ 1, n ≤ η(s) · π[0,1](s) < n+ 1;

π0(s, n) =
(
πX(s), π[0,1](s)−

n

η(s)

)
;

η0(s, n) = η(s);

SH(B)(s, n) = B(s).

Note that S0 ⊆ SH(B). Actually, for a given s ∈ S with η(s) ≥ 1 the element
of the shape (s, n) ∈ SH(S) belongs to S0 if and only if (s, n + 1) does not
belong to SH(S) anymore. The maps η0 and B0 are obtained by restricting
SH(π), SH(η), and SH(B) to S0. There is an obvious subobject B⊥ of SH(P)
such that B0 ⊕B⊥ = SH(B). Moreover, there is an obvious factorization

idB⊕SH(B)−T1(B) ◦ T0(B) : B⊕ SH(B)→ B0 → B⊕ SH(B).

Hence it suffices to show that B0 is isomorphic in OG0 (X × [0, 1]) to an
object B′0 = (S′0, π

′
0, η
′
0,B
′
0) which belongs to OG0 (X × {0}). We define B′0

by S′0 = S0, η′0 = η0, and B′0 = B0 and by putting π′0(s, n) = (πX(s), 0). In
order to show that B0 and B′0 are isomorphic in OG0 (X× [0, 1]) we verify the
criterion occurring in Lemma 22.14.

Consider (x, t) ∈ X × [0, 1] and an open G(x,t)-invariant neighborhood U
of (x, t) in X× [0, 1]. Choose an open Gx-invariant neighborhood V of x in X
and ε > 0 such that V × I2ε(t) ⊆ U holds. Choose a natural number r′ with
r′ ≥ 1

ε . Put U ′ = V × Iε(t). Next we prove the implication for s ∈ S0 = S′0

(22.131) π0(s) ∈ U ′, η0(s) ≥ r′ =⇒ π′0(s) ∈ U.



682 22 Controlled Topology Methods

From π0(s) ∈ U ′ we get (π0)X(s) ∈ V and (π0)[0,1](s) ∈ Iε(t). By definition
we have

(π0)[0,1](s) = π[0,1](s)−
n

η(s)
> 0 = (π′0)[0,1](s) > π[0,1](s)−

n+ 1

η(s)
.

This implies

|(π0)[0,1](s)− (π′0)[0,1](s)| ≤
1

η(s)
=

1

η0(s)
≤ 1

r′
≤ ε.

Since (π0)[0,1](s) ∈ Iε(t), we conclude from the triangle inequality (π′0)[0,1](s) ∈
I2ε(t). Since (π0)X(s) ∈ V and (π0)X(s) = (π′0)X(s), we get (π′0)X(s) ∈ V .
This implies (π′0)(s) ∈ V × I2ε(t) ⊆ U . This finishes the proof of (22.131).
The proof of the other implication

π′0(s) ∈ U ′, η0(s) ≥ r′ =⇒ π0(s) ∈ U.

is completely analogous. Thus we obtain the desired factorization (22.130).
One easily checks that SH induces a functor of additive categories

SH: DG0 (X × [0, 1], X × {0})→ DG0 (X × [0, 1], X × {0})

and T0(B) and T1(B) induces to one another inverse isomorphisms T0(B) : B⊕
SH(B)

∼=−→ SH(B) and T1(B) : SH(B)
∼=−→ B ⊕ SH(B). The collection of the

T0(B) defines a natural equivalence of functors of additive categories

T0 : idDG0 (X×[0,1],X×{0})⊕SH
∼=−→ SH.

We conclude from Theorem 6.37 (iii) and Proposition 22.27 that the inclusion
X × {0} → X × [0, 1] induces a weak homotopy equivalence

K(DG0 (X × {0}))→ K(DG0 (X × [0, 1])).

This finishes the proof of Proposition 22.127. ut

Exercise 22.132. Show that the proof of the homotopy invariance for K(DG0 (−))
of Proposition 22.127 can easily be modified to a new proof of theG-homotopy
invariance for K(DG(−)).

Proof of Theorem 22.126. The rest of the proof of Theorem 22.126 is com-
pletely analogous to the proof of Theorem 22.26, one just has to check that all
constructions respect the zero-control condition appearing in the definition
of DG0 . ut
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22.12 Notes

We have formulated the control conditions in Definition 22.4 concretely to
keep some of the arguments simple. One can also give an axiomatic approach
to control conditions in terms of coarse structures as defined by Higson-
Pedersen-Roe [471, Definition 2.1] by specifying subsets of X and X ×X in
which the supports of objects and of morphism have to take values in. This is
explained for continuous control in [73, Section 2.3]. There are various modi-
fications of this idea, see for instance [170, Definition 3.1], [81, Definition 4.8],
and [172, Section 2.2].
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Chapter 23

Coverings and Flow Spaces

23.1 Introduction

In this section we want to give more details concerning the discussion in
Section 19.5. Essentially we want to explain that hyperbolic and finite-
dimensional CAT(0)-groups satisfy the condition strongly transfer VCY-
reducible in the sense of Definition 20.38 which implies that they satisfy
the Full Farrell-Jones Conjecture 13.27. Note that this concerns only input
from geometric group theory; K-theory does not play a role at this stage.
K-theory will enter when we show for instance that a strongly homotopi-
cally VCY-transfer reducible group or, more generally, a Dress-Farrell-Hsiang-
Jones group satisfies the Full Farrell-Jones Conjecture 13.27, see Remark 20.3,
Theorem 20.39, and Theorem 20.62. The proof of Theorem 20.62 will be dis-
cussed in Chapter 24 and Chapter 25.

The basic strategy is as follows.

• Consider an appropriate metric space X associated to a hyperbolic group
or a finite-dimensional CAT(0)-group reflecting its geometry.

• Assign to X a flow space FS(X);
• Prove for the flow space appropriate flow estimates which reflect the nega-

tive curvature or non-positive curvature condition associated to hyperbolic
or CAT(0)-groups;

• Construct specific covers of the flow space, namely long and thin VCY-
covers with finite dimension;

• Construct an appropriate map ι : G×X → FS(X) and pull back the long
and thin VCY-covers of FS(X) to G×X using ι;

• The flow estimates will ensure that these covers on G×X are good enough
to show that G is strongly homotopically VCY-transfer reducible.

The basic ideas are carried out for closed Riemannian manifolds with neg-
ative or non-positive sectional curvature and their fundamental groups in
the seminal papers of Farrell-Jones [344, 345, 352]. The papers by Bartels-
Lück [77, 79] and Bartels-Lück-Reich [85, 86] transfered these ideas to more
general situations such as hyperbolic or CAT(0)-spaces and hyperbolic and
finite-dimensional CAT(0)-groups, going considerably beyond the world of
Riemannian manifolds and diving into geometric group theory and the theory
and geometry of metric spaces. Kasprowski and Rüping [554, Theorem 6.1]
simplified and unified some of the arguments, see Remark 23.46.

685
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23.2 Flow Spaces

Definition 23.1 (Flow space). A flow space Y is a metric space (Y, dY )
together with a continuous R-action Φ : Y × R→ Y .

Notation 23.2. We will often write Φt : Y → Y for the homeomorphism
sending y ∈ Y to Φ(t, y).

For a subset I ⊆ R and y ∈ Y we put ΦI(y) = {Φt(y) | t ∈ I}.

Note that we do not demand in Definition 23.1 that Φt : Y → Y is isomet-
ric.

Definition 23.3 (Flow G-space for G). A flow G-space is a flow space
(Y, dY , Φ) in the sense of Definition 23.1 coming with an isometric and proper
G-action ρ : G× Y → Y such that ρ and Φ commute, i.e., we have Φt(gy) =
gΦt(y) for all y ∈ Y , g ∈ G, and t ∈ R.

Obviously a flow G-space is the same as a metric space Y with a continuous
G× R-action such that the induced action of G = G× {0} ⊆ G× R on Y is
isometric and proper.

23.3 The Flow Space Associated to a Metric Space

In this section we introduce the flow space FS(X) for arbitrary metric spaces
following [79, Section 1]. This is the one used in the proof of the Farrell-Jones
Conjecture for CAT(0)-groups, see [79, 77, 973].

Definition 23.4. Let X be a metric space. A continuous map c : R → X
is called a generalized geodesic if there are c−, c+ ∈ R := R

∐
{−∞,∞}

satisfying
c− ≤ c+, c− 6=∞, c+ 6= −∞,

such that c is locally constant on the complement of the interval Ic := (c−, c+)
and restricts to an isometry on Ic.

The numbers c− and c+ are uniquely determined by c, provided that c is
not constant.

Definition 23.5. Let (X, dX) be a metric space. Let FS = FS(X) be the set
of all generalized geodesics in X. We define a metric on FS(X) by

dFS(X)(c, d) :=

∫
R

dX(c(t), d(t))

2e|t|
dt.

Define a flow
Φ : FS(X)× R→ FS(X)

by Φτ (c)(t) = c(t+ τ) for τ ∈ R, c ∈ FS(X) and t ∈ R.
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The integral
∫ +∞
−∞

dX(c(t),d(t))
2e|t|

dt exists as dX(c(t), d(t)) ≤ 2|t|+dX(c(0), d(0))
holds by the triangle inequality. Obviously Φτ (c) is a generalized geodesic
with

Φτ (c)− = c− − τ ;

Φτ (c)+ = c+ − τ,

where −∞− τ := −∞ and ∞− τ :=∞.
We note that any isometry (X, dX) → (Y, dY ) induces an isometry

FS(X)→ FS(Y ) by composition. In particular, the isometry group of (X, dX)
acts canonically on FS(X). Moreover, this action commutes with the flow.

For a general metric space X all generalized geodesics may be constant.
In the remainder of this section we will state some properties of FS(X) so
that the reader can get some intuition.

Lemma 23.6. Let (X, dX) be a metric space. The map Φ is a continuous
flow and we have for c, d ∈ FS(X) and τ, σ ∈ R

dFS(X)

(
Φτ (c), Φσ(d)

)
≤ e|τ | · dFS(X)(c, d) + |σ − τ |.

Exercise 23.7. Give the proof of Lemma 23.6.
The following lemma relates distance in X to distance in FS(X).

Lemma 23.8. Let c, d : R→ X be generalized geodesics. Consider t0 ∈ R.

(i) dX
(
c(t0), d(t0)

)
≤ e|t0| · dFS(c, d) + 2;

(ii) If dFS(X)(c, d) ≤ 2e−|t0|−1, then

dX
(
c(t0), d(t0)

)
≤
√

4e|t0|+1 ·
√
dFS(X)(c, d).

In particular, c 7→ c(t0) defines a uniform continuous map FS(X)→ X.

Proof. See [79, Lemma 1.4]. ut

Lemma 23.9. Let (X, dX) be a metric space. The maps

FS(X)− FS(X)R → R, c 7→ c−;

FS(X)− FS(X)R → R, c 7→ c+,

are continuous.

Proof. See [79, Lemma 1.6]. ut

Proposition 23.10. Let (X, dX) be a metric space. Let (cn)n∈N be a sequence
in FS(X). Then it converges uniformly on compact subsets to c ∈ FS(X) if
and only if it converges to c with respect to dFS(X).

Proof. See [79, Proposition 1.7]. ut
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Lemma 23.11. Let (X, dX) be a metric space. The flow space FS(X) is se-
quentially closed in the space of all maps R→ X with respect to the topology
of uniform convergence on compact subsets.

Proof. See [79, Lemma 1.8]. ut

Proposition 23.12. If (X, dX) is a proper metric space, then (FS(X), dFS(X))
is a proper metric space.

Proof. See [79, Proposition 1.9]. ut

Lemma 23.13. Let (X, dX) be a proper metric space and t0 ∈ R. Then the
evaluation map FS(X) → X defined by c 7→ c(t0) is uniformly continuous
and proper.

Proof. See [79, Lemma 1.10]. ut

Proposition 23.14. Let G act isometrically and proper on the proper metric
space (X, dX). Then the action of G on (FS(X), dFS(X)) is also isometric and
proper. If the action of G on X is in addition cocompact, then also the G-
action on FS(X) is cocompact.

Proof. See [79, Proposition 1.11]. ut

Lemma 23.15. Let (X, dX) be a metric space. Then FS(X)R is closed in
FS(X).

Exercise 23.16. Give the proof of Lemma 23.15.

Notation 23.17. Let X be a metric space. For c ∈ FS(X) and T ∈ [0,∞],
define c|[−T,T ] ∈ FS(X) by

c|[−T,T ](t) :=


c(−T ) if t ≤ −T ;

c(t) if − T ≤ t ≤ T ;

c(T ) if t ≥ T.

Obviously c|[−∞,∞] = c and if c /∈ FS(X)R and (−T, T ) ∩ (c−, c+) 6= ∅ then(
c|[−T,T ]

)
− = max{c−,−T} and

(
c|[−T,T ]

)
+

= min{c+, T}.
We denote by

FS(X)f :=
{
c ∈ FS(X)− FS(X)R

∣∣ c− > −∞, c+ <∞
}
∪ FS(X)R

the subspace of finite geodesics.

Lemma 23.18. Let (X, dX) be a metric space. The map H : FS(X)×[0, 1]→
FS(X) defined by Hτ (c) := c|[ln(τ),− ln(τ)] is continuous and satisfies H0 =
idFS(X) and Hτ (c) ∈ FS(X)f for τ > 0.

Proof. See [79, Lemma 1.14]. ut
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23.4 The Flow Space Associated to a CAT(0)-Space

In this section we study FS(X) further in the case where X is a CAT(0)-space.
For the definition of a CAT(0)-space we refer to [155, Definition 1.1 in

Chapter II.1 on page 158], namely to be a geodesic space all of whose geodesic
triangles satisfy the CAT(0)-inequality. We will follow the notation and the
description of the bordification X = X ∪ ∂X of a CAT(0)-space X given
in [155, Chapter II.8]. The definition of the topology of this bordification is
briefly reviewed in Remark 23.20. In this section we will use the following
convention.

• Let X be a complete CAT(0)-space;
• Let X := X ∪ ∂X be the bordification of X, see [155, Chapter II.8].

23.4.1 Evaluation of Generalized Geodesics at Infinity

Definition 23.19. For c ∈ FS(X) we set c(±∞) := limt→±∞ c(t) where the
limit is taken in X.

Since X is by assumption a CAT(0)-space, we can find for x− ∈ X and
x+ ∈ X a generalized geodesic c : R → X with c(±∞) = x±, see [155,
Proposition 8.2 in Chapter II.8 on page 261]. It is not true in general that for
two different points x− and x+ in ∂X there is a geodesic c with c(−∞) = x−
and c(∞) = x+.

Remark 23.20 (Cone topology on X.). A generalized geodesic ray is a
generalized geodesic c that is either a constant generalized geodesic or a non-
constant generalized geodesic with c− = 0. Fix a base point x0 ∈ X. For every
x ∈ X, there is a unique generalized geodesic ray cx such that c(0) = x0 and
c(∞) = x, see [155, Proposition 8.2 in Chapter II.8 on page 261]. Define for
r > 0

ρr = ρr,x0
: X → Br(x0)

by ρr(x) := cx(r). The sets (ρr)
−1(V ) with r > 0, V an open subset of Br(x0)

are a basis for the cone topology on X, see [155, Definition 8.6 in Chapter II.8
on page 263]. A map f whose target is X is continuous if and only if ρr ◦ f is
continuous for all r. The cone topology is independent of the choice of base
point, see [155, Proposition 8.8 in Chapter II.8 on page 264].

Lemma 23.21. The maps

FS(X)− FS(X)R → X, c 7→ c(−∞);

FS(X)− FS(X)R → X, c 7→ c(∞),

are continuous.
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Proof. See [79, Lemma 2.4]. ut

Proposition 23.22. If X is proper as a metric space, then the map

E : FS(X)− FS(X)R → R×X ×X ×X ×R

defined by E(c) := (c−, c(−∞), c(0), c(∞), c+) is injective and continuous. It
is a homeomorphism onto its image.

Proof. See [79, Proposition 2.6]. ut

Recall that FS(X)f is the subspace of finite geodesics, see Notation 23.17.

Proposition 23.23. Assume that X is proper as a metric space. Then the
map

Ef : FS(X)f − FS(X)R → R×X ×X

defined by Ef (c) =
(
c−, c(−∞), c(∞)

)
is a homeomorphism onto its image

imEf = {(r, x, y) | x 6= y}.

In particular, FS(X)f − FS(X)R is locally path connected.

Proof. See [79, Proposition 2.7]. ut

23.4.2 Dimension of the Flow Space

Lemma 23.24. If X is proper as a metric space and its dimension dimX is
≤ N , then dimX ≤ N .

Proof. See [79, Lemma 2.8]. ut

Proposition 23.25. Assume that X is proper and that dimX ≤ N . Then

dim
(
FS(X)− FS(X)R

)
≤ 3N + 2.

Proof. See [79, Proposition 2.9]. ut

23.4.3 The Example of a Complete Riemannian Manifold with
Non-Positive Sectional Curvature

Let M be a simply connected complete Riemannian manifold with non-
positive sectional curvature. It is a CAT(0)-space with respect to the metric
coming from the Riemannian metric, see [155, Theorem I.A.6 on page 173].
Let STM be its sphere tangent bundle. For every x ∈ M and v ∈ STxM
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there is precisely one geodesic cv : R→M for which cv(0) = x and c′v(0) = v
holds. Given a geodesic c : R→M in M and a−, a+ ∈ R with a− ≤ a+, define
the generalized geodesic c[a−,a+] : R → M by sending t to c(a−) if t ≤ a−,
to c(t) if a− ≤ t ≤ a+, and to c(a+) if t ≥ a+. Obviously c[−∞,∞] = c. Let
d : R → M be a generalized geodesic with d− < d+. Then there is precisely

one geodesic d̂ : R→M with d̂[d−,d+] = d.
Define maps

α : STM ×
{

(ai, a+) ∈ R× R | a− < a+

}
→ FS(M), (v, ai, a+) 7→ cv|[a−,a+];

β : FS(M)→ STM ×
{

(ai, a+) ∈ R× R | a− < a+

}
, c 7→ (ĉ ′(0), c−, c+).

Then α and β are to another inverse homeomorphisms. They are compatible
with the flow on FS(M) of Definition 23.5, if one uses on STM ×

{
(ai, a+) ∈

R× R | a− < a+

}
the product flow given by the geodesic flow on STM and

the flow on R which is at time t given by the homeomorphism R→ R sending
s ∈ R to s− t, −∞ to −∞, and ∞ to ∞.

23.5 The Dynamical Properties of the Flow Space
Associated to a CAT(0)-Space

In Definition 23.27 we introduce the homotopy action that we will use to
show that CAT(0)-groups are transfer reducible over VCY. It will act on a
large closed ball in X. (The action of G on the bordification X is not suitable,
because it has to large isotropy groups.) In Theorem 23.31 which is based
on Proposition 23.30, we study the dynamics of the flow with respect to the
homotopy action. The analogue of Proposition 23.30 in the hyperbolic case
is Theorem 23.34.

Throughout this section we fix the following convention.

• Let (X, dX) be a CAT(0)-space which is proper as a metric space;
• Let x0 ∈ X be a fixed base point;
• Let G be a group with a proper isometric action on (X, dX).

For x, y ∈ X and t ∈ [0, 1] we will denote by t · x + (1 − t) · y the unique
point z on the geodesic from x to y such that dX(x, z) = tdX(x, y) and
dX(z, y) = (1 − t)dX(x, y). For x, y ∈ X we will denote by cx,y the gen-
eralized geodesic determined by (cx,y)− = 0, c(−∞) = x and c(∞) = y.
By [155, Proposition 1.4 (1) in Chapter II.1 on page 160] and Proposi-
tion 23.10, (x, y) 7→ cx,y defines a continuous map X × X → FS(X). Note
that g · cx,y = cgx,gy.
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23.5.1 The Homotopy Action on BR(x)

The next definition is a variation of some of the notions appearing in Sec-
tion 20.5

Definition 23.26 (Homotopy S-action). Let S be a finite subset of a
group G. Assume that S contains the trivial element e ∈ G. Let X be a
space.

(i) A homotopy S-action (ϕ,H) on X consists of continuous maps ϕg : X →
X for g ∈ S and homotopies Hg,h : X× [0, 1]→ X for g, h ∈ S with gh ∈ S
such that Hg,h(−, 0) = ϕg ◦ ϕh and Hg,h(−, 1) = ϕgh holds for g, h ∈ S
with gh ∈ S. Moreover, we require that He,e(−, t) = ϕe = idX for all
t ∈ [0, 1];

(ii) Let (ϕ,H) be a homotopy S-action on X. For g ∈ S let Fg(ϕ,H) be the
set of all maps X → X of the form x 7→ Hr,s(x, t) where t ∈ [0, 1] and
r, s ∈ S with rs = g;

(iii) Let (ϕ,H) be a homotopy S-action on X. For (g, x) ∈ G×X and n ∈ N,
let Snϕ,H(g, x) be the subset of G × X consisting of all (h, y) with the
following property: There are x0, . . . , xn ∈ X, a1, b1, . . . , an, bn ∈ S,
f1, f̃1, . . . , fn, f̃n : X → X, such that x0 = x, xn = y, fi ∈ Fai(ϕ,H),
f̃i ∈ Fbi(ϕ,H), fi(xi−1) = f̃i(xi) and h = ga−1

1 b1 . . . a
−1
n bn;

(iv) Let (ϕ,H) be a homotopy S-action on X and U be an open cover of G×X.
We say that U is S-long with respect to (ϕ,H) if for every (g, x) ∈ G×X
there is U ∈ U containing S

|S|
ϕ,H(g, x) where |S| is the cardinality of S.

Recall that for r > 0 and z ∈ X we denote by ρr,z : X → Br(z) the canon-
ical projection along geodesics, i.e., ρr,z(x) = cz,x(r), see also Remark 23.20.
Note that g · ρr,z(x) = ρr,gz(gx) for x, z ∈ X and g ∈ G.

Definition 23.27 (The homotopy S-action on BR(x0)). Let S ⊆ G be
a finite subset of G with e ∈ G and R > 0. Define a homotopy S-action
(ϕR, HR) on BR(x) in the sense of Definition 23.26 (i) as follows. For g ∈ S,
we define the map

ϕRg : BR(x0)→ BR(x0)

by ϕRg (x) := ρR,x0(gx).
For g, h ∈ S with gh ∈ S we define the homotopy

HR
g,h : ϕRg ◦ ϕRh ' ϕRgh

by HR
g,h(x, t) := ρR,x0

(
t · (ghx) + (1− t) · (g · ρR,x0

(hx))
)
.

Remark 23.28. Notice that HR
g,h is indeed a homotopy from ϕRg ◦ϕRh to ϕgh

since
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HR
g,h(x, 0) = ρR,x0

(
0 · (ghx) + 1 · (g · ρR,x0

(hx))
)

= ρR,x0

(
g · ρR,x0

(hx)
)

= ϕRg ◦ ϕRh (x),

and

HR
g,h(x, 1) = ρR,x0

(
1 · (ghx) + 0 · (g · ρR,x0

(hx)
)

= ρR,x0
(ghx)

= ϕRgh(x).

It turns out that the more obvious homotopy given by convex combination
(x, t) 7→ t · ϕRgh(x) + (1− t) · ϕRg ◦ ϕRh (x) is not appropriate for our purposes.

Definition 23.29 (The map ι). Define the map

ι : G×X → FS(X)

as follows. For (g, x) ∈ G×X let ι(g, x) := cgx0,gx.

The map ι is G-equivariant for the G-action on G×X defined by g ·(h, x) =
(gh, x).

23.5.2 The Flow Estimate

Proposition 23.30. Let β, L > 0. For all δ > 0 there are T, r > 0 such that
for x1, x2 ∈ X with dX(x1, x2) ≤ β, x ∈ Br+L(x1) there is τ ∈ [−β, β] such
that

dFS(X)

(
ΦT (cx1,ρr,x1 (x)), ΦT+τ (cx2,ρr,x2 (x))

)
≤ δ.

Proof. See [79, Proposition 3.5]. ut

Theorem 23.31 (Flow estimates in the CAT(0)-case). Let S be a finite
subset of G (containing e). Then there is β > 0 such that the following holds:

For all δ > 0 there are T,R > 0 such that for every (a, x) ∈ G× BR(X),
s ∈ S, and f ∈ Fs(ϕR, HR) there is τ ∈ [−β, β] such that

dFS(X)

(
ΦT (ι(a, x)), ΦT+τ (ι(as−1, f(x)))

)
≤ δ.

Proof. See [79, Proposition 3.8]. ut
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23.6 The Flow Space Associated to a Hyperbolic Metric
Complex

In the proofs of the Farrell-Jones Conjecture for hyperbolic groups, see [85, 86]
a construction of a flow space FS(X) based on a construction of Mineyev [716]
is used. (Note that a mistake in [716] was fixed by Mole [732].) Although one
does not need the construction of Mineyev anymore in the proofs and gets
along with the construction presented in Section 23.3, we still briefly recall
what happens in the original proofs for hyperbolic groups as an illustration
for the reader and a hint how the techniques have changed over the time.

If X is hyperbolic complex with compactification X and x0 ∈ X a base
point, there is a specific map, see [86, (8.1)],

(23.32) ιx0
: X ×X → FS(X)

such that the following flow estimate holds.

Lemma 23.33. The map ιx0 : X ×X → FS(X) from (23.32) is continuous.
It is Isom(X)-equivariant with respect to the diagonal Isom(X)-action on the
source where Isom(X) is the group of isometric selfhomeomorphisms of X.
For x ∈ X the map ιx0

(x,−) : X → FS(X), y 7→ ιx0
(x, y) is injective.

Proof. See [85, Lemma 8.4]. ut

Theorem 23.34 (Flow estimate in the hyperbolic case). Let λ ∈
(e−1, 1) and T ∈ [0,∞) be the constants depending only on X which appear
in [85, Proposition 6.4]. Consider a, b ∈ X and c ∈ X. Put

N = 2 +
2

λT · (− ln(λ))
.

Then there exists a real number τ0 such that

|τ0| ≤ 2 · d̂(a, b) + 5

holds for the new metric d̂ on X defined in [716, Lemma 2.7 on page 449 and
Theorem 32 on page 446] and we get for all τ ∈ R

dFS,x0
(φτ ◦ ιx0

(a, c), φτ+τ0 ◦ ιx0
(b, c)) ≤ N

1− ln(λ)2
· λ−d̂(a,b) · λτ .

Proof. See [85, Theorem 8.6]. ut

We recommend the reader to compare Theorem 23.34 with Proposi-
tion 23.30. The baby version of these two results was already discussed in
Lemma 19.14.
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23.7 Topological Dimension

Let X be a topological space. Let U be an open cover. Its dimension dim(U) ∈
{0, 1, 2, . . .} q {∞}, sometimes also called its order, is the infimum over all
integers d ≥ 0 such that for any collection U0, U1, . . . , Ud of pairwise distinct
elements in U the intersection

⋂d
i=0 Ui is empty. An open covering V is a

refinement of U if for every V ∈ V there is U ∈ U with V ⊆ U .

Definition 23.35 ((Topological) dimension). The dimension (sometimes
also called topological dimension or covering dimension) of a topological space
X

dim(X) ∈ {0, 1, 2, . . .} q {∞}

is the infimum over all integers d ≥ 0 such that any open covering U possesses
a refinement V with dim(V) ≤ d.

We state some basic properties of the dimension.

Lemma 23.36. If A is a closed subset of X, then dim(A) ≤ dim(X).

Exercise 23.37. Give the proof of Lemma 23.36.

Lemma 23.38. Let X be the union A1 ∪A2 · · ·Ak of closed subspaces Ai ⊆
X. Then

dim(X) = max{dim(Ai) | i = 1, 2 . . . , k}.

Proof. See [737, Corollary 9.3 on page 304]. ut

Lemma 23.39. Let Z be a proper metric space. Suppose that G acts on Z
isometrically and properly. Then we get for the topological dimensions of X
and G\X

dim(G\X) ≤ dim(X).

Proof. See [643, Lemma 3.2]. ut

Theorem 23.40. Let X be a locally compact Hausdorff space having a count-
able basis for its topology. Suppose that every point of X has a neighborhood
whose closure has topological dimension at most m. Then X has topological
dimension at most m.

Proof. See [737, Exercise 9 on page 315]. ut

A locally compact CW -complex which is second countable, i.e., has a
countable basis for its topology, has the property that its topological di-
mension dim(X) is the same as its dimension as CW -complex. This follows
from Theorem 23.40. Note that for a connected CW-complex, locally com-
pact, metrizable, first countable, and locally finite are equivalent conditions,
see [393, Theorem B and Proposition 2.4].

Again by Theorem 23.40, a topological m-dimensional manifold M has
topological dimension m.
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Lemma 23.41. Let n be an integer with n ≥ 0. Let X be a proper metric
space whose topological dimension satisfies dim(X) ≤ n. Suppose that G acts
properly and isometrically on X.

Then there exists a proper n-dimensional G-CW -complex Y together with
a G-map f : X → Y .

Proof. See [643, Lemma 3.7]. ut

There is also the notion of a small inductive limit, see [328, Definition 1.1]
or [555, Definition 3.1] which agrees with the notion of the topological di-
mension for second countable metric spaces, see [328, Theorem 1.7.7].

23.8 Long and Thin Covers

The next result is proved in [555, Theorem 1.1] based on ideas from [85,
Theorem 1.4] and [79, Theorem 5.6] which in turn are motivated by [344,
Proposition 7.2].

Notation 23.42. Let (X, dX) be a metric space. For a subset A ⊆ X and
δ > 0, we define

Bδ(A) := {y ∈ X | ∃a ∈ A with dX(y, a) < δ};
Bδ(A) := {x ∈ X | ∃a ∈ ZA with dX(a, y) ≤ δ}.

Given x ∈ X, we write

Bδ(x) := Bδ{x}) = {y ∈ X | dX(y, x) < δ};
Bδ(x) := Bδ({x}) = {y ∈ X | dX(y, x) ≤ δ}.

We call Bδ(x) the open and Bδ(x) the closed ball around x of radius δ.

Note that the open ball Bδ(x) is an open subset of X, the closed ball Bδ(x)
is closed subset of X, and Bδ(A) contains the closure Bδ(A) of Bδ(A) in X,
but Bδ(A) and Bδ(A) are not equal in general.

Theorem 23.43 (Long and thin covers). Let G will be a countable dis-
crete group. Let X be a flow G-space such that the underlying topological space
X is finite-dimensional, locally compact, and second countable. Let α > 0 and
δ > 0 be real numbers.

Then there exists an open V cyc-cover U of X in the sense of Defini-
tion 20.18 of dimension at most 7 dim(X) + 7 which is long and thin in
the following sense:

• (Long) For every point x ∈ X there is U ∈ U with Φ[−α,α](x) ⊆ U ;
• (Thin) For every U ∈ U there is a point x ∈ X with U ⊆ Bδ(ΦR(x)).
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The long and thin covers are generalizations of the long and thin cells
from [344, Proposition 7.2].

A basic strategy of the proof of Theorem 23.43 presented in [555, Theo-
rem 1.1] consists of decomposing the flow space into three parts, a part with
without a short G-period, a non-periodic part with short G-period, and the
periodic part with short G-period, constructing for each part an appropriate
V cyc-cover, and finally taking the union of these covers.

Definition 23.44 (Strong contracting transfers). A flow G-space Y ad-
mits strong contracting transfers if there is a natural number N such that
for every finite subset S ⊆ G and every natural number k there exists a real
number β > 0 such that for every δ > 0 there exists a real number T > 0
with the following properties:

• An N -transfer space X in the sense of Definition 20.9;
• A strong homotopy action Γ in the sense of Definition 20.32;
• A G-equivariant map ι : G×X → Y , where the G-action on G×X is given

by g′ · (g, x) = (g′g, x), with the property that for every (g, x) ∈ G ×X,
every s ∈ S, and every f ∈ Fg(Γ, S, k) there exists τ ∈ [−β, β] satisfying

dY (ΦT ◦ ι(g, x), Φτ+T ◦ ι(gs−1, f(x))) ≤ δ.

The next result follows from [555, Corollary 1.2] and Theorem 20.39.

Theorem 23.45. Let X be a flow G-space whose underlying space X is
finite-dimensional and the G-action on X is cocompact. Suppose that X ad-
mits strong contracting transfers.

Then G is strongly transfer VCY-reducible in the sense of Definition 20.38.
In particular G satisfies the Full Farrell-Jones Conjecture 13.27.

A key ingredient in the proof that for a hyperbolic or a CAT(0)-group
Theorem 23.45 applies, i.e., that the condition that the flow spaces admit
strong contracting transfers, are the flow estimates as they appear for in-
stance in Theorem 23.31 and Theorem 23.34. The basic idea of the proof of
Theorem 23.45 is to pull back an appropriate F-cover of the flow space Y
coming from Theorem 23.43 back to G×X using the map ι.

Remark 23.46. Kasprowski and Rüping [554, Theorem 6.1] show using The-
orem 23.45 that the K-theoretic Farrell-Jones Conjecture with coefficients
in additive G-categories with finite wreath products, see Conjecture 13.24
and the L-theoretic Farrell-Jones Conjecture with coefficients in additive G-
categories with involution with finite wreath products, see Conjecture 13.25
hold for a class of group G which encompasses all hyperbolic and CAT(0)-
groups. It contains for instance all groups G which acts properly and co-
compactly on a finite product of hyperbolic graphs, see [554, Theorem 1.1]
Their proof applies also to the Full Farrell-Conjecture 13.27 because of Re-
mark 20.3 and Theorem 20.62. There are groups which are neither hyperbolic
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nor CAT(0)-groups and belong to the class of groups appearing in Kasprowski
and Rüping [554, Theorem 6.1], e.g., the fundamental group π1(STF ) of the
sphere tanget bundle of a hyperbolic closed surface, see [554, Section 3]. (Note
that it is well-known that π1(STF ) satisfies the Full Farrell-Conjecture 13.27,
see Theorem 16.1 (ie).)

23.9 Notes

The case of a reductive p-adic groups acting on the CAT(0)-space given by its
Bruhat-Tits building is analyzed in [82]. Comment 31 (by W.): Add also
a reference to the preprint by Bartels-Lück-Witzel about Kac-Moody groups
when it has been finished.

last edited on 19.04.2024
last compiled on April 28, 2024

name of texfile: ic



Chapter 24

Transfer

24.1 Introduction

In this section we give more information about the transfer which we have
already mentioned in Section 19.5 and which plays a prominent role in nearly
all proofs of the Farrell-Jones Conjecture. For simplicity we refine ourselves
to the Whitehead group.

24.2 The Geometric Transfer

Let F → E
p−→ B be a fibration such that F and B have the homotopy type

of a connected finite CW -complex. Then E also has the homotopy type of a
connected finite CW -complex, see for instance [358, Section 3], [625], [666,
Section 1].

A simple structure ξ on a space Y of the homotopy type of a con-
nected finite CW -complexes is an equivalence class of homotopy equivalences

u0 : Z
'−→ Y with some connected finite CW -complex Z as source where we

call two such homotopy equivalences uk : Zk
'−→ Y for k = 0, 1 equivalent if

there is a simple homotopy equivalence v : Y0
's−−→ Y1 such that u1 ◦ v and u0

are homotopic. Of course a connected finite CW -complex Y has a preferred
simple structure given by idY .

Given a homotopy equivalence f : (Y0, ξ0)
'−→ (Y1, ξ1) of spaces coming

with simple structures, we define its Whitehead torsion τ(f) ∈ Wh(π1(Y1))
to be the image of the Whitehead torsion τ(w) ∈Wh(π1(Z1)) of a homotopy

equivalence w : Z0
'−→ Z1 under the isomorphism (u1)∗ : Wh(π1(Z1))

∼=−→
Wh(π1(Y1)) where we have chosen representatives uk : Zk

'−→ Yk of the simple
structures ξk for k = 0, 1 and require u1 ◦w ' f ◦ u0. One easily checks that
this is independent of all the choices using Theorem 3.37.

Next we define a class θ(p) ∈ H1(B; Wh(E)). It is given after a choice
of a base point b ∈ B and a simple structure ξF on the fiber Fb = p−1(b)
by the homomorphism π1(B, b) → Wh(π1(E)) which sends w ∈ π1(B, b)
to the image of Whitehead torsion of the homotopy equivalence Fb → Fb
given by the fiber tranport along w under the homomorphism Wh(π1(Fb))→
Wh(π1(E)) coming from the inclusion Fb → E. Recall that the fiber transport
is a homomorphism of monoids π1(B, b) → [Fb, Fb], see for instance [925,
15.12 on page 343], [987, page 186]. One easily checks that this well-defined,

699
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in particular that it is independent of the choice of base points and the simple
structure ξF .

If θ(p) ∈ H1(B; Wh(E)) vanishes and we have fixed simple structures ξF
and ξB on F and B, then there is a preferred simple structure on ξE on E,
see [358, Section 3], [625], [666, Section 1]. In the sequel we will assume that
the characteristic class θ(p) ∈ H1(B; Wh(F )) vanishes which is the case if p
satisfies one of the following conditions:

• the fibration is orientable, i.e, the fiber transport π1(B)→ [F, F ] is trivial;
• The map π1(F ) → π1(E) is zero, or, equivalently, π1(p) : π1(E) → π1(B)

is bijective;
• p is a locally trivial topological bundle with a connected finite CW -complex
F as fiber.

Let M be a closed topological manifold. Then, by Kirby-Siebenmann [562,
Essay III, Theorem 4.1 on page 118], there is a preferred simple structure

ξtop(M) on M,(24.1)

which is defined by considering any triangulated closed disc bundle over
M : The simple structure on the disc bundle obtained from the triangula-
tion induces the preferred simple structure on M via the retraction onto M .
This simple structure agrees with the one obtained by any triangulation or
by any handlebody decomposition (more generally what they call TOP s-
decomposition) of M , whenever they exist (see [562, Essay III, Theorem 5.10
on page 131 and Theorem 5.11 on page 132]). Let F →M → B be a locally
trivial bundle of connected closed topological manifolds. Then Θ(p) is trivial.
If we equip B and F with the simple structures ξtop(M) of (24.1), then the
simple structure ξE agrees with ξtop(M), see [358, Lemma 3.16].

Consider α ∈Wh(π1(B)). Let f : X → B be a homotopy equivalence with
a connected finite CW -complex as source satisfying τ(f) = α. Consider the
following pullback

X
f //

p

��

E

p

��
X

f
// B.

We conclude Θ(p) = 0 from our assumption Θ(p) = 0. Hence there is a
preferred simple structure on both X and E and the Whitehead torsion
τ(f) ∈Wh(π1(E)) is defined. The geometric transfer

(24.2) p∗ : Wh(π1(B))→Wh(π1(E))

is defined by the equality p∗(α) = τ(f). The proof that this construction is
well-defined can be found in Anderson [28, 29] for locally trivial PL-bundles
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and in the more general setting above in [625], [358, Section 3]. The equiva-
riant version of this construction is presented in detail in [629, Section 15].

Example 24.3. Let F → M → B be a locally trivial bundle of connected
closed topological manifolds. Let W = (W,B,B′, f, f ′) be a topological h-

cobordism over B0. Choose a retraction r of the homotopy equivalence B
f−→

∂0W →W . Consider the pullback

W
r //

p

��

E

p

��
W

r
// B.

Then W is a topological h-cobordism over E and the transfer homomorphism
p∗ : Wh(π1(B)) →Wh(π1(E)) of (24.2) sends the Whitehead torsion of W ,
see (3.48), to the Whitehead torsion of W .

24.3 The Algebraic Transfer

Next we describe the algebraic version of the geometric transfer. Let R and
S be unital rings R.

Definition 24.4 (Chain homotopy representation). A chain homotopy
representation (C∗, U) consists of an S-chain complex C∗ and a ring homo-
morphism U∗ : R → [C∗, C∗]S to the ring of S-chain homotopy classes of
S-selfchain homotopy equivalences C∗ → C∗ where the multiplicative struc-
ture comes from composition.

Given a matrix A in GLn(R), we obtain a well defined S-chain homo-

topy class of S-chain homotopy equivalences U∗(A) :
⊕n

i=1 C∗
'−→
⊕n

i=1 C∗
by the (n, n)-matrix (U(ai,j))i,j of S-chain homotopy classes S-chain maps
U(ai,j) : C∗ → C∗. Suppose that C∗ is a finite free S-chain complex. Choose
a basis for C∗. Then

⊕n
i=1 C∗ is a finite free S-chain complex which comes

with a basis, and hence the Whitehead torsion τ(U∗(A)) ∈ K̃1(S) of

U∗(A) :
⊕n

i=1 C∗
'−→
⊕n

i=1 C∗ is defined, see (3.33). One easily checks that
τ(U∗(A)) is independent of the choice of the basis on C∗. We obtain a well-
defined homomorphism of abelian groups

(24.5) p∗U : K̃1(R)→ K̃1(S)

by sending the class of [A] of A to τ(U∗(A)). Although it is not relevant
for us here, we mention that using the selftorsion of Subsection 24.7.3 one
can define a map p∗U : K1(R) → K1(S) which induces the map (24.5) and is
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defined in the more general case where C∗ is a finitely dominated projective
S-chain complex. All of this is explained in [626, Section 4].

Given a fibration F → E
p−→ B such that F is a connected finite CW -

complex and B is path connected, one can assign to it using the fiber trans-
port a chain homotopy representation U(p) for R = Z[π1(B)] and S =
Z[π1(E)] whose underlying Z[π1(E)]-chain complex is finite free. In the spe-

cial case that π1(p) : π1(E)
∼=−→ π1(B) is bijective, it is defines as follows. Take

C∗(F ) to be the cellular Z-chain complex of F . Put C∗ = Z[π1(E)]⊗ZC∗(F ).
This is obviously a finite free Z[π1(E)]-chain complex. For w ∈ π1(B) the
fiber transport defines a Z-chain map t(w)∗ : C∗ → C∗ which is well-defined
up to Z-chain homotopy. Choose w̃ ∈ π1(E) whose image under π1(p) is w.
Define U(w)∗ : C∗ → C∗ by

(24.6) U(w)∗(v ⊗ x) = vw̃−1 ⊗ t(w)∗(x).

This extends to a ring homomorphism U∗ : Z[π1(B)]→ [C∗, C∗]Z[π1(E)] by Z-
linearity. So the transfer of (24.5) is defined. One easily checks that it induces
a homomorphism of abelian groups

(24.7) p∗U(p) : Wh(Z[π1(B)])→Wh(Z[π1(E)]),

provided that Θ(p) = 0 holds. The next theorem is taken from [626, Theo-
rem 5.4].

Theorem 24.8 (The geometric and algebraic transfer agree). In the
situation where the geometric transfer p∗ of (24.2) is defined, the algebraic
transfer p∗U(p) of (24.7) is defined and p∗ and p∗U(p) agree.

In view of Theorem 24.8 we abbreviate p∗U(p) by p∗ in the sequel.

24.4 The Down-Up Formula

Consider a fibration F → E
p−→ B such that F is a connected finite CW -

complex and B is path connected. The group homomorphism π1(p) : π1(E)→
π1(B) induces a map p∗ : Wh(Z[π1(E)]) → Wh(Z[π1(B)]). Next we investi-
gate the composite p∗ ◦ p∗ : Wh(Z[π1(B)])→Wh(Z[π1(B)]).

For a group G let Swp(G) be the Grothendieck groups of ZG-modules M
that are finitely generated free as abelian groups, see Definition 12.65. There
is a pairing, see (12.69)

(24.9) s : Swp(G)⊗K1(ZG)→ K1(ZG)

It induces a pairing

(24.10) s : Swp(G)⊗Wh(G)→Wh(G).
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Exercise 24.11. Show that the pairing (24.9) induces a well-defined pair-
ing (24.10).

The fiber transport induces a homotopy π1(B)-action on F . So Hn(F ;Z)
becomes a Z[π1(B)]-module. Thus we obtain a Z[π1(B)]-module Hn(F ;Z)
that is finitely generated as abelian group. Define the element

(24.12) h(p) =
∑
n≥0

(−1)n · [H1(F ;Z)] ∈ Sw(π1(B)).

for the Swan ring Sw(G) given by ZG-module that are finitely generated as
abelian groups, see Definition 12.65.

Theorem 24.13 (Down-up formula).

(i) The composite

p∗ ◦ p∗ : Wh(Z[π1(B)])→Wh(Z[π1(B)])

agrees with s(e−1(h(p)),−) for the pairing s defined in (24.10), the el-

ement h(p) defined in (24.12), and the isomorphism e : Swp(π1(B))
∼=−→

Sw(π1(B)) from Lemma 12.66;
(ii) If p is orientable, i.e., its fiber transport is trivial, then the composite

p∗ ◦ p∗ : Wh(Z[π1(B)]) → Wh(Z[π1(B)]) is multiplication with the Euler
characteristic χ(F );

(iii) If the fiber F is contractible, then p∗ : Wh(Z[π1(E)]) → Wh(Z[π1(B)]) is
an isomorphism whose inverse is p∗ : Wh(Z[π1(B)])→Wh(Z[π1(E)]).

Proof. (i) See [628, Corollary 6.4].

(ii) This follows from assertion (i).

(iii) This follows from assertion (ii). ut

Example 24.14. Let M be a connected closed smooth manifold of dimen-
sion d ≥ 5. Then we have the locally trivial bundle p : STM → M given
by the sphere bundle associated to the tangent bundle. For it the transfer
p∗ : Wh(π1(B)) → Wh(π1(E)) above is defined. Let W be an h-cobordism

over B. Choose a retraction r : W → B of the composite B
f−→ ∂0W →W . As

explained in Example 24.3, the pullback construction associated to r yields
an h-cobordism W over E and we have the equality

p∗(τ(W )) = τ(W ).

The map p∗ : Wh(Z[π1(B)]) → Wh(Z[π1(E)]) is bijective. The composite
p∗ ◦ p∗ : Wh(Z[π1(B)]) → Wh(Z[π1(B)]) is multiplication by (1 + (−1)d−1)
provided that M is orientable. If p+ : S+TM →M is the hemisphere bundle
appearing in Section 19.5, then the transfer map

(p+)∗ : Wh(Z[π1(B)])→Wh(Z[π1(S+TM)])
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is an isomorphism with inverse (p+)∗ : Wh(Z[π1(S+TM)])→Wh(Z[π1(B)]).
All these claims follow from Theorem 24.13

There is also a more complicated up-down-formulas in favourite cases,
see [628, Theorem 8.2]. It leads to interesting computations of the transfer
map p∗, see [628, Sections 8 and 9], but these are not needed for the purposes
of this book.

24.5 The Transfer for Finitely Dominated Z-Chain
Complexes with Homotopy G-Action

Let G be a group and C∗ be a Z-chain complex C∗ together with a homotopy
G-action, i.e., a group homomorphism ρ : G → [C∗, C∗]Z to the group of Z-
chain homotopy classes of self Z-chain maps C∗ → C∗. It induces a ZG-ZG
chain homotopy representation U∗ : ZG → [ZG ⊗Z C∗,ZG ⊗Z C∗]ZG in the
sense of Definition 24.4 by

(24.15) U(g0)∗(g ⊗ x) = gg−1
0 ⊗ ρ(g0)∗(x).

Suppose additionally that C∗ is a finite free Z-chain complex. So the transfer
of (24.5) is defined

(24.16) p∗C∗,ρ : Wh(G)→Wh(G)

An R-chain complex C∗ is called finitely dominated, if there exists a finite
free R chain complex D∗ together with R-chain maps i∗ : C∗ → D∗ and
r∗ : D∗ → C∗ satisfying r∗ ◦ i∗ 'R idC∗ .

Lemma 24.17. The definition of the transfer (24.16) extends to the case
where we weaken the condition that C∗ is a finite free Z-chain complex to the
condition that C∗ is finitely dominated.

Proof. First we consider two finite free Z-chain complexes C∗ and C ′∗, two
homotopy G-actions ρ : G→ [C∗, C∗]Z and ρ′ : G→ [C ′∗, C

′
∗]Z, and a Z-chain

homotopy equivalence f∗ : C∗ → C ′∗ such that ρ′(g) ◦ f∗ 'Z f∗ ◦ ρ(g) holds
for all g ∈ G and then prove

(24.18) p∗C∗,ρ = p∗C′∗,ρ′

Let U∗ and U ′∗ be the ZG-ZG-chain representations associated to (C∗, ρ) and
(C ′∗, ρ

′), see (24.15). From f∗ we obtain a ZG-chain homotopy equivalence

u :=

n⊕
i=1

idZG⊗Zf :

n⊕
i=1

ZG⊗Z C
′
∗
'−→

n⊕
i=1

ZG⊗Z C∗
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Given any A in GLn(R), we get a diagram of finite free ZG-chain complexes

⊕n
i=1 ZG⊗Z C∗

U∗(A) //

u

��

⊕n
i=1 ZG⊗Z C∗

u

��⊕n
i=1 ZG⊗Z C

′
∗

U ′∗(A)

//⊕n
i=1 ZG⊗Z C∗

which commutes up to ZG-chain homotopy and where all arrows are ZG-
chain homotopy equivalences. Equip C∗ and C ′∗ with some Z-basis and use
in the sequel the induced ZG-basis on the ZG-chain complexes appearing in
the diagram above. We get for the Whitehead torsion in Wh(G)

τ(U∗(A)) = τ(u) + τ(U∗(A))− τ(u) = τ(u ◦ U∗(A))− τ(u)

= τ(U ′∗(A) ◦ u)− τ(u) = τ(U ′∗(A)) + τ(u)− τ(u) = τ(U ′∗(A)).

Now (24.18) follows from the definitions.
Next we define for a Z-chain complex C∗ which is Z-chain homotopy

equivalent to some finite free Z-chain complex and comes with a homotopy
G-action its transfer map (24.7).Choose a finite free Z-chain complex C ′∗ to-

gether with a Z-chain homotopy equivalence f∗ : C ′∗
'−→ C∗. Then there is pre-

cisely one homotopyG-action ρ′ : G→ [C ′∗, C
′
∗]Z such that f∗◦ρ(g) ' ρ′(g)◦f∗

holds for every g ∈ G. Now define

p∗C∗,ρ := p∗C′∗,ρ′

This is independent of the choice of C ′∗ and f∗ by (24.18).
Finally we mention that any finitely dominated Z-complex C∗ is Z-chain

homotopy equivalent to a finite projective Z-chain complex, see for in-
stance [629, Proposition 11.11 on page 222], and hence to a finite free Z-chain
complex since Z is a principal ideal domain. ut

24.6 The Transfer for Finitely Dominated Spaces with
Homotopy G-Action

Let X be a finitely dominated space, i.e., that there is a finite CW -complex Y
and maps i : X → Y and r : Y → X such that r◦i is homotopic to the identity
on X. Suppose that X comes with a homotopy G-action ρ : G→ [X,X] in the
sense of Definition 20.27. Then we obtain by passing to the singular Z-chain
complex Csing

∗ (X) a homotopy G-action ρsing : G → [Csing
∗ (X), Csing

∗ (X)]Z.
Since X is finitely dominated and the singular chain complex of a finite
CW -complex Y is Z-chain homotopy equivalent to the finite free cellular Z-
chain complex Cc∗(Y ), see for instance [629, Proposition 13.10 on page 264]
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the Z-chain complex Csing
∗ (X) is finitely dominated. Hence we get from

Lemma 24.17 a transfer map

(24.19) p∗X,ρ : Wh(G)→Wh(G)

Remark 24.20. One easily checks that it still satisfies the Down-Up For-
mula 24.13 taking into account that Hn(Csing

∗ (X)) is finitely generated as
abelian group since X is finitely dominated. More precisely, we get an ele-
ment

(24.21) h(X; ρ) =
∑
n≥0

(−1)n · [H1(X;Z)] ∈ Sw(G)

and the equality in Wh(G)

(24.22) p∗X,ρ(u) = s(e−1(h(X; ρ)), u)

for the pairing s defined in (24.10), the element h(X; ρ) defined in (24.21),

and the isomorphism e : Swp(π1(B))
∼=−→ Sw(π1(B)) from Lemma 12.66;

Suppose additionally that X is contractible, Then Hn(X;Z) = 0 for n ≥ 1
and H0(X;Z) is the ZG-module given by Z with the trivial G-action. Since
[Z] = e−1(h(X; ρ)) is the unit in Swp(G), the down up formula implies that
p∗X,ρ : Wh(G)→Wh(G) is the identity.

Example 24.23. Let G be a hyperbolic group group in the sense of Gromov,
see for instance [149, 155, 408, 423]. Let X = Pd(G) be the associated Rips
complex for some number d > 16δ+ 8 if G is δ-hyperbolic space with respect
to some choice S of a finite set of generators, see Subsection 11.6.7. Such δ > 0
exists by the definition of hyperbolic. The obvious simplicial G-action on X
is cocompact and proper. The barycentric subdivision of X is a cocompact
model for the classifying space EFIN (G), see Theorem 11.29. Now take X =
X∪∂X to be the compactification of X in the sense of Gromov, see [423], [155,
Section 3 in Chapter III.H]. Then X is a contractible compact metrizable G-
space.

Then the transfer map (24.19) is defined and yields an isomorphism

p∗ : Wh(G)
∼=−→Wh(G).

A controlled version of this transfer, which works for the K-groups in all
dimensions and is described in [86, Section 6], is a key ingredient in the proof
of the K-theoretic Farrell-Jones Conjecture 13.11 with coefficients in additive
G-categories for a hyperbolic group in [86, Main Theorem].

Analogously a controlled version of the transfer map above described
in [77, Section 7] is a key ingredient in the proof of the K-theoretic Farrell-
Jones Conjecture 13.11 with coefficients in additive G-categories for a finite-
dimensional CAT(0)-group G in [77, Theorem B]. Here X is a bordifica-
tion defined in Bridson-Haefliger [155, Chapter II.8] of a finite-dimensional
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CAT(0)-space X on which the CAT(0)-group G acts properly, cocompactly,
and isometrically.

24.7 Proof of Surjectivity of the Assembly map in
Dimension 1

In this section we give the proof of a special case of Theorem 20.12 as an
illustration of the methods and results described so far. Reducing to this
special case avoids some formidable purely technical input which will make
the exposition much harder but will be discussed later in Chapter 25.

Proposition 24.24. Let G be a finitely generated group. Let F be a fam-
ily of subgroups such that G is strictly F-transfer reducible in the sense of
Definition 20.11.

Then the assembly map

HG
1 (pr; KZ) : HG

1 (EF (G); KZ)→ HG
1 (G/G; KZ) = K1(ZG)

is surjective.

The rest of this section is devoted to the proof of Proposition 24.24. In
this section R will always be Z for simplicity.

24.7.1 Basic Strategy of the Proof of Proposition 24.24

For the remainder of this section fix an element

u ∈ K1(ZG).

We want to show that u is in the image of HG
1 (pr; KZ).

For an element a =
∑
g∈g λg · g ∈ ZG, define the ZG-homomorphism

V (a) : ZG → ZG by sending x to
∑
g∈G λ · xg−1. Given a matrix A =

(ai,j)i,j ∈Mm,n(ZG), define a ZG-homomorphism
(24.25)

V (A) : ZGm → ZGn, (x1, x2, . . . , xm) 7→
( m∑
i=1

V (ai,j)(xi)
)
j=1,...,n

.

One easily checks that V (AB) = V (A) ◦ V (B) holds for A ∈ Mm,n(ZG)
and B ∈ Mn,o(ZG) and V (In) = idZGn holds for the identity matrix In ∈
GLn(ZG).

Choose a natural number n and an element A = (ai,j) ∈ GLn(ZG) such

that u is represented by the ZG-automorphism V (A) : ZGn
∼=−→ ZGn given by
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right multiplication with A. Choose a finite subset T ⊆ G such that for any
i, j ∈ {1, 2, . . . , n} the elements ai,j , bi,j ∈ ZG are of the form

∑
g∈T λg · g

and e ∈ T holds. By possibly enlarging T we can additionally arrange that
T is a finite set of generators of G.

Next let us recall what we get from the assumption that G is strictly F-
transfer reducible. Let N be the number appearing Definition 20.11. Then
the following holds by assumption:

• We have an N -transfer space X in the sense of Definition 20.9, that is
a compact contractible metric space (X, dX) with the property that for
any δ > 0 there exists an N -dimensional simplicial complex K, maps
i : X → |K| and r : |K| → X, and a homotopy h : X × [0, 1] → X from
p ◦ i to idX which is δ-controlled, i.e., for every x ∈ X the diameter of the
subset h({x} × [0, 1]) of X is smaller than δ;

• The N -transfer space X comes with a G-action;
• For every ε > 0 there exists

– an abstract simplicial (G,F)-complex Σ of dimension ≤ N ;
– a map v : X → |Σ| that is (µ, T )-almost G-equivariant, i.e., we have

dL
1

(v(gx), gv(x)) ≤ ε for every g ∈ T and every x ∈ X.

Next we formulate what we need to prove Proposition 24.24. In view of
the Algebraic Thin h-Cobordism Theorem 19.8 we have to construct for the
number εN appearing in Theorem 19.8 and the element u ∈ K1(ZG)

• An abstract simplicial (G,F)-complex Z of dimension ≤ N ;
• A free G-space Y together with a map w : Y → |Z|;
• An εN automorphism a : M → M in GMG(Y ), i.e., an automorphism
a : M → M in GMG(Y ) such that both a and a−1 are εN -controlled

with respect to w and the L1-metric dL
1

on |Z|. Recall that a morphism
f = {fx,y : Mx → Ny | x, y ∈ X} : M → N in GMG(Y ) is εN -controlled

with respect to w and the L1-metric dL
1

on |Z| if the implication x, y ∈
X, fx,y 6= 0 =⇒ dL

1

(p(x), p(y)) ≤ εN holds;

• The class [F f (a)] ∈ K1(ZG) of the RG-automorphism F f (a) : F f (M)
∼=−→

F f (M) of the finitely generated free RG-module F f (M) for the functor
F f defined in (19.6) is u.

Put

ε =
εN

5(72N + 181)
.(24.26)

Now make the choice of the data (X, d), Σ, and v described above for this
choice of ε.

Next we construct the desired data mentioned above. We will take for Y
the G-space G × X where the G-action is given by g′ · (g, x) = (g′g, x) for
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g′ ∈ G and (g, x) ∈ Y . We take Z = Σ. Define the G-map w : Y → |Σ| by
sending (g, x) to gv(x).

So for the rest of this section we have fixed u ∈ K1(ZG), A ∈ GLn(ZG), the
finite subset T ⊂ G, numbers N and εN , the abstract simplicial G-complex
Z, the G-spaces X and Y , metrics d on X and dL

1

on |Z|, the map v, and the
G-map w : Y → |Z| and will only consider R = Z. Recall that the G-action
on X is not necessarily isometric, whereas the G-action on |Z| is isometric,
and that v is (ε, T )-almost G-equivariant.

Note that so far we have not used the G-action on X which will enter in
the construction of the desired εN -controlled automorphism a : M → M in
GMG(Y ) satisfying u = [F f (a)]. The only thing that remains to be done is
the construction of a which will occupy the rest of this section.

24.7.2 The Width

Definition 24.27 (Width function). Let A be an additive category. A
width function wd = wdA on A is a function

wd: mor(A)→ R≥0 q {−∞,∞}

satisfying the following axioms.

(i) Consider finitely many objects A1, . . . , Am and B1, . . . , Bn and morphisms
fi,j : Ai → Bj for i = 1, . . . ,m and j = 1, . . . , n in A. Let f :

⊕m
i=1Ai →⊕n

j=1Bj be the morphism given by the collection of the fi,j-s. Then

wd(f) ≤ max{wd(fi,j) | i = 1, . . . ,m, j = 1, . . . , n};

(ii) Consider morphisms f : A→ B and g : B → C in A. Then we get

wd(g ◦ f) ≤ wd(f) + wd(g);

(iii) Consider morphisms f, g : A→ B and and λ, µ ∈ Z. Then

wd(λ · f + µ · g) ≤ max{wd(f),wd(g)};

(iv) We have f = 0⇐⇒ wd(f) = −∞ for every morphism f : M → N in A.

We define the width wd(A) of an object to be the width wd(idA) if the
identity on A.

We call wd trivial on objects if for every object A we have wd(A) = 0.

Remark 24.28 (Passage to idempotent completion). Let A be an ad-
ditive category with width function wd. Then its idempotent completion in-

herits a width function ŵd which assigns to a morphism f : (A, p) → (B, q)
in Idem(A) the width wdA(f) of the underlying morphism f : A → B in A.



710 24 Transfer

Note that the identity of an object (A,P ) in Idem(A) is given by p : A→ A

and hence ŵd(A, p) = wd(p). So, even if wd is trivial on objects, ŵd is not
necessarily trivial on objects.

Next we present our main example of a width function.

Example 24.29 (Width function on GMG(Y )). We define a width func-
tion on the additive category GMG(Y ) from Definition 19.4 as follows, where
we use the data fixed in Subsection 24.7.1.

Given two objects M = {Mx | x ∈ Y } and N = {Ny | y ∈ Y } and a

morphism f : M → N in GMG(Y ) which consists of a collection of morphisms
f = {fx,y : Mx → Ny | x, y ∈ Y } in Fκ(Z), we define the width

wdZ(f) ∈ R≥0 q {−∞}

to be the supremum of the set {dL1

(w(x), w(y)) | x, y ∈ X, fx,y 6= 0} if f is
not the zero homomorphism and to be −∞ otherwise. Note that this width
function is trivial on objects.

Note that for ε ≥ 0 a morphism f : M → N in GMG(Y ) is ε-controlled in
the sense of Subsection 19.4.3 if and only if wdZ(f) ≤ ε holds.

Exercise 24.30. Show that the axioms of a width function which is trivial
on objects are satisfied in Example 24.29.

Example 24.31 (Width function on GM(X)). Let (X, d) be any metric
space. Let GM(X) be GMG(X) for G = {1}. We will equip it the following
width function wdX .

Given two objects M = {Mx | x ∈ X} and N = {Ny | y ∈ X} and

a morphism f : M → N GMG(X), consisting of a collection of morphisms
f = {fx,y : Mx → Ny | x, y ∈ X} in Fκ(Z), we define the width

wd(f) ∈ R≥0 q {−∞}

to be the supremum of the set {d(x, y) | x, y ∈ X, fx,y 6= 0} if f is not the
zero homomorphism and to be −∞ otherwise. Note that this width function
is trivial on objects.

24.7.3 Selftorsion

Let A be an additive category. Let C∗ = (C∗, c∗) be a bounded A-chain
complex i.e., a sequence of morphisms in A

· · · cn+2−−−→ Cn+2
cn+1−−−→ Cn+1

cn−→ Cn
cn−1−−−→ Cn−1

cn−2−−−→
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such that cn+1 ◦ cn = 0 holds for n ∈ Z and there exists a natural number
N with Cn = 0 for n ∈ Z with |n| ≥ N . There are obvious notions of a

chain map, a chain homotopy, and a chain contraction. Let f∗ : C∗
'−→ D∗

be a chain homotopy equivalence of bounded A-chain complexes. Denote by
cone(f∗) its mapping cone whose n-th differential e∗ is given by

(24.32) en : Cn−1 ⊕Dn

−cn−1 0
fn−1 dn


−−−−−−−−−−→ Cn−2 ⊕Dn−1.

Given an A-chain map g∗ : D∗ → C∗ and A-chain homotopies h∗ : g∗ ◦ f∗ '
idC∗ and k∗ : f∗ ◦ g∗ ' idD∗ , define an A-chain isomorphism u∗ : cone(f∗)

∼=−→

cone(f∗) by un =

(
idCn−1 0

fn ◦ hn−1 − kn−1 ◦ fn−1 idDn

)
and an A-chain homotopy

δ∗ : u∗ ' 0∗ by δn =

(
hn−1 gn

0 −kn

)
. Then we obtain a chain contraction γ∗ of

cone(f∗) by

(24.33) γn = u−1
n+1 ◦ δn

Now consider a selfchain homotopy equivalence f∗ : C∗
'−→ C∗ of the

bounded A-chain complex C∗. Define objects in A by

Call =
⊕
n∈Z

Cn;

cone(f)odd =
⊕
n∈Z

cone(f∗)2n+1;

cone(f)ev =
⊕
n∈Z

cone(f∗)2n.

We obtain isomorphisms

(e+ γ)odd : cone(f∗)odd

∼=−→ cone(f∗)ev;(24.34)

(e+ γ)ev : cone(f∗)ev

∼=−→ cone(f∗)odd,(24.35)

satisfying

(e+ γ)ev ◦ (e+ γ)odd = (id +γ ◦ γ);(24.36)

(e+ γ)odd ◦ (e+ γ)ev = (id +γ ◦ γ).(24.37)

Let
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Iodd : cone(f∗)odd

∼=−→ Call;

Iev : cone(f∗)ev

∼=−→ Call,

be the obvious isomorphisms coming from cone(f∗)n = Cn−1 ⊕ Cn.
Thus we obtain an automorphism

Iev ◦ (e+ γ) ◦ I−1
odd : Call

∼=−→ Call.

Its class

(24.38) t(f∗) := [Iev ◦ (e+ γ) ◦ I−1
odd] ∈ K1(A)

is called the selftorsion of f∗. The proof that this element is well-defined
and has the following properties in [629, Section 12] for RΓ -modules carries
directly over to additive categories.

Lemma 24.39.

(i) Let f∗, g∗ : C∗
'−→ C∗ be selfchain homotopy equivalences of the bounded

A-chain complex C∗. If they are chain homotopic, then

t(g∗) = t(f∗);

(ii) Consider a commutative diagram of bounded A-chain complexes with self-
chain homotopy equivalences as vertical arrows

0 // C∗
i∗

'
//

f∗'
��

D∗
p∗ //

g∗'
��

E∗ //

h∗

��

0

0 // C∗
i∗ // D∗

p∗ // E∗ // 0

where for each n ∈ Z the sequence 0 → Cn
in−→ Dn

pn−→ En → 0 is split
exact, i.e., there exists a morphism sn : En → Dn such that pn ◦sn = idEn
holds and in ⊕ sn : Cn ⊕ En

∼=−→ Dn is an isomorphism. Then we get

t(g∗) = t(f∗) + t(h∗);

(iii) Let f∗, g∗ : C∗
'−→ C∗ be selfchain homotopy equivalences of the bounded

A-chain complex C∗. Then we get

t(g∗ ◦ f∗) = t(f∗) + t(g∗).

Exercise 24.40. Let f∗ : C∗
∼=−→ C∗ be a chain automorphism of a bounded

A-chain complex. Show
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t(f∗) =
∑
n∈Z

(−1)n · [fn] ∈ K1(A).

24.7.4 Selftorsion and Width functions

LetA be an additive category coming with a width function wd in the sense of
Definition 24.27. We define the width wd(C∗) of a bounded A-chain complex
C∗ = (C∗, c∗) to be

(24.41) wd(C∗) = max{wd(Cn),wd(cn) | n ∈ Z}.

We define the width wd(f∗) of a A-chain map f∗ : C∗ → D∗ of a bounded
A-chain complex C∗ = (C∗, c∗) to be

(24.42) wd(f∗) = max{wd(fn) | n ∈ Z},

and the width wd(h∗) of a A-chain homotopy h∗ : C∗ → D∗+1 of bounded
A-chain complexes to be

(24.43) wd(H∗) = max{wd(Hn) | n ∈ Z}.

Notation 24.44. For ε > 0 and two A-chain maps f∗, g∗ : C∗ → D∗ we write

f∗ 'ε g∗

if there exists a A-chain homotopy h∗ : f∗ ' g∗ with wd(h∗) ≤ ε.

Definition 24.45 (ε-controlled isomorphism). An ε-controlled isomor-

phism f : A
∼=−→ B in A is an isomorphism f : A

∼=−→ B such that

wd(A),wd(B),wd(f),wd(f−1) ≤ ε

hold.
If A = B, we talk of an ε-controlled automorphism

Exercise 24.46. Let f : A → B be an ε-controlled A-isomorphism and
g : B → C be a δ-controlled A-isomorphism.

Show that g ◦ f : A→ C is an (ε+ δ)-controlled A-isomorphism.

Definition 24.47 (ε-controlled chain homotopy equivalence). Con-
sider ε > 0 and a A-chain map f∗ : C∗ → D∗. We call f∗ an ε-controlled
A-chain homotopy equivalence if there is a A-chain map g∗ : D∗ → C∗ satis-
fying

wd(C∗),wd(D∗),wd(f∗),wd(g∗) ≤ ε

and
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g∗ ◦ f∗ 'ε idC∗ ;

f∗ ◦ g∗ 'ε idD∗ .

If C∗ = D∗, we talk of an ε-controlled A-selfchain homotopy equivalence.

The next lemma is a direct consequence of the axioms appearing in Defi-
nition 24.27.

Lemma 24.48. Consider δ, ε > 0.

(i) Let f∗, g∗, h∗ : C∗ → D∗ be A-chain maps of bounded A-chain complexes
and λ, µ ∈ Z. Then

wd(λ · f∗ + µ · g∗) ≤ max{wd(f∗),wd(g∗)}

and
f∗ 'ε g∗, g∗ 'ε h∗ =⇒ f∗ 'ε h∗;

(ii) Let f∗, f
′
∗ : D∗ → E∗, u∗ : C∗ → D∗, and v∗ : E∗ → F∗ be A-chain maps of

bounded A-chain complexes satisfying f∗ 'ε f ′∗, wd(u∗) ≤ δ, and wd(v∗) ≤
δ. Then

v∗ ◦ f∗ 'δ+ε v∗ ◦ f ′∗;
f∗ ◦ u∗ 'δ+ε f ′∗ ◦ u∗;

(iii) Let f∗ : C∗ → D∗ and g∗ : D∗ → E∗ be ε-controlled A-chain homotopy
equivalence of bounded A-chain complexes.
Then g∗ ◦ f∗ : C∗ → E∗ is a 3ε-controlled A-chain homotopy equivalences
of bounded A-chain complexes.

Exercise 24.49. Give the proof of Lemma 24.48.

Proposition 24.50. Let A be an additive category coming with a width func-

tion wd. Consider ε > 0. Let f∗ : C∗
'−→ C∗ be an Idem(A)-selfchain homo-

topy equivalences which is ε-controlled.

Then there is an 5ε-controlled A-automorphism a : A
∼=−→ A such that the

selftorsion t(F∗) ∈ K1(A) = K1(Idem(A)) satisfies

t(u∗) = [a].

Proof. Recall that we have defined a width function ŵd on Idem(A) in
Remark 24.28. By assumption we have Idem(A)-chain homotopy equiva-
lences f∗ : C∗ → C∗ and g∗ : C∗ → C∗ and Idem(A)-chain homotopies

h∗ : f∗ ◦ g∗ ' idC∗ and k∗ : g∗ ◦ f∗ ' idC∗ such that ŵd(C∗), ŵd(f∗), ŵd(g∗),

ŵd(h∗), and ŵd(k∗) are less or equal to ε. Let cone(f∗) be the mapping
cone of f∗, see (24.32). In the sequel we will apply over and over again
the axioms appearing Definition 24.27 and Lemma 24.48. One easily checks



24.7 Proof of Surjectivity of the Assembly map in Dimension 1 715

ŵd(cone(f∗)) ≤ ε. We have constructed a chain contraction γ for cone(f∗)

in (24.33). We get ŵd(γ∗) ≤ 3ε. We conclude from (24.36) and (24.37) that

the Idem(A)-automorphisms Iev ◦ (e+ γ) ◦ I−1
odd : Call

∼=−→ Call is 3ε-controlled.
Its class in K1(Idem(A)) is by definition t(f∗).

For each object Cn = (An, pn) in Idem(A) we can consider the object

C⊥n = (An, id−pn) in Idem(A). Obviously we have ŵd(Cn) = ŵd(C⊥n ) =

ŵd(pn) = ŵd(idAn −pn). The Idem(A)-isomorphisms

an = pn ⊕ (idAn −pn) : Cn ⊕ C⊥n
∼=−→ An = (An, idAn)

and
bn = (pn ⊕ (idAn −pn)) : An = (An, idAn)

∼=−→ Cn ⊕ C⊥n

are inverse to one another and satisfy ŵd(an), ŵd(bn) ≤ ε. Put Aall =⊕
n∈ZAn and C⊥all =

⊕
n∈Z C

⊥
n . The collection of the isomorphisms an-s and

bn-s yields to one another inverse Idem(A)-isomorphisms aall : Call ⊕C⊥all

∼=−→
Aall and ball : Aall

∼=−→ Call ⊕ C⊥all with ŵd(aall), ŵd(ball) ≤ ε. Define the A-
automorphism

a : Aall
ball−−→ Call ⊕ C⊥all

(Iev◦(e+γ)◦I−1
odd)⊕id

C⊥
all−−−−−−−−−−−−−−−−→ Call ⊕ C⊥all

aall−−→ Aall.

One easily checks that t(f∗) = [a] in K1(A) and a is a 5ε-controlled A-
automorphism. ut

24.7.5 Finite Domination

Consider a full and faithful inclusion A → B of additive categories, e.g., the
inclusion of the category of finitely generated freeR-modules into the category
of free R-modules for a ring R. Let C∗ be a (not necessarily finite dimensional)
positive B-chain complex. Consider a finite domination (D∗, i∗, r∗.h∗) of C∗
over A, i.e, a finite dimensional positive A-chain complex D∗, B-chain maps
i∗ : C∗ → D∗ and r∗ : D∗ → C∗, and a B-chain homotopy h∗ : r∗ ◦ i∗ ' D∗.
From these data we construct an explicite finite dimensional positive chain
complex P∗ over Idem(A) with dim(P∗) = dim(D∗) together with Idem(B)-
chain homotopy equivalences f∗ : C∗ → P∗ and g∗ : P∗ → C∗ and Idem(B)-
chain homotopies k∗ : f∗ ◦ g∗ ' idP∗ and l∗ : g∗ ◦ f∗ ' idC∗ following [822]
and [77, Remark 8.3].

Define the chain complex C ′ over A by defining its m-th chain object to
be

C ′m =

m⊕
j=0

Dj
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and its m-th differential to be

c′m : C ′m =

m⊕
j=0

Dj → C ′m−1 =

m−1⊕
k=0

Dk

where the (j, k)-entry dj,k : Dj → Dk for j ∈ {0, 1, 2 . . . ,m} and k ∈
{0, 1, 2 . . . ,m− 1} is given by

dj,k :=



0 if j ≥ k + 2;

(−1)m+k · dj if j = k + 1;

id−rj ◦ ij if j = k, j ≡ m mod 2;

rj ◦ ij if j = k, j ≡ m+ 1 mod 2;

(−1)m+k+1 · ik ◦ hk−1 ◦ . . . ◦ hj ◦ rj if j ≤ k − 1.

Define chain maps f ′∗ : C∗ → C ′∗ and g′∗ : C ′∗ → C∗ by

f ′m : Cm → C ′m = D0 ⊕D1 ⊕ · · · ⊕Dm, x 7→ (0, 0, . . . , im(x))

and

g′m : C ′m = D0⊕· · ·⊕Dm → Cm, (x0, x1, · · ·xm) 7→
m∑
j=0

hm−1◦· · ·◦hj◦rj(xj).

We have g′∗ ◦ f ′∗ = r∗ ◦ i∗ and hence h∗ is a chain homotopy g′∗ ◦ f ′∗ ' idC∗ .
We obtain a chain homotopy k′∗ : f ′∗ ◦ g′∗ ' idC′∗ if we define

k′m : C ′m = D0 ⊕D1 ⊕ · · · ⊕Dm → C ′m+1 = D0 ⊕D1 ⊕ · · · ⊕Dm ⊕Dm+1

to be the obvious inclusion.
Let N be the dimension of D∗. Thus we get C ′m = C ′N for m ≥ N and

c′m+1 = id−c′m for m ≥ N + 1. Since c′m+1 ◦ c′m = 0 for all m, we conclude
c′m ◦ c′m = c′m for m ≥ N + 1. Hence C ′ has the form

· · · → C ′N
c′N+1−−−→ C ′N

id−c′N+1−−−−−−→ C ′N
c′N+1−−−→ C ′N

c′N−−→ C ′N−1

c′N−1−−−→ . . .
c′1−→ C ′0 → 0→ . . . .

Define the desired N -dimensional chain complex P∗ over Idem(A) by

0→ 0→ (C ′N , id−c′N+1)
c′N◦i−−−→ C ′N−1

c′N−1−−−→ . . .
c′1−→ C ′0 → 0→ · · ·

where i : (C ′N , id−c′N+1)→ C ′N is the obvious morphism in Idem(A) that is
given by id−c′N+1 : C ′N → C ′N . Let

u∗ : P∗ → C ′
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be the Idem(A)-chain map for which um is the identity for m ≤ N − 1,
uN is i : (C ′N , id−c′N+1) → C ′N , and um : 0 → Cm is the canonical map for
m ≥ N + 1. Let

v∗ : C ′∗ → P∗

be the Idem(A)-chain map which is given by the identity for m ≤ N − 1,
by the canonical projection C ′m → 0 for m ≥ N + 1 and for m = N by the
morphism CN → (C ′N , id−c′N+1) defined by id−c′N+1 : C ′N → C ′N . Obviously
v∗◦u∗ = idP∗ . We obtain a chain homotopy l′∗ : idC′∗ ∼ u∗◦v∗ if we take l′m = 0
for m ≤ N , l′m = c′N+1 for m ≥ N,m − N ≡ 0 mod 2, and l′m = 1 − c′N+1

for m ≥ N,m−N ≡ 1 mod 2.
Define the desired Idem(B)-chain map

f∗ : C∗ → P∗

to be the composite v∗ ◦ f ′∗ and the desired Idem(B)-chain map

g∗ : P∗ → C∗

to be the composite g′∗ ◦ u∗. We obtain desired Idem(B)-chain homotopies

k∗ = v∗ ◦ h∗ ◦ u∗ : f∗ ◦ g∗ ' idP∗

and
l∗ = −g′∗ ◦ l′∗ ◦ f ′∗ + h∗ : g∗ ◦ f∗ ' idC∗ .

24.7.6 Finite Domination and Width functions

Consider a full and faithful inclusion A → B of additive categories. Suppose
that B comes with a width function wd. Consider a B-chain complex C∗
together with a finite domination (D∗, i∗, r∗.h∗) of C∗ over A. For ε > 0 we
call it ε-controlled if wd(r∗ ◦ i∗),wd(h∗) ≤ ε hold.

Proposition 24.51. Fix a natural number N .
Then, for every ε > 0 and every ε-controlled domination of (D∗, i∗, r∗.h∗)

of a B-chain complex C∗ over A with dim(D∗) ≤ N and wd(C∗),wd(D∗) ≤ ε,
there is an N -dimensional Idem(A)-chain complex P∗ with wd(P∗) ≤ (N+2)ε
together with an (2N + 5)ε-controlled Idem(B)-chain homotopy equivalence
f∗ : P∗ → C∗.

Proof. This follows from the explicite constructions of the N -dimensional A-
chain complex P∗, the Idem(B)-chain maps f∗ : C∗ → P∗ and g∗ : P∗ → C∗
and the Idem(B)-chain homotopies k∗ : f∗ ◦g∗ ' idP∗ and l∗ : g∗ ◦f∗ ' idC∗ of
Subsection 24.7.5, the axioms appearing Definition 24.27, and Lemma 24.48.

ut
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24.7.7 Comparing Singular and Simplicial Chain Complexes

Let X = (X, d) be a metric space. As before we denote the singular chain

complex of X by Csing
∗ (X). For δ > 0 we define

Csing,δ
∗ (X) ⊂ Csing

∗ (X)

as the chain subcomplex generated by all singular n-simplices σ : ∆n → X
for n ≥ 0 for which the diameter of σ(∆n) is less or equal to δ, i.e., for all
y, z ∈ ∆n we have d(σ(y), σ(z)) ≤ δ.

We have defined the additive category GM(X) and its width function

wdX in Example 24.31. The Z-chain complex Csing,δ
∗ (X) can be considered

as a GM(X)-chain complex, denoted again by Csing,δ
∗ (X), via the barycenter

map, i.e., for x ∈ X the module Csing,δ
n (X)x is generated by all singular

n-simplices which satisfy the condition above and map the barycenter to x.
Obviously wdX(Csing,δ

∗ (X)) ≤ δ holds. Note that the image of the GM(X)-

chain complex Csing,δ
∗ (X) under the functor F of (19.5) can be identified with

the Z-chain complex Csing,δ
∗ (X).

The proof of the next result can be found in [86, Lemma 6.7].

Lemma 24.52. Let X = (X, d) be a metric space.

(i) For δ′ > δ > 0 the inclusion

incδ,δ
′

∗ : Csing,δ
∗ (X, d)→ Csing,δ′

∗ (X, d)

is a δ′-controlled GM(X)-chain homotopy equivalence;
(ii) For every δ > 0 the inclusion

i : Csing,δ
∗ (X, d)→ Csing

∗ (X)

is a GM(X)-chain homotopy equivalence;
(iii) Suppose X = |L| for the geometric realization |L| of an abstract simplicial

complex L. Let C∗(T ) denote the simplicial chain complex considered as a
GM(X)-chain complex via the barycenters. Suppose all simplices of T have
diameter smaller than δ. Then wdX(C∗(L)) ≤ δ and realization defines a
GM(X)-chain map

C∗(L)→ Csing,δ
∗ (X)

which is a δ-controlled GM(X)-chain homotopy equivalence.

The next result is proved in [77, Lemma 8.5].

Lemma 24.53. Let X = (X, d) be a metric space. Consider µ, ν > 0. Let
ϕ,ϕ′ : X → X be maps satisfying

d(x, y) ≤ µ =⇒ d(ϕ(x), ϕ(y)), d(ϕ′(x), ϕ′(y)) ≤ ν
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for all x, y ∈ X. Let h : ϕ ' ϕ′ be a homotopy.
Then there is a GM(X)-chain homotopy H∗ : Csing,µ,ν

∗ (ϕ)∗ ' Csing,µ,ν
∗ (ϕ′)∗

of GM(X)-chain maps Csing,µ
∗ (X)→ Csing,ν

∗ (X) satisfying

suppH∗ ⊆ {(ht(x), y) | t ∈ [0, 1], d(x, y) ≤ µ}.

Proposition 24.54. Consider a natural number N and an N -transfer space
X = (X, d) in the sense of Definition 20.9.

Then for every ε > 0 there is an N -dimensional Idem(GM(X)f )-chain
complex P∗ with wdX(P∗) ≤ (12N + 24)ε together with a (24N + 60)ε-

controlled Idem(GM(X))-chain homotopy equivalence f∗ : P∗ → Csing,ε
∗ (X).

Proof. Fix ε > 0. We can choose an N -dimensional abstract simplicial com-
plexK, maps i : X → |K| and r : |K| → X, and a homotopy h : X×[0, 1]→ X
from r ◦ i to idX which is ε-controlled, i.e., for every x ∈ X the diameter of
the subset h({x} × [0, 1]) of X is smaller than ε. By subdividing K we can
arrange that for any simplex σ ∈ K the diameter of the subset r(|σ|) of X is
less or equal to ε. This implies wdX(C∗(K)) ≤ ε where we consider C∗(K) as
a GM(X)-chain complex using the image of the barycenters of simplices un-

der r. Analogously we can consider Csing,3ε
∗ (|K|) as a GM(X)-chain complex

with wdX(Csing,3ε
∗ (|K|)) ≤ 3ε. We get for any x, y ∈ X

d(r ◦ i(x), r ◦ i(y)) = d(h0(x), h0(y))

≤ d(h0(x), h1(x)) + d(h1(x), h1(y)) + d(h1(y), h0(y))

≤ ε+ d(x, y) + ε = 2ε+ d(x, y).

Hence i : X → K induces a GM(X)-chain map

Csing,ε,3ε
∗ (i) : Csing,ε

∗ (X)→ Csing,3ε
∗ (|K|).

Obviously r induces a GM(X)-chain map

Csing,3ε
∗ (r) : Csing,3ε

∗ (|K|)→ Csing,3ε
∗ (X).

Let
incε,3ε : Csing,ε

∗ (X)→ Csing,3ε
∗ (X)

be the inclusion. We conclude from Lemma 24.53 applied in the case µ = ε
and ν = 3ε to h : r ◦ i ' idX that there is a GM(X)-chain homotopy of

GM(X)-chain maps from Csing,ε
∗ (X) to Csing,3ε

∗ (X)

H∗ : Csing,ε
∗ (r) ◦ Csing,ε,3ε

∗ (i) ' incε,3ε

with wdX(H∗) ≤ 2ε, since for t ∈ [0, 1] and x, y ∈ X with d(x, y) ≤ ε we get
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d(ht(x), y) ≤ d(ht(x), h1(x)) + d(h1(x), y)

= d(ht(x), h1(x)) + d(x, y) ≤ ε+ ε = 2ε.

Hence we get
Csing,ε
∗ (r) ◦ Csing,ε,3ε

∗ (i) '3ε incε,3ε .

From Lemma 24.52 (iii) we get 3ε-controlled GM(X)-chain homotopy equiv-
alences

a∗ : C∗(K) → Csing,3ε
∗ (|K|);

b∗ : Csing,3ε
∗ (|K|) → C∗(K),

satisfying

b∗ ◦ a∗ '3ε idC∗(K);

a∗ ◦ b∗ '3ε idCsing,3ε
∗ (|K|) .

We conclude from Lemma 24.52 (i) that incε,3ε : Csing,ε
∗ (X) → Csing,3ε

∗ (X)
is a 3ε-controlled GM(X)-chain homotopy equivalence and we can choose

a 3ε-controlled GM(X)-chain homotopy equivalence inc−1
ε,3ε : Csing,3ε

∗ (X) →
Csing,ε
∗ (X) satisfying

inc−1
ε,3ε ◦ incε,3ε '3ε idCsing,ε

∗ (X);

inc−1
ε,3ε ◦ inc−1

ε,3ε '3ε idCsing,3ε
∗ (X) .

Now define GM(X)-chain maps

j∗ = b∗ ◦ Csing,ε,3ε
∗ (i) : Csing,ε

∗ (X)→ C∗(K)

and
p∗ = inc−1

ε,3ε ◦Csing,3ε
∗ (r) ◦ a∗ : C∗(K)→ Csing,ε

∗ (X).

We conclude using Lemma 24.48

p∗ ◦ j∗ '12ε idCsing,ε
∗ (X) .

Now we get from Proposition 24.51 applied to the inclusion Idem(GM(X)f )→
Idem(GM(X)) and the domination of the Idem(GM(X))-chain complex

Csing,ε
∗ (X) by the GM(X)f -chain complex C∗(K) above an N -dimensional

Idem(GM(X))f -chain complex P∗ with wdX(P∗) ≤ (12N + 16)ε together a
(16N+40)ε-controlled Idem(GM(X))-chain homotopy equivalence f∗ : P∗ →
Csing,ε
∗ (X). ut
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24.7.8 Taking the Group Action on X into Account

Consider a natural number N and an N -transfer space X = (X, d) in the
sense of Definition 20.9. Suppose that X comes with a (not necessarily iso-
metric) G-action. Let T ⊆ G be a finite subset. Fix ε > 0.

Since T is finite and X is compact, there exists a real number δ with
0 < δ < ε such that the implication d(x, y) ≤ δ =⇒ d(gx, gy) ≤ ε holds for
all g ∈ T , x ∈ X and y ∈ X. By the same argument applied to δ instead
of ε there exists a real number γ with 0 < γ < δ such that the implication
d(x, y) ≤ γ =⇒ d(gx, gy) ≤ δ holds for all g ∈ T , x ∈ X and y ∈
X. Now we get from Proposition 24.54 an N -dimensional Idem(GM(X)f )-
chain complex P∗ together with Idem(GM(X))-chain homotopy equivalences

f∗ : P∗ → Csing,γ
∗ (X) and g∗ : Csing,γ

∗ (X)→ P∗ together with Idem(GM(X))-
chain homotopies h∗ : g∗ ◦ f∗ ' idP∗ and k∗ : f∗ ◦ g∗ ' idCsing,γ

∗ (X) such that

wdX(P∗), wdX(f∗), wdX(g∗), wdX(h∗), and wdX(k∗) are less or equal to
24(N + 60)γ.

Define the finite subset T 2 of G by

T 2 = {g ∈ G | ∃g1, g2 ∈ T, g = g1, g2}.

Since every g ∈ T 2 satisfies d(x, y) ≤ γ =⇒ d(gx, gy) ≤ ε, the map lg : X →
X sending x to gx induces a GM(X)-chain map

Csing,γ,ε
∗ (lg) : Csing,γ

∗ (X)→ Csing,ε
∗ (X).

Now define for g ∈ T 2 a Idem(GM(X)f )-chain homotopy equivalence

(24.55) ϕ[g]∗ : P∗ → P∗

by the composite

P∗
f∗−→ Csing,γ

∗ (X)
Csing,γ,ε
∗ (lg)−−−−−−−−→ Csing,ε

∗ (X)
inc−1

γ,ε−−−→ Csing,γ
∗ (X)

g∗−→ P∗

where inc−1
γ,ε is an ε-controlled GM(X)-chain homotopy equivalence coming

from Lemma 24.52 (i) which is up to ε-controlled homotopy an chain homo-
topy inverse of the ε-controlled GM(X)-chain homotopy equivalence incγ,ε.

Recall that incγ∗ : Csing,γ
∗ → Csing

∗ (X) is the inclusion of Idem(GM(X))-
chain complexes.

Proposition 24.56. We get with the choices above:

(i) We obtain for every g ∈ T 2

(x, y) ∈ supp(ϕg) =⇒ d(gx, y) ≤ (48N + 121)ε;

(ii) For g, h ∈ T there exists an Idem(GM(X))-chain homotopy
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Φ[g, h]∗ : ϕ[gh]∗ ' ϕ[g]∗ ◦ ϕ[h]∗

satisfying

(x, y) ∈ supp(ϕg) =⇒ d(ghx, y) ≤ (72N + 181)ε;

(iii) We obtain for every g ∈ T 2 an up to Idem(GM(X))-chain homotopy com-
mutative dagram whose vertical arrows are Idem(GM(X))-chain homotopy
equivalences

P∗
incγ∗ ◦f∗
'

//

ϕ[g]∗

��

Csing
∗ (X)

Csing
∗ (lg)

��
P∗

incγ∗ ◦f∗
'

// Csing
∗ (X).

Proof. (i) We get wdX(f∗) ≤ (24N + 60)γ and wdX(g∗) ≤ (24N + 60)γ from
Proposition 24.54 and wdX(inc−1

γ,ε) ≤ ε from Lemma 24.52 (i). Obviously we
have

(24.57) (x, y) ∈ supp(Csing,γ,ε
∗ (lg)) =⇒ y = gx.

One easily checks for (x, y) ∈ supp(ϕg)

d(gx, y) ≤ wdX(f∗)+wdX(inc−1
γ,ε)+wdX(g∗) ≤ (24N+60)γ+ε+(24N+60)γ

≤ (24N + 60)ε+ ε+ (24N + 60)γε = (48N + 121)ε.

(ii) The desired homotopy Φ[gh]∗ is given by the composite of the following
homotopies and identities

ϕ[gh]

= g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε
∗ (lgh) ◦ f∗

= g∗ ◦ (incγ,ε)−1 ◦ Csing,δ,ε
∗ (lg) ◦ Csing,γ,δ

∗ (lh) ◦ f∗
(1)
' g∗ ◦ (incγ,ε)−1 ◦ Csing,δ,ε

∗ (lg) ◦ incγ,δ ◦(incγ,δ)−1 ◦ Csing,γ,δ
∗ (lh) ◦ f∗

= g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε
∗ (lg) ◦ (incγ,δ)−1 ◦ Csing,γ,δ

∗ (lh) ◦ f∗
(2)
' g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε

∗ (lg) ◦ (incγ,δ)−1 ◦ (incδ,ε)−1 ◦ incδ,ε ◦Csing,γ,δ
∗ (lh) ◦ f∗

= g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε
∗ (lg) ◦ (incγ,δ)−1 ◦ (incδ,ε)−1 ◦ Csing,γ,ε

∗ (lh) ◦ f∗
(3)
' g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε

∗ (lg) ◦ (incγ,ε)−1 ◦ Csing,γ,ε
∗ (lh) ◦ f∗

(4)
' g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε

∗ (lg) ◦ f∗ ◦ g∗ ◦ (incγ,ε)−1 ◦ Csing,γ,ε
∗ (lh) ◦ f∗

= ϕ[g] ◦ ϕ[h].

In the sequel we will apply (an obvious variation of) Lemma 24.48 (ii) over
and over again. Here the homotopy (1) comes from the δ-controlled homotopy
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id ' incγ,δ ◦(incγ,δ)−1 of Lemma 24.52 (i). The homotopy (2) comes from
the ε-controlled homotopy id ' incδ,ε ◦(incδ,ε)−1 of Lemma 24.52 (i). The
homotopy (3) comes from the sequence homotopies each of which comes from
of Lemma 24.52 (i)

(incγ,δ)−1 ◦ (incδ,ε)−1

' (incγ,δ)−1 ◦ (incδ,ε)−1 ◦ incγ,ε ◦(incγ,ε)−1

= (incγ,δ)−1 ◦ (incδ,ε)−1 ◦ incδ,ε ◦ incγ,δ ◦(incγ,ε)−1

' (incγ,δ)−1 ◦ incγ,δ ◦(incγ,ε)−1

' (incγ,ε)−1.

One easily checks that latter chain homotopy from (incγ,δ)−1 ◦ (incδ,ε)−1 to
(incγ,ε)−1 is 9ε-controlled. The homotopy (4) comes from Proposition 24.54.
Note that wdX(f∗) ≤ (24N+60)γ, wdX(g∗) ≤ (24N+60)γ holds by Proposi-
tion 24.54 and (incγ,ε)−1 ≤ ε, wdX((incγ,δ)−1) ≤ δ, and wdX((incγ,δ)−1 ≤ δ
holds by Lemma 24.52 (i). We have γ ≤ δ ≤ ε. Recall the implication (24.57)
which we can apply to lg and lh and lgh. One easily checks that for all
(x, y) ∈ supp(Φ[g, h]) we have

d(ghx, y) ≤ (72N + 181)ε.

(iii). The chain map incγ∗ : Csing,γ
∗ → Csing

∗ (X) is a GM(X)-chain homo-
topy equivalence by Lemma 24.52 (ii). The GM(X)-chain maps f∗ : P∗ →
Csing,γ
∗ (X) and g∗ : P∗ → Csing,γ

∗ (X) are chain homotopy inverses of one
another. We have incγ,ε∗ ◦ incε∗ = incγ∗ and (incγ,ε)−1 is a GM(X) chain ho-
motopy inverse of incγ,ε)−1. This finishes the proof of Proposition 24.56. ut

24.7.9 Passing to Y = G×X

Now we consider the data we have fixed in Subsection 24.7.1. Recall that
Y = G × X with the G-action given by g′(g, x) = (g′g, x). We define a
functor of additive categories

(24.58) ind: GM(X)→ GMG(Y )

as follows. An object M = {Mx | x ∈ X} is sent to the object

ind(M) = {ind(M)(g,x) | (g, x) ∈ Y }

given by ind(M)(g,x) = Mx. A morphism f = {fx,y : Mx → Ny | x, y ∈ X}
from M = {Mx | x ∈ X} to N = {Ny | y ∈ X} is sent to the morphism

ind(f) = {ind(f)(g,x),(h,y) : Mx → Ny | (g, x), (h, y) ∈ Y }
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given by ind(f)(g,x),(h,y) = fx,y if g = h and by ind(f)(g,x),(h,y) = 0 if

g 6= h. In the sequel we consider on GMG(Y ) the width function wdZ
of Example 24.29. respect to the map w : G × X → Z that we have de-
fined by w(g, x) = gv(x) for the given (ε, T )-almost G-equivariant map
v : X → Z = |Σ| in Subsection 24.7.1. Obviously ind induces a functor of
additive categories

(24.59) Idem(ind) : Idem(GM(X))→ Idem(GMG(Y )).

Fix ε > 0. Since v : X → |Z| has a compact metric space as source, we can
find a real number ξ > 0 such that the implication

d(x, y) ≤ (12N + 24)ξ =⇒ dL
1

(v(x), v(y)) ≤ ε

holds for x, y ∈ X. From Proposition 24.54 we get Idem(GM(X))-chain maps

f∗ : P∗ → Csing,ξ
∗ (X) and g∗ : Csing,ξ

∗ (X) → P∗, and Idem(GM(X))-chain
homotopies h∗ : g∗ ◦ f∗ ' idP∗ and k∗ : f∗ ◦ g∗ ' idCsing,ξ

∗ (X) such that

wdX(P∗),wdX(f∗),wdX(g∗),wdX(h∗),wdX(k∗) ≤ (12N + 24)ξ

holds where wdX is understood to be over the metric space X. They induce
Idem(GM(X))-chain maps

Idem(ind)(f∗) : Idem(ind)(P∗)→ Idem(ind)(Cε∗(X));

Idem(ind)(g∗) : Idem(ind)(Cε∗(X)) → Idem(ind)(P∗),

and Idem(GM(X))-chain homotopies

Idem(ind)(h∗) : Idem(ind)(g∗) ◦ Idem(ind)(f∗) ' idIdem(ind)(P∗);

Idem(ind)(k∗) : Idem(ind)(f∗) ◦ Idem(ind)(g∗) ' idIdem(ind)(Csing,ε
∗ (X)),

such that

wd(Idem(ind)(P∗)),wd(Idem(ind)(f∗)),wd(Idem(ind)(g∗)),

wd(Idem(ind)(h∗)),wd(Idem(ind)(k∗)) ≤ ε

holds. We give the proof for the width of Idem(ind)(f∗), the one for other
terms is analogous. Consider (g, x), (h, y) ∈ supp(Idem(ind)(f∗)). Then we
have g = h and x, y ∈ supp(f∗). The latter implies d(x, y) ≤ (12N +24)ξ and
hence d(v(x), v(y)) ≤ ε. We compute

dL
1

(w(g, x), w(h, y)) = dL
1

(w(g, x), w(g, y)) = dL
1

(gv(x), gv(y))

= dL
1

(v(x), v(y)) ≤ ε.

Given g ∈ T , we define a Idem(GMG(Y ))-chain map
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U [g]∗ : Idem(ind)(P∗)→ Idem(ind)(P∗)

by putting (U(g)n)(g1,x1),(g1,x2) : (Pn)x1
→ (Pn)x2

to be (ϕ[g]n)x1,x2
if g2 =

g1g
−1 and to be zero otherwise, where ϕ[g]∗ has been introduced in (24.55).

For g, h ∈ T we define Idem(GMG(G×X))-chain homotopies

H[g, h]∗ : U(gh) ' U(g) ◦ U(h)

by putting (H[g, h]n)(g1,x1,g2,x2) : Idem(ind)(Pn)x1
→ Idem(ind)(Pn+1)x2

to
be (Φ[g, h]n)x1,x2

if g2 = g1(gh)−1 and to be zero otherwise, where Φ[g, h] has
been defined in the proof Proposition 24.56 (ii). Proposition 24.56 implies for
g, h ∈ T

wd(U [g]∗) ≤ (48N + 121)ε;(24.60)

wd(H[g, h]) ≤ (72N + 181)ε.(24.61)

For a =
∑
g∈T λg · g ∈ ZG, we define an Idem(GMG(G×X))-chain map

U [a]∗ =
∑
g∈T

λg · U [g]∗ : Idem(ind)(P∗)→ Idem(ind)(P∗).

For elements a =
∑
g∈T λg · g and b =

∑
g∈T µh · h in RG, we define a

Idem(GMG(Y ))-chain homotopy

H[a.b]∗ : U [ab]∗ ' U [a]∗ ◦ U [b]∗

by H[a.b]∗ =
∑
g,h∈T λgµh ·Φ[g, h]∗ : Idem(ind)(P∗)→ Idem(ind)(P∗+1). For

the matrix A = (ai,j) ∈ GLn(ZG) and its inverse B = (bi,j), we define

Idem(GMG(Y ))-chain maps for Idem(ind)(P∗)
n =

⊕n
i=1 Idem(ind)(P∗)

U [A]∗ = (U(ai,j))i,j : Idem(ind)(P∗)
n → Idem(ind)(P∗)

n;

U [B]∗ = (U(ai,j))i,j : Idem(ind)(P∗)
n → Idem(ind)(P∗)

n.

Define Idem(GMG(Y ))-chain homotopies

K∗ : U(A)∗ ◦ U(B)∗ ' idIdem(ind)(P∗)n ;

L∗ : U(B)∗ ◦ U(A)∗ ' idIdem(ind)(P∗)n ,

by (Kn)i,k =
∑n
j=1H(ai,jbj,k) and (Ln)i,k =

∑n
j=1H(bi,jaj,k) for i, k ∈

{1, 2 . . . , n}. We conclude from the axioms appearing Definition 24.27 and
the inequalities (24.60) and (24.61)
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wd(U [A]∗) ≤ (48N + 121)ε;(24.62)

wd(U [B]∗) ≤ (48N + 121)ε;(24.63)

wd(K) ≤ (72N + 181)ε;(24.64)

wd(L) ≤ (72N + 181)ε.(24.65)

There is an obvious identification of GMG(Y )-chain complex

ind(Csing
∗ (X)) = Csing

∗ (Y )

asG is discrete. Under this identification the GMG(Y )-chain maps ind(Csing
∗ (lg))

and Csing
∗ (Lg) agree where Lg : Y → Y sends (h, x) to (hg−1, gx). Under this

identification we conclude from Proposition 24.56 (iii) that we obtain an up
to chain homotopy commutative diagram of chain homotopy equivalences of
Idem(GMG(X))-chain complexes

ind(P∗)
ind(incε∗ ◦f∗)

'
//

U [g]∗

��

Csing
∗ (Y )

Csing
∗ (Lg)

��
ind(P∗)

ind(incε∗ ◦f∗)
'

// Csing
∗ (Y ).

If we apply the functor F of (19.5) to the diagram above and use the identi-

fication of F (Csing
∗ (G×X)) with the singular Z-chain complex Csing

∗ (G×X),
we obtain an up to ZG-chain homotopy commutative diagram of ZG-chain
homotopy equivalences

F (ind(P∗))
F (ind(incε∗ ◦f∗))

'
//

F (U [g]∗)

��

Csing
∗ (Y )

Csing
∗ (Lg)

��
F (ind(P∗))

F (ind(incε∗ ◦f∗))
'

// Csing
∗ (Y ).

Since X is contractible and Y = G × X is equipped with the G-action g′ ·
(g, x) = (g′g, x), the projection pr : Y = G×X → G is a G-homotopy equiv-

alences and induces a ZG-chain homotopy equivalence Csing
∗ (Y )→ Csing

∗ (G).

There is an obvious ZG-chain homotopy equivalence a∗ : Csing
∗ (G)→ 0[ZG]∗

onto the Z-chain complex concentrated in dimension 0 whose 0-th chain mod-
ule is ZG. We obtain a ZG-chain homotopy equivalence

b∗ : ind(P∗)
ind(incε∗ ◦f∗)−−−−−−−−→ Csing

∗ (Y )
Csing
∗ (pr)−−−−−−→ Csing

∗ (G)
a∗−→ 0[ZG]∗

such that the following diagram of finite free ZG-chain complexes commutes
up to ZG-chain homotopy for every g ∈ T where rg−1 : G → G sends g′ to
g′g−1.
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F (ind(P∗))
b∗

'
//

F (U [g]∗)

��

0[ZG]∗

0[rg−1 ]∗

��
F (ind(P∗))

b∗

'
// 0[ZG]∗.

One easily checks that following diagram of finite free ZG-chain complexes
commutes up to ZG-chain homotopy where V (A) has been defined in (24.25).

F (ind(P∗))
n b∗

'
//

F (U [A]∗)

��

0[ZGn]∗

0[V (A)]∗

��
F (ind(P∗))

n b∗

'
// 0[ZGn]∗.

We conclude from Lemma 24.48

(24.66) u = [V (A)] = t(0[V (A)]∗) = t(F (U(A)∗)) ∈ K1(ZG).

(Note that (24.66) is closely related to up-down-formula, see Remark 24.20.)
Recall that U(A)∗ is a (72N + 181)ε-controlled Idem(GMG(Y ))-chain homo-
topy equivalence, see (24.62), (24.63), (24.64), and (24.65). Hence Proposi-
tion 24.50 together with (24.66) implies

u = [F f (a)] ∈ K1(ZG)

for some 5(72N+181)ε-controlled automorphism a in GMG(Y ). By our choice
ε = εN

5(48N+181) , see (24.26) we have 5(72N + 181)ε = εN . This finishes the

proof of Proposition 24.24.

24.8 The Strategy Theorem

Consider a covariant functor

E : G-CW-COM→ SPECTRA.

Given a G-CW -complex space Z, we obtain from E a new covariant functor

(24.67) EZ : G-CW-COM→ SPECTRA, X 7→ E(X × Z).

The canonical projection q : X ×Z → X yields a transformation of covariant
functors G-CW-COM→ SPECTRA.

(24.68) pr : EZ → E.

Let L : Or(G)→ G-CW-COM be the obvious inclusion.
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Theorem 24.69 (Strategy Theorem). Suppose that the following condi-
tions hold:

(i) The covariant functor

E : G-CW-COM→ SPECTRA

is excisive;
(ii) There exists a map of covariant Or(G)-spectra

trf : L∗E→ L∗EZ

such that the composite L∗pr ◦ trf : L∗E → L∗E is a weak homotopy
equivalence of covariant Or(G)-spectra;

(iii) The projection onto the second factor pr2 : Z × Z → Z is a homotopy
equivalence of G-CW -complexes.

Then
HG
n (pr;L∗E) : HG

n (Z;L∗E)→ HG
n ({•}, L∗E)

is bijective for all n ∈ Z where pr: Z → {•} is the projection. Moreover, we
obtain for all n ∈ Z a commutative diagram of isomorphisms

HG
n (Z;L∗E)

HGn (pr;L∗E)

∼=
//

∼=
��

HG
n ({•};L∗E)

∼=
��

πn(E(Z))
∼=

E(pr)
// πn(E({•})).

Proof. The desired commutative diagram comes from Theorem 18.11 applied
to E. Moreover, by Theorem 18.11 the vertical arrows are bijective for all
n ∈ Z. It remains to prove the bijectivity of HG

n (pr;L∗E) : HG
n (Z;L∗E) →

HG
n ({•}, L∗E) for all n ∈ Z.
We have the following commutative diagram

HG
n (Z;L∗E)

HGn (pr;L∗E) //

Hn(Z;trf)

��

HG
n ({•};L∗E)

Hn({•};trf)
��

HG
n (Z;L∗EZ)

HGn (pr;L∗EZ) //

Hn(Z;L∗pr)

��

HG
n ({•};L∗EZ)

Hn({•};L∗pr)

��
HG
n (Z;L∗E)

HGn (pr;L∗E) // HG
n ({•};L∗E)

for which the composites of the vertical arrows are in both cases isomorphisms
by Lemma 12.6. Hence it suffices to show that HG

n (pr;L∗EZ) is bijective for
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all n ∈ Z. From Theorem 18.11 applied to EZ , we obtain a commutative
diagram

HG
n (Z;L∗EZ)

HGn (pr;L∗EZ) //

∼=
��

HG
n ({•}, L∗EZ)

∼=
��

πn(E(Z × Z))
πn(E(pr2)) // πn(E(Z))

whose vertical arrows are bijective. Since pr2 is by assumption a G-homotopy
equivalence, HG

n (pr;L∗EZ) is bijective for all n ∈ Z. ut

Let A be any additive G-category. We have defined the additive category
A[G] in Example 22.2 and explained in Remark 22.79 that it comes with the
structure of a strong category with G-support in the sense of Definition 22.78.

So we can consider the covariant Or(G)-spectra KD
G

of (22.107) and KD
G
0

of (22.108). We get another covariant Or(G)-spectrum K
DG0
EVCY(G) by sending

an object G/H to K(DG0 (G/H × EVCY(G))), see (24.67).

Theorem 24.70 (Transfer criterion for the Farrell-Jones Conjec-
ture). Suppose that there is a map of covariant Or(G)-spectra

trf : KD
G
0 → K

DG0
EVCY(G)

such that pr◦trf is a weak homotopy equivalence of covariant Or(G)-spectra,
where pr has been defined in (24.68).

Then the K-theoretic Farrell-Jones Conjecture with coefficients in additive
G-categories 13.11 holds for G.

The analogous statement holds for the L-theoretic Farrell-Jones Conjecture
with coefficients in additive G-categories with involution 13.16.

Proof. We give the proof for K-theory only, the one for L-theory is completely
analogous.

The projection onto the second factor pr2 : EVCY(G) × EVCY(G) →
EVCY(G) is a G-homotopy equivalence by Theorem 11.19. The functor
K ◦ DG0 : CW-COM→ SPECTRA of (22.106) is excisive by Theorem 22.126.
We conclude from Theorem 24.69 applied to it that

HG
n (pr; KD

G
0 ) : HG

n (EVCY(G); KD
G
0 )→ HG

n ({•},KD
G
0 )

is bijective for all n ∈ Z. Now Theorem 22.109 using Mayer-Vietoris sequences
and the Five Lemma implies that

HG
n (pr; KD

G

) : HG
n (EVCY(G); KD

G

)→ HG
n ({•},KD

G

)

is bijective for all n ∈ Z. We conclude from Lemma 22.76 (i), Remark 22.82,
and Lemma 12.6 that the assembly map appearing in K-theoretic Farrell-
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Jones Conjecture with coefficients in additive G-categories 13.11 is bijective
for all n ∈ Z. ut

The benefit of Theorem 24.70 is that it suffices to construct the transfer
only on homogeneous spaces and for the functor DG0 which has the pleasant
feature that it is defined with zero-control in the N-direction. This has for
instance been exploited in [81, Remarks 6.14 and 7.17]

24.9 Notes

There seems to be no construction of a transfer in the Baum-Connes setting.
That is the reason why some of the spectacular results about the validity
of the Farrell-Jones Conjecture for certain groups, for instance all lattices in
second countable locally compact Hausdorff groups, do not carry over to the
Baum-Connes Conjecture. This might be different if one replaces the group
C∗-algebra by the group Frechet algebra.
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Chapter 25

Higher Categories as Coefficients

25.1 Introduction

Comment 32 (by W.): This chapter should be filled in by Christoph and
should be an extract of the proofs appearing in [172].

In this chapter we give more information and details about the proofs of
Theorem 20.61 and Theorem 20.62 following [172]. We have discussed already
in Chapter 20 that this are the most general results about the (K-theoretic)
Farrell Jones Conjecture, which imply and uniform all the ones proved so far.
Some basic strategies for and some of the history of their proofs have already
been discussed in special cases in Chapters 19 and Chapters 24. Roughly
speaking, the main achievement in [172] is to generalize the formulations and
poofs of the K-theoretic Farrell-Jones Conjecture as they appear for additive
categories for instance in [71, 78, 77, 85, 526, 973, 974] to higher categories,
where a first step in this direction was already taken for A-theory in [330].

Comment 33 (by W.): This is only a first suggestion for a beginning of
the introduction.

25.2 Section 1

25.2.1 Subsection 1.1

25.2.2 Subsection 1.2

25.2.3 Subsection 1.3

25.3 Section 2

25.4 Section 3

Exercise 25.1. Test. (There is a section with solutions to the exercises.)
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25.5 Notes

Comment 34 (by W.): There is a preprint by Reis [834]. Shall we mention
it in this chapter? Its abstract says:

The Farrell-Jones conjecture for lax monoidal finitary localising invariants
was recently proved by Bunke-Kasprowski- Winges. In this short note, making
use of the theory of noncommutative motives, we prove that the lax monoidal
assumption is not necessary.
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last compiled on April 28, 2024
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Chapter 26

Analytic Methods

26.1 Introduction

The methods of proofs for the Farrell-Jones Conjecture and the Baum-
Conjecture are rather different. But both use controlled methods, see Sec-
tion 19.4, Chapter 22, and [471]. In the Farrell-Jones setting transfers were a
key ingredient, see Section 19.5 and Chapter 24, which do not seem to exist
in the Baum-Connes setting. In the Baum-Connes setting KK-theory, see
Section 10.5, is the main tool which does not work out in the Farrell-Jones
setting. This has for instance the consequence that the Full Farrell-Jones
Conjecture is known for every (not necessarily cocompact) lattices in path
connected second countable locally compact Hausdorff groups, whereas as
the Baum-Connes Conjecture is not known for SLn(Z) for n ≥ 3. On the
other hand the Baum-Connes Conjecture with coefficients is known for a-T-
menable groups, whereas the Farrell-Jones Conjecture has not been proved for
elementary amenable groups. We have given status reports for the Farrell-
Jones Conjecture and the Baum-Conjecture in Sections 16.2 and 16.4 and
discussed open case in Section 16.9. We have linked these two conjectures in
Subsection 15.14.4.

We give only a very brief survey over the methods used in the Baum-
Connes Conjecture. More information can be found for instance in the survey
articles [409, 727, 945].

26.2 The Dirac-Dual Dirac Method

Next we briefly discuss the Dirac-dual Dirac method which is the key strategy
in many of the proofs of the Baum-Connes Conjecture 14.9 or the Baum-
Connes Conjecture 14.11 with coefficients, see for instance [469, Theorem 7.1].

A G-C∗-algebra A is called proper, if there exists a locally compact proper
G-space X and a G-homomorphism σ : C0(X) → B(A), f 7→ σf satisfying
σf (ab) = aσf (b) = σf (a)b for f ∈ C0(X), a, b ∈ A and for every net {fi |
i ∈ I}, which converges to 1 uniformly on compact subsets of X, we have
limi∈I ‖ σfi(a)−a ‖= 0 for all a ∈ A. A locally compact G-space X is proper
if and only if C0(X) is proper as a G-C∗-algebra.

The following result is proved in Tu [938] extending results of Kasparov-
Skandalis [548, 540].

733
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Theorem 26.1 (The Baum-Connes Conjecture with coefficients for
proper G-C∗-algebras). The Baum-Connes Conjecture 14.11 with coeffi-
cients holds for a proper G-C∗-algebras B.

Theorem 26.2 (Dirac-dual Dirac method). Let G be a countable (dis-
crete) group. Let F be R or C. Suppose that there exist a proper G-C∗-algebra
A, elements α ∈ KKG

i (A,F ), called the Dirac element, and β ∈ KKG
i (F,A),

called the dual Dirac element, satisfying

β ⊗A α = 1 ∈ KKG
0 (F, F ).

Then the Baum-Connes Conjecture 14.9 and the Baum-Connes Conjec-
ture 26.1 with coefficients are true over F .

Proof. We only treat the case F = C and the case of trivial coefficients. The
assembly map appearing in Theorem 14.9 is a retract of the bijective assem-
bly map from Theorem 26.1. This follows from the following commutative
diagram for any cocompact G-CW -subcomplex C ⊆ EG

KG
∗ (C)

asmbG,C(C)∗

��

−⊗̂Cβ // KG
∗ (C;A)

asmbG,CA (C)∗

��

−⊗̂Aα // KG
∗ (C)

asmbG,C(C)∗

��
K∗(C

∗
r (G))

−⊗̂C∗r (G)jG(β)

// K∗(Aor G)
−⊗̂Aor jG(α)

// K∗(C∗r (G))

and the fact that the composition of both the top upper horizontal arrows
and lower upper horizontal arrows are bijective. ut

The reader should note the formal similarity between the proof of Theo-
rem 26.2 and the proof of the Strategy Theorem 24.69.

In order to give a glimpse of the basic ideas from operator theory, we
briefly describe how to define the Dirac element α in the case where G acts
on a complete Riemannian manifold M . Let TCM be the complexified tangent
bundle and let Cliff(TCM) be the associated Clifford bundle. Let A be the
proper G-C∗-algebra given by the sections of Cliff(TCM) which vanish at
infinity. Let H be the Hilbert space L2(∧∗T ∗CM) of L2-integrable differential
forms on TCM with the obvious Z/2-grading coming from even and odd
forms. Let U be the obvious G-representation on H coming from the G-
action on M . For a 1-form ω on M and u ∈ H define a homomorphism of
C∗-algebras ρ : A→ B(H) by

ρω(u) := ω ∧ u+ iω(u).

Now D = (d + d∗) is a symmetric densely defined operator H → H and
defines a bounded selfadjoint operator F : H → H by putting F = D√

1+D2
.

Then (U, ρ, F ) is an even cocycle and defines an element α ∈ KG
0 (M) =
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KKG
0 (C0(M),C). More details of this construction and the construction of

the dual Dirac element β under the assumption that M has non-positive
curvature and is simply connected, can be found for instance in [945, Chapter
9].

26.3 Banach KK-Theory

Skandalis [900] showed that the Dirac-dual Dirac method cannot work for
all groups as long as one works with KK-theory in the unitary setting. The
problem is that for a group with property (T) the trivial and the regular
unitary representation cannot be connected by a continuous path in the space
of unitary representations, compare also the discussion in [519]. This problem
can be circumvented if one drops the condition unitary and works with a
variant of KK-theory for Banach algebras as worked out by Lafforgue [582,
584, 586].

26.4 Notes

Nishikawa [743] describes a variation of the Dirac-dual-Dirac method which
was used by Brodzki-Guentner-Higson-Nishikawa [158] to give a new proof
the Baum-Connes Conjecture for groups which act properly and cocompactly
on a finite-dimensional CAT(0)-cubical complex with bounded geometry.
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Chapter 27

Solutions of the Exercises

Chapter 2

2.7. Check that the homomorphism ψ : K0(R)→ K ′0(R), [P ]→ [P ] is well-
defined using the fact that every exact sequence 0 → P0 → P1 → P2 → 0 of
finitely generated projective R-modules splits. Obviously ψ is the inverse of
φ.

2.11. Show that the R-R-bimodule
(
RR

n
Mn(R)

)
⊗Mn(R)

(
Mn(R)R

n
R

)
is

isomorphic as R-R-bimodule to R and that the Mn(R)-Mn(R)-bimodule(
Mn(R)R

n
R

)
⊗R

(
RR

n
Mn(R)

)
is isomorphic as Mn(R)-Mn(R)-bimodule to

Mn(R).

2.16. See [844, Theorem 1.2.3 on page 8].

2.29. There exists a nowhere vanishing vector field on Sn if and only if
there exists F -subbundles ξ and η in TSn such that TSn = ξ ⊕ η and ξ is a
1-dimensional trivial F -vector bundle. Now apply Theorem 2.27.

2.32. Let ξ be a vector bundle over Y . It suffices to construct a C0(X)-
isomorphism

α(ξ) : C0(X)⊗C0(Y ) C
0(ξ)

∼=−→ C0(f∗ξ).

Given φ ∈ C0(X) and s ∈ C0(ξ), define α(ξ)(φ⊗ s) to be the section of f∗ξ
which sends x ∈ X to φ(x) · s ◦ f(x) ∈ ξf(x) = (f∗ξ)x. Since α(ξ ⊕ η) can be
identified with α(ξ) ⊕ α(η) and α(F ) is obviously bijective, α(ξ) is bijective
for all F -vector bundles ξ over Y .

2.33. Because of the identification (2.31) and the homotopy invariance of
the functor K0(X) we get

K0(C(Dn)) ∼= K0(Dn) ∼= K0({•}) ∼= Z.

2.40. This follows from the fact that Z⊗Zπ C∗(X̃) is isomorphic as Z-chain
complex to C∗(X).

2.49. We can assume without loss of generality that X is connected, oth-
erwise treat any component of X separately. Put π = π1(X). For i = 0, 1, 2

737
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let Xi → Xi be the π-covering obtained from the the universal covering
X̃ → X by the pull back construction associated to ji : Xi → X. Since Xi

is finite dominated, we conclude from Lemma 2.48 that C∗(Xi) is finitely
dominated as a Zπ-chain complex and directly from the definitions that
(ji)∗(o(Xi)) = o(C∗(X̃i)) holds in K0(Z[π]) for i = 0, 1, 2. There is an exact
sequence of Zπ-chain complexes

0→ C∗(X0)→ C∗(X1)⊕ C∗(X2)→ C∗(X̃)→ 0.

Since π1(C) is finitely presented for each C ∈ π0(Xi) and i ∈ {0, 1, 2}, π1(X)
is finitely presented. This follows essentially from the Seifert-van Kampen
Theorem. We conclude from Lemma 2.36 (ii) and Lemma 2.48 that C∗(X̃) is
finitely dominated and hence X is finitely dominated and we get in K0(Z[π])

o(X) = o(C∗(X̃)) = o(C∗(X1)) + o(C∗(X2))− o(C∗(X0))

= (j1)∗(o(X1)) + (j2)∗(o(X2))− (j0)∗(o(X1)).

2.50. Recall that we have chosen a finite domination (Z, i, r) of X. Construct
an extension g : cyl(r)∪Zcyl(i)∪Xcyl(i)→ X of idX

∐
F∪XF : X

∐
cyl(i)∪X

cyl(i) → X and a homotopy equivalence h : Z → cyl(r) ∪Z cyl(i) ∪X cyl(i).
Now the claim follows from the commutative diagram

X
∐

(cyl(i) ∪X cyl(i))
j //

f
∐
f ′

''

cyl(r) ∪Z cyl(i) ∪X cyl(i)

f◦g

��

Z
hoo

f◦g◦h

{{

∅oo

xx
Y

where j is the inclusion.

2.56. Let (B, b) be a functorial additive invariant for finite CW -complexes.
Define a natural transformation T (X) :

⊕
C∈π0(C) Z → B(X) by sending

{nC | C ∈ π0(X)} to
∑
C∈π0(X) nc ·A(iC)(a({•})) where iC : {•} → X is any

map whose image is contained in C. Obviously it is the only possible natural
transformation satisfying T ({•})(χ({•})) = b({•}). Using the additivity and
homotopy invariance one proves by induction over the number of cells for a
finite CW -complex X that T (X)({χ(C) | C ∈ π0(X)}) = b(X) holds. More
details can be found in [627, Theorem 4.1].

2.58. (i) Fix a finitely dominated CW -complex Y . Define a functor A from
finitely dominated CW -complexes to abelian groups by A(X) := U(X × Y ).
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Define a(X) ∈ A(X) to be u(X×Y ). Check that (A, a) is a functorial additive
invariant for finitely dominated CW -complexes. Hence there exists a unique
transformation TY : U(?)→ U(?×Y ) sending u(X) to u(X×Y ). Define B(Y )
as the abelian group of transformations U(?) → U(? × Y ) and b(Y ) := TY .
Show that (B, b) is a functorial additive invariant for finitely dominated CW -
complexes. Hence there is a natural transformation S : U → B satisfying
S(Y )(u(Y )) = b(Y ) for all finitely dominated CW -complexes Y . This S gives
the desired natural pairing P (X,Y ).

(ii) If Y is a finite CW -complex with χ(C) = 0 for all C ∈ π0(Y ), then o(C) =
0 for every C ∈ π0(C) by Lemma 2.18 and Theorem 2.39. Theorem 2.57
implies u(Y ) = 0. We conclude from (i) that u(X × Y ) = P (X,Y )(u(X) ⊗
u(Y )) = 0. Hence X × Y is homotopy equivalent to a finite CW -complex by
Theorem 2.39 and Theorem 2.57.

2.66. We define a functor F : OrF (G) → SubF (G) as follows. It sends an
object G/H to the subgroup H. Consider a G-map f : G/H → G/K. Choose
g ∈ G with f(1H) = gK. Since f is a G-map, we get hgK = hf(1H) =
f(hH) = f(1H) = gK and hence g−1hg ∈ K for all h ∈ H. Hence we
can define F (f) to be the class of the homomorphism c(g−1) : H → K,h 7→
g−1hg. The morphism F (f) does not depend on the choice of g since any
other choice of g is of the form gk for some k ∈ K and we have c((gk)−1) =
c(k−1) ◦ c(g−1) and c(k−1) ∈ inn(K).

Obviously F is bijective on objects and surjective on morphisms.

2.76. Let t ∈ Z/2 be the generator. Let a+ bt ∈ R[Z/2] be an idempotent.
Since (a + bt)2 = (a2 + b2) + (ab + ba)t holds, we conclude a2 + b2 = a and
ab+ ba = b. This implies

(a+ b)2 = a2 + ab+ ba+ b2 = a2 + b2 + ab+ ba = a+ b.

Since by assumption 0 and 1 are the only idempotents in R, we get a+ b = 0
or a+ b = 1.

Suppose that b = −a. Then we get

(2a)2 = 4a2 = 2(a2 + (−a)2) = 2(a2 + b2) = 2a.

Hence 2a = 0 or 2a = 1. Since 2 is not a unit in R we conclude 2a = 0. Hence
we get

a = a2 + b2 = a2 + a2 = 2a2 = (2a)a = 0a = 0.

This implies a+ bt = 0.
It remains to treat the case b = 1− a. Then we get

(a− 1) · (2a− 1) = 2a2− 3a+ 1 = a2 + (1−a)2−a = a2 + b2−a = a−a = 0.
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Because R is an integral domain, we get either (a − 1) = 0 or (2a − 1) = 0.
Since 2 is not invertible in R, the case (2a− 1) = 0 cannot occur and hence
a+ bt = 1.

2.77. (i) The ring homomorphism ε : Z[x]→ Z sending x to 1 induces a ring
homomorphism R → Z. Since 2 is not a unit in Z, the element 2 = 2 · 1 is
not invertible in R.

(ii) Let u ∈ R be an idempotent. We can choose an element of the form
a+ bx+ cx2 ∈ Z[x] with c ∈ {0, 1} such that u = a+ bx+ cx2. Since ε(u) =
a + b + c and all idempotents in Z are trivial, we have either a + b + c = 0
or a+ b+ c = 1. The ring homomorphism δ : Z[x]→ Z[1/2] sending x to 1/2
sends u to a + b/2 + c/4. Since Z[1/2] has only trivial idempotents, either
4a + 2b + c = 0 or 4a + 2b + c = 4 holds. AS this implies c = 0 mod 2
and we have c ∈ {0, 1}, we must have c = 0. This implies a+ b ∈ {0, 1} and
2a+b ∈ {0, 2}. Since a = (a+2b)−(a+b) holds, we conclude a ∈ {−1, 0, 1, 2}.
Hence only the following four cases can occur for (a, b), namely (0, 0), (1, 0),
(2,−2), and (−1, 2). Obviously the first two cases correspond to the trivial
idempotent. Obviously elements u = 2− 2x and u = −1 + 2x are different in
R. They are idempotents since we get in both cases u2−u = 2− 6x+ 4x2 =
2 · (x2 − 3x+ 1) = 0.

(iii) The element x + (1 − x) · t in R[t] is an idempotent by the following
computation

(x+ (1− x) · t)2 = x2 + (1− x)2 + 2 · (x · (1− x)) · t
= x2 + (1− x)2 + 2 · (x · (1− x)) · t
= 2x2 − 2x+ 1 +−2x2 + 2x · t
= x+ (1− x) · t.

2.90. Choose an integer n ≥ 0 and a matrix A ∈Mn(FH) such that A2 = A
and im(rA : FHn → FHn) ∼=FH V . We compute for h ∈ G, if lh : V → V is
given by left multiplication with h

χF (V )(h−1) = trF (lh−1 : V → V )

= trF (lh−1 ◦ rA : FHn → FHn)

=

n∑
i=1

trF
(
FH → FH, u 7→ h−1uai,i

)
= trF

(
FH → FH, u 7→ h−1u

(
n∑
i=1

ai,i

))

Write
∑n
i=1 ai,i =

∑
k∈H λk · k. Then we get
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χF (V )(h−1) := trF

(
FH → FH, u 7→ h−1u

(∑
k∈H

λk · k

))
=
∑
k∈H

λk · trF
(
FH → FH, u 7→ h−1uk

)
=
∑
k∈H

λk ·
∣∣{u ∈ H | u = h−1uk}

∣∣
=
∑
k∈(h)

λk ·
∣∣{u ∈ H | h = uku−1}

∣∣
=
∑
k∈(h)

λk · |CH〈h〉|

= |CH〈h〉| ·
∑
k∈(h)

λk

= |CH〈h〉| ·HSFH(V )(h).

2.94. Suppose that K̃0(FG) is a torsion group. This is equivalent to the

statement that K̃0(FG)⊗Z F is trivial. Lemma 2.18 and Lemma 2.92 imply
that classF (G)f ∼=F F and hence conF (G)f consists only of one element.
Hence every element in G of finite order is trivial.

2.96. Because of the commutative diagram appearing in the proof of
Lemma 2.92, it suffices to prove the claim in the case that G is finite. In

this case one computes that HS(P ) evaluated at the unit e ∈ G is dimF (P )
|H| .

2.99. Show
∑
g∈G HSZG(P )(g) = HSZ(Z⊗ZG P ) = dimZ(Z⊗ZG P ).

2.113. The list of finite groups of order ≤ 9 consists of the cyclic groups Z/n
for n = 1, 2, 3, . . . , 9, the abelian non-cyclic groups Z/2×Z/2, Z/2×Z/2×Z/2,
Z/2 × Z/4, and Z/3 × Z/3, and the following non-abelian groups S3 = D6,
D8 and Q8. Now inspecting Theorem 2.112 gives the answer:

Z/2× Z/2× Z/2, Z/3× Z/3, Q8.

2.115. Theorem 2.114 implies that K0(FD8) is Zn for some n. We conclude
from Theorem 2.88 that n = | conF (D8)f |. A presentation for D8 is 〈x, y |
x4 = 1, y2 = 1, yxy−1 = x−1〉. In particular D8 is a semidirect product Z/4o
Z/2 if Z/4 is the group generated by x and Z/2 the subgroup generated by
y. The elements x2, y, xy, x2y and x3y have order 2, the elements x and x−1

have order four. We have one conjugacy class of elements of order 4, namely
(x) and three conjugacy classes of elements of order two, namely (x2), (y) and
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(yx). As we also have the conjugacy class of the unit, we see | conC(D8)f | = 5.
Since x is conjugated to x−1, we conclude | conR(D8)f | = 5. Since every cyclic
subgroup of order 4 is conjugated to 〈x〉, we get | conQ(D8)f | = 5. This shows

K0(FD8) ∼= Z5 for F = Q,R,C.

2.118. Recall that a hyperbolic group does not contain Z2 as subgroup.
Because of Remark 2.117 it suffices to show for a torsionfree hyperbolic group
G that it is cyclic if there exists an element g different from the unit element
with finite (g). The finiteness of (g) is equivalent to the condition that the
centralizer Cg〈g〉 = {h ∈ G | hg = gh} has finite index in G. Since 〈g〉
is infinite, hyperbolic implies that CG〈g〉 is virtually cyclic. Hence G is a
torsionfree virtually cyclic group and therefore cyclic.

2.123. Write n = pn1
1 pn2

2 . . . pnrr for distinct primes p1, p2, . . . , pr and integers
ni ≥ 1. Then Lemma 2.12 implies

K0(Z/n) =

r∏
i=1

K0(Z/pnii ).

Since Z/pnii is local, the claim follows from Theorem 2.122.

2.126. A counterexample is given byG1 = G2 = Z/3 since K̃0(Z[Z/3]) = {0}
and K̃0(Z[Z/3× Z/3]) 6= {0} by Theorem 2.112.

Chapter 3

3.3. Let f : Rn → Rn be an R-automorphism. This is the same as a
K-linear isomorphism V n → V n. Since V is a K-vector space with infi-

nite countable basis, we can choose a K-isomorphism α :
⊕∞

k=0 V
n
∼=−→ V .

Let a :
⊕∞

k=0 V
n
∼=−→

⊕∞
k=0 V

n be the R-isomorphism given by ⊕∞k=0f .

Let γ : V n ⊕
⊕∞

k=0 V
n
∼=−→
⊕∞

k=0 V
n be the R-automorphism which sends

v ⊕ (v0, v1, v2, . . .) to (v, v0, v1, v2 . . .). One easily checks γ−1 ◦ a ◦ γ = f ⊕ a
Define an R-automorphism b : V → V by α ◦ a ◦ α−1. This is the same as an
R-automorphism b : R→ R. Now one computes

[f ] + [b] = [f ⊕ b] = [f ⊕ a] = [a] = [b]

in K1(R) using the fact that conjugated automorphisms define the same
element in K1(R). This implies [f ] = 0.
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3.7. We get from Theorem 3.6 an isomorphism i : H×/[H×,H×]
∼=−→ K1(H).

Obviously the collection of maps µn defines a homomorphism µ : K1(H)→ R.
The norm of a quaternion z = a + bi + cj + dk is defined by N(z) :=√
a2 + b2 + c2 + d2. Let N : H×/[H×,H×] → R>0 be the induced homo-

morphism of abelian groups. Its restriction to R>0 ⊆ H is the identity. Since
µ1(z) = |z|4 for z ∈ H, it remains to prove that N−1(1) ⊆ [H×,H×].

Since iejθi−1 = e−jθ holds for θ ∈ R and similarly with i, j and k cyclically
permuted, e2iθ1 , e2jθ2 , and e2kθ3 are all commutators. These generate an open
neighborhood of 1 in S3 = N−1(1). Since S3 is connected, the claim follows.

3.18. Take the norm on Z[i] sending a + bi to
√
a2 + b2. It yields an Eu-

clidean algorithm. A direct calculation shows Z[i]× = {1,−1, i,−i}. Now
apply Theorem 3.17.

3.22. This follows from Theorem 3.20 and Theorem 3.21.

3.25. The map φ is induced by the composite

K1(Z[Z/5])
f∗−→ K1(C)

det−−→ C× | |−→ R>0.

Since (1− t− t−1) · (1− t2− t3) = 1, the element 1− t− t−1 is a unit in Z[Z/5]
and defines an element in Wh(Z/5). Its image under φ is (1− 2 · cos(2π/5))
and hence different from 1.

3.36. Let ε∗ be a chain contraction for E∗. Choose for any n ∈ Z an R-
homomorphism σn : En → Dn satisfying pn◦σn = idEn . Define sn : En → Dn

by dn+1 ◦ σn+1 ◦ εn + σn ◦ εn−1 ◦ en.
There are examples of short exact sequences of R-chain complexes whose

boundary operator in the associated long homology sequence is not trivial
and hence for which Hn(p∗) is not surjective for all n ∈ Z.

3.41. This is done by the following sequence of expansions. We describe the
simplicial complexes obtained after each step:

(i) The standard 2-simplex spanned by v0, v1, v2;
(ii) Three vertices v0, v1, v2 and two edges {v0, v1} and {v0, v2};
(iii) The standard 1-simplex spanned by v0, v1;
(iv) The standard 0-simplex given by v0.

3.46. This follows from K̃0(Z) = 0, see Example 2.4, and Wh({1}) = 0, see
Theorem 3.17, together with Theorem 2.39 and Theorem 3.45.

3.49. Choose a non-trivial element in Wh(Z/5), see Exercise 3.25. By Theo-
rem 3.47 we can find an h-cobordism (W,M0,M1) whose Whitehead torsion
is x. Hence it is non-trivial. In order to show that (W ×S3;M0×S3,M1×S3)
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is trivial, we have to show τ(i0 × idS3) = 0 for i0 : M0 → W the inclusion.
This follows from Theorem 3.37 (iv) since both τ(idS3) and χ(S3) vanish.

3.57. By definition RP3 is the lens space L(V ) for the cyclic group Z/2 where
V has as underlying unitary vector space C2 and the generator s of Z/2 acts
on V by − id. The cellular Z[Z/2]-chain complex C∗(SV ) is concentrated in
dimensions 0, 1, 2, 3 and is given by

. . .→ 0→ Z[Z/2]
s−1−−→ Z[Z/2]

s+1−−→ Z[Z/2]
s−1−−→ Z[Z/2]→ 0→ . . . .

Hence R− ⊗Z[Z/2] C∗(SV ) is the R-chain complex

. . .→ 0→ R 2·id−−→ R 0−→ R 2·id−−→ R→ 0→ . . .

It is contractible, a chain contraction γ∗ is given by γ0 = γ2 = 1/2·id and γn =
0 for n 6= 0, 2. Hence (c+γ)odd : R−⊗Z[Z/2]Codd(SV )→ R−⊗Z[Z/2]Codd(SV )
is given by (

2 1/2
0 2

)
: R2 → R2

This implies ρ(RP3;V ) = 4.

3.77. We use induction over n ≥ 0. The case n = 0, i.e., the trivial group,
follows from Example 2.4. The induction step from n to n + 1 is a direct
consequence of Theorem 3.76 (i) since R[Zn][Z] is isomorphic to R[Zn+1].

3.82. Because of Theorem 3.80 (ii) the ring Z[Zn] is regular. Hence we get

from Exercise 3.77 and Lemma 3.85 that K̃0(Z[Zn]) = 0.
To show Wh(Zn) = 0, we use induction over n ≥ 0. The case n = 0, i.e.,

the trivial group, follows from Example 2.4 and Theorem 3.17. The induction
step from n to n+ 1 follows from Theorem 3.81 since Z[Zn][Z] is isomorphic
to Z[Zn+1].

3.92. Obviously (2)
∼=−→ (NZ/2) sending 2 to NZ/2 is an isomorphism of rings

without unit.
Theorem 3.89 together with Lemma 3.91 yields exact sequences

K1(Z)→ K1(Z/n)→ K0((n))→ K0(Z)→ K0(Z/n);

K1(Z[Z/2])→ K1(Z)→ K0((NZ/2))→ K0(Z[Z/2])→ K0(Z),

since the ring homomorphism Z[Z/2] → Z sending a + bt to a − b induces

an isomorphism of rings Z[Z/2]/(NZ/2)
∼=−→ Z. Because of Theorem 3.6 and

Theorem 3.17 the determinant induces isomorphisms
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det : K1(Z)
∼=−→ {±1};

det : K1(Z/n)
∼=−→ Z/n×.

The map Kk(Z[Z/2])→ Kk(Z) is surjective for k = 0, 1 because its composi-
tion with Kk(Z) → Kk(Z[Z/2]) is the identity. The map K0(Z) → K0(Z/n)
is injective since its composition with the map K0(Z/n) → Z, [P ] 7→ |P | is
injective by Theorem 2.4. This implies

K0((n)) ∼=

{
0 if n = 2;

(Z/n)×/{±1} if n ≥ 3;

K0((NZ/2)) = {0};

K̃0(Z[Z/2]) = {0}.

3.96. Because of Remark 3.95 it suffices to show for each two-sided ideal
I ⊆ F that E(F, I) = SL(F, I). This is trivial if I = 0. If I = F , this follows
from Theorem 3.17.

3.101. Consider k ∈ Z with (k, |G|) = 1. Choose l ∈ Z with kl = 1 mod |G|.
Choose a generator t ∈ G. Define elements u, v ∈ ZG.

u = 1 + t+ t2 + · · ·+ tk−1;

v = 1 + tk + t2k + · · ·+ t(l−1)k.

Then (t− 1) · (tk − 1) · uv = uv holds in ZG. One easily checks that (t− 1) ·
(tk − 1) · w = 0 ⇐⇒ w ∈ (NG) for w ∈ ZG. Hence u ∈ ZG/(NG) is a unit
and maps to k under the map j1 : ZG/(NG)→ Z/|G|. Now the claim follows
from the Mayer-Vietoris sequence associated to the diagram (3.97).

3.103. Since K̃0(Z[Z/2]) = 0, see Theorem 2.112 (i), we can assume without
loss of generality |G| ≥ 3.

Suppose d = 1. Then G\X is a connected finitely dominated 1-dimensional
CW -complex. Since its homology is finitely generated and it is homotopy
equivalent to a 1-dimensional CW -complex Y with precisely one 0-cell, the
CW -complex Y is finite.

Suppose that d ≥ 2. Then d is odd by Theorem 3.102 (i). The unit sphere S
in C(d+1)/2 with the G-action for which the generator acts by multiplication
with exp(2πi/|G|) is a free d-dimensional G-homotopy representation such
that G\S is compact and hence finite. By elementary obstruction theory
there exists a G-map X → S. Now apply Theorem 2.39 (i), Lemma 3.102 (ii)
and Exercise 3.101.
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3.111. Obviously the image of the map dirlimH∈SubFIN (G×Z)K1(RH) →
K1(R[G×Z]) is contained in the image of the map K1(RG)→ K1(R[G×Z]).
Theorem 3.72 implies K0(ZG) = {0} if K1(RG)→ K1(R[G×Z]) is surjective.

If R is a commutative integral domain, K0(R) and hence K0(RG) cannot
be zero. Namely, if F is its quotient field, the homomorphism K0(R) →
Z, [P ] 7→ dimF (F ⊗R P ) is a well-defined surjective map.

3.118. This follows from Theorem 3.115 and Theorem 3.116 (iv).

3.123. A counterexample is given by G1 = G2 = Z/3 since Wh(Z/3) = {0}
and Wh(Z/3× Z/3) 6= {0} by Theorem 3.116.

Chapter 4

4.5. Apply Remark 4.4 to the obvious pullback of rings

R× S
prR //

prS

��

R

��
S // {0}

Or, if one does not like the ring {0} consisting of one element, use Lemma 3.9
and the Bass-Heller-Swan decomposition 4.3.

4.9. This follows by induction over k using Theorem 4.7.

4.11. The exact Mayer-Vietoris sequence appearing in Example 4.10 yields
for a prime p the exact sequence

K1(Z[Zk])⊕K1(Z[exp(2πi/p)][Zk])→ K1(Fp[Zk])

→ K̃0(Z[Z/p× Zk])→ K̃0(Z[exp(2πi/p)])→ 0

We have K̃0(Z[exp(2πi/3)]) = {0} by Theorem 2.105 and Example 2.106.
Hence it suffices to show that the map K1(Z[exp(2πi/3)][Zk])→ K1(F3[Zk])
is surjective. Because of the Bass-Heller-Swan decomposition 4.3 it suffices to
prove the surjectivity of Ki(Z[exp(2πi/3)]) → Ki(F3) for i = 0, 1. The case
i = 0 follows from the fact that K0(F3) is generated by [F3]. It remains to
treat i = 1. Let f : Z[exp(2πi/3)] → F3 be the ring homomorphism which is
uniquely determined by the property that it sends exp(2πi/3) to 1. Because of
Theorem 3.17 it suffices to show that for every unit u in F3 we can find a unit
u′ in Z[exp(2πi/3)] which is mapped to u under f . Since± exp(2πi/3) is a unit

in Z[exp(2πi/3)] and f(± exp(2πi/3)) = ±1, we conclude K̃0(Z[Z/3×Zk]) =
0 for k ≥ 0.
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Now all other claims follow from Theorem 4.3.

4.13. The pullback of rings appearing in Example 4.12 yields a pullback of
rings

Z[Z/6× Zk]
i1 //

i2

��

Z[Z/3× Zk]

j1

��
Z[Z/3× Zk]

j2
// (F2 × F4)[Zk]

where j2 = j1. Put j := j1 = j2. We obtain from Remark 4.4 the exact
sequence

K1(Z[Z/3× Zk])⊕K1(Z[Z/3× Zk])
j∗⊕j∗−−−−→ K1((F2 × F4)[Zk])

→ K0(Z[Z/6× Zk])→ K0(Z[Z/3]× Zk)⊕K0(Z[Z/3× Zk])

j∗⊕j∗−−−−→ K0((F2 × F4)[Zk])→ K−1(Z[Z/6× Zk])→ · · ·

The following facts are consequences of Theorem 3.80 (i), Exercise 4.5, Exer-
cise 4.11, and Theorem 4.7. We have Kn(Z[Z/3×Zk]) = Kn((F2×F4)[Zk]) =

{0} for n ≤ −1 and K̃0(Z[Z/3× Zk]) = {0}. We can identify the map

j∗ ⊕ j∗ : K0(Z[Z/3× Zk])⊕K0(Z[Z/3× Zk])→ K0((F2 × F4)[Zk])

with the map j∗⊕j∗ : K0(Z[Z/3])⊕K0(Z[Z/3])→ K0(F2×F4) which in turn
can be identified the map Z⊕Z→ Z⊕Z sending (a, b) to (a+ b, a+ b). The
map

j∗ ⊕ j∗ : K1(Z[Z/3× Zk])⊕K1(Z[Z/3× Zk])→ K1((F2 × F4)[Zk])

can be identified with the direct sum of the map j∗ ⊕ j∗ : K1(Z[Z/3]) ⊕
K1(Z[Z/3]) → K1(F2 × F4) with k fold direct sum of copies of the map
j∗ ⊕ j∗ : K0(Z[Z/3])⊕K0(Z[Z/3])→ K0(F2 × F4). In order to prove

Kn(Z[Zk × Z/6]) ∼=


Zk+1 for n = 0;

Z for n = −1;

0 for n ≤ −2,

it remains to show that the map j∗ : K1(Z[Z/3 × Zk]) → K1((F2 × F4)[Zk])
is surjective.

Recall that we established an identification of rings F2⊗ZZ[Z/3] ∼= F2×F4

in Example 4.12. Because of Lemma 3.9 and Theorem 3.17 the determinant

induces an isomorphism K1(F2 ⊗Z Z[Z/3])
∼=−→ (F2 ⊗Z Z[Z/3])×. Hence it

suffices to show that for every unit u in F2 ⊗Z Z[Z/3] we can find a unit
u′ in Z[Z/3] which is mapped under the obvious projection pr : Z[Z/3] →
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F2 ⊗Z Z[Z/3] to u. There are three units in F2 ⊗Z Z[Z/3] ∼= F2 × F4, namely,
1⊗ 1, 1⊗ t, and 1⊗ t2. Obviously they are images of units under pr.

We conclude NpKn(Z[Z/6 × Zk]) for n ≤ 0, p ≥ 1 and k ≥ 0 from
Theorem 4.3 since K0(Z[Z/6]) ⊕K−1(Z[Z/6])k−1 ∼= Zk ∼= K0(Z[Zk × Z/6]),
K−1(Z[Z/6]) ∼= K−1(Z[Zk × Z/6]) and Kn(Z[Zk × Z/6]) = {0} for n ≤ −1
holds.

4.15. This follows from Lemma 4.14 since the assumptions imply that
Km(R)→ Km(R[Zn]) induced by the inclusion R→ R[Zn] is bijective.

4.19. Because of Theorem 4.7. it suffices to prove that RG is regular, pro-
vided that R is regular, G is a finite group, and the order |G| of G is invertible
in R. Since R is Noetherian and G is finite, RG is Noetherian. Let M be any
finitely generated RG-module. Then the RG-module M is a direct summand
in the RG-module M ′ := RG ⊗R M where g acts on x ⊗m by gx ⊗m. So
M ′ does not see the G-action on M . The injection M → M ′ is given by
m 7→ 1

|G| ·
∑
g∈G g ⊗ g−1m and the retraction M ′ →M by g ⊗m 7→ gm. Let

P∗ be a finite projective R-resolution of the finitely generated R-module M .
Then P ′∗ is a finite RG-resolution of M ′. Since M is a direct RG-summand
in M ′, it possesses a finite projective RG-resolution as well.

Chapter 5

5.6. This follows from Lemma 3.11, Theorem 3.12 and Definition 5.1.

5.8. This follows from Theorem 5.7 and the fact that H2(E(R)) is the kernel
of the universal central extensions φR : St(R) → E(R) of the perfect group
E(R).

5.17. Obviously the matrices d1,2(u) and d1,3(v) represent the trivial element
in K1(R). Hence they belong to E(R) by Lemma 3.11 and Theorem 3.12.

Let d̃1,2(u) and d̃1,3(v) be fixed preimages of d1,2(u) and d1,3(v) under the
canonical map φR : St(R) → E(R). Then any other lifts are of the form

d̃1,2(u) ·x and d̃1,3(v) ·y for elements in the center of St(R). One easily checks

[d̃1,2(u), d̃1,3(v)] = [d̃1,2(u) · x, d̃1,3(v) · y].

5.20. We get K2(Z) ∼= Z/2 with generator {−1,−1} from Theorem 5.18 (vi).

5.23. We obtain Wh2(Z/n) = 0 for n = 1, 2, 3, 4 from Section 5.8.
By Theorem 3.115 the Whitehead group Wh(Z/n) vanishes if and only if

n = 1, 2, 3, 4, 6. Theorem 2.112 (i) implies K̃0(Z[Z/n]) = 0 for n = 1, 2, 3, 4.
We conclude Ki(Z[Z/n]) = 0 for n = 1, 2, 3, 4 and all i ≤ −1 from The-



Solutions of the Exercises 749

orem 4.22 (i) and (v) We conclude K−1(Z[Z/6]) 6= 0 from Example 4.12.
Hence the answer is n = 1, 2, 3, 4.

Chapter 6

6.1. Let Z be acyclic. Since H0(Z) is the free abelian group with π0(Z) as
Z-basis, Z is path connected. Since the classifying map f : Z → Bπ for π =
π1(Z) is 2-connected, it induces by the Hurewicz Theorem an isomorphism
H1(Z)→ H1(π) and an epimorphism H2(Z)→ H2(π).

6.7. If P1 and P2 are two perfect subgroups of G, then the subgroup 〈P1, P2〉
generated by P1 ∪ P2 is again a perfect subgroup of G.

6.8. Recall that E(R) = [GL(R),GL(R)] by Lemma 3.11. We know already
because of Theorem 5.7 that E(R) = [GL(R),GL(R)] is perfect since only
a perfect group possesses a universal central extension. Since the image of
a perfect subgroup under an epimorphism of groups is perfect and the only
perfect subgroup of the abelian group GL(R)/[GL(R),GL(R)] is the trivial
group, every perfect subgroup of GL(R) is contained in E(R).

6.10. Since BGL(R) and hence BGL(R)+ is path connected, this follows
directly from the definitions in the case n = 0. If n = 1, this follows from
Theorem 3.12, Theorem 6.5 (iv), and Exercise 6.8.

6.22. This follows by induction over k from Theorem 4.3, Theorem 4.22 (i)
and Theorem 6.21.

6.26. We conclude from Example 2.4 and Theorem 3.17 that the sequence
looks like

{±1} j1−→ Q× ∂1−→
⊕
p

Z i0−→ Z j0−→ Z→ 0

where p runs through all prime numbers, that j1 is the inclusion and that j0
the identity. Hence the map i0 is the zero map. The map ∂1 sends a rational
number of the shape ±pn1

1 · p
n2
2 · · · · · p

nk
k for pairwise distinct primes p1, p2,

. . . , pk and integers n1, n2, . . . , nk to the element (np)p whose entry for
p = pi is ni for i = 1, 2, . . . , k and is 0 for any prime p which is not contained
in {p1, p2, . . . , pk}.

6.27. We get from Corollary 6.25 the exact sequence for n ≥ 1.⊕
p

Kn(Fp)→ Kn(Z)→ Kn(Q)→
⊕
p

Kn−1(Fp).

By Theorem 6.23 Kn(Fp) = 0 for n = 2k for k ≥ 1, and Kn(Fp) ⊗Z Q = 0
holds for all n ≥ 1.
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6.31. From the analogue of the sequence (6.28) for KTOP and the assumption
that k is odd, we conclude

KTOP
n (R;Z/k) ∼=

{
Z/k n ≡ 0 mod 4;

{0} n = 1, 2, 3 mod 4.

We know Kn(R) = {0} for n ≤ −1 from Theorem 4.7. Now the se-
quence (6.28) and Theorem 6.30 imply

Kn(R;Z/k) ∼=


Z/k n ≥ 0 and n ≡ 0 mod 4;

{0} n ≥ 0 and n = 1, 2, 3 mod 4;

{0} n ≤ −1.

6.38. Generators for K0(A) are isomorphism classes of objects. Relations
are [P1] + [P2] = [P1 ⊕ P2] for any objects P1, P2.

The generators of K1(A) are conjugacy classes of objects of A. Relations
are [g ◦ f ] = [g] + [f ] for any automorphisms f, g of the same object and[(
f1 f0

0 f2

)]
= [f1] + [f2] for any automorphisms fi : Pi → Pi for i = 1, 2 and

a any morphism f0 : P2 → P1.
The functor S induces homomorphism Si : Ki(A) → Ki(A) for i = 1, 2.

The existence of the natural transformation T implies that the two homomor-
phism Si+idKi(A) and Si coincide. Hence idKi(A) is the zero-homomorphism
which means Ki(A) = 0.

6.39. Let A be the additive category of countably generated projective
R-modules. Let S be the functor sending an object P to (P ⊕ P ⊕ · · · ).
Then we obtain a natural transformation T : id⊕S → S by rebracketing, i.e.
(P ⊕ P ⊕ · · · ) = P ⊕ (P ⊕ P ⊕ · · · ). Hence A is flasque and we can apply
Theorem 6.37 (iii).

6.46. This follows directly from the resolution Theorem 6.45.

6.51. Since the rings Z, Z[1/p], and Fp are regular, this follows from Exam-
ple 6.50 using Exercise 6.46.

6.55. Because of Conjecture 6.53 it suffices to construct the corresponding
sequence for H∗(−; K)

· · · → Hn(BG0; K(R))→ Hn(BG1; K(R))⊕Hn(BG2; K(R))

→ Hn(BG; K(R))→ Hn−1(BG0; K(R))

→ Hn−1(BG1; K(R))⊕Hn−1(BG2; K(R))→ · · · .
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One can arrange that BGi is a sub CW -complex of BG and BG = BG1∪BG2

and BG0 = BG1 ∩ BG2. Now the desired sequence above is the associated
Mayer-Vietoris sequence.

6.56. Because of Conjecture 6.53 it suffices to construct the corresponding
sequence for H∗(−; K)

· · · → Hn(BG; K(R))
id−φ∗−−−−→ Hn(BG; K(R))→ Hn(B(Goφ Z); K(R))

→ Hn−1(BG; K(R))
id−φ∗−−−−→ Hn−1(BG; K(R))→ · · · .

The automorphism φ induces a homotopy equivalence Bφ : BG→ BG. The
mapping torus of Bφ is a model for B(Goφ Z). Now the desired long exact
sequence comes from the Wang sequence associated to the fibration BG →
B(Goφ Z)→ S1.

6.60. If R is regular, then R[t] is regular. There is an obvious identification
(R[t])G = (RG)[t]. Hence we obtain a commutative diagram

Hn(BG; K(R))
∼= //

��

Kn(RG)

��
Hn(BG; K(R[t])) ∼=

// Kn((RG)[t])

where the vertical arrows are induced by the canonical inclusions R → R[t]
and RG→ (RG)[t]. The horizontal arrows are bijective by assumption. Since
R is regular, the left vertical arrow is bijective because of Theorem 6.16 (ii)
and the Atiyah-Hirzebruch spectral sequence. Hence also the right vertical
arrow is bijective. This implies NKn(RG) = 0 for all n ∈ Z.

6.63. Consider the following commutative diagram
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Niln

in⊕ln
��

Kn(RG0)⊕Kn(RG1)⊕Kn(RG2)

Kn(i0)⊕Kn(i1)⊕Kn(i2)

��
α

ww
0 // ker(pn)

ι //

β

��

Kn(RG)

∂n

��

pn // NKn
//

0⊕id

��

0

0 // Kn−1(RG0)
fn−1◦(1,−1)//

0⊕Kn−1(j1)⊕−Kn−1(j2) ''

Niln−1

in−1⊕ln−1

��

in−1⊕π// Kn−1(RG0)⊕NKn
// 0

Kn−1(RG0)⊕Kn−1(RG1)⊕Kn−1(RG2)

Kn−1(i0)⊕Kn−1(i1)⊕Kn−1(i2)

��
Kn−1(RG).

Here Niln stands for the n-homotopy group of Nil(RG0;RG1, RG2), NKn

stands for NKn(RG0;RG1, RG2), the letters ι and π denote obvious inclu-
sions or projections. The maps i∗, l∗, and f∗ are induced by the map of spectra
i, l, and f . The middle column is the long exact sequence associated to the
homotopy cartesian square appearing in Theorem 6.61 (i) with boundary op-
erator ∂n. Theorem 6.61 implies that the two horizontal short sequences are
(split) exact and the diagram (without the dashed arrows) commutes.

Now an easy diagram chase shows that exists dotted arrows uniquely de-
termined by the property that the diagram remains commutative.

Define the desired long exact Mayer-Vietoris sequence by the homomor-
phism α′ : K0(RG1) ⊕ Kn(RG2) → ker(pn) which is the restriction of α,
the homomorphism β, and the homomorphism (j1)∗ ⊕ (j2)∗ : Kn(RG) →
Kn(RG1)⊕Kn(RG2). We leave it to the reader to check using the diagram
above that this sequence is indeed exact.

6.73. There is an obvious projection pr : R→ R0. Since pr ◦i = idR0
for the

inclusion i : R0 → R, it suffices to prove that KHn(i)◦KHn(pr) : KHn(R)→
KHn(R) is surjective. Define a map ϕ : R → R[t] by sending rn ∈ Rn to
rn · tn. For k = 0, 1 let evk : R[t] → R be the ring homomorphism given
by putting t = 0 for k = 0 and t = 1 for k = 1. Then ev1 ◦ϕ = idR and
KHn(evk) is bijective for k = 0, 1 and n ∈ Z by homotopy invariance. Hence
KHn(ev0) and KHn(ϕ) are isomorphisms. Since ev0 ◦ϕ agrees with i◦pr, the
claim follows.

Chapter 7
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7.7. The composite of two cofibrations is again a cofibration. The same is
true for weak equivalences. Hence coC and wC are indeed subcategories of C.

Axioms (i), (ii) and (iv) appearing in Definition 7.5 are obviously satisfied.
Consider chain maps i∗ : A∗ → B∗ and f∗ : A∗ → C∗ of finite projective

R-chain complexes such that in : An → Bn is split injective for all n ∈ Z.
Define D∗ to be the cokernel of the chain map i∗ ⊕ f∗ : A∗ → B∗ ⊕ C∗.
Then we obtain a short exact sequence of finite projective R-chain complexes

0 → A∗
i∗⊕f∗−−−−→ B∗ ⊕ C∗

pr∗−−→ D∗ → 0 since for every n ≥ 0 the sequence of

R-modules 0→ An
in⊕fn−−−−→ Bn ⊕ Cn

prn−−→ Dn → 0 is split exact because in is
split injective. One easily checks that we obtain a pushout of finite projective
R-chain complexes

A∗
i∗ //

f∗

��

B∗

pr∗ |B∗
��

C∗
pr∗ |C∗ // D

such that the lower horizontal arrow is a cofibration. Hence axiom (iii) is
true.

Axiom (v) follows from the long exact homology sequences associated to
a short exact sequence of R-chain complexes and the Five Lemma.

7.19. This follows the property of the map i of (7.14) that πn(i) is bijective
for n ≥ 1, from Remark 7.15, and from Theorem 7.18, since Kn(Z) vanishes
for n ≤ −1 and is Z for n = 0.

7.23. Since Wh2(Z) is trivial, one easily checks that under the isomor-
phism (7.22) the kernel of L2(S1) is isomorphic to NA2({•})⊕NA2({•}) and
hence non-trivial.

7.28. We obtain from the fibration (7.24) the exact sequence

π1(BG+ ∧A({•}))→ π1(A(BG))→ π1(Wh(BG))

→ π0(BG+ ∧A({•}))→ π0(A(BG)).

Since A({•}) is connected, the Atiyah-Hirzebruch spectral sequence shows

that π0({•}+ ∧ A({•}))
∼=−→ π0(BG+ ∧ A({•})) is bijective. Since the ho-

momorphism π0({•}+ ∧ A({•})) → π0(BG+ ∧ A({•})) is split injective, the
map π0(BG+ ∧A({•}))→ π0(A(BG)) is injective. Using diagram (7.25), we
obtain a short exact sequence

H1(Bπ1(BG); K(Z))→ K1(Zπ1(BG))→ π1(Wh(BG))→ 0.

Again by the Atiyah-Hirzebruch spectral sequence we obtain an isomor-
phism H1(Bπ1(BG); K(Z)) ∼= G/[G,G] × {±1}. Hence the image of the
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map H1(Bπ1(BG); K(Z)) → K1(Zπ1(BG)) is the subgroup of K1(ZG) =
K1(Zπ1(BG)) given by the trivial units {±g | g ∈ G}. This implies
Wh(G) ∼= π1(Wh(BG)).

7.33. Suppose such M exists. The long exact homotopy sequence of the
fibration (7.24) looks like

· → πn(M+ ∧A({•}))→ An(M)→Whn(M)→ · · · .

The splitting (7.31) yields isomorphisms

An(M) ∼= WhDIFF
n (M)⊕ πn(Σ∞M).

Rationally the Atiyah-Hirzebruch sequence always collapses. Hence we obtain
from Theorem 6.24 and Theorem 7.18 isomorphisms

πn(M+ ∧A({•}))⊗Z Q ∼= Hn(M ;Q)⊕
⊕
k≥1

Hn−4k−1(M ;Q).

Hence we obtain the long exact sequence of Q-modules

· →WhPL
n+1(M)⊗Z Q→ Hn(M ;Q)⊕

⊕
k≥1

Hn−4k−1(M ;Q)

→ Hn(M ;Q)⊕WhDIFF
n (M)⊗Z Q→WhPL

n (M)⊗Z Q→ · · ·

Since by assumption the map WhDIFF
n (M)⊗ZQ→Whn(M)⊗ZQ is bijective

for n ≥ 0, we obtain for every n ≥ 0 isomorphisms

Hn(M ;Q)⊕
⊕
k≥1

Hn−4k−1(M ;Q) ∼= Hn(M ;Q).

This implies for every n ≥ 0 and k ≥ 1 that Hn−4k−1(M ;Q) = 0, a contra-
diction to H0(M ;Q) = Q.

Chapter 8

8.3. Test

Chapter 9

9.6. It is straightforward to check that e(P ) is a well-defined R-homomor-
phism, compatible with direct sums and natural. It remains to show that it
is bijective for a finitely generated projective R-module P . Let Q be another
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finitely generated projective R-module. Since e(P ⊕Q) is up to isomorphism
e(P )⊕ e(Q), the map e(P ⊕Q) is bijective if and only if both e(P ) and e(Q)
are bijective. Since we can find Q such that P⊕Q ∼= Rn, it suffices to consider
the case P = R which follows from a direct computation.

9.14. Let bi(M) := dimR(Hi(M ;R)) be the i-th-Betti number. Poincaré
duality implies bi(M) = b4k−i(M) for all i ≥ 0. We conclude directly from the
definition of the signature that sign(M) ≡ b2k(M) mod 2. We get modulo 2

χ(M) ≡
4k∑
i=0

(−1)i · bi(M)

≡
2k−1∑
i=0

(−1)i · bi(M) + b2k(M) +

4k∑
i=2k+1

(−1)i · bi(M)

≡
2k−1∑
i=0

(−1)i · bi(M) + b2k(M) +

4k∑
i=2k+1

(−1)i · b4k−i(M)

≡
2k−1∑
i=0

(−1)i · bi(M) + b2k(M) +

2k−1∑
i=0

(−1)i · bi(M)

≡ b2k(M)

≡ sign(M).

9.16.

(i) If n is odd, then dim(CPn) is not divisible by four and hence sign(CPn) = 0.
If n is even, then the intersection pairing of CPn looks like Z × Z →
Z (a, b) 7→ ab and hence sign(CPn) = 1.

(ii) Since STM is the boundary of the total space DTM of the disk tangent
bundle, Theorem 9.15 (i) implies sign(STM) = 0.

(iii) We get sign(M) = 0 from assertions (v) and (vi) of Theorem 9.15.

9.23. Note in the situation under consideration that ε = 1 and the involu-
tion on Z is the trivial involution. Hence the projection pr : R→ Qε(R) is the
identity. We conclude from Remark 9.21 that (P, λ) admits a quadratic refine-
ment if and only if there exists a map µ : P → Z such that µ(nx) = n2µ(x)
holds for all n ∈ Z and x ∈ P , µ(x+ y)−µ(x)−µ(y) = λ(x, y) is true for all
x, y ∈ P and λ(x, x) = 2 · µ(x) is valid for all x ∈ P . Obviously the existence
of µ implies λ(x, x) to be even for all x ∈ P . Suppose that λ(x, x) to is even
for all x ∈ P . Then we can define µ(x) := λ(x, x)/2 and µ has all desired
properties.
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9.27. Show that the diagonal in P⊕P is a Lagrangian for the non-degenerate
ε-quadratic form (P ⊕ P,ψ ⊕−ψ) and then apply Lemma 9.26.

9.28. This follows from Lemma 9.11, Remark 9.24, and Lemma 9.26.

9.31. A non-degenerate quadratic form on V is a map µ : V → F2 such that
µ(0) = 0, we obtain a non-degenerate symmetric pairing λ : V × V → F2

by λ(p, q) = µ(p + q) + µ(p) + µ(q) and that λ(p, p) = 0 for all p ∈ V , see
Remark 9.21. Fix a basis {e1, e2} for V . Then λ(ei, ej) = 1 for i 6= j, since λ
is non-degenerate and we already know λ(e1, e1) = λ(e2, e2) = λ(e1 +e2, e1 +
e2) = 0 and λ(e1, e2) = λ(e2, e1). This implies that either µ(e1) = µ(e2) =
µ(e1 + e2) = 1 or that precisely one of the elements µ(e1), µ(e2), µ(e1 + e2)
is 1. By possibly replacing the basis {e1, e2} by the basis {e1, e1 + e2} or
{e2, e1 + e2}, we can arrange that either µ(e1) = µ(e2) = µ(e1 + e2) = 1 or
that µ(e1) = µ(e2) = 0 and µ(e1 + e2) = 1. The first one has Arf invariant
1, the second 0. Hence there are up two isomorphism precisely two non-
degenerate quadratic forms on V .

9.44. By the definition of the selfintersection number it suffices to show
µ(f) 6= 0 in Qε(Zπ). The map Zπ → Z/2 sending

∑
g∈π ng · g to

∑
g∈G ng

induces a map of abelian groups Qε(Zπ)→ Z/2. Since the set of double points
consists of precisely one element, it sends µ(f) to 1 and hence µ(f) 6= 0.

9.45. Consider the inclusion i : S1 → S1×S1 onto the first factor. One easily
changes it locally by to an immersion j : S1 → S1 × S1 in general position
with exactly one double point such that i and j are homotopic. We conclude
from Exercise 9.44 that i and j are not regularly homotopic.

9.52. Denote by Cn−∗(X̃)untw the Zπ-chain complex which is analogously

defined as Cn−∗(X̃), but now with respect to the untwisted involution.

Its n-th homology Hn(Cn−∗(X̃)untw) depends only on the homotopy type
of X. If X carries the structure of a Poincaré complex with respect to
w : π1(X) → {±1}, then the Poincaré Zπ-chain homotopy equivalence in-

duces a Zπ-isomorphism Hn(Cn−∗(X̃)untw) ∼= Zw. Thus we rediscover w

from Hn(Cn−∗(X̃)untw).

9.60. This follows from fact that two embeddings M → Rn+m for large
enough m are diffeotopic.

9.69. It suffices to show that f is l-connected for l = k + 1, k + 2, . . .. By
assumption this holds for l = k + 1. In the induction step f is l-connected
for some l ≥ k + 1 and we have to show that f is (l + 1)-connected, i.e.,
πl+1(f) = 0. By Lemma 9.64 (ii) which applies also to the case where M

is only a finite Poincaré complex, it suffices to show that Kl(M̃) = 0. By
Lemma 9.64 (i), which applies also to the case where M is only a finite
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Poincaré complex, it suffices to show Kn−l(M̃) = 0. Since f is (k + 1)-

connected and n− l ≤ k, Kn−l(M̃) = 0 vanishes by Lemma 9.64 (ii).

9.75. Let f : M → S4k+2 be any map of degree one. Choose an embedding
i : M → R4k+2+m for large enough m. Then the given stable trivialization of
the tangent bundle defines a trivialization of the normal bundle. It can be
viewed as bundle map f : µ(i) → Rm covering f . Thus we obtain a normal
map of degree one (f, f). It defines a surgery obstruction σ(f, f) ∈ L4k+2(Z).
Since L4k+2(Z) is isomorphic to Z/2, this is the same as an element α(M) ∈
Z/2. It is independent by the choice of f and f and depends only on the stably
framed bordism class of M since by a theorem due to Hopf the homotopy
class of f is uniquely determined by its degree and the surgery obstruction
is a invariant under normal bordism.

9.100. Because of Theorem 9.99 (ii) we can assume that F : W → X× [0, 1]
is a simple homotopy equivalence. We conclude from Theorem 3.37 (iii) that
both inclusions M → W and N → W are simple homotopy equivalence.
By Theorem 3.47 there exists a diffeomorphism W → M × [0, 1]. Hence the
restriction of this diffeomorphism to N is a diffeomorphism N →M ×{1} =
M .

9.107. This follows from the various Rothenberg sequence since the Z/2-
Tate cohomology of any Z[Z/2]-module is annihilated by multiplication with
2.

9.112. Since Wh(Z), K̃0(Z[Z]) and Kn(Z[Z]) for n ≤ −1 vanish, see Exam-
ple 2.4, Theorem 3.17 and Theorem 4.7, the decoration does not matter by
Theorem 9.106. We conclude from (9.109) and the computations of Ln(Z) in
Theorem 9.29, Theorem 9.32 and Theorem 9.82:

Ln(Z[Z]) ∼= Ln−1(Z)⊕ Ln(Z) ∼=

{
Z n ≡ 0, 1 mod 4;

Z/2 n ≡ 2, 3 mod 4.

9.115. We conclude from Conjectures 3.110, 4.18, and 9.114 and Theo-
rem 9.106 that the decoration does nor matter. If g = 0, π1(Fg) is trivial

and hence L
〈−∞〉
n (Z[π1(Fg)]) = L

〈−∞〉
n (Z). Suppose g ≥ 1. Then Fg itself is a

model for Bπ1(Fg). Because of Conjecture 9.114 we get

Hn(Fg; L
〈−∞〉(Z)) ∼= L〈−∞〉n (Z[π1(Fg)]).

Now we use the Atiyah-Hirzebruch spectral sequence to computeHn(Fg; L
〈−∞〉(Z)).

This is rather easy since Fg is 2-dimensional, the edge homomorphism which

describes Hn({•}; L〈−∞〉) → Hn(Fg; L
〈−∞〉) is split injective and L

〈−∞〉
n (Z)
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is Z if n ≡ 0 mod 4, Z/2 if n ≡ 0 mod 4, and {0} otherwise. The result is

L〈−∞〉n (Z[π1(Fg)]) ∼=


Z⊕ Z/2 n ≡ 0 mod 4;

Z2g n ≡ 1 mod 4;

Z⊕ Z/2 n ≡ 2 mod 4;

(Z/2)2g n ≡ 3 mod 4.

9.142. Because of Poincare duality it suffices to show f∗(L(M) ∩ [M ]Q) =
L(N)∩ [N ]Q. But this follows from the Novikov Conjecture 9.137 because of
Remark 9.141 since we can put N = BG.

9.148. This follows from the long exact homotopy sequence associated to a
fibration.

9.149. Let C ⊆ π1(X) be any finite cyclic subgroup. Since the universal

covering X̃ is a model for Eπ1(X), it is also a model for EC after restricting

the group action. Hence C\X̃ is a finite dimensional CW -model for BC.
This implies that the group homology Hn(C) of C is trivial in dimensions
n > dim(X). It is known that the homology of C is C in all odd dimensions.
Hence C must be trivial. This shows that π1(X) is torsionfree.

9.151. The top homology group Hn(M ;F2) with F2-coefficients of any closed
n-dimensional manifold M is known to be isomorphic to F2. If M is simply
connected and aspherical it is homotopy equivalent to the one-point-space
{•}. This implies n = 0 and hence M = {•} for a simply connected aspherical
manifold.

9.152. See [645, Lemma 3.2].

9.163. See Example 3.62.

9.164. Let k and n be natural numbers such at least one of them is even.
Then Sk and Sn are topologically rigid but Sk×Sn is not. See Remark 9.162.

9.175. Let Gk be a nk-dimensional Poincaré duality group for k = 0, 1. Let
P k∗ be a nk-dimensional finite projective Z[Gk]-resolution of the trivial Z[Gk]-
module Z. Then P 0

∗ ⊗ZP
1
∗ is a (n0 +n1)-dimensional finite projective Z[G0×

G1]-resolution of the trivial Z[G0 × G1]-module Z. The obvious chain map
given by the tensor product over Z and the obvious identification Z[G0] ⊗Z
Z[G1] = Z[G0 ×G1]
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homZ[G0](P
0
∗ ,Z[G0])⊗Z homZ[G1](P

1
∗ ,Z[G1])

∼=−→ homZ[G0×G1]

(
P 0
∗ ⊗Z P

1
∗ ,Z[G0 ×G1]

)
is an isomorphism of Z-cochain complexes. Since homZ[G0](P

0
∗ ,Z[G0]) is a free

Z-cochain complex whose cohomology is concentrated in dimension nk and
given there by Z, there exists a Z-chain homotopy equivalence from [nk](Z)
which is the Z-chain complex concentrated in dimension nk and having Z as
nk-th chain module, to homZ[G0](P

0
∗ ,Z[G0]). Hence homZ[G0](P

0
∗ ,Z[G0]) ⊗Z

homZ[G1](P
1
∗ ,Z[G1]) is Z-chain homotopy equivalent to [n0](Z) ⊗ [n1](Z) ∼=

[n0 +n1](Z). This implies that Hn
(
homZ[G0×G1](P

0
∗ ⊗Z P

1
∗ ,Z[G0×G1])

)
is Z

in dimension (n0 + n1) and trivial otherwise. Hence G0 ×G1 is a (n0 + n1)-
dimensional Poincaré duality group.

9.190. This follows from Theorem 9.168, Theorem 13.29 (iv), and Theo-
rem 16.1 (ia).

Chapter 10

10.3. Since

χ(X) =
∑
n≥0

(−1)n · dimQ(Hn(X;Q)) =
∑
n≥0

(−1)n · dimQ(Hn(X;Q))

holds, this follows directly from (10.1) and (10.2).

10.17. We obtain from (10.16) an isomorphism

K∗G(X)⊗Z Q ∼=
∏

C∈C(G)

H∗(XC/G;Q(ζC)).

Now use the fact dimQ(Q(ζC)) = ϕ(|C|).

10.21. Without loss of generality we can assume thatKH
j (Y,B) is torsionfree

for all j ∈ Z. Now check that we obtain two G-homology theories on pairs of
finite proper G-CW -complexes (X,A) by putting

H∗G(X,A) :=
⊕
i+j=n

KG
i (X,A)⊗Z K

H
j (Y,B);

K∗H(X,A) := K∗G×H((X,A)× (Y,B)).

(When one wants to check the exactness of the long exact sequence of a
pair for H∗G, we need that assumption that KH

i (Y,B) is torsionfree and
hence the functor − ⊗Z KH

j (Y,B) is exact for all j ∈ Z). The exter-
nal multiplication defines a natural transformation T ∗G : H∗G → K∗G of G-
cohomology theories for pairs of finite proper G-CW -complexes. One checks
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that T ∗G(G/H) : H∗G(G/H) → K∗G(G/H) is bijective for all finite subgroups
H ⊆ G. Now prove by induction over the number of equivariant cells using
the Five Lemma, the long exact sequence of a pair, excision and G-homotopy
invariance that TnG(X,A) is bijective for all pairs of finite proper G-CW -
complexes (X,A) and all n ∈ Z.

10.23. This follows from the long exact sequence of the pair (DE,SE), the
Thom isomorphisms (10.22) and the commutativity of the following diagram
which is a consequence of the naturality of the product

K∗G(X)

K∗G(pDE) ∼=
��

−∪e(p) // K∗G(X)

K∗G(pDE)∼=
��

K∗G(DE)
−∪K0

G(j)(λE) // K∗G(DE)

K∗G(DE)
−∪λE
∼=

//

id ∼=

OO

K∗G(DE,SE)

K∗G(j)

OO

10.29. If G contains an element g of order ≥ 3, then show ||xx∗|| 6= ||x||2
for x = g + 1 − g−1. If G contains an element g of order 2, then show
||xx∗|| 6= ||x||2 for x = g + i ∈ L1(G,C). Finally one checks directly that
L1(G,F ) is a C∗-algebra if G is trivial or if G has order 2 and F = R.

10.35. Since K is the colimit colimn→∞Mn(C), we conclude from Morita
equivalence and the compatibility with colimits over directed systems that the

obvious inclusion of C∗-algebras C→ K, induces an isomorphisms K0(C)
∼=−→

K∗(K). The C∗-algebra B is contractible, i.e., the zero homomorphism is
homotopic to the identity B → B, a homotopy is given by Ft(x) = F (tx).
Homotopy invariance implies the vanishing of K∗(B). Now the long exact
sequence of the ideal K ⊆ B yields an isomorphism Kn(B/K) ∼= Kn−1(K) for
all n ∈ Z. To finish the calculation, one directly proves that Kn(C) is Z for
n = 0 and trivial for n = 1 and applies Bott periodicity.

10.45. Since G is by assumption is finite, Hn(BG;Q) is Q if n = 0 and is triv-
ial for n 6= 0. We conclude from the Chern characters (10.1) and (10.7) that
dimQ(K0(BG) ⊗Z Q) = dimQ(KO0(BG) ⊗Z Q) = 1. We have K0(C∗r (G)) ∼=
RepC(G) and KO0(C∗r (G)) ∼= RepR(G). Now use the obvious fact that
dimQ(RepC(G) ⊗Z Q) = 1 ⇐⇒ dimQ(RepC(G) ⊗Z Q) = 1 ⇐⇒ G = {1}
holds.

10.47. Let c : S1 → S1 be the automorphism of S1 sending z ∈ S1 to
z−1. Let Tc be the mapping torus. One easily checks that Tc is a model for
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BG. Elementary considerations about homology theories lead to the so-called
Wang sequence

· · · ∂n+1−−−→ Kn(S1)
id−Kn(c)−−−−−−→ Kn(S1)

Kn(i)−−−−→ Kn(Tc)

∂n−→ Kn−1(S1)
id−Kn−1(c)−−−−−−−−→ Kn−1(S1)

Kn−1(i)−−−−−→ · · · .

We know that Kn(S1) ∼= Z for all n ∈ Z. Elementary considerations about
homology theories imply that Kn(c) = − idKn(S1) for odd n and Kn(c) =
idK0(S1) for even n. Hence the Wang sequence reduces to

· · · → Z 2·id−−→ Z K1(i)−−−→ K1(Tc)
∂1−→ Z 0−→ Z K0(i)−−−→ K0(Tc)→ Z 2·id−−→ Z→ · · · .

This implies

Kn(C∗r (G)) ∼= Kn(Tc) ∼=

{
Z if n is even;

Z⊕ Z/2 if n is odd.

10.62. Obviously hom{1}(F, i
∗F ) ∼= F . Since i∗F = C0(G,F ), all homomor-

phisms of G-C∗-algebras from i∗F to F are zero and hence homG(i∗F, F )
vanishes.

10.71. Put G = Z/p. Since p is an odd prime, we have dimR(V ) =
dimR(V G) ≡ 0 mod 2 and hence dim(SV ) = dim(SV G) ≡ 0 mod 2. Since
dim(SV ) = d − 1, we get Kn(SV ) = Kn(SV G) = Kn(Sd−1) for all n ∈ Z.
Since RepC(G) ∼= Zp, we get im(θG) = Z[1/p] and im(θ{1}) ∼= Z[1/p]p−1. We
conclude from Theorem 10.69

Z[1/p]⊗Z K
Z/p
n (SV )

∼= Z[1/p]⊗Z Kn

(
SV G/CGG

)
⊕ Z[1/p]p−1 ⊗Z Kn(SV/CG{1})

∼= Z[1/p]⊗Z Kn(Sd−1)⊕ Z[1/p]p−1 ⊗Z Kn(SV/G).

The Atiyah-Hirzebruch spectral sequence converges to Kn(SV/G) and has as
E2-term E2

r,s = Hr(SV/G;Ks({•})). Since |G| is a p-power, we get a Z[1/p]-
isomorphism Z[1/p]⊗ZHr(SV/G) ∼= Z[1/p]⊗Z[1/p]GHr(SV ). Since p is odd,
the G-operation on Hi(SV ) is trivial. Hence we get a Z[1/p]-isomorphism

Z[1/p]⊗Z E
2
r,s
∼= Z[1/p]⊗Z Hr(SV ;Ks({•}))

∼=

{
Z[1/p] if r = 0, d− 1 and s is even;

0 otherwise.

Hence Z[1/p]⊗ZE
2
r,s is a finitely generated free Z[1/p]-module for each (r, s)

and we conclude from the isomorphism (10.1) for each n ∈ Z
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r+s=n

rkZ[1/p]

(
Z[1/p]⊗Z E

2
r,s

)
= rkZ[1/p]

(
Z[1/p]⊗Z Kn(SV/G)

)
.

This implies that all differentials in the Atiyah-Hirzebruch spectral sequence
are trivial after inverting p and we get

Z[1/p]⊗Z Kn(SV/G) ∼=


Z[1/p] if d is even;

Z[1/p]2 if d is odd and n is even;

0 if d is odd and n is odd.

∼= Z[1/p]⊗Z Kn(Sd−1).

Now the claim follows from

Z[1/p]⊗Z K
Z/p
n (SV ) ∼= Z[1/p]⊗Z Kn(Sd−1)⊕ Z[1/p]p−1 ⊗Z Kn(SV/G)

∼= Z[1/p]⊗Z Kn(Sd−1)⊕ Z[1/p]p−1 ⊗Z Kn(Sd−1)
∼= Z[1/p]p ⊗Z Kn(Sd−1).

10.74. The abelian group K1(C(X)) is not finitely generated because of
Theorem 3.120, whereas as K1(C(X)) ∼= K1(X) is finitely generated.

Chapter 11

11.6. Define the n-skeleton of X̃ to be p−1(Xn). Use the facts that a cov-
ering over a contractible space such as Dn is trivial and a covering is a local
homeomorphism.

11.7. The Euler characteristic of a compact CW -complex can be computed
by counting cells. Each equivariant cell in X − XZ/p contributes p (non-
equivariant) cells.

11.12. Choose an irrational number θ. Let φ : S1 → S1 be the homeomor-
phism given by multiplication with the complex number exp(2πiθ). The space
S1 with the associated Z-action is free but not proper.

11.14. Suppose that there is a free smooth Z/p-action on S2n. By Re-
mark 11.13 we obtain a free Z/p-CW -structure on S2n. By a previous exercise
we get the contradiction

0 ≡ χ(∅) ≡ χ
(
(S2n)Z/p

)
≡ χ(S2n) ≡ 2 mod p.
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11.17. This follows from Theorem 11.16 (i).

11.20. Suppose that EF (G) has a zero-dimensional model. Hence it is a
disjoint union of spaces of the shape G/H. Since EF (G) is path connected,
it must be G/G. This implies G ∈ F .

If G ∈ F holds, G/G is a 0-dimensional G-CW -model for EF (G).
An example for L is R.

11.34. We obtain from Subsection 11.6.13 that there is a G-CW -model for
EG which is obtained from G/M by attaching free cells of dimensions ≤ 2.
Let i : G/M → EG be the inclusion. Consider the map

j = idEG×Gi : EG×G G/M → EG×G EG

Since for a space Y the canonical projection EG ×G (G × Y ) → Y is a
homotopy equivalence, we conclude by a Mayer-Vietoris argument that Hn(j)
is bijective for n ≥ 3. The canonical projections EG ×G G/M → EG/M =
BM and EG×G EG→ EG×G {•} = BG are homotopy equivalences since
EG is (after forgetting the group action) contractible.

11.35. Since hyperbolic groups, arithmetic groups, mapping class groups,
Out(Fn), and one-relator groups have a finite dimensional model for EG by
Subsections 11.6.7, 11.6.8, 11.6.9, 11.6.10, and 11.6.13, it suffices to show for
group G with a d-dimensional model for EG that Hk(BG;Q) = 0 holds for
k > d.

The cellular Q-chain complex C∗(X) of a proper G-CW -complex X con-
sists of projective QG-modules since for any finite subgroup H ⊆ G the
QG-module Q[G/H] is projective. Since EG is contractible (after forgetting
the group action), its cellular Q-chain complex yields a dim(EG)-dimensional
projective QG-resolution of the trivial QG-module Q.

11.47. Since H is infinite and countable, its cardinality is ℵ0. We conclude
gd(H) = 1 from Remark 11.46. Theorem 11.45 implies that gd(H o Z) ≤ 2.
Since H o Z is finitely generated and does not contain a finitely generated
free group of finite index, we cannot have gd(H o Z) ≤ 1.

11.54. The universal covering on M is the hyperbolic space and hence
contractible. Therefore N is a model for BG. Since Hn(BG;Zw) ∼= Z for
w : G = π1(N) → {±} given by the first Stiefel-Whitney class of N , we
conclude cd(G) = dim(N) = gd(G). Since G is hyperbolic and hence sat-
isfies conditions (M) and (NM), we conclude gd(G) = gd(G) from Theo-

rem 11.53 (iii).

11.60. This follows from Theorem 11.59.
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11.63. Apply Theorem 11.62 to X and take Y = H\EG for a torsionfree
subgroup H of G with [G : H] = 2.

Chapter 12

12.4. The desired Z/2-pushout for the 1-skeleton is obvious and for the
2-skeleton given by

Z/2× S1 pr //

��

S1

��
Z/2×D2 // S2

where pr is the projection. Now one easily checks that C∗(S
2)⊗Or(Z/2) RC is

given by the Z-chain complex concentrated in dimensions 0,1 and 2

· · · → {0} → {0} → RC({1}) c2−→ RC(Z/2)
0−→ RC(Z/2)→ {0} → · · ·

where c2 is induction with the inclusion {1} → Z/2. This implies

HZ/2
n (S2;RC) ∼=


Z2 n = 0;

Z n = 1;

{0} otherwise.

12.7. By applying Lemma 12.5 to the skeletal filtration X0 ⊆ X1 ⊆ X2 ⊆
. . . ⊆ ∪n≥0Xn = X, the claim can be reduced to finite dimensional pairs. Us-
ing the axioms of a G-homology theory, the Five Lemma, and induction over
the dimension one reduces the proof to the special case (X,A) = (G/H, ∅).

12.11. This follows directly from the axiom about the compatibility with
conjugation applied in the case X = {•}.

12.16. The real line R with the obvious action of D∞ = Z/2∗Z/2 = ZoZ/2
is a D∞-CW -model for ED∞, see Theorem 11.25. Up to conjugacy there are
two subgroups H0 and H1 of order two in D∞. One obtains a D∞-pushout

D∞ × S0 = D∞ qD∞
pr0 q pr1//

i

��

D∞/H0 qD∞/H1

��
D∞ ×D1 // ED∞

where pr0 and pr1 are the obvious projections and i is the obvious inclusion.
Hence the associated long exact Mayer-Vietoris sequence reduces to
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0→ KD∞
1 (ED∞)→ RC({1})⊕RC({1})

f−→ RC({1})⊕RC(Z/2)⊕RC(Z/2)→ KD∞
0 (ED∞)→ 0

where f sends (v, w) to (v + w, i∗(v),−i∗(w)) for i∗ the map induced by the
inclusion i : {1} → Z/2. This implies

KD∞
n (ED∞) ∼=

{
Z3 n even;

{0} n odd.

12.36. One easily checks that for a given group G and every subgroup H ⊆ G
and every n ∈ Z the map HG

n (G/H; t) : HG
n (G/H; E)→ HG

n (G/H; F) can be
identified with the map πn(t(tG(G/H))) : πn(E(tG(G/H)))→ πn(F(tG(G/H)))
and hence is bijective by assumption. Now apply Lemma 12.6.

12.47. The argument appearing in the solution of Exercise 12.16 yields a
long exact Mayer- Vietoris sequence

· · · → K0(R)⊕K0(R)→ K0(R)⊕K0(R[Z/2])⊕K0(R[Z/2])

→ HD∞
0 (ED∞; KR)→ K−1(R)⊕K−1(R)

→ K−1(R)⊕K−1(R[Z/2])⊕K−1(R[Z/2])→ · · · .

Since the obvious map Kn(R)→ Kn(R[Z/2]) is split injective, we obtain for
n ∈ Z isomorphisms

Kn(R[Z/2])⊕ coker (Kn(R)→ Kn(R[Z/2])) ∼= HD∞
n (ED∞; KR).

If n ≤ −1, then Kn(R[Z/2]) = 0 for R = Z,C by Theorem 4.16 and Theo-
rem 4.22. Hence

HD∞
n (ED∞; KR) ∼= {0} for n ≤ −1

The map K0(Z)→ K0(Z[Z/2]) is bijective by Example 2.106 and K0(Z) = Z
by Example 2.4. Hence

HD∞
0 (ED∞; KZ) ∼= Z.

Since K0(CH) ∼= RC(H) for a finite group H, one easily checks

HD∞
0 (ED∞; KC) ∼= Z3.

12.49. Since X/G has no odd dimensional cells, X has no odd dimensional
equivariant cells. Moreover, if X/G is finite, then X has only finitely many
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equivariant cells. We conclude for any coefficients system M that the Bredon
homology Hp(X;M) vanishes, if p is odd, or if p is larger then the dimen-
sion of X. If X has only finitely many equivariant cells and M(G/H) is a
finitely generated free abelian groups for any finite subgroup H ⊆ G, then
Hp(X;M)is finitely generated free abelian for all p ∈ Z. Since KG

q (G/H) = 0
for odd q and is a finitely generated free abelian group for even q for every
finite subgroup H ⊆ G, and all isotropy groups of X are by assumption finite,
we conclude for the E2-terms of the equivariant Atiyah-Hirzebruch spectral
sequence of Theorem 12.48 that E2

p,q = 0 if p+q is odd. If X has only finitely
many equivariant cells, then E2

p,q is finitely generated free if p + q is even
and vanishes for large enough q. Now the claim follows from this spectral
sequence.

12.54. Consider the long exact sequence of the pair (EG×GX,EG×GXG)
and of the pair (X/G,XG/G) = (X/G,XG) and the map between them
induced by the projection (EG×GX,EG×GXG)→ (X/G,XG/G), and use
the fact that (X,XG) is relatively free and henceHn(EG×GX,EG×GXG)→
Hn(X/G,XG/G) is bijective.

12.59. From Theorem 12.58 we get a natural isomorphism of spectral se-
quences from the equivariant Atiyah-Hirzebruch spectral sequence converging
to BHG(X) to the equivariant Atiyah-Hirzebruch spectral sequence converg-
ing to HG∗ (X). One easily checks that all the differentials in the equivariant
Atiyah-Hirzebruch spectral sequence converging to BHG(X) vanish.

12.60. For every finite group H ⊆ G the group WGH is finite and hence
Q[WGH] is semisimple. Therefore every Q[WGH]-module is flat. Because of
Theorem 12.58 it suffices to show that for every finite subgroup H ⊆ G and
every n ∈ Z the map

Hp(CGH\ιHF⊆G ;Q) : Hp(CGH\EF (G)H ;Q)→ Hp(CGH\EG(G)H ;Q)

is bijective. This is obviously true if H 6∈ F . Suppose H ∈ F . Then the claim
follows from fact that both C∗(EF (G)H) ⊗Z Q and C∗(EG(G)H) ⊗Z Q are
projective Q[CGH]-resolutions of the trivial Q[CGH]-module Q which implies
that

C∗(ι
H
F⊆G)⊗Z Q→ C∗(EF (G)H)⊗Z Q→ C∗(EG(G)H)⊗Z Q

is a Q[CGH]-chain homotopy equivalence and hence induces after applying
Q⊗Q[CGH] − a Q-chain homotopy equivalence.

12.64. The desired pairing is given by

A(G)×M(G)→M(G), ([G/H], x) 7→ indGH ◦ resHG (x).
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12.86. Every subgroup F ⊆ SL2(Z) is conjugated to one of the groups
Z2,Z3,Z4,Z6 with generators given by the matrices(

−1 0
0 −1

) (
−1 −1
1 0

) (
0 −1
1 0

)
and

(
0 −1
1 1

)
.

So we shall restrict from now on to the study of the actions of Z2,Z3,Z4,Z6

given by the actions of the above described generators. The case Z/4 has
been carried out in Example 12.85. The computations for the other cases is
analogous. We get in all cases that G\EG is homeomorphic to S2. There are
up to conjugacy four non-trivial finite subgroups, which are all isomorphic to
Z/2, in G in the case F = Z/2. There up to conjugacy three non-trivial finite
subgroups, which are all isomorphic to Z/3 in G in the case F = Z/3. In the
case F = Z/6 there are up to conjugacy three non-trivial finite subgroups,
the first is isomorphic to Z/2, the second to Z/3 and the third to Z/6. Hence
we get in all cases KG

1 (EG) = 0 and

K
Z2oZ/2
0 (EZ2 o Z2) ∼= Z6;

K
Z2oZ/3
0 (EZ2 o Z3) ∼= Z8;

K
Z2oZ/4
0 (EZ2 o Z4) ∼= Z9;

K
Z2oZ/6
0 (EZ2 o Z6) ∼= Z10.

12.94. Since G is finite, an easy spectral sequence argument shows that

there is an isomorphism u : Q ⊗ZG H
G,ξ
n (EG; KR)

∼=−→ Q ⊗Z HG,ξn (EG; KR),
where G acts on Kn(R) via α ◦ ξ and trivially on Q. Moreover, there is a
commutative diagram

Q⊗Z HG,ξn (EG; KR) //

u−1∼=
��

Q⊗Z HG,ξn (EG; KR) = Q⊗Z Kn(Rα◦ξG)

res

��
Q⊗ZG Kn(R)

N
// Q⊗Z Kn(R)G

where the lower horizontal arrow N is the norm map and the right vertical
arrow res is restriction with the inclusion R→ Rα◦ξG. Since the lower vertical
arrow N is an isomorphism, the upper horizontal arrow is injective.

Chapter 13
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13.3. If we replace in Conjecture 13.1 the family VCY by FIN , then the
Conjecture 13.2 for Z reduces to the statement that for any ring R the map
induced by the projection EZ→ Z/Z

HZ
n(EZ; KR)→ HG

n (Z/Z; KR) = Kn(RZ)

is an isomorphism. Since Z acts freely on Z and (EZ)/Z = S1, we get an
identification

HZ
n(EZ; KR) = H{1}(S1; KR) = Kn(R)⊕Kn−1(R).

Under this identification the assembly map above becomes the restriction of
the Bass-Heller-Swan isomorphism of Theorem 6.16

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)
∼=−→ Kn(RZ).

to Kn(RG) ⊕Kn−1(RG). This implies that NKn(R) vanishes for all n ∈ Z
and all rings R, a contradiction by Example 3.69.

13.5. If we replace in Conjecture 13.4 the family VCY by FIN , then Conjec-
ture 13.7 for Z reduces to the statement that for any ring R with involution
the map induced by the projection EZ→ Z/Z

HZ
n(EZ; L

〈−∞〉
R )→ HG

n (Z/Z; L
〈−∞〉
R ) = L〈−∞〉n (RZ)

is an isomorphism. Since Z acts freely on Z and (EZ)/Z = S1, we get an
identification

HZ
n(EZ; L

〈−∞〉
R ) = L〈−∞〉n (RZ)⊕ L〈−∞〉n−1 (RZ)

Under this identification the assembly map above can be identified with the
isomorphism appearing in the Shaneson splitting (9.109).

13.13. The structure of an abelian group on each set of morphisms comes
from the obvious structure of an abelian group on Mm,n(R). The direct sum
of [m] and [n] is [m + n]. The direct sum on morphisms is given by taking
block matrices. The zero object is [0]. We obtain a natural equivalence from
R⊕ to the additive category of finitely generated free R-modules by sending
[m] to Rm and a morphism [m] → [n] given by a (m,n)-matrix A to the
R-linear map Rm → Rn given by right multiplication with A.

13.18. We only present the proof of the harder implication. Suppose that
for every two objects A and B in A the induced map morA(A0, A1) →
morB(F (A0), F (A1)) sending f to F (f) is bijective and for each object B
in B there exists an object A in A such that F (A) and B are isomorphic in
B. Choose for any object B ∈ B an object A(B) ∈ A and an isomorphism
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u(B) : B
∼=−→ F (A(B)) in B. Next we define a functor F ′ : B → A of addi-

tive categories. It sends an object B to A(B). A morphism f : B0 → B1 is
send to the morphism F ′(f) : A(B0)→ A(B1) which is uniquely determined
by the property that F (F ′(f)) = u(B1) ◦ f ◦ u(B0)−1. One easily checks
that F ′(g ◦ f) = F ′(g) ◦ F ′(f) and F ′(f0 + f1) = F ′(f0) + F ′(f1) holds.
Consider two objects B0 and B1. We have to show that for the natural inclu-
sions ji : Bi → B0 ⊕B1 for i = 0, 1 the morphism F ′(j0)⊕ F ′(j1) : F ′(B0)⊕
F ′(B1)→ F (B0⊕B1) is an isomorphism. This follows from the following di-
agram that commutes by definition of F ′ and whose lower left vertical arrow
is an isomorphism since F is compatible with direct sums

B0 ⊕B1
j0⊕j1=id

∼=
//

u(B0)⊕u(B1)∼=
��

B0 ⊕B1

u(B0⊕B1) ∼=
��

F (A(B0))⊕ F (A(B1))
F (F ′(j0))⊕F (F ′(j1)) //

∼=
��

F (A(B0 ⊕B1))

id ∼=
��

F (A(B0)⊕A(B1))
F (F ′(j0)⊕F ′(j1)) // F (A(B0 ⊕B1))

Hence F ′ is a functor of additive categories. Natural transformations of func-
tors of additive categories S : F ◦ F ′ → idB and T : F ′ ◦ F → idA are deter-
mined by S(B) = u(B) and F (T (A)) = u(F (A)).

13.30. This follows from Theorem 13.29 (v) since G is virtually cyclic if Q
is virtually cyclic.

13.31. Let G be a group. It is the disjoint union of its finitely generated sub-
groups. Hence by Theorem 13.29 (vi) the Full Farrell-Jones Conjecture 13.27
holds for all groups if and only if it holds for all finitely generated groups.
Any finitely generated group can be written as a colimit over a directed set of
finitely presented groups. Hence by Theorem 13.29 (vi) the Full Farrell-Jones
Conjecture 13.27 holds for all finitely generated groups if and only if holds for
all finitely presented groups. Finally note that group G is finitely presented
if and only if it occurs as the fundamental group of a connected orientable
closed 4-manifold.

13.40. This follows from Lemma 13.39 by the following argument. Since
KW is finite and the image of φ is by assumption infinite, the composite
pW ◦ φ : V → QW has infinite image. Since QW is isomorphic to Z or D∞,
the same is true for the image of pW ◦ φ : V → QW . By assertion (v) of
Lemma 13.39 the kernel of pW ◦ φ : V → QW is KV . Hence φ(KV ) ⊆ KW

and φ induces maps φK and φQ making the diagram of interest commutative.
Since the image of pW ◦ φ : V → QW is infinite, φQ(QV ) is infinite. This
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implies that φQ is injective since both QV and QW are isomorphic to D∞ or
Z.

13.41. Suppose that G admits a proper cocompact isometric action on R.
Since the action is cocompact and R is not compact, the group G must be
infinite. Let K be the kernel of the homomorphism ρ : G → aut(R) coming
from the G-action. Since the action is proper, K must be finite. Let Q ⊆
aut(R) be the image of ρ. The group of isometries of R is RoZ/2, where Z/2
corresponds to {± id} and R to translations lr : R→ R with elements r ∈ R.
Let r0 := inf{r ∈ R | r > 0, lr ∈ Q}. Since Q acts properly, we have r0 > 0
and Q ∩ R ⊆ R is the infinite cyclic group generated by r0. Now one easily
checks that Q is isomorphic to Z or Z o Z/2. Hence G is virtually cyclic.

If G is virtually cyclic, then it admits an epimorphism with finite kernel
onto Z or ZoZ/2 by Lemma 13.39 (i). These two groups and hence G admit
proper cocompact isometric actions on R.

13.46. Suppose that H is infinite and belongs to HEp ∩ VCYI . Then there

are exact sequences 1→ Z→ H
q−→ Q→ 1 and 1→ P

i−→ H → Z→ 1 where
i : P → H is the inclusion of a finite normal subgroup P , and Q is a finite
p-group. The restriction q|P : P → Q is injective since P is a finite subgroup
of H and the kernel of q is infinite cyclic. Hence P is a finite p-group. Fix an
element t ∈ H whose image under the epimorphism H → Z is a generator.
Then t ∈ NGP . Let pm be the order of Q. Consider any x ∈ P . We have
q(tp

m

xt−p
m

) = q(t)p
m

q(x)q(t)−p
m

= q(x). Since q|P : P → Q is injective,
we get tp

m

xt−p
m

= x. In particular H ∼= P oφ Z for the automorphism

φ : P
∼=−→ P of p-power order given by conjugation with t.

Suppose H is isomorphic to P ′oφZ for some finite p-group P and automor-
phism φ : P → P whose order is pm for some natural number m. Then obvi-

ously H belongs to VCYI . The exact sequence 1→ Z pm·id−−−→ Z→ Z/pm → 1
induces an exact sequence 1 → Z → P oφ Z → P oφ Z/pm → 1. Since
P oφ Z/pm is a finite p-group, H belongs to HEp.

13.47. Because of Exercise 13.46 there exists a finite p-group P and an
automorphism φ : P → P whose order is a p-power such that G is isomorphic
to P oφ Z. Note that a model for EFIN (G) is EZ considered as G-CW -
complex by restriction with the canonical epimorphism G→ Z. We conclude
from Theorem 6.64 and Remark 6.65 that

HG
n (EFIN (G); KR)→ HG

n (G/G; KR) = Kn(RG)

is bijective after applying − ⊗Z Z[1/p] for all n ∈ Z if and only if we have
N±Kn(RP ;φ)[1/p] = 0 for all n ∈ Z. This follows from Theorem 6.66.

13.49. This follows directly from Theorem 13.48 since P(G,R) is empty if
Q ⊆ R holds or if G is torsionfree.
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13.58. The group G satisfies the Full Farrell Jones Conjecture 13.27 by
Theorem 13.29 (iv) and (v). Since every virtually cyclic subgroup of G is
of type I, Theorem 13.57 implies that the projection pr induces for every
additive G-category with involution A and all n ∈ Z an isomorphism

HG
n

(
pr; L

〈−∞〉
A

)
: HG

n

(
EFIN (G); L

〈−∞〉
A

)
→ HG

n (G/G; L
〈−∞〉
A ) = πn

(
L
〈−∞〉
A (I(G))

)
.

Hence we get from Remark 13.17 that the projection pr induces for all n ∈ Z
an isomorphism

HG
n

(
pr; L

〈−∞〉
Z

)
: HG

n

(
EFIN (G); L

〈−∞〉
Z

)
→ HG

n (G/G; L
〈−∞〉
Z ) = L〈−∞〉n (ZG).

Recall that we have an extension 1 → F → G
f−→ Zd → 1 for a finite group

F . Hence the restriction f∗EZd with f of EZd is a model for EFIN (G).
Hence it suffices to construct for any free Zn-CW -complex X an appro-

priate spectral sequence converging to HG
n

(
f∗X; L

〈−∞〉
Z

)
. Since the assign-

ment sending X to HG
n

(
f∗X; L

〈−∞〉
Z

)
is a Zd-homology theory in the sense

of Definition 12.1 and X is assumed to be a free Zd-CW -complex, the equi-
variant Atiyah-Hirzebruch spectral sequence of Theorem 12.48 converges to

HG
n

(
f∗X; L

〈−∞〉
Z

)
and has as E2-term Hp

(
C∗(X)⊗ZdH

G
q (G/F ; L

〈−∞〉
Z )

)
. Us-

ing the induction structure on H?
∗(−; L

〈−∞〉
Z ) and Lemma 12.12, one can

identify the Zd-modules HG
q

(
G/F ; L

〈−∞〉
Z

)
and L

〈−∞〉
q (ZF ).

13.66. Induction with i : H → G and restriction with f : H → Z induces
homomorphisms i∗ : G0(CH) → G0(CG) and f∗ : G0(CZ) → G0(CH). The
class [C] of the trivial CZ-module C is sent under i∗ ◦ f∗ to the class of
C[G/H]. Since there exists a short exact sequence 0→ CZ→ CZ→ C→ 0,
we have [C] = 0 in G0(CZ).

Chapter 14

14.10. Equip R with the G = Z × Z/k-action where Z acts by translation
and Z/k acts trivial. There is a G-pushout

Z× {0, 1}
j //

i

��

Z

��
Z× [0, 1] // R

where we think of Z as the G-space G/(Z/k), the map i is the inclusion and
j sends (n, 0) to n and (n, 1) to n + 1. Hence R is a G-CW -complex whose
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isotropy groups are all finite and whose H-fixed point set is contractible for
every finite subgroup H ⊆ G. We conclude that R is a model for EG. The
Mayer-Vietoris sequence associated to the G-pushout looks like

· · · → KG
n (Z)⊕KG

n (Z)

1 1
1 1


−−−−−→ KG

n (Z)⊕KG
n (Z)→ KG

n (EG) = KG
n (R)

→ KG
n−1(Z)⊕KG

n−1(Z)

1 1
1 1


−−−−−→ KG

n−1(Z)⊕KG
n−1(Z)→ · · ·

where we identify KG
n (Z × [0, 1]) ∼= KG

n (Z) via the isomorphism induced by
the projection Z × [0, 1] → Z. Since KG

n (Z) ∼= KG
n (G/(Z/k)) is RepC(Z/k)

for n even and zero for n odd, we conclude for all n ∈ Z

KG
n (EG) ∼= RepC(Z/k) ∼= Zk.

14.15. We only treat the case F = C, the case F = R is analo-
gous. Since H and G are torsionfree and satisfy the Baum-Connes Con-
jecture 14.9, they also satisfy the Baum-Connes Conjecture for torsionfree
groups 10.44 by Remark 14.14. Hence it suffices to show that the homomor-
phism Kn(Bf) : Kn(BH) → Kn(BG) is bijective for all n ∈ Z. This fol-
lows from the Atiyah-Hirzebruch spectral sequence converging to Kn(BH)
and Kn(BG), since Hn(Bf ;Z) : Hn(BH;Z) → Hn(BG;Z) is bijective for
all n ∈ Z by assumption and hence f induces isomorphisms between the
E2-pages.

14.28. Take G = Z/2. Consider the Atiyah-Hirzebruch spectral sequence
converging toKp+q(BG) with E2-term E2

p,q = Hp(BG;Kq({•})). Its E2-term
looks like
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...
...

...
...

...
...

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

Z Z/2 0 Z/2 0 Z/2 · · ·

0 0 0 0 0 0 · · ·

...
...

...
...

...
...

Because of the checkerboard pattern and by a standard edge argument ap-
plied to the split injection K∗({•}) → Kn(BG) coming from the inclusion
{•} → BG, all differentials are trivial and the E2-term is the E∞-term. Hence
K1(BG) is non-trivial. (Actually it is Z/2∞ ∼= Z[1/2]/Z). On the other hand
K1(C∗r (Z/2)) is trivial.

14.32. Since any group is the directed union of its finitely generated sub-
groups, it suffices to consider finitely generated free abelian groups and
finitely generated free groups by Theorem 14.31 (iv). Since a finitely gen-
erated abelian group is the direct product of finitely many copies of Z and
of a finite group, Theorem 14.31 (iii) and (vi) imply that it suffices to prove
the claim for Z and any finite group. The Baum-Connes Conjecture 14.11
with coefficients holds obviously for finite groups. It holds for Z by Theo-
rem 14.31 (vii).

14.33. Let Fg be the surface of genus g ≥ 1. Let F → F be the covering
associated to the epimorphism π1(Fg)→ H1(Fg). Then Fg is a non-compact
2-manifold and hence homotopy equivalent to a 1-dimensional CW -complex.
Hence π1(Fg) is free, H1(Fg) is a finitely generated free abelian group and
we have the exact sequence 1 → π1(Fg) → G → H1(Fg) → 1. We conclude
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from Theorem 14.31 that G satisfies the Baum-Connes Conjecture 14.9. Since
Fg itself is a model for BG, we get Kn(Fg) ∼= Kn(C∗r (G)). Now an easy
application of the Atiyah-Hirzebruch spectral sequence yields the claim.

14.43. Note that K0(C∗r (G)) = RC(G). One easily checks by inspecting the
definition of (10.48) of the trace for a finite dimensional complex representa-
tion V that trC∗r (G) : K0(C∗r (G))→ R sends the class of [V ] to |G|−1·dimC(V ).

14.55. Suppose that F is S2. Since M is spin and hence in particular ori-
entable and any orientation preserving selfdiffeomorphism of S2 is isotopic
to the identity, M must be S1 × S2 and hence carries a Riemannian metric
of positive scalar curvature.

Suppose that F is not S2. Then F and hence M are aspherical. Hence it
suffices to show by Lemma 14.54 that the Baum-Connes Conjecture 14.11
with coefficients holds for π1(M). The Baum-Connes Conjecture 14.11 with
coefficients holds for all finitely generated free groups and for Z by Theo-
rem 14.31 (v). Hence it holds for every free group and every finitely generated
abelian group by Theorem 14.31 (iii) and (iv). Let F → F be the covering
associated to the epimorphism π1(F ) → H1(F ). Then F is a non-compact
2-manifold and hence homotopy equivalent to a 1-dimensional CW -complex.
Hence π1(F ) is free. Now apply Theorem 14.31 (ii) to the short exact se-
quences 1 → π1(F ) → π1(M) → π1(S1) → 1 and 1 → π1(F ) → π1(F ) →
H1(F )→ 1.

Chapter 15

15.3. Let α : H → G be a group homomorphism. Then α∗EC(H)(H) is a G-
CW -complex whose G-isotropy groups are of the shape α(L) for L ∈ C(H)
and hence all belong to C(G). This implies that there is up to G-homotopy
precisely one G-map f : α∗EC(H)(H) → EC(G)(G). The following diagram
commutes

α∗EC(H)(H)

f

��

α∗ pr // α∗H/H = G/α(H)

pr

��
EC(G)(G)

pr
// G/G

Now apply HG∗ to this diagram and combine it with the following commuta-
tive diagram coming from the induction structure applied to α
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HHn (EC(H)(H))
HHn (pr) //

��

HHn (H/H)

��
HGn (α∗EC(H)(H))

HGn (α∗ pr)

// HG(α∗H/H)

15.7. The restriction of a G-CW -complex X to K with φ is a K-CW -
complex φ∗X by Remark 11.3. For a point x ∈ X the K-isotropy group Kx

of φ∗X is φ−1(Gx) where Gx is the G-isotropy group of X. In particular
we get φ(Kx) = Gx and hence every K-isotropy group of φ∗X belongs to
φ∗F . Consider a subgroup H ⊂ K. Then (φ∗X)H = Xφ(H). Now apply these
assertions to X = EF (G).

15.15. Let G be any group. Denote by pr: G× Z→ Z the projection. The
Fibered Meta-Isomorphism Conjecture 15.8 predicts that the assembly map

Hn(pr; KR) : HG×Z
n (Epr∗ FIN (G× Z); KR)

→ HG×Z
n (G× Z/G× Z; KR) = Kn(R[G× Z])

is bijective for all n ∈ Z. A model for Epr∗ FIN (G × Z) is pr∗EZ. Since Z
acts freely on EZ and (EZ)/Z = S1, the left side of the map above can be
identified with

HG×Z
n (Epr∗ FIN (G× Z); KR) = HG×Z

n (pr∗EZ; KR)

= HG
n (G/G× S1)

= Hn(G/G; KR)⊕Hn−1(G/G; KR)

= Kn(RG)⊕Kn−1(RG).

Under this identification the assembly map above becomes the restriction of
the Bass-Heller-Swan isomorphism of Theorem 6.16

Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG)
∼=−→ Kn(RG[t, t−1]).

to Kn(RG) ⊕ Kn−1(RG). Hence the Fibered Meta-Isomorphism Conjec-
ture 15.8 implies that for every group G and n ∈ Z we have NKn(RG) = 0.

15.17. This follows from Lemma 15.16 applied to the inclusion i : H → G
since C(H) = i∗C(G).

15.34. Put Γ = G ×φ Z. The proof is completely analogous to the one in
Example 15.30 but now applied to a 1-dimensional Γ -CW -complex T which is
a tree and whose 1-skeleton is obtained from the 0-skeleton by the Γ -pushout
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Γ/G× S0 q //

��

Γ/G

��
Γ/G×D1 // T

Here q is the disjoint union of identity id : Γ/G → Γ/G and the Γ -map
Γ/G→ Γ/G sending γG to γtG for t ∈ Γ a lift of the generator in Z.

15.40. Put π = π1(X). Conjecture 15.39 yields a weak homotopy equiv-

alence Eπ+ ∧π S(X̃) → S(X) because of the identifications X = π\X̃ and

ET R(π)+ ∧Or(π) Sπ
X̃

= Eπ+ ∧π S(X̃).
Suppose that S is of the shape X 7→ X+ ∧ HZ for HZ the Eilenberg-

spectrum of Z. Recall that the homology theory associated to HZ is singular
homology Hn. Then

πn
(
(Eπ)+ ∧π S(X̃)

) ∼= Hn(Eπ ×π X̃);

πn
(
(Bπ)+ ∧π S({•})

) ∼= Hn(Bπ),

and Hn(Eπ ×π X̃) and Hn(Bπ) are not isomorphic in general.

In the sequel we equip S({•}) with the trivial π-action. Suppose that X̃
is contractible or S is of the shape Y 7→ T(Π(Y )) for some covariant functor

T : GROUPOIDS → SPECTRA. Then the projection X̃ → {•} induces a

π-map f : S(X̃) → S({•}) such that after forgetting the group action f is a
weak homotopy equivalence. Hence we obtain a weak homotopy equivalence

Eπ+ ∧π S(X̃)
(idEπ)+∧πf−−−−−−−−→ Eπ+ ∧π S({•}) = Bπ+ ∧ S({•}).

If X is simply connected, then Eπ+ ∧π S(X̃) is S(X), and πn(S(X)) is in
general not isomorphic to πn(S({•})).

15.46. We conclude from the assumptions that for two groups H1, H2 ∈ C
Conjecture 15.39 holds for (H1×H2, C(H1×H2)). Hence Theorem 15.45 (iii)
applies. By assumption also Theorem 15.45 (iv) applies. Hence Conjec-
ture 15.39 holds for (F o H, C(F o H)) if F is a free group and H is a finite
group since this is true by assumption for every finitely generated free group
F .

If Conjecture 15.39 is true for (∗i∈IGi, C(∗i∈IGi)), it is also true for
(Gi, C(Gi)) for every i ∈ I by Theorem 15.45 (i).

Suppose that Conjecture 15.39 holds for (Gi, C(Gi)) for every i ∈ I. Now
we can proceed as in the proof of assertion (vii) of Theorem 13.29 using The-
orem 15.45 (ii) to show that Conjecture 15.39 holds for (∗i∈IGi, C(∗i∈IGi)).
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15.51. The key ingredient is to construct for a group homomorphism φ : K →
G and a subgroup H ⊆ K a natural weak homotopy equivalence of spaces

EGK(K/H)×GK(K/H) p
∗φ∗Z

'−→ K/H ×K (EK × φ∗Z)

where p : GK(K/H) → GK(K/K) = I(K) is induced by the projection
K/H → K/K. Because of the third isomorphism appearing in [265, Lemma 1.9],
it suffices to construct a map

u : p∗EGK(K/H)×K φ∗Z
'−→ K/H ×K (EK × φ∗Z)

where here and in the sequel we consider a K-space as a GK(K/K) = I(K)-
space and vice versa in the obvious way. Since (K/H × EK) ×K φ∗Z =
K/H ×K (EK × φ∗Z), it suffices to construct for every K-set S a natural
K-homotopy equivalence

v : p∗EGK(S)
'−→ S × EK,

since we then can define u = v ×K idφ∗Z for S = K/H. Unravelling the
definition we see that the source of v is given by

p∗EGK(S) =
∐
s∈S

K × EGK(S)(s)/∼

for the equivalence relation ∼ given by

(k, x) ∼ (k(k′)−1, EGK(S)(k′ : s→ k′s)(u)).

Define a K-map
∐
s∈S K × EGK(S)(s) → S × EGK(K/K) by sending the

element (k, x) in the summand K×EGK(S)(s) belonging to s ∈ S to the ele-
ment

(
ks,EKK(k ·K/K → K/K)(u)

)
. On easily checks that it is compatible

with ∼ and induces the desired K-map

v : p∗EGK(S) =
∐
s∈S

K × EGK(S)(s)/∼ → S × EK.

It remains to show that v is a K-homotopy equivalence. Since the source and
target of v are free K-CW -complexes, it suffices to show that v is a homotopy
equivalence (after forgetting the K-action). We obtain a (non-equivariant)
homeomorphism ∐

s∈S
EGK(S)(s)

∼=−→
∐
s∈S

K × EGK(S)(s)/∼

by sending the element x ∈ EGK(S)(s) belong to the summand of s ∈ S to
the element represented by (1, s). Hence the both the source and the target
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of v have the property that each path component is contractible. Since v is
a bijection on the path component, it is a homotopy equivalence.

15.60. We get πn(A({•})) ∼= Kn(Z) ∼= 0 for n ≤ −1 and π0(A({•})) ∼=
K0(Z) ∼= Z from Example 2.4, Theorem 3.17, and Theorem 7.18 (i). Now
apply the Atiyah-Hirzebruch spectral sequence to Hn(BG; A({•})) for n ≤ 0.

15.68. This follows from the p-chain spectral sequence, see Subsection 12.6.2,
and Theorem 15.67 by an inspection of the resulting long exact sequence. See
also [660, Proposition 1.2].

15.98. Consider the commutative diagram appearing in Remark 15.96. The
two vertical arrows are bijective as explained in Remark 15.96. The upper
horizontal arrow is bijective by assumption. The lower horizontal arrow is
bijective by Theorem 15.95. Hence the right vertical arrow is bijective.

15.99. Since R[G × Z] = R[Z][G] and R[Z] is regular, Conjecture 15.97 is
true for G and G× Z. We obtain from the Bass-Heller Swan decompositions
for K-theory, see Theorem 6.16, and homotopy K-theory, see Theorem 15.74,
the commutative diagram with isomorphisms as horizontal arrows

Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG)
∼= //h 0 0 0

0 h 0 0


��

Kn(R[G× Z])

h

��
KHn(RG)⊕KHn−1(RG)

∼= // KHn(R[G× Z])

where the maps denoted by h are induced by the canoncial map K → KH
and bijective.

15.102. (P) =⇒ (I): Let d : G→
∏
i∈I G be the diagonal embedding. Then

(
∏
i∈I G,

∏
i∈I Fi) satisfies the Fibered Meta Isomorphism Conjecture 15.8

because of (P). Hence (G, d∗
∏
i∈I Fi) satisfies the Fibered Meta Isomorphism

Conjecture 15.8 by Lemma 15.16. One easily checks d∗
∏
i∈I Fi =

⋂
i∈I Fi.

(I) =⇒ (P): Consider the projection prj :
∏
i∈I Gi → Gj for j ∈ I. We

conclude from Lemma 15.16 that (
∏
i∈I Gi,pr∗j Fj) satisfies the Fibered Meta

Isomorphism Conjecture 15.8 for every j ∈ I. Hence (
∏
i∈I Gi,

⋂
j∈I pr∗j Fj)

satisfies the Fibered Meta Isomorphism Conjecture 15.8 because of (I). One
easily checks

∏
i∈I Fi =

⋂
j∈I pr∗j Fj .

Chapter 16

16.2. We know that L/K is a smooth manifold, which is diffeomorphic to
Rdim(L/K), and, equipped with the obvious left G action, it is a model for the
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classifying space for proper G-actions, see Theorem 11.24. Hence G\L/K is
an aspherical closed smooth manifold of dimension ≥ 5. Since G satisfies the
Full Farrell-Jones Conjecture 13.27 by Theorem 16.1 (id), the claim follows
from Theorem 9.168.

16.3. Let G be a group. It is the disjoint union of its finitely generated sub-
groups. Hence by Theorem 16.1 (iie) the Full Farrell-Jones Conjecture 13.27
holds for all groups if and only if it holds for all finitely generated groups.
Any finitely generated group can be written as a directed colimit of finitely
presented groups. Hence by Theorem 16.1 (iie) the Full Farrell-Jones Con-
jecture 13.27 holds for all finitely generated groups if and only if holds for
all finitely presented groups. Now the claim follow from Theorem 16.1 (iia)
since every finitely presented group is a subgroup of U .

16.4. We obtain an embedding of rings R → endS(R) by sending r ∈ R
to the S-homomorphism of right S-modules lr : R → R, r′ 7→ rr′. Since
R is finitely generated free as right S-module, we obtain for some natural
number k an identification of rings endS(R) = Mk(S). The inclusion of rings
R→ Mk(S) yields an inclusion of rings Mn(R)→ Mn(Mk(S)) = Mkn(S). By
passing to units we obtain an inclusion of groups GLn(R)→ GLkn(S). Now
the claim follows from Theorem 16.1 (iia).

16.6. This follows from the commutative diagram

Hn(BG; K(R)) //

∼=
��

Kn(RG)

��
Hn(BG; KH(R))

∼= // KHn(RG)

whose horizontal arrows are assembly maps and whose vertical arrows are
change of theory maps. Moreover, the left vertical arrow is bijective since
Kn(R)→ KHn(R) is bijective for all n ∈ Z and all regular rings R, and the
lower horizontal arrow is bijective because of Theorem 16.5 (i).

16.8. This follows directly from Theorem 16.7 (iic).

16.9. This follows from Theorem 2.81, Lemma 10.51, Lemma 10.53, Theo-
rem 13.62, Theorem 16.1, and Theorem 16.7.

16.16. By Lemma 15.23 (ii) it suffices to prove the injectivity for any finitely
generated subgroup of G since G is the directed union of its finitely gener-
ated subgroups. The relevant equivariant homology theories are (strongly)
continuous by [70, Lemma 6.2].
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16.22. We have G/[G,G] = H1(G) ∼= Z, and the projection pr : G→ H1(G)
induces an isomorphisms on the group homology Hn(G) → Hn(G/[G,G])
for all n ∈ Z. This follows from Alexander-Lefschetz duality. The Atiyah-
Hirzebruch spectral sequence implies that Hn(pr; K(R)) : Hn(G; K(R)) →
Hn(G/[G,G]; K(R)) is bijective for all n ∈ Z. Since G satisfies the Full
Farrell-Jones Conjecture 13.27 by Theorem 16.1 (ie) and hence the K-
theoretic Farrell-Jones Conjecture for torsionfree groups and regular rings 6.53
by Theorem 13.62 ii, the map Kn(RG)→ Kn(R[G/[G,G]]) induced by pr is a
bijection. Since G/[G,G] ∼= Z, we get Kn(R[G/[G,G]]) ∼= Kn(R)⊕Kn−1(R)
from the Bass-Heller-Swan decomposition for algebraic K-theory, see Theo-
rem 6.16.

The L-theory case is treated analogously, but not replacing Theorem 6.16
by (9.109).

16.25. Show by induction over i = 1, 2, . . . , d that Gi is torsionfree and
satisfies the Baum-Connes Conjecture 14.11 with coefficients using Theo-
rem 16.7 (if) and (iic).

16.27. We want to apply Theorem 16.1 (iic). So we need to show that K sat-
isfies the Full Farrell-Jones Conjecture 13.27 and that for any any extension
1 → K → G → Z → 1 the group G satisfies the Full Farrell-Jones Conjec-
ture 13.27. Since K is either the fundamental group of a closed surface or
a free group, see [991, Lemma 2.1], both K and G are strongly poly-surface
groups or normally poly-free groups and hence satisfy the Full Farrell-Jones
Conjecture 13.27 by Theorem 16.24 or Theorem 16.26.

16.35. We only treat the K-theory case, the argument for L-theory is com-
pletely analogous. Let G be a group with a finite model for BG and let R
be a regular ring. Choose M , i and r as they appear in Theorem 16.34. We
obtain a commutative diagram

Hn(BG; KR) //

Hn(i;K(R))

����

Kn(RG)

i∗

��
Hn(M ; KR) //

Hn(p;K(R))

��

Kn(R[π1(M)])

p∗

��
Hn(BG; KR) // Kn(RG)

The right vertical arrows are assembly maps. The composite of the two verti-
cal arrows of the left column and the right column are the identity. Since the
middle horizontal arrow is bijective, the same is true for the upper horizontal
arrow.



Solutions of the Exercises 781

16.39. We conclude from Theorem 3.115 that for a natural number n the
vanishing of Q ⊗Z Wh(Z/n) = 0 implies n = 1, 2, 3, 4, 6. Now apply Theo-
rem 16.38.

Chapter 17

17.2. We get from Theorem 10.79 (i)

Kn(C∗r (Z/m,C)) ∼=

{
Zm n even;

{0} n odd.

Since Kn(C∗r (Z/2,C))→ Kn(C∗r (Z/6,C)) is split injective, the computation
for Kn(C∗r (SL2(Z),C)) follows.

We have C∗r (Z/2,R) ∼= R × R, C∗r (Z/3,R) ∼= R × C, and C∗r (Z/6,R) ∼=
R× R× C× C. We get from Theorem 10.79 (ii)

KOn(C∗r (Z/2,R)) ∼= KOn(R)⊕KOn(R);

KOn(C∗r (Z/4,R)) ∼= KOn(R)⊕KOn(R)⊕Kn(C);

KOn(C∗r (Z/6,R)) ∼= KOn(R)⊕KOn(R)⊕Kn(C)⊕Kn(C).

Since KOn(C∗r (Z/2,R)) → Kn(C∗r (Z/6,R)) is split injective, the computa-
tion for KOn(C∗r (SL2(Z),R)) follows by inspecting the values of KOn(R)
and Kn(C).

17.3. The group G contains a finitely generated free group. Hence it satis-
fies the Full Farrell-Jones Conjecture 13.27 by Theorem 16.1. It satisfies the
Baum-Connes 14.11 with coefficients by Theorem 16.7. We conclude from
Theorem 13.48 that the assembly maps

HG
0 (EG; KC)

∼=−→ K0(CG);

KG
n (EG)

∼=−→ Kn(Cr∗(G)),

are isomorphisms. Since for a finite groupH we haveK0(CH) = K0(C∗r (H)) =
RC(H) and K−1(CH) = K1(C∗r (H)) = {0}, we get from Example 15.30 exact
sequences

RC(C)
i∗⊕i∗−−−→ RC(D8)⊕RC(D8)→ K0(CG)→ 0,

and

0→ K1(C∗r (G))→ RC(C)
i∗⊕i∗−−−→ RC(D8)⊕RC(D8)→ K0(CG)→ 0

where i : C → D8 is the inclusion. The group C has two irreducible complex
representations, the trivial 1-dimensional representation C and the non-trivial
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1-dimensional representation C−. The group D8 has four 1-dimensional ir-
reducible representations and one 2-dimensional irreducible representation.
The homomorphism i∗ : RC(C)→ RC(D8) sends the class of C to the class of
the sum of the four 1-dimensional irreducible representations and C− to the
sum of two copies of the 2-dimensional irreducible representation, see [892,
Subsections 3.3, 5.1 and 5.3]. Hence i∗ : RC(C)→ RC(D8) looks like

1 0
1 0
1 0
1 0
0 2
1 0
1 0
1 0
1 0
0 2


: Z2 → Z10

We conclude that i∗ is injective and its cokernel is isomorphic to Z8 ⊕ Z/2.

17.5. This follows from Theorem 12.79 and Theorem 13.33.

17.7. This follows from Theorem 4.22 (v) and Example 17.6.

17.9. Since G is elementary amenable, it satisfies the L-theoretic Farrell-
Jones Conjecture 13.8 with coefficients in rings with involution after inverting
2 see [458, Theorem 5.2.1]. So we can apply Theorem 17.8.

For every non-trivial finite cyclic subgroup C ⊆ G we have C ⊆ CGC ⊆⊕
Z F and hence Hp(CGC;Q) = 0 for p 6= 0 and H0(CGC;Q) ∼= Q. Hence

we get from Theorem 17.8 for all n ∈ Z an isomorphism⊕
p+q=n

Hp(G;Q)⊗Z Lq(Z)⊕
⊕

(C)∈J,C 6={1}

Q⊗Q[WGC] ΘC ·
(
Q⊗Z L

〈j〉
n (ZC)

)
∼=−→ Q⊗Z L

〈j〉
n (ZG).

We get L
〈j〉
n (ZC) = 0 for odd n from Theorem 9.196 (iv) since F and hence C

has odd order. From the Lyndon-Serre spectral sequence applied to
⊕

Z F →
G → Z we conclude H∗(G;Q) ∼= H∗(Z;Q). Hence we obtain for odd n an
isomorphism

Q⊗Z L
〈j〉
n (Z)⊕Q⊗Z L

〈j〉
n−1(Z)

∼=−→ Q⊗Z L
〈j〉
n (ZG).

This implies
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Q⊗Z L
〈j〉
n (ZG) ∼=

{
Q n ≡ 1 mod 4;

{0} n ≡ 3 mod (4).

17.15. This follows from Theorem 11.36.

17.17. This follows from Theorem 17.16 by the following facts. The group
G satisfies conditions (M) and (NM) and has up to conjugacy precisely one
maximal finite subgroup, see Subsection 11.6.12. It is a hyperbolic group
and satisfies the Full Farrell-Jones Conjecture, see Subsection 16.8.15. Since
m is odd, all virtually cyclic subgroups of G are of type I. We conclude
from Section 17.3 that the infinite virtually cyclic subgroups of type I are
orientable.

17.22. Since H1(G) is the abelianization of G, we obtain a short ex-

act sequence Z D−→
⊕n

i=1 Z → H1(G) → 0 where D sends x ∈ Z to
(d1x, d2x, . . . , dnx).

17.23. One easily checks that G is torsionfree and the word s1s2s1s
−1
2 s−2

1 ∈
F is a commutator. Put R = C[Z/m]. Then R ∼=

∏m
i=1 C is semisimple and

in particular regular and we obtain from Lemma 17.21 (i) an isomorphism
for n ∈ Z

Kn(C[Z/m×G]) ∼= Kn(C[Z/m][G])
∼= Kn(C[Z/m])⊕Kn−1(C[Z/m])⊕Kn−1(C[Z/m])⊕Kn−2(C[Z/m]).

We get from Example 2.4, Lemma 2.12, Theorem 3.6, Lemma 3.9, and The-
orem 4.7

Kn(C[Z/m]) =


C[Z/m]× n = 1;

Zm n = 0;

0 n ≤ −1.

17.24. The group G is solvable and torsionfree and hence satisfies Con-
jecture 3.110, Conjecture 4.18, and the Farrell-Jones Conjecture 9.114 for
torsionfree groups for L-theory. We conclude from Theorem 9.106 that

Lsn(Z[G]) = L
〈−∞〉
n (Z[G]). The group G is a one-relator groups with pre-

sentation 〈s1, s2 | s1s2s
−1
1 s2〉. The word s1s2s

−1
1 s2 ∈ F is not a commutator.

Hence we get from Lemma 17.21 (ii) a short exact sequence

0→ H1(BG)⊗Z L
〈−∞〉
n−1 (Z)→ Hn(BG, {•}; L〈−∞〉(Z))

→ TorZ1 (H1(BG);L
〈−∞〉
n−2 (Z))→ 0,

and an isomorphism
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Lsn(ZG) ∼= L〈−∞〉n (Z)⊕Hn(BG, {•}; L〈−∞〉(Z)).

We have H1(BG) ∼= Z/2 ⊕ Z and L
〈−∞〉
n (Z) ∼= Z, 0,Z/2, 0 for n ≡ 0, 1, 2, 3

mod 4. Hence we get

Lsn(ZG) ∼=


Z⊕ Z/2 n ≡ 0 mod 4;

Z⊕ Z/2 n ≡ 1 mod 4;

Z/2 n ≡ 2 mod 4;

Z/2⊕ Z/2 n ≡ 3 mod 4.

17.31. This follows from Theorem 3.115, Theorem 3.116 (iv) and Theo-
rem 17.30 (ii).

17.36. This follows from Theorem 9.106 and the Shaneson splitting, see
Theorem 9.108, if we can construct an orientable closed aspherical smooth

3-manifold N such that L
〈−∞〉
i (Z[π1(M)]) contains p-torsion for at least one

i ∈ Z. Namely, then we can M = N × Tn−3.
If p = 2, take N = T 3. If p is odd, this follows from Example 17.35.

17.40. The Z/3-action given by φ on Z2 is free outside the origin. Now apply
Theorem 17.38 (iii) together with (17.39).

17.46. Note that G is the right angled Artin group associated to the sim-
plicial graph X consisting of 3 vertices e0,e1, and e2 and to edges [e0, e1] and
[e1, e2]. Note that σ = X in this case. Hence we get r−1 = 1, r0 = 3 and
r1 = 2. We get from (17.43) and Theorem 17.45

Hn(G) ∼=


Z n = 0;

Z3 n = 1;

Z2 n = 2;

{0} n ≥ 3,

Kn(C∗r (G)) ∼= Z3 for n ∈ Z,

and
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KOn(C∗r (G,R)) ∼=



Z n ≡ 0 mod (8);

Z3 ⊕ Z/2 n ≡ 1 mod (8);

Z2 ⊕ (Z/2)4 n ≡ 2 mod (8);

(Z/2)5 n ≡ 3 mod (8);

Z⊕ (Z/2)2 n ≡ 4 mod (8);

Z3 n ≡ 5 mod (8);

Z2 n ≡ 6 mod (8);

{0} n ≡ 7 mod (8).

17.48. We can arrange without changing the isomorphism type of (Z/2)3∗Z/2
(Z/2)2 that the inclusions of Z/2 into (Z/2)2 and (Z/2)3 are given by sending
x to (x, 0) and (x, 0, 0). Hence G is isomorphic to the right-angled Coxeter
group associated to the simplicial graph with vertices e0, e1, e2, e3 and edges
[e0, e1], [e0, e2], [e1, e2], and [e2, e3]. Then the associated flag complex Σ is
obtained from X by adding the 2-simplex [e0, e1, e2]. Hence the number of
the simplices of X is r = 10. Now apply Theorem 17.47.

17.50. Recall from the proof of Theorem 17.49 that M is aspherical. In
particular π is torsionfree and we get for any abelian group A using Poincaré
duality and the Universal Coefficient Theorem

Hn(Bπ;A) ∼= Hn(M ;A); for n ≥ 0;

H1(Bπ;A) ∼= π/[π, π]⊗Z A;

H2(Bπ;A) ∼= homZ(π,A);

H3(Bπ;A) ∼= A;

Hn(Bπ;A) ∼= {0} for n /∈ {0, 1, 2, 3}.

The independence of L
〈i〉
n (Zπ) from the decoration follows from Theorem 9.106

and from Conjectures 3.110 and 4.18, which hold for π by Theorem 13.62 (xii).
We obtain from Theorem 17.49 (ii) an isomorphism

Hn(Bπ; L
〈−∞〉
Z )

∼=−→ L〈−∞〉n (Zπ).

Next we apply the Atyiah-Hirzebruch spectral sequence to Hn(Bπ; L
〈−∞〉
Z )

Recall that Ln(Z) is Z, {0},Z/2, {0} for n ≡ 0, 1, 2, 3 mod 4, see Theo-
rem 9.196 (i). Since the composite Ln(Z)→ Ln(Zπ)→ Ln(Z) is the identity,
all differentials in the Atiyah-Hirzebruch spectral sequence are trivial. Hence
we obtain isomorphisms

L0(Zπ) ∼= H0(Bπ;L0(Z))⊕H2(Bπ;L2(Z/2));

L2(Zπ) ∼= H0(Bπ;L2(Z))⊕H2(Bπ;L0(Z/2)),
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and two short exact sequences

0→ H1(Bπ;L2(Z))→ L3(Zπ)→ H3(Bπ;L0(Z))→ 0;

0→ H1(Bπ;L0(Z))→ L1(Zπ)→ H3(Bπ;L2(Z))→ 0.

The first one splits because of H3(Bπ;L0(Z)) ∼= Z. In order to show that the
second one splits it suffices to show that it splits after localization at 2 since
H3(Bπ;L2(Z)) ∼= Z/2. This follows from Lemma 9.116 (i).

Chapter 18

18.9. This follows from the following facts. We have ∅/G = ∅. If f : X → Y is
a G-homotopy equivalence, f/G : X/G→ Y/G is a homotopy equivalence. If
the G-CW -complex X is the union of G-CW -subcomplexes X1 and X2 with
intersection X0, then CW -complex X/G is the union of CW -subcomplexes
X1/G and X2/G with intersection X0/G. If {Xi | i ∈ I} is a collection of
G-CW -complexes, then the canonical map (

∐
i∈I Xi)/G →

∐
i∈I Xi/G is a

homeomorphism.

18.12. Suppose that E is weakly F-excisive. Theorem 18.11 (ii) and (iv)
imply that the assignment sending (X,A) to coker

(
πn(∅+) → πn(E(X/A))

)
is a G-homology theory.

Now suppose that the assignment sending (X,A) to coker
(
πn(E(∅+)) →

πn(E(X/A))
)

is a G-homology theory. Then we get from Theorem 18.11 (ii)

and (iv) and from Lemma 12.6 applied to E% → E that E is weakly F-
excisive.

18.13. We use induction over the dimension d = dim(X) of X. The induction
beginning d = 0 follows from the fact that X is a finite union of homogenous

spaces
∐k
i=1G/Hi and hence we get an isomorphisms

⊕k
i=1 πn(E(G/Hi))

∼=−→
πn(E(X)). The induction step from (d−1) to d ≥ 1 is done as follows. Choose
a G-pushout ∐l

i=1G/Hi × Sd−1 //

��

Xd−1

��∐l
i=1G/Hi ×Dd // X.

Because of the associated Mayer-Vietoris sequence, it suffices to show for
all n ∈ Z and i ∈ {1, 2, . . . , l} that πn(G/Hi × Sd−1), πn(G/Hi ×Dd), and
πn(Xd−1) are finitely generated. This follows from the induction hypothesis
and the fact that πn(G/Hi × Dd) ∼= πn(G/Hi) holds by weak G-homotopy
invariance.
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18.17. Since the projection EF (G) → G/G induces a homotopy equiv-
alence EG ×G EF (G) → EG ×G G/G, the map induced by the projec-

tion EF (G) → G/G induces a weak homotopy equivalence E(EF (G))
∼=−→

E(G/G). Obviously we get a weak equivalence of Or(G) spectra from KR◦GG
for GG : Or(G) → GROUPOIDS defined in (12.29) to E|Or(G) since there is

an equivalence of groupoids GG(G/H)
'−→ Π(EG×G G/H) which is natural

in G/H. Now apply Lemma 12.6 and Corollary 18.16.

Chapter 19

19.7. One easily checks that F and F f are compatible with the structures
of an additive category, is fully faithful, and every object of RG-MODfgf is
isomorphic to some object in the image of F .

19.12. Define a functor of additive categories F : T (X) → GM{1}(X) by
sending an object M = {M(x,s) | (x, s) ∈ X × N} to the object F (M) =
{F (M)x | x ∈ X} given by F (M)x =

⊕
s∈NM(x,s) and a morphism f =

{f(x,s),(y,t) | (x, s), (y, t) ∈ X × N} from M = {M(x,s) | (x, s) ∈ X × N} to
N = {N(y,t) | (y, t) ∈ X × N} to the morphism F (f) : F (M)→ F (N) which
is defined for x, y ∈ X by the morphism

⊕
s∈NM(x,s) →

⊕
t∈NN(y,t) given by

the collection of R-homomorphisms {f(x,s),(y,s) : M(x,s) → N(y,t) | s, t ∈ N}.
Obviously F ◦ I is the identity on GM{1}(X). It remains to show that I ◦ F
is naturally equivalent to the identity on T (X). For this purpose we have to

construct for every object M in T (X) a natural isomorphism u : I ◦F (M)
∼=−→

M in T (X). For (x, s) and (y, t) in X×N we define u(x,s),(y,t) : I◦F (M)(x,s) →
M(y,t) be the projection

⊕
s∈NM(x,s) → M(y,t) to the summand belonging

to (y, t) if s = 0 and x = y and to be zero otherwise. For (x, s) and (y, t) in
X ×N we define (u−1)(x,s),(y,t) : M(x,s) → (I ◦F (M))(y,t) to be the inclusion
M(x,s) →

⊕
t∈NM(y,t) of the summand belonging to s if x = y and to be

zero otherwise.

19.13. The hyperbolic metric is given by

dhyp((x1, y1), (x2, y2))

= 2 · ln

(√
(x2 − x1)2 + (y2 − y1)2 +

√
(x2 − x1)2 + (y2 + y1)2

2
√
y1y2

)
.

Hence γ(xk,yk) : [0,∞) → H2 sends t to (xk, exp(t) · yk) since for t, s ∈ R we
get dhyp(γ(xk,yk)(t), γ(xk,yk)(s)) = |t− s|. We compute for t ≥ 0
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lim
t→∞

dhyp(γ(x1,y1)(t), γx2,y2(t))

= lim
t→∞

dhyp(γ(x1,exp(t)·y1)(t), γx2,exp(t)·y2(t))

= lim
t→∞

2 · ln

(√
(x2 − x1)2 + (exp(t) · y2 − exp(t) · y1)2

2
√

exp(t) · y1 · exp(t) · y2

+

√
(x2 − x1)2 + (exp(t) · y2 + exp(t) · y1)2

2
√

exp(t) · y1 · exp(t) · y2

)

= lim
t→∞

2 · ln

(√
(x2 − x1)2

4 exp(t) · y1 · exp(t) · y2
+

(exp(t) · y2 − exp(t) · y1)2

4 exp(t) · y1 · exp(t) · y2

+

√
(x2 − x1)2

4 exp(t) · y1 · exp(t) · y2
+

(exp(t) · y2 + exp(t) · y1)2

4 exp(t) · y1 · exp(t) · y2

)

= lim
t→∞

2 · ln

(√
(x2 − x1)2

4y1y2 · exp(2t)
+

(y2 − y1)2

4y1y2

+

√
(x2 − x1)2

4y1y2 · exp(2t)
+

(y2 + y1)2

4y1y2

)

= 2 · ln

(√
(y2 − y1)2

4y1y2
+

√
(y2 + y1)2

4y1y2

)

= 2 · ln
(
|y2 − y1|+ (y2 + y1)√

4y1y2

)
= 2 · ln

(
2 max{y1, y2}√

4y1y2

)
= 2 ·

(
ln(max{y1, y2})−

ln(y1)

2
− ln(y2)

2

)
= | ln(y1)− ln(y2)|.

19.15. Let t ∈ [T − r′, T + r′]. We have |τ | ≤ d(x1, x2) ≤ 2β. From T − r′ =
r′′ > 2β we conclude t, t+ τ > 0. If t ≥ d(x, x1), then t+ τ ≥ d(x, x2) holds
and hence we get cx1,x(t) = x = cx2,x(t + τ) so that the assertion follows in
this case. Hence we can assume without loss of generality 0 < t < d(x, x1).
One easily checks that 0 < t+ τ < d(x, x2) and d(cx1,x(t), x) = d(x, x1)− t =
d(x, x2) − (t + τ) = d(cx2,x(t + τ), x) hold. We can suppose without loss
of generality d(x, x1) ≤ d(x, x2), the proof in the other case is analogous
interchanging the role of x1 and x2. We have d(x, x1) = d(x, cx2,x(d(x, x2)−
d(x, x1))). The Intercept Theorem implies
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d(cx1,x(t), cx2,x(t+ τ)) =
d(x1, cx2,x(d(x, x2)− d(x, x1))) · (d(x, x1)− t)

d(x, x1)
.

We have d(x2, cx2,x(d(x, x2) − d(x, x1))) = d(x, x1). Hence the triangle in-
equality implies

d(x1, cx2,x(d(x, x2)− d(x, x1))) ≤ d(x1, x2)− d(x2, cx2,x(d(x, x2)− d(x, x1)))

= d(x1, x2)− d(x, x1)

≤ d(x1, x2)− (d(x, x2)− d(x1, x2))

= 2d(x1, x2)− d(x, x2)

≤ 2d(x1, x2)

≤ 4β.

Hence we get

d(cx1,x(t), cx2,x(t+ τ)) ≤ 4 · β · (d(x, x1)− t)
d(x, x1)

.

Since we have r′′ = T − r′ ≤ t < d(x, x1) and

d(x, x1)− t ≤ d(x, x0) + d(x0, x1)− t ≤ r′ + r′′ + L+ β − (T − r′)
= r′ + r′′ + β + L− r′′ = r′ + β + L,

the asserted inequality d(cx1,x(t), cx2,x(t+ τ)) ≤ 4·β·(r′+β+L)
r′′ follows.

We have t ≤ T + r′ = 2r′+ r′′ We have already shown |τ | ≤ 2β and hence
t + τ ≤ 2r′ + r′′ + 2β. Since this implies t, t + τ ∈ [0, 2r′ + r′′ + 2β], we get
cx1,x(t) ∈ B2r′+r′′+2β(x1) and cx1,x(t+ τ) ∈ B2r′+r′′+2β(x2).

Chapter 20

20.14. The assertion follows from Theorem 20.12 applied to N = dim(Σ),
X = |Σ|, f = id|Σ|E, and any ε > 0. Since Σ is finite, the group of simplicial
automorphisms of Σ is also finite. Therefore G contains a normal subgroup
of finite index which acts trivially on Σ and hence on |Σ|.

20.20. Define a G-homeomorphism f : G×1X
∼=−→ G×dX by sending (g, x)

to (g, gx).

20.37. The assertion for Fg(Γ, S, k) is a consequence of the equality
Γ (gk, tk, . . . , g1, t1, g0, z) = gk · · · g0z.

The assertion for S1
Γ,S,k(g, x) is proved as follows. Consider (h, y) ∈ G×X

with the property that there are a, b ∈ S, f ∈ Fa(Γ, S, k), and f ′ ∈ Fb(Γ, S, k)
satisfying both f(x) = f ′(y) and h = ga−1b. We conclude from the assertion
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for Fg(Γ, S, k) that this is equivalent to the condition that for some a, b in S
we have ax = by and h = ga−1b.

The claim for SnΓ,S,k(g, x) follows by induction of n since S[k, n] =
{u1 · · ·un | ui ∈ S[k, 1]} holds.

20.43. Suppose that the condition is satisfied for S1 and ε > 0. Choose a
natural number k such that each element in S2 can be written as a word in
the generators of S2 consisting of at most k elements. Then the conditions is
satisfied for S2 and k · ε > 0, since for an element g which can be written as
a word in l-elements of S1 we conclude from the triangle inequality and the
G-invariance of the L1-metric that dL1(f(gx), gf(x)) ≤ l · ε holds.

20.54. Because of Theorem 20.53 we have to show for any finite abelian
group G that it is a Dress group if and only if the set of primes for which
the p-Sylow group is non-cyclic consists of at most two elements. This follows
from the fact that G is the direct product of its p-Sylow subgroups and G is
cyclic if and only if all its p-Sylow subgroups are cyclic.

20.51. Consider H ∈ D(H). Choose a prime q and a normal subgroup
H ⊆ F such that H is cyclic and F/H is a q-group. Now take p to be any
prime, P = {1}, C = H and D = F in the Definition 20.50.

20.56. Obviously Cn(X) is ZG-module whose underlying abelian groups is
finitely generated free. Hence s(X) is well-defined.

Suppose that f : X → Y is a G-map which is (after forgetting the G-
action) a homotopy equivalence. Then we obtain an exact sequence of finite
ZG-chain complexes 0 → C∗(Y ) → cone(C∗(f)) → ΣC∗(X) → 0 such that
each chain module is finitely generated free as abelian group and cone(C∗(f))
has trivial homology. Define for a finite ZG-chain complex E∗ whose chain
modules are finitely generated free as abelian groups the element s(E∗) =∑
n≥0(−1)n · [En] in Swp(G). Now one easily checks

s(X) = s(Cc∗(X));

s(Y ) = s(Cc∗(Y ));

s(cone(C∗(f))) = 0;

s(ΣC∗(X)) = −s(C∗(X));

s(cone(C∗(f))) = s(C∗(Y )) + s(ΣC∗(X)).

This implies s(X) = s(Y ).
Suppose that the compact G-CW -complex X is the union of sub G-CW -

complexes X1 and X2 and X0 is the intersection of X1 and X1. Then we
conclude from the short exact sequence of ZG chain -complexes

0→ C∗(X0)→ C∗(X1)⊕ C∗(X2)→ C∗(X)→ 0
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that s(X) = s(X1) + s(X2) − s(X0) holds. Hence the map s : SwA(G) →
Swp(G) sending [X] to s(X) is a well-defined map of abelian groups. It is
compatible with the multiplication since there is a ZG-chain isomorphism

C∗(X)⊗C∗(Y )
∼=−→ C∗(X×Y ) for any two compact G-CW -complexes X and

Y .

20.57. Since for two finite G-sets S and S′ we can view S q S′ as the G-
pushout of S ← ∅ → S′, we get a well-defined homomorphisms of abelian
groups a : A(G) → SwA(G) by sending [S] to [S]. It is compatible with the
multiplication since it is defined on A(G) and SwA(G) by the cartesian prod-
uct equipped with the diagonal G-action.

In order to show that the homomorphism a is surjective, we show by
induction over d = 0, 1, 2, . . . that for any cocompact finite G-CW -complex
X of dimension ≤ d the class [X] is in the image of a. The induction beginning
d = 0 is obvious since a cocompact 0-dimension G-CW -complex is the same
as a finite G-set. The induction step from (d− 1) to d ≥ 1 is done as follows.
We can write X as a G-pushout∐

i∈Id G/Hi × Sd−1 q //

��

Xd−1

��∐
i∈Id G/Hi ×Dd // X

for a finite set I and subgroups Hi ⊆ G of finite index. Since we can replace
Xd by the mapping cylinder cyl(q) and the projections cyl(q) → Xd and
G/Hi ×Dd → G/Hi are G-homotopy equivalence, we obtain in SwA(G)

[X] =
∑
i∈Id

[G/Hi] + [Xd−1]−
∑
i∈Id

[G/Hi × Sd−1].

Since by induction hypothesis [Xd−1], [G/Hi], and [G/Hi × Sd−1] lie in the
image of a, the same is true for [X].

20.58. The map u is obviously an isomorphisms of abelian group. The
homomorphism a is surjective by Exercise 20.57. The map c is well-defined
since for an exact sequence of Z[Z/p]-modules 0→M0 →M1 →M2 → 0 the

sequence of Q-modules 0 → Q ⊗Z M
Z/p
0 → Q ⊗Z M

Z/p
1 → Q ⊗Z M

Z/p
2 → 0

is exact. The composite c ◦ a ◦ u sends (m,n) to (m,m + n) and hence is
bijective. Hence all three maps u, a, and b are bijective.

Chapter 21

21.3. If fU and gU exists, then fU = f ◦ iU and gU = prU ◦(iU ⊕ i⊥)−1 ◦ g.



792 27 Solutions of the Exercises

21.6. We get a weak homotopy equivalence

K(U)
'−→ hofib

(
K(A)→ K(A/U)

)
from Theorem 21.5 (i). The projection K(A) → ∗ to the trivial spectrum ∗
is a weak homotopy equivalence by Theorem 6.37 (iii) and hence induces a
weak homotopy equivalence

hofib
(
K(A)→ K(A/U)

) '−→ hofib
(
∗ → K(A/U)

)
= ΩK(A/U).

21.14. We leave the elementary proof that R-MODfgp is a Waldhausen
category to the reader. Obviously it cannot be homotopical since the zero
homomorphism R → R is not injective and hence can not factorize into a
split injective map followed by an isomorphism.

21.27. Since K̃0(Z[Z/23]) is non-trivial, see Example 2.106, there exists a
finitely generated projective Z[Z/23]-module P which is not stably free. Let
0[P ] be the Z[Z/23]-chain complex concentrated in dimension zero whose 0-th
chain module is P . Then 0[P ] is finitely dominated but cannot be Z[Z/23]-
chain homotopy equivalent to a finite free Z[Z/23]-chain complex.

Chapter 22

22.74. Since OG(G/H) is flasque, we get Kn(OG(G/H)) = 0 for all
n ∈ Z from Lemma 6.37 (iii). We conclude from the T OD-sequence of The-

orem 22.19 that the canonical map Kn+1(DG(G/H))
∼=−→ Kn(T G(G/H))

is an isomorphism for all n ∈ Z. We have already constructed a natu-

ral isomorphism Kn(B[G/H]⊕)
∼=−→ Kn+1(DG(G/H)) for every n ∈ Z in

in Proposition 22.70. We get a canonical isomorphism Kn(T G(G/H))
∼=−→

Kn(T G(G/G)) from Lemma 22.22. These three isomorphism can be com-

bined to an isomorphism Kn(T G(G/G))
∼=−→ Kn(B[G/H]⊕). There is an

obvious identification T G(G/G) = B⊕. Under it we get an isomorphism

Kn(B[G/H]⊕)
∼=−→ Kn(B⊕) which comes from the obvious projection G/H →

G/G and the obvious identification B(G/G) = B.

22.84. We leave the elementary proof that (B, suppZ) satisfies the axioms
appearing in Definition 22.1 to the reader.

The category B(Z/Z) ∼= B isR[Z/2] and henceHG
n (Z/Z; KB) ∼= Kn(R[Z/2]).

The category B(Z) can be identified with the category
∐
n∈ZR. Hence the

obvious functor of additive categories
⊕

n∈ZR⊕ → B(Z)⊕ is an equivalence.
Thus we get an isomorphism



Solutions of the Exercises 793

α :
⊕
n∈Z

Kn(R)
∼=−→ Kn(B(Z))

since algebraic K-theory of additive categories is compatible with direct sums
over arbitrary index sets. Let s : Z → Z be the automorphism sending n to
n+1 and sh:

⊕
n∈ZKn(R)→

⊕
n∈ZKn(R) the shift automorphism sending

(xn)n∈N to (xn−1)n∈N. Then the following diagram commutes⊕
n∈ZKn(R)

sh

��

α
∼=
// Kn(B[Z]⊕)

∼= Kn(B(s)⊕)

��⊕
n∈ZKn(R)

α

∼= // Kn(B(Z)⊕).

The following sequence of abelian group is exact

0→
⊕
n∈Z

Kn(R)
id− sh−−−−→

⊕
n∈Z

Kn(R)
ε−→ Kn(R)→ 0

where ε sends (xn)n≥0 to
∑
n∈Z xn. Since a model for EZ is R with the

standard Z-action, we obtain a long exact sequence

· · · → Kn(B(Z)⊕)
id−Kn(B(s)⊕)−−−−−−−−−→ Kn(B(Z)⊕)→ HZ

n(EZ; KB)

→ Kn−1(B(Z)⊕)
id−Kn−1(B(s)⊕)−−−−−−−−−−−→ Kn−1(B(Z)⊕)→ · · · .

Hence we obtain an identification

HZ
n(EZ; KB) ∼= Kn(R).

We leave the elementary proof of the claim about the identification of the
assembly map to the reader.

22.86. Suppose that we have two other morphisms u′i : B → B′ for i = 1, 2
satisfying u = u′1 + u′2 and suppG(u′i) = Li for i = 1, 2. Put vi := ui − u′i
for i = 1, 2. Then we have 0 = v1 + v2 and hence suppG(v1 + v2) = ∅. We
conclude

suppG(v1) = suppG((v1 + v2) + (−v2)) ⊆ suppG(v1 + v2) ∪ suppG(−v2)

= ∅+ suppG(v2) = suppG(u2 + (−u′2)) ⊆ suppG(u2) ∪ suppG(−u′2)

⊆ suppG(u2) ∪ suppG(u′2) ⊆ L2 ∪ L2 = L2

and
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suppG(v1) = suppG(u1 + (−u′1)) ⊆ suppG(u1) ∪ suppG(−u′1)

⊆ suppG(u1) ∪ suppG(u′1) ⊆ L1 ∪ L1 = L1.

Since L1∩L2 = ∅, we conclude suppG(v1) = ∅ and hence v1 = 0. This implies
u1 = u′1. Analogously one shows u2 = u′2.

22.87. Obviously A[G] with the support defined in Example 22.2 is a
category with G-support. It is a strong category with G-support since A
comes with a G-action and we can define the desired homotopy trivilization

Ωg : idB
∼=−→ Λg by the isomorphisms idgA ·g : A→ gA in A[G] for any object

A ∈ A. Morphism Additivity obviously holds.

22.88. Define a functor of G-Z-categories

F : A[G]
∼=−→ B

by requiring that F is the identity on the set of objects and sends a mor-
phism

∑
g∈G(fg : gA → A) · g from A to A′ in A[G] to the morphism∑

g∈G(fg ◦ Ωg(A)) from A to A′ in A[G]. Using Exercise 22.86 one easily
checks that F is full and faithful and hence an isomorphism of G-Z-categories.
One easily checks that F is compatibile with the support functions.

22.89. Suppose such an extension to the structure of a strong category with
Z-support exists. The natural transformation Ω1 for the generator 1 ∈ Z
is an isomorphism in B with support {1}. This is a contradiction since no
morphism in B has support {1}.

22.102. Because of Theorem 21.5 (i) and Lemma 22.101 its suffices to show

Km(T {1}0 ({•})) ∼=
∞⊕
n=0

Km(B⊕);

Km(O{1}0 ({•})) ∼=
∞∏
n=0

Km(B⊕).

Non-connective K-theory is compatible with infinite direct products of ad-
ditive categories, by [200], see also [556, Theorem 1.2]. It is also compatible
with directed unions, see for instance [668, Corollary 7.2], and hence with
infinite direct sums. Since the obvious functors

∞⊕
n=0

B⊕
'−→ T {1}0 ({•});

O{1}0 ({•}) '−→
∞∏
n=0

B⊕,
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are equivalences of additive categories, the claim follows.

22.132. The key observation is the following. Given a morphism φ : B =
(S, π, η,B) → B′ = (S′, π′, η′,B′), there exists because of bounded control
over N a natural number n such that for s ∈ S and s′ ∈ S′ the implication
φs,s′ 6= 0 =⇒ |η(s)−η′(s′)| ≤ n holds. Hence for any natural number r with
r > n we conclude that∣∣∣∣ 1

η(s)
− 1

η′(s′)

∣∣∣∣ =

∣∣∣∣η(s)− η′(s′)
η(s) · η(s′)

∣∣∣∣ ≤ n

r · (r − n)

holds for s ∈ S and s′ ∈ S′ with φs,s′ 6= 0, provided that η(s) ≥ r or η(s′) ≥ r.
Obviously we have limr→∞

n
r·(r−n) = 0.

Chapter 23

23.7. Obviously Φτ ◦ Φσ = Φτ+σ for τ, σ ∈ R and Φ0 = idFS(X). The main
task is to show that Φ : FS(X)× R→ FS(X) is continuous.

We estimate for c ∈ FS(X) and τ ∈ R

dFS(X)

(
c, Φτ (c)

)
=

∫
R

dX
(
c(t), c(t+ τ)

)
2e|t|

dt

≤
∫
R

|τ |
2e|t|

dt

= |τ | ·
∫
R

1

2e|t|
dt

= |τ |.

We estimate for c, d ∈ FS(X) and τ ∈ R

dFS(X)

(
Φτ (c), Φτ (d)

)
=

∫
R

dX
(
c(t+ τ), d(t+ τ)

)
2e|t|

dt

=

∫
R

dX
(
c(t), d(t)

)
2e|t−τ |

dt

≤
∫
R

dX
(
c(t), d(t)

)
2e|t|−|τ |

dt

= e|τ | ·
∫
R

dX
(
c(t), d(t)

)
2e|t|

dt

= e|τ | · dFS(X)(c, d).

The two inequalities above together with the triangle inequality imply for
c, d ∈ FS(X) and τ, σ ∈ R
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dFS(X)

(
Φτ (c), Φσ(d)

)
= dFS(X)

(
Φτ (c), Φσ−τ ◦ Φτ (d)

)
≤ dFS(X)

(
Φτ (c), Φτ (d)

)
+ dFS(X)

(
Φτ (d), Φσ−τ ◦ Φτ (d)

)
≤ e|τ | · dFS(X)(c, d) + |σ − τ |.

This implies that Φ is continuous at (c, τ).

23.16. Note that FS(X)R is the space of constant generalized geodesics.
Let c ∈ FS(X) − FS(X)R. Pick t0, t1 ∈ R such that c(t0) 6= c(t1). Set
δ := dX(c(t0), c(t1))/2. For x ∈ X then dX(x, c(t0)) ≥ δ or dX(x, c(t1)) ≥ δ.
Denote by cx the constant generalized geodesic at x. If dX(x, c(t0)) ≥ δ, then
dX(x, c(t)) ≥ δ/2 if t ∈ [t0 − δ/2, t0 + δ/2]. Thus in this case

dFS(X)(cx, c) ≥
∫ t0+δ/2

t0−δ/2

δ/2

2e|t|
dt =: ε0.

Similarly,

dFS(X)(cx, c) ≥
∫ t1+δ/2

t1−δ/2

δ/2

2e|t|
dt =: ε1,

if dX(x, c(t1)) ≥ δ/2. HenceBε(c)∩FS(X)R = ∅ if we set ε := min{ε0/2, ε1/2}.

23.37. If dim(X) =∞, the claim is obviously true. So we can assume in the
sequel that dim(X) is a natural number.

Let U be an open covering of A. For U ∈ U choose an open subset U ′ ⊆ X
satisfying U = A∩U ′. Then U ′ = {U ′ | u ∈ U}q{X \A} is an open covering
of X. Let V ′ be a refinement of U ′ with dim(V) ≤ dim(X). Then V = {V ′∩A |
V ′ ∈ V ′} is an open covering of A with dim(V) ≤ dim(V ′) ≤ dim(X). This
implies dim(A) ≤ dim(X).

Chapter 24

24.11. We have to show for ε ∈ {±1} and g ∈ G that, for any ZG-module
M which is finitely generated free as abelian groups, the element s([M ], (ε ·
g)) lies in the kernel of the projection K1(ZG) → Wh(G) for the element
(ε · g) ∈ K1(ZG) represented by the trivial unit ε · g ∈ Zg× and the element
[M ] ∈ Sw(G) represented by M . It is not hard to check that s([M ], (εg))
is represented by the composite of the automorphisms (ε · lg) ⊗Z idZG and
idM ⊗rg of M ⊗2 ZG where lg : M →M is left multiplication and rg : ZG→
ZG is right multiplication. One easily checks that the class of (ε · lg)⊗Z idZG
in K1(ZG) lies in the image of K1(Z) → K1(ZG) and the class of idM ⊗rg
in K1(ZG) is rkZ(M) · (g).
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24.30. (i) For x, y ∈ Z with fx,y 6= 0 there exist i ∈ {1, . . . ,m} and j ∈
{1, . . . , n} with (fi,j)x,y 6= 0 which implies dL

1

(w(x), w(y)) ≤ wd(fi,j).

(ii) For x, y ∈ Z with (g ◦ f)x,y 6= 0 there exists z ∈ Z with fx,z 6= 0 and
gz,y 6= 0 and hence we get

dL
1

(w(x), w(y)) ≤ dL
1

(w(x), w(, z)) + dL
1

(w(z), w(y)) ≤ wd(f) + wd(g).

(iii) Suppose that (λ · f +µ · g)x,y 6= 0 holds. Then fx,y 6= 0 or gx,y 6= 0 holds.

This implies dL
1

(w(x), w(y)) ≤ wd(f) or dL
1

(w(x), w(y)) ≤ wd(g).

(iv) This follows from the definition of the width.

It is trivial on objects since we have (idM )x,y 6= 0 =⇒ x = y =⇒
dL

1

(w(x), w(y)) = 0.

24.40. Define for a bounded A-chain complex C∗ the number d(C∗) to be the
minimum over those numbers d for which there exists integers a and b such
that a ≤ b holds, we have Cn = 0 for n < a and n > b, and d = b− a holds.
Then we use induction over d(C∗). In the induction beginning d(C∗) = 0 the
A-chain complex C∗ is concentrated in one dimension and the claim follows
directly from the definition. The induction step follows from Additivity.

24.46. The inverse of g ◦ f is f−1 ◦ g−1. One easily checks using the axioms
appearing in Definition 24.27 that wd(g ◦ f),wd((g ◦ f)−1) ≤ ε+ δ holds.

24.49. In the sequel we will apply the axioms appearing in Definition 24.27
over and over again.

(i) The equality wd(λ · f∗ + µ · g∗) ≤ max{wd(f∗),wd(g∗)} follows directly
from these axioms. If h∗ : f∗ ' g∗ and k∗ : g∗ ' h∗ are A-chain homotopies,
then h∗ + k∗ is a A-chain homotopy f∗ ' h∗.
(ii) If h∗ : f∗ ' f ′∗ is a A-chain homotopy, then we obtain A-chain homotopies
v∗+1 ◦ h∗ : v∗ ◦ f∗ ' v∗ ◦ f ′∗ and h∗ ◦ u∗ : f∗ ◦ u∗ ' f ′∗ ◦ u∗
(iii) Choose A-chain maps u∗ : D∗ → C∗ and A-chain map v∗ : E∗ → D∗
satisfying

wd(u∗) ≤ ε;

wd(v∗) ≤ ε;

u∗ ◦ f∗ 'ε idC∗ ;

f∗ ◦ u∗ 'ε idD∗ ;

v∗ ◦ g∗ 'ε idD∗ ;

g∗ ◦ v∗ 'ε idE∗ .

Now assertions (i) and (ii) imply
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wd(g∗ ◦ f∗) ≤ 2ε;

wd(u∗ ◦ v∗) ≤ 2ε;

(u∗ ◦ v∗) ◦ (g∗ ◦ f∗) '3ε idC∗ ;

(g∗ ◦ f∗) ◦ (u∗ ◦ v∗) '3ε idE∗ .

Chapter 25

25.1. Test.

Chapter 26
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Basel, 2001.
229. O. Chodosh, C. Li, and Y. Liokumovich. Classifying sufficiently connected PSC

manifolds in 4 and 5 dimensions. Geom. Topol., 27(4):1635–1655, 2023.
230. D.-C. Cisinski. Higher categories and homotopical algebra, volume 180 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2019.
231. T. D. Cochran. Noncommutative knot theory. Algebr. Geom. Topol., 4:347–398,

2004.
232. T. D. Cochran, K. E. Orr, and P. Teichner. Knot concordance, Whitney towers and

L2-signatures. Ann. of Math. (2), 157(2):433–519, 2003.
233. M. M. Cohen. A course in simple-homotopy theory. Springer-Verlag, New York,

1973. Graduate Texts in Mathematics, Vol. 10.
234. E. H. Connell and J. Hollingsworth. Geometric groups and Whitehead torsion. Trans.

Amer. Math. Soc., 140:161–181, 1969.
235. P. E. Conner and F. Raymond. Actions of compact Lie groups on aspherical mani-

folds. In Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969),
pages 227–264. Markham, Chicago, Ill., 1970.

236. A. Connes. Noncommutative geometry. Academic Press Inc., San Diego, CA, 1994.
237. F. Connolly, J. F. Davis, and Q. Khan. Topological rigidity and H1-negative invo-

lutions on tori. Geom. Topol., 18(3):1719–1768, 2014.
238. F. Connolly, J. F. Davis, and Q. Khan. Topological rigidity and actions on con-

tractible manifolds with discrete singular set. Trans. Amer. Math. Soc. Ser. B,

2:113–133, 2015.
239. F. Connolly and T. Koźniewski. Examples of lack of rigidity in crystallographic
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246. G. Cortiñas. Algebraic v. topological K-theory: a friendly match. In Topics in

algebraic and topological K-theory, volume 2008 of Lecture Notes in Math., pages
103–165. Springer, Berlin, 2011.
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318. G. Elek and E. Szabó. On sofic groups. J. Group Theory, 9(2):161–171, 2006.
319. G. A. Elliott. On the classification of inductive limits of sequences of semisimple

finite-dimensional algebras. J. Algebra, 38(1):29–44, 1976.
320. A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras

in stable homotopy theory. American Mathematical Society, Providence, RI, 1997.

With an appendix by M. Cole.
321. T. Elsner. Systolic groups with isolated flats. Preprint,

http://www.math.uni.wroc.pl/ elsner/papers/isolated-flats.pdf, 2008.
322. I. Emmanouil. On a class of groups satisfying Bass’ conjecture. Invent. Math.,

132(2):307–330, 1998.
323. I. Emmanouil. Solvable groups and Bass’ conjecture. C. R. Acad. Sci. Paris Sér. I

Math., 326(3):283–287, 1998.
324. I. Emmanouil. Idempotent matrices over complex group algebras. Universitext.

Springer-Verlag, Berlin, 2006.
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412. F. González-Acuña, C. M. Gordon, and J. Simon. Unsolvable problems about higher-

dimensional knots and related groups. Enseign. Math. (2), 56(1-2):143–171, 2010.
413. T. Goodwillie, M. Krannich, and A. Kuper. Stability of concordance embeddings.

Preprint, arXiv:2207.13216 [math.AT], to appear in the Proceedings of the Royal

Society of Edinburgh,, 2022.
414. A. Gorokhovsky and E. Van Erp. Index theory and noncommutative geometry: a

survey. In Advances in noncommutative geometry—on the occasion of Alain Connes’

70th birthday, pages 421–462. Springer, Cham, [2019] c©2019.
415. D. H. Gottlieb. A certain subgroup of the fundamental group. Amer. J. Math.,

87:840–856, 1965.
416.  L. Grabowski. On Turing dynamical systems and the Atiyah problem. Invent. Math.,

198(1):27–69, 2014.
417. D. Grayson. Higher algebraic K-theory. II (after Daniel Quillen). In Algebraic

K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pages 217–240.

Lecture Notes in Math., Vol. 551. Springer-Verlag, Berlin, 1976.
418. D. R. Grayson. SK1 of an interesting principal ideal domain. J. Pure Appl. Algebra,

20(2):157–163, 1981.
419. D. R. Grayson. The K-theory of semilinear endomorphisms. J. Algebra, 113(2):358–

372, 1988.
420. E. Green. Graph products of groups. PhD thesis, The University of Leeds, 1990.

Available online at http://etheses.whiterose.ac.uk/236/1/uk bl ethos 254954.pdf.
421. M. Gromov. Volume and bounded cohomology. Inst. Hautes Études Sci. Publ.

Math., 56:5–99 (1983), 1982.
422. M. Gromov. Large Riemannian manifolds. In Curvature and topology of Riemannian

manifolds (Katata, 1985), pages 108–121. Springer-Verlag, Berlin, 1986.
423. M. Gromov. Hyperbolic groups. In Essays in group theory, pages 75–263. Springer-

Verlag, New York, 1987.
424. M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory,

Vol. 2 (Sussex, 1991), pages 1–295. Cambridge Univ. Press, Cambridge, 1993.
425. M. Gromov. No metrics with positive scalar curvatures on aspherical 5-manifolds.

Preprint, arXiv:2009.05332 [math.DG], 2020.
426. M. Gromov and H. B. Lawson, Jr. Positive scalar curvature and the Dirac operator

on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math., 58:83–196

(1984), 1983.
427. J. Grunewald. The behavior of Nil-groups under localization and the relative assem-

bly map. Topology, 47(3):160–202, 2008.
428. J. Grunewald, J. R. Klein, and T. Macko. Operations on a-theoretic nil-terms. J.

Topol., 1(2):317–341, 2008.
429. E. Guentner, N. Higson, and S. Weinberger. The Novikov conjecture for linear

groups. Publ. Math. Inst. Hautes Études Sci., 101:243–268, 2005.
430. E. Guentner, R. Tessera, and G. Yu. A notion of geometric complexity and its

application to topological rigidity. Invent. Math., 189(2):315–357, 2012.
431. E. Guentner, R. Tessera, and G. Yu. Discrete groups with finite decomposition

complexity. Groups Geom. Dyn., 7(2):377–402, 2013.
432. E. Guentner, R. Willett, and G. Yu. Dynamic asymptotic dimension: relation to

dynamics, topology, coarse geometry, and C∗-algebras. Math. Ann., 367(1-2):785–
829, 2017.

433. Y. Guerch, S. Hughes, and L. J. Sánchez Saldaña. Centralisers and the virtually

cyclic dimension of out(Fn). Preprint, arXiv:2308.01590 [math.GR], 2023.



References 817

434. A. Haefliger and V. Poenaru. La classification des immersions combinatoires. Inst.

Hautes Études Sci. Publ. Math., 23:75–91, 1964.
435. T. Haettel. Extra large type Artin groups are CAT(0) and acylindrically hyperbolic.

Preprint, arXiv:1905.11032 [math.MG], 2019.

436. T. Haettel. Cubulation of some triangle-free Artin groups. Groups Geom. Dyn.,
16(1):287–304, 2022.

437. I. Hambleton. Surgery obstructions on closed manifolds and the inertia subgroup.

Forum Math., 24(5):911–929, 2012.
438. I. Hambleton and A. Hildum. Topological 4-manifolds with right-angled Artin fun-

damental groups. J. Topol. Anal., 11(4):777–821, 2019.
439. I. Hambleton, M. Kreck, and P. Teichner. Topological 4-manifolds with geometrically

two-dimensional fundamental groups. J. Topol. Anal., 1(2):123–151, 2009.

440. I. Hambleton and W. Lück. Induction and computation of Bass Nil groups for finite
groups. PAMQ, 8(1):199–219, 2012.

441. I. Hambleton and I. Madsen. Actions of finite groups on rn+k with fixed set rk.

Canad. J. Math., 38(4):781–860, 1986.
442. I. Hambleton, R. J. Milgram, L. Taylor, and B. Williams. Surgery with finite fun-

damental group. Proc. London Math. Soc. (3), 56(2):349–379, 1988.

443. I. Hambleton and E. K. Pedersen. Non-linear similarity revisited. In Prospects in
topology (Princeton, NJ, 1994), pages 157–174. Princeton Univ. Press, Princeton,

NJ, 1995.

444. I. Hambleton and E. K. Pedersen. Identifying assembly maps in K- and L-theory.
Math. Ann., 328(1-2):27–57, 2004.

445. I. Hambleton and E. K. Pedersen. Topological equivalence of linear representations
for cyclic groups. II. Forum Math., 17(6):959–1010, 2005.

446. I. Hambleton and E. K. Pedersen. Topological equivalence of linear representations

of cyclic groups. I. Ann. of Math. (2), 161(1):61–104, 2005.
447. I. Hambleton, E. K. Pedersen, and D. Rosenthal. Assembly maps for group extensions

in K-theory and L-theory with twisted coefficients. Pure Appl. Math. Q., 8(1):175–

197, 2012.
448. I. Hambleton and L. R. Taylor. A guide to the calculation of the surgery obstruc-

tion groups for finite groups. In Surveys on surgery theory, Vol. 1, pages 225–274.

Princeton Univ. Press, Princeton, NJ, 2000.
449. B. Hanke, T. Schick, and W. Steimle. The space of metrics of positive scalar curva-

ture. Publ. Math. Inst. Hautes Études Sci., 120:335–367, 2014.

450. D. R. Harmon. NK1 of finite groups. Proc. Amer. Math. Soc., 100(2):229–232, 1987.
451. B. Hartley and P. F. Pickel. Free subgroups in the unit groups of integral group

rings. Canadian J. Math., 32(6):1342–1352, 1980.
452. A. Hatcher and J. Wagoner. Pseudo-isotopies of compact manifolds, volume No. 6 of
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492. D. Husemöller, M. Joachim, B. Jurčo, and M. Schottenloher. Basic bundle theory

and K-cohomology invariants, volume 726 of Lecture Notes in Physics. Springer,
Berlin, 2008. With contributions by Siegfried Echterhoff, Stefan Fredenhagen and

Bernhard Krötz.
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578. P. Kühl. Isomorphismusvermutungen und 3-Mannigfaltigkeiten. Preprint,

arXiv:0907.0729v1 [math.KT], 2009.
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719. A. S. Mǐsčenko. Homotopy invariants of multiply connected manifolds. I. Rational

invariants. Izv. Akad. Nauk SSSR Ser. Mat., 34:501–514, 1970.
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778. F. Paulin. Sur la théorie élémentaire des groupes libres (d’après Sela). Astérisque,
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2002. From notes taken by Indira Chatterji, With an appendix by Guido Mislin.
946. A. Valette. Proper isometric actions on Hilbert spaces: a-(T)-menability and

Haagerup property. In Handbook of group actions. Vol. IV, volume 41 of Adv.

Lect. Math. (ALM), pages 625–652. Int. Press, Somerville, MA, 2018.
947. K. Varadarajan. The finiteness obstruction of C. T. C. Wall. Canadian Mathemati-

cal Society Series of Monographs and Advanced Texts. John Wiley & Sons Inc., New
York, 1989. A Wiley-Interscience Publication.

948. S. M. Vishik. Generalized Ray-Singer conjecture. I. A manifold with a smooth bound-

ary. Comm. Math. Phys., 167(1):1–102, 1995.

949. W. Vogell. Algebraic K-theory of spaces, with bounded control. Acta Math., 165(3-
4):161–187, 1990.

950. W. Vogell. Boundedly controlled algebraic K-theory of spaces and its linear coun-
terparts. J. Pure Appl. Algebra, 76(2):193–224, 1991.



838 References

951. K. Vogtmann. Automorphisms of free groups and outer space. In Proceedings of the

Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000),
volume 94, pages 1–31, 2002.

952. T. von Puttkamer and X. Wu. Linear groups, conjugacy growth, and classifying

spaces for families of subgroups. Int. Math. Res. Not. IMRN, 10:3130–3168, 2019.
953. T. von Puttkamer and X. Wu. On the finiteness of the classifying space for the

family of virtually cyclic subgroups. Groups Geom. Dyn., 13(2):707–729, 2019.

954. J. B. Wagoner. Delooping classifying spaces in algebraic K-theory. Topology, 11:349–
370, 1972.

955. F. Waldhausen. Algebraic K-theory of generalized free products. I, II. Ann. of Math.
(2), 108(1):135–204, 1978.

956. F. Waldhausen. Algebraic K-theory of generalized free products. I, II. Ann. of Math.

(2), 108(1):135–204, 1978.
957. F. Waldhausen. Algebraic K-theory of generalized free products. III, IV. Ann. of

Math. (2), 108(2):205–256, 1978.

958. F. Waldhausen. Algebraic K-theory of topological spaces. I. In Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976),

Part 1, pages 35–60. Amer. Math. Soc., Providence, R.I., 1978.

959. F. Waldhausen. Algebraic K-theory of topological spaces. I. In Algebraic and geo-
metric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976),

Part 1, Proc. Sympos. Pure Math., XXXII, pages 35–60. Amer. Math. Soc., Provi-

dence, R.I., 1978.
960. F. Waldhausen. Algebraic K-theory of spaces. In Algebraic and geometric topology

(New Brunswick, N.J., 1983), pages 318–419. Springer-Verlag, Berlin, 1985.
961. F. Waldhausen. Algebraic K-theory of spaces, concordance, and stable homotopy

theory. In Algebraic topology and algebraic K-theory (Princeton, N.J., 1983), pages

392–417. Princeton Univ. Press, Princeton, NJ, 1987.
962. F. Waldhausen, B. Jahren, and J. Rognes. Spaces of PL manifolds and categories of

simple maps, volume 186 of Annals of Mathematics Studies. Princeton University

Press, Princeton, NJ, 2013.
963. C. T. C. Wall. Determination of the cobordism ring. Ann. of Math. (2), 72:292–311,

1960.

964. C. T. C. Wall. Finiteness conditions for CW -complexes. Ann. of Math. (2), 81:56–69,
1965.

965. C. T. C. Wall. Finiteness conditions for CW complexes. II. Proc. Roy. Soc. Ser. A,

295:129–139, 1966.
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K-theory with coefficients in additive

G-categories, 455
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Farrell-Jones Conjecture for homotopy

K-theory with coefficients in additive
G-categories with finite wreath

products, 455

Farrell-Jones Conjecture for negative
K-theory of the ring of integers in an

algebraic number field, 123

Farrell-Jones Conjecture for negative

K-theory and Artinian rings as

coefficient rings, 123

Farrell-Jones Conjecture for negative

K-theory and regular coefficient

rings, 123

Farrell-Jones Conjecture for the algebraic

K-theory of Hecke-Algebras, 455

Farrell-Jones Conjecture for torsionfree

groups and regular rings for K-theory,

154

Farrell-Jones Conjecture for torsionfree

groups for L-theory, 226

Farrell-Jones Conjecture for torsionfree
groups for homotopy K-theory, 160

Fibered Meta Isomorphisms Conjecture

for a functor from spaces to spectra
with coefficients, 445

Fibered Meta-Isomorphism Conjecture,
424

Fibered Meta-Isomorphism Conjecture

with finite wreath products, 466

Finite Models for EG, 320

Full Farrell-Jones Conjecture, 371

Gromov-Lawson-Rosenberg Conjecture

Homological Gromov-Lawson-

Rosenberg Conjecture, 417

Stable Gromov-Lawson-Rosenberg

Conjecture, 416

Homotopy Invariance of the L2-Rho-
Invariant for Torsionfree Groups,

418

Integral Novikov Conjecture, 408

K-theoretic Farrell-Jones Conjecture

with coefficients in rings, 363

K-theoretic Farrell-Jones Conjec-
ture with coefficients in additive

G-categories with finite wreath
products, 370

K-theoretic Farrell-Jones Conjec-

ture with coefficients in additive
G-categories, 366

K-theoretic Farrell-Jones Conjec-
ture with coefficients in higher
G-categories with finite wreath

products, 371

K-theoretic Farrell-Jones Conjec-

ture with coefficients in higher
G-categories, 369

K-theoretic Farrell-Jones Conjecture

with coefficients in the ring R, 362

K-theoretic Novikov Conjecture, 390

K-theory versus homotopy K-theory for
regular rings, 465

Kadison Conjecture, 280

Kaplansky’s Idempotent Conjecture, 49

Kaplansky’s Idempotent Conjecture for
prime characteristic, 49

L-theoretic Farrell-Jones Conjec-

ture with coefficients in additive

G-categories with involution, 367

L-theoretic Farrell-Jones Conjecture

with coefficients in additive G-

categories with involution with finite
wreath products, 371

L-theoretic Farrell-Jones Conjecture

with coefficients in rings with

involution, 364

L-theoretic Farrell-Jones Conjecture

with coefficients in rings with

involution after inverting 2, 364

L-theoretic Farrell-Jones Conjecture

with coefficients in the ring with

involution R, 363

L-theoretic Farrell-Jones Conjecture
with coefficients in the ring with

involution R, 363

L-theoretic Novikov Conjecture, 390

Manifold structures on aspherical
Poincaré complexes, 248

Meta-Isomorphism Conjecture, 422

Meta-Isomorphism Conjecture for

functors from spaces to spectra, 438

Meta-Isomorphism Conjecture for
functors from spaces to spectra with

coefficients, 438

Nil-groups for regular rings and
torsionfree groups, 156

Novikov Conjecture, 236

Passage for L-theory from QG to RG to
C∗r (G,R), 460

Poincaré Conjecture, 83

Rational K̃0(ZG)-to-K̃0(QG)-

Conjecture, 56

Strong Bass Conjecture, 55

Strong Novikov Conjecture, 408

Trace Conjecture for torsionfree groups,
279

Trace Conjecture, modified, 414

Unit-Conjecture, 112
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Weak Bass Conjecture, 55

Zero-in-the-spectrum Conjecture, 280

conjugated

F -conjugated, 53

continuous control, 627

control

bounded control over N, 627

continuous control, 627

Control-Strategy, 564

gaining control, 564

gaining relative control, 564

controlled

algebra, 563

ε controlled homotopy equivalence, 560

ε-controlled h-cobordism, 559

ε-controlled morphism of geometric

modules, 562

cover

F-cover, 579

open F-cover, 579

crossed product

maximal crossed product of C∗-algebras,
270

reduced crossed product of C∗-algebras,

270

crystallographic group of dimension n, 534

Cuntz C∗-algebras, 276

CW -complex

finite, 34

finitely dominated, 34

cyclic homology, 161

cyclotomic trace, 162

Dedekind ring, 30

degree one map, 202

δ-hyperbolic

group, 304

metric space, 304

Dennis trace map, 161

descent homomorphisms

for KK-theory, 286

dimension, 695

covering dimension, 695

minimal homotopy dimension, 314

of a simplex, 563

of a topological space, 695

of an abstract simplicial complex, 563

of an open cover, 695

topological dimension, 695

Dirac element, 734

dual, 734

Dirac-dual Dirac method, 733

direct limit

of a functor to R-modules, 47

of a functor to abelian groups, 47

of C∗-algebras, 270

of groups, 62

of modules, 62

of rings, 62

directed set, 62

directed system, 62

of C∗-algebras, 270

of groups, 62

of modules, 62

of rings, 62

directly finite

module, 50

ring, 50

disk bundle, 266

domination

α-domination, 559

finite domination of a CW -complex, 34

finite domination of a chain complex, 35

double of a ring along an ideal, 98

Dress group, 590

Dress-Farrell-Hsiang group over F , 590

Dress-Farrell-Hsiang-Jones group over F ,
593

dual chain complex, 201

Eilenberg swindle, 148

Eilenberg-MacLane space, 234

elementary

(n, n)-matrix, 67

chain complex, 36

collapse, 77

expansion, 77

ε-controlled

ε-controlled A-chain homotopy

equivalence, 713

automorphism, 713

chain homotopy equivalence, 713

domination, 717

isomorphism, 713

selfchain homotopy equivalence, 714

ε-homotopic maps, 560

equivalence of categories, 334

equivariant

asymptotic dimension, 594

Borel homology, 330

closed n-dimensional cell, 295

equivariant homology theory, 328

equivariant homology theory over a

group, 357

open n-dimensional cell, 295

smooth triangulation, 297

eta-invariant, 418

Euclidean retract, 588
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Euler class, 266

exact

category, 147

exact C∗-algebra, 480

functor, 147

excisive, 548

exotic homotopy sphere, 246

exotic sphere, 84

extension

central, 128

closed under extensions, 151

external multiplicative structure

for equivariant topological K-theory, 264

F-cover, 579

open F-cover, 579

family of subgroups, 46

Farrell-Hsiang group with respect to F ,
575

Farrell-Jones group, 372

fiber transport, 699

filtered

U-filtered, 598

stably U-filtered, 600

strongly stably U-filtered, 600

filtered category, 62

filtered system, 62

finite G-support, 627

finite asymptotic dimension, 481

finite decomposition complexity, 481

finite domination, 715, 717

of a CW -complex, 34

of a chain complex, 35

finite propagation operator, 409

finite quotient finite decomposition

complexity, 481

finite resolution, 151

finitely F-amenable group, 588

finitely dominated, 246

chain complex, 704

space, 8

finitely F-amenable group action, 587

finitely homotopy F-amenable group, 589

finiteness obstruction, 36

geometric, 42

unreduced, 36

flasque additive category, 148

flow G-space

admitting strong contracting transfers,

697

flow space, 686

flow G-space, 686

form

ε-quadratic, 190

ε-symmetric, 185

non-singular ε-quadratic, 190

non-singular ε-symmetric form, 185

stably U -based ε-quadratic form, 219

standard hyperbolic ε-quadratic form,
191

standard hyperbolic ε-symmetric form,
185

formation

ε-quadratic formation, 213

stably isomorphic ε-quadratic forma-
tions, 213

stably U -based ε-quadratic formation,
220

trivial ε-quadratic formation, 213

fractional ideal, 30

Franz’ independence Lemma, 87

Fredholm operator, 261

free

free unitary representation, 86

functor

exact functor, 147

of additive categories, 146

functorial additive invariant for finitely

dominated CW -complexes, 43

functorial additive invariant for finitely

dominated CW -complexes

universal, 44

fundamental class, 187, 202

Fundamental Lemma of Homological

Algebra, 96

G-CW -complex, 294

finite, 297

finite dimensional, 297

n-dimension, 297

of dimension ≤ n, 297

of dimensional n, 297

of finite type, 297

G-homology theory, 324

G-support, 625

generalized Swan homomorphism, 105

geometric module, 561

geometric realization of an abstract

simplicial complex, 563

geometric transfer, 700

graph product, 538

Green functor, 346

Grothendieck group, 26

group

a-T-menable, 490

almost connected topological group, 302

transfer F-reducible, 594
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alternating group of even permutations

of the set {1, 2, . . . , n}, 23

amenable, 490

boundary amenable, 480

CAT(0)-group, 486

crystallographic of dimension n, 534

Dress, 590

Dress-Farrell-Hsiang group over F , 590

Dress-Farrell-Hsiang-Jones group over
F , 593

elementary amenable, 490

Farrell-Hsiang group with respect to F ,
575

Farrell-Jones group, 372

finite cyclic group of order n, 23

finite dihedral group of order n, 23

finite dimensional CAT(0)-group, 486

finitely F-amenable group, 588

finitely homotopy F-amenable group,
589

having property (RD), 477

having property (T), 490

having the Haagerup property, 490

hyperbolic, 304, 485

hyperelementary, 378

infinite cyclic group, 23

infinite dihedral group, 23

infinite special orthogonal group, 111

infinite special unitary group, 111

K-amenable, 407

lacunary hyperbolic, 485

p-elementary, 385

p-hyperelementary, 378

perfect, 128

Poincaré duality group of dimension n,

246

poly-(P), 94

poly-cyclic, 94

poly-free, 494

poly-Z, 94

regular, 156

regular coherent, 156

sofic, 50

strictly F-transfer reducible, 576

strongly F-transfer reducible, 586

strongly poly-free, 493

strongly transfers reducible over F , 585

symmetric group of permutations of the
set {1, 2, . . . n}, 23

Thompson’s groups, 496

transfer F-reducible, 583

virtually (P), 94

virtually cyclic, 10

virtually cyclic of type I, 377

virtually cyclic of type II, 377

virtually finitely generated abelian, 94

virtually free group, 94

virtually nilpotent, 94

virtually poly-cyclic, 94

group ring, 45

twisted, 364

groupoid, 334

connected, 334

transport groupoid, 334

Gysin sequence, 266

h-cobordism

bounded, 122

Hattori-Stallings homomorphism, 52

Hattori-Stallings rank, 52

Hecke algebra, 455

Heisenberg group

three-dimensional, 277

three-dimensional discrete, 277

higher signature, 235

associated to a homology class, 235

Hochschild homology, 161

homology

Borel homology, 330

Bredon homology, 324

cellular, 61

coefficients extend to a Mackey functor,

343

complex topological K-homology, 260

continuous equivariant homology theory,

431

cyclic homology, 161

equivariant homology theory, 328

equivariant homology theory over a
group, 357

G-homology theory, 324

Hochschild homology, 161

negative cyclic homology, 161

periodic cyclic homology, 161

proper equivariant homology theory, 328

proper equivariant homology theory over
a group, 357

proper G-homology theory, 324

real topological KO-homology, 262

singular, 61

strongly continuous equivariant
homology theory, 431

topological cyclic homology, 162

homomorphism of C∗-algebras, 268

homotopic, 268

homotopic

α-homotopic maps, 559

ε-homotopic maps, 560
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homotopy

pointed regular homotopy, 195

regular homotopy, 195

homotopy action

homotopy S-action on a space, 692

of a group on a space, 583

of finitely presented group on a space,
583

of group on a Z-chain complex, 704

strong homotopy action of group on a
space, 584

homotopy algebraic K-theory, 159

homotopy coherent G-action of a group on
a space, 584

homotopy equivalence

α-homotopy equivalences, 559

homotopy fiber, 138

homotopy invariant functor, 548

homotopy inverse

α-homotopy inverse, 559

homotopy K-theory functor, 454

homotopy representation

free d-dimensional, 103

homotopy sequence

long exact homotopy sequence of a map,

138

homotopy sphere, 246

exotic, 246

homotopy stabilization of a functor from
additive categories to spectra, 453

hyperbolic

group, 304

metric space, 304

ideal

fractional, 30

principal fractional ideal, 30

principal ideal, 26

ideal in a C∗-algebra, 269

idempotent complete additive category,

149

idempotent completion of an additive
category, 149

immersion

pointed, 194

index pairing, 284

induction

for equivariant KK-theory, 286

for equivariant spaces, 328

for equivariant topological K-theory, 264

of C∗-algebras, 285

of modules with respect to ring
homomorphisms, 26

induction structure, 328

inductive limit of C∗-algebras, 270

∞-category

right-exact ∞-category, 177

right-exact G-∞-category, 177

integral domain, 26

internal multiplicative structure

for equivariant topological K-theory, 264

intersection pairing

for immersions, 195

for kernels, 209

invariant

lax monoidal finitary localizing invariant,

177

localizing invariant, 177

involution

w-twisted involution on a group ring,
184

of rings, 184

w-twisted involution of a group ring, 365

isotopic, 133

Jacobson radical, 63

K-theory mod k, 145

K-theory space

of a category with cofibrations and weak

equivalences, 169

of a ring, 139

of an exact category, 147

K-theory spectrum

complex topological K-theory, 260

non-connective K-theory spectrum of a
ring, 148

non-connective K-theory spectrum of an

additive category, 148

over groupoids, 338

real topological K-theory, 262

K0-group of a ring, 26

K1-group of a ring, 65

K2-group of a ring, 128

Kn-group of a ring for negative n, 115

Kn-group of a ring for positive n, 139

Karoubi filtration, 598

stable, 600

strongly stable, 600

Kasparov’s intersection product, 284

equivariant, 285

Kazhdan’s property (T), 490

Kirchberg C∗-algebras, 276

KK-equivalence, 284

KK-theory of Kasparov, 281

equivariant, 285

KO-orientation of Spin bordism, 262

Kronecker pairing, 187



Index 855

L-class, 235

L-group

decorated quadratic L-groups in even

dimensions, 220

decorated quadratic L-groups in odd

dimensions, 221

projective quadratic L-group, 223

quadratic L-groups in even dimensions,
192

quadratic L-groups in odd dimensions,
214

simple, 221

L-theory spectrum

associated to a ring with decoration
〈−∞〉, 226

over groupoids, 338

L1-metric, 563

L2-Betti number, 48

L2-eta-invariant, 418

L2-Rho-invariant, 418

lagrangian, 192

complementary, 214

sublagrangian, 192

lattice, 488

lax monoidal finitary localising invariant,
177

length function, 477

having property (RD), 477

length of a finite group, 316

lens space, 86

linearization map, 171

localizing invariant, 177

locally compact

operator, 409

Locally finiteness over N, 626

locally free class group of a Z-order, 57

Mackey functor, 343

manifold

orientable, 202

oriented, 202

w-oriented, 202

manifold parametrized over Rk, 122

map

acyclic, 138

α-close maps, 559

cellular, 295

linearization map, 171

of degree one, 202

mapping class group, 305, 495

mapping cone

of a chain map, 73

of a map of spaces, 78

mapping cylinder

of a chain map, 73

of a map of spaces, 77

marked metric graph, 306

maximal group C∗-algebra, 270

metric

L1-metric, 563

metric space

hyperbolic, 304

proper, 409

uniformly contractible, 409

with bounded geometry, 410

metrically proper, 490

minimal homotopy dimension, 314

module

Artinian, 49

geometric, 561

irreducible, 49

simple, 49

stably finitely generated free, 27

stably U -based, 219

U -based, 218

Morita equivalence, 28

Morphism Additivity, 660

Mostow rigidity, 243

N -F-amenable group action, 587

N -transfer space, 576

Nakayama’s Lemma, 63

negative cyclic homology, 161

Nil group

reduced zero-th, 90

zero-th, 90

Nil-spectrum

non-connective, 157

nilpotent

endomorphism of a module, 90

norm element of a finite group, 101

normal bordism, 203

normal map, 202

of degree one of manifolds with
boundary, 216

of degree one, 202

stabilization of a normal map, 203

normalizer, 295

normally bordant, 204

object of finite length, 152

object of length ≤ l, 152

open F-cover, 579

operator

compact, 269

finite propagation operator, 409

locally compact, 409

pseudolocal, 409
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orbit category, 46

F-restricted, 46

order

of an open cover, 695

orientable manifold, 202

orientation

of a manifold, 187

orientation homomorphism

of a Poincaré complex, 202

oriented manifold, 202

outer space, 305

spine of outer space, 306

perfect group, 128

perfect radical, 139

periodic cyclic homology, 161

Pimsner-Voiculescu sequences for

KK-theory, 285

plus-construction, 138

Poincaré duality group of dimension n, 246

Poincaré complex

finite n-dimensional, 201

w-oriented, 202

Poincaré pair

finite n-dimensional, 216

simple finite n-dimensional, 216

Poincaré Zπ-chain homotopy equivalence,

202

pointed category, 167

pointed regular homotopy, 195

poly-cyclic group, 94

poly-Z group, 94

Pontrjagin class

rational, 235

principal fractional ideal, 30

principal ideal domain, 26

principle

separation of variables, 513

wait and then flow together, 570

Problem

Brown’s problem about

vcd(G) = dim(EG), 316

Congruence Subgroup Problem, 101

Identification of analytic Surgery Exact
Sequences, 463

Identification of transformations from
the Surgery Exact Sequence to its
analytic counterpart, 463

Relating the dimension of EG and EG,
317

Space Form Problem, 257

Spherical Space Form Problem, 257

product structure

ε-product structure on an h-cobordism,

560

projective class group, 26

reduced, 27

projective quadratic L-group, 223

projective resolution, 45

d-dimensional, 45

finite, 45

finite dimensional, 45

finitely generated, 45

free, 45

proper

equivariant homology theory, 328

G-C∗-algebra, 733

G-space, 297

metric space, 478

proper equivariant homology theory, 357

proper G-homology theory, 324

proper map, 122

proper metric space, 409

pseudoisotopic, 133

pseudoisotopy, 133, 165

pseudoisotopy spectrum, 166

smooth pseudoisotopy spectrum, 166

pseudolocal

operator, 409

pushout

cellular, 44

Q-construction, 147

quadratic refinement, 190

Question

Vanishing of the resolution obstruction

in the aspherical case, 250

quotient category, 598

quotients for additive categories, 598

radical, 63

perfect, 139

reduced group C∗-algebra, 270

reduced K1-group of a ring, 72

refinement

quadratic, 190

regular coherent

regular coherent group, 156

regular coherent ring, 156

regular homotopy, 195

Reidemeister torsion, 85

resolution

finite, 151

restriction

for equivariant KK-theory, 285

for equivariant topological K-theory, 264

retract
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absolute neighborhood retract, 246

absolute retract, 589

Euclidean retract, 588

right α-homotopy inverse, 559

right-exact ∞-category, 177

right-exact G-∞-category, 177

ring

Artinian, 49

Burnside ring, 347

Dedekind ring, 30

directly finite, 50

group ring, 45

hereditary, 30

integral domain, 26

local, 63

Noetherian, 46

obtained by adjoining a unit, 99

of integers, 31

principal ideal domain, 26

regular, 46

regular coherent, 156

semihereditary, 94

semilocal, 63

semisimple, 60

stably finite, 50

Swan ring, 348

twisted group ring, 364

with involution, 184

Rips complex

of a group, 304

of a metric space, 410

Roe algebra, 409

Rothenberg sequence, 224

selfintersection element, 197

selftorsion, 712

semisimple

object, 152

ring, 60

set of normal maps to a compact manifold,

229

sheering RG-isomorphism, 348

signature

higher, 235

homotopy invariance of, 235

higher signature associated to a
homology class, 235

of a closed oriented manifold, 187

of a non-singular symmetric bilinear
pairing, 186

simple

homotopy equivalence, 77

L-group, 221

object, 152

structure, 699

simplicial complex

abstract simplicial complex, 563

six-term exact sequence of an ideal, 274

skeleton, 295

skeleton of a category, 147

small category, 146

smash product, 332

of a space with a spectrum, 333

smooth pseudoisotopy spectrum, 166

sofic group, 50

space

acyclic, 137

C-space, 333

finitely dominated, 8

K-theory space of a category with

cofibrations and weak equivalences,
169

K-theory space of a ring, 139

K-theory space of an exact category, 147

N -transfer space, 576

of parametrized h-cobordisms, 176

of stable parametrized h-cobordisms, 176

Space Form Problem, 257

spectrum, 332

Ω-spectrum, 332

complex topological K-theory spectrum,
260

homotopy groups of a spectrum, 332

map of spectra, 332

non-connective K-theory spectrum of an
additive category, 148

non-connective K-theory spectrum of a

ring, 148

of a commutative ring, 63

real topological K-theory spectrum, 262

structure maps of a spectrum, 332

weak equivalence of spectra, 332

sphere, 266

Spherical Space Form Problem, 257

spine of outer space, 306

stable Karoubi filtration, 600

stably U-filtered, 600

stably finite ring, 50

Steinberg group, 128

n-th Steinberg group, 127

Steinberg symbol, 131

strategy

Control-Strategy, 564

strictly F-transfer reducible group, 576

strong category with G-support, 658

strong contracting transfers, 697

strong homotopy action of group on a

space, 584
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strongly stable Karoubi filtration, 600

strongly stably U-filtered, 600

strongly transfer F-reducible, 586

strongly transfers reducible over F , 585

structure set, 228

simple, 227

subgroup category, 46

F-restricted, 47

support

G-support, 625

of a geometric module, 561

of morphisms of geometric module, 561

support function, 625

support function, 625

Surgery Exact Sequence, 231

for the PL category, 232

for the topological category, 232

surgery kernel, 206

surgery obstruction

even dimensional, 210

for manifolds with boundary, 218

for manifolds with boundary and simple

homotopy equivalences, 222

in odd dimensions, 215

Surgery Program, 84

suspension, 73

of a C∗-algebra, 275

Swan homomorphism, 102

generalized, 105

Swan ring, 348

A-theoretic, 591

system

directed, 62

filtered, 62

Teichmüller space, 305

tensor product of C∗-algebras

maximal, 271

minimal, 271

spatial, 271

Theorem

K-theory and directed colimits, 154

A criterion for 1-dimensional models for
EG, 314

A-theory is a homotopy-invariant
functor, 171

Actions on CAT(0)-spaces, 303

Actions on simply connected non-

positively curved manifolds,

303

Actions on trees, 303

Additivity Theorem for categories with
cofibrations and weak equivalences,

175

Additivity Theorem for exact categories,

151

Algebraic L-theory of ZG for finite
groups, 255

Algebraic and topological K-theory mod
k for R and C, 145

Algebraic K-theory and colimits over

directed sets, 141

Algebraic K-theory and finite products,

140

Algebraic K-theory mod k of alge-
braically closed fields, 145

Algebraic K-theory of finite fields, 143

Algebraic Thin h-Cobordism Theorem,
563

α-Approximation Theorem, 559

Aspherical closed manifolds with exotic

fundamental groups, 241

Bökstedt-Hsiang-Madsen Theorem, 497

Basic properties of Whitehead torsion,

75

Bass-Heller-Swan decomposition

for middle and lower K-theory, 115

Bass-Heller-Swan decomposition for

Wh(G× Z), 92

Bass-Heller-Swan decomposition for K1

for regular rings, 94

Bass-Heller-Swan decomposition for
algebraic K-theory, 141

Bass-Heller-Swan decomposition for
homotopy K-theory, 454

Bass-Heller-Swan decomposition for K1,

91

Bass-Heller-Swan decomposition lower

and middle K-theory for regular
rings, 117

Bijectivity assembly map for topological

cyclic homology for finite groups and

the family of cyclic subgroups, 452

Bijectivity of the L-theoretic assembly
map from FIN to VCY after

inverting 2, 385

Bounded h-Cobordism Theorem, 123

Brown’s Problem has a negative answer

in general, 316

Characterization of Dedekind domains,
30

Cocompletion Theorem for the to-
pological complex K-homology,
267

Completion Theorem for complex and

real K-theory, 266
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Computation of the topological K-theory

of Zn o Z/m for free conjugation
action, 535

Connectivity of the linearization map,

171

Constructing G-homology theories using

spectra, 334

Constructing equivariant homology
theories over a group using spectra,

358

Constructing equivariant homology
theories using spectra, 335

Detection Result for Q and C as

coefficients, 162

Devissage, 152

Diffeomorphism classification of lens

spaces, 87

Dimension of EG for elementary
amenable groups of finite Hirsch

length, 317

Dimension of EG and extension, 315

Dimension of EG for a discrete subgroup
G of an almost connected Lie group,

314

Dimension of EG for countable elemen-

tary amenable groups of finite Hirsch
length, 315

Dimensions of EG and EG for groups

acting on CAT(0)-spaces, 318

Dirac-dual Dirac method, 734

Dirichlet Unit Theorem, 71

Discrete subgroups of almost connected

Lie groups, 302

Down-up formula, 703

Dress-Farrell-Hsiang-Jones groups and

the K-theoretic Farrell-Jones Con-

jecture with finite wreath products,
594

Dress-Farrell-Hsiang-Jones groups

and the K-theoretic Farrell-Jones

Conjecture, 593

Dual of the Green-Julg Theorem, 286

Equivariant Cellular Approximation
theorem, 298

Equivariant Chern character for

equivariant K-homology, 287

Equivariant Whitehead Theorem, 299

Estimate on dim(EG in terms of vcd(G),
316

Eventual injectivity of the rational
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Chapter 28

Comments (temporary chapter)

Comment 35 (by W.): This chapter has to be taken out in the final version.

28.1 Comments about Notation and Terminology

19.10.23 Here are some Makros used in the surgery book.

(a) G, O, PL, SG, SO, SPL, STOP, TOP, G/O, G/PL, PL/O, G/TOP.
(b) BO, BSO, BPL, BSPL, BTOP, BSTOP, BGL, BSL.
(c) BG, EG, DIFF, BDIFF(M), BSDIFF(M), DIFF(M), SDIFF, SDIFF(M),

BO(k), BSO(k), BG(k), BSG(k), BGL(k), BGL(n,R), BSL(k), BPL(k),
BSPL(k), BTOP(k), BSTOP(k), EG, E(R), G(k), O(k), SO(k), G(k),
SG(k), GL(k), GL(n,R), SL(n,R), SU(n,R), PL(k), RU(n,R), SPL(k),
TOP(k), STOP(k), GL(n,R), SL(n,R), SU(n,R), TU(n,R), UU(n,R),
M(m,n;R).

(d) TOP, PL, DIFF.
(e) B(G/O).

Some we are using here as well but not all of them.
Here are some conventions we will use to indicate the topological category
or the smooth category or the PL-category KTOP, KTOP, KALG, PTOP,
PPL, PDIFF.
Automorphisms groups are denoted by Top(M) and Diff(M).
For matrices we use Mm,n(R), Mn(R), GLn(R), M(R), and GL(R).
What shall be the standard for the classifying space of a group. Shall we
just write $BG$ which gives BG. Sometimes with this convention there
is a rather large space between B and G. We could use \Bpar{G}, which
gives BG. The same discussion applies to EG.

28.2 Comments about Grammar, English and Spelling

27.11.11 torsionfree (One word).
27.11.11 semisimple (One word).
27.11.11 pseudoisotopy (One word).
27.11.11 prove, proved proven.
27.11.11 choose, chose, chosen.

865
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27.11.11 We should agree on a unified use of the words any, each and every. I am
not certain about the rules.

27.11.11 Write semigroup, semisimple, semidirect and so on.
27.11.11 Before R and S it must be “an”, before h it depends on the pronouncation

e.g., “an h-cobordism”, but “a homomorphism”.
27.11.11 Write “generalisation” and “generalise”.
27.11.11 Write “well-known” and “well-defined”.
27.11.11 Write “simply connected” and “path connected”.
27.11.11 Insert always a comma after “namely”.
27.11.11 Write selfmap, selfdiffeomorphism, and so on.
27.11.11 Write finite dimensional and not finite-dimensional.
27.11.11 Write “aspherical closed manifolds”, i.e., “aspherical” before “closed”
27.11.11 Write “one-relator group”.
27.11.11 Write “hyperbolic group” and not “word-hyperbolic group”.
27.11.11 Write “handlebody” and not “handle body”.
30.03.17 Write “neighbourhood” and not “neighborhood”.
27.11.11 Always a comma after i.e. and e.g., so in the text it should be e.g., and

i.e.,.
05.03.14 Section, Theorems etc are proper names and so have capitals.
06.07.14 We have to unify the spelling concerning the choice of s or z, e.g., realize

versus realise, parallizable versus parallisable, generalize versus generalise,
and so on.

23.03.15 Write “non-singular” not “nonsingular” and “non-degenerate” not “non-
degenerated”.

23.03.15 Write “an n-manifold” and “an m-manifold”, not “a n-manifold” or “a
m-manifold”.

23.03.15 Use “transverse” as an adjective and “transversal” as a noun.
23.03.15 Use “isotope” for the present tense of the verb “to isotope”, i.e. perform

an isotopy.
02.03.17 Sometimes we write lift or lifting. Hatcher is indeed using both words.
18.07.17 Write “regularly homotopic” not “regular homotopic”.
18.07.17 Sentences ending or pausing in diagrams show have fullstops or commas on

the bottom right hand symbol of the diagram. When this is not practical,
another option is to end the sentence with a colon before the diagram and
leave the diagram without punctuation; e.g. “We consider the following
commutative diagram:”.

19.08.17 It is “local coefficient system” or “infinite cyclic local coefficient system”,
but “homology with coefficients in R”. “

27.09.21 Do not start a sentence with a mathematical symbol. So instead of starting
with “Hn(C)” start with “The homology group Hn(C)”.

09.11.21 Surgery Program in capital letters.
29.11.21 Replace “Notice” by “Note”

16.01.2023 Use “highly connected” and not “highly-connected”.
09.10.2023 Use “a priori” and not “a-priori”.
01.09.2023 No comma before “if and only if”.
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15.09.2023 Use the Oxford comma.

15.09.2023 Relative sentence that are important for the context and cannot be left
out shall start with “that” and not with “which” and there is no comma.
Relative sentences that do contain only some additonal information and
could be left out, start with “which” and not with “that” and are usually
separated by commas.

17.01.2023 I found the following rues in the Internet concerning commas. We should
follow them (to some extend).

(a) Use commas in a series of three or more items;

(b) Use a comma to separate independent clauses introduced by and, or,
nor, but, yet, for, so (in the sense of “as a result”), as (in the sense of
“because”), and while (in the sense of “at the same time”).

(c) Use a comma after an introductory phrase/word.

(d) Use a comma after a dependent clause preceding an independent clause.

(e) Use commas before and after parts of the sentence that are not essential
to its meaning.

(f) Note that a dependent clause should be separated from an indepen-
dent clause by a comma only when the dependent clause precedes the
independent one. If the dependent clause follows the independent one,
no comma is places before if, where, whether, because, although, since,
when, while, unless, etc.

23.09.2023 Insert a page break if a Lemma, Definition, or so appears only with one
or two lines at the bottom of a page.

28.3 Mathematical Comments and Problems

15.05.2023 There is a new preprint An improvement of the Farrell-Jones conjecture for
localising invariants by Reis [834] on the arXive under arXiv:2211.15523
[math.KT]. It improves the paper Bunke-Kasprowski-Winges [172].

23.03.2024 It is unlikely that for the following preprints there will ever be a published
version: [39, 121, 137, 309, 321, 578, 732, 787, 788, 789, 914, 998].

28.4 Possible Additional References

[834],
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