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Preface

The Isomorphism Conjectures due to Baum and Connes and to Farrell and Jones aim
at the topological K-theory of reduced group C*-algebras and the algebraic K-and
L-theory of group rings. These theories are of major interest for many reasons. For
instance, the algebraic L-groups are the recipients for various surgery obstructions
and hence highly relevant for the classification of manifolds. Other important ob-
structions such as Wall’s finiteness obstruction and Whitehead torsion take values in
algebraic K-groups. The topological K-groups of C*-algebras play a central role in
index theory and the classification of C*-algebras.

In general these K- and L-groups are very hard to analyze for group rings or
group C*-algebras. The Isomorphism Conjectures identify them with equivariant
homology groups of classifying spaces for families of subgroups. As an illustration,
let us consider the special case that G is a torsionfree group and R is a regular
ring (with involution). Then the Isomorphism Conjectures predict that the so-called
assembly maps

H,(BG;K(R)) = K,(RG);
H,(BG;L"(R)) 5 L™ (RG);
K.(BG) > K,(C:(G)),

are isomorphisms for all n € Z. The target is the algebraic K-theory of the group ring
RG, the algebraic L-theory of RG with decoration (—oo), or the topological K -theory
of the reduced group C*-algebra C;:(G). The source is the evaluation of a specific
homology theory on the classifying space BG, where H,({e}; K(R)) = K,(R),
H,({o}; L (R)) = LS (R), and K, ({8}) = K,,(C) hold for all € Z.

Since the sources of these assembly maps are much more accessible than the
targets, the Isomorphism Conjectures are key ingredients for explicit computations
of the K-and L-groups of group rings and reduced group C*-algebras. These often
are motivated by and have applications to concrete problems that arise, for instance,
in the classification of manifolds or C*-algebras.

The Baum-Connes Conjecture and the Farrell-Jones Conjecture imply many other
well-known conjectures. In a lot of cases these conjectures were not known to be
true for certain groups until the Baum-Connes Conjecture or the Farrell-Jones Con-
jecture was proved for them. Examples of such prominent conjectures are the Borel
Conjecture about the topological rigidity of aspherical closed manifolds, the (stable)
Gromov-Lawson-Rosenberg Conjecture about the existence of Riemannian metrics
with positive scalar curvature on closed Spin-manifolds, Kaplansky’s Idempotent
Conjecture and the Kadison Conjecture on the non-existence of non-trivial idempo-
tents in the group ring or the reduced group C*-algebra of torsionfree groups, the
Novikov Conjecture about the homotopy invariance of higher signatures, and the
conjectures about the vanishing of the reduced projective class group of ZG and the
Whitehead group of G for a torsionfree group G.
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The Baum-Connes Conjecture and the Farrell-Jones Conjecture are still open
in general at the time of writing. However, tremendous progress has been made
on the class of groups for which they are known to be true. The techniques of
the sophisticated proofs stem from algebra, dynamical systems, geometry, group
theory, operator theory, and topology. The extreme broad scope of the Baum-Connes
Conjecture and the Farrell-Jones Conjecture is both the main challenge and the main
motivation for writing this book. We hope that, after having read parts of this
monograph, the reader will share the enthusiasm of the author for the Isomorphism
Conjectures.

The monograph is a guide to and gives a panorama of Isomorphism Conjectures
and related topics. It presents or at least indicates the most advanced results and
developments at the time of writing. It can be used by various groups of readers,
such as experts on the Baum-Connes Conjecture or the Farrell-Jones Conjecture,
experienced mathematicians, who may not be experts on these conjectures but want
to learn or just apply them, and also, of course, advanced undergraduate and graduate
students. References for further reading and information have been inserted.

We will give more information about the organization of the book and a user’s
guide in Section 1.11.

Bonn, May 2025 Wolfgang Liick
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Chapter 1
Introduction

The Isomorphism Conjectures due to Paul Baum and Alain Connes and to Tom
Farrell and Lowell Jones are important conjectures, which have many interesting
applications and consequences. However, they are not easy to formulate and it is a
priori not clear why the actual versions are the most promising ones. The current
versions are the final upshot of a longer process, which has led to them step by
step. They have been influenced and steered by various new results that have been
proved during the last decades and given new insight into the objects, problems, and
constructions at which these conjectures aim.

In this introduction we want to motivate these conjectures by explaining how one
can be led to them by general considerations and certain facts. We present brief
surveys about applications of these conjectures, their status, and the methods of
proof. We give information about the contents of this monograph including a user’s
guide.

1.1 Why Should we Care about Isomorphism Conjectures in
K- and L-Theory?

In this section we give some background and motivation for the reader who has
no previous knowledge about the Baum-Connes Conjecture and the Farrell-Jones
Conjecture. An expert may skip this section.

The Baum-Connes Conjecture aims at the topological K-theory of the reduced
group C*-algebra of a group, whereas the Farrell-Jones Conjecture is devoted to the
algebraic K- and L-theory of the group ring of a group. K- and L-theory are rather
sophisticated theories. Group rings are very difficult rings, for instance, they are in
general not commutative, are not Noetherian or regular, and may have zero-divisors.
So studying the algebraic K-theory and L-theory of group rings is hard and seems
at first glance to be a very special problem. So why should one care?

The answer to this question is that information about the K- or L-theory of group
rings or the topological K-theory of group C*-algebras have many applications to
algebra, geometry, group theory, topology, and operator algebras and that meanwhile
these conjectures are known for a large class of groups.
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1.1.1 Projective Class Group

Let us illustrate this by considering the most prominent and easy to define K-group,
the projective class group Ky(S) of a ring S. It is the abelian group which we obtain
from the Grothendieck construction applied to the abelian semigroup of isomorphism
classes of finitely generated projective S-modules under direct sum. Equivalently,
it can be described as the abelian group whose generators are isomorphism classes
[P] of finitely generated projective S-modules P and for every exact sequence
0 — Py — Py — P, — 0 of finitely generated projective S-modules we require the
relation [P] = [Pg] + [P2]. The reduced projective class group Ko(S) of a ring S is
obtained from Ko (.S) by dividing out the subgroup generated by all finitely generated
free S-modules. Any finitely generated projective S-module P defines an element
[P] in Ko(S) and hence also a class [P] in Ko(S). The decisive property of Ko(S)
is that [P] = 0 holds in Ko(S) if and only if P is stably free, i.e., there are natural
numbers m and n satisfying P @ S =g S". So roughly speaking, [P] € Ko(S)
measures the deviation of a finitely generated projective S-module P from being
stably free.

Why are we especially interested in the case S = RG, where R is a ring, G is
a group, and RG is the group ring? (The precise definition of RG can be found in
Subsection 2.8.) One reason is that a representation of G with coeflicients in R is
the same as an RG-module. Another reason is that for a connected manifold or CW-
complex its universal covering comes with an action of the fundamental group 7 and
the cellular Z-chain complex of the universal covering is actually a free Zn-chain
complex. The latter observation opens the door to connections of algebraic K-theory
to topological problems, as described next.

A CW-complex X is called finitely dominated if there is a finite CW-complex Y
andmapsi: X — Yandr: Y — X such that r oi is homotopic to idx. Often one can
construct a finitely dominated C W-complex with interesting properties but one needs
to know whether it is homotopy equivalent to a finite CW-complex. This problem
is decided by the finiteness obstruction of Wall. A finitely dominated connected
CW-complex X with fundamental group 7 determines an element o(X) € E()(Zﬂ'),
which vanishes if and only if X is homotopy equivalent to a finite CW-complex,
see Theorem 2.39. So it is interesting to know whether Ko (Zr) vanishes because
then o(X) is automatically trivial. One can actually show for a finitely presented
group G that I?Q(ZG) vanishes if and only if every finitely dominated connected
CW-complex with fundamental group isomorphic to G is homotopy equivalent to
a finite CW-complex. So we have an algebraic assertion and a topological assertion
for a group G which turn out to be equivalent.

The question whether a finitely dominated CW-complex is homotopy equivalent
to a finite CW-complex appears naturally in the construction of closed manifolds
with certain properties, since a closed manifold is homotopy equivalent to a finite
CW-complex, and one may be able to construct a finitely dominated CW-complex as
a first approximation up to homotopy. This is explained in Section 2.5. The Spherical
Space Form Problem 9.205 is a prominent example. It aims at the classification of
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closed manifolds whose universal coverings are diffeomorphic or homeomorphic to
the standard sphere.

If R is a field and the group G is torsionfree, then the Idempotent Conjecture of
Kaplansky predicts that the group ring RG has only trivial idempotent, namely, 0
and 1. Roughly speaking, non-trivial idempotents in a ring can be used to decompose
the ring into smaller pieces; think for instance of the theorems of Wedderburn and
Maschke which imply that for a finite group G and a field F of characteristic zero
the group ring FG is a product of matrix algebras over skew-fields. The Idempotent
Conjecture shows that this does not apply to torsionfree groups. On the other hand,
the non-existence of non-trivial idempotents gives hope that one can embed the
group ring FG of a torsionfree group and a field F into a skew-field as conjectured
by Malcev, which opens the door to many applications in group theory and topology,
see Remark 2.85. This ring theoretic conjecture due to Kaplansky is related to the
projective class group, since it is known to be true if Ko(RG) vanishes. There are
many instances of groups where no algebraic proof is known for the Idempotent
Conjecture, but one can show with geometric, homotopy theoretic, and K-theoretic
methods that Ko(RG) vanishes.

A special version of the Farrell-Jones Conjecture, see Conjecture 2.60, predicts
that Ko(RG) vanishes if G is torsionfree and R is Z or a field.

All of this is explained in detail in Chapter 2.

1.1.2 The Whitehead Group

Here is another example of a nice connection between algebraic K-theory and
topology. One can define K;(S) of a ring S as the abelianization of the general
linear group GL(S) or, equivalently, as the abelian group generated by conjugacy
classes of automorphisms of finitely generated projective S-modules with relations
concerning exact sequences and composites of such automorphisms. Given a group
G, the Whitehead group Wh(G) is the quotient of K| (ZG) by the subgroup generated
by trivial units. For more details we refer to Definition 3.1, Theorem 3.12, and
Definition 3.23. This is related to topology as follows.

Given a closed manifold M, an h-cobordism W over M is a compact manifold
W such that its boundary 0W can be written as a disjoint union W = gyW LI 9| W,
there is a preferred identification of M with dyW, and the inclusions W — W
are homotopy equivalences for k = 0, 1. The set of isomorphism classes relative
M of h-cobordisms over M can be identified with Wh(rx) if M is connected, has
dimension > 5, and 7 denotes its fundamental group, see Theorem 3.47. This is
remarkable since the set of isomorphism classes of s-cobordism relative M over M
a priori depends on M, whereas Wh(rr) depends only on the fundamental group.
In the classification of closed manifolds it is often a key step to decide whether an
h-cobordism W over M is trivial, i.e., isomorphic relative M to M X [0, 1], since
this has the consequence that M and 0, W are isomorphic. It is not hard to show
that Wh({1}) is trivial which, together with the results above, implies the Poincaré
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Conjecture in dimensions > 5, see Theorem 3.51. One can show for a finitely
presented group G and any natural number n > 5 that Wh(G) is trivial if and only
if for every connected n-dimensional closed manifold M with fundamental group
isomorphic to G every h-cobordism over M is trivial. So we have again an algebraic
assertion and a topological assertion for a group G which turn out to be equivalent.

A special version of the Farrell-Jones Conjecture, see Conjecture 3.110, predicts

that Wh(G) vanishes if G is torsionfree. All of this is explained in detail in Chapter 3.

1.1.3 The Borel Conjecture and the Novikov Conjecture

One of the author’s favorite conjectures is the Borel Conjecture. It predicts that
an aspherical closed manifold is topologically rigid. Aspherical means that the
universal covering is contractible and fopologically rigid means that every homotopy
equivalence from a closed manifold to M is homotopic to a homeomorphism. In
particular it implies that two aspherical closed manifolds are homeomorphic if and
only if their fundamental groups are isomorphic. One may view the Borel Conjecture
as the topological counterpart of Mostow rigidity, see Remark 9.169.

If G denotes the fundamental group of an aspherical closed manifold of dimension
> 5, then the Borel Conjecture for M holds if G satisfies both the K-theoretic and
the L-theoretic Farrell-Jones Conjecture for ZG, see Theorem 9.171. Moreover,
all proofs of the Borel Conjecture in dimensions > 4 are based on the Farrell-
Jones Conjecture. So we see again that the Farrell-Jones Conjecture has interesting
applications to topology.

L-theory, which one may think of as the algebraic K-theory of quadratic forms
over finitely generated projective modules, is an important ingredient in the so-
called Surgery Program 3.53, whose highlight is the Surgery Exact Sequence, see
Theorem 9.127. It aims at the classification of closed manifolds, see Remark 3.53,
and was initiated by the classification of exotic spheres, see Remark 3.52.

All this is explained in Chapter 9. In particular, we refer to Sections 9.12, 9.14,
and 9.15.

Note that both the Baum-Connes Conjecture and the Farrell-Jones Conjecture
imply the prominent Novikov Conjecture about the homotopy invariance of higher
signatures, see Remark 9.143 and Theorem 14.29. The Novikov Conjecture and its
link to both the Baum-Connes Conjecture and the Farrell-Jones Conjecture triggered
a lot of interesting interactions and transfer of methods and techniques between
topology and operator theory.

1.1.4 Further Applications

There are many more striking applications of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture to algebra, geometric group theory, geometry, topology,
and operator algebras, which are listed in Sections 13.12 and 14.8. We hope that, by
browsing through these sections, the reader will be convinced of the great interest
of these conjectures.
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1.1.5 Status of the Full Farrell-Jones Conjecture and the Baum-Connes
Conjecture with Coefficients

The Full Farrell-Jones Conjecture 13.30 implies all the variants of the Farrell-Jones
Conjecture scattered in this monograph, see Theorem 13.65. A list of all the versions
of the Farrell-Jones Conjecture can be found in Subsection 13.11.1.

The Baum Connes Conjecture with coefficients 14.11 is the most general variant
in the Baum-Connes setting.

The class of groups for which the Full Farrell-Jones Conjecture 13.30 is known
to be true is discussed in Theorem 16.1, whereas the class of groups for which the
Baum Connes Conjecture with coefficients 14.11 is known to be true is discussed
in Theorem 16.7. The question whether the Full Farrell-Jones Conjecture 13.30
might be true for all groups and how one might find counterexamples is treated in
Section 16.10. This should convince the reader that in many interesting cases one
knows that these conjectures are known to be true. Roughly speaking, in “daily life”
one can expect that the Farrell-Jones Conjecture is known to be true and one can just
apply it.

If one wants to figure out quickly whether a specific class of groups satisfies one
of these conjectures, one should take a look at Section 16.8. Open cases are discussed
in Section 16.9.

At the time of writing, no counterexamples to the Full Farrell-Jones Conjec-
ture 13.30 are known. This is also true for the Baum-Connes Conjecture 14.11
(without coefficients). Counterexamples to the Baum Connes Conjecture with coef-
ficients 14.11 are discussed in Remark 14.12.

1.1.6 Proofs

The proofs of the Farrell-Jones Conjecture or the Baum-Connes Conjecture are
sophisticated and require a lot of different techniques. The proof of inheritance
properties, such as the passage to subgroups, are usually based on homotopy theoretic
methods. The proofs for specific classes of groups, such as hyperbolic groups, are
based on transfer methods in the Farrell-Jones setting and on KK -theory in the Baum-
Connes setting and for both conjectures require additional geometric input, which
is the interesting and surprising part. For instance flow spaces play a prominent
role in the proof of the Farrell-Jones Conjecture for hyperbolic groups or finite-
dimensional CAT(0)-groups. It is intriguing and astonishing that the proofs of the
Idempotent Conjecture of Kaplansky, which is a purely ring theoretic statement, are
based for many groups on the proof of the Farrell-Jones Conjecture and thus use
geometric input such as flows and compactifications of certain spaces on which the
group in question acts. Often purely algebraic methods are not sufficient to prove the
Idempotent Conjecture.

The reader who wants to get a first impression about the proofs should consult
Chapter 19.
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1.2 The Statement of the Baum-Connes Conjecture and of the
Farrell-Jones Conjecture

Next we record the statements of the Baum-Connes Conjecture and Farrell-Jones
Conjecture. Explanations and motivations will follow. The versions stated below will
be generalized later.

Conjecture 1.1 (Baum-Connes Conjecture). Let G be a group. Then there is for
every n € Z an isomorphism, called an assembly map,

KS(EG) S K, (CL(G)).

Conjecture 1.2. (Farrell-Jones Conjecture for K.(RG)). Let G be a group. Let
R be an associative ring with unit. Then there is for every n € Z an isomorphism,
called an assembly map,

HS (EG;Kg) = Kn(RG).

Conjecture 1.3. (Farrell-Jones Conjecture for Li_m>(RG)). Let G be a group.
Let R be an associative ring with unit and involution. Then there is for every n € Z
an isomorphism, called an assembly map,

HS(EG;L; ™) 5 LI (RG).

The general pattern is that the target of the assembly map is what we want to
understand or to compute, namely, the K- and L-theory of group rings and group
C*-algebras, and that the source is a homological expression, which is much more
accessible than the source and depends only on the values of the K- or L-groups
under considerations for finite subgroups or for virtually cyclic subgroups of G. The
spaces EG and EG are classifying spaces for the family of finite subgroups and
the family of virtually cyclic subgroups, which are inserted in specific G-homology
theories.

1.3 Motivation for and Evolution of the Baum-Connes
Conjecture

We will start with the Isomorphism Conjecture that is the easiest and most convenient
to state and motivate, the Baum-Connes Conjecture for the topological K-theory of
reduced group C*-algebras. Then we will pass to the Farrell-Jones Conjecture for
the algebraic K- and L-theory of group rings, which is more complicated due to the
appearance of Nil-terms.
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1.3.1 Topological K-Theory of Reduced Group C*-Algebras

The target of the Baum-Connes Conjecture is the topological K-theory of the reduced
group C*-algebra C}:(G) of a group G. We will consider discrete groups G only. One
defines the topological K-groups K, (A) for any Banach algebra A to be the abelian
group K,,(A) = m,,-1(GL(A)) for n > 1. The famous Bott Periodicity Theorem gives

a natural isomorphism K, (A) — K,4+2(A) for n > 1. Finally one defines K,,(A)
for all n € Z so that the Bott isomorphism theorem is true for all n € Z. It turns
out that Ky(A) is the same as the projective class group of the ring A, which is
the Grothendieck group of the abelian monoid of isomorphism classes of finitely
generated projective A-modules with the direct sum as addition. The topological
K-theory of C = C({1}) is trivial in odd dimensions and isomorphic to Z in even
dimensions. More generally, for a finite group G the topological K-theory of C;:(G)
is the complex representation ring Rc(G) in even dimensions and is trivial in odd
dimensions.

Let P be an appropriate elliptic differential operator (or more generally an elliptic
complex) on a closed n-dimensional Riemannian manifold M, for instance the Dirac
operator or the signature operator. Then one can consider its index in K, (C), which
is dim¢ (ker(P)) — dimg(coker(P)) € Z for even n and is zero for odd n. If M comes
with an isometric G-action of a finite group G and P is compatible with the G-action,
then ker(P) and coker(P) are complex finite-dimensional G-representations and one
obtains an element in K,,(C;(G)) = Rc(G) by [ker(P)] — [coker(P)] for even n.
Suppose that G is an arbitrary discrete group and that M is a (not necessarily com-
pact) n-dimensional smooth manifold without boundary with a proper cocompact
G-action, a G-invariant Riemannian metric, and an appropriate elliptic differential
operator P compatible with the G-action. An example is the universal covering
M = N of an n-dimensional closed Riemannian manifold N with G = 7 (N) and
the lift P to N of an appropriate elliptic differential operator P on N. Then one can
define an equivariant index of P which takes values in K, (C;(G)). Therefore the
interest in K, (C)(G)) comes from the fact that it is the natural recipient for indices
of certain equivariant differential operators. All this will be explained in Chapter 10.

1.3.2 Homological Aspects

A first basic problem is to compute K. (C;(G)) or to identify it with more familiar
terms. The key idea comes from the observation that K,.(C;:(G)) has some homolog-
ical properties. More precisely, if G is the amalgamated free product G = G *G, G2
for subgroups G; € G, then there is a long exact sequence



8 1 Introduction

K, (Cr(i1))@Kn (C(i2))

O+ ;
(14) - =55 K,(CH(Go))
Kn(Cr(j1))—-Kn(Cy(j2))

Kn(Cr(G1)) @ Kn(C[(G2))

Kn(CH(G)) 25 Koi(CH(Go))

Kn-1(Cy(i1)®Kn-1(C(i2))

K,-1(C/(G2)) ® K- 1(C/(G1))

Kn-1(Cr(j1))=Kn-1(Cr(j2)) " Op—
Kn-1(CHG)) == ---

where i1,i2, ji, and j, are the obvious inclusions, see [812, Theorem 18 on page
632].If ¢: G — G is a group automorphism and G >4 Z is the associated semidirect
product, then there is a long exact sequence

(1.5)

dunt o (e KnlGi@)-id
SN () oAt

. Kn(C;(K))
K, (C:(G))

Kn-1(Cr(¢))—id
_—

Kn(Cr(G >y 2))

Bn . K1 (CL(K))
— K,-1(Cr(G)) —

Ky-1 (C: (G))
where k is the obvious inclusion, see [811, Theorem 3.1 on page 151] or more
generally [812, Theorem 18 on page 632].

We compare this with group homology in order to explain the analogy with
homology. Recall that the classifying space BG of a group G is an aspherical CW-
complex whose fundamental group is isomorphic to G and that aspherical means that
all higher homotopy groups are trivial, or, equivalently, that the universal covering
is contractible. The classifying space BG is unique up to homotopy. If one has
an amalgamated free product G = G *gG, G2, then one can find models for the
classifying spaces such that BG; is a CW-subcomplex of BG and BG = BG| U BG;
and BGg = BG| N BG,. Thus we obtain a pushout of inclusions of CW-complexes

Bi
BGoé-BGl

Bizl ijl

BG, —— BG.
Bj>

It yields a long Mayer-Vietoris sequence for the cellular or singular homology
O+ H,, (Bi))®H,, (Bi
1.6) -2 o (BGy) LBV BR) G (BG L) @ H(BG)

H,, (Bj1)~Hy(Bj A
Hn(Bj)-Hn(Bj2) H,(BG) 2 H,_,(BGy)

Hy—1(Bi1)®H,-1(Biy)

H,_1(BG,) ® H,_{(BG/)

Hy_1 (Bj1)~Hy-1 (Bj O
1(Bj1) 1(BJ2) H,_(BG) Lo
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If : G — G is a group automorphism, then a model for B(G = Z) is given by the
mapping torus of B¢: BG — BG, which is obtained from the cylinder BG X [0, 1]
by identifying the bottom and the top with the map B¢. Associated to a mapping
torus, there is the long exact sequence

Ons H,(B¢)-id H, (Bk
a7 25 H,(BG) Hn(B9)7id, H,(BG) Hn (B H,(B(G =4 Z))

n H,_\(Bo)-id H, (Bk
2 H,_1(BG) Hno1(Bg)-id H,_1(BG) Ha(BR)

where k is the obvious inclusion of BG into the mapping torus.

1.3.3 The Baum-Connes Conjecture for Torsionfree Groups

There is an obvious analogy between the sequences (1.4) and (1.6) and the se-
quences (1.5) and (1.7). On the other hand we get for the trivial group G = {1}
that H,,(B{1}) = H,({e}) is Z for n = 0 and trivial for n # 0 so that the group
homology of BG cannot be the same as the topological K-theory of C):({1}). But
there is a better candidate, namely take the fopological K-homology of BG instead
of the singular homology. Topological K-homology is a homology theory defined
for CW-complexes. At least we mention that for a topologist its definition is routine,
namely, it is the homology theory associated to the K-theory spectrum which de-
fines the topological K-theory of CW-complexes, i.e., the cohomology theory which
comes from considering vector bundles over CW-complexes. In contrast to singular
homology, the topological K-homology of a point K, ({e}) is Z for even n and is
trivial for n odd. So we still get exact sequences (1.6) and (1.7) if we replace H, by
K. everywhere and we have K,,(B{1}) = K,,(C;({1}) for all n € Z. This leads to
the following conjecture.

Conjecture 1.8 (Baum-Connes Conjecture for torsionfree groups). Let G be a
torsionfree group. Then there is for every n € Z an isomorphism, called an assembly
map,

Kn(BG) = K, (C}(G)).

This is indeed a formulation which will turn out to be equivalent to the Baum-
Connes Conjecture 1.1, provided that G is torsionfree. Conjecture 1.8 cannot hold
in general as the example of a finite group G already shows. Namely, if G is finite,
then the obvious inclusion induces an isomorphism K, (B{1}) ® Q — K,,(BG) &z
Q for every n € Z, whereas Ko(C:({l}) — Ko(C:(G)) agrees with the map
Rc({1}) — Rc(G), which is rationally bijective if and only if G itself is trivial.
Hence Conjecture 1.8 is not true for non-trivial finite groups.
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1.3.4 The Baum-Connes Conjecture

What is going wrong? The sequences (1.4) and (1.5) exist regardless of whether the
groups are torsionfree or not. More generally, if G acts on a tree, then they can be
combined to compute the K-theory K.(C;(G)) of a group G by a certain Mayer-
Vietoris sequence from the stabilizers of the vertices and edges, see Pimsner [812,
Theorem 18 on page 632]). In the special case where all stabilizers are finite, one
sees that K. (C:(G)) is built by the topological K-theory of the finite subgroups of G
in a homological fashion. This leads to the idea that K, (C;:(G)) can be computed in
a homological way, but the building blocks do not only consist of K, (C;:({1})) alone
but of K..(C;;(H)) for all finite subgroups H C G. This suggests to study equivariant
topological K-theory. It assigns to every proper G-CW-complex X a sequence of
abelian groups K¢ (X) for n € Z such that G-homotopy invariance holds and Mayer-
Vietoris sequences exist. A proper G-CW-complex is a CW-complex with G-action
such that forevery g € G and every open cell e witheNg-e # @ we have gx = x for all
x € e and all isotropy groups are finite. Two interesting features are that K$ (G /H)
agrees with K, (C;:(H)) for every finite subgroup H C G and that for a free G-CW-

complex X and n € Z we have a natural isomorphism K (X) — K,(G\X). Recall
that EG is a free G-CW-complex which is contractible and that EG — G\EG = BG
is the universal covering of BG. We can reformulate Conjecture 1.8 by stating an
isomorphism

KS(EG) = Ku(C;(G)).

Now suppose that G acts on a tree T with finite stabilizers. Then the computation of
Pimsner [812, Theorem 18 on page 632]) mentioned above can be rephrased to the
statement that there is an isomorphism

KS(T) S Ka(C(G)).

In particular the left-hand side is independent of the tree 7', on which G acts by finite
stabilizers. This can be explained as follows. It is known that for every finite subgroup
H C G the H-fixed point set T is again a non-empty tree and hence contractible.
This implies that two trees 77 and 73, on which G acts with finite stabilizers, are
G-homotopy equivalent and hence have the same equivariant topological K-theory.
The same remark applies to K,(BG) and K¢ (EG), namely, two models for BG
are homotopy equivalent and two models for EG are G-homotopy equivalent and
therefore K,,(BG) and K$ (EG) are independent of the choice of a model. This leads
to the idea to look for an appropriate proper G-CW-complex EG = E¢7 n(G), which
is characterized by a certain universal property and is unique up to G-homotopy,
such that for a torsionfree group G we have EG = EG, for a tree on which G acts
with finite stabilizers, we have EG = T, and there is an isomorphism

KS(EG) S K, (CL(G)).
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In particular for a finite group we would like to have EG = G/G = {e} and then the
desired isomorphism above is true for trivial reasons. Recall that EG is characterized
up to G-homotopy by the property that it is a G-CW-complex such that EG is empty
for H # {1} and is contractible for H = {1}. Having the case of a tree on which
G acts with finite stabilizers in mind, we define the classifying space for proper
G-actions EG to be a G-CW-complex such that EG* is empty for |H| = oo and is
contractible for |H| < co. Indeed, two models for EG are G-homotopy equivalent, a
tree on which G acts with finite stabilizers is a model for EG, we have EG = EG if
and only if G is torsionfree, and EG = G/G = {e} if and only if G is finite. This
leads to the Baum-Connes Conjecture, stated already as Conjecture 1.1. Classifying
spaces for families will be treated in detail in Chapter 11.

The Baum-Connes Conjecture 1.1 makes sense for all groups, and no counterex-
amples are known at the time of writing. The Baum-Connes Conjecture 1.1 reduces
in the torsionfree case to Conjecture 1.8 and is consistent with the result of Pim-
sner [812, Theorem 18 on page 632] for G acting on a tree with finite stabilizers. It is
obviously true for finite groups G. Pimsner’s result holds more generally for groups
acting on trees with not necessarily finite stabilizers. So one should get the analo-
gous result for the left-hand side of the isomorphism appearing in the Baum-Connes
Conjecture 1.1. Essentially this boils down to the question whether the analogs of the
long exact sequences (1.4) and (1.5) hold for the left side of the isomorphism appear-
ing in the Baum-Connes Conjecture 1.1. This follows for (1.4) from the fact that for
G = G1 *G, G2 one can find appropriate models for the classifying spaces for proper
G-actions such that there is a G-pushout of inclusions of proper G-CW-complexes

G XGy EGO —G XG EGI

| |

G %G, EGp ——EG

and for a subgroup H C G and a proper H-CW-complex X there is a natural
isomorphism

KI(X) 5 K$(G xu X).

Thus the associated long exact Mayer-Vietoris sequence yields the long exact se-
quence

D, KG0(EGy) — KOV (EG)) ® K9 (EG,) — KO (EG) 2

K (EGo) = K. (EG1) ® K., (EG2) — K.\ (EG) — -
which corresponds to (1.4). For (1.5) one uses the fact that for a group automorphism

¢: G — G the G =g Z-CW-complex given by the bilaterally infinite mapping
telescope of the ¢-equivariant map E¢: EG — EG is amodel for E(G >4 Z).
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In general K¢ (EG) is much bigger than K¢ (EG) = K,,(BG) and the canonical
map KY(EG) — KY(EG) is rationally injective but not necessarily integrally
injective.

1.3.5 Reduced versus Maximal Group C*-Algebras

All the arguments above also apply to the maximal group C*-algebra, which has
even better functorial properties than the reduced group C*-algebra. So a priori one
may think that one should use the maximal group C*-algebra instead of the reduced
one. However, the version for the maximal group C*-algebra is not true in general
and the version for the reduced group C*-algebra seems to be the right one. This will
be discussed in more detail in subsection 14.5.1.

If one considers instead of the reduced group C*-algebra the Banach group algebra
L'(G), one obtains the Bost Conjecture 14.23.

1.3.6 Applications of the Baum-Connes Conjecture

The assembly map appearing in the Baum-Connes Conjecture 1.1 has an index-
theoretic interpretation. An element in KOG (EG) can be represented by a pair
(M, P*) consisting of a cocompact proper smooth n-dimensional G-manifold M
with a G-invariant Riemannian metric together with an elliptic G-complex P* of
differential operators of order 1 on M and its image under the assembly map is a
certain equivariant index indcx(g)(M, P*) in K,(C;(G)). There are many impor-
tant consequences of the Baum-Connes Conjecture such as the Kadison Conjecture,
see Subsection 10.4.2, the stable Gromov-Lawson-Rosenberg Conjecture, see Sub-
section 14.8.4, the Novikov Conjecture, see Section 9.14, and the (Modified) Trace
Conjecture, see Subsections 10.4.1 and 14.8.3.

A summary of the applications of the Baum-Connes Conjecture is given in
Section 14.8.

1.4 Motivation for and Evolution of the Farrell-Jones Conjecture
for K-Theory

Next we want to deal with the algebraic K-groups K, (RG) of the group ring RG.
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1.4.1 Algebraic K-Theory of Group Rings

For an associative ring with unit R one defines Ky(R) to be the projective class
group of R and K| (R) to be the abelianization of GL(R) = colim,, . GL,(R).
The higher algebraic K-groups K, (R) for n > 1 are the homotopy groups of a
certain K-theory space associated to the category of finitely generated projective
R-modules. One can define negative K-groups K, (R) for n < —1 by a certain
contracting procedure applied to Ko(R). Finally there exists a K-theory spectrum
K(R) such that 7,,(K(R)) = K,,(R) holds for every n € Z. If Z — R is the obvious
ring map sending n to n - 1g, then one defines for n < 1 the reduced K-groups to be
the cokernel of the induced map K,,(Z) — K, (R). The Whitehead group Wh(G)
of a group G is the quotient of K| (ZG) by elements given by (1, 1)-matrices of the
shape (+g) for g € G.

The reduced projective class group Ko(ZG) is the recipient for the finite-
ness obstruction of a finitely dominated CW-complex X with fundamental group
G = m1(X). Finitely dominated means that there is a finite CW-complex Y and
mapsi: X — Y and r: Y — X such that r o i is homotopic to the identity on X.
The Whitehead group Wh(G) is the recipient of the Whitehead torsion of a ho-
motopy equivalence of finite CW-complexes and of a compact k-cobordism over
a closed manifold, where G is the fundamental group. An h-cobordism W over M
consists of a manifold W whose boundary is the disjoint union W = W [[ | W
such that both inclusions ;W — W are homotopy equivalences, together with an

isomorphism M — doW. The finiteness obstruction and the Whitehead torsion are
very important topological obstructions whose vanishing has interesting geometric
and topological consequences. The finiteness obstruction vanishes if and only if the
finitely dominated CW-complex under consideration is homotopy equivalent to a
finite CW-complex. The Whitehead torsion of a compact i-cobordism W over M of
dimension > 6 vanishes if and only if W is trivial, i.e., is isomorphic to a cylinder
M x [0, 1] relative M = M x {0}. This explains why topologists are interested in
K, (ZG) for groups G.
All these definitions and results will be explained in Chapters 2, 3, 4, 5, and 6.

1.4.2 Appearance of Nil-Terms

The situation for the algebraic K-theory of RG is more complicated than the one
for the topological K-theory of C;:(G). As a special case of the sequence (1.5) we
obtain an isomorphism

Ka(C}(G X 2)) = Ku(C}(G)) ® Kn-1(C}(G).
For algebraic K-theory the analog is the Bass-Heller-Swan decomposition

Ku(R[Z]) = Kn(R) ® Ky-1(R) ® NK,(R) © NK,.(R)
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where certain additional terms, the Nil-terms NK,, (R), appear, see Subsection 6.3.4.
If one replaces R by RG, one gets

K. (R[G X Z]) = K,(RG) ® Kn_1(RG) ® NK,(RG) & NK,,(RG).

Such correction terms in the form of Nil-terms also appear when one wants to get
analogs of the sequences (1.4) and (1.5) for algebraic K-theory, see Section 6.9.

1.4.3 The Farrell-Jones Conjecture for K, (RG) for Regular Rings and
Torsionfree Groups

Let R be a regular ring, i.e., it is Noetherian and every R-module possesses a
finite-dimensional projective resolution. For instance, any principal ideal domain is a
regular ring. Then one can prove in many cases for torsionfree groups that the analogs
of the sequences (1.4) and (1.5) hold for algebraic K-theory, see Waldhausen [974]
and [977]. The same reasoning as in the Baum-Connes Conjecture for torsionfree
groups leads to the following conjecture.

Conjecture 1.9. (Farrell-Jones Conjecture for K.(RG) for torsionfree groups
and regular rings). Let G be a torsionfree group and let R be a regular ring. Then
there is for every n € Z an isomorphism

H,(BG;K(R)) = K,(RG).

Here H..(—; K(R)) is the homology theory associated to the K-theory spectrum of R.
Itis a homology theory with the property that H, ({e}; K(R)) = n,(K(R)) = K,(R)
holds for every n € Z.

1.4.4 The Farrell-Jones Conjecture for K. (RG) for Regular Rings

If one drops the condition that G is torsionfree but requires that the order of every
finite subgroup of G is invertible in R, then in many cases one can still prove that
the analogs of the sequences (1.4) and (1.5) hold for algebraic K-theory. The same
reasoning as in the Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.10. (Farrell-Jones Conjecture for K. (RG) for regular rings). Let
G be a group. Let R be a regular ring such that |H]| is invertible in R for every finite
subgroup H C G. Then there is for every n € Z an isomorphism

HS (EG;Kg) — Kn(RG).
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Here HS(—;Kg) is an appropriate G-homology theory with the property that
HS(G/H;Kg) = HY({e};Kg) = K,(RH) holds for every subgroup H € G
and every n € Z, and the isomorphism above is induced by the G-map EG — {e}.
Conjecture 1.10 reduces to Conjecture 1.9 if G is torsionfree.

1.4.5 The Farrell-Jones Conjecture for K, (RG)

Conjecture 1.9 can be applied in the case R = Z, which is not true for Conjecture 1.10.
So what is the right formulation for arbitrary rings R? The idea is that one not only
needs to take all finite subgroups into account but also all virtually cyclic subgroups.
A group is called virtually cyclic if it is finite or contains Z as subgroup of finite
index. Namely, let EG = Eq¢cy(G) be the classifying space for the family of
virtually cyclic subgroups, i.e., a G-CW-complex EG such that EG! is contractible
for every virtually cyclic subgroup H C G and is empty for every subgroup H C G
which is not virtually cyclic. The G-space EG is unique up to G-homotopy. These

considerations lead to the Farrell-Jones Caljecture for K.(RG) stated already as
Conjecture 1.2.

Conjecture 1.2 makes sense for all groups and rings, and no counterexamples
are known at the time of writing. We have absorbed all the Nil-phenomena into the
source by replacing EG by EG. There is a certain price to pay since often there

are nice small geometric models for EG, whereas the spaces EG are much harder

to analyze and are in general huge. There are up to G-homotopy unique G-maps
EG — EG and EG — EG which yield maps

H,(BG;K(R)) = HY (EG;Kg) — HS (EG;Kg) — HS (EG;Kp).

We will later see that there is a splitting, see Theorem 13.36,

(1.11) HY(EG;Kg) = HS (EG;Kg) ® HY (EG,EG; Kg)

where HY (EG;KRg) is the comparatively easy homological part and all Nil-type
information is contained in HY (EG, EG;Kg). If R is regular and the order of any

finite subgroup of G is invertible in R, then HY (EG, EG; Kg) is trivial and hence the

natural map HY (EG; Kg) N HY (EG;KR) is bijective. Therefore Conjecture 1.2
reduces to Conjecture 1.9 and Conje;ture 1.10 when they apply.

In the Baum-Connes setting the natural map K¢ (EG) 5 K$(EG) is always
bijective. o
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1.4.6 Applications of the Farrell-Jones Conjecture for K, (RG)

We have K,,(Z) = 0 for n < —1. Both the map Z N Ko(Z) that sends n to n - [Z]
and the map {+1} — K (Z) that sends +1 to the class of the (1, 1)-matrix (+1) are
bijective. Therefore an easy spectral sequence argument shows that Conjecture 1.9
implies

Conjecture 1.12. (Farrell-Jones Conjecture K, (ZG) in dimensions n < 1). Let
G be a torsionfree group. Then K,,(ZG) = 0 forn € Z,n < 0 and Wh(G) = 0.

In particular, the finiteness obstruction and the Whitehead torsion are always
zero for torsionfree fundamental groups. This implies that every h-cobordism over
a simply connected d-dimensional closed manifold for d > 5 is trivial and thus
the Poincaré Conjecture in dimensions > 6 (and with some extra effort also in
dimension d = 5). This will be explained in Section 3.5. The Farrell-Jones Conjecture
for K-theory, see Conjecture 1.2, implies the Bass Conjecture, see Section 2.10.
Kaplansky’s Idempotent Conjecture follows from the Farrell-Jones Conjecture for
K-theory for torsionfree groups and regular rings, see Conjecture 1.9, as explained
in Section 2.9. Further applications of the Conjecture 1.9, e.g., to pseudoisotopy and
to automorphisms of manifolds, will be discussed in Section 9.21.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.5 Motivation for and Evolution of the Farrell-Jones Conjecture
for L) (RG)

Next we want to deal with the algebraic L-groups LS (RG) of the group ring RG of
a group G with coefficients in an associative ring R with unit and involution.

1.5.1 Algebraic L-Theory of Group Rings

Let R be an associative ring with unit. An involution of rings R — R,r +— 7 on
R is a map satisfying 7 +s5 = 7+5, 75 = 57,0 =0, 1 = 1, and 7 = r for all
r,s € R. Given a ring with involution, the group ring RG inherits an involution by
2geGTg 8 = 2geGT - g~ . If the coefficient ring R is commutative, we usually
use the trivial involution 7 = r. Given a ring with involution, one can associate to
it quadratic L-groups L"(R) for n € Z. The abelian group Lg(R) can be identified
with the Wizt group of non-degenerate quadratic forms on finitely generated free R-
modules, where every hyperbolic quadratic form represents the zero element and the
addition is given by the orthogonal sum of hyperbolic quadratic forms. The abelian
group L;’ (R) is essentially given by the skew-symmetric versions. One defines
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L"(R) and L?(R) in terms of automorphism of quadratic forms. The L-groups are

four-periodic, i.e., there is a natural isomorphism LQ(R) = LZ . 4(R) forn € Z. If
one uses finitely generated projective R-modules instead of finitely generated free
R-modules, one obtains the proper quadratic L-groups LE (R) for n € Z. For every
j € {-co} I {j € Z| j < 1} there are versions L;ﬂ(R), where (j) is called a
decoration. The decorations j = 0, 1 correspond to the decorations p, A. If R is ZG,
one uses finitely generated based free ZG-modules and takes the Whitehead torsion
into account, then one obtains the simple quadratic L-groups L (ZG) = L§,2> (2G)
forn € Z.

The relevance of the L-groups comes from the fact that they are the recipients
for various surgery obstructions. The fundamental surgery problem is the following.
Consider a map f: M — X from a closed manifold M to a finite Poincaré complex
X. We want to know whether we can change it by a process called surgery to a map
g: N — X with a closed manifold N as source and the same target such that g is
a homotopy equivalence. This may answer the question whether a finite Poincaré
complex X is homotopy equivalent to a closed manifold. Note that a space which
is homotopy equivalent to a closed manifold must be a finite Poincaré complex, but
not every finite Poincaré complex is homotopy equivalent to a closed manifold. If
f comes with additional bundle data and has degree 1, we can find g if and only if
the so-called surgery obstruction of f vanishes, which takes values in L (ZG) for
n = dim(X) and G = 7 (X). If we want g to be a simple homotopy equivalence,
the obstruction lives in L} (ZG). We see that, analogous to the finiteness obstruction
in Ko(ZG) and the Whitehead torsion in Wh(G), the algebraic L-groups are the
recipients for important obstructions whose vanishing has interesting geometric
and topological consequences. Also the question whether two closed manifolds are
diffeomorphic or homeomorphic can be decided via surgery theory, of which the
L-groups are a part.

More explanations about L-groups and surgery theory will be given in Chapter 9.

1.5.2 The Farrell-Jones Conjecture for L.(RG)[1/2]

If we invert 2, i.e., if we consider the localization Lfl_j ) (RG)[1/2], then there is no
difference between the various decorations and the analogs of the sequences (1.4)
and (1.5) are true for L-theory, see Cappell [204]. The same reasoning as for the
Baum-Connes Conjecture leads to the following conjecture.

Conjecture 1.13. (Farrell-Jones Conjecture for L.(RG)[1/2]). Let G be a group.
Let R be an associative ring with unit and involution. Then there is for every n € Z
and every decoration j an isomorphism

HS(EG;LY)[1/2] S LY (RG)[1/2).
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Here HY (-; L§{>) is an appropriate G-homology theory with the property that
HS(G/H, L%”) = Hf({o};Lﬁé”) = LY (RH) holds for every subgroup H C G
and every n € Z and the isomorphism above is induced by the G-map EG — {e}.

1.5.3 The Farrell-Jones Conjecture for Li_°°> (RG)

In general the L-groups Lff ) (RG) depend on the decoration and often the 2-torsion
carries sophisticated information and is hard to handle. Recall that as a special case
of the sequence (1.5) we obtain an isomorphism

Kn(CH(G X 2)) = Ku(C}(G)) ® Kno1 (C1(G)).
The L-theory analog is given by the Shaneson splitting [913]

. - )
L Rz) = LV (R @ L (R).

Here for the decoration j = —co one has to interpret j — 1 as —co. Since S! is a model

for BZ, we get an isomorphism

H,(BZ;LY(R)) = LY (R) @ LY (R).

Therefore the decoration —co shows the right homological behavior and is the right
candidate for the formulation of an isomorphism conjecture.

The analog of the sequence (1.4) does not hold for Lij ) (RG), certain correction
terms, the UNil-ferms come in, which are independent of the decoration (;) and
are always (not necessarily finitely generated) 2-primary abelian groups, see Cap-
pell [203], [204]. As in the algebraic K-theory case this leads to the Farrell-Jones
Conjecture for Li_°°>(RG), stated already as Conjecture 1.3. The analog of the
sequence (1.5) holds for Li_oo>(RG), see Theorem 13.60.

In Conjecture 1.3 the term HS (—; Lf,;oo)) is an appropriate G-homology theory
such that HS (G/H, L;{m) = Hf({o};L;_‘X») =~ L) (RH) holds for every
subgroup H € G and every n € Z, and the assembly map is induced by the map
EG — {e}. Conjecture 1.3 makes sense for all groups and rings with involution,
and no counterexamples are known at the time of writing.

After inverting 2 Conjecture 1.3 is equivalent to Conjecture 1.13.

There is an L-theory version of the splitting (1.11)

(114)  HJ(EG;LY™) = H(EG; L ™) @ HY (EG,EG; L ™),

provided that there exists an integer ip such that K;(RV) = 0 holds for all virtually
cyclic subgroups V € G and i < ip.
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1.5.4 Applications of the Farrell-Jones Conjecture for Li_“’) (RG)

For applications in geometry and topology the simple L-groups L; (ZG) are the most
interesting ones. The difference between the various decorations is measured by the
so-called Rothenberg sequences and given in terms of the Tate cohomology of Z/2
with coefficients in K, (ZG) for n < 0 and Wh(G) with respect to the involution

coming from the standard involution on the group ring ZG sending Y. zec Ag - &
0 Yo Ag ¢!, Hence the decorations do not matter if K,(ZG) for n < 0 and

Wh(G) vanish. In view of Conjecture 1.12, this leads to the following version of
Conjecture 1.3 for torsionfree groups

Conjecture 1.15. (Farrell-Jones Conjecture for L.(ZG) for torsionfree groups).
Let G be a torsionfree group. Then there is for every n € Z and every decoration j
an isomorphism

H,(BG;LY)(2)) 5 LY (2G).

Moreover, the source, target, and the map itself are independent of the decoration j.

Here H,,(—; L) (Z)) is the homology theory associated to the L-theory spectrum
L{~7)(Z) and satisfies H, ({}; LY (2)) = m, (LY)(2)) = LY (2).

The L-theoretic assembly map appearing in Conjecture 1.15 has a topological
meaning. It appears in the so-called Surgery Exact Sequence, which we will discuss
in more detail in Section 9.12. Let L5(Z)(1) be the 1-connected cover L*(Z){1) of
L*(Z). There is a canonical map ¢: H,(BG;L*(Z){1)) —» H,(BG;L*(Z)). Let N
be an aspherical oriented closed manifold with fundamental group G, i.e., an oriented
closed manifold homotopy equivalent to BG. Then G is torsionfree, the source of
the composite H,(BG;L*(Z){1)) — L} (RG) of the assembly map appearing in
Conjecture 1.15 with ¢ consists of bordism classes of normal maps M — N with N
as target, and the composite sends such a normal map to its surgery obstruction. This
is analogous to the Baum-Connes setting where the assembly map can be described
by assigning to an equivariant index problem its index.

The third term in the Surgery Exact Sequence is the so-called structure set of N.
It is the set of equivalence classes of simple homotopy equivalences fy: My — N
with a closed topological manifold as source and N as target where fy: My — N and
fi: My — N are equivalent if there is a homeomorphism g: My — M, such that
fi1 o g and fj are homotopic. Conjecture 1.15 implies that this structure set is trivial
provided that the dimension of N is greater or equal to five. Hence Conjecture 1.15
implies in dimensions > 5 the following famous conjecture if G is isomorphic to the
fundamental group.

Conjecture 1.16 (Borel Conjecture). Let M and N be two aspherical closed topo-
logical manifolds whose fundamental groups are isomorphic. Then they are home-
omorphic, and every homotopy equivalence from M to N is homotopic to a homeo-
morphism.
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The Borel Conjecture is a topological rigidity theorem for aspherical closed mani-
folds and analogous to the Mostow Rigidity Theorem, which says that two hyperbolic
closed Riemannian manifolds with isomorphic fundamental groups are isometrically
diffeomorphic. The Borel Conjecture is false if one replaces topological manifold
by smooth manifold and homeomorphism by diffeomorphism. Its connection to the
Borel Conjecture is one of the main features of the Farrell-Jones Conjecture. More
details will be given in Subsections 9.15.2 and 9.15.3.

The Farrell-Jones Conjecture for L-theory 1.3 implies the Novikov Conjecture, see
Section 9.14. It also has applications to the problem whether Poincaré duality groups
or torsionfree hyperbolic groups with spheres as boundary are fundamental groups
of aspherical closed manifolds, see Sections 9.17 and 9.18. Product decompositions
of aspherical closed manifolds are treated in Section 9.20.

A summary of the applications of the Farrell-Jones Conjecture is given in Sec-
tion 13.12.

1.6 More General Versions of the Farrell-Jones Conjecture

We will also treat versions of the Farrell-Jones Conjecture in equivariant additive
categories, or more generally, in equivariant higher categories, see Sections 13.3
and 13.4. There will be versions with finite wreath products, see Section 13.5. The
most general version is the Full Farrell-Jones Conjecture 13.30, see Section 13.6,
which implies all other variants of the Farrell-Jones Conjecture, see Section 13.11.

1.7 Status of the Baum-Connes and the Farrell-Jones Conjecture

A detailed report on the groups for which these conjectures have been proved will
be given in Chapter 16. For example, the Baum-Connes Conjecture 1.1 is known for
a class of groups which includes amenable groups, hyperbolic groups, knot groups,
fundamental groups of compact 3-manifolds (possibly with boundary), and one-
relator groups, but is open for SL,(Z) for n > 3, where for a commutative ring R
we write SL, (R) for the group of invertible (n, n)-matrices with det(A) = 1. The
class of groups for which the Farrell-Jones Conjectures 1.2 and 1.3 have been proved
contains hyperbolic groups, finite-dimensional CAT (0)-groups, fundamental groups
of (not necessarily compact) 3-manifolds (possibly with boundary), solvable groups,
lattices in almost connected Lie groups, and arithmetic groups, but they are open
for amenable groups in general. If one allows coefficients, one can prove inheritance
properties for the Baum-Connes Conjecture and the Farrell-Jones Conjecture, e.g.,
the class of groups for which they are true is closed under taking subgroups, finite
direct products, free products, colimits over directed sets whose structure map are
injective in the Baum-Connes case and can be arbitrary in the Farrell-Jones case.
This will be explained in Sections 13.7 and 14.6.
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The Full Farrell-Jones Conjecture 13.30, which implies all other variants of the
Farrell-Jones Conjecture, is known to be true for some groups with unusual prop-
erties, e.g., groups with expanders, Tarski monsters, lacunary hyperbolic groups,
subgroups of finite products of hyperbolic groups, self-similar groups, see Theo-
rem 16.1. At the time of writing we have no specific candidate of a group or of a
general property of groups such that the Full Farrell-Jones Conjecture 13.30, or one
of its consequences, e.g., the Novikov Conjecture and the Borel Conjecture, might
be false. So we have no good starting point for a search for counterexamples, see
Section 16.10.

At the time of writing no counterexample to the Baum-Connes Conjecture is
known to the author. There exist counterexamples to the Baum-Connes Conjecture
with coefficients, as explained in Section 16.10.

1.8 Structural Aspects
1.8.1 The Meta-Isomorphism Conjecture

The formulations of the Baum-Connes Conjecture 1.1 and of the Farrell-Jones Con-
jecture 1.2 and 1.3 are very similar in the homological picture. It allows a formulation
of the following Meta-Isomorphism Conjecture, of which both conjectures are special
cases and which also has other very interesting specializations, e.g., for pseudoiso-
topy, A-theory, topological Hochschild homology, and topological cyclic homology,
see Section 15.2.

Meta-Isomorphism Conjecture 1.17. Given a group G, a G-homology theory HC,
and a family F of subgroups of G, we say that the Meta-Isomorphism Conjecture is
satisfied if the G-map E#(G) — {e} induces for every n € Z an isomorphism

Ag: HE(EF(G)) — HE ({o}).

This general formulation is an excellent framework to construct transformations
between the assembly maps appearing in different Isomorphism Conjectures. For
instance, the cyclotomic trace relates the K-theoretic Farrell-Jones Conjecture with
coefficients in Z to the Isomorphism Conjecture for topological cyclic homology,
see Subsection 15.14.3, and via symmetric signatures one can link the Farrell-Jones
Conjecture for algebraic L-theory with coefficient in Z to the Baum-Connes Con-
jecture, see Subsection 15.14.4. Moreover, basic computational tools and techniques
for equivariant homology theories apply both to the Baum-Connes Conjecture 1.1
and the Farrell-Jones Conjectures 1.2 and 1.3.
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1.8.2 Assembly

One important idea is the assembly principle, which leads to assembly maps in a
canonical and universal way by asking for the best approximation of a homotopy
invariant functor from G-spaces to spectra by an equivariant homology theory. It is
an important ingredient for the identification of the various descriptions of assembly
maps appearing in the Baum-Connes Conjecture and the Farrell-Jones Conjecture.
For instance, the assembly map appearing in the Baum-Connes Conjecture 1.1
can be interpreted as assigning to an appropriate equivariant elliptic complex its
equivariant index, and the assembly map appearing in the L-theoretic Farrell-Jones
Conjecture 1.3 is related to the map appearing in the Surgery Exact Sequence, which
assigns to a surgery problem its surgery obstruction. We have already explained above
that these identifications are the basis for some of applications of the Isomorphism
Conjectures, and we will see that they are also important for proofs. There is a
homotopy-theoretic approach to the assembly map based on homotopy colimits over
the orbit category, which motivates the name assembly. Roughly speaking, the name
assembly refers to assembling the values of the K-and L-groups of the reduced group
C*-algebra or the group ring of a group G from their values on finite or virtually
cyclic subgroups of G. All this will be explained in Chapter 18.

This parallel treatment of the Baum-Connes Conjecture and the Farrell-Jones
Conjecture and of other variants is one of the topics of this book. However, the
geometric interpretations of the assembly maps in terms of indices, surgery obstruc-
tions, or forget control are quite different. Therefore the methods of proof for the
Farrell-Jones Conjecture and the Baum-Connes Conjecture use different input. Al-
though there are some similarities in the proofs, it is not clear how to export methods
of proof from one conjecture to the other.

1.9 Computational Aspects

In general the target K,, (C;:(G)) of the assembly map appearing in the Baum-Connes
Conjecture 1.1 is very hard to compute, whereas the source K¢ (EG) is much more
accessible because one can apply standard techniques from algebraic topology such
as spectral sequences and equivariant Chern characters and there are often nice
small geometric models for EG. For the Farrell-Jones Conjectures 1.2 and 1.3,
this applies also to the parts HSY (EG; Kg) and HS (EG;L;;‘X’)) respectively ap-
pearing in the splittings (1.11) and (1.14). The other parts HS (EG, EG;Kg) or
H ,? (EG,EG; L;{m) are harder to handle, since they involve Nil- or UNil-terms and
the G-CW-complex EG is not proper and in general huge. Most of the known com-

putations of K, (C)(G)), K,(RG), and L,<1J>(RG) are based on the Baum-Connes
Conjecture 1.1 and the Farrell-Jones Conjectures 1.2 and 1.3.
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Classifications of manifolds and of C*-algebras rely on and thus motivate explicit
calculations of K- and L-groups. In this context it is often important not only to
determine the K- and L-groups abstractly, but to develop detection techniques so
that one can identify or distinguish specific elements associated to the original clas-
sification problem or give geometric or index-theoretic interpretations to elements
in the K- and L-groups.

A general guide for computations and a list of known cases including applications
to classification problems will be given in Chapter 17.

1.10 Are the Baum-Connes Conjecture and the Farrell-Jones
Conjecture True in General?

The title of this section is the central and at the time of writing unsolved question. One
motivation for writing this monograph is to stimulate some very clever mathematician
to work on this problem and finally find an answer. Let us speculate about the possible
answer.

We are skeptical about the Baum-Connes Conjecture for two reasons: there are
counterexamples for the version with coefficients, and the left side of the Baum-
Connes assembly map is functorial under arbitrary group homomorphisms, whereas
the right side is not. The Bost Conjecture, which predicts an isomorphism

KS(EG) — K,(LY(G)),

has a much better chance to be true in general. The possible failure of the Baum-
Connes Conjecture may come from the possible failure of the canonical map
K,(L'(G)) = K,(CI(G)) to be bijective.

In spite of the Baum-Connes Conjecture, we do not see an obvious flaw with the
Bost Conjecture or the Farrell-Jones Conjecture. As explained in Section 1.7 above,
we have no starting point for the construction of a counterexample, and all abstract
properties we know for the right side do hold for the left side of the assembly map
and vice versa. In particular for the Bass Conjecture and for the Novikov Conjecture
which follow from the Farrell-Jones Conjecture, the class of groups for which they
are known to be true is impressive. There are some conclusions from the Farrell-
Jones Conjecture which are not trivial and true for all groups. These are arguments
in favor of a positive answer

The following arguments are in favor of a negative answer. The universe of groups
is overwhelmingly large. We have Gromov’s saying on our neck that a statement
which holds for all groups is either trivial or false. We have no philosophical reason
why the Bost Conjecture or the Farrell-Jones Conjecture should be true in general.
Finding a counterexample will probably require some new ideas, maybe from logic
or random groups.
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The upshot of this discussion is that the author is skeptical about the Baum-
Connes Conjecture, but does not dare to make any predictions about the chances
for the other conjectures, in particular for the Novikov Conjecture, to be true for all
groups.

We will elaborate on this discussion in Section 16.10.

1.11 The Organization of the Book and a User’s Guide

We have written the text in a way such that one can read small units, e.g., a single
chapter, independently from the rest, concentrate on certain aspects, and extract easily
and quickly specific information. Hopefully we have found the right mixture between
definitions, theorems, examples, and remarks so that reading the book is entertaining
and illuminating. We have successfully used parts of this book, sometimes a single
chapter, for seminars, reading courses, and advanced lecture courses.

The book consists of three parts and a supplement, which we briefly review next.
We will also give some further information on how to use the book.

Note that not all of the proofs are included in full. At least we convey the basic
ideas and include references to sources.

1.11.1 Introduction to K- and L-Theory (Part I)

In the first part “Introduction to K- and L-Theory”, which encompasses Chapters 2
to 10, we introduce and motivate the relevant theories, namely, algebraic K-theory,
algebraic L-theory, and topological K-theory. In these chapters we present some ap-
plications and more accessible special versions of the Baum-Connes and the Farrell-
Jones Conjecture. They are rather independent of one another and one can start
reading each of them without having gone though the others. If a reader just wants
to get some information, for instance about Wall’s finiteness obstruction, Whitehead
torsion, or the projective class group, she or he can directly start reading the relevant
chapter, learn the basics about these invariants, and understand the relevant special
versions of the Baum-Connes Conjecture or the Farrell-Jones Conjecture without
going through the other chapters. Each of these chapters is eligible for a lecture
course, seminar, or reading course.

1.11.2 The Isomorphism Conjectures (Part II)

In the second part “The Isomorphism Conjectures”, which consists of Chapters 11
to Chapter 18, we introduce the Baum-Connes Conjecture and the Farrell-Jones
Conjecture in their most general form, namely, for arbitrary groups and with coef-
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ficients. We discuss further applications and in particular how they can be used for
computations. We give a report about the status of these conjectures and discuss
open problems.

Note that the Farrell-Jones Conjecture comes in different levels. It can be con-
sidered for rings (with involution) as coefficients and hence aims at the algebraic
K-theory and L-theory of group rings. This is the most relevant version for applica-
tions, where it often suffices to treat lower and middle K-theory, torsionfree groups,
and Z or a field as coefficients. One may twist the group rings and allow orientation
characters. The next level is to pass to equivariant additive categories (with involu-
tion) as coefficients, which has the advantage that it automatically leads to useful
inheritance properties of the Farrell-Jones Conjecture and encompasses the case of
rings as coefficients. For algebraic K-theory one can even allow higher categories
as coefficients. This contains the version of additive categories as coefficients and
also the versions of the Farrell-Jones Conjecture for Waldhausen’s A-theory, for
pseudoisotopy, and for Whitehead spaces as special cases. There are also versions
“with finite wreath product”, where the passage to overgroups of finite index is built
in.

So there are many variations of the Farrell-Jones Conjecture, but the Full Farrell-
Jones Conjecture 13.30 implies all of them.

We also state Meta-Conjectures, which reduce to the Baum-Connes Conjecture,
the Farrell-Jones Conjecture, or other types of Isomorphism Conjectures if one feeds
the right theory into them. There are versions of the Farrell-Jones Conjecture for
Waldhausen’s A-theory, pseudoisotopy, Whitehead spaces, topological Hochschild
homology, topological cyclic homology, and homotopy K-theory.

We also briefly discuss the Farrell-Jones Conjecture for totally disconnected
groups and Hecke Algebras, where for the first time a version of the Farrell-Jones
Conjecture for topological groups is considered. The Baum-Connes Conjecture has
already been intensively studied for topological groups. However, in this monograph
we will confine ourselves to discrete groups.

1.11.3 Methods of Proofs (Part III)

In the third part “Methods of Proofs”, which ranges from Chapter 19 to Chapter 25, we
give a survey on the background, history, philosophy, strategies, and some ingredients
of the proofs. We will concentrate on the Farrell-Jones Conjecture in this part III.

The reader, who is interested in proofs, should first go through Chapter 19. There
motivations for the proofs of the Farrell-Jones Conjecture and some information
about their long history is given without getting lost in technical details. So it will
be a soft introduction to the methods of proofs conveying ideas only. Mainly we
explain why controlled topology, flows, and transfers come in, which one would not
expect at first glance in view of the homotopy-theoretic nature of the Farrell-Jones
Conjecture.
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In Chapter 20 we isolate some conditions about a group which guarantee that it
satisfies the Full Farrell-Jones Conjecture or some special version of it. Note that
here K- or L-theory do not yet play any role and one can use the results of this section
without any previous knowledge about them. This will be interesting for someone
who is already familiar with geometric group theory but has no background in K- or
L-theory.

Depending on how ambitious the reader is, she or he should go through the other
chapters. We recommend to read Section 23.7, where details of the proof of the
Farrell-Jones Conjecture for the surjectivity of the K-theoretic assembly map in
dimension 1 is given, which does not use much knowledge about algebraic K-theory
but uses all the basic ideas appearing in the proof of the Full Farrell-Conjecture.

The reader who wants to understand the proof in the most advanced setting,
namely the one for higher categories as coefficients, and for the largest class of
groups, namely the class of Dress-Farrell-Hsiang-Jones groups, is recommended to
read through Chapter 24. For this some background in higher category theory is
necessary.

We give a very brief overview of the methods of proof for the Baum-Connes
Conjecture in Chapter 25.

1.11.4 Supplement

The book contains a number of exercises. They are not needed for the exposition of
the book, but give some illuminating insight. Moreover, the reader may test whether
she or he has understood the text or improve her or his understanding by trying to
solve the exercises. Hints to the solutions of the exercises are given in Chapter 26.

If one wants to find a specific topic, the extensive index of the monograph can
be used to find the right spot for a specific topic. The index contains an item
“Theorem”, under which all theorems with their names appearing in the book are
listed, and analogously there is an item “Conjecture”.

1.11.5 Prerequisites

We require that the reader is familiar with basic notions in topology (CW-complexes,
chain complexes, homology, homotopy groups, manifolds, coverings, cofibrations,
fibrations, . . . ), functional analysis (Hilbert spaces, bounded operators, differential
operators, ...), algebra (groups, modules, group rings, elementary homological
algebra, ... ), group theory (presentations, Cayley graphs, hyperbolic groups, ... ),
and elementary category theory (functors, transformations, additive categories, . . . ).
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1.12 Notations and Conventions

Here is a briefing on our main conventions and notations. Details are of course
discussed in the text.

* Ring will mean (not necessarily commutative) associative ring with unit unless
explicitly stated otherwise;

* Module always means left module unless explicitly stated otherwise;

* Group means discrete group unless explicitly stated otherwise;

* We will always work in the category of compactly generated spaces, com-
pare [927] and [1006, 1.4]. In particular every space is automatically Hausdorff;

» For our conventions concerning spectra see Section 12.4. Spectra are denoted
by boldface letters such as E;

* We use the standard symbols Z, Q, R, C, Z;, and Q; for the integers, the rational
numbers, the real numbers, the complex numbers, the p-adic numbers, and the
p-adic rationals;

* We use the following symbols to denote various groups:

symbol name
Z/n finite cyclic group of order n
A\ symmetric group of permutations of the set {1,2,...n}
A, alternating group of even permutations of the set {1,2,...,n}
Dy infinite dihedral group
Dy, dihedral group of order 2n
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Chapter 2
The Projective Class Group

2.1 Introduction

This chapter is devoted to the projective class group Ko(R) of a ring R.

We give in Section 2.2 three equivalent definitions of Ky(R), namely, by
the universal additive invariant for finitely generated projective modules, by the
Grothendieck construction applied to the abelian monoid of isomorphism classes
of finitely generated projective modules, and by idempotent matrices, and discuss
the significance of Ky(R) for the category of finitely generated projective modules.
Some calculations for principal ideal domains and Dedekind rings are provided in
Section 2.3.

We explain the connections to geometry. We prove Swan’s Theorem 2.27, which
identifies Ko(C%(X)) for the ring C°(X) of continuous functions on a compact
space X with the Grothendieck group of the abelian monoid of isomorphism classes
of vector bundles over X, see (2.31). The relevance of Ky(ZG) for topologists is
illustrated by Wall’s finiteness obstruction, which also leads to a geometric descrip-
tion of Ky(ZG) in terms of finitely dominated spaces and is discussed in detail in
Section 2.5.

We introduce variants of the K-theoretic Farrell-Jones Conjecture for projective
class groups in Section 2.8. A prototype asserts that for a torsionfree group G and a
regular ring R, e.g., R = Z or R a field, the change of rings map

Ko(R) = Ko(RG)

is bijective. It implies the conjecture that for a torsionfree group G the reduced
projective class group fo(ZG) vanishes, which is for finitely presented G equivalent
to the conjecture that every finitely dominated CW-complex with 7;(X) = G is
homotopy equivalent to a finite CW-complex. We also introduce a version where the
group is not necessarily torsionfree, but R is a regular ring with Q C R or a field of
prime characteristic.

In Section 2.9 we consider Kaplansky’s Idempotent Conjecture, which asserts for
a torsionfree group G and a field F that O and 1 are the only idempotents in FG.
It is a consequence of the Farrell-Jones Conjecture. We also discuss various Bass
Conjectures, all of which are implied by the Farrell-Jones Conjecture, in Section 2.10.

Finally, we give a survey of Ko(ZG) for finite groups G and of Ko(C):(G)) in
Section 2.12 and of Ko(N(G)) in Section 2.13, where C;:(G) is the reduced group
C*-algebra and N (G) the group von Neumann algebra.

29
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2.2 Definition and Basic Properties of the Projective Class Group

Definition 2.1 (Projective class group Ky(R)). Let R be an (associative) ring
(with unit). Define its projective class group Ky(R) to be the abelian group
whose generators are isomorphism classes [P] of finitely generated projective
R-modules P and whose relations are [Py] + [P2] = [P;] for any exact sequence
0 — Py — P; — P, — 0 of finitely generated projective R-modules.

Define Go(R) analogously but replacing finitely generated projective by finitely
generated.

Given a ring homomorphism f: R — §, we can assign to an R-module M an
S-module f. M by S ®g M where we consider § as a right R-module using f. We say
that f. M is obtained by induction with f from M. If M is finitely generated or free
or projective, the same is true for f. M. This construction is natural, compatible with
direct sums, and sends an exact sequence 0 — Py — P; — P> — 0 of finitely gener-
ated projective R-modules to an exact sequence 0 — f.Py — f.P1 — fiP» — 0of
finitely generated projective S-modules. Hence we get a homomorphism of abelian
groups

2.2 Je = Ko(f): Ko(R) — Ko(S), [P]— [fiP],

which is also called the change of rings homomorphism. Thus Ko becomes a covariant
functor from the category of rings to the category of abelian groups.

Remark 2.3 (The universal property of the projective class group). One should
view Kp(R) together with the assignment sending a finitely generated projec-
tive R-module P to its class [P] in Ko(R) as the universal additive invariant
or the universal dimension function for finitely generated projective R-modules.
Namely, suppose that we are given an abelian group and an assignment d that as-
sociates to a finitely generated projective R-module an element d(P) € A such that
d(Pg) + d(P2) = d(Py) holds for any exact sequence 0 - Py — Py — P, — 0
of finitely generated projective R-modules. Then there is precisely one homomor-
phism of abelian groups ¢: Ko(R) — A such that ¢([P]) = d(P) holds for every
finitely generated projective R-module P. The analogous statement holds for Go(R)
if we consider finitely generated R-modules instead of finitely generated projective
R-modules.

A ring is an integral domain if every zero-divisor is trivial, i.e., if r, s € R satisfy
rs = 0, then r = 0 or s = 0. A principal ideal domain is a commutative integral
domain for which every ideal is a principal ideal, i.e., of the form (r) = {r'r | ¥’ € R}
for some r € R.

Example 2.4 (Ky(R) and G((R) of a principal ideal domain). Let R be a principal
ideal domain. Then we get isomorphisms of abelian groups
Z 5 Ko(R), nw— [R"];
Ko(R) = Go(R), [P~ [P].
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This follows from the structure theorem of finitely generated R-modules over princi-
pal ideal domains. It implies that any finitely generated R-module M can be written
as a direct sum R" @ T for some torsion R-module T for which there exists an exact
sequence of R-modules of the shape 0 — R®* — R®* — T — 0. Moreover, M is
projective if and only if 7 is trivial and we have R = R" &= m = n.

Definition 2.5 (Reduced projective class group K((R)). Define the reduced pro-
jective class group Ko(R) to be the quotient of Ky(R) by the abelian subgroup
{[R™] = [R"] | n,m € Z,m,n > 0}, which is the same as the abelian subgroup
generated by the class [R].

We conclude from Example 2.4 that the reduced projective class group Ko(R) is
isomorphic to the cokernel of the homomorphism

fi: Ko(Z) — Ko(R)

where f is the unique ring homomorphismZ — R, n+ n - 1g.

Remark 2.6 (The projective class group as a Grothendieck group). Let Proj(R)
be the abelian semigroup of isomorphisms classes of finitely generated projective
R-modules with the addition coming from the direct sum. Let K (R) be the associated
abelian group given by the Grothendieck construction applied to Proj(R). There is a
natural homomorphism

¢: K)(R) = Ko(R)

sending the class of a finitely generated projective R-module P in K{(R) to its class
in Ko(R). This is a well-defined isomorphism of abelian groups.

The analogous definition of G(,(R) and the construction of a homomorphism
G((R) — Go(R) makes sense, but the latter map is not bijective in general. It works
for Ko(R) because every exact sequence of projective R-modules 0 — Py — P} —
P> — 0 splits and thus yields an isomorphism P; = Py @ P;. In general K-theory
deals with exact sequences, not with direct sums. Therefore Definition 2.1 of Ky(R)
reflects better the underlying idea of K-theory than its definition in terms of the
Grothendieck construction.

Exercise 2.7. Prove that the homomorphism ¢: Kj(R) — Ko(R) appearing in
Remark 2.6 is a well-defined isomorphism of abelian groups.

Remark 2.8 (What does the reduced projective class group measure?). Let P be
a finitely generated projective R-module. Then we conclude from Remark 2.6 that
its class [P] € Ko(R) is trivial if and only if P is stably finitely generated free, i.e.,
P @ R" = R’ for appropriate integers r, s > 0. So the reduced projective class group
Ko (R) measures the deviation of a finitely generated projective R-module from being
stably finitely generated free. Note that, in general, stably finitely generated free does
not imply finitely generated free, as Examples 2.9 and 2.28 will show.

Example 2.9 (Dunwoody’s example). An interesting ZG-module P that is sta-
bly finitely generated free but not finitely generated free is constructed by Dun-
woody [317] for G the torsionfree one-relator group {a, b | a*> = b*), which is the
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fundamental group of the trefoil knot. Note that Ko(ZG) is known to be trivial, in
other words, every finitely generated projective RG-module is stably finitely gener-
ated free. It is also worth mentioning that ZG contains no idempotent besides 0 and
1. Hence any direct summand in ZG is free.

More examples of this kind are given in Berridge-Dunwoody [134].

One basic feature of algebraic K-theory is Morita equivalence.

Theorem 2.10 (Morita equivalence for Ky(R)). For every ring R and integer
n > 1, there is a natural isomorphism

p: Ko(R) = Ko(Mu(R)).

Proof. We can consider R" as an M,, (R)-R-bimodule, denoted by u,, (r)R" r. Then
u sends [P] to [m,(r)R"r ®r P]. We can also consider R" as an R-M,(R)-
bimodule denoted by gR"w,, (r). Define v: Ko(M, (R)) — Ko(R) by sending [Q]
to [RR"Mm, (R) ®M, (r) @]. Then u and v are inverse to one another. O

Exercise 2.11. Check that y and v are inverse to one another.

We omit the easy proof of the next lemma.

Lemma 2.12. Let Ry and R, be rings. Denote by pr;: Ry X Ry — R; fori =0, 1 the
projection. Then we obtain an isomorphism

(prg)s« X (pry)«: Ko(Ro X R1) — Ko(Ro) X Ko(Ry).

Example 2.13 (Rings with non-trivial K,(R)). We conclude from Example 2.4 and
Lemma 2.12 that for a principal ideal domain R we have

Ky(RXR)=Ze®Z
Ko(RXR) = Z.

The R x R-module R x {0} is finitely generated projective but not stably finitely
generated free. It is a generator of the infinite cyclic group Ko(R X R).

Notation 2.14 (M(R), GL(R), and Idem(R)). Let M,,, ,(R) be the set of (m, n)-
matrices over R. For A € M, ,(R), let ra: R™ — R", x — xA be the
R-homomorphism of (left) R-modules given by right multiplication by A. Let
M,,(R) be the ring of (n,n)-matrices over R. Denote by GL, (R) the group of
invertible (n, n)-matrices over R. Let Idem,,(R) be the subset of M,,(R) of idem-
potent matrices A, i.e., (n, n)-matrices satisfying A> = A. There are embeddings

. AO
itn: Mp(R) = Mu(R), A= 01

i1, induces an embedding GL,(R) — GL,+(R) of groups. Let GL(R) be the
union of the GL,, (R)-s, which is a group again. Denote by M(R) the union of the
M,, (R)-s with respect to the embeddings i¢. This is a ring without unit. Let Idem(R)
be the set of idempotent elements in M (R). This is the same as the union of the

fort = 0,1 and n > 1. The embedding
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Idem,, (R)-s with respect to the embeddings Idem,,(R) — Idem,,+| (R) coming from
the embeddings iy, : M, (R) = My41(R).

Remark 2.15 (The projective class groups in terms of idempotent matrices). The
projective class groups Ky(R) can also be defined in terms of idempotent matrices.
Namely, the conjugation action of GL,,(R) on M,,(R) induces an action of GL(R)
on M(R) which leaves Idem(R) fixed. One obtains a bijection of sets

¢: GL(R)\Idem(R) — Proj(R), [A]+>im(ra: R" —> R").

This becomes a bijection of abelian semigroups if we equip the source with the

18 g) and the target with the one coming from
the direct sum. So we can identify Ko (R) with the Grothendieck group associated to
the abelian semigroup GL(R)\ Idem(R) by Remark 2.6.

addition coming from (A, B) —

Exercise 2.16. Show that the map ¢ appearing in Remark 2.15 is a well-defined
isomorphism of abelian semigroups.

Example 2.17 (A ring R with trivial Ky(R)). Let F be a field and let V be an
F-vector space with an infinite countable basis. Consider the ring R = endg (V).
Next we prove that Ky(R) is trivial.

By Remark 2.15 it suffices to show for every integer n > 0 and two idempotent
matrices A, B € Idem,,(R) that the matrices A®0& 1 and B&0& 1 in M,,»(R)
are conjugate by an element in GL,;,(R). This follows from the observations that
both the kernel and the image of the F-linear endomorphisms 7 sg0s1 and 7 pgos1 Of
V7+2 have infinite countable dimension, two F-vector spaces of infinite countable
dimension are isomorphic, and the inclusions induce isomorphisms ker(r sg001) ®

im(7ag0e1) — V"2, and ker(rpeos1) ® im(rpeos1) — V2.

Lemma 2.18. Let G be a group. Let R be a commutative integral domain with
quotient field F. Then we obtain an isomorphism

Ko(RG) = Ko(RG)®Z, [P] — ([P],dimz(F ®rc P))

where F is considered as an RG-module with respect to the trivial G-action and the
inclusion of rings j: R — F.

Proof. Since F ®gg P is a finite-dimensional F-vector space for finitely generated
Pand F ®rg (P ® Q) =g (F ®rg P) & (F ®rg Q), this is a well-defined homo-
morphism. Bijectivity follows from dimg (F ®gc RG") = n. O
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2.3 The Projective Class Group of a Dedekind Domain

Let R be a commutative integral domain with quotient field F. A non-zero
R-submodule I C F is called a fractional ideal if for some » € R we have rI C R.
A fractional ideal [ is called principal if I is of the form { Zlre R} for some
a,b € Rwitha,b #0.

Definition 2.19 (Dedekind domain). A commutative integral domain R is called a
Dedekind ring if for any fractional ideal / there exists another fractional ideal J with
1J =R.

Note that in Definition 2.19 the fractional ideal J must be given by {x € F |
x-1CR}.

The fractional ideals in a Dedekind ring form by definition a group under multi-
plication of ideals with R as unit. The principal fractional ideals form a subgroup.
The class group C(R) is the quotient of these abelian groups.

A proof of the next theorem can be found for instance in [727, Corollary 11 on
page 14] and [860, Theorem 1.4.12 on page 20].

Theorem 2.20 (The reduced projective class group and the class group of
Dedekind domains). Let R be a Dedekind domain. Then every fractional ideal
is a finitely generated projective R-module and we obtain an isomorphism of abelian
groups

Z&C(R) = Ko(R), (n,[1]) = n-[R] +[I] - [R].

In particular, we get an isomorphism
C(R) = Ko(R), [ [1].

A ring is called hereditary if every ideal is projective, or, equivalently, if ev-
ery submodule of a projective R-module is projective, see [215, Theorem 5.4 in
Chapter 1.5 on page 14].

Theorem 2.21 (Characterization of Dedekind domains). The following assertions
are equivalent for a commutative integral domain with quotient field F:

(1) R is a Dedekind domain,
(ii) For every pair of ideals I C J of R, there exists an ideal K C R with I = JK;
(iii) R is hereditary;
(iv) Every finitely generated torsionfree R-module is projective;
(V) R is Noetherian and integrally closed in its quotient field F and every non-zero
prime ideal is maximal.

Proof. This follows from [271, Proposition 4.3 on page 76 and Proposition 4.6 on
page 77] and the fact that a finitely generated torsionfree module over an integral
domain R can be embedded into R” for some integer n > 0. See also [57, Chapter 13].

O
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Remark 2.22 (The class group in terms of ideals of R). One calls two ideals / and
J in R equivalent if there exist non-zero elements r and s in R with »/ = sJ. Then
C(R) is the same as the equivalence classes of ideals under multiplication of ideals
and the class given by the principal ideals as unit. Two ideals / and J of R define the
same element in C(R) if and only if they are isomorphic as R-modules, see [860,
Proposition 1.4.4 on page 17].

Recall that an algebraic number field is a finite algebraic extension of Q and the
ring of integers in F is the integral closure of Z in F.

Theorem 2.23 (The class group of a ring of integers is finite). Ler R be the ring
of integers in an algebraic number field. Then R is a Dedekind domain and its class
group C(R) and hence its reduced projective class group Ko(R) are finite.

Proof. See [860, Theorem 1.4.18 on page 22 and Theorem 1.4.19 on page 23]. O

Remark 2.24 (Class group of Z[exp(2nri/p)]). Let p be a prime number. The ring
of integers in the algebraic number field Q[exp(2ni/p)] is Z[exp(2xi/p)]. Its class
group C(Z[exp(2ni/p)]) is finite by Theorem 2.23. However, its structure as a finite
abelian group is only known for finitely many small primes, see [727, Remark 3.4
on page 30] or [990, Tables §3 on page 352ff].

Example 2.25 (Ko(Z[V=3])). The reduced projective class group Ko(Z[V-5]) of
the Dedekind domain Z[V=5] is cyclic of order two. A generator is given by the
maximal ideal (3,2 + V=5) in Z[V-5]. (For more details see [860, Exercise 1.4.20
on page 25]).

2.4 Swan’s Theorem

Let F be the field R or C. Let X be a compact space. Denote by C(X, F) or briefly
by C(X) the ring of continuous functions from X to F. Let £ and n be (finite-
dimensional locally trivial) F-vector bundles over X. Denote by C(¢) the F-vector
space of continuous sections of £. This becomes a C(X)-module under pointwise
multiplication. If F' denotes the trivial 1-dimensional vector bundle X X F — X,
then C(F) and C(X) are isomorphic as C(X)-modules. If £ and 5 are isomorphic
as F-vector bundles, then C(¢) and C(n) are isomorphic as C(X)-modules. There
is an obvious isomorphism of C(X)-modules

(2.26) CE@Cn) > Céan).

Since X is compact, every F-vector bundle has a finite bundle atlas and admits
a Riemannian metric. This implies the existence of an F-vector bundle &’ such
that & @ ¢’ is isomorphic as an F-vector bundle to a trivial F-vector bundle F".
Hence C(¢) is a finitely generated projective C(X)-module. Denote by hom(¢, )
the C(X)-module of morphisms of F-vector bundles from £ to 7, i.e., of continuous



36 2 The Projective Class Group

maps between the total spaces that commutes with the bundle projections to X and
induce linear (not necessarily injective or bijective) maps between the fibers over x
for all x € X. This becomes a C(X)-module under pointwise multiplication. Such
a morphism f: ¢ — n induces a C(X)-homomorphism C(f): C(¢) — C(n) by
composition. The next result is due to Swan [939].

Theorem 2.27 (Swan’s Theorem). Let X be a compact space and F = R, C. Then:

(i) Let ¢ and n be F-vector bundles. Then we obtain an isomorphism of C(X)-
modules

F(é:’ 77) hom(é:’ 77) - homc(x)(C(f),C(T])), f = C(f)’

(i) We have § = n <= C(&) =c(x) C(n);
(>iii) If P is a finitely generated projective C (X)-module, then there exists an F-vector
bundle & satisfying C(£) =c(x) P.

Proof. (i) Obviously T'(¢ @ £’,n) can be identified with I'(£,n) & T'(¢’,n) and
I'(¢,n ®n’) can be identified with I'(&, ) ®T'(£, ") under the identification (2.26).
Since a direct sum of two maps is a bijection if and only if each of the maps is a
bijection and for every & there is an &’ such that & & ¢’ is trivial, it suffices to treat
the case where £ = F™ and n = F" for appropriate integers m,n > 0. There is an
obvious commutative diagram

hom(F™, F" HETET) h C(F™),C(F"
om(F™, F") —————homc x)(C(F™),C(F"))

M (hom(F, F)) M (C(F)).

My (T(E,E))

Hence it suffices to treat the claim for m = n = 1, which is obvious.

(i) This follows from assertion (i).

(iii) Given a finitely generated projective C(X)-module P, choose a C(X)-map
p: C(X)" — C(X)" satisfying p> = p andim(p) =c(x) P.Because of assertion (ii)
we can choose a morphism of F-vector bundles g: F" — F" with I'(F", F*)(q) =
p. We conclude g*> = g from p? = p and the injectivity of I'(F", F"*). Elementary
bundle theory shows that the image of ¢ and the image of 1 — g are F-subvector
bundles in F" satisfying im(q) ®im(1—-g) = F". One easily checks C(im(q)) =c(x)
P. O

One may summarize Theorem 2.27 by saying that we obtain an equivalence
of C(X)-additive categories from the category of F-vector bundles over X to the
category of finitely generated projective C(X)-modules by sending & to C(&).
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Example 2.28 (C(7'S™)). Consider the n-dimensional sphere S". Let TS" be its
tangent bundle. Then C(7'S") is a finitely generated projective C(S™)-module. It is
free if and only if 7'S™ is trivial. This is equivalent to the condition that n = 1,3, 7,
see [155]. On the other hand C(7T'S™) is always stably finitely generated free as a
C(8™)-module, since T'S" is stably finitely generated free as an F-vector bundle
because the direct sum of 7'S™ and the normal bundle v(S", R"**!) of the standard
embedding " C R"! is TR"*!|gx and both F-vector bundles v(S", R"*!) and
TR™!|gn are trivial.

Exercise 2.29. Consider an integer n > 1. Show that there exists a C(S")-module
M with C(TS") =¢(sny C(S") ® M if and only if S admits a nowhere vanishing
vector field. (This is equivalent to requiring that x (S™) = 0, or, equivalently, that n
is odd.)

Remark 2.30 (Topological K-theory in dimension 0). Let X be a compact space.
Let Vecty(X) be the abelian semigroup of isomorphism classes of F-vector bun-
dles over X where the addition comes from the Whitney sum. Let K°(X) be the
abelian group obtained from the Grothendieck construction to it. It is called the 0-th
topological K-group of X. If f: X — Y is a map of compact spaces, the pullback
construction yields a homomorphism K°(f): K°(Y) — K°(X). Thus we obtain a
contravariant functor K° from the category of compact spaces to the category of
abelian groups. Since the pullback of a vector bundle with two homotopic maps
yields isomorphic vector bundles, K°( f) depends only on the homotopy class of
f. Actually there is a sequence of such homotopy invariant covariant functors K"
for n € Z that constitutes a generalized cohomology theory K* called ropological
K-theory. 1t is 2-periodic if F = C, i.e., there are natural so-called Bott isomor-
phisms K"(X) — K"*%(X) forn € Z.If F = R, itis 8-periodic. We will give further
explanations and generalizations of topological K-theory later in Section 10.2
Swan’s Theorem 2.27 yields an identification

(2.31) K'(X) = Ko(C(X)) [€] — [CY(&)].

Exercise 2.32. Let f: X — Y be a map of compact spaces. Composition with f
yields a ring homomorphism C(f): C(Y) — C(X). Show that under the identifica-
tion (2.31) the maps K°(f): K°(Y) — K°(X) and C(f).: Ko(C(Y)) — Ko(C(X))
coincide.

Exercise 2.33. Compute Ko(C(D™)) for the n-dimensional disk D" for n > 0.

2.5 Wall’s Finiteness Obstruction

We now discuss the geometric relevance of EO(ZG).

Let X be a CW-complex. It is called finite if it consists of finitely many cells.
This is equivalent to the condition that X is compact. We call X finitely dominated
if there exists a finite domination (Y,i,r), i.e., a finite CW-complex Y together with
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mapsi: X — Yandr: Y — X such that r oi is homotopic to the identity on X. If X
is finitely dominated, its set of path components 7o (X) is finite and the fundamental
group 711 (C) of each component C of X is finitely presented, see Lemma 2.42.

While studying existence problems for compact manifolds with prescribed proper-
ties (like for example the existence of certain group actions), it happens occasionally
that it is relatively easy to construct a finitely dominated CW-complex with the de-
sired property within a given homotopy type, whereas it is not at all clear whether one
can also find a homotopy equivalent finite CW-complex. If the goal is to construct
a compact manifold, this is a necessary step in the construction. Wall’s finiteness
obstruction, which we will explain below, decides this question.

An example of such a geometric problem is the Spherical Space Form Prob-
lem 9.205, i.e., the classification of closed manifolds M whose universal coverings
are diffeomorphic or homeomorphic to the standard sphere. Such examples arise
as unit spheres in unitary representations of finite groups, but there are also ex-
amples that do not occur in this way. This problem initiated not only the theory
of the finiteness obstruction, but also surgery theory for closed manifolds with
non-trivial fundamental group. We refer to the survey articles [284] and [694] for
more information about the Spherical Space Form problem. It was finally solved by
Madsen-Thomas-Wall [701, 702].

The finiteness obstruction also appears in the Ph.D.-thesis [915] of Siebenmann,
who dealt with the problem whether a given smooth or topological manifold can be
realized as the interior of a compact manifold with boundary.

Next we explain the definition and the main properties of the finiteness obstruction,
illustrating that it is a kind of Euler characteristic, but now counting elements in the
projective class group instead of counting ranks of finitely generated free modules.

2.5.1 Chain Complex Version of the Finiteness Obstruction

Definition 2.34 (Types of chain complexes). We call an R-chain complex finitely
generated, free, or projective respectively if each R-chain module is finitely gen-
erated, free, or projective. It is called positive if C, = 0 for n < —1. It is called
finite-dimensional if there exists a natural number N such that C,, = 0 for |n| < N. It
is called finite if it is finite-dimensional and finitely generated.

For the remainder of this section all chain complexes C.. are understood to be pos-
itive. Let R be aring and C. be an R-chain complex. A finite domination (Fy, 1., p+)
of C, consists of a finite free R-chain complex F, and R-chain mapsi,: C, — F, and
r.«: F. — C, such that r, o i, = id¢c, holds. The existence of a finite domination is
equivalent to the existence of a finite projective R-chain complex P, which is R-chain
homotopy equivalence to C.. For a proof of this claim we refer for instance to [644,
Proposition 11.11 on page 222], or to the explicit construction in Subsection 23.7.5.
For any such choice of P., define the finiteness obstruction o(C,) € Ko(R) to be
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(2.35) 0(C.) = Y (=" [Pa].

n>0

The reduced finiteness obstruction o(C.) € Ko(R) is the image of o(C,) under
the projection Ko(R) — Ky(R). The definition is indeed independent of the choice
of P,, since for two finite projective R-chain complexes P, and Q. coming with

an R-chain homotopy equivalence f.: P, — Q. the mapping cone cone.(f.), see
Definition 3.29, is contractible and hence we obtain an R-isomorphism

Podd ® Qev i’ Pev @ Qodd
from the isomorphism (3.30) and its inverse (3.31).

Lemma 2.36. (i) If the two R-chain complexes C,. and D, are R-chain homotopy
equivalent and one of them is finitely dominated, then both are finitely dominated
and we get

0(Cy) = 0(D.);

(ii) Let 0 —» C, — D. — E. — 0 be an exact sequence of R-chain complexes. If
two of the R-chain complexes C., D, and E. are finitely dominated, then all
three are finitely dominated and we get

o(D.) =0(C.) + o(E.);

(iii) Let C, be a finitely dominated R-chain complex. Then it is R-chain homotopy
equivalent to a finite free R-chain complex if and only if 0(C.) vanishes.

Proof. (i) This follows directly from the definitions.

(i1) One can construct a commutative diagram of R-chain complexes

0 C! D, E; 0
0 C, D, E. 0

such that the rows are exact, the upper row consists of finite projective R-chain
complexes, and the vertical maps are R-chain homotopy equivalences, see for in-
stance [644, Lemma 11.6 on page 216].

(iii) Suppose that 0(C.) = 0. Choose a finite projective R-chain complex P, which
is R-chain homotopy equivalent to C.. An elementary R-chain complex E, over
an R-module M is an R-chain complex which is concentrated in two consecutive
dimensions and its only non-trivial differential is given by idy; : M — M. By adding
elementary R-chain complexes over finitely generated free R-modules, one can ar-
range that P, is of the shape -+ - 0 - P, — P,_1 — --- — Py such that P;
is finitely generated free for i < n — 1. Since o(C,) = (-1)" - [P,] = 0 holds in
Ko(R), the R-module P,, is stably free. Hence, by adding one further elementary
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chain complex over a finitely generated free R-module, one can arrange that P, is
finite free. O

2.5.2 Space Version of the Finiteness Obstruction

In the sequel we ignore base point questions. This is not a real problem since an
inner automorphism of a group G induces the identity on Ky(RG).

Given a finitely dominated connected CW-complex X with fundamental group 7,
we consider its universal covering X and the associated cellular Zz-chain complex
C.(X). Given a finite domination (Y, i, r), we regard the -covering Y over Y asso-
ciated to the epimorphism r,: 71 (Y) — m1(X). The pullback construction yields a
n-covering i*Y over X. Then F, = C.(i*Y) is a finite free Zz-chain complex. The
maps i and r yield Zr-chain maps r.: F, — C*(f) and i, : C*(f) — F, such that
7 0 i, 1S Zm-chain homotopic to the identity on C.(X). Thus (F,,i,,r.) is a finite
domination of the Zx-chain complex C, (X). We have defined o(C,(X)) € Ko(Zr)
in (2.35). Now define the unreduced finiteness obstruction

(2.37) o(X) := 0(C.(X)) € Ko(Zn).
Define the finiteness obstruction
(2.38) o(X) € Ko(Zn)

to be the image of o(X) under the canonical projection Ky(Zr) — Ko(Zr). Obvi-
ously o(X) = 0 if X is homotopy equivalent to a finite CW-complex Z since in this
case we can take P, = C,(Z) and C,(Z) is a finite free Zz-chain complex. The next
result is due to Wall, see [983] and [984].

Theorem 2.39 (Properties of the Finiteness Obstruction). Let X be a finitely
dominated connected CW-complex.

(1) The space X is homotopy equivalent to a finite CW-complex if and only if o(X)
vanishes;

(ii) Every element in Ky(ZG) can be realized as the finiteness obstruction o(X) of
a finitely dominated connected 3-dimensional CW-complex X with G = nt1(X),
provided that G is finitely presented.

Theorem 2.39 illustrates why it is important to study the algebraic object Ko (Zn)
when one is dealing with geometric or topological questions. The favorite case is
when E()(Zﬂ') vanishes because then the finiteness obstruction is obviously zero and
one does not have to make a specific computation of o(X) in Ko(Z7).

Exercise 2.40. Let X be a finitely dominated connected CW-complex with funda-
mental group 7. Define a homomorphism of abelian groups

¥:Ko(Zn) = Z, [P] — dimg(Q®z, P).
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Show that ¢ sends o(X) to the Euler characteristic y (X).

Remark 2.41. One can extend the finiteness obstruction also to not necessarily
connected CW-complexes. If X is a (not necessarily connected) finitely dominated
CW-complex, we define

KoZlmX)) = 5 Ko@lm(O));
Ceny(X)

KoZlm (X)) = P Ko(Zlmi(O)),
CEﬂo(X)

and the unreduced finite obstruction and the finiteness obstruction to be

o(X) :={o(C) | C e m(X)} € Ko(Z[71(X)]);
a(X) := {3(C) | € € mo(X)} € Ko(Z[m1(X))).

Note that Ko(Z[7(X)]) and Ko(Z[ 71 (X)]) are covariant functors in X in the obvious
way.

For more information about the finiteness obstruction we refer for instance to [380,
382, 642, 669, 740, 743, 761, 838, 965, 983, 984].

2.5.3 Outline of the Proof of the Obstruction Property

In this subsection we outline the proof of Theorem 2.39.
The elementary proofs of the next two lemmas can be found in [983, Lemma 1.3]
and [644, Lemma 14.8 on page 280].

Lemma 2.42. Let G be a finitely presented group. Leti: H — G andr: G — H be
group homomorphisms with r o i = idy. Then H is finitely presented.

Lemma 2.43. Let G be a finitely generated group and H be a finitely presented
group. Then the kernel ker(f) of any group epimorphism f: G — H is finitely
generated as a normal subgroup, i.e., there exists a finite subset S of ker(f) such
that the intersection of all normal subgroups of G containing S is ker(f).

The next Lemma 2.44 follows from Lemma 2.42 and Lemma 2.43.

Lemma 2.44. Let (Y, i, r) be a finite domination of the CW-complex X. Then we can
arrange by attaching finitely many 2-cells to Y that the map ny(r): m1(Y) — n1(X)
is bijective and hence r is 2-connected.

Lemma 2.45. Let Y be a finitely dominated connected CW-complex whose finiteness
obstruction o(Y) vanishes. Then there are:

(1) A finite 2-dimensional connected CW-complex Z;
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(ii) A 2-connected map h: Z — Y; _
(iii) A finite free Zn-chain complex C, with C.|> = C.(Z) and a Zn-chain homotopy
equivalence f.: C. — C.(Y) with f.|» = C.(h), where here and in the sequel we

identify m = n1(Z) with 7\ (Y) using the isomorphism nti(h): n1(Z) N m(Y).

Proof. By Lemma 2.44 we obtain a finite domination (Y,i,r) suchthatr: ¥ — X is
2-connected. Take Z to be the 2-skeleton Y, of Y and h: Z — X to be the restriction
of rto Z.

Since h is 2-connected, the induced Zn-chain map C, (E): C*(Z) — C.(Y) is
2-connected and hence H,(cone,(Cx(h))) = 0 forn < 2. Let P, be the Zn-subchain
complex of cone, (C.(h)) given by

RN cone4(C*(ﬁ)) =, cone3(C*(Z)) =, ker(c;) = 0—-0—0
where c., is the differential of cone(C., (ﬁ)). Because of the exact sequence
0 — ker(cy) — conez(C*(E)) BEN cone (C*(E)) RN coney(C.(h)) — 0

the Zn-chain complex P, is projective. The inclusion i.: P, — cone,(C. (ﬁ)) is
a homology equivalence of projective Zr-chain complexes and hence a Znr-chain
homotopy equivalence. Put Q, = £73P,. Then Q, is a positive projective Zr-chain
complex such that 230, is Zn-chain homotopy equivalent to cone, (Cs(h)).

The mapping cylinder cyl(C.(h)), see Definition 3.29, is Zz-chain homotopy
equivalent to C*(17) and there is an obvious short exact sequence of Zr-chain com-
plexes _ _ _

0 — C.(Z) — cyl,(Ci(h)) — cone(C,(h)) — 0.

Since C,(Z) is finite free and C.(Y) is finitely dominated, we conclude from
Lemma 2.36 (i) and (ii) that Q. is finitely dominated and that we get in K (Zn)

5(0.) = —6(P,) = —o(cone.(C.(h))) = (cyl,(C.(h))) — 6(C.(Z))
= 5(C.(Y)) = 3(C.(Z)) =0-0 = 0.

Lemma 2.36 (iii) implies that Q. is Zmr-chain homotopy equivalent to a finite
free positive Zn-chain complex F.. Choose a Zr-chain homotopy equivalence
g+: Z3F, — cone,(C,(h)). We get a commutative diagram of Zz-chain complexes
with exact rows and Zm-chain homotopy equivalences as vertical arrows

0 C.(Z) C. Y3F, 0

L

0 C.(Z) cyl, (C,(h)) — cone, (C,(h)) —= 0
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by requiring that the right square is a pull back. Now define the desired Zzr-chain map
fi: Co = C.(Y) to be the composite of g{ with the canonical Zz-chain homotopy
equivalence cyl, (C.(h)) — C.(Y). O

Next we present the main tool to pass from chain complexes to CW-complexes.
Its proof can be found in [984, Theorem 2] or in the more general equivariant setting
in [644, Theorem 13.19 on page 268].

Theorem 2.46 (Realization Theorem). Let h: Z — Y be a map between connected
CW-complexes such that wy(h): n1(Z) — n(Y) is an isomorphism. In the sequel
we identify 7 = n1(Y) with n\(Z) using ni(h). Put d = dim(Z) and suppose
2 < d < oco. Assume the existence of a free Zn-chain complex C. with a preferred
Zn-basis and a Zn-chain homotopy equivalence f.: C. — C. (?) such that the
restriction C.|q to dimensions 0, 1, . .., d agrees with C.(Z) and f.|a = Cs(h).

Then we can construct a CW-complex X such that its d-skeleton X, agrees with
Z and a cellular homotopy equivalence g: X — Z satisfying under the obvious
identification n = 11(X) = m{(Y) = n1(Z):

(1) We have gz = h;
(ii) There is a Zn-chain isomorphism u,: C = C, ()?) such that the given Zn-basis
on C, is mapped bijectively to the cellular Zn-basis of X;
(iii) We have C.(g) o u. = f..

Remark 2.47. Note that there is no absolute version of the Realization Theorem 2.46
in the sense that, for a d-dimensional CW-complex Z with fundamental group 7 and
dimension d > 2 and a based free Zz-chain complex C,. with Cy|g = C.(Z), we can
find a CW-complex X with X; = Z and C, (X) = C.. Moreover, the assumption
dim(Z) > 2 cannot be dropped in the Realization Theorem 2.46.

Lemma 2.48. Let X be a connected CW-complex. Then it is finitely dominated if
and only if n1(X) is finitely presented and the Z|r1(X)]-chain complex C.(X) is
finitely dominated.

Proof. This follows essentially from Theorem 2.46; details of the proof can be
found in [984, Corollary 5.1] or in the more general equivariant setting in [644,
Proposition 14.6 (a) on page 282]. O

Next we can give the proof of Theorem 2.39.

Proof of Theorem 2.39. (i) If the finitely dominated connected CW-complex Y is
homotopy equivalent to a finite CW-complex, we get o(Y) = 0 directly from the
definitions. Now suppose that Y is a finitely dominated connected CW-complex with
o(Y) = 0. We conclude from Lemma 2.45 and Theorem 2.46 that Y is homotopy
equivalent to a CW-complex X for which its cellular Zr-chain complex C. (X) is
finite free. The latter implies that X is finite.
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(ii). Since G is finitely presented, we can choose a connected finite 2-dimensional
CW-complex Z with n;(Z) = G. Consider any element & € Ko(Zr). Choose a
finitely generated projective R-module P and a natural number n such that & =
[P] — [Z7"] holds. Choose an exact sequence 0 — (P, Zx 5 @D,Zr—P—0.
Now consider X = X V \/, ¢ S?. For each i3 € I3 we attach a 3-cell to X’ with an
attaching map ¢;,: S> — X’ such that [g;,] € m2(X’) corresponds to the image of
the basis element in P 1, Zm associated to i3 under the composite

Pizr s Pzn 2y (X
I3 L

where j sends the basis element associated to iy € I to the element in m(X”)
given by the obvious inclusion of > — X’ associated to i,. Call the resulting
3-dimensional CW-complex Y. Note that we can identify 7 with 711 (Y). We obtain
an exact sequence of free Zr-chain complexes

0> Cu(X) > C.(Y) - C.(Y,X) > 0.

The Zn-chain complex C. (? X ) is concentrated in dimensions 2 and 3 and its third
differential is u. This implies that C, (Y, X) is Zn-chain homotopy equivalent to the
Zr-chain complex concentrated in dimension 2 with P as second Znr-chain module.
Hence C.(Y, X) is finitely dominated and o(C.(Y, X)) = [P] by Lemma 2.36 (i).
Lemma 2.36 (ii) implies that C, (?) is finitely dominated. Then Y is finitely dominated
as a CW-complex by Lemma 2.48. Lemma 2.36 (ii) implies that we get for some
integer m

0(C.(Y)) = 0(Co(Z)) + 0(C.(Y, X)) =m - [Zr] + [P].

By attaching to Y finitely many trivial 2 and 3-cells, we can arrange that Y is a finitely
dominated connected CW-complex with 71(Y) = G and o(Y) = [P] — [Za"] =

£ ]
Exercise 2.49. Let
Xo LI X,

i . J
Jo

X, —X
J2
be a cellular pushout, i.e., the diagram is a pushout, the map i; is an inclusion
of CW-complexes, the map i is cellular and X carries the induced CW-structure.
Suppose that Xy, X;, X» are finitely dominated.
Then X is finitely dominated and we get in Ko(Z[7;(X)])

o(X) = (j):(o(X1)) + (j2)«(0(X2)) = (jo)«(0(X1)).
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2.6 Geometric Interpretation of Projective Class Group and
Finiteness Obstruction

Next we give a geometric construction of Ko(Zr) that is in the spirit of the well-
known interpretation of the Whitehead group in terms of deformation retractions,
which we will present later in Section 3.4. The material of this section is taken
from [642], where more information and details of the proofs can be found.

Given a space Y, we want to define an abelian group Wa(Y). The underlying set
is the set of equivalence classes of an equivalence relation ~ defined on the set of
maps f: X — Y with finitely dominated CW-complexes as source and the given
space Y as target. We call fp: Xo — Y and fi: X4 — Y equivalent if there exists a
commutative diagram

io Ji J3 is

Xo X X5 X3 X4

fo Ja

flJ[ﬁ
Y

such that j; and j3 are homotopy equivalences and iy and i4 are inclusions of CW-
complexes with the property that the larger one is obtained from the smaller one by
attaching finitely many cells. Obviously this relation is symmetric and reflexive. It
needs some work to show transitivity and hence that it is an equivalence relation.
The addition in Wa(Y) is given by the disjoint sum, i.e., define the sum of the class
of fo: Xo — Y and f1: X; — Y tobetheclassof fo [[ fi: Xo [ X1 — Y. Itis easy
to check that this is compatible with the equivalence relation. The neutral element is
represented by @ — Y. The inverse of the class [ f] of f: X — Y is constructed as
follows. Choose a finite domination (Z, i, r) of X. Construct a map F: cyl(i) —» X
from the mapping cylinder of i to Y such that F|x = idx and F|z = r. Then an
inverse of [ f] is given by the class [ f'] of the composite

, FUidXF f
fooeyl(@) Ux eyl(i)) —— X > Y.

This finishes the definition of the abelian group Wa(Y). A map f: Yy — Y; induces
a homomorphism of abelian groups Wa(f): Wa(Yy) — Wa(Y;) by composition.
Thus Wa defines a functor from the category of spaces to the category of abelian
groups.

Exercise 2.50. Show that [ f] + [f’] = 0 holds for the composite f” above.

Given a finitely dominated CW-complex X, define its geometric finiteness ob-
Struction 0ge0(X) € Wa(X) by the class of idy.
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Theorem 2.51 (The geometric finiteness obstruction). Let X be a finitely domi-
nated CW-complex. Then X is homotopy equivalent to a finite CW-complex if and
only if 0ge0(X) = 0 in Wa(X).

Proof. Obviously 0ge,(X) = 0 if X is homotopy equivalent to a finite CW-complex.
Suppose 0ge0(X) = 0. Hence there are a CW-complex Y, amap r: ¥ — X and a
homotopy equivalence h: Y — Z to a finite CW-complex Z such that Y is obtained
from X by attaching finitely many cells and r o i = idx holds for the inclusion
i: X — Y. The mapping cylinder cyl(r) is built from the mapping cylinder cyl(7)
by attaching a finite number of cells and is homotopy equivalent to X. Choose a
homotopy equivalence g: cyl(i) — Z. Consider the push-out

cyl(i) L cyl(r)

Zﬁz/
i

where i is the inclusion. Since g is a homotopy equivalence, the same is true for g’.
Hence X is homotopy equivalent to the finite CW-complex Z’. O

Theorem 2.52 (Identifying the finiteness obstruction with its geometric coun-
terpart). Let Y be a space. Then there is a natural isomorphism of abelian groups

D Wa(Y)i @ E)(Zﬂl(c))
Ceny(Y)

Proof. We only explain the definition of ®. Consider an element [f] € Wa(Y)
represented by a map f: X — Y from a finitely dominated CW-complex X to Y.
Given a path component C of X, let Cr be the path component of ¥ containing f(C).
The map f induces a map f|c: C — Cy and hence a map (f|c).: Ko(Zm,(C)) —
Ko(Zn (C r)). Since X is finitely dominated, every path component C of X is finitely
dominated, and we can consider its finiteness obstruction 5(C) € Ko(Zn(C)). Let
#([f1)c be the image of 0(C) under the composite
Ro(zm () L5 Ro@m(Cp) » P Ko(zm(C).
Cemy(Y)

Since 7o (X) is finite, we can define

oL = > o(fDc

Cenp(X)

We omit the easy proof that this is compatible with the equivalence relation appearing
in the definition of Wa(Y), that ¢ is a homomorphism of abelian groups and that
Theorem 2.39 implies that @ is bijective. O
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2.7 Universal Functorial Additive Invariants

In this section we describe the pair (Ky(Zm (X)), 0(X)) by an abstract property.

Definition 2.53 (Functorial additive invariant for finitely dominated CW-comp-
lexes). A functorial additive invariant for finitely dominated CW-complexes consists
of a covariant functor A from the category of finitely dominated CW-complexes to
the category of abelian groups together with an assignment a that associates to every
finitely dominated CW-complex X an element a(X) € A(X) such that the following
axioms are satisfied:

e Homotopy invariance of A
If f,g: X — Y are homotopic maps between finitely dominated CW-complexes,
then A(f) = A(g);

e Homotopy invariance of a(X)
If f: X — Y is a homotopy equivalence of finitely dominated CW-complexes,
then A(f)(a(X)) = a(Y);

o Additivity
Let

XOL>X1

i2 . J
Jo

X2 e X
J2
be a cellular pushout, i.e., the diagram is a pushout, the map #; is an inclusion
of CW-complexes, the map i, is cellular and X carries the induced CW-structure.
Suppose that Xy, X;, X» are finitely dominated.
Then X is finitely dominated and

a(X) = A(j)(a(X1)) + A(j2)(a(X2)) = A(jo)(a(Xo));

e Normalization
a(0) = 0.

Example 2.54 (Componentwise Euler characteristic). Let A be the covariant func-
tor sending a finitely dominated CW-complex X to Hyo(X;Z) = P . no(x) Z- Let
a(X) € A(X) be the componentwise Euler characteristic, i.e., the collection of inte-
gers {x(C) | C € mp(X)}. Then (A, a) is a functorial additive invariant for finitely
dominated CW-complexes.

Definition 2.55 (Universal functorial additive invariant for finitely dominated
CW-complexes). A universal functorial additive invariant for finitely dominated
CW-complexes (U,u) is a functorial additive invariant with the property that for
any functorial additive invariant (A, a) there is precisely one natural transformation
T: U — A with the property that T(X)(u(X)) = a(X) holds for every finitely
dominated CW-complex X.
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Exercise 2.56. Show that the functorial additive invariant defined in Example 2.54
is the universal one if we restrict to finite CW-complexes.

Obviously the universal additive functorial invariant is unique (up to unique
natural equivalence) if it exists. It is also easy to construct it. However, it turns out
that there exists a concrete model, namely, the following theorem is proved in [642,
Theorem 4.1].

Theorem 2.57 (The finiteness obstruction is the universal functorial additive
invariant). The covariant functor X — P emo(X) Ko(Zm(C)) together with the
componentwise finiteness obstruction {o(C) | C € mo(X)} is the universal functorial
additive invariant for finitely dominated CW-complexes.

Exercise 2.58. (i) Construct for finitely dominated CW-complexes X and Y a natural
bilinear pairing
P(X,Y): UX)xUY) - UX XY)

sending (u(X),u(Y)) tou(XxY) where (U, u) is the universal functorial additive
invariant for finitely dominated CW-complexes;

(i1) Let X be a finitely dominated CW-complex. Let Y be a finite CW-complex such
that y(C) = O for every component C of Y. Show that X x Y is homotopy
equivalent to a finite CW-complex.

2.8 Variants of the Farrell-Jones Conjecture for Ky (RG)

In this section we state variants of the Farrell-Jones Conjecture for Ko(RG), where
RG, sometimes also written as R[G], is the group ring of a group G with coeflicients
in an associative ring R with unit. Elements in RG are given by formal finite sums
2.geG T'g * & and addition and multiplication is given by

(ng-g)+(zsg-g) = Z(rg+sg)~g;

geG geG geG
(ng.g).(zsg.g) Z( 5 )g
geG geG geG \h,keG,

g=hk

The Farrell-Jones Conjecture itself will give a complete answer for arbitrary
groups and rings, but to formulate the full version some additional effort will be
needed. If one assumes that R is regular and G is torsionfree or that R is regular and
Q C R, then the conjecture reduces to easy to formulate statements, which we will
present next. Moreover, these special cases are already very interesting.

Definition 2.59 (Projective resolution). Let M be an R-module. A projective reso-
lution (P, ¢) of M is a positive projective R-chain complex P, with H, (P.) = 0 for

n > 1 together with an R-isomorphism ¢: Hy(P.) = M. Ttis called finite, finitely
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generated, free, finite-dimensional, or d-dimensional if the R-chain complex P, has
this property.

A ring R is Noetherian if any submodule of a finitely generated R-module is
again finitely generated. A ring R is called regular if it is Noetherian and any finitely
generated R-module has a finite-dimensional projective resolution. Any principal
ideal domain such as Z, any field, and, more generally, any Dedekind domain is
regular, see Theorem 2.21.

Conjecture 2.60 (Farrell-Jones Conjecture for K)(R) for torsionfree G and reg-
ular R). Let G be a torsionfree group and let R be a regular ring. Then the map
induced by the inclusion of the trivial group into G

Ko(R) = Ko(RG)

is bijective.
In particular we get for any principal ideal domain R and torsionfree G

Ko(RG) = 0.

Remark 2.61 (Relevance of Conjecture 2.60). In view of Remark 2.8 Conjec-
ture 2.60 is equivalent to the statement that for a torsionfree group G and a regular
ring R every finitely generated projective RG-module is stably finitely generated
free. This is the algebraic relevance of this conjecture. Its geometric meaning comes
from the following conclusion of Theorem 2.39. Namely, if R = Z and G is a finitely
presented torsionfree group, it is equivalent to the statement that every finitely domi-
nated CW-complex with 711 (X) = G is homotopy equivalent to a finite CW-complex.

Definition 2.62 (Family of subgroups). A family ¥ of subgroups of a group G is
a set of subgroups that is closed under conjugation with elements of G and under
passing to subgroups.

Our main examples of families are listed below

Notation 2.63.

notation|subgroups

TR trivial group

FCY |finite cyclic subgroups
FIN |finite subgroups

CYC |cyclic subgroups

VCY |virtually cyclic subgroups
ALL |all subgroups

Definition 2.64 (Orbit category). The orbit category Or(G) has as objects homo-
geneous spaces G/H and as morphisms G-maps. Given a family # of subgroups
of G, let the F -restricted orbit category Or#(G) be the full subcategory of Or(G)
whose objects are homogeneous spaces G/H with H € F.



50 2 The Projective Class Group

Definition 2.65 (Subgroup category). The subgroup category Sub(G) has as ob-
jects subgroups H of G. For H, K C G, let conhomg (H, K) be the set of all group
homomorphisms f: H — K for which there exists a group element g € G such that
f is given by conjugation with g. The group of inner automorphisms inn(K) consists
of those automorphisms K — K that are given by conjugation with an element
k € K. It acts on conhom(H, K) from the left by composition. Define the set of
morphisms in Sub(G) from H to K to be inn(K)\ conhom(H, K). Composition of
group homomorphisms defines the composition of morphisms in Sub(G).

Given a family ¥, define the ¥ -restricted category of subgroups Sub#(G) to be
the full subcategory of Sub(G) that is given by objects H belonging to ¥ .

Exercise 2.66. Show that Sub#(G) is a quotient category of Or#(G).

Note that there is a morphism from H to K only if H is conjugate to a subgroup of
K. Clearly Ko(R(-)) yields a functor from Sub#(G) to abelian groups since inner
automorphisms on a group K induce the identity on Ko(RK). Using the inclusions
into G, one obtains a map

COlimHESub«,r(G) K()(RH) 4 K()(RG).

We briefly recall the notion of a colimit of a covariant functor F': C — Z-MOD
from a small category C into the category of abelian groups, where small means
that the objects of C form a set. Given an abelian group A, let C4 be the constant
functor C — Z-MOD that sends every object in C to A and every morphism in C
to id4. Given a homomorphism f: A — B of abelian groups, let Cy: C4 — Cp be
the obvious transformation. The colimit, sometimes also called the direct limit, of
F consists of an abelian group colim¢ F together with a transformation Tr: F —
Cecolime F such that for any abelian group B and transformation 7: ' — Cp there
exists precisely one homomorphism of abelian groups ¢: colimg F — B satisfying
Cg o Tr = T. The colimit is unique (up to unique isomorphism) and always exists.
If we replace abelian group by ring or by R-module respectively, we get the notion
of a colimit, sometimes also called a direct limit, of functors from a small category
to rings or R-modules respectively.

Conjecture 2.67 (Farrell-Jones Conjecture for Ky(RG) for regular R with
Q € R). Let R be a regular ring with Q € R and let G be a group.
Then the homomorphism

(2.68) I N(G, F): colimyesub,,y(G) Ko(RH) — Ko(RG)
coming from the various inclusions of finite subgroups of G into G is a bijection.

One can also ask for the following stronger version of Conjecture 2.67, which
also encompasses Conjecture 2.60.

Conjecture 2.69 (Farrell-Jones Conjecture for Ko (RG) for regular R). Let R be
aregular ring and let G be a group. Let P (G, R) be the set of primes which are not
invertible in R and for which G contains an element of order p.
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Then the homomorphism
Igrn(G, F): colimpesuby,y(G) Ko(RH) — Ko(RG)

coming from the various inclusions of finite subgroups of G into G is a (G, R)-
isomorphism, i.e., an isomorphism after inverting all primes in (G, R).

We mention that the surjectivity of the map I#7n(G, F) is equivalent to the
surjectivity of the map induced by the various inclusions of subgroups H € F I N
into G

(D Ko(RH) — Ko(RG).
HeFIN

because this map factorizes as

Isrn(G,F

Y . )
@ Ko(RH) — colimpyesuby;y(G) Ko(RH) Ko(RG),

HeFIN
where the first map ¢ is surjective.

Remark 2.70 (Module-theoretic relevance of Conjecture 2.67). Conjecture 2.67
implies that for a regular ring R with Q C R every finitely generated projective
R-module is, up to adding finitely generated free RG-modules, a direct sum of
finitely many RG-modules of the shape RG ®gpy P for a finite subgroup H C G and
a finitely generated projective RH-module P. So it predicts the (stable) structure of
finitely generated projective RG-modules in the most elementary way. We mention,
however, that the situation is much more complicated in the case where we drop the
assumption that R is regular and Q € R. In particular, for R = Z new phenomena
will occur, as explained later, which are related to so-called negative K-groups
and Nil-groups. For instance, the obvious inclusion Z/6 — Z x Z/6 does not
induce a surjection Ko(Z[Z/6]) — Ko(Z|Z x Z/6]), since Ko(Z[Z/6]) = 0 and
Ko(Z[Z x Z/6]) = Z, whereas by Ko(Q[Z/6]) — Ko(Q[Z x Z/6]) is known to be
bijective as predicted by Conjecture 2.67.

Remark 2.71 (Conjecture 2.67 and the Atiyah Conjecture). Conjecture 2.67 plays
a role in a program aiming at a proof of the Atiyah Conjecture about L>-Betti
numbers, as explained in [650, Section 10.2]. Atiyah defined the n-th L2-Betti number
of the universal covering M of a closed Riemannian manifold M to be the non-
negative real number

b (M) := lim tr(e™An (%)) dx
120 JF
where ¥ is a fundamental domain for the 7 (M)-action and e ~*2»(X:¥) denotes the
heat kernel on M. The version of the Atiyah Conjecture which we are interested in
and which is at the time of writing open says that d - bflz) (M) is an integer if d is an
integer such that the order of any finite subgroup of 7 (M) divides d. In particular
b ;2) (M) is expected to be an integer if ) (M) is torsionfree. This gives an interesting
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connection between the analysis of heat kernels and the projective class group of
complex group rings CG.

If one drops the condition that there exists a bound on the order of finite subgroups
of 1 (M), then also transcendental real numbers can occur as the L2-Betti number
of the universal covering M of a closed Riemannian manifold M , see [58, 433, 809].

An R-module M is called Artinian if for any descending series of submodules
M, 2 M, 2 --- there exists an integer k such that My = My = Myyp = - -+
holds. An R-module M is called simple or irreducible if M # {0} and M contains
only {0} and M as submodules. A ring R is called Artinian if both R considered
as a left R-module is Artinian and R considered as a right R-module is Artinian,
or, equivalently, every finitely generated left R-module and every finitely generated
right R-module is Artinian. Skew-fields and finite rings are Artinian, whereas Z is
not Artinian.

Conjecture 2.72 (Farrell-Jones Conjecture for Ky(RG) for an Artinian ring R).
Let G be a group and R be an Artinian ring.
Then the canonical map

I N(G,R): colimpyesub,,(G) Ko(RH) — Ko(RG)

is an isomorphism

2.9 Kaplansky’s Idempotent Conjecture

In this section we discuss the following conjecture.

Conjecture 2.73 (Kaplansky’s Idempotent Conjecture). Let R be an integral
domain and let G be a torsionfree group. Then all idempotents of RG are trivial, i.e.,
equal to O or 1.

Remark 2.74 (Kaplansky’s Idempotent Conjecture for prime characteristic).
There is a reasonable more general version of Conjecture 2.73 where one replaces
the condition that G is torsionfree by the weaker condition that any prime p which
divides the order of some finite subgroup H C G is not invertible in the integral
domain R. If R is a skew-field of prime characteristic p, then this condition reduces
to the condition that any finite subgroup H of G is a p-group.

The version of Kaplansky’s Idempotent Conjecture 2.73 described in Remark 2.74
is consistent with the observation that the only known idempotents in a group ring
RG come from idempotents in R or by the following construction.

Example 2.75 (Construction of idempotents). Let G be a group and g € G be

an element of finite order. Suppose that the order |g| is invertible in R. Define an

element x := |g|~! - Zl-ill g'. Then x? = x, i.e., x is an idempotent in RG.
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Exercise 2.76. Show that the version of Kaplansky’s Idempotent Conjecture of
Remark 2.74 holds for G = Z/2.

Exercise 2.77. Consider the ring R = Z[x]/(2x?> — 3x + 1). In the sequel denote by
u the class of u € Z[x] in R. Show:

(i) 2 is not invertible in R;
(ii) There are precisely two non-trivial idempotents in R, namely 2 —2x and
-1+ 2x;
(iii) The element x + (1 —X) - ¢ is a non-trivial idempotent in R[Z/2].

Remark 2.78 (Sofic groups). In the next theorem we will use the notion of a sofic
group that was introduced by Gromov and originally called subamenable group.
Every residually amenable group is sofic but the converse is not true. The class of
sofic groups is closed under taking subgroups, direct products, amalgamated free
products, colimits and inverse limits, and, if H is a sofic normal subgroup of G
with amenable quotient G/H, then G is sofic. To the authors’ knowledge there is
no example of a group that is not sofic. There is a note by Dave Witte Morris [752]
following Deligne [300] where a central extension | - Z — G — SP(2n,R) — 1
is constructed such that G is not residually finite. The group G is viewed as a
candidate for a group which is not sofic. It is unknown but likely to be true that all
hyperbolic groups are sofic. For more information about the notion of a sofic group
we refer to [332].

Definition 2.79 (Directly finite). An R-module M is called directly finite if every
R-module N satisfying M =g M @ N is trivial. A ring R is called directly finite (or
von Neumann finite) if it is directly finite as a module over itself, or, equivalently, if
r,s € R satisfy rs = 1, then s¥ = 1. A ring is called stably finite if the matrix algebra
M,,(R) is directly finite for all n > 1.

Remark 2.80 (Stable finiteness). Stable finiteness for a ring R is equivalent to the
following statement. Every finitely generated projective R-module P whose class in
Ko(R) is zero is already the trivial module, i.e., 0 = [P] € Ky(R) implies P = 0.

If F is a field of characteristic zero, then FG is stably finite for every group G.
This is proved by Kaplansky [544], see also Passman [791, Corollary 1.9 on page
38]. If R is a skew-field and G is a sofic group, then RG is stably finite. This is
proved for free-by-amenable groups by Ara-Meara-Perera [35] and extended to sofic
groups by Elek-Szabo [331, Corollary 4.7]. These results have been extended to
extensions with a finitely generated residually finite groups as kernel and a sofic
finitely generated group as quotient by Berlai [128].

The next theorem is taken from [88, Theorem 1.12].

Theorem 2.81 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent
Conjecture). Let G be a group. Let R be a ring whose idempotents are all triv-
ial. Suppose that

Ko(R) ® Q— Ko(RG) ®z Q
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is an isomorphism.
Then 0 and 1 are the only idempotents in RG if one of the following conditions is
satisfied:

(1) RG is stably finite;
(i1) R is a field of characteristic zero;
(iii) R is a skew-field and G is sofic.

Remark 2.82 (The Farrell-Jones Conjecture and Kaplansky’s Idempotent Con-
jecture). Theorem 2.81 implies that for a skew-field D of characteristic zero and
a torsionfree group G Kaplansky’s Idempotent Conjecture 2.73 is true for DG,
provided that Conjecture 2.60 holds and that D is commutative or G is sofic.

Remark 2.83 (The Farrell-Jones Conjecture and the Kaplansky’s Idempotent
Conjecture for prime characteristic). Suppose that D is a skew-field of prime
characteristic p, that Conjecture 2.72 holds for G and D, and that all finite subgroups

of G are p-groups. Then Ko(D) — Ko(DG) is an isomorphism since for a finite
p-group H the group ring DH is a local ring, see [271, Theorem 5.24 on page 114],
and hence E()(DH ) = 0 by Lemma 2.123. If we furthermore assume that G is sofic,
then Theorem 2.81 implies that all idempotents in DG are trivial.

Remark 2.84 (Reducing the case of a field of characteristic zero to C). Let F be
a field of characteristic zero and let u = X}, Xg - 8§ € FG be an element. Let K be
the finitely generated field extension of Q given by K = Q(x, | g € G) C F.Thenu
is already an element in KG. The field K embeds into C since K is finitely generated,
it is a finite algebraic extension of a transcendental extension K’ of Q, see [617,
Theorem 1.1 on p. 356], and K’ has finite transcendence degree over Q. Since the
transcendence degree of C over Q is infinite, there exists an embedding K’ — C
induced by an injection of a transcendence basis of K over Q into a transcendence
basis of C over Q. It extends to an embedding K < C because C is algebraically
closed. Hence u can be viewed as an element in CG. This reduces the case of fields
F of characteristic zero to the case F' = C.

Next we mention some further results.

Formanek [398, Theorem 9], see also [189, Proposition 4.2], has shown that
all idempotents of FG are trivial, provided that F is a field of characteristic zero
and there are infinitely many primes p for which there do not exist an element
g € G,g # 1 and an integer k > 1 such that g and gpk are conjugate. Torsionfree
hyperbolic groups satisfy these conditions. Hence Formanek’s results imply that
all idempotents in F'G are trivial if G is torsionfree hyperbolic and F is a field of
characteristic zero.

Delzant [301] has proved the Kaplansky’s Idempotent Conjecture 2.73 for all
integral domains R for a torsionfree hyperbolic group G, provided that G admits an
appropriate action with large enough injectivity radius. Delzant actually deals with
zero-divisors and units as well.
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Remark 2.85 (Conjectures related to the Idempotent conjecture). There are also
the Zero-Divisor Conjecture due to Kaplansky, which predicts for an integral do-
main R and a torsionfree group G that RG has no non-trivial zero-divisors, and
the Embedding Conjecture due to Malcev, which predicts for an integral domain R
and a torsionfree group G that RG can be emdedded into a skew-field. Obviously
the Embedding Conjecture implies the Zero-Divisor Conjecture, which in turn im-
plies the Idempotent Conjecture 2.73. The Zero-Divisor Conjecture does not follow
from Conjecture 2.60. For a ring R with Q € R = C the Zero-Divisor Conjecture
follows from the Atiyah Conjecture about the integrality of L>-Betti numbers for
torsionfree groups, see [650, Lemma 10.15 on page 376]. There is also the Unit-
Conjecture 3.125, which implies the Zero-Divisor Conjecture, see [610, (6.20) on
page 95], and is discussed in Section 3.14.

2.10 The Bass Conjectures
2.10.1 The Bass Conjecture for Fields of Characteristic Zero as Coefficients

Let G be a group. Let con(G) be the set of conjugacy classes (g) of elements g € G.
Denote by con(G)y the subset of con(G) consisting of those conjugacy classes (g)
for which each representative g has finite order. Let R be a commutative ring. Let
class(G, R) and class(G, R) s be the free R-module with the set con(G) and con(G)
as basis. This is the same as the R-module of R-valued functions on con(G) and
con(G) s with finite support. Define the universal R-trace

(2.86) tt 1 RG — class(G, R), Z re-g Z re - (g).
geG geG

It extends to a function try; : M, (RG) — class(G, R) on (n, n)-matrices over RG
by taking the sum of the traces of the diagonal entries. Let P be a finitely generated
projective RG-module. Choose a matrix A € M,,(RG) such that A> = A and the
image of the RG-map r4: RG" — RG" given by right multiplication with A is
RG-isomorphic to P. Define the Hattori-Stallings rank of P to be

(2.87) HSRG (P) = trg;(A) € class(G, R).

The Hattori-Stallings rank depends only on the isomorphism class of the RG-module
P. It induces an R-homomorphism, the Hattori-Stallings homomorphism,

(2.88) HSgrG: Ko(RG) ®2 R — class(G,R), [P]®r +— r-HSgrg(P).

Let F be a field of characteristic zero. Fix an integer m > 1. Let F({,,) D F be
the Galois extension given by adjoining the primitive m-th root of unity {,, to F.
Denote by I'(m, F) the Galois group of this extension of fields, i.e., the group of
automorphisms o : F(¢,,) — F({,,) thatinduce the identity on F. It can be identified
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with a subgroup of Z/m* by sending ¢ to the unique element u (o) € Z/m* for which
o (&m) = £ holds. Let g1 and g» be two elements of G of finite order. We call
them F-conjugate if for some (and hence all) positive integers m with gi" = g7" = 1
there exists an element o in the Galois group I'(m, F)) with the property that g']‘(‘f)
and g, are conjugate. Two elements g; and g, are F-conjugate for F = Q, R, or C, if
the cyclic subgroups (g;) and (g») are conjugate if g| and g, or g; and gz‘l, or g
and g, are conjugate, respectively.

Denote by cong (G)y the set of F-conjugacy classes (g)r of elements g € G of
finite order. Let classp (G) s be the F-vector space with the set cong(G) s as basis,
or, equivalently, the F-vector space of functions cong (G) s — F with finite support.
There are obvious inclusions of F-modules

classp(G) s C class(G, F) s C class(G, F).

Lemma 2.89. Suppose that F is a field of characteristic zero and H is a finite group.
Then the Hattori-Stallings homomorphism, see (2.88), induces an isomorphism

HSrp: Ko(FH) ®z F 5 classp(H) .

Proof. Since H is finite, an F'H-module is a finitely generated projective F'H-module
if and only if it is a (finite-dimensional) H-representation with coefficients in F" and
Ko(FH) is the same as the representation ring Rep (H). The Hattori-Stallings rank
HS gy (V) and the character yy of a G-representation V with coefficients in F are
related by the formula

(2.90) xv(h™') = |Cg(h)| - HSpp (V) (h)

for h € H where Cg(h) is the centralizer of & in G. Hence Lemma 2.89 follows
from representation theory, see for instance [908, Corollary 1 in Chapter 12 on
page 96]. O

Exercise 2.91. Prove formula (2.90).

The following conjecture is the obvious generalization of Lemma 2.89 to infinite
groups.

Conjecture 2.92 (Bass Conjecture for fields of characteristic zero as coeffi-
cients). Let F be a field of characteristic zero and let G be a group. The Hattori-
Stallings homomorphism of (2.88) induces an isomorphism

HSpg: Ko(FG) ®z F — classF(G)f.
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Lemma 2.93. Suppose that F is a field of characteristic zero and G is a group. Then
the composite

I G,F)®zid
2.94)  colimpresuvy,y(c) Ko(FH) @z F 22X S0, 4 (kGY @, F

S
Bra, class(G, F)

is injective and has as image classg(G) s where Igrn(G, F) is the map defined
in (2.68).

Proof. This follows from the commutative diagram below, compare [646, Lemma 2.15
on page 220].

. I (G,F)®zid
COhmHeSub«;r]N(G) Ko(FH) ®z F L) o Ko(FG)®z F

COlimHeSubvij(G) HSFHl: LHSFG

~.

colimyesubyy(G) classp (H) p —— classp(G) ¢ s class(G, F).

14

Here the isomorphism j is the direct limit over the obvious maps classp (H) s —
classp(G) s given by extending a class function in the trivial way and the map i is
the natural inclusion and in particular injective. |

Exercise 2.95. Let F be a field of characteristic zero. Show that the group G must
be torsionfree if Ko(FG) is a torsion group.

Theorem 2.96 (The Farrell-Jones Conjecture and the Bass Conjecture for fields
of characteristic zero). The Farrell-Jones Conjecture 2.67 for Ko(RG) for regular
R and Q C R implies the Bass Conjecture 2.92 for fields of characteristic zero as
coefficients.

Proof. This follows from Lemma 2.93. O

The Bost Conjecture 14.23 implies the Bass Conjecture 2.92 for fields of char-
acteristic zero as coefficients, provided that F = C, see [131, Theorem 1.4 and
Lemma 1.5].

Exercise 2.97. Let F be field of characteristic zero and let G be a group. Suppose
that the Farrell-Jones Conjecture 2.67 for Ko(RG) for regular R and Q C R holds
for R = F. Consider any finitely generated projective FG-module P. Then the
Hattori-Stallings rank HS i (P) evaluated at the unit ¢ € G belongs to Q C F.

Remark 2.98 (Zalesskii’s Theorem). Zalesskii [1031], see also [189, Theorem 3.1],
has shown for every field F, every group G, and every idempotent x € FG that
HSpg ((x)) evaluated at the unit e € G belongs to the prime field of F, where (x) is
the finitely generated projective FG-module given by the two-sided ideal (x) € FG
spanned by x.
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2.10.2 The Bass Conjecture for Integral Domains as Coefficients

Conjecture 2.99 (Bass Conjecture for integral domains as coefficients). Let R
be a commutative integral domain and let G be a group. Let g € G be an element in
G. Suppose that either the order |g| is infinite or that the order |g| is finite and not
invertible in R.

Then for every finitely generated projective RG-module P the value of its Hattori-
Stallings rank HSg (P) at (g) is trivial.

Sometimes the Bass Conjecture 2.99 for integral domains as coeflicients is called
the Strong Bass Conjecture, see [104, 4.5]. The Weak Bass Conjecture, see [104,
4.4], states for a finitely generated projective ZG-module P that the evaluation of its
Hattori-Stallings rank at the unit HSz (P) (1) agrees with dimz(Z ®z¢ P). Note that
HSzc (P)(1) is the same as the von Neumann dimension dim /() (N (G) ®z¢ P) for
a finitely generated projective ZG-module P, see [650, Corollary 9.61 on page 362].

Exercise 2.100. Show that the Weak Bass Conjecture follows from the Bass Con-
jecture 2.99 for integral domains as coefficients.

The Bass Conjecture 2.99 can be interpreted topologically. Namely, the Bass
Conjecture 2.99 is true for a finitely presented group G in the case R = Z if and
only if every homotopy idempotent self-map of an oriented smooth closed manifold
whose dimension is greater than 2 and whose fundamental group is isomorphic
to G, is homotopic to one that has precisely one fixed point, see [132]. The Bass
Conjecture 2.99 for G in the case R = Z (or R = C) also implies for a finitely
dominated CW-complex with fundamental group G that its Euler characteristic
agrees with the L2-Euler characteristic of its universal covering, see [327, 0.3].

The next results follows from the argument in [372, Section 5].

Theorem 2.101 (The Farrell-Jones Conjecture and the Bass Conjecture for
integral domains). Let G be a group. Suppose that

I(G,F)®zQ: CO]imOhf],y(G) Ko(FH) ®;Q — Ko(FG) ®7Q

is surjective for all fields F of prime characteristic.

Then the Bass Conjecture 2.99 is satisfied for G and every commutative integral
domain R.

In particular, the Bass Conjecture 2.99 follows from the Farrell-Jones Conjec-
ture 2.72.

For finite G and R an integral domain such that no prime dividing the order of
|G| is a unit in R, Conjecture 2.99 was proved by Swan [937, Theorem 8.1], see
also [104, Corollary 4.2]. The Bass Conjecture 2.99 has been proved by Bass [104,
Proposition 6.2 and Theorem 6.3] for R = C and G a torsionfree linear group and by
Eckmann [325, Theorem 3.3] for R = Q, provided that G has at most cohomological
dimension 2 over Q.

The following result is due to Linnell [632, Lemma 4.1].
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Theorem 2.102 (The Bass Conjecture for integral domains and elements of
finite order). Let G be a group.

(i) Let p be a prime, and let P be a finitely generated projective Z(,)G-module.
Suppose for g € G that HS(P)(g) # 0. Then there exists an integer n > 1 such
that g and gP" are conjugate in G and we get for the Hattori-Stallings rank
HS(P)(g) = HS(P)(g"");

(ii) Let P be a finitely generated projective ZG-module. Suppose for g € G that
g # Land HS(P)(g) # 0. Then there exist subgroups C, H of G such that g € C,
C C H, C is isomorphic to the additive group Q, H is finitely generated, and the
elements of C lie in finitely many H-conjugacy classes. In particular the order

of g is infinite.

More information about the Bass Conjectures can be found in [103, 131, 133,
189, 234, 336, 337, 338, 546, 650, 788, 893, 894].

2.11 The Passage from the Integral to the Rational Group Ring

The following conjecture is taken from [673, Conjecture 85 on page 754].

Conjecture 2.103 (The rational Eo(ZG)-to-Eo(QG)-Conjecture). The change of
ring maps _ _
Q ®z Ko(ZG) — Q®z Ko(QG)

is trivial.

If G satisfies the Farrell-Jones Conjecture 2.67 for Ko(RG) for regular R with
Q C R, then it satisfies the rational Ky(ZG)-to-K((QG)-Conjecture 2.103, see [673,
Proposition 87 on page 754].

Remark 2.104. The question whether an integral version of Conjecture 2.103 holds,
i.e., whether the change of ring maps

Ko(ZG) — Ko(QG)

is trivial, is discussed in [673, Remark 89 on page 756].

The answer is no in general. Counterexamples have been constructed by
Lehner [625], who actually carefully analyzes the image of the map Ko(ZG) —
I?O(QG). The group G = QD3; *g,, QD3 is a counterexample, where QD3 is the
quasi-dihedral group of order 32, and Q¢ is the generalized quaternion group of
order 16, see [625, Theorem 1.5].
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2.12 Survey on Computations of Ky (RG) for Finite Groups

In this section we give a brief survey about computations of Ko(RG) for finite groups
G and certain rings R. The upshot will be that the reduced projective class group
Ko (ZG) is a finite abelian group, but in most cases it is non-trivial and unknown, and
that for F a field of characteristic zero Ko(FG) is a well-known finitely generated
free abelian group.

The following result is due to Swan [937, Theorem 8.1 and Proposition 9.1].

Theorem 2.105 (fO(RG) is finite for finite G and R the ring of integers in an
algebraic number field). Ler G be a finite group. Let R be the ring of algebraic
integers in an algebraic number field, e.g., R = Z. Then Ko(RG) is finite.

A proof of the next theorem will be given in Section 3.8. It was originally proved
by Rim [852].

Theorem 2.106 (Rim’s Theorem). Let p be a prime number. The homomorphism
induced by the ring homomorphism Z|Z/p| — Z[exp(2xi/p)] sending the genera-
tor of Z/ p to the primitive p-th root of unity exp(2ni/p)

Ko(Z[Z/p)) = Ko(Z[exp(2xi/p)])
is a bijection.

Example 2.107 (EO(Z[Z /p1)). Let p be a prime. We have already mentioned in
Remark 2.23 that Z[exp(2ni/p)] is the ring of integers in the algebraic number field
Q[exp(27i/p)] and hence a Dedekind domain and that the structure of its ideal class
group C(Z[exp(2ni/p)]) is only known for a few primes. Thus the message of Rim’s
Theorem 2.106 is that we know the structure of the finite abelian group Ko(Z[Z/p])
only for a few primes. Here is a table taken from [727, page 30] or [990, Tables §3
on page 352ff].

p | Ko(Z[Z/p])
<19 {0}

23 Z/3

29 |Z)20Z/20Z)2

31 Z/9

37 7/37

41 | zZ/11e7Z/11

43 Z/211

47 | Z/58Z/139

Remark 2.108 (Strategy to study K, (ZG) for finite G). A Z-order A is a Z-algebra
that is finitely generated projective over Z. Its locally free class group is defined as
the subgroup of Ky(A)

(2.109) CI(A) = {[P] =[] | P(p) =a,, Q(p) for all primes p}
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where (p) denotes localization at the prime p. This is the part of Ko(A) that can be
described by localization sequences. Its significance for A = ZG lies in the result
of Swan [937], see also Curtis-Reiner [271, Theorem 32.11 on page 676] and [272,
(49.12 on page 221], that Ko(ZG) = CI(ZG) for every finite group G. Now fix a
maximal Z-order ZG € M C QG. Such a maximal order has better ring properties
than ZG, namely, it is a hereditary ring. The map i.: CI(ZG) — CIl(M) induced
by the inclusion i: ZG — M is surjective. Define

(2.110) D(ZG) = ker (i, : CI(ZG) — CI(M)).

The definition of D(ZG) is known to be independent of the choice of the maximal
order M. Thus the study of Ko(ZG) splits into the study of D(ZG) and CI(M).
The analysis of CI(M) can be intractable and involves studying cyclotomic fields,
whereas the analysis of D(ZG) essentially uses p-adic logarithms.

Remark 2.111 (Finiteness obstructions and D (ZG)). Often calculations concern-
ing finiteness obstructions are done by first showing that its image in CI(M) =
Ko(ZG)/D(ZG) is trivial, and then determining it in D(ZG). For instance, Mis-
lin [739] proved that the finiteness obstruction for every finitely dominated homolog-
ically nilpotent space with the finite group G as fundamental group lies in D(ZG),
but that not every element in D(ZG) occurs this way. Questions concerning the
Spherical Space Form Problem involve direct computations in D(ZG), see for in-
stance Bentzen [122], Bentzen-Madsen [123], and Milgram [719]. The group D (ZG)
enters also in the work of Oliver on actions of finite groups on disks, see [771, 772].

For computations of D (ZG) for finite p-groups we refer to Oliver [773, 774] and
Oliver-Taylor [777].

A survey on D(ZG) and the methods of its computations can be found in
Oliver [775].

Theorem 2.112 (Vanishing results for D (ZG)).

(i) Let G be a finite abelian group G. Then D(ZG) = 0 holds if and only if G
satisfies one of the conditions:

(a) G has prime order;
(b) G is cyclic of order 4, 6, 8, 9, 10, 14;
©)GisZ/2XZ]2;

(i) If G is a finite group that is not abelian and satisfies D(ZG) = 0, then it is D,
forn >3, Ay, As,or Sy,

(iii) One has D(ZG) = 0if G is A4, As or S4;

(iv) D(ZD»y) = 0 for n < 60 and D(ZD 1y) = Z/2;

(v) D(ZD»y,) = 0 if n satisfies one of the following conditions:

(a) n is an odd prime;
(b) n is a power of a regular odd prime;
(¢) n is a power of 2.
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Proof. (1) This is proved by Cassou-Nogués [218], see also [272, Theorem 50.16 on
page 253].
(i) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266].
(iii) This follows from Reiner-Ulom [849], see also [272, Theorem 50.29 on
page 266].

(iv) This is proved in Endo-Miyata [340], see [272, Theorem 50.30 on page 266].

(v) This is proved in Endo-Hironaka [339], see also [272, Theorem 50.29 on
page 266]. O

Theorem 2.113 (Finite groups with vanishing Ko(ZG)).

(1) Let G be a finite abelian group G. Then EO(ZG) = 0 holds if and only if G
satisfies one of the conditions:

(a) G is cyclic of order n for | <n < 11;
(d) G is cyclic of order 13, 14, 17, 19;
©) GisZ[2XZ[2;

(i) If G is a non-abelian finite group with EO(ZG) =0, then G is Dy, forn > 3,
A4, As, or Su;
(iii) We have Ko(ZG) = Ofor G = A4, S4, D6, Dg, D12.

Proof. (i) This is proved by Cassou-Nogués [218], see also [272, Corollary 50.17
on page 253].

(i) This follows from Theorem 2.112 (ii).

(iii) The cases G = Ay, S4, D¢, Dg are already treated in [848, Theorem 6.4 and
Theorem 8.2]. Because of Theorem 2.112 (iii) it suffices to show for the maximal
order M for the groups G = Ay, S4, D¢, Dg, D1 that CI(M) = 0. This follows from
the fact that QG is a products of matrix algebras over Q and hence the maximal
Z-order M is a products of matrix rings over Z. O

Exercise 2.114. Determine all finite groups G of order < 9 for which Ko(ZG) is
non-trivial.

Theorem 2.115 (Ky(RG) for finite G and an Artinian ring R). Let R be an
Artinian ring. Let G be a finite group. Then RG is also an Artinian ring. There are
only finitely many isomorphism classes [P1], [P2], ..., [Pn] of irreducible finitely
generated projective RG-modules, and we obtain an isomorphism of abelian groups

n
7" = Ko(RG), (ki,ka.. . kn) — Zki'[Pi]-
i1

Proof. This follows from [271, Proposition 16.7 on page 406 and the paragraph after
Corollary 6.22 on page 132]. O
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Let F be a field of characteristic zero or of characteristic p for a prime number
p not dividing |G|. Then Ky(FG) is the same as the representation ring Repy (G)
of G with coefficients in the field F since the ring FG is semisimple i.e., every
submodule of a module is a direct summand. If F is a field of characteristic zero,
then representations are detected by their characters, see Lemma 2.89. For more
information about modules over F'G for a finite group G and a field F' we refer for
instance to Curtis-Reiner [271, Chapter 1 and Chapter 2] and Serre [908].

Exercise 2.116. Compute Ko(F Dg) for F = Q, R and C.

2.13 Survey on Computations of K¢ (C;(G)) and K¢(N(G))

Let G be a group. Let B(L%(G)) denote the algebra of bounded linear operators
on the Hilbert space L?(G) whose orthonormal basis is G. The reduced group
C*-algebra C}(G) is the closure in the norm topology of the image of the reg-
ular representation CG — B(L?*(G)) that sends an element u € CG to the (left)
G-equivariant bounded operator L?>(G) — L?(G) given by right multiplication with
u~'. The group von Neumann algebra N (G) is the closure in the weak topology.
There is an identification N'(G) = 8(L?(G))®. One has natural inclusions

CG C C:(G) S N(G) € B(L*(G)).

We have CG = C;(G) = N(G) if and only if G is finite. If G = Z, then the
Fourier transform gives identifications C/(Z) = C(S') and N(Z) = L™(S").

Remark 2.117 (Ko (C):(G)) versus Ko(CG)). We will later see that the study of
Ko(C;(G)) is not done according to its algebraic nature. Instead we will introduce
and analyze the topological K-theory of C;(G) and explain that in dimension 0
the algebraic and the topological K-theory of C(G) agree. In order to explain
the different flavor of Ko(C(G)) in comparison with Ko(CG), we mention the
conclusion of the Baum-Connes Conjecture for torsionfree groups 10.44 that for
torsionfree G there exists an isomorphism

P H2n(BG:Q) = Ko(CF(G)) @2 Q.

n>0

The space BG is the classifying space of the group G, which is up to homotopy
characterized by the property that it is a CW-complex with 7;(BG) = G whose
universal covering is contractible. We denote by H.(X, R) the singular or cellular
homology of a space or CW-complex X with coefficient in a commutative ring R.
We can identify H.(BG; R) with the group homology of G with coefficients in R.
We see that Ko(C;(G)) can be huge also for torsionfree groups, whereas
Ko(CG) = Z for torsionfree G is a conclusion of the Farrell-Jones Conjecture 2.60
for Ko(R) for torsionfree G and regular R. We see already here a homological be-
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havior of Ko(C}(G)), which is not yet evident in the case of group rings so far and
will become clear later.

Remark 2.118 (Ko(N(G))). The projective class group Ky(:A) can be computed
for any von Neumann algebra A using the center-valued universal trace, see for
instance [650, Section 9.2]. In particular one gets for a finitely generated group G
that does not contain Z" as subgroup of finite index an isomorphism

Ko(N(G)) = Z(N(G))*>.

Here Z (N (G)) is the center of the group von Neumann algebra and the Z/2-action
comes from taking the adjoint of an operator in 8(L?(G)), see [650, Example 9.34
on page 353]. If G is a finitely generated group that does not contain Z" as subgroup
of finite index and for which the conjugacy class (g) of an element g different from
the unit is always infinite, then Z(N(G)) = C and one obtains an isomorphism

Ko(N(G)) = R.

A pleasant feature of N'(G) is that there is no difference between stably isomorphic
and isomorphic in the sense that for three finitely generated projective N (G)-modules
Py, P1, and Q we have Py ® Q =xn(c) P1 © Q if and only if Py =xG) Pi.

We see that in the case of the group von Neumann algebra we can compute
Ko(N(G)) completely, but the answer does not show any homological behavior in
G. In fact, the Farrell-Jones Conjecture and the Baum-Connes Conjecture have no
analog for group von Neumann algebras.

Exercise 2.119. Let G be a torsionfree hyperbolic group that is not cyclic. Prove
Ko(N(G)) =R.

Remark 2.120 (Change of rings homomorphisms for K, for ZG — CG —
C:(G) — N(G)). We summarize what is conjectured or known about the string of
change of rings homomorphism

Ko(ZG) 5 Ko(CG) B Ko(CH(G)) 2 Ko(N(G))

coming from the various inclusion of rings. The first map 7; is conjectured to be
rationally trivial, see [673, Conjecture 85 on page 754], but is not integrally trivial,
see [625, Theorem 5.1]. The second map i, is conjectured to be rationally injective,
compare [649, Theorem 0.5], but is not surjective in general. The map i3 is in general
not injective, not surjective, and not trivial. It is known that the composite i3 0 i3 0 i}
is trivial, see for instance [650, Theorem 9.62 on page 362]..
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2.14 Notes

Algebraic K-theory is compatible with direct limits, as explained for the projective
class group next. A directed set I is a non-empty set with a partial ordering < such
that for two elements iy and i; there exists an element / with iy <iandi; <i. A
directed system of rings is a set of rings {R; | i € I} indexed by a directed set /
together with a choice of a ring homomorphism ¢; ;: R; — R; fori, j € I withi < j
such that ¢; x = ¢; x o ¢; ; holds for i, j,k € I withi < j < k and ¢;; = id holds
for i € I. The colimit, sometimes also called the direct limit, of {R; | i € I} is aring
denoted by colim;¢; R; together with ring homomorphisms ¢ ;: R; — colim;e; R;
for every j € I such that ; o ¢; ; = ¢, holds for i,j € I with i < j and the
following universal property is satisfied: For every ring S and every system of ring
homomorphisms {u;: R; — S | i € I} suchthat u;o¢; ; = p; holdsfori, j € I with
i < j, there is precisely one ring homomorphism g : colim;e; R; — § satisfying
poy; = p; forevery i € I. If we replace ring by group or module everywhere, we
get the notion of directed system and direct limit of groups or modules respectively.
This is a special case of the direct limit of a functor, namely, consider [ as category
with the set I as objects and precisely one morphism from i to j if i < j, and no
other morphisms.

Remark 2.121 (Filtered categories). One may consider instead of a directed set a
filtered category, i.e, a nonempty category I such that for every two objects i and
J there is an object k together with two morphisms i — k and j — k and for
two morphism f,g: i — j with the same source and target there is a morphism
h: j — k with hj o f = h ok, and all the results about colimits over directed
sets stay true if one considers colimits over filtered categories. Then one talks about
filtered systems instead of filtered sets.

Let {R; | i € I} be adirect system of rings. For every i € I, we obtain a change of
rings homomorphism (¢;).: Ko(R;) — Ko(R). The universal property of the direct
limit yields a homomorphism

(2.122) colim;¢; (¥;)«: colim;e; Ko(R;) 5 Ko(R),

which turns out to be an isomorphism, see [860, Theorem 1.2.5].

We denote by R* the group of units in R. A ring R is called local if the set
I := R — R* forms a (left) ideal. If I is a left ideal, it is automatically a two-sided
ideal and it is maximal both as a left ideal and as a right ideal. A ring R is local if and
only if it has a unique maximal left ideal and a unique maximal right ideal and these
two coincide. An example of a local ring is the ring of formal power series F|[[#]]
with coefficients in a field F. If R is a commutative ring and / is a prime ideal, then
the localization Ry of R at [ is a local ring.

Theorem 2.123 (Ky(R) of local rings). Let R be a local ring. Then every finitely
generated projective R-module is free and Ky(R) is infinite cyclic with [R] as
generator.
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Proof. See for instance [727, Lemma 1.2 on page 5] or [860, Theorem 1.3.11 on
page 14]. O

The proof is based on Nakayama’s Lemma, which says for a ring R and a finitely
generated R-module M that rad(R)M = M <= M = 0 holds. Here rad(R) is the
radical, or Jacobson radical, i.e., the two-sided ideal that is given by the intersection
of all maximal left ideals, or, equivalently, of all maximal right ideals of R. The
radical is the same as the set of elements r € R for which there exists an s € S such
that 1 — rs has a left inverse in R.

If R is a commutative ring and spec(R) is its spectrum consisting of its prime
ideals and equipped with the Zariski topology, then we obtain for every finitely
generated projective R-module P a continuous rank function Spec(R) — Z by
sending a prime ideal / to the rank of the finitely generated free R;-module P; =
P ®gr R;. This makes sense because of Theorem 2.123 since Ry is local. If R is a
commutative integral domain, this rank function is constant. For more details we
refer for instance to [860, Proposition 1.3.12 on page 15].

Exercise 2.124. Prove for an integer n > 1 that Ko(Z/n) is the free abelian group
whose rank is the number of prime numbers dividing n.

A ring is called semilocal if R/rad(R) is Artinian, or, equivalently, R/rad(R) is
semisimple. If R is commutative, then R is semilocal if and only if it has only finitely
many maximal ideas, see [916, page 69]. For a semilocal ring R, the projective class
group Ko(R) is a finitely generated free abelian group, see [916, Proposition 14 on
page 28]. More information about semilocal rings can be found for instance in [610,
§ 20].

Lemma 2.125. For any ring R and nilpotent two-sided ideal 1 C R, the map
Ko(R) — Ky(R/I) induced by the projection R — R/I is bijective.

Proof. See [998, Lemma 2.2 in Section I1.2 on page 70]. O

Given two groups G| and G, let G| * G, by the amalgamated free product. Then
the natural maps Gy — Go * G1 for k = 1,2 induce an isomorphism, see [421,
Theorem 1.1],

(2.126) Ko(Z[G1]) ® Ko(Z[G1]) = Ko(Z[G1 = Ga)).

This is a first glimpse of a homological behavior of K if one compares this with the
corresponding isomorphism of group homology

H,(G1) ® Hy(G1) = H,(Gi % G»).

Exercise 2.127. Show that the projections pr,: G| X G, — Gy for k = 1,2 do not
in general induce isomorphisms

Ko(Z[G1 x G2]) = Ko(Z[G1]) x Ko(Z[Ga]).
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There are also equivariant versions of the finiteness obstructions, see for in-
stance [32], [642], and [644, Chapter 3 and 11]. Finiteness obstructions for categories
are investigated in [391, 390].

Andrej Jaikin-Zapirain pointed out that he and Pablo Sdnchez-Peralta have proved
the following result confirming Conjecture 2.60 in a special case.

A presentation G = (X | R) is called a Cohen—Lyndon presentation if for each
r € R, there exists a transversal 7, of the normal subgroup N = ((R)), such that N
is freely generated by the set {ré | r € R, g € T} }.

They prove that if G has a Cohen-Lyndon presentation and S is a regular ring,
then the natural map

Ko(S) — Ko(S[G])

is an isomorphism.






Chapter 3
The Whitehead Group

3.1 Introduction

This chapter is devoted to the first K-group K| (R) of a ring R and the Whitehead
group Wh(G) of a group G.

We give two equivalent definitions of K (R), namely, as the universal determinant
and in terms of invertible matrices. We explain some basic calculations of K| (R) for
rings with Euclidian algorithm, local rings, and rings of integers in algebraic number
fields.

We introduce the Whitehead group of a group and the Whitehead torsion of
a homotopy equivalence of finite CW-complexes algebraically and geometrically.
The relevance of these notions are illustrated by the s-Cobordism Theorem and its
applications to the classification of manifolds and by the classification of lens spaces
by Reidemeister torsion.

The next topic is the Bass-Heller-Swan decomposition and the long exact sequence
associated to a pullback of rings and to a two-sided ideal. These are important tools
for computations and relate Ko(R) and K (R).

We discuss Swan homomorphisms and free homotopy representations. Thus we
provide a link between torsion invariants and finiteness obstructions.

We explain the variant of the Farrell-Jones Conjecture that for a torsionfree group
G the reduced projective class group Ko(ZG) and the Whitehead group Wh(G)
vanish. It implies that any A-cobordism with torsionfree fundamental group and
dimension > 6 is trivial.

Finally, we give a survey of computations of K;(ZG) for finite groups G and of
the algebraic K-group of commutative Banach algebras, commutative C*-algebras,
and of some group von Neumann algebras.

3.2 Definition and Basic Properties of K{(R)

Definition 3.1 (K;-group K;(R)). Let R be a ring. Define the K;-group of a ring
K1 (R) to be the abelian group whose generators are conjugacy classes [ f] of auto-
morphisms f: P — P of finitely generated projective R-modules with the following
relations:
o Additivity

Given a commutative diagram of finitely generated projective R-modules

69
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p

0 P —=p, Ps 0
lfl jfz Lfa
0 P —sp, L. p, 0

with exact rows and automorphisms as vertical arrows, we get

LAl + (/] =[]

e Composition formula
Given automorphisms f,g: P — P of a finitely generated projective R-module
P, we get

[gof]=1f]+I[gl

Define G(R) analogously but replacing finitely generated projective by finitely
generated everywhere.

Given a ring homomorphism f: R — S, we obtain a change of rings homomor-
phism

32 fi=Ki(f): Ki(R) = Ki(S), [g: P — P] — [fig: fiP — fiP]

analogously as we have defined it for the projective class group in (2.2). Thus K;
becomes a covariant functor from the category of rings to the category of abelian
groups.

Exercise 3.3. Show that K| (R) = 0 holds for the ring R appearing in Example 2.17.

Remark 3.4 (The universal property of K| (R)). One should view K;(R) together
with the assignment sending an automorphism f: P — P of a finitely generated
projective R-module P to its class [f] € K{(R) as the universal determinant.
Namely, for any abelian group A and assignment a which sends the automorphism
f of a finitely generated projective R-module to a(f) € A such that (A, a) satisfies
additivity and the composition formula appearing in Definition 3.1, there exists
precisely one homomorphism of abelian groups ¢: K;(R) — A such that ¢([f]) =
a(f) holds for every automorphism f of a finitely generated projective R-module.

We always have the following map of abelian groups
(3.5) i: R*/[R*,R*] — Ki(R), [x] = [rx: R—R]

where r, denotes right multiplication by x. It is neither injective nor surjective in
general. However, we have

Theorem 3.6 (K| (F) of skew-fields). The map i defined in (3.5) is an isomorphism
if R is a skew-field or, more generally, a local ring. It is surjective (with an explicitly
described kernel) if R is a semilocal ring.
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Proof. See for instance [916, Corollary 43 on page 133], [860, Corollary 2.2.6 on
page 69], and [916, Proposition 53 on page 140]. ad

Exercise 3.7. Let H be the skew-field of quaternions {a+bi+cj+dk | a,b,c,d € R}.
Since His a 4-dimensional vector space, there is an embedding GL.,, (H) — GL4,(R).
Its composite with the determinant over R yields a homomorphism y,, : GL, (H) —
R>? to the multiplicative group of positive real numbers. Show that the system of
homomorphisms y, induces an isomorphism

w: Ki(H) > RO

The proofs of the next two results are analogous to those of Theorem 2.10 and
Lemma 2.12.

Theorem 3.8 (Morita equivalence for K| (R)). For every ring R and integern > 1,
there is natural isomorphism

M K](R) i Kl(Mn(R))‘

Lemma 3.9. Let Ry and R, be rings. Denote by pr;: Ry X Ry — R; fori = 0,1 the
projection. Then we obtain an isomorphism

(prg)« X (pry)«: Ki(Ro x Ry) S Ki(Ro) X Ki(Ry).

Lemma 3.10. Define the abelian group K]f(R) analogous to K| (R) but with finitely
generated projective replaced by finitely generated free everywhere. Then the canon-
ical homomorphism

@ K[ (R) S Ki(R). [f] = [f]
is an isomorphism.

Proof. Given an automorphism f: P — P of a finitely generated projective
R-module P, we can choose a finitely generated projective R-module Q, a finitely

generated free R-module F and an R-isomorphism ¢: P @ Q — F. We ob-
tain an automorphism ¢ o (f @ idg) o ¢™': F — F and thus an element

[po(f@idg)op!] € K{ (R). One easily checks that it is independent of the
choice of Q and ¢ and then that it depends only on [f] € K;(R). Thus we obtain

a homomorphism of abelian groups 8: Kj(R) — K{ (R). One easily checks that «
and g are inverse to one another. O

Next we give a matrix description of Kj(R). Denote by E, (i, j) for n > 1 and
1 <i,j < n the (n,n)-matrix whose entry at (i, j) is one and is zero elsewhere.
Denote by I,, the identity matrix of size n. An elementary (n, n)-matrix is a matrix
of the form I,, + r - E,,(i,j) forn > 1,1 <i,j <n,i # jandr € R. Let A

be an (n,n)-matrix. The matrix B = A - (I,, + r - E,(i, j)) is obtained from A by
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adding the i-th column multiplied by r from the right to the j-th column. The matrix
C=(,+r E,(iJj)) - Ais obtained from A by adding the j-th row multiplied by
r from the left to the i-th row. Let E(R) c GL(R) be the subgroup generated by all
elements in GL(R) that are represented by elementary matrices.

Lemma 3.11. The subgroup E(R) of GL(R) coincides with the commutator sub-
group [GL(R), GL(R)].

Proof. For n > 3, pairwise distinct numbers 1 < i, j,k < n,and r € R, we can write
I, +r- E,(i, k) as a commutator in GL,,(R), namely,

In+r~En(i,k)
= (In+7 En(i,)) Iy + En(j, k) - (In+7 - En(i, )" (I + En (G, k)7

This implies E(R) ¢ [GL(R), GL(R)].

Let A and B be two elements in GL,(R). Let [A] and [B] be the elements in
GL(R) represented by A and B. Given two elements x and y in GL(R), we write
x ~ y if there are elements ¢ and e, in E(R) with x = e|ye,, in other words, if the
classes of x and y in E(R)\ GL(R)/E(R) agree. One easily checks

- -

since each step is given by multiplication from the right or left by a block matrix of

the form (Ié' ]O ) or (16' IC ) and such a block matrix is obviously obtained from I,
n n

by a sequence of column and row operations and hence its class in GL(R) belongs

to E(R). Analogously we get
0 B
o= |5 5)]

Since the element in GL(R) represented by ( IO _é" ) belongs to E(R), we conclude
0 A A0 0 B
-BO 0B -A0
and hence
[AB] ~ [BA].

This implies for any element x € GL(R) and e € E(R) that xex™! ~ ex™'x = ¢ and

hence xex~! € E(R). Therefore E(R) is normal. Given a commutator xyx~'y~! for
x,y € GL(R), we conclude for appropriate elements ey, €3, e3 in E(R)

1 1

xyx 'y = epyxeax Tty = e (yx)ea(yx) 7! = eje3 € E(R).
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Theorem 3.12 (K| (R) equals GL(R)/[GL(R),GL(R)]). There is a natural iso-
morphism

GL(R)/[GL(R),GL(R)] = K\(R).

Proof. Because of Lemma 3.10 it suffices to construct mutually inverse homomor-
phisms of abelian groups @: GL(R)/[GL(R),GL(R)] — Klf(R) and 3: K{(R) -
GL(R)/[GL(R),GL(R)]. The map « sends the class [A] of A € GL,(R) to the
class [ra] of ra: R" — R"™, x — xA. This is a well-defined homomorphism of
abelian groups since [rag] = [ra] + [rB]. [Faer] = [ra] holdsforalln € Z,n > 1
and A, B € GL,(R), and K| (R) is abelian. The map 8 sends the class [ f] of an
automorphism f of a finitely generated free R-module F to the class [A(f, B)] of
the invertible (n, n)-matrix A(f, B) associated to f after a choice of some ordered
R-basis B for F. This class is independent of the choice of B, since for another choice
of an ordered bases B’ there exists a U € GL,(R) with UA(f,B)U~' = A(f,B’),
which implies

[A(f.B)] = [VA(f. BU™'] = [UI[A(f. B)I[U]™'
= [UIUI"'[A(f. B)] = [A(/. B)].

Thus we have defined 5 on generators. It remains to check the relations. Obviously
the composition formula is satisfied. Additivity is satisfied because of the following
calculation in GL(R)/[GL(R),GL(R)] for A € GL,,(R), B € GL,(R) and C €
M., (R) based on Lemma 3.11

(5)] =[5 5] (5 &) (c"a]
- [(gf)][('gg)][(c’":,g;’) = [A][C] - e = [A] - [C].

One easily checks that @ and g are inverse to one another. |

Remark 3.13 (What K (R) measures). We conclude from Lemma 3.11 and Theo-
rem 3.12 that two matrices A € GL,,(R) and B € GL,,(R) represent the same class
in K (R) if and only if B can be obtained from A by a sequence of the following
operations:

(i) Elementary row operation

B is obtained from A by adding the k-th row multiplied by r from the left to the
[-throw forr € Rand k # [;

(ii) Elementary column operation
B is obtained from A by adding the k-th column multiplied by r from the right
to the [-th row for » € R and k # [;

(iii) Stabilization
B is obtained by taking the direct sum of A and Iy, i.e., B looks like the block

i AO0)
matrix 01l
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(iv) Destabilization
A is the direct sum of B and /;. (This is the inverse operation to (iii).)

Since multiplication from the left or right by an elementary matrix corresponds
to the operation (i) or the operation (ii), the abelian group K (R) is trivial if and only
if any invertible matrix A € GL,,(R) can be reduced by a sequence of the operations
above to the empty matrix.

One could delete the operation (i) or the operation (ii) from the list above without
changing the conclusion. This follows from the fact that E(R) is a normal subgroup
of GL(R).

The elementary proof of the next lemma is left to the reader.

Lemma 3.14. Let R be a commutative ring. Then the determinant defines a homo-
morphism of abelian groups

det: K{(R) — R*, [f] — det(f).

It satisfies detoi = idgx for the map i defined in (3.5). In particular the map det is
surjective.

Definition 3.15 (SK; (R) of a commutative ring R). Let R be a commutative ring.
Define
SK(R) := ker (det: K;(R) — R*).

We will see in Section 3.12 that there are commutative group rings ZG for which
the surjective map det: K;(ZG) — ZG* is not injective, or, equivalently, with
non-trivial SK| (ZG). Here is another example.

Example 3.16. The following example is taken from [106, Example 4.4], see
also [860, Exercise 2.3.11 on page 82]. Let A be obtained from the polynomial
ring R[x, y] by dividing out the ideal generated by x> + y? — 1. This is a Dedekind
domain. The matrix

M= (_xy i) € SLy(A)

represents a non-trivial element in SK;(A). The proof uses Mennicke symbols and
is based on the observation that the function

xy O
S' 5 SL,(R), (x,y)—|-yx 0
0017,_»

represents a non-trivial element in 71 (SL,,(R)) = 71(SO(n)) = Z/2 forn > 3.

Theorem 3.17 (K| (R) = R* for commutative rings with Euclidean algorithm).
Let R be a commutative ring with Euclidean algorithm in the sense of [860, 2.3.1 on
page 74], for instance a field or Z.

Then the determinant induces an isomorphism

det: Ki(R) — R*.
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Proof. Because of Lemma 3.14 it suffices to show for A € GL,,(R) with det(A) = 1
that it can be reduced to the empty matrix by a sequence of operations appearing
in Remark 3.13. But this is a well-known result of elementary algebra, see for
instance [860, Theorem 2.3.2 on page 74]. O

Exercise 3.18. Prove K (Z[i]) = {1,-1,i,-i} = Z/4.

Remark 3.19 (K| (R) of principal ideal domains). There exist principal ideal do-
mains R such that det: K;(R) — R* is not bijective. For instance Grayson [435]
gives such an example, namely, take Z[x] and invert x and all polynomials of the
shape x"" — 1 for m > 1. Other examples can be found in Ischebeck [517].

Theorem 3.20 (Vanishing of SK; of ring of integers in an algebraic number
field). Let R be the ring of integers in an algebraic number field. Then the determinant
induces an isomorphism

det: K| (R) = R*.
Proof. See [106, page 77] or [727, Corollary 16.3 on page 159]. O

The proof of the next classical result can be found for instance in [859, Theo-
rem 2.3.8 on page 79].

Theorem 3.21 (Dirichlet Unit Theorem). Let R be the ring of integers in an
algebraic number field F. Let ry be the number of distinct embeddings of F into R
and let ry be the number of distinct conjugate pairs of embeddings of F into C with
image not contained in R. Then:

(1) r1 + 2r; is the degree | F : Q] of the extension Q C F;

(1) The abelian group R* is finitely generated.
(iii) The torsion subgroup of R* is the finite cyclic group of roots of unity in F;
(iv) The rank of R* isri +rp — 1.

Exercise 3.22. Let R be the ring of integers in an algebraic number field F. Then
K1 (R) is finite if and only if F is Q or an imaginary quadratic field.

3.3 Whitehead Group and Whitehead Torsion

In this section we will assign to a homotopy equivalence f: X — Y of finite CW-
complexes its Whitehead torsion 7( f) in the Whitehead group Wh(z(Y)) associated
to Y. A basic feature is that the Whitehead torsion can distinguish manifolds or
spaces that are homotopy equivalent. The notion of Whitehead torsion goes back to
the papers by J.H.C. Whitehead [1007, 1008, 1009].

The reduced K-group K, (R) is defined to be the cokernel of the map K(Z) —
K1 (R) induced by the unique ring homomorphism Z — R. The homomorphism
det: K,(Z) — {*1} is a bijection, because Z is a ring with Euclidean algorithm,
see Theorem 3.17. Hence K; (R) is the same as the quotient of K (R) by the cyclic
subgroup of at most order two generated by the class of the (1, 1)-matrix (—1).
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Definition 3.23 (Whitehead group). Define the Whitehead group Wh(G) of a
group G to be the cokernel of the map G x {1} — K;(ZG) that sends (g, +1) to
the class of the invertible (1, 1)-matrix (g).

Obviously a group homomorphism u#: G — H induces a homomorphism of
abelian groups

(3.24) u, = Wh(u): Wh(G) — Wh(H).

Exercise 3.25. Using the ring homomorphism f: Z[Z/5] — C that sends the gen-
erator of Z/5 to exp(2ni/5) and the norm of a complex number, define a homomor-
phism of abelian groups

$: Wh(zZ/5) - R>O.

Show that 1 — ¢ — ¢~! is a unit in Z[Z/5] whose class in Wh(Z/5) is an element
of infinite order. (Actually Wh(Z/5) is an infinite cyclic group with this class as
generator.)

For a ring R and a group G we denote by
(3.26) Ap = Ko(i): Ko(R) — Ko(RG)

the map induced by the inclusion i: R — RG. Sending (g, [P]) € G X Ko(R) to
the class of the RG-automorphism R[G] ®g P — R[G] ®r P, u®x — ug™' ®x
defines amap ®: G/[G, G] ®z Ko(R) — K (RG). Define a homomorphism

(327) A :=®®K,(i): (G/[G,G] ®z Ko(R)) ® K1 (R) — K| (RG).

Definition 3.28 (Generalized Whitehead group). For a regular ring R and a group
G we define the generalized Whitehead group th (G) as the cokernel of the map
Ay introduced in (3.27). Denote by Whg(G) the cokernel of the map A( defined
in (3.26).

Note that the abelian group Wh?(G) of Definition 3.28 agrees with the abelian
group Wh(G) of Definition 3.23.

Next we will define torsion invariants on the level of chain complexes.

We begin with some input about chain complexes. Let f;.: C, — D, be a chain
map of R-chain complexes for some ring R. Define cyl, (f) to be the chain complex
with n-th differential

—Cpn-1 00
—-id ¢, O
fn—l 0 dn

Choi®Ch®D, ——— > Ch2®Cy1 & Dy

Define cone. (f:) to be the quotient of cyl, ( f.) by the obvious copy of C,. Hence the
n-th differential of cone. ( f.) is
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(T i)

Cn—l 52 Dn — (2 ® Dn—l-

Given a chain complex C,, define XC., to be the quotient of cone,(id¢c,) by the
obvious copy of C,, i.e., the chain complex with n-th differential

—Cn-1
Ciot — Cya.

Definition 3.29 (Mapping cylinder and mapping cone). Given a chain map
fe: Cx = D, we call cyl (f.) the mapping cylinder and cone.(f;) the mapping
cone. For a chain complex C., we call XC, the suspension.

These algebraic notions of mapping cylinder, mapping cone, and suspension are
modelled on their geometric counterparts. Namely, the cellular chain complex of a
mapping cylinder of a cellular map f of CW-complexes is the mapping cylinder of
the chain map induced by f. As suggested already from the geometric picture, there
exists obvious exact sequences such as 0 — C, — cyl,(f.) — cone.(f;) — 0and
0 — D, — cone,(f.) > 2C. — 0.

A chain contraction vy, for an R-chain complex C, is a collection of
R-homomorphisms y,,: C;;, = Cp4 forn € Zsatisfying c10yn+7yn-10c¢, =1idc,
for all n € Z. We call a finite free R-chain complex based free if each R-chain
module C,, comes with a preferred basis. Suppose that C, is a finite based free
R-chain complex which is contractible, i.e., which possesses a chain contraction.
Put Cogq = ®nezCon+1 and Cey = &,,c2C2y. Let v, and .. be two chain contractions.
Define R-homomorphisms

(3.30) (C* + 7*)odd 1 Codd = Cevs
(3.31) (cs +0s)ev : Coy = Codq.

Choose on each of the bases an ordering. Let A be the matrix of (c. + Vi)odd
with respect to the given ordered bases. Let B be the matrix of (c. + 8.)ey With
respect to the given ordered bases. We define u,, := (yu+1 — 6p+1) © 6, and v, :=
(8n+1—7Yn+1) ©¥n- One easily checks that the endomorphisms (id +£t.)odd, (Id +Vi)ey»
(s +¥s)oad © (id +144)odd © (Cx + 0 )ev, and (Cx + 04 )ey © (id +Vi)ey © (Cx + Yi)odd are
given by upper triangular matrices whose diagonal entries are identity maps. Hence
A and B are invertible and their classes [A], [B] € K, (R) satisfy [A] = —[B].
Since [B] is independent of the choice of 7., the same is true for [A]. Moreover
[A] is independent of the choice of orderings on the bases, since the class of any
permutation automorphism of a finitely generated free R-module in K| (R) is in the
image of the homomorphism K;(Z) — K;(R). Thus we can associate to a finite
based free contractible R-chain complex C. an element

(3.32) 7(C,) = [A] € K|(R).
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Let f.: C. — D. be a homotopy equivalence of finite based free R-chain com-
plexes. Its mapping cone cone( f;) is a contractible finite based free R-chain complex.
Define the Whitehead torsion of f, by

(3.33) 7(f.) := t(cone.(f.)) € Ki(R).

Now we can pass to CW-complexes. Let f: X — Y be a cellular homotopy
equivalence of connected finite CW-complexes. Let px: X — X and py: Y — Y
be the universal coverings. Identify 71 (¥') with r; (X) using the isomorphism induced
by f. (We ignore base point questions here and in the sequel. This can be done since
an inner automorphism of a group G induces the identity on K;(ZG) and hence
also on Wh(G).) There is a lift f: X — Y which is 7 (Y)- -equivariant. It induces
a Zm1(Y)-chain homotopy equivalence C,( f). C.(X) = C.(Y). The CW-structure
defines a basis for each Z (Y)-chain module C,,(X) and C,,(Y) which is unique up
to multiplying each basis element by a unit of the form +g € Zn;(Y) and permuting
the elements of the basis. Pick such a cellular basis for each chain module. We can
apply (3.33) to it and thus obtain an element in K, (Zm,(Y)). Its image under the
projection K, (Zr1(Y)) — Wh(r;(Y)) is denoted by

(3.34) 7(f) € Wh(m(Y)).

Since we consider 7(f) in Wh(m(Y)), the choice of the cellular basis does not
matter anymore.

Given a (not necessarily cellular) homotopy equivalence of connected finite CW-
complexes f: X — Y, we can define its Whitehead torsion 7( f) as follows. We can
choose by the Cellular Approximation Theorem a cellular map f’: X — Y that is
homotopic to f, and define the Whitehead torsion 7( f) by 7(f”). Since the White-
head torsion of two cellular maps which are homotopic, and hence even cellularly
homotopic by the Cellular Approximation Theorem, agrees, it is independent of the
choice of f’.

If f: X — Y is a homotopy equivalence of finite CW-complexes, then define
Wh(m(Y)) := @Cem,(y) Wh(r;(C)) and 7(f) € Wh(m;(Y)) by the collection of
the Whitehead torsions of the homotopy equivalences induced between path com-
ponents. Obviously a map g: Y| — Y induces a homomorphism of abelian groups
g«: Wh(m(Y)) —» Wh(r;(Y>)) by the homomorphisms between the various fun-
damental groups of the path components induced by g.

Definition 3.35 (Whitehead torsion). We call 7(f) the (algebraic) Whitehead tor-
sion of the homotopy equivalence f: X — Y of finite CW-complexes.

Exercise 3.36. Let 0 — C, — D, LN E. — 0 be an exact sequence of projective
R-chain complexes. Suppose that E,. is contractible. Construct an R-chain map
s«: E. — D, such that p, o s, = idg,. Show thati. & s.: C. ® E. — D, is an
isomorphism of R-chain complexes. Give a counterexample to the conclusion if one
drops the condition that E. is contractible.
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The basic properties of this invariant are summarized in the following theorem,
whose proof can be found for instance in [247, (22.1), (22.4), (23.1), and (23.2)], [667,
Chapter 3], or [648, Chapter 2].

Theorem 3.37 (Basic properties of Whitehead torsion).
(1) Sum formula
Let the following two diagrams be pushouts of finite CW-complexes

ki

Xo —> X Yo—Lsy,

izl ljl kzl jll

X, —=X Y ——Y
J2 b

where the left vertical arrows are inclusions of CW-complexes, the upper hor-
izontal maps are cellular, and X and Y are equipped with the induced CW-
structure. Let f;: X; — Y; be homotopy equivalences for i = 0, 1,2 satisfying
fioiy =kyo foand f, oiy = ky o fy. Put ly = 1] o ky = I o ky. Denote by
f: X — Y the map induced by fy, f1, and f> and the pushout property.

Then f is a homotopy equivalence and

7(f) = (1)«7(f1) + (L)1 (f2) = (0)=7(fo);

(i) Homotopy invariance

Let f ~ g: X — Y be homotopic maps of finite CW-complexes. Then the
homomorphisms f.,g.: Wh(m (X)) — Wh(n(Y)) agree. If additionally f
and g are homotopy equivalences, then we obtain

7(8) = 7(f);
(iii) Composition formula

Let f: X — Y and g: Y — Z be homotopy equivalences of finite CW-
complexes. Then we get

T(gof) = &7(f) +7(8);
(iv) Product formula

Let f: X' —» X and g: Y’ — Y be homotopy equivalences of connected finite
CW-complexes. Then

T(fxg) = x(X) - jut(g) + x(¥) - it (f)

where x(X), x(Y) € Z denote the Euler characteristics, j.: Wh(m(Y)) —
Wh(r (X XY)) is the homomorphism induced by j: Y — X XY,y +— (y,x0)
for some base point xo € X and i, is defined analogously.
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Let X be a finite simplicial complex. Let X’ be its barycentric subdivision. Then
one can show 7(f) = 0 for the map f: X — X’ whose underlying map of spaces
is the identity. However, if X; and X, are two finite CW-complexes with the same
underlying space, it is not at all clear that 7(f) = 0 holds for the map f: X; — X;
whose underlying map of spaces is the identity. This problem is solved by the
following (in comparison with the other statements above much deeper) result due
to Chapman [227], [228], see also [247, Appendix] and [798, Section 5].

Theorem 3.38 (Topological invariance of Whitehead torsion). The Whitehead
torsion of a homeomorphism f: X — Y of finite CW-complexes vanishes.

3.4 Geometric Interpretation of Whitehead Group and
Whitehead Torsion

In this section we introduce the concept of a simple homotopy equivalence f: X — Y
of finite CW-complexes geometrically. We will show that the obstruction for a
homotopy equivalence f: X — Y of finite CW-complexes to be simple is the
Whitehead torsion.

We have the inclusion of spaces §*~2 ¢ §"~! ¢ §"~! c D" where 7! c §"!is
the upper hemisphere. The pair (D", 7~ ') carries an obvious relative CW-structure.
Namely, attach an (n — 1)-cell to S”~! by the attaching map id: §"~2 — §"72 to
obtain §”~!. Then we attach to $”~! an n-cell by the attaching map id: §"~! — §"~!
to obtain D". Let X be a CW-complex. Let g: 7! — X be a map satisfying
q(8"2) c X,_» and g(S7"') c X,,_1. Let ¥ be the space D" Uy X, i.e., the pushout

sn-t 9 o x
il jj

where i is the inclusion. Then Y inherits a CW-structure by putting Yy = j(Xk) for
k<n—=2,Y,_1 =j(X,_1) Ug(S" ") and Y; = j(Xx) Ug(D") for k > n. Note that
Y is obtained from X by attaching one (n — 1)-cell and one n-cell. Since the map
i: §7~1 — D" is a homotopy equivalence and cofibration, the map j: X — Y isa
homotopy equivalence and a cofibration. We call j an elementary expansion and say
that Y is obtained from X by an elementary expansion. There isamap r: ¥ — X
with r o j = idx. This map is unique up to homotopy relative j(X). We call any such
map an elementary collapse and say that X is obtained from Y by an elementary
collapse.

Definition 3.39 (Simple homotopy equivalence). Let f: X — Y be a map of finite
CW-complexes. We call it a simple homotopy equivalence if there is a sequence of
maps
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x=x10] & x L xp21 S S xp) =y
such that each f; is an elementary expansion or elementary collapse and f is homo-
topic to the composite of the maps f;.

Remark 3.40 (Combinatorial meaning of simple homotopy equivalence). The
idea of the definition of a simple homotopy equivalence is that such a map can
be written as a composite of elementary maps, namely, elementary expansions and
collapses, which are obviously homotopy equivalences and in some sense the smallest
and most elementary steps to pass from one finite CW-complex to another without
changing the homotopy type. If one works with simplicial complexes, an elementary
map has a purely combinatorial description. An elementary collapse means to delete
a simplex and one of its faces that is not shared by another simplex. So one can
describe the passage from one finite simplicial complex to another coming from
a simple homotopy equivalence by finitely many combinatorial data. This does not
work for two finite simplicial complexes that are homotopy equivalent but not simple
homotopy equivalent.

This approach is similar to the idea in knot theory that two knots are equivalent
if one can pass from one knot to the other by a sequence of elementary moves, the
so-called Reidemeister moves. A Reidemeister move obviously does not change the
equivalence class of a knot and, indeed, it turns out that one can pass from one knot
to a second knot by a sequence of Reidemeister moves if and only if the two knots
are equivalent, see for instance [187, Chapter 1] or [989]. The analogous statement
is not true for homotopy equivalences f: X — Y of finite CW-complexes because
there is an obstruction for f to be simple, namely, its Whitehead torsion.

Exercise 3.41. Consider the simplicial complex X with four vertices vg, v, v2, and
v3, the edges {vo, v}, {vi,v2}, {vo, v2}, and {v2, v3} and one 2-simplex {vg, vi, v2}.
Describe a sequence of elementary collapses and expansions transforming it to the
one-point-space {e}.

Recall that the mapping cylinder cyl(f) of a map f: X — Y is defined by the
pushout

Xx{0}—— vy

]

X x [0, 1] — cyl(£).

There are natural inclusions ix: X = X X {1} — cyl(f) andiy: Y — cyl(f) and a
natural projection p: cyl(f) — Y. Note that ix is a cofibration and p oix = f and
py o iy = idy. Define the mapping cone cone( f) by the quotient cyl( f)/ix(X).

Lemma 3.42. Let f: X — Y be a cellular map of finite CW-complexes and A C X
be a CW-subcomplex. Then the inclusion cyl(fla) — cyl(f) is a composite of
elementary expansions and hence a simple homotopy equivalence. In particular the
inclusion iy : Y — cyl(f) is a simple homotopy equivalence.
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Proof. It suffices to treat the case where X is obtained from A by attaching an n-cell
by an attaching map ¢: S"~! — X. Then there is an obvious pushout

§"7 1% [0, 1] Ugn-1 oy D™ X {0} ——cyl(f]a)

| |

D" x [0,1] eyl(f)

and an obvious homeomorphism
(D" x [0,1], 8" X [0, 1] Ugn-1,,(y D" x {0}) — (D™*', 8%).
O

Lemma3.43. A map f: X — Y of finite CW-complexes is a simple homotopy
equivalence if and only if ix : X — cyl(f) is a simple homotopy equivalence.

Proof. This follows from Lemma 3.42 since the composite of a simple homotopy
equivalence and a homotopy inverse of a simple homotopy equivalence is again a
simple homotopy equivalence. |

We only sketch the proof of the next result. More details can be found for instance
in [247, (22.2)] or [648, Chapter 2]. However, we try to give enough information
about its proof to illustrate why the geometric problem to decide whether a homotopy
equivalence is simple is equivalent to a question about an invertible matrix A, which
has a positive answer precisely if the class of A vanishes in the Whitehead group.
Then the key will be Remark 3.13.

Theorem 3.44 (Whitehead torsion and simple homotopy equivalences).

(1) Let X be a finite CW-complex. Then for any element x € Wh(m(X)) there
is an inclusion i: X — Y of finite CW-complexes such that i is a homotopy
equivalence and i7" ((i)) = x;

(ii) Let f: X — Y be a homotopy equivalence of finite CW-complexes. Then its
Whitehead torsion T(f) € Wh(m(Y)) vanishes if and only if f is a simple
homotopy equivalence.

Proof. (i) We can assume without loss of generality that X is connected. Put 7 =
71(X). Choose an element A € GL,,(Zn) representing x € Wh(xr). Choose n > 2.
In the sequel we fix a zero-cell in X as base point. Put X’ = X v V;.’ZIS". Let
b; € m,(X") be the element represented by the inclusion of the j-th copy of " into
X’ for j =1,2,...,n. Recall that ,,(X") is a Zn-module. Choose fori = 1,2,...,n
amap f;: " — X, such that [fi] = Z;le a; ;- bj holds in 7, (X"). Attach to X’
foreachi € {1,2,...,n} an (n + 1)-cell by f;: S" — X, Let Y be the resulting
CW-complex and i: X — Y be the inclusion. Then i is an inclusion of finite CW-
complexes and induces an isomorphism on the fundamental groups. In the sequel
we identify 7 and 71 (Y) by m;({). The cellular Zr-chain complex C.(Y,X) is
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concentrated in dimensions n and (n + 1) and its (n + 1)-differential is given by the
matrix A with respect to the cellular basis. Hence C. (Y X ) is a contractible finite
based free Zn-chain complex with 7(C. (Y,X)) = [A] in Wh(r). This implies that
i: X — Y is a homotopy equivalence with i7!(7(i)) = x.

(ii) Suppose that f is a simple homotopy equivalence. We want to show 7(f) = 0
Because of Theorem 3.37 (iii) it suffices to prove for an elementary expansion
j: X — Y that its Whitehead torsion 7(;j) € Wh(Y) vanishes. We can assume
without loss of generality that Y is connected. In the sequel we write 7 = 7;(Y) and
identify 7 with 71 (X) by 71 (f). The following diagram of based free finite Zn-chain
complexes

0 a.x Y e, (Y) P (Y, X) — 0
id*T C*(]) [
0 C.(X) s o 0

has based exact rows and Zr-chain homotopy equivalences as vertical arrows. Ele-
mentary facts about chain complexes, in particular the conclusion from Exercise 3.36,

imply

7(C.(j)) = 7(ids: Co(X) = Cu(X)) +7(0.: 0 = C.(Y, X))
= 0+7(C(Y, X)) = 7(C.(Y, X)).

The Zr-chain complex C., (? X ) is concentrated in two consecutive dimensions and
its only non-trivial differential is id: Zr — Zn if we identify the two non-trivial
Zn-chain modules with Zz using the cellular basis. This implies 7(C.(Y,X)) =0
and hence 7(j) := 7(C.(j)) =0

Now suppose that 7(f) = 0. We want to show that f is simple. We can assume
without loss of generality that X is connected, otherwise treat each path component
separately. Because of Lemma 3.43 we can assume that f is an inclusioni: X — Y
of connected finite CW-complexes which is a homotopy equivalence. We have to
show that we can achieve by a sequence of elementary collapses and expansions that
Y = X, i.e., we must get rid of all the cellsin Y — X.

Since y(X) = x(Y), it is clear that one cannot remove a single cell, this always
has to be done in pairs. In the first step one shows for an n-dimensional cell ¢,, that
one can attach one new (n+ 1)-cell ¢,,,; and a new (n+2)-cell e, by an elementary
expansion and then get rid of e,, and e, +; by an elementary collapse. The outcome
is that one can replace an n-cell by an (n + 2)-cell. Analogously one can show that
one can replace an (n + 2)-cell by an n-cell. Thus one can arrange for some integer
n > 2 that Y is obtained from X by attaching k cells of dimension 7 trivially and
then attaching k cells of dimension (n + 1). Hence the cellular Zz-chain complex
C.(Y, X) is concentrated in dimension n and (1 + 1). After we have picked a cellular
basis, its (n + 1)-differential is given by an invertible (k, k)-matrix A. By definition
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7(f) is the class of this matrix in Wh(r). In Remark 3.13 we have described what
7(f) = [A] = 0 means, namely, there is a sequence of operations that transform A
to the empty matrix. Note that X = Y holds if and only if A is the empty matrix. Now
the main idea is to show that each of these operations can be realized by elementary
expansions and collapses. O

Next we describe the Whitehead group geometrically. Fix a finite CW-complex
X. Consider two pairs of finite CW-complexes (Y, X) and (Z, X) such that the
inclusions of X into Y and Z are homotopy equivalences. We call them equivalent if
there is a chain of pairs of finite CW-complexes

(Y, X) = (Y[0], X), (Y[1], X), (Y[2]. X), ..., (Y [n]. X) = (Z, X)

such that for each k € {1,2,...,n} either Y[k] is obtained from Y[k — 1] by
an elementary expansion or Y[k — 1] is obtained from Y[k] by an elementary
expansion. Denote by Wh&®° (X) the equivalence classes [¥, X] of such pairs (Y, X).
This becomes an abelian group under the addition [Y, X] + [Z, X] := [Y Ux Z, X].
The zero element is given by [ X, X]. The inverse of [Y, X] is constructed as follows.
Choose amap r: ¥ — X with rxy = id. Let p: X x [0, 1] — X be the projection.
Then [(cyl(r) U, X) U, X, X] + [V, X] =0.

A map g: X — X’ induces a homomorphism g,: Wh&°(X) — Wh&°(X’) by
sending [V, X] to [Y U, X', X']. We obviously have id, = idand (go /), = g.0h..In
other words, we obtain a covariant functor on the category of finite CW-complexes
with values in abelian groups. More information about this construction can be found
for instance in [247, § 6 in Chapter II].

Given a homotopy equivalence of finite CW-complexes f: X — Y, define its
geometric Whitehead torsion 8°(f) € Wh#°(X) to be the class of (cyl(f), X).
Because of Lemma 3.43 we have 78°°(f) = 0 if and only f is a simple homotopy
equivalence

The next result is essentially a consequence of Theorem 3.44. Details of its proof
can be found in [247, §21].

Theorem 3.45 (Geometric and algebraic Whitehead groups).
(i) Let X be a finite CW-complex. The map

7: Wh#°(X) - Wh(m (X))

sending [Y, X] to i;'7(i) for the inclusion i: X — Y is a natural isomorphism
of abelian groups.
It sends T°(f) to f~'7(f) for a homotopy equivalence f: X — Y of finite
CW-complexes.

(i) A homotopy equivalence f: X — Y is a simple homotopy equivalence if and
only if t(f) € Wh(Y) vanishes.

Exercise 3.46. Let Y be a simply connected finitely dominated CW-complex. Show
that there exists a finite CW-complex X and a homotopy equivalence f: X — Y.
Prove that for any two finite CW-complexes X, and X; and homotopy equivalences
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fi: X; = Y fori = 0,1 there exists a simple homotopy equivalence g: Xy — X
with fj o g = fy.

3.5 The s-Cobordism Theorem

One of the main applications of Whitehead torsion is the theorem below.

Theorem 3.47 (s-Cobordism Theorem). Let My be a connected closed manifold
of dimension n > 5 with fundamental group m = w1(My). Then:

(1) Let (W; My, fo, My, f1) be an h-cobordism over My. Then W is trivial over My
if and only if its Whitehead torsion ©(W, My) € Wh(r) vanishes;
(ii) For any x € Wh(n) there is an h-cobordism (W; My, fo, My, f1) over My with
(W, My) = x € Wh(n);
(iii) The function assigning to an h-cobordism (W; My, fo, M1, f1) over My its White-
head torsion yields a bijection from the diffeomorphism classes relative My of
h-cobordisms over My to the Whitehead group Wh(r).

Here are some definitions. An n-dimensional cobordism (sometimes also called
just a bordism) (W; My, fo, My, fi) consists of a compact n-dimensional manifold
W, closed (n — 1)-dimensional manifolds M, and M|, a disjoint decomposition
OW = 9yW [] 9, W of the boundary W of W, and diffeomorphisms fy: My — oW,
and fi: M; — 0Wj. If we want to specify My, we say that W is a cobordism over
M. If fy and f are obvious from the context, we briefly write (W; doW, 9, W). We
call a cobordism (W; My, fo, M1, f1) an h-cobordism if the inclusions ;W — W for
i = 0, 1 are homotopy equivalences and an s-cobordism if the inclusions ;W — W
for i = 0, 1 are simple homotopy equivalences. Two cobordisms (W; My, fy, M1, f1)
and (W’;Mo,f(;,M{,fl’) over My are diffeomorphic relative My if there is a dif-
feomorphism F: W — W’ with F o fy = f;. We call an h-cobordism over My
trivial if it is diffeomorphic relative My = My X {0} to the trivial h-cobordism
(Mo x [0, 1]; My x {0}, (My x {1})). Note that the choice of the diffeomorphisms f;
do play a role although they are often suppressed in the notation.

The Whitehead torsion of an h-cobordism (W; My, fo, M1, f1) over My

(3.48) (W, My) € Wh(m(Mo))

is defined to be the preimage of the Whitehead torsion, see Definition 3.35,

(Mo 2 oW 2 W) € Whix, (W)

under the isomorphism (ip o fy).: Wh(m(My)) N Wh(r;(W)) where the map
ip: 0oW — W is the inclusion. Here we use the fact that each smooth closed
manifold has a CW-structure, which comes for instance from a smooth triangulation,
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or that each closed topological manifold of dimension different from 4 has a CW-
structure, which comes from a handlebody decomposition, and that the choice of
CW-structure does not matter by the topological invariance of the Whitehead torsion,
see Theorem 3.38.

The idea of the proof of Theorem 3.47 is analogous to that of Theorem 3.44, but
now one uses a handlebody decomposition instead of a CW-structure and carries
out the manipulation for handlebodies instead of cells. Here a handlebody of index k
corresponds to a k-dimensional cell. More details can be found for instance in [667,
Chapter 2].

The h-Cobordism Theorem 3.50 is due to Smale [920]. The s-Cobordism Theo-
rem 3.47 is due to Barden, Mazur, and Stallings, see [66, 711]. In the PL category
proofs can be found in [877, 6.19 on page 88]. Its topological version follows
from Kirby and Siebenmann [579, Conclusion 7.4 on page 320]. More information
about the s-Cobordism Theorem can be found for instance in [575], [725], [877,
page 87-90]. The s-Cobordism Theorem is known to be false for dim(My) = 4
in general, by the work of Donaldson [312], but it is true for n = dim(My) = 4
for good fundamental groups in the topological category by results of Quinn and
Freedman [118, 401, 402, 403]. Counterexamples in the case dim(My) = 3 are
constructed by Matsumoto and Siebenmann [710] and Cappell and Shaneson [206]
where the relevant 4-dimensional s-cobordism is a topological manifold. It is not
known whether one can choose the s-cobordism to be smooth in these counterexam-
ples. It follows from Kwasik and Schultz [598] and Perelman’s proof of the Thurston
Geometrization Conjecture, see [580, 751], that every h-cobordism between two
orientable closed 3-manifolds is an s-cobordism.

Exercise 3.49. Show for n > 6 that there exists an n-dimensional A-cobordism
(W; My, M) whichis not trivial such that the ~-cobordism (WXSS; MyxS3, M, xSS)
is trivial.

Since the Whitehead group of the trivial group vanishes, see Theorem 3.17, the
s-Cobordism Theorem 3.47 implies, see also [725],

Theorem 3.50 (h-Cobordism Theorem). Let My be a simply connected
closed n-dimensional manifold with dim(My) > 5. Then every h-cobordism
(W; My, fo, My, f1) over My is trivial.

Theorem 3.51 (Poincaré Conjecture). The Poincaré Conjecture is true for a closed
n-dimensional manifold M with dim(M) > 5, namely, if M is simply connected and
its homology H, (M) is isomorphic to H,,(S") for all p € Z, then M is homeomorphic
to S".

Proof. We only give the proof for dim(M) > 6. Since M is simply connected and
H.(M) = H.(S"), one can conclude from the Hurewicz Theorem and White-
head Theorem [1006, Theorem IV.7.13 on page 181 and Theorem IV.7.17 on
page 182] that there is a homotopy equivalence f: M — S". Let D} ¢ M
for i = 0,1 be two embedded disjoint disks. Let W be obtained from M by re-
moving the interior of the two disks D and D7. Then W turns out to be a
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simply connected h-cobordism. Hence we can find because of Theorem 3.50 a
homeomorphism F: (dDf X [0, 1],Dy x {0},8Dg x {1}) — (W,aDf,dD7)
that is the identity on dDj = dD{; x {0} and induces some (unknown) home-
omorphism fi: Dj x {1} — dD}. By the Alexander trick one can extend
fi: dDg = 0Dy x {1} — 4D} to a homeomorphism fi: Dg — D7Y. Namely,
any homeomorphism f: §”~! — §7~! extends to a homeomorphism f: D" — D"
by sending ¢ - x for t € [0,1] and x € §"! to ¢ - f(x). Now define a homeomor-
phism h: D x {0} U;, dD( % [0, 1] U;, D X {1} — M for the canonical inclusions
ig: aDS X {k} — aDS X [0,1] for £k = 0,1 by thSX{O} = 1id, h|6Dg><[0,1] =F
and h| Drx{1} = /1. Since the source of A is obviously homeomorphic to ", Theo-
rem 3.51 follows.

In the case dim(M) = 5 one uses the fact that M is the boundary of a contractible
6-dimensional manifold W and applies Theorem 3.50 to W with an embedded disk
removed. O

The Poincaré Conjecture, see Theorem 3.51, is known in all dimensions, where
dimension 3 is due to the work of Perelman, see [580, 750, 751, 803, 804, 805],
and dimension 4 is due to Freedman, see [118, 401, 402, 403]. The first proof of
the Poincaré Conjecture in the topological category in dimension > 5 was given
by Newman [758] using engulfing theory. The smooth version of the Poincaré
Conjecture holds in dimensions < 3, is open in dimension 4, and holds in dimensions
5,6, 12, 56, and 61. It is conjectured that it holds only in finitely many dimensions
and that it is actually false in all dimensions except 1, 2, 3,4, 5, 6, 12, 56, and 61.
This is discussed for instance in [667, Remark 12.36 on page 445].

Remark 3.52 (Exotic Spheres). Note that the proof of the Poincaré Conjecture in
Theorem 3.51 works only in the topological category but not in the smooth category.
In other words, we cannot conclude the existence of a diffeomorphism 4: S — M.
The proof in the smooth case breaks down when we apply the Alexander trick.
The construction of f given by coning f yields only a homeomorphism f and
not a diffeomorphism, even if we start with a diffeomorphism f. The map f is
smooth outside the origin of D" but not necessarily at the origin. Indeed, not every
diffeomorphism f: §"~! — "~ can be extended to a diffeomorphism D" — D"
and there exist so-called exotic spheres, i.e., closed manifolds that are homeomorphic
to S” but not diffeomorphic to §”. The classification of these exotic spheres is one of
the early very important achievements of surgery theory and one motivation for its
further development. For more information about exotic spheres we refer for instance
to [576], [611], [628], [648, Chapter 6] and [667, Chapter 12].

Remark 3.53 (The Surgery Program). In some sense the s-Cobordism Theo-
rem 3.47 is one of the first theorems where diffeomorphism classes of certain
manifolds are determined by an algebraic invariant, namely, the Whitehead torsion.
Moreover, the Whitehead group Wh(xr) depends only on the fundamental group
7 = w1 (My), whereas the diffeomorphism classes of i-cobordisms over My a priori
depend on Mj itself. The s-Cobordism Theorem 3.47 is one step in a program to
decide whether two closed manifolds M and N are diffeomorphic, which is in general
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a very hard question. The idea is to construct an i-cobordism (W; M, f, N, g) with
vanishing Whitehead torsion. Then W is diffeomorphic to the trivial s-cobordism
over M, which implies that M and N are diffeomorphic. So the Surgery Program is:

(i) Construct a simple homotopy equivalence f: M — N;
(ii) Construct a cobordism (W;M,N) and a map (F, f,id): (W;M,N) —
(N x[0,1], N x {0}, N x {1});
(iii) Modify W and F relative boundary by so-called surgery such that F' becomes
a simple homotopy equivalence and thus W becomes an &-cobordism whose
Whitehead torsion is trivial.

The advantage of this approach will be that it can be reduced to problems in
homotopy theory and algebra, which can sometimes be handled by well-known
techniques. In particular one will sometimes get computable obstructions for two
homotopy equivalent manifolds to be diffeomorphic. Often surgery theory has proved
to be very useful when one wants to distinguish two closed manifolds which have
very similar properties. The classification of homotopy spheres is one example.
Moreover, surgery techniques can be applied to problems that are of a different
nature than of diffeomorphism or homeomorphism classifications, for instance for
the construction of group actions.

More information about surgery theory will be given in Chapter 9.

3.6 Reidemeister Torsion and Lens Spaces

In this section we briefly deal with Reidemeister torsion, which was defined earlier
than (and motivated the definition of) Whitehead torsion. Reidemeister torsion was
the first invariant in algebraic topology that could distinguish between spaces which
are homotopy equivalent but not homeomorphic. Namely, it can be used to classify
lens spaces up to homeomorphism, see Reidemeister [847]. We will give no proofs.
More information and complete proofs can be found in [247, Chapter V], [648,
Section 2.4], and [667, Section 3.5].

Let X be a finite CW-complex with fundamental group n. Let U be an orthogonal
finite-dimensional z-representation. Denote by H.(X;U) the homology of X with
coefficients in U, i.e., the homology of the R-chain complex U ®z,, C.(X). Suppose
that X is U-acyclic, i.e., H,(X;U) = 0 for all n > 0. If we fix a cellular basis
for C. ()?) and some orthogonal R-basis for U, then U ®z, C. (55 ) is a contractible
based free finite R-chain complex and yields an element 7(U ®z, C. (X)) € K, (R),
see (3.32). Define the Reidemeister torsion

(3.54) p(X;U) e R*0

to be the image of 7(U®z, C.(X)) € K; (R) under the homomorphism K; (R) — R>°
sending the class [A] of A € GL,(R) to |det(A)|. Note that for any trivial unit
+7y the automorphism of U given by multiplication by +y is orthogonal and that
the absolute value of the determinant of any orthogonal automorphism of U is 1.
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Therefore p(X;U) € R> is independent of the choice of cellular basis for C,(X)
and the orthogonal basis for U, and hence is an invariant of the CW-complex X and
the orthogonal representation U.

We state without proof the next result, which essentially says that the Whitehead
torsion of a homotopy equivalence is related to the difference of the Reidemeister
torsion of the target and the source when defined.

Lemma 3.55. Let f: X — Y be a homotopy equivalence of connected finite CW-
complexes and let U be an orthogonal finite-dimensional n = n1(Y)-representa-
tion. Suppose that Y is U-acyclic. Let f*U be the orthogonal nt)(X)-representation
obtained from U by restriction with the isomorphism 1 (f).

Let dy: Wh(n(Y)) — R>% be the map sending the class [A] of A €
GL,(Zr(Y)) to |det(idy ®zxra: U Qzp Zn"™ — U ®z, Z1")|.

Then X is f*U-acyclic and we get

p(Y;U)
p(X; f*U)

Next we introduce lens spaces. Let G be a cyclic group of finite order |G]|.
Let V be a unitary finite-dimensional G-representation. Define its unit sphere SV
and its unit disk DV to be the G-subspaces SV = {v € V | ||v|]| = 1} and
DV = {v € V| ||u|]| £ 1} of V. Note that a complex finite-dimensional vector
space has a preferred orientation as real vector space, namely, the one given by the
R-basis {by,iby, ba,iby,. .., by,,ib,} forany C-basis {by, by, ..., b, }. Any C-linear
automorphism of a complex finite-dimensional vector space preserves this orienta-
tion. Thus SV and DV are oriented compact Riemannian manifolds with isometric
orientation preserving G-action. We call a unitary G-representation V free if the
induced G-action on its unit sphere SV is free. Then SV — G\SV is a covering
and the quotient space L(V) := G\SV inherits from SV the structure of an oriented
closed Riemannian manifold.

=dy(7(f)).

Definition 3.56 (Lens space). We call the closed oriented Riemannian manifold
L(V) the lens space associated to the free finite-dimensional unitary representation
V of the finite cyclic group G.

Exercise 3.57. Show that the 3-dimensional real projective space RP* is a lens
space. Let R~ be the non-trivial orthogonal Z/2-representation. Show that RP? is
R™-acyclic and compute the Reidemeister torsion p(RP3;R™7).

One can also specify these lens spaces by numbers as follows.

Notation 3.58. Let Z/t be the cyclic group of order # > 2. The 1-dimensional unitary
representation Vy, for k € Z/t has as underlying vector space C and [ € Z/t acts on it
by multiplication with exp(2xikl/t). Note that Vj is free if and only if k € (Z/1)*,
and is trivial if and only if £ = 0 in Z/t. Define the lens space L(t; ky, ..., k.) for
an integer ¢ > 1 and elements k1, ..., k. in (Z/t)* by L(&¢_, Vi,).
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Lens spaces form a very interesting family of manifolds, which can be completely
classified as we will see. Two lens spaces L(V) and L(W) of the same dimension
n > 3 have the same homotopy groups, namely, their fundamental group is G
and their p-th homotopy group is isomorphic to 7,(S") for p > 2. They also
have the same homology with integral coefficients, namely H,(L(V)) = Z for
p € {0,n}, H,(L(V)) = G for poddand 1 < p < n, and H,(L(V)) = 0 for all
other values of p. Also their cohomology groups agree. Nevertheless not all of them
are homotopy equivalent. Moreover, there are homotopy equivalent lens spaces that
are not diffeomorphic, see Example 3.62.

We state without proof the following result.

Theorem 3.59 (Homotopy Classification of lens spaces). The lens spaces

L(t;ky,..., k) and L(t;14,...,1l.) are homotopy equivalent if and only if there
are e € (Z/t)* and € € {+1} satisfying [1;_, ki = € - e - [1;_, li in (Z/1)*.
The lens spaces L(t; ky, ..., ke)and L(t; 14, . . ., 1) are oriented homotopy equiv-

alent ifand only if there is an e € (Z/t)* satisfying [1;_, ki = e -T1;_, li in (Z[t)*.
Theorem 3.60 (Diffeomorphism Classification of Lens Spaces).

(1) Let G be a finite cyclic group. Let L(V) and L(W) be two lens spaces of the same
dimension n > 3. Then the following statements are equivalent:

(a) There is an automorphism a: G — G such that V and a*W are isomorphic
as orthogonal G-representations;

(b) There is an isometric diffeomorphism L(V) — L(W);

(c) There is a diffeomorphism L(V) — L(W);

(d) There is a homeomorphism L(V) — L(W);

(e) There is a simple homotopy equivalence L(V) — L(W);

(f) There is an automorphism a: G — G such that for any orthogonal finite-
dimensional representation U with U® = 0

p(L(W);U) = p(L(V);a*U)

holds;
(g) There is an automorphism «: G — G such that for any non-trivial
1-dimensional unitary G-representation U

p(L(W);resU) = p(L(V);a" resU)

holds where the orthogonal representation resU is obtained from U by
restricting the scalar multiplication from C to R;

(ii) Two lens spaces L(t;ky,...,k.) and L(t;11,...,1.) are homeomorphic if and
only if there are e € (Z/t)*, signs € € {x1} and a permutation o € X such
that k; = €; - e - 15y holds in (Z[t)* fori=1,2,...,c.

Proof. We give only a sketch of the proof of assertion (i). Assertion (ii) is a direct
consequence of assertion (i).
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The implications (ia) = (ib) = (ic) = (id) and (if) = (ig) are obvious. The
implication (id) = (ie) follows from Theorem 3.38. The implication (ie) = (if)
follows from Lemma 3.55. The hard part of the proof is the implication (ig) = (ia).
It involves proving the formula

p(L(Ve W);resU) = p(L(V);resU) - p(L(W);resU)

for two free unitary G-representations V and W and then directly computing
p(L(V);resU) for every free 1-dimensional unitary representation V. Finally one
has to show that the values of the Reidemeister torsion distinguish V and W viewed
as orthogonal representations up to automorphisms of G. This proof is based on
the number-theoretic result mentioned below, whose proof can be found for instance
in [294] or [399]. |

Lemma 3.61 (Franz’ Independence Lemma). Let t > 2 be an integer and S =
{J€Z|0<j<t(j,t)=1} Let (aj);es be a sequence of integers indexed by S
suchthat 3 jesaj =0,a; =a,—; for j € Sand Hjes((f —1)% =1 holds for every
t-th root of unity { # 1. Then a; = 0 for j € S.

Example 3.62. We conclude from Theorem 3.59 and Theorem 3.60 (ii) the following
facts:

(i) Any homotopy equivalence L(7;ky,kz) — L(7;ky,k,) has degree 1. Thus
L(7; ky, ky) possesses no orientation reversing self-diffeomorphism;
(ii) L(5;1,1) and L(5;2, 1) have the same homotopy groups, homology groups and
cohomology groups, but they are not homotopy equivalent;
(iii) L(7;1,1) and L(7;2, 1) are homotopy equivalent, but not homeomorphic.

Example 3.63 (#-cobordisms between lens spaces). The rigidity of lens spaces is
illustrated by the following fact. Let (W, L, L’) be an h-cobordism of lens spaces that
is compatible with the orientations and the identifications of 7y (L) and 71 (L") with
G. Then W is diffeomorphic relative L to L X [0, 1] and L and L’ are diffeomorphic,
see [726, Corollary 12.13 on page 410].

Remark 3.64 (Differential geometric characterization of lens spaces). Lens
spaces with their preferred Riemannian metric have constant positive sectional cur-
vature. A closed Riemannian manifold with constant positive sectional curvature
and cyclic fundamental group is isometrically diffeomorphic to a lens space after
possibly rescaling the Riemannian metric by a constant [1018].

Remark 3.65 (de Rham’s Theorem). The results above when interpreted as state-
ments about unit spheres in free representations are generalized by De Rham’s
Theorem [293], see also [639, Proposition 3.2 on page 478], [645, page 317],
and [876, section 4], as follows. It says for a finite group G and two orthogonal
G-representations V and W whose unit spheres SV and SW are G-diffeomorphic
that V and W are isomorphic as orthogonal G-representations. This remains true if
one replaces G-diffeomorphic by G-homeomorphic provided that G has odd order,
see [504], [699], but not for any finite group G, see [205, 207, 460, 462, 463].
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We refer to [247], [648, Chapter 2], and [726] for more information about Reide-
meister torsion and lens spaces.

Remark 3.66 (Further appearance of Reidemeister torsion). The Alexander poly-
nomial of a knot can be interpreted as a kind of Reidemeister torsion of the canoni-
cal infinite cyclic covering of the knot complement, see [724], [959]. Reidemeister
torsion appears naturally in surgery theory [695]. Counterexamples to the (poly-
hedral) Hauptvermutung that two homeomorphic simplicial complexes are already
PL-homeomorphic are given by Milnor [723], see also [842], and detected by Rei-
demeister torsion. Seiberg-Witten invariants for 3-manifolds are closely related to
torsion invariants, see Turaev [958].

Remark 3.67 (Analytic Reidemeister torsion). Ray-Singer [845] defined the ana-
Iytic counterpart of topological Reidemeister torsion using a regularization of the
zeta-function. Ray and Singer conjectured that the analytic and topological Reide-
meister torsion agree. This conjecture was proved independently by Cheeger [236]
and Miiller [753]. Manifolds with boundary and manifolds with symmetries, sum
(= glueing) formulas and fibration formulas are treated in [179, 273, 639, 645, 682,
966]. For a survey on analytic and topological torsion we refer for instance to [661].
There are also L2-versions of these notions, see for instance [190, 210, 637], [650,
Chapter 3], [680, 707].

3.7 The Bass-Heller-Swan Theorem for K;

In the section we want to compute K| (R[Z]) for a ring R. This computation, the
so-called Bass-Heller-Swan decomposition, marks the beginning of the (long) way
towards the final formulation of the Farrell-Jones Conjecture for algebraic K-theory.

3.7.1 The Bass-Heller-Swan Decomposition for K;

We need some preparation to formulate it. In the sequel we write R[Z] as the ring
R[t,t™'] of finite Laurent polynomials in # with coefficients in R. Obviously the ring
R[t] of polynomials in ¢ with coefficients in R is a subring of R[#,7~']. Define the
ring homomorphisms

evg: R t] — R, Y,ezrnt" — 19
i": R — R[], ro— re 19
i:R — R[t,t‘l], ro— r-fo

Definition 3.68 (NK,,(R)). Define forn = 0, 1

NK,(R) :=ker((evo).: Kn(R[t]) = Kn(R)).
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Example 3.69. Let F be a field. Put R = F[t]/(#%). Every element in R can be
uniquely written as a + bt fora,b € F. We have (1 + bt) - (1 —bt) = 1 - b*t> = 1
in R. Hence the element a + bt € R is a unit if and only if a # 0. We conclude that
R is a local ring with (¢) = {bt | b € F} as the unique maximal ideal. Since R is
commutative, the homomorphism

ir: R 5 K\(R), [x] = [r: R— R]

is bijective by Theorem 3.6. Let evp: R — F be the ring homomorphism sending
a + bt to a. Its kernel is (7). It induces a group homomorphism R[x]* — F[x]*.
Since F[x]* is the multiplicative group of non-trivial polynomials over F of degree
Oand (1+1vx)-(1—tvx) = 1 —v2t>x> = 1 holds in R[x] for all v € F[x], we obtain
an isomorphism of abelian groups

¢: R* @ F[x] 5 R[x1*, (u,v) = u-(1+1tvx).

Since R[x] is commutative, the map ig[,]: R[x]* = K (R[x]) is injective, a
retraction is given by the determinant. We conclude that the following composite is
an injection of abelian groups

Flxl 25, coker (R — R[x]) > coker (K1 (R) — Ki(R[x]) = NK(R)

where i is the map induced by ig and ig|]. This implies that NK{(R) is an abelian
group which is not finitely generated.

Example 3.69 illustrates the following fact. If R is any ring, then NK | (R) is either
trivial or infinitely generated as an abelian group, see Theorem 6.20. So in general
NK(R) is hard to compute. At least we have the following useful results. If R is
a ring of finite characteristic N, then we obtain NK,(R)[1/N] = 0 forn = 0,1,
see Theorem 6.17. If NK,,(R) = 0 and G is finite, then NK,(RG)[1/|G|] = 0 for
n=20,1, see Theorem 6.18.

Recall that an endomorphism f: P — P of an R-module P is called nilpotent if
there exists a positive integer n with f = 0.

Definition 3.70 (Nil-group Nily(R)). Define the 0-th Nil-group Nily(R) to be the
abelian group whose generators are conjugacy classes [ f] of nilpotent endomor-
phisms f: P — P of finitely generated projective R-modules with the following
relation. Given a commutative diagram of finitely generated projective R-modules

0 P—tsp, Lo p, 0

b

0 P —sp, Lo p, 0
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with exact rows and nilpotent endomorphisms as vertical arrows, we get

LAl + 5] =[1]

Let ¢: Ko(R) — Nilp(R) be the homomorphism sending the class [P] of a
finitely generated projective R-module P to the class [0: P — P] of the trivial
endomorphism of P.

Definition 3.71 (Reduced Nil-group ﬁo(R)). Define the reduced O-th Nil-groups
Nilp(R) to be the cokernel of the map ¢.

The homomorphism Nilg(R) — Ko(R), [f: P — P] +— [P] is a retraction of
the map ¢. So we get a natural splitting

Nilg(R) = Nily(R) & Ko(R).

Denote by
J: NK{(R) — K (R[t])

the inclusion. Let
I.: R[t] » R[t,t7]

be the inclusion of rings sending ¢ to t*!. Define
Je:=Ki(ls) o j: NK1(R) — Ki(R[t,t7']).

The homomorphism
B: Ko(R) — Ky(R[t,17'])

sends the class [P] of a finitely generated projective R-module P to the class
[r;®gidp] of the R[¢,t~']-automorphismr, ®gidp : R[t,t"'|@gP — R[t,t"'|®rP
that maps u ® p to ut ® p. The homomorphism

N’: Nilp(R) — Ki(R[t])

sends the class [ f] of the nilpotent endomorphism f: P — P of the finitely generated
projective R-module P to the class [id —r; ®g f] of the R[¢]-automorphism

id-—r; Qr f: R[t]®r P > R[t]®r P, u®p — u®p—-ut® f(p).

This is indeed an automorphism. Namely, if f"*! = 0, then an inverse is given by
Yo (1 ®r £)K. The composite of N’ with both (evo).: Ki(R[t]) — K;(R) and
t: Ko(R) — Nily(R) is trivial. Hence N’ induces a homomorphism

N: Nily(R) — NK;(R).

The proof of the following theorem can be found for instance in [105] (for regular
rings), [102, Chapter XII], [860, Theorem 3.2.22 on page 149], and [998, 3.6 in
Section II1.3 on page 205].
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Theorem 3.72 (Bass-Heller-Swan decomposition for K). The following maps are
isomorphisms of abelian groups, natural in R,

N: Nily(R) = NK;(R);
j®Ki(i'): NKi(R) ® K (R) = K;(R[1]);
B EBKl(i) BjrBj-: KO(R) €BK1(R) GBNKI(R) EBNKI(R) i Kl(R[t, t‘l]).

One easily checks that Theorem 3.72 applied to R = ZG implies the following
reduced version

Theorem 3.73 (Bass-Heller-Swan decomposition for Wh(G X Z)). Let G be a
group. Then there is an isomorphism of abelian groups, natural in G

BoWh(i)® j, ® j_: Ko(ZG) ® Wh(G) ® NK,(ZG) & NK(ZG) = Wh(G X Z).

Example 3.74 (Ko(ZG) affects Wh(G)). The Whitehead group Wh(S,,) of the sym-
metric group S, is trivial, see Theorem 3.116 (iii), whereas EO(Z[S,,]) is a finite
non-trivial group for n > 5, see Theorem 2.113 (ii). In the sequel we let n > 5. We
conclude from Theorem 3.73 that Wh(S,, X Z) is non-trivial for n > 5, whereas the
obvious map

COlimHESub¢1N(S,,,><Z) Wh(H) il Wh(Sn X Z)

is the zero map and hence not surjective. Also the map
colimpesub,;y(G) Ki(ZH) — Ki(Z[S, X Z])

cannot be surjective. Hence there is no hope that a formula which computes K, (RG)
in terms of the values K, (RH) for all finite or all virtually cyclic subgroups H of G
(such as appearing in Conjecture 2.67) is true in general. The general picture will
be that a computation of a K or L-group of RG in dimension n involves K- and
L-groups of RH in all dimensions < n where H runs through all virtually cyclic
subgroups of G.

Denote by
k.: R — R[]

the ring homomorphism sending r to r - t°. Obviously I, o k. = i. Define a map
C: Ki(R[t,t7']) = Ko(R)

by sending the class [ f] of an R[¢, ¢ !]-automorphism f: R[t,t~!]* — R[t,t~']"
to the element [ P(f,[)] —-[R] where [ is a large enough positive integer and P(f, )
is the finitely generated projective R-module f(/~! - R[t~']) N R[t]. We omit the
proof that P( f,1) is a finitely generated projective R-module for large enough /, that
the class [P(f,[)] — [ - [R] is independent of [ and depends only on [ f], and that
the map C is a well-defined homomorphism of abelian groups.
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Theorem 3.75 (Fundamental Theorem of K-theory in dimension 1). There is a
sequence which is natural in R and exact

0 — Ky (R) 20D, 4 (RID) @ Ky (R[]

K (l4)«@K (1=
DR KRl ™) S Ko(R) = 0

where ki, k_, I, and [_ are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,
natural in R.

Proof. One checks C o B = idg,(g) and C o i, = Co j_ = Co j. = 0. Now apply
Theorem 3.72. a

3.7.2 The Grothendieck Decomposition for Gy and G

There is also a G-theory version of the Bass-Heller-Swan decomposition, which is
due to Grothendieck. Its proof can be found in [105] or [860, Theorem 3.2.12 on
page 141, Theorem 3.2.16 on page 143 and Theorem 3.2.19 on page 147].

Theorem 3.76 (Grothendieck decomposition for Gy and G). Let R be a Noethe-
rian ring.

(i) The inclusions R — R[t] and R — R[t,t™"] induce isomorphisms of abelian
groups

Go(R) = Go(R[1]);
Go(R) = Go(R[t,17']);
(ii) There are natural isomorphisms
iL: Gi(R) > Gi(R[1]);
Boi.: Go(R)® G (R) > G (R[t.t7']),

where i, B, and i. are defined analogously to the maps appearing in Theo-
rem 3.72.

Exercise 3.77. Show that the map Z N Go(R[Z"]) sending n to n - [R[Z"]] is an
isomorphism for a principal ideal domain R and n > 0.
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3.7.3 Regular Rings

Theorem 3.78 (Hilbert Basis Theorem). If R is Noetherian, then R[t] and R[t,t™']
are Noetherian.

Proof. See for instance [860, Theorem 3.2.1 on page 133 and Corollary 3.2.2 on
page 134]. |

Let (P) be a property of groups, e.g., being finite or being cyclic. A group G
is called virtually (P) if G contains a subgroup H C G of finite index such that H
has property (P). A group G is poly-(P) if there is a finite sequence of subgroups
{1} =Gy c G; € G, C...G, = G such that G; is normal in G;| and the quotient
Gi+1/G; has property (P) fori = 0,1,2,...,r — 1. Thus the notions of virtually
finitely generated abelian, virtually free, virtually nilpotent, poly-cyclic, poly-Z, and
virtually poly-cyclic are defined, where poly-Z stands for poly-(infinite cyclic).

Theorem 3.79 (Noetherian group rings). If R is a Noetherian ring and G is a
virtually poly-cyclic group, then RG is Noetherian.

Proof. See for instance [650, Lemma 10.55 on page 397]. O
No counterexample is known to the conjecture that CG is Noetherian if and only
if G is virtually poly-cyclic.
Theorem 3.80 (Regular group rings).
(i) The rings R[t] and R[t,t™"] are regular if R is regular;

(1) The ring RG is regular if R is regular and G is poly-Z;
(iii) The ring RG is regular if R is regular, Q C R and G is virtually poly-cyclic;

Proof. (i) This is proved for instance in [860, Theorem 3.2.3 on page 134 and
Corollary 3.2.4 on page 136].

(i1) This follows from [880, Theorem 8.2.2 on page 533 and Theorem 8.2.18 on
page 537] in the case where R is a field.

(iii) This follows from [880, Theorem 8.2.2 on page 533 and Theorem 8.2.20 on
page 538] in the case where R is a field. |

A ring is called semihereditary if every finitely generated ideal is projective,
or, equivalently, if every finitely generated submodule of a projective R-module is
projective, see [215, Proposition 6.2 in Chapter 1.6 on page 15].

Theorem 3.81 (Bass-Heller-Swan decomposition for K for regular rings). Sup-
pose that R is semihereditary or regular. Then we get
Nilo(R) = NK1(R) =0,
and the Bass-Heller-Swan decomposition of Theorem 3.72 reduces to the isomor-
phism
B®i.: Ko(R) ® K;(R) = K (R[1,17"]).
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Proof. The proof for regular R can be found for instance in [860, Exercise 3.2.25 on
page 152] or [940, Corollary 16.5 on page 226].

Suppose that R is semihereditary. Consider a nilpotent endomorphism f: P — P
of the finitely generated projective R-module P. Define 1 (f) = im(f) and K| (f) =
ker(f). Let flr,(r): I1(f) — I1(f) be the endomorphism induced by f. Since R
is semihereditary, I;(f) is a finitely generated projective R-module. We obtain a
commutative diagram

0——Ki(f) =P —Lo 1(f) —=0

N

00— K (f) —= P —>I,(f) —=0

with exact rows and nilpotent endomorphisms of finitely generated projective
R-modules as vertical arrows. Hence we get [f: P — P] = [Li(f): L (f) —
I,(f)] in Nilo(R). Define inductively 7,41 (f) = I1 (fl,(s)). Hence we get for all
nx1

[f: P =Pl = [fl,p: In(f) = I(N)].

Since f is nilpotent, there exists some n with I,(f) = 0. This implies [f] = 0 in
Nily(R). Now apply Theorem 3.72. O

Exercise 3.82. Prove that Ky(Z[Z"]) = Wh(Z") = 0 for all n > 0.

Remark 3.83 (Glimpse of a homological behavior of K-theory). In the case when
R is regular, Theorem 3.81 imbues a homological flavor into K-theory. Just observe
the analogy between the two formulas

K1 (R[Z]) = Ko(R[{1}]) ® K1 (R[{1}]);
H{(Z;A) = Hy({1}; A) ® H({1}; A),

where in the second line we consider group homology with coeflicients in some
abelian group A, which corresponds to the role of R in the first line.

Remark 3.84 (Von Neumann algebras are semihereditary but not Noetherian).
Note that any von Neumann algebra is semihereditary. This follows from the facts
that any von Neumann algebra is a Baer *-ring and hence in particular a Rickart
C*-algebra [124, Definition 1, Definition 2 and Proposition 9 in Chapter 1.4] and
that a C*-algebra is semihereditary if and only if it is Rickart [34, Corollary 3.7 on
page 270]. The group von Neumann algebra N (G) is Noetherian if and only if G is
finite, see [650, Exercise 9.11 on page 367].

Lemma 3.85. If R is regular, then the canonical homomorphism
£ Ko(R) = Go(R), [P] ~ [P]

is a bijection.
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Proof. We have to define an inverse homomorphism
r: G()(R) - K()(R).

Given a finitely generated R-module M, we can choose a finite projective resolution
P.. = (P., ¢) since R is by assumption regular. We want to define

r([M]) = D 2(=1)" - [Pa].

n>0

The Fundamental Lemma of Homological Algebra implies for two projective res-
olutions P, and Q. of M the existence of an R-chain homotopy equivalence
fe: P — Q., see for instance [997, Comparison Theorem 2.2.6 on page 35].
We conclude from Lemma 2.36 (i)

DD P = 0(P) = 0(0.) = D (=D - [Qa].

n>0 n>0

Hence the choice of projective resolution does not matter in the definition of
r([M]). It remains to show for an exact sequence of finitely generated R-modules
0->M-—>M —- M’ — 0that r(M) —r(M’) + r(M") = 0 holds. This follows
from Lemma 2.36 (ii) since we can construct from finite projective R-resolutions P,
of M and P}/ of M"" a finite projective R-resolution P, of M’ such that there exists
a short exact sequence of R-chain complexes 0 — P, — P, — P/ — 0, see [644,
Lemma 11.6 on page 216]. Hence r is well-defined. One easily checks that » and f
are inverse to one another. a

3.8 The Mayer-Vietoris K-Theory Sequence of a Pullback of
Rings

Theorem 3.86 (Mayer-Vietoris sequence for middle K-theory of a pullback of
rings). Consider a pullback of rings

R-——E—é-Rl

Ry —— Ry
J2

such that j| or j is surjective. Then there exists a natural exact sequence of six
terms
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(i1)+®(i2)« (1)+=(2)»
Ki(R) === Ki(R1) ® K1 (Ry) =——"= K (Ro)

0 i1)®(12)- 1) —(J2)x
2, Ko(R) 2B k0 (Ry) @ Ko(Ry) 2272, Ko(Ro).

Its construction and its proof requires some preparation. In particular we need the
following basic construction due to Milnor [727, page 20]. Let ji: Px — (jx)«Pxk
be the map sending x € Py to 1 ® x € Ry ®;, Py for k = 1,2. Define a ring
homomorphism iy = jj oi; = jp oix: R — Ry. Given Ri-modules Py for k =
0, 1,2 and isomorphisms of Ry-modules fi: (jx)«Px = Py for k = 1,2, define an
R-module M = M (P, P2, f1, f2) by the pullback of abelian groups

M ——P,

e

Py —— Py
faoja

together with the R-multiplication on M induced by the R-actions on Py that comes
from the ring homomorphisms iy: R — Ry for k =0, 1, 2.

Lemma 3.87. (i) The R-module M is projective if Py and Py are projective.

The R-module M is finitely generated projective if Py and P are finitely gener-
ated projective;

(ii) Every projective R-module P can be realized up to isomorphism as M for
appropriate projective Ry-modules Py for k = 0,1,2 and isomorphisms of
Ro-modules fi: (ji)«Px — Pofork =1,2;

(iii) The Ry-modules (i).M and Py are isomorphic for k = 1, 2.

Proof. This is proved in Milnor [727, Theorems 2.1, 2.2 and 2.3 on page 20] or in
[916, Proposition 59 on page 155, Proposition 60 on page 157, Proposition 61 on
page 158]. O

Now we can give the proof of Theorem 3.86

Proof. The main step is to construct the boundary homomorphism ;. Given an ele-

ment x € K;(Rp), we can find an automorphism f: R 5 R{ of a finitely generated
free R-module with x = [ f], see Lemma 3.10. The Ry-module M (R, R7, idR[r)z, )
is a finitely generated projective Ry-module by Lemma 3.87 (i). Define

Oi(x) = [M(R},Ry,idgy, /)] - [RG].

This is a well-defined homomorphism of abelian groups, see [916, page 164]. The
elementary proof of the exactness of the sequence of six terms can be found in [916,
Proposition 63 on page 164]. O

Now we are ready to give the promised proof of Rim’s Theorem 2.106.
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Proof. Consider the pullback of rings

Z[Z/p) —> Z[exp(2xi/p)]

B ——
zZ % Fp,
where here and in the sequel F, denotes the field with ¢ elements, i; sends the
generator of Z/p to exp(2ni/p), the map i, sends the generator of Z/p to 1 € Z, the
map j; is the projection and the homomorphism j; sends exp(2mi/p) to 1. Obviously
Jj1 and j, are surjective. Hence we get from Theorem 3.86 an exact sequence
(i1)+®(i2)s . (Jx=(j2)s 2
Ki(Z[Z/p]) —— Ki(Z[exp(2ni/p)]) ® K1(2) ——> Ki(F)) —
(i1)+8(i2)s . (D= (j2)s
Ko(Z[Z/p]) ——> Ko(Z[exp(2ni/p)]) & Ko(Z) ~———— Ko(Fp).

The map (j2).: Ko(Z) — Ko(Fp) is bijective by Example 2.4. Hence it re-
mains to prove that (ji).: Ki(Z[exp(2ni/p)]) — Ki1(F,) is surjective. Because
of Theorem 3.17 we have to find for each integer kK with 1 < k < p — 1 a unit
u € Z[exp(2ri/p)]* satisfying ji(u) = k. Put & = exp(27i/p). Choose an integer [
such that k/ = 1 mod p. Define

ui=l+&+8 4+ 40
vi= 1+ ek 4k g g gU=DE

Since (£ — Du = &% — 1 and (€ — 1) - v = ¢ — 1 and Z[exp(27i/p)] is an integral
domain, we get uv = 1 and hence u € Z[exp(2xi/p)]*. Obviously j;(u) = k. O

3.9 The K-Theory Sequence of a Two-Sided Ideal

Let I C R be atwo-sided ideal in the ring R. The double of the ring R along the ideal
I is the subring D(R, I) of R X R consisting of pairs (ry, r;) satisfying ry —rp € I.
Let pr: D(R,I) — Rsend (r1,ry) tor, fork =1,2.

Definition 3.88 (K,,(R, I)). Define for n = 0, 1 the abelian group K, (R, I) to be the
kernel of the homomorphism

(p1)+: Kn(D(R, 1)) — Ky (R).
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Theorem 3.89 (Exact sequence of a two-sided ideal for middle K-theory). We
obtain an exact sequence, natural in I C R,

J pr 0 J pro
Ki(R,I) = Ki(R) — Ki(R/I) — Ko(R,I) — Ko(R) — Ko(R/I).

Proof. We obtain a pullback of rings

D(R, 1) -2~ R

R——=R/I
pr
such that pr is surjective. We get from Theorem 3.86 the exact sequence

* * - pr, * o
Ki(D(R. 1)) L2220 e (Ry @ Ky (R) —— Ky (R/D) S

(p1):+®(p2)« —pr, +pr,
Ko(D(R, 1)) ——=" Ko(R) ® Ko(R) —— Ko(R/1).

This yields the desired exact sequence if we define j, : K, (R, I) — K,,(R) to be the
restriction of (p2).: K, (D(R,I)) — K,(R) to K,(R,I) forn = 0,1 and let 9; be
the map induced by 0. O

Next we give alternative descriptions of Ko(R, I).

Let S be a ring, but now for some time we do not require that it has a unit. If
we want to emphasize that we do not require this, we say that S is a ring without
unit, although it may have one. The point is that a homomorphism of rings without
units f: S — S’ is a map compatible with the abelian group structure and the
multiplication but no requirement about the unit is made. The ring obtained from S
by adjoining a unit S has as underlying group S @ Z. The multiplication is given by

(s1,n1) - (52,m2) = (s152 + nysy + nysy, nng).

The unit in S, is given by (0, 1). We obtain a natural embedding ig: S — S, by
sending s to (s,0). Let ps: Sy — Z be the homomorphism of rings with unit
sending (s,n) to n. We obtain an exact sequence of rings without unit 0 — § LN
Sy 2,7 0. If f: § — §’ is a homomorphism of rings without unit, we obtain a
homomorphism f;: S+ — S’ of rings with unit by sending (s,n) to (f(s),n). If S
has a unit 1g, then we obtain an isomorphism of rings with unit ug: S; 5 SxZ by
sending (s,n) to (s +n - 1g,n).

Definition 3.90 (K, (S) for rings without unit). Let S be a ring without unit. Define
forn=0,1
K, (S) = ker ((ps):: Kn(S+) — Kn(Z)) .
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Given a homomorphism f: S — S’ of rings without unit, the homomor-
phism (fi).: K,(S+) — K,(S,) induces a homomorphism of abelian groups
fe: Kn(S) — K,(S’). Thus we obtain a covariant functor from the category of
rings without unit to the category of abelian groups by sending S to K, (S).

If S happens to already have a unit, we get back the old definition (up to natu-
ral isomorphism). Namely, the isomorphism Ko(us): K, (S+) = K, (S x Z) sends
ker((ps)«) to the kernel of the map (pry).: K,(S X Z) — K, (Z) given by the
projection pry: S X Z — Z and the inclusion j: § — SXZ, s +— (s,0) in-
duces an isomorphism of K,,(S) to the kernel of the map pr; by Theorem 2.12 and
Theorem 3.9.

Lemma 3.91. Let I be a two-sided ideal in the ring R. Let Ko(I) be the projective
class group of the ring I without unit, see Definition 3.90. Then there is a natural
isomorphism

Ko(I) = Ko(R, I).

In particular, Ky(R, I) depends only on the ring without unit I but not on R.

Proof. The isomorphism is induced by the homomorphism of rings with unit 7, —
D(R,I) sending (s,n) to (n- 1g,n - 1g + s). The proof that it is bijective can be
found for instance in [860, Theorem 1.5.9 on page 30]. O

Exercise 3.92. Let n be a positive integer. Compute

Ko((m) = {0 =
(Z/n)* {1} ifn=>3,
for the ideal (n) = {mn | m € Z} C Z. Prove for the ideal (Nz») C Z[Z/2]
generated by the norm element that (Nz/») and (2Z) are isomorphic as rings without
unit. Conclude _
Ko(Z[Z/2]) = 0.

Next we give an alternative description of K| (R, ). Define GL(R,I) to be the
kernel of the map GL(R) — GL(R/I) induced by the projection R — R/I. Let
E(R, I) be the smallest normal subgroup of E(R) that contains all matrices of the
shape I, + r - El" forn e Z,n>1,i,j € {1,2,...,n},i # j, r € I. Note that
E(R,I) € GL(R,I). The proof of the next result can be found for instance in [860,
Theorem 2.5.3 on page 93].

Theorem 3.93 (Relative Whitehead Lemma). Let I C R be a two-sided ideal.
Then:

(1) The subgroup E(R, I) of GL(R) is normal;
(ii) There is an isomorphism, natural in (R, I)

GL(R,I)/E(R,I) = K (R, I);
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(iii) The center of GL(R)/E(R,I) is GL(R,I)/E(R,I);
(iv) We have E(R,I) = [E(R),E(R,I)] = [GL(R),E(R, I)].

Example 3.94 (K| (R, I) depends on R). In contrast to Ko(R, I) it is not true that
K1 (R, 1) is independent of R, as shown by Swan [942, Section 1]. Let S be a ring

and put
ab
e={[52) aaes)
b

o= {[32) inezres)
r={{oa) 1res}

Then K (R,I) = {0} and K1 (R’,I) = S

Remark 3.95 (Congruence Subgroup Problem). Given a commutative ring R,
the Congruence Subgroup Problem asks if every normal subgroup of GL(R) is
of the form SL(R,I) := {A € GL(R,I) | det(A) = 1} for some two-sided ideal
I C R. Bass has shown that for any normal subgroup H € GL(R) there exists an
ideal I C R satisfying E(R,I) € H € GL(R,I), see [102, Theorem 2.1 (a) on
page 229] or [859, Exercise 2.5.21 on page 106]. Hence the Congruence Subgroup
Problem has a positive answer if and only for every two-sided ideal / C R we have
E(R,I) = SL(R,I), see [859, Exercise 2.5.21 on page 106]. More information
about this problem can be found for instance in [106].

Exercise 3.96. Show that the Congruence Subgroup Problem has a positive answer
for every field F.

3.10 Swan Homomorphisms
3.10.1 The Classical Swan Homomorphism

The definitions and results of this subsection are taken from Swan [938]. This paper
marked the beginning of a development that finally leads to a solution of the Spherical
Space Form Problem 9.205, which we have also discussed in Section 2.5. It presents
a nice and illuminating interaction between geometry, group theory, and algebraic
K-theory.

Let G be a finite group. Let NG € ZG be the norm element, i.e., NG := Y 4cc &-
Consider the following pullback of rings
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(3.97) 76—~ 7G/(Ng)

where (Ng) C ZG is the ideal generated by N, i1 and j, are the obvious projections,
i is induced by the group homomorphism G — {1}, and j; is the unique ring
homomorphism for which the diagram above commutes. One easily checks thatitis a
pullback and that the maps i; and j; are surjective. Hence we can apply Theorem 3.86
and obtain a boundary homomorphism 9: K{(Z/|G|) — Ko(ZG). The obvious
homomorphism i: Z/|G|* — K{(Z/|G|) is an isomorphism by Theorem 3.6, since
the commutative finite ring Z/|G| is a commutative semilocal ring and hence the
determinant det: K;(Z/|G|) — Z/|G|* is an inverse of i.

Definition 3.98 (Swan homomorphism). The (classical) Swan homomorphism is
the composite

swO: ZJIGI* 5 K1 (Z/1G) S Ko(ZG).

Lemma 3.99. Let n € Z/|G|* be an element represented by n € Z. Then the ideal
(n, Ng) C ZG generated by n and N¢ is a finitely generated projective ZG-module
and

sw(n) = [(n,Ng)] - [ZG].

Proof. Let Py be the Z-module Z, P, be the ZG /(Ng)-module ZG /(Ng), and Py
be the Z/|G|-module Z/|G|. Consider the automorphism ry;: Z/|G| — Z/|G| given
by multiplication by n. Define a ZG-module P by the pullback

P——=7G/(Ng)

izj lrnojl

J2

One easily checks that the ZG map (n, Ng) — Z which sends n to n and Ng to
|G| and the ZG map (n, Ng) — ZG/(Ng) which sends n to the class of 1 and

Ng to 0 induce an isomorphism of ZG-modules (n, Ng) =, P. We conclude from
Lemma 3.87 (i) that (r, Ng) is a finitely generated projective ZG-module and that
sw(n) = [(n,Ng)] - [2G]. O

Remark 3.100 (Another description of the Swan homomorphism). For every
n € Z with (n,|G|) = 1, the abelian group Z/n with the trivial G-action is a
ZG-module that possesses a finite projective resolution P, see [171, Theorem
VI.8.12 on page 152]. Since two finite projective resolutions of Z/n are ZG-chain
homotopic, their finiteness obstructions agree, Lemma 2.36 (i). Thus we can define
[Z/n] € Ko(ZG) by o(P,) = X,,50(—1)" - [P,] for any finite projective resolution
P.. We get
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sw(n) = —[Z/n]

for any integer n € Z with (n,|G|) = 1. This follows essentially from [938,
Lemma 6.2] and Lemma 3.99.

Exercise 3.101. Show that sw© is trivial for a finite cyclic group G.

3.10.2 The Classical Swan Homomorphism and Free Homotopy
Representations

Let G be a finite group. A free d-dimensional G-homotopy representation X is a
d-dimensional CW-complex X together with a G-action such that for any open cell
e we have ge Ne # ) = g = 1 and the space X is homotopy equivalent to S¢. Then
G\X is a finitely dominated CW-complex, see [644, Lemma 20.2 on page 392].
Let f: X — Y be a G-map of free d-dimensional G-homotopy representations for
d > 2. Letn > 0 be the integer such that the homomorphism of infinite cyclic groups
H;(f): Hy(X) — H;(Y) sends a generator of H;(X) to +n-times the generator of
H;(Y). Let 0o(G\X),0(G\Y) € Kyo(ZG) be the finiteness obstructions of X and Y
with respect to the obvious identification G = 71 (X) = 71 (Y).

Lemma 3.102. Let G be a finite group of order > 3.

(i) The G-action on H,,(X) is trivial for m > 0 and d is odd;
(i) We have n > 1, (n,|G|) = 1, and

swC (@) = 0(G\Y) - 0(G\X).

Proof. (i) Let C.(X) be the cellular ZG-chain complex. The conditions about the
G-actions imply that C,.(X) is a free ZG-chain complex and is the same as C.(G\ X).
Since G\X is finitely dominated, we can find a finite projective ZG-chain complex
P, that is ZG-chain homotopy equivalent to C.(X), see [644, Proposition 11.11
on page 222] or Subsection 23.7.5. Since CG is semisimple, every submodule of a
finitely generated CG-module is finitely generated projective again. This implies the
following equality in Ko(CG) = Rc(G):

D=D" - [Py ®26 CG] = [Ho(X; O] + (-1)? - [Ha(X;C)].

m>0

The Bass Conjecture for integral domains 2.99 has been proved for finite groups
and R = Z by Swan [937, Theorem 8.1]. This implies that P, ®zc CG is a finitely
generated free CG-module for every n. Since P. ®zG Z ~ C.(G\X), we conclude
2mz0(=1)" [P ®26 CG] = x(G\X) - [CG]. Hence we get the following equality
in Rc(G)

x(G\X) - [CG] = [Ho(X;C)] + (=1)? - [Ha(X;C)].
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Obviously Hy(X; C) is CG-isomorphic to the trivial 1-dimensional G-representa-
tion [C]. Since Hy(X) = Z, there is a group homomorphism w: G — {+1} such
that Hy(X;C) is the 1-dimensional G-representation C* for which g € G acts by
multiplication by w(g). Thus we get in Rc(G)

x(G\X) - [CG] = [C]+ (=D~ [C"].
Computing the characters on both sides yields the following equalities for g € G

x(G\X) - |G| = 1+ (-D)%;
0=1+ (D% w(g) forg#l.

Since we assume |G| > 3 and y(G\X) is an integer, the first equality implies that
d is odd. The second inequality implies that w(g) = 1 for all g € G. Hence G acts
trivially on H,,(X) for all m > 0.

(i) Let C.(X) and C.(Y) be the free cellular ZG-chain complexes. Choose finite
projective ZG-chain complexes P, and Q. together with ZG-chain homotopy equiv-
alences u,: P, — C.(X) and v,: Q. — C.(Y). The map f: X — Y induces a
ZG-chain map C.(f): C.(X) — C.(Y). Choose a ZG-chain map h,: P, — Q.
satisfying v, o h, =~ C.(f) ou,. Let cone, = cone, (&) be the mapping cone of 4... It
is a (d + 1)-dimensional free ZG-chain complex such that H,,(cone,) = 0 form # d
and H;(cone(C.(f))) is ZG-isomorphic to Z/n with the trivial G-action. This fol-
lows from the long exact homology sequence associated to the short exact sequence
of ZG-chain complexes 0 — Q. — cone(h.) — P, — 0 and assertion (i). Let
D.. be the ZG-chain subchain complex of cone, such that D 4,1 = conegy1, Dy is
the kernel of the d-th differential of cone, and Dy = 0 for k # d,d + 1. Then D, is
a projective ZG-chain complex and the inclusion D, — cone, induces an isomor-
phism on homology and hence is a ZG-chain homotopy equivalence. In particular,
we get a short exact sequence 0 — D g4 — Dy — Z/n — 0. This excludes n = 0
since the cohomological dimension of a non-trivial finite group is co. Suppose that
(n,|G|) = 1 is not true. Then we can find a prime number p such that Z/p is a
subgroup of G and Z/p' is a direct summand in Z/n for some [ > 1. This implies
that the cohomological dimension of the trivial Z[Z/p]-module Z/p’ is bounded by
1. An easy computation shows that Ext%[Z /p] (Z,7Z/p") does not vanish for all n > 2,
a contradiction. Hence (n, |G|) = 1.
We conclude from Lemma 2.36

(D% [Z/n] = (=D - [Dg1] + (=1)? - [D4] = o(D.) = o(cone,)
= [0.] = [P.] = 0o(G\Y) — 0(G\X).

Since d is odd by assertion (i), we conclude sw(n) = o(G\Y) — o(G\X) from
Remark 3.100. O

Exercise 3.103. Let X be a free d-dimensional G-homotopy representation of the
finite cyclic group G. Then G\ X is homotopy equivalent to a finite CW-complex.
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3.10.3 The Generalized Swan Homomorphism

In this subsection we briefly introduce the generalized Swan homomorphism. For
proofs and more information we refer to [644, Chapter 19].
Fix a finite group G. Let m be its order |G|. We obtain a pullback of rings

726G ——Z[1/m]G

|

Z(m)G —— QG

Despite the fact that neither the right horizontal arrow nor the lower vertical arrow are
surjective, one obtains a long exact sequence, which is an example of a localization
sequence

(3.104) K{(ZG) — K1 (Z[1/m]G) & K\ (Z(m)G) — K1(QG) > Ko(ZG)
— Ko(Z[1/m]G) & Ko(Z(n)G) — Ko(QG).

In the sequel, we denote by K1 (QG)/K1(Z)G) the cokernel of the change of rings
homomorphism K1 (Z,)G) — K1(QG).

Definition 3.105 (Generalized Swan homomorphism). The generalized Swan ho-
momorphism

SWO: Z/m* — Ki(QG)/K\(Z(m)G)

sends 7 to the element in K1 (QG) /K1 (Z ) G) that is given by the element in K1 (QG)
represented by the QG-automorphism 7 - id: Q — Q of the trivial QG-module Q.

This is well-defined by the argument in [644, page 381]. The following result is
taken from [644, Theorem 19.4 on page 381]

Theorem 3.106 (The generalized Swan homomorphism). Ler G be a finite group
of order m.

(i) The composite of the generalized Swan homomorphism
WY Z/m* — Ki(QG)/K1(Z(mG)

introduced in Definition 3.105 with the homomorphism
9: K1(QG)/Ki(Z(m)G) — Ko(ZG)

induced by the boundary homomorphism of the localization sequence (3.104) is
the classical Swan homomorphism swC : Z/m>* — Ko(ZG) of Definition 3.98;

(ii) The generalized Swan homomorphism w9 Z/m* — K{(QG)/K; (Z(m)G) is
injective.
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3.10.4 The Generalized Swan Homomorphism and Free Homotopy
Representations

In this subsection we briefly discuss Reidemeister torsion for free homotopy repre-
sentations. For proofs and more information we refer to [644, Chapter 20].

Let G be a finite group of order m = |G|. Let X be a free d-dimensional
G-homotopy representation. Suppose that we have fixed an orientation, i.e., a gen-
erator of Hy(X;Z). Then we can define a kind of Reidemeister torsion of X

(3.107) p°(X) € Ki1(QG)/K1(Z(mm)G)

as follows. The change of rings map Ko(ZG) — EO(Z(m)G) is trivial, see [937,
Theorem 7.1 and Theorem 8.1]. Hence there is a finite free Z,,,) G-chain complex F
together with a Z,,) G-chain homotopy equivalence f,: F, — C.(X) ®2G Z(m)G.
Choose a Z(,)G-basis for F,. Then F, ®Z () G QG is a finite based free QG-chain
complex. Note that we have preferred isomorphisms of abelian group Ho(X) = Z
and Hy(X) = Z and G acts trivially on Hy(X) and Hy(X). This induces preferred
QG-isomorphisms H; (F, ®Z ()G QG) = Q for i = 0, d where we equip Q with the
trivial G-action. This enables us to define a torsion invariant 7(F. ®z,, ¢ QG) €
K1 (QG) although F, ®z,,, G QG is not acyclic. Define 7Y (X) to be its image under
the projection K, (QG) — K;(QG)/K, (Z(m)G). One easily checks that ,T)G(X) is
independent of the choice of Fi, f., and the choice of the Z,,)G-basis for F.. The
proof of the following result is a special case of the results in [644, Theorem 20.37
on page 403 and Corollary 20.39 on page 404].

Theorem 3.108 (Torsion and free homotopy representations). Let G be a finite
group of order m = |G| = 3. Let X and Y be free oriented G-homotopy representa-
tions.

(i) The homomorphism 8: K,(QG)/K; (Z(m)G) — Ko(ZG) sends the torsion
S (X) to the finiteness obstruction o(G\X);
(ii) Let f: X — Y be a G-map, which always exists. Then its degree deg(f) is
prime to m and
sw (deg(f)) = 59 (¥) - P9 (X);

(iii) The free G-homotopy representations X and Y are oriented G-homotopy equiv-
alent if and only if p€ (X) = pC (Y).

Theorem 3.108 gives an interesting relation between torsion invariants and fi-
nite obstructions and generalizes the homotopy classification of lens spaces to free
G-homotopy representations.

All this can be extended to not necessarily free G-homotopy representations,
see [644, Section 20]. The theory of G-homotopy representations was initiated by
tom Dieck-Petrie [955].
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3.11 Variants of the Farrell-Jones Conjecture for K (RG)

In this section we state variants of the Farrell-Jones Conjecture for Kj(RG). The
Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings but
to formulate the full version some additional effort will be needed. If one assumes
that R is regular and G is torsionfree, the conjecture reduces to an easy to formulate
statement, which we will present next. Moreover, this special case is already very
interesting.

Conjecture 3.109 (Farrell-Jones Conjecture for Ky(RG) and K (RG) for regu-
lar R and torsionfree G). Let G be a torsionfree group and let R be a regular ring.
Then the maps defined in (3.26) and (3.27)

Ao: Ko(R) = Ko(RG);
A1: G/[G,G] 8z Ko(R) ® K1 (R) = Ki(RG),

are both isomorphisms. In particular the groups WhOR(G) and th(G) introduced
in Definition 3.28 vanish.

We mention the following important special case of Conjecture 3.109.

Conjecture 3.110 (Farrell-Jones Conjecture for Ko(ZG) and Wh(G) for torsion-
free G). Let G be a torsionfree group. Then Ky(ZG) and Wh(G) vanish.

We have already discussed the Ky-part of the two conjectures above in Section 2.8.
The following exercise shows that we cannot expect to have an analog for K} (RG)
of the Conjecture 2.67.

Exercise 3.111. Let G be a group and let R be a ring. Suppose that the map
colimpesuby,y(Gxz) K1 (RH) — K (R[G X Z])

is surjective. Show that then Ko(RG) = 0 and hence Ko(R) = 0. In particular, R
cannot be a commutative integral domain.

Remark 3.112 (Relevance of Conjecture 3.110). In view of Remark 3.13 Conjec-
ture 3.110 predicts for a torsionfree group G that any matrix A in GL,(ZG) can
be transformed by a sequence of the operations mentioned in Remark 3.13 to a
(1, 1)-matrix of the form (+g) for some g € G. This is the algebraic relevance of
this conjecture. Its geometric meaning comes from the following conclusion of the
s-Cobordism Theorem 2.39. Namely, if G is a finitely presented torsionfree group,
and n an integer with n > 6, then it implies that every compact n-dimensional
h-cobordism is trivial.



3.12 Survey on Computations of K (ZG) for Finite Groups 111

3.12 Survey on Computations of K; (ZG) for Finite Groups

In contrast to Ky(ZG) for finite groups G, the Whitehead group Wh(G) of a finite
group is very well understood. The key source for the computation of Wh(G) for
finite groups G 1is the book written by Oliver [776].

Definition 3.113 (SK;(ZG) and Wh’(G)). Let G be a finite group. Define

SK1(ZG) := ker((K1(ZG) — K1(QG)) ;
Wh'(G) = Wh(G)/tors(Wh(G)).

Remark 3.114 (SK;(ZG) and reduced norms). Let G be a finite group. The
reduced norm on CG is defined as the composite of isomorphisms of abelian groups

k
[ [M.©
i=1

nreg - K1 (CG) ﬁ) K

k
= [ [xim,(©)
i=1

= [k 1o, ]‘[@X
i=1

where the isomorphism of rings ¢: CG — Hle M, (C) comes from Wedderburn’s
Theorem applied to the semisimple ring CG and the remaining three isomorphisms
come from Theorem 3.6, Lemma 3.8, and Lemma 3.9. The reduced norm on RG for
R =2Z,Q is defined as the composite

) k
nrre: Ki(RG) =5 K1 (CG) —=<, l_[ (o
i=1

where ir is the obvious change of rings homomorphism. The map ig is injective,
see [776, Theorem 2.5 on page 43]). Thus we can identify

k
SKi(ZG) = ker|nrzg: Ki(ZG) — HCX).

This identification is useful for investigating SK1(ZG) and Wh’'(G). We conclude
that for abelian groups the two definitions of SK(ZG) appearing in Definition 3.15
and Definition 3.113 agree.

We denote by rr(G) the number of isomorphism classes of irreducible represen-
tations of the finite G over the field F. Recall that rp = | cong(G)| by Lemma 2.89.
The proof of the next result can be found for instance in [776, Theorem 2.5 on
page 48] and is based on the Dirichlet Unit Theorem 3.21.
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Theorem 3.115 (SK|(ZG) = tors(Wh(G))). Let G be a finite group. Then the
abelian group SK|(ZG) is finite and agrees with the torsion subgroup tors(Wh(G))
of Wh(G). The group Wh'(G) = Wh(G)/tors(Wh(G)) is a finitely generated free
abelian group of rank rp (G) — rq(G).

Hence the next step is to compute SK;(ZG). This is done using localization
sequences, see [776, Theorem 1.17 on page 36 and Section 3c], which also involve
the second algebraic K-group, see Chapter 5, and are consequences of the general
result of Quillen stated in Theorem 6.49. Define

SK\(Z;G) := ker (K1(Z,G) — K1(Q;G)).

Put

Cli(ZG) := ker (SKl(ZG) - ]—[ s;q(z;c))
plIGI

where p runs over all prime numbers dividing |G|. Then one obtains an exact
sequence, see [776, (2) on page 7],

0 — CL,(ZG) — SK,(ZG) — ]—[ SK\(Z;G) — 0.
pl 1G]

The analysis of Cl;(ZG) and SK;(Z,G) is carried out independently and with
different methods. Besides localization sequences p-adic logarithms play a key role.
Details can be found in Oliver [776].

Given groups G and Q, the wreath product G ¢ Q is defined to be the semidirect
product [ G = Q where Q acts on [ G = Q permuting the factors.

Theorem 3.116 (Finite groups with vanishing Wh(G) or SK|(ZG)). Let G be a
finite group.

(i) Let p be a prime number. If the p-Sylow subgroup S,G of G is isomorphic
to Z/p"™ or Z[p"™ X Z] p for some n > 0, then SK1(ZG)p) = 0, i.e., the finite
abelian group SK(ZG) contains no p-torsion;

(ii) Let G be a finite abelian group. Then SK\(ZG) = 0 if and only if one of the
following conditions hold:

(a) For every prime p the p-Sylow subgroup S,G is isomorphic to Z[p™ or
Z[p"™ X Z/p for some n > 0;
(b) We have G = (Z/2)" for some n > 1;

(iii) Let Cwy, be the smallest class of groups that is closed under finite products and
wreath products with S, for every n > 2 and contains the trivial group. Let
Csk, be the smallest class of groups that is closed under finite products and
wreath products with S,, for every n > 2 and contains the dihedral groups D,
Jorn>1.

Then Wh(G) = 0 for G € Cwn and SK,(ZG) =0if G € Csk,;
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(iv) We have SK1(ZG) = 0 if G is one of the following groups:

(a) G is finite cyclic;

(b) Z/p"™ X Z/p for some prime p and n > 1;
©) (Z/2)" forn = 1;

(d) G is any symmetric group;

(e) G is any dihedral group;

(f) G is any semidihedral 2-group.

Proof. (i) See Oliver [776, Theorem 14.2 (i) on page 330].
(ii) See Oliver [776, Theorem 14.2 (iii) on page 330].
(iii) See Oliver [776, Theorem 14.1 on page 328].

(iv) This follows essentially from the other assertions. See Oliver [776, Examples 1
and 2 on page 14]. |

The group SK;(ZG) can be computed for many examples. We mention the
following example taken from [776, Theorem 14.6 on page 336].

Example 3.117 (SK|(Z[A,])). We have SK|(Z[A,]) = Z/3 if we can write
n=73r_ 3" suchthatm; >my >--->m, >0and },;_, m; is odd. Otherwise we

get SK1 (Z[A,]) = {0}.

Exercise 3.118. Show that the Whitehead group Wh(Z/m) of the finite cyclic group
Z/m of order m is a free abelian group of rank |m/2] + 1 — §(m), where |m/2] is
the greatest integer less or equal to m /2 and &(m) is the number of divisors of m.

Let p be a prime. Show that Wh(Z/p) is isomorphic to Z(P~D/2=1 if p is odd
and is trivial if p = 2.

Exercise 3.119. Find the finite abelian group of smallest order for which Wh(G) is
finite and non-trivial.

The following result taken from [776, Theorem 14.5 on page 333] is rather
puzzling. If p is any prime, k& > 1 is any natural number, and F ,« is the finite field

with pk elements, then

SKL ZISLa(E 1) = {2/3 XZ[3 ifp=3, k isodd and k > 5;
{0} otherwise.

The standard involution on ZG sending Yoec Ag 8 10 Ygeg Ag g~ ! induces an
involution x: Wh(G) — Wh(G). If G is a finite group, then the induced involution
on Wh'(G) is trivial by a result of Wall, see [776, Corollary 7.5 on page 182].
Computation of the induced involution on SK(ZG) can be found in [776], e.g., the
involution induced on Cl1;(ZG) C SK;(ZG) is the identity, see [776, Theorem 5.12
on page 151] or [61]. Note that it is not true that the involution on Wh(G) is trivial
for all finite groups G.
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3.13 Survey on Computations of Algebraic K;(C;(G)) and
K1(N(G))

Define SL(R) := {A € GL(R) | det(A) = 1}. Let B be a commutative Banach
algebra. Then GL,(B) inherits a topology, namely, the subspace topology for the
obvious embedding GL,(B) € M, (B) = ?:zl B. Equip GL(B) = U,,»1 GL,(B)
with the weak topology, i.e., a subset A € GL(B) is closed if and only if ANGL,,(B)
is a closed subset of GL,,(B) forall n > 1. Equip SL(B) € GL(B) with the subspace
topology.

The following results are due to Milnor [727, Corollary 7.2 on page 57 and
Corollary 7.3 on page 58].

Theorem 3.120 (K (B) of a commutative Banach algebra). Let B be a commu-
tative Banach algebra. Then there is a natural isomorphism

K1(B) = B* x my(SL(B)).

Define the infinite special orthogonal group SO = |J,»1 SO(n) and infinite
special unitary group SU = |J,>; SU(n) for SO(n) = {A € GL,(R) | AA" =
I,det(A) = 1} the special n-th orthogonal group and SU(n) = {A € GL,(C) |
AA* = I,det(A) = 1} the special n-th unitary group. Denote by [X,SO] and
[X, SU] respectively the set of homotopy classes of maps from X to SO and SU
respectively.

Theorem 3.121 (K;(C(X)) of a commutative C*-algebra C(X)). Let X be com-
pact space. Then there are natural isomorphisms

Ki(C(X,R)) = C(X,R)* x [X, SO;
K\(C(X,C)) = C(X,C)* x [X, SUJ.

The sets [X,SO] and [X, SU] are closely related to the topological K-groups
KO~ '(X) and K~ (X).

If B is a group C*-algebra C;(G), then not much is known about the algebraic
K-group K (B) in general. At least we mention [345, Remark 1.3], where it is shown
that for a simple infinite unital C*-algebra B the canonical map from the algebraic to
the topological K-group is bijective. An example for B is C; (F) for the free group
F, of rank g for g > 2.

However, the algebraic K;-group of a von Neumann algebra is fully understood,
see [650, Section 9.3],[678]. We mention the special case, see [650, Example 9.34
on page 353], that for a finitely generated group G which is not virtually finitely
generated abelian the Fuglede-Kadison determinant induces an isomorphism

(3.122) Ki(N(G)) = Z(N(G))™™

where Z(N(G))*™ consists of the elements of the center of A'(G) that are both
positive and invertible.
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The connection between the algebraic and the topological K-theory of a
C*-algebra will be discussed in Section 10.7.

3.14 Notes

A universal property describing the Whitehead group and the Whitehead torsion
similar to the description of the finiteness obstruction in Section 2.7 is presented
in [644, Theorem 6.11].
Geometric versions or analogs of maps related to the Bass-Heller-Swan decom-
position are described in [350], [380], [644, (7.34) on page 130], and [840, § 10].
Given two groups G and G2, let G| * G by the amalgamated free product. Then
the natural maps Gy — Gg * G| for k = 1, 2 induce an isomorphism, see [924],

(3.123) Wh(G;) ® Wh(G2) = Wh(G * G2).

Compare this with the analog for the reduced projective class groups stated in (2.126).

Exercise 3.124. Show that the projections pr;: G| X Gy — Gy for k = 1,2 do not
in general induce an isomorphism

Wh(G| x G2) — Wh(G;) x Wh(G>).

There are also equivariant versions of the Whitehead torsion, see for instance [644,
Chapter 4 and Chapter 12], where more references can be found.
Next we discuss the following conjecture.

Conjecture 3.125 (Unit-Conjecture). Let R be an integral domain and G be a
torsionfree group. Then every unit in RG is trivial, i.e., of the form r - g for some
unitr € R* and g € G.

For more information about it we refer for instance to [610, page 95]. We have
discussed its relations to some other conjectures already in Remark 2.85.

Remark 3.126 (Status of the Unit Conjecture and its stable version). Actually,
Gardam found an explicit counterexample to the Unit Conjecture, see [417, Theo-
rem A]. His group G is given by the presentation

(a,b | ba*b~" =a7?,ab*a”" = b7?).

It can be written as a non-split extension 1 — Z*> — G — Z/2xZ/2 — 1 and is a
crystallographic group. The underlying coefficient ring is the field of two elements F,.
Note that Gardam found his counterexample using computer algebra, but in his paper
he presents a short human-readable proof. Counterexamples where the coefficient
ring is a field of (arbitrary) prime characteristic were constructed by Murray [755].
Gardam [418, Theorem A] constructed counterexamples with coefficients in C for
the same group G as above.
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Note that Conjecture 3.109 does not imply the Unit Conjecture 3.125. At least the
bijectivity of the map A; implies the stable version of the Unit Conjecture 3.125 that
the class [x] € K1(RG) of any unit x € RG* is represented by the class [u] of some
trivial unit u, or, equivalently, by a sequence of elementary row and column operation
and (de-)stabilization one can transform the (1, 1)-matrix (x) to the (1, 1)-matrix
(u), see Remark 3.13, provided that Ko(R) vanishes.

Note, that the map (ZG)* — K;(ZG) sending a unit to its class in the K;-group
is in general not injective and in general not every unit is a trivial unit, as the
following example shows. If G is a finite group, then a result of Hartley-Pickel [468,
Theorem 2] says that exactly one of the following cases occurs:

e G is abelian and (ZG)* is abelian;
e G is a Hamiltonian 2-group and (ZG)* = {xg | g € G};
e (ZG)* contains a free subgroup of rank 2.

Hence for the symmetric group S, for n > 3, the group of units Z[S,]* is infi-
nite, whereas Wh(S,,) vanishes, see Theorem 3.116 (iii), and hence K (Z[S,]) and
{£g | g € Sy} are finite. This implies that the map (Z[S,])* — K(Z[S,]) has
an infinite kernel for n > 3 and that there are infinitely many elements in (Z[S,,])*
which are not trivial units.



Chapter 4
Negative Algebraic K-Theory

4.1 Introduction

In this chapter we introduce negative K-groups. They are designed such that the
Bass-Heller-Swan decomposition and the long exact sequence of a pullback of rings
and of a two-sided ideal extend beyond Ky. We give a geometric interpretation
of negative K-groups of group rings in terms of bounded /-cobordisms. We state
variants of the Farrell-Jones Conjecture for negative K-groups and give a survey of
computations for group rings of finite groups.

4.2 Definition and Basic Properties of Negative K-Groups

Recall that we get from Theorem 3.75 an isomorphism
Ko(R) = coker (Ki (R[1]) ® K1 (R[™']) = K1 (R[£,1™']))
This motivates the following definition of negative K-groups due to Bass.
Definition 4.1. Given a ring R, define inductively forn = —1,-2, ...
Kn(R) 1= coker (K (R[1]) @ Kne1 (RI']) = Kot (RI1,27']))
Define forn = -1,-2, ...
NK,,(R) := coker (K,,(R) — K, (R[t])) .

Obviously a ring homomorphism f: R — S induces for n < —1 a map of abelian
groups

4.2) Kn(f): Kn(R) = Ku(S).

The Bass-Heller-Swan decomposition 3.72 for K (R[¢,¢~!]) extends to negative
K-theory.

117
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Theorem 4.3 (Bass-Heller-Swan decomposition for middle and lower K -theory).
There are isomorphisms of abelian groups, natural in R, forn =1,0,-1,-2,...

NK,(R) @ Ko (R) = Ky (RI1]);
Ka(R) ® Ko-1(R) ® NK(R) ® NK, (R) = K, (R[1,17']).
There is a sequence which is natural in R and exact forn =1,0,-1,...
Ki (ks )@= Ky (k-) -
0 — Ky(R) ———"— K,(R[1]) ® K, (R[1"'])
K (1)K (1), _ n
KnlloR ) (R 1711) <5 Kooy (R) = 0

where ki, k_, I, and [_ are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,
natural in R.

Proof. We give the proof only for n = 0, then an iteration of the argument proves the
claim for all n < 0. Take S = R[Z] = R[x,x~']. We obtain a commutative diagram

0 0
Ko(R) ~ Ki(S)
Ko(k+)®—Ko(k-) Ko (k+)®-Ko(k-)
Ko(R[1]) ® Ko(R[1"]) r Ki(S[r]) @ K1 (S[~])
Ko(l.)®Ky(1-) Ko(l1)®oKy(1-)
Ko(RIt,171]) d Ki(S[r,71))
C’ C
K_1(R) L Ko(S)
0 0

where the right column is the exact sequence appearing in Theorem 3.75, the map C’
is the canonical projection, the maps fi, f>, and f3 come from the Bass-Heller-Swan
decompositions for § = R[x,x~'], S[¢t] = R[¢][x,x~'], S[t7'] = R[+~"][x,x"'],
and S[#,t7'] = R[t,t7"][x,x"], and the map f; is the unique map that makes the
diagram commutative. There are natural retractions ri of fi for k = 1, 2, 3 for which
the diagram remains commutative, and a natural chain contraction y = {y | k =
0, 1,2} of the right column, see Theorem 3.72. Let ro: Ko(S) — K_1(R) be the
unique map that satisfies rg o C = C’ o ry. An easy diagram shows that r( is well-
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defined, since C’ o r3 sends the kernel of C to zero. One easily checks rg o fy = id.
We obtain a chain contraction for the left column by considering the composites
Fr+1 0 Yk o fr fork =0,1,2. O

Remark 4.4 (Extending exact sequences to negative K-theory). The Mayer-
Vietoris sequence of a pullback of rings, see Theorem 3.86, can be extended to
negative K-theory and also to K5, as we will explain in Theorem 5.9. Similarly, the
long exact sequence of a two-sided ideal appearing in Theorem 3.89 can be extended
to negative K-theory and also to K3, as we will explain in Theorem 5.12.

Exercise 4.5. Let R and S be rings. Show for n < 1 that the projections induce an
isomorphism

Ku(RX S) = Ku(R) X K,(S).
Definition 4.6. Define for n < 1 inductively for p =0, 1,2,...

N°K,(R) = Ku(R);
NP K, (R) := coker (NPK,,(R) — NPK,(R[1])).

Obviously N'K,,(R) agrees with NK,(R).

Theorem 4.7 (Bass-Heller-Swan decomposition for lower and middle K-theory
for regular rings). Suppose that R is regular. Then we get

K,(R)=0 forn<-1,
NPK,(R)=0 forn<landp =1,

and the Bass-Heller-Swan decomposition appearing in Theorem 4.3 reduces for
n <1 to the natural isomorphism

Koo 1(R) ® Ky (R) = Ky (R[1,17']).

Proof. The Bass-Heller-Swan decomposition, see Theorem 4.3, applied to R and
R[¢] together with the obvious maps i: R — R|[t] and €: R[t] — R satisfying
€ o i = idg yield a natural Bass-Heller-Swan decomposition

(4.8)  NKn(R) ® NK,_1(R) ® N*K,(R) ® N*K,(R) — NK,(R[Z]).

Hence NK,,—1(R) = 0 if NK,(R[Z]) = 0. If R is regular, then R[Z] is regular
by Theorem 3.80 (i). Hence NK,,—1(R) vanishes for all regular rings R if NK,,(R)
vanishes for all regular rings. We have shown in Theorem 3.81 that NK| (R) vanishes
for all regular rings R. We conclude by induction over n that NK,, (R) vanishes for all
regular rings R and n < 1. Obviously N” K, (R) is a direct summand in NK,,(R[¢])
and R[¢t] is regular by Theorem 3.80 (i). Hence N”K,,(R) vanishes for p > 1 and
n < 1if R is a regular ring.
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Next we show K_;(R) = 0 for every regular ring R. It suffices to show that the
obvious map Ko(R[t]) — Ko(R[t,t™']) is surjective. The homomorphism

a: Go(R[t]) = Go(R[t,t7']), [M] — [M ®g, R[t,17']]

is well-defined, since R[z,77'] is a localization of R[] and hence flat as an R[¢]-
module. Since R by assumption and hence R[¢] and R[¢,7~'] by Theorem 3.80 (i)
are regular, we conclude from Lemma 3.85 that it remains to prove surjectivity of
@. Let M be a finitely generated R[t,7”']-module. Since R[t,¢7'] is Noetherian,
we can find a matrix A € M,,_,(R[t,17']) such that there exists an exact sequence
of R[t,t~']-modules R[t,1]™ A R[t,t7']" — M — 0. Since ¢ is invertible
in R[r,17'], the sequence remains exact if we replace A by t*A for some k > 1.
Hence we can assume without loss of generality that A € M,, ,(R[¢]). Define the
R[t]-module N to be the cokernel of R[¢]™ 4, R[t]". Then N ®g[;] R[t,t7] is
R[t,t™']-isomorphic to M and hence ([ N]) = [M].

Now K, (R) = 0 follows inductively for n < —1 for every regular ring from
Theorem 3.80 (i) and the Bass-Heller-Swan decomposition 4.3.

Finally apply Theorem 4.3. O

Exercise 4.9. Let R be a regular ring. Prove

k
Ki(R[Z¥]) = Ki(R) & €D Ko(R);

i=1
Ko(R[Z"]) = Ko(R);
K,(R[ZF]) =0 forn<-—1.

Example 4.10 (K,,(Z[Z/p x Z¥]) for n < 0 and a prime p). Let p be a prime
number. We want to show
K,(Z[Z/p xZ¥]) =0 forn<-landk >0

and that Ko(Z[Z/p x Z¥]) is finitely generated for k > 0. Consider the pullback of
rings appearing in the proof of Rim’s Theorem in Section 3.8.

ZIZ/p] —> Z[exp(27i/p)]

_—
z — Fp.

If we apply — ® Z[Z¥], we obtain the pullback of rings
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ZIZ/p x Z¥] —> Z[exp(2ni/p)][Z"]

Z[ZK] TFP [ZF].

The ring Z[exp(2ni/p)] is a Dedekind domain, see Theorem 2.23, and in particular
regular. The rings Z and F, are regular as well. Hence the rings Z[exp(2i/p)] [ZF],
Z[Z*], and F,[Z*] are regular by Theorem 3.80 (i). The negative K-groups of
Zlexp(2ni/p)1[Z*], Z[Z¥] and F,, [Z*] vanish by Theorem 4.7. The obvious maps

Ko(Z) = Ko(Z[Z");
Ko(Z[exp(27i/p)]) = Ko(Z[exp(2ni/p)] [Z*]):;
Ko(F,) = Ko(F, [Z4]),
are bijective because of Theorem 4.7. Hence the associated long exact Mayer-Vietoris

sequence, see Remark 4.4, implies that K,,(Z[Z/p x Z¥]) = 0 holds for n < -2 and
that we get the exact sequence

K1(F,[Z*) — Ko(Z[Z/p x Z*])
— Ko(Z) ® Ko(Z[exp(27i/p)]) — Ko(F,) — K_1(Z[Z/p x Z¥]) — 0.

Since F), is a field and hence Ko(F,) is generated by [F,], see Example 2.4,
we conclude K_(Z[Z/p x Z¥]) = 0. Example 2.4, Theorem 3.17, and Theo-
rem 4.7 imply K (F, [Z*]) = K (F,) ® Ko(Fp)* = (F,)* @ Zk. The abelian group
Ko(Z) ® Ko(Z[exp(2mi/p)]) is finitely generated by Theorem 2.23. Hence
Ko(Z[Z/p x Z¥]) is finitely generated.

Exercise 4.11. Consider k € {0, 1,2, ...}. Show K,,(Z[Z/3 x Z¥]) = 0 for n < 0.
Prove that NPK,,(Z[Z/3 x Z¥]) = 0 holds for n < —1 and p > 0 and for n = 0 and
p=>1

Example 4.12 (Negative K-theory of Z[Z/6]). We want to show

K (Z12/6) {f .

I3

Consider the pullback of rings

712/2] ——~ 7

ZTZ/z
2
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where i| sends a+ bt to a—b and i sends a+ bt to a+b fort € Z/2 the generator and
the two maps from Z to Z/2 are the canonical projections. Since Z[Z/3] is free as an
abelian group, this remains to be a pullback of rings if we apply —®zZ[Z/3]. We have
isomorphisms of rings Z[Z/2] ®z Z[Z/3] = Z[Z/6] and Z @z Z[Z/3] = Z[Z/3].
From the pullback for p = 3 appearing in Example 4.10 we obtain an isomorphism
of rings

Fy ®7 Z[Z/3] = F, x (F, @z Z[exp(27i/3)]).

The ring Z[exp(2n7i/3)] is as an abelian group free with two generators 1 and
w = exp(27i/3) and the multiplication is uniquely determined by w? = -1 — w.
Hence F; ®z Z[exp(2ni/3)] contains four elements, namely 0, 1, 1 ® w, and the
sum 1 + 1 ® w. Since (1 @ w) - (1 + 1 ® w) = 1, it is the field F4 consisting of four
elements. Hence we obtain a pullback of rings

7[2/6] ——>Z[Z/3]

Z[Z/3] —=F2 xFy.
J2

Since K, (FyxFy4) = K, (F;) XK, (F4) vanishes forn < —1 and K, (Z[Z/3]) vanishes
for n < —1 by Example 4.10, the associated long exact Mayer-Vietoris sequence, see
Remark 4.4, implies that K,,(Z[Z/6]) = 0 holds for n < —2 and there is an exact
sequence

Ko(Z[Z/3]) ® Ko(Z[Z/3]) — Ko(F> x F4) — K_1(Z[Z/6]) — 0.

Since Ko(Z[Z/3]) is trivial, see Example 2.107, and the projections induce an

isomorphism Ko (F, xFy) 5 Ko(F)xKo(F4) = Z&®Z, we conclude K_| (Z[2/6]) =
Z.

Exercise 4.13. Consider k € {0, 1,2, ...}. Compute

7kl forn = 0;
K, (Z[Z* xZ/6]) =<7 forn = —1;
0 forn < -2,

and prove NPK,,(Z[Z/6 x Z¥]) = 0 for p > 1 and n < 0.

The Bass-Heller-Swan decomposition can be used to show that certain results
about the K-groups in a fixed degree m have implications for all the K-groups in
degree n < m, as illustrated by the next result.
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Lemma 4.14. Consider a ring R and m € Z with m < 1. Suppose that for every
k > 1 the map K,,(R) — K,,(R[ZF]) induced by the inclusion R — R[Z*] is
bijective.

Then K,(R[Z']) = 0 for n < m — 1 and NK,,(R[Z']) = 0 for n < m hold for all

[>0.

Proof. Since the bijectivity of K,,(R) — K,,(R[ZF]) for all k > 1 implies the
bijectivity of K,,(R[Z']) — K,n((R[Z'])[Z¥]) for all k,I > O because of the
identification (R[Z'])[Z¥] = R[ZF*'], it suffices to treat the case [ = 0.

Consider any integer k > 1. The assumptions in Lemma 4.14 imply that the
map K,,,(R[Z*"']) — K,,,(R[Z¥]) induced by the inclusion R[Z*~'] — R[Z]
is bijective. Theorem 4.3 applied to the ring R[Z*~!] together with the identity
R[Z*] = (R[Z¥'])[Z] shows that K,,,_; (R[Z*"']) = 0 and NK,,,(R[Z*"']) = 0.
Using Theorem 4.3 and the Bass-Heller-Swan decomposition for NK, see (4.8),
one shows inductively for i = 0,1, ..., (k — 1) that Km,l,j(R[Zk""l]) = 0 and
NKm_j(R[Zk‘i_l]) =0holds for j =0,1...,i. Then the case i = k — 1 shows that
K,(R)=0form—k <n<m-1and NK,,(R) =0form —k + 1 <n < m. Since
k > 1 was arbitrary, Lemma 4.14 follows. O

Exercise 4.15. Consideraring Rand m € Zwithm < 1. Suppose that K,,,(R[ZK]) = 0
holds for every k > 1. Then K;(R[Z']) = NK;(R[Z']) = O holds fori < mand!l > 0.

Theorem 4.16 (The middle and lower K-theory of RG for finite G and Artinian
R). Let G be a finite group, and let R be an Artinian ring. Then:

(i) For every k > O the map
Ko(RG) = Ko(RG[Z'))

induced by the inclusion is bijective;
(ii) Given any k > 0, we have K,,(RG[Z¥]) = 0 for n < —1 and NK,(RG[Z*]) =0
forn <0.

Proof. (i) Denote by J = rad(RH) C RH the Jacobson radical of RH. Since R and
hence RH are Artinian, there exists a natural number / with JJ! = J'. By Nakayama’s
Lemma, see [916, Proposition 8 in Chapter 2 on page 20], J' is {0}, in other words, J
is nilpotent. The ring RH/J is a semisimple Artinian ring, see [610, Definition 20.3
on page 311 and (20.3) on page 312], and in particular regular. Theorem 3.80 (ii)
implies that (RH/J)[Z¥] is regular for all k > 1. We derive from Theorem 4.7 that
K,((RH/J)[Z¥]) = 0 for n < —1 and NK,,((RH/J)[Z¥]) for n < 0 hold for all
k > 0. We conclude from Theorem 4.7 by induction over k = 0, 1,2, ... that the
inclusion RH/J — (RH/J)[Z¥] induces an isomorphism

Ko(RH/J) = Ko((RH/J)[Z¥])

forall k > 0.
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The following diagram

Ko(RH) —— Ko(RH[Z])

| |

Ko(RH/J) — Ko((RH|J)[Z])

commutes. Since J is a nilpotent two-sided ideal of RH, J[Z*] is a nilpo-
tent two-sided ideal of RH[Z¥]. Obviously (RH/J)[Z*] can be identified with
(RH[ZK])/(J[Z*]). Hence the vertical arrows in the diagram above are bijective
by Lemma 2.125. Since the lower horizontal arrow is bijective for every k > 1, the
upper horizontal arrow is bijective for every k > 1.

(ii) This follows from assertion (i) and Lemma 4.14 applied in the case m = 0 to the
ring RG. O

4.3 Geometric Interpretation of Negative K-Groups

One possible geometric interpretation of negative K-groups is in terms of bounded
h-cobordisms.

We consider manifolds W parametrized over R, i.e., manifolds that are equipped
with a surjective proper map p: W — RX. Recall that proper map means that
preimages of compact subsets are compact again. We will always assume that the
fundamental group(oid) is bounded, see [797, Definition 1.3]. Amap f: W — W’
between two manifolds parametrized over R is called bounded if {p’ o f(x) —
p(x) | x € W} is a bounded subset of R¥.

A bounded cobordism (W; My, fo, M1, f1) is defined just as in Section 3.5
but compact manifolds are replaced by manifolds parametrized over R* and
the parametrization for M; is given by pw o f;. If we assume that the inclu-
sions i;: OyW — W are homotopy equivalences, then there exist deformations
ri: Wx 1 — W such that rjlwxqoy = idw and r;(W x {1}) c 9;W. A bounded
cobordism is called a bounded h-cobordism if the inclusions i; are homotopy equiv-
alences and additionally the deformations can be chosen such that the two sets

St ={pw(ri(x,0) — pw(ri(x,1)) [ x € W,z € [0,1]}

are bounded subsets of R¥.

The following theorem, see [797] and [1001, Appendix], contains the
s-Cobordism Theorem 3.47 as a special case, gives another interpretation of ele-
ments in K (Zr) and explains one aspect of the geometric relevance of negative
K-groups.
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Theorem 4.17 (Bounded /-Cobordism Theorem). Suppose that My is parametri-
zed over R* and satisfies dim Mo > 5. Let r be its fundamental group(oid). Equiv-
alence classes of bounded h-cobordisms over My modulo bounded diffeomorphism
relative My correspond bijectively to elements in ki_ () where

Wh(r) ifk =0;
k1-k () = { Ko(Zn) ifk =1,
Ki_x(2Zn) ifk >2.

4.4 Variants of the Farrell-Jones Conjecture for Negative
K-Groups

In this section we state variants of the Farrell-Jones Conjecture for negative K -theory.
The Farrell-Jones Conjecture itself will give a complete answer for arbitrary rings
but to formulate the full version some additional effort will be needed. If one assumes
that R is regular and G torsionfree or that R = Z, the conjecture reduces to an easy
to formulate statement, which we will present next.

Conjecture 4.18 (The Farrell-Jones Conjecture for negative K-theory and reg-
ular coefficient rings). Let R be a regular ring and G be a group such that for every
finite subgroup H C G the element |H| - 1g of R is invertible in R. Then we get

K,(RG)=0 for n<-I1.
Exercise 4.19. Prove that Conjecture 4.18 is true if G is finite.

Conjecture 4.20 (The Farrell-Jones Conjecture for negative K-theory of the
ring of integers in an algebraic number field). Let R be the ring of integers in an
algebraic number field. Then, for every group G, we have

K.,(RG)=0 forn<-2,

and the canonical map
colimpesub,,y(G) K-1(RH) —— K_1(RG)

is an isomorphism.

Conjecture 4.21 (The Farrell-Jones Conjecture for negative K-theory and
Artinian rings as coefficient rings). Let G be a group, and let R be an Artinian
ring. Then we have

K,(RG)=0 for n<-I.
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4.5 Survey on Computations of Negative K-Groups for Finite
Groups

The following result is due to Carter [217]. See also [102, Theorem 10.6 on page 695]
and [626].

Theorem 4.22 (Negative K-theory of RG for a finite group G and a Dedekind
domain of characteristic zero R). Let R be a Dedekind domain of characteristic
zero. Let k be its fraction field. For any maximal ideal P of R, let kp be the P-adic
completion. Let G be a finite group of order n = |G|.

For afield F we denote by r g (G) the number of isomorphism classes of irreducible
representations of G over the field F. Then:

(1) K, (RG) =0 form < =2;
(i) K-1(RG) is a finitely generated group;
(iii) Suppose that no prime divisor of n is invertible in R. Then the rank r of the
finitely generated abelian group K_{(RG) is given by

r=1-r(G)+ Z rkp(G) _rR/P(G)

pInR

where the sum runs over all maximal (= non-zero prime) ideals P dividing nR;
(iv) Let R be the ring of integers in an algebraic number field k. Then

K_\(RG) =7 ®Z7/2°

There is an explicit description of the integer s in terms of global and local
Schur indices.
If G contains a normal abelian subgroup of odd index, then K_(RG) is
torsionfree;
(v) Let A be a finite abelian group. Then K_1(ZA) vanishes if and only if |A| is a
prime power;
(vi) The group K_\(ZG) is torsion if and only if every element of G has a prime
power order;
(vii) If the order of |G| is not divisible by 4 or if G contains a normal abelian
subgroup of odd index, then the group K_|(ZG) is torsionfree;
(viii) If the order of |G| is a p-power for some odd prime p, then the group K_;(ZG)
vanishes.

IfR=2Z,thenr = 1-rq(G) + X, rqp(G) — g, (G) where p runs through the
prime numbers dividing n.

A computation of K_;(ZG) for all finite groups of order < 100 can be found
in Lehner [626]. In particular, K_;(ZG) is torsionfree for n < 15 and the smallest
group for which K_; (ZG) is not torsionfree is the generalized quaternion group Q¢
of order 16. Actually we have K_|(Z[Q16]) = Z/2.
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4.6 Notes

More information about NK,(RG) for all n € Z will be given in Theorem 6.17,
Theorem 6.18, Theorem 6.19, and Theorem 6.21.

More information about negative K-groups can be found for instance in [30, 102,
216, 217, 368, 530, 686, 700, 796, 797, 825, 840, 860, 998].






Chapter 5
The Second Algebraic K-Group

5.1 Introduction

This chapter is devoted to the second algebraic K-group.

We give two equivalent definitions, namely, in terms of the Steinberg group and in
terms of the universal central extension of E(R). We extend the long exact sequence
associated to a pullback of rings and to a two-sided ideal beyond K to K;. The long
exact sequence associated to a pullback of rings cannot be extended to the left to
higher algebraic K-groups, whereas this will be done for the long exact sequence
associated to a two-sided ideal later.

We will introduce the second Whitehead group and state a variant of the Farrell-
Jones Conjecture for it, namely, that it vanishes for torsionfree groups. Finally we
give some information about computations of the second algebraic K-group.

5.2 Definition and Basic Properties of K, (R)

Definition 5.1 (n-th Steinberg group). For n > 3 and a ring R, define its n-th

Steinberg group St,, (R) to be the group given by generators and relations as follows.
The set of generators is

{xf’j|i,j€ {1,2,...,n}and r € R}.

The relations are

(i)x{j -x‘l?j =x/*Sfori,je€{l,2,...,n}andr,s € R;
(>ii) [xl.”j,x‘;.’k] :x{j{ fori,j, k€ {1,2,...,n} withi # kandr,s € R;

(iii) [x]_.x} ] = 1fori,j.k,l € {1,2,....n} withi # 1, j # k.and r,s € R,

where [a, b] denotes the commutator aba™'b~!.

The idea behind the Steinberg group is that for every ring R the corresponding
relations hold in GL, (R) if we replace x] ; by the matrix I, +r - E, (i, j) appearing
in Section 3.2. Hence we get a canonical group homomorphism

¢n: Sta(R) = GL,(R), x]; = In+71-Ey(i. )).
The image of ¢R is by definition the subgroup of GL, (R) generated by all elements

of the form I, + r - E,,(i,j) fori,j € {1,2,...,n} and r € R. There is an obvious
inclusion St,, (R) — St,+1(R) sending a generator x{’ ;o xl.’, It

129
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Definition 5.2 (Steinberg group). Define the Steinberg group St(R) to be the union
of the groups St,, (R).

The set of maps {¢® | n > 3} defines a homomorphism of groups
(5.3) #%: St(R) — GL(R).

The image of ¢R is just the group E(R), which agrees with [GL(R), GL(R)], see
Lemma 3.11.

Definition 5.4 (K, (R)). Define the algebraic K,-group K;(R) of a ring R to be the
kernel of the group homomorphism ¢®: St(R) — GL(R) of (5.3).

Obviously a ring homomorphism f: R — S induces a map of abelian groups
(5.5 K>(f): K2(R) — K»(S).
Exercise 5.6. Show that there is a natural exact sequence

0 — K>(R) — St(R) —» GL(R) — K (R) — 0.

5.3 The Steinberg Group as Universal Extension

A central extension of a group Q is a surjective group homomorphism ¢: G — Q
with Q as target such that the kernel of ¢ is contained in the center {g € G |
g'g = gg’ forall g’ € G} of G. A central extension ¢: U — Q of a group Q
is called universal if for every central extension ¥ : G — Q there is precisely one
group homomorphism f: U — G with iy o f = ¢. If a group Q admits a universal
central extension, it is unique up to unique isomorphism. A group Q possesses a
universal central extension if and only if it is perfect, i.e., it is equal to its commutator
subgroup, see [727, Theorem 5.7 on page 44] or [860, Theorem 4.1.3 on page 163].
In this case the kernel of the universal central extension ¢: U — Q is isomorphic to
the second homology H>(Q;Z) of Q, see [727, Corollary 5.8 on page 46] or [860,
Theorem 4.1.3 on page 163]. A central extension ¢: G — Q of a group Q is universal
if and only if G is perfect and every central extension ¢ : H — G of G splits, i.e.,
there is a homomorphism s: G — H with ¢ o s = idg, see [727, Theorem 5.3 on
page 43] or [860, Theorem 4.1.3 on page 163]. A central extension ¢: G — Q of
a perfect group Q is universal if and only if H(G;Z) = H>(G;Z) = 0, see [860,
Corollary 4.1.18 on page 177]. The proof of the next result can be found in [727,
Theorem 5.10 on page 47] or [860, Theorem 4.2.7 on page 190].

Theorem 5.7 (K>(R) and universal central extensions of E(R)). The canonical
epimorphism ¢® : St(R) — E(R) coming from the map (5.3) is the universal central
extension of E(R).

Exercise 5.8. Prove K»(R) = H>(E(R);Z).
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5.4 Extending Exact Sequences of Pullbacks and Ideals

Theorem 5.9 (Mayer-Vietoris sequence for K -theory in degree < 2 of a pullback
of rings). Consider a pullback of rings

R—"+ R,

Ry, —— Ry
J2

such that both ji and j, are surjective. Then there exists a natural exact sequence,
infinite to the right,

K>(R) 28, o (Ry) @ Ka(Ro) 222, K, (Ro)

2, ki(R) L2220 g (Ry) @ Ky (Ry) L7 K (Ro)

4 i)« i2)+ 1)« = (J2)«
2, Ko(R) L2220 o (Ry) @ Ko(Ra) L2720 Ko(Ro)

a i1),®(i2).
i>K71(R)M>K71(R1)GBK71(Rz)

1)s— (j2)« -
(J1)«=(j2) K,I(Ro)—l>~-.

Proof. See [727, Theorem 6.4 on page 55] for the extension to K. The extension for
negative K-theory follows for example from the fact that the passage going from R
to R[Z] sends a pullback of rings to a pullback of rings. O

Remark 5.10 (Surjectivity assumption is necessary). Swan [942, Corollary 1.2]
has shown that the assumption that both j; and j, are surjective in Theorem 5.9
is necessary. It is not enough that j; or j, is surjective, in contrast to the weaker
Theorem 3.86.

Remark 5.11 (No exact sequence for pullbacks in higher degrees). Swan [942,
Corollary 6.9] has shown that it is not possible to define a functor K3 so that the
natural exact sequence appearing in Theorem 5.9 can be extended to K3.

Theorem 5.12 (Exact sequence of a two-sided ideal K-theory in degree < 2).
Given a two-sided ideal I C R, we obtain an exact sequence, natural in I C R and
infinite to the right

pr, 1) J1 pr,
K2(R) 5 Ky (R/D 2 Ky(R. 1) L5 Ky (R) 25 Ky (RJI)
o i * 17)
2 Ko(R, 1) 5 Ko(R) 25 Ko(R/T) = K_((R, 1)
Iy K_1(R) LR

where pr: R — R/I is the projection.
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Proof. See [727, Theorem 6.2 on page 54], [860, Theorem 3.3.4. on page 155 and
Theorem 4.3.1 on page 200], or [998, Theorem 5.7.1 in Section III.5 on page 223].
O

Remark 5.13 (Dependence of K, (R, I) on R). The group K,,(R, I) can be identified
for n < 0 with K,,(I), see Definition 3.90, and hence depends only on the structure
of I as a ring without unit but not on the embedding / € R. But for n > 1 the group
K, (R, I) does depend on the embedding I C R, see Example 3.94.

The sequence appearing in Theorem 5.12 is indeed an extension of the long exact
sequence appearing in Theorem 3.89.

Often one wants to get information about K in order to compute K -groups using
for instance Theorem 5.12. This is illustrated by the following example.

Example 5.14. Let R be the ring of integers in an algebraic number field, and let
P be a non-zero prime ideal. Then the exact sequence appearing in Theorem 5.12
induces an exact sequence

K>(R/P) — SK|(R,P) — SK|(R) — SK,(R/P)
where SK(R) has been defined in Definition 3.15 and we put:

SK{(R, P) := (SL(R) N GL(R, P))/E(R, P)
= ker(det: GL(R,P) — {r € R | r =1 mod P}).

Since R/P is a finite field, SK;(R/P) and K>(R/P) vanish by Theorem 3.17 and
Theorem 5.18 (v). Hence we obtain an isomorphism

SK1(R, P) = SK;(R).

The group SK|(R) vanishes by [727, Corollary 16.3]. Hence also SK; (R, P) van-
ishes.

Example 5.15 (K,,(Z[Z/p x Z¥]) for n < 1 and a prime p). Let p be a prime
number. We want to show

K,(Z[Z/pxZ*]) =0 forn<-land k >0

and that Ko(Z[Z/p x Z¥]) and K|(Z[Z/p x Z*]) are finitely generated. All of
these statements except the claim for K (Z[Z/p x Z*]) have already been proved in
Example 4.10. The same method of proof applies to this case, since Theorem 5.9
yields the exact sequence

K2 (Fp[Z*]) — Ki(Z[Z/p x Z¥]) — K((Z[Z*]) ® K; (Z[exp(27i/p)][Z*])

and K> (F), [Z¥]), K1 (Z[Z¥]), and K (Z[exp(27i/p)]) are finitely generated abelian
groups by Theorem 4.7, as K,,(F,) for m = 0,1,2, K,,(Z) for m = 0,1, and
K (Z[exp(2ri/p)]) for m = 0,1 are finitely generated and K,,,(F,), K;n(Z), and
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K (Zlexp(2ri/p)]) vanish for m < —1 because of Example 2.4, Theorem 2.23,
Theorem 3.17, Theorem 3.21, Theorem 3.80 (i) Theorem 4.7, and Theorem 5.18 (iv).

5.5 Steinberg Symbols

Let R be a commutative ring and u, v € R*. Consider the elements d; (1), d; 3(v) €
E(R) given by the invertible (3, 3)-matrices

u 00 v0O O
Oul0| and |01 O
001 00v!

Let cfl,z(u) and 51,3 (v) be any preimages of d; »(u) and d; 3(v) under the canonical
map ¢R: St(R) — E(R). Then the commutator [671,2(14), 671’3 (v)] in St(R) defines
an element in the kernel of ¢% : St(R) — E(R) and hence in K3 (R). It depends only
on u and v. The proof of the facts above can be found for instance in [860, page 192].

Definition 5.16 (Steinberg symbol). Let R be a commutative ring and u,v € R*.
The element in K (R) given by the construction above is called the Steinberg symbol
of u and v and is denoted by {u, v}.

Exercise 5.17. Prove that the Steinberg symbol of Definition 5.16 is well-defined.

Theorem 5.18 (Properties of the Steinberg symbol). Let R be a commutative ring.
Then:

(i) The Steinberg symbol defines a bilinear skew-symmetric pairing
R*XR* = K>2(R), (u,v) — {u,v},

e, {uy-ux, v} ={uy,v}+{us,v}and {u,v} = —{v,u} forall uy,uz,u,v in
RX;

(ii) For u € R* we have {u,—u} = 0;

(iii) If foru € R* also 1 —u € R*, then {u,1 —u} =0;

(iv) (Matsumoto’s Theorem) If F is a field, then K, (F) is isomorphic to the abelian
group given by the generators {u,v} for u,v € F* and the relations:

(@ {u,1—u} =0foru e Fwithu #0,1;
(b) {uy - uz, v} = {ur, v} + {uz, v} for uy,uz,v € F*;
©) {u,vy-va} ={u,vi} + {u, vy} foru,vi,vy € F*;
(v) If F is a finite field, then K> (F) = 0;
(vi) We have K,(Z) = Z/2. A generator is given by the Steinberg symbol {—1,—1};
(vil) Letm > 2 be an integer. [fm # 0 mod 4, then K»(Z/m) = {0}. If m = 0 mod 4,
then K»(Z/m) = Z/2 and a generator is given by the Steinberg symbol {1, 1};
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(viii) (Tate) We have K>(Q) = Z/2 X [],, ]F; where p runs through the odd prime
numbers;
(ix) (Bass, Tate) Let R be a Dedekind domain with quotient field F. Then there is
an exact sequence

Ka(F) = D Ki(R/P) = Ki(R) = Ki(F)
P

— P Ko(R/P) > Ko(R) = Ko(F) — 0,
P

where P runs through the maximal ideals of R.

Proof. (i) See [727, Theorem 8.2 on page 64] or [860, Lemma 4.2.14 on page 194].
(i1) and (iii) See [727, Theorem 9.8 on page 74] or [860, Theorem 4.2.17 on page 197].
(iv) See [727, Theorem 11.1 on page 93] or [860, Theorem 4.3.15 on page 214].
(v) See [727, Theorem 9.13 on page 78] or [860, Theorem 4.3.13 and Remark 4.3.14
on page 213].

(vi) See [727, Corollary 10.2 on page 81].

(vii) See [727, Corollary 10.8 on page 92], [307, Theorem 5.1], and [860, Exer-
cise 4.3.19 on page 217].

(viii) See [727, Theorem 11.6 on page 101].
(ix) See [727, Corollary 13.1 on page 123] and [102, pages 702, 323]. |

5.6 The Second Whitehead Group

Let R be a ring. Consider u € R* and integers ,j > 1. If x; j is the canonical
generator of St(R), see Definition 5.1, then define

-1
u . u —-u u
Wi =X X X € St(R).

Let G be a group. Let W be the subgroup of St(ZG) generated by all elements of
the shape wlig for g € G and integers i, j > 1. Recall that we can think of K;(ZG)
as a subgroup of St(ZG).

Definition 5.19 (The second Whitehead group). Let G be a group. Define the
second Whitehead group of G by

Why(G) := K2(ZG) /(K2(ZG) N We).

Exercise 5.20. Show that the second Whitehead group of the trivial group vanishes
using the fact, see [860, Example 4.2.19 on page 198], that wy(1)* = {-1,-1}
holds in St(Z).
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Let I denote the unitinterval [0, 1]. Let M be a closed smooth manifold. A smooth
pseudoisotopy of M is a diffeomorphism h: M X I — M X [ that restricted to M X
{0} € M xI is the obvious inclusion. The group PP (M) of smooth pseudoisotopies
is the group of all such diffeomorphisms under composition. Pseudoisotopies play an
important role if one tries to understand the homotopy type of the topological group
Diff (M) of self-diffeomorphisms of M. Two self-diffeomorphisms fy, f1: M — M
are called isotopic if there is a smooth map i: M x [0, 1] — M, called an isotopy,
such that i, : M — M, x — h(x,1) is a self-diffeomorphism for each ¢ € [0, 1] and
hix = fx for k = 0, 1. They are called pseudoisotopic if there exists a diffeomorphism
H: M x[0,1] - M x[0,1] such that H(x, k) = (fx(x),k) for all x € M and
k = 0, 1. If h is an isotopy, then we obtain a pseudoisotopy by H (x, k) = (h(x, k), k).
Hence isotopic self-diffeomorphisms are pseudoisotopic. The converse is not true in
general, there is no reason why a pseudoisotopy should be level preserving, i.e., it
need not send M X {t} to M x {t} for every ¢ € [0, 1].

In order to decide whether two self-diffeomorphisms are isotopic, it is often very
useful to firstly decide whether they are pseudoisotopic, which is in general easier.

The set of path components 7o (Diff (M)) of the space Diff(M) agrees with the
set of isotopy classes of self-diffeomorphisms of M. The group PP™F (M) acts on
Diff(M) by h- f := hy o f.If PPTFF (M) is path-connected, then two pseudoisotopic
diffeomorphisms M — M are isotopic, since the orbit of the identity idp;: M — M
under the PPIFF(M)-action consists of the diffeomorphisms M — M that are
pseudoisotopic to the identity. If M is simply connected, PP T (M) is known to be
path connected by a result of Cerf [219, 220] if dim(M) > 5.

The relevance of the second Whitehead group comes from the following result,
see [469, 470].

Theorem 5.21 (Pseudoisotopy and the second Whitehead group). Let M be a
smooth closed manifold of dimension > 5. Then there is an epimorphism

mo(PPIFF (M) — Why(m1(M)).

More information about pseudoisotopy and its relation to algebraic K-theory will
be given in Chapter 7. The Farrell-Jones Conjecture for pseudoisotopy will be stated
as Conjecture 15.63.

5.7 A Variant of the Farrell-Jones Conjecture for the Second
Whitehead Group

Conjecture 5.22 (Farrell-Jones Conjecture for Wh;(G) for torsionfree G). Let
G be a torsionfree group. Then Why(G) vanishes.
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5.8 The Second Whitehead Group of Some Finite Groups

We give some information about K, (ZG) and Wh;(G) for some finite groups.

The group K>(RG) is finite for every finite group G and every ring of integer R
in a number field, see [597, Theorem 1.1]. In particular K>(ZG) and Why(G) are
finite for any finite group G.

We have

Why(G) =0, for G = {1},Z/2,Z/3,Z/4;
| Wha(Z/6)| < 2;
Why(D¢) = Z/2,

where Dg is the dihedral group of order six. The claim for the finite cyclic groups
follow from [318, page 482] and [928, pages 218 and 221]. We get K>(ZDg) =
(Z/2)? from [928, Theorem 3.1]. This implies Why(Ds) = Z/2 as explained in [683,
Theorem 3.2.d.iii].

Given a prime p, the p-rank of an abelian group A is dimg,(F, ®z A). The

2-rank of the finite abelian group Why((Z/2)") is at least (n — 1) - 2" — w

by [302, Corollary 7]. If p is an odd prime, then the p-rank of the finite abelian group
Why((Z/p)") is atleast (n—1) - (p" = 1) — (”J’;*]) - @ by [302, Corollary 8].
In particular Why ((Z/p)™) is non-trivial for a prime p and n > 2.

Some information about K5 (IF,,G) for finite groups can be found in [704].

Exercise 5.23. Determine all integers n > 1 for which K; (Z[Z/n]) for all i < 0,
Wh(Z/n), and Why(Z/n) vanish.

5.9 Notes

We have already mentioned that often computations involving K| use information
about K>, since there are various long exact sequences relating K-groups of different
rings. Examples of such sequences have been given in Theorem 5.9, Theorem 5.12,
and Theorem 5.18 (ix). Another important class of such exact sequences are given
by localization sequences, see [776, Chapter 3].

The second algebraic K-group of fields also plays a role in number theory, as
for instance explained in [727, Chapters 11, 15, 16], [922, Chapter 8] and [859,
Chapter 4, Section 4]. Keywords are Hilbert symbols, Gauss’ laws of quadratic
reciprocity, Brauer groups, and the Mercurjev-Suslin Theorem. Relations to operator
theory are discussed in [727, Chapter 7], and [859, Chapter 4, Section 4].

Further references to K, and the second Whitehead group are [23, 303, 304, 305,
306, 307, 470, 703, 929, 998].



Chapter 6
Higher Algebraic K-Theory

6.1 Introduction

In this chapter we extend the definition of the algebraic K-groups K, (R) to all
integers n € Z.

We first present the plus-construction to define higher algebraic K-theory and
record the basic properties. We introduce algebraic K -theory with coefficients inZ/ k.
We discuss other constructions of K-theory that apply to more general situations such
as to exact categories or Waldhausen categories. These constructions lead only to
spaces and one can find deloopings which result in spectra whose homotopy groups
are the algebraic K-groups also in negative degrees. We present the K-theoretic
Farrell-Jones Conjecture for torsionfree groups and regular rings. We introduce
Mayer-Vietoris sequences for amalgamated free products and Wang sequences for
HNN extensions for the algebraic K-theory of group rings. The appearance of Nil-
terms in these exact sequences is responsible for some complications concerning
algebraic K-theory and the Farrell-Jones Conjecture that do not occur in the Baum-
Connes setting. We discuss homotopy K-theory, a theory that is on the one hand
close to algebraic K-theory and on the other hand is free of Nil-phenomena. We
briefly explain relations between algebraic K-theory and cyclic homology.

6.2 The Plus-Construction

Let R be aring. So far the algebraic K-groups K, (R) for n < 2 have been described
in a purely algebraic fashion by generators and relations. The definition of the higher
algebraic K-groups K, (R) for n > 3 has been achieved topologically, namely, one
assigns to a ring R a space K(R) and defines K, (R) by the n-th homotopy group
71, (K(R)) for n > 0. This will coincide with the previous definition for n = 0, 1, 2.
There are various definitions of the space K(R) that extend to more general settings,
as explained below, which are appropriate in different situations. We briefly recall
the technically less demanding one, the plus-construction.

A space Z is called acyclic if it has the homology of a point, i.e., the singular
homology with integer coefficients H,(Z) vanishes for n > 1 and is isomorphic to
Zforn = 0.

Exercise 6.1. Prove that an acyclic space is path connected and that its fundamental
group n is perfect and satisfies H, (7;Z) = 0.

137
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In the following we will suppress choices of and questions about base points.
The homotopy fiber hofib(f) of amap f: X — Y of path connected spaces has the
property that it is the fiber of a fibration p s : X — E ¢ which comes with a homotopy
equivalence h: Ey — X satisfying p s = f o h, see [1006, Theorem 7.30 in Chapter
1.7 on page 42]. The long exact homotopy sequence associated to f, see [1006,
Corollary 8.6 in Chapter IV.8 on page 187], looks like

2 (f)

62) -5 my(hofib(£) = y(X) 12(Y) 25 7y (hofib( )

20 0 2 7 (1) 2 mo(hofib(£)) — {{s}}.

Definition 6.3 (Acyclic map). Let X and Y be connected CW-complexes. A map
f: X — Y iscalled acyclic if its homotopy fiber hofib( f) is acyclic.

We conclude for an acyclic map f: X — Y from the long exact homotopy
sequence (6.2) that fj: m1(X) — m(Y) is surjective and its kernel is a perfect
subgroup P of m1(X), since P is a quotient of the perfect group 7; (hofib(f)) and
mo(hofib( f)) consists of one element. Obviously a space Z is acyclic if and only if
the map Z — {e} is acyclic.

Definition 6.4 (Plus-construction). Let X be a connected CW-complex and P C
71(X) be a perfect subgroup. Amap f: X — X* to a CW-complex is called a plus-
construction of X relative to P if f is acyclic and the kernel of f;: 71(X) — 71 (X?)
is P.

The next result is due to Quillen. A proof can be found for instance in [860,
Theorem 5.2.2 on page 266 and Proposition 5.2.4 on page 268].

Theorem 6.5 (Properties of the plus-construction). Let X be a connected CW-
complex and let P C 71 (X) be a perfect subgroup. Then:

(i) There exists a plus-construction f: X — X relative to P. (One can construct
X* by attaching 2- and 3-cells to X);

(i) Let f: X — X be a plus-construction relative to P, and let g: X — Y be a
map such that the kernel of n1(g): n1(X) — m(Y) contains P. Then there is a
map g: X* — Y which is up to homotopy uniquely determined by the property
that g o f is homotopic to g;

) Iffi: X - X1+ and f: X — X2+ are two plus-constructions for X relative to P,
then there exists a homotopy equivalence g : X{ — X which is up to homotopy
uniquely determined by the property g o fi = f»;

V) If f: X — X% is a plus-construction relative to P, then m(f): m1(X) —
71(X™) can be identified with the canonical projection n(X) — m1(X)/P;

W If f: X — X' is a plus-construction, then H,(f;M): H,(X; f*M) —
H, (X*; M) is bijective for all n > 0 and all local coefficient systems M on
X*.
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Remark 6.6 (Perfect radical). Every group G has a unique largest perfect subgroup
P C G, called the perfect radical of G. In the following we will always use the
perfect radical of G for P unless explicitly stated otherwise.

Exercise 6.7. Show that every group has a unique largest perfect subgroup.
Exercise 6.8. Show that E(R) = [GL(R), GL(R)] is the perfect radical of GL(R).

Definition 6.9 (Higher algebraic K-groups of a ring). Let BGL(R) — BGL(R)*
be a plus-construction in the sense of Definition 6.4 for the classifying space BGL(R)
of GL(R) (relative to the perfect radical of GL(R), which is E(R)). Define the K-
theory space associated to R

K(R) := Ko(R) x BGL(R)*
where we equip Ko (R) with the discrete topology. Define the n-th algebraic K-group
K, (R) := m,(K(R)) forn>0.

This definition makes sense because of Theorem 6.5 (i) and (iii). Note that for
n > 1 we have K,,(R) = 7, (BGL(R)™).

Exercise 6.10. Show that the Definition 6.9 of K, (R) for n = 0, 1 is compatible with
the one of Definitions 2.1 and 3.1.

Forn =0, 1, 2, Definition 6.9 is compatible with the previous Definitions 2.1, 3.1,
and 5.4, and we have K3(R) = H3(St(R)) and K,,(R) = m,,(BSt(R)*) for n > 3,
see [859, Corollary 5.2.8 on page 273], [423].

A ring homomorphism f: R — S induces a group homomorphism GL(R) —
GL(S) and hence maps BGL(R) — BGL(S) and BGL(R)* — BGL(S)". We
have already defined a map Ko(f): Ko(R) — Ko(S) in (2.2). Therefore f in-
duces a map K(f): K(R) — K(S) and hence for every n > 0 a map of abelian
groups K,(f): K,(R) — K,(S). This turns out to be compatible with the pre-
vious definitions for n = 0,1,2 in (2.2), (3.2), and (5.5). We have also defined
K, (f): K,(R) = K, (S) forn < —1in (4.2). Hence we get a covariant functor from
the category of rings to the category of abelian groups by K,,(—) for n € Z.

Definition 6.11 (Relative K-groups). Define for a two-sided ideal / C Randn > 0
K, (R, 1) := m, (hofib(K (pr): K(R) — K(R/I)))
for pr: R — R/I the projection.

The long exact homotopy sequence (6.2) associated to K (pr): K(R) — K(R/I)
together with Theorem 5.12 implies

Theorem 6.12 (Long exact sequence of a two-sided ideal for higher algebraic
K-theory). Let I C R be a two sided ideal. Then there is a long exact sequence,
infinite to both sides,
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. K j
O kR D KR, k(R D k(R LS Ky(R)
K d ' K
O, Ky (RIT) 2 Ko(R. 1) 2 Ko(R) 222 Ko(R/1)
P K_ _
2 KR 1) 5 Ky (R) 5 K (R 25

The existence of the long exact sequence of a two-sided ideal of Theorem 6.12
has been an important requirement of an extension of middle and lower algebraic
K-theory to higher degrees. It is indeed an extension of the long exact sequences
appearing in Theorem 3.89 and Theorem 5.12.

For more information about the plus-construction we refer for instance to [130],
[859, Chapter 5], [922, Chapter 2].

6.3 Survey on Main Properties of Algebraic K-Theory of Rings
6.3.1 Compatibility with Finite Products

The basic idea of the proof of the following result for n > 1 can be found in [821,
(8) in §2 on page 20]. The case n < 1 follows from Lemma 2.12, Lemma 3.9, and
by inspecting Definition 4.1, see also Exercise 4.5.

Theorem 6.13 (Algebraic K-theory and finite products). Let Ry and Ry be rings.
Denote by pr;: Ry X Ry — R; fori = 0,1 the projection. Then we obtain for n € Z
isomorphisms

Ky (pro) X Ky (pry): Kn(Ro X R1) = Ky, (Ro) X Kn(R)).

6.3.2 Morita Equivalence

The idea of the proof of the next result is essentially the same as that of Theorem 2.10.

Theorem 6.14 (Morita equivalence for algebraic K-theory). For every ring R
and integer k > 1 there are for all n € Z natural isomorphisms

pin: Kn(R) = Kn(Mg(R)).

6.3.3 Compatibility with Colimits over Directed Sets

We conclude from [821, (12) in §2 on page 20], (at least in the connective setting)
and [900, Lemma 6 in Section 7].
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Theorem 6.15 (Algebraic K-theory and colimits over directed sets). Let
{R; | i € I} be a directed system of rings. Then the canonical map

colim;es K, (R;) = Ko, (colim;es R;)
is bijective for n € Z.

Actually, one may consider more generally filtered colimits.

6.3.4 The Bass-Heller-Swan Decomposition

We have already explained the following result for n < 1 in Theorem 3.72 and

Theorem 4.3. Definition 3.68 of NK, (R) makes sense for every n € Z. The proof
for higher algebraic K-theory can be found in [922, Theorem 9.8 on page 207], see
also [859, Theorem 5.3.30 on page 295]. More general versions where twistings are
allowed and additive categories are considered are presented in [434, 436, 457, 531,
533, 609, 686].

Theorem 6.16 (Bass-Heller-Swan decomposition for algebraic K-theory).

(i) There are isomorphisms of abelian groups, natural in R, forn € Z

NK,(R) ® Ky, (R) = Ky (R[1]);
Kn(R) ® Kyu_1(R) ® NK,(R) ® NK,(R) = Kn(R[t,t7']).

There is a sequence, which is natural in R and exact, forn € Z

K, (k;)®o-K,, (k- _
0 = Ky(R) 207Kl 4 (R1]) @ Ko (R[]
K (1) ®K,, (I _ n
Kl oK) g (RIE1T) <5 K, (R) = 0

where k., k_, I, and I_ are the obvious inclusions.
If we regard it as an acyclic Z-chain complex, there exists a chain contraction,
natural in R;
(ii) If R is regular, then
NK,(R) = {0} forneZ,
K,(R) ={0} forn<-I.

6.3.5 Some Information about NK-groups

The proof of the next result can be found in Weibel [995, Corollary 3.2].
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Theorem 6.17 (NK,(R)[1/N] vanishes for characteristic N). Let R be a ring of
finite characteristic N. Then we get for n € Z

NK,(R)[1/N] = 0.

Theorem 6.18 (Vanishing criterion of NK,,(RG) for finite groups). Let R be a
ring and let G be a finite group. Fix n € Z. Suppose NK, (R) = 0. Then we get

NK,(RG)[1/|G]] = 0.
Proof. This follows from Hambleton-Liick [457, Theorem A]. a

The following result is taken from Hambleton-Liick [457, Corollary B].

Theorem 6.19 (p-elementary induction for NK,,(RG)). Let R be a ring and let G
be a finite group. For all n € Z, the sum of the induction maps

B NK(RE)(p) = NK#(RG)(p)
E

is surjective, where E runs through all p-elementary subgroups.

The following theorem due to Prasolov [814] is an extension of a result due to
Farrell [351] forn =1ton > 1.

Theorem 6.20 (NK,, (R) is trivial or infinitely generated for n > 1). Let R be a
ring. Then NK,,(R) is either trivial or infinitely generated as abelian group forn > 1.

Theorem 6.21 (Vanishing of NK,(Z[G x ZF]) for n < 1, k > 0 and finite G
of square-free order). Let G be a finite group whose order is square-free. Then
NK,(Z[G xZ¥]) =0 forn < 1and k > 0.

Proof. Fix a prime p. We know from Example 5.15 that K{(Z[Z/p x Z¥]) is
finitely generated for every k& < 0. We conclude from Theorem 6.16 that

K,(Z[Z/p x Z¥]) is finitely generated for every n < 1 and k > 0 and hence that
NK,(Z|Z/p x Z*]) is finitely generated for every n < 1 and k > 0. Theorem 6.20
implies that NK,,(Z[Z/p x Z*]) is trivial every n < 1 and k > 0.

We conclude from [457, Theorem A] that for any ring R, any finite group G, and

any prime number p, there is a surjection

@NKn(RP)(,,) — NK,(RG)(p),
P

where P runs through the p-subgroups of G. This implies that NK,, (RG) vanishes if
NK,,(RP)(p) vanishes for every prime p and every p-subgroup P of G. In particular,
NK,(RG) vanishes for a finite group G of square-free order if NK, (R[Z/p])(p)
vanishes for every prime number p. Put R = Z[Z¥]. Then R[Z/p] = Z|Z/p x Z¥]
and RG = Z[G x ZF], and we know already that NK,(R[Z/p])(p) vanishes for
every prime number p, n < 1 and k > 0. Hence NK,(Z[G x Z¥]) = NK,(RG)
vanishes for n < 1 and k > 0 if G is a finite group of square-free order. O
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Theorem 6.21 has been proved in the case k = 0 by Harmon [467].

Exercise 6.22. Let G be a finite group of square-free order. Show for all k > 1

K\(ZG) ® Ko(ZG)* & K_1(ZG)Kk=DI2 ifn=1;

k : — 0

K (Z[G X ZXT) = Ko(ZG) ® K_|(ZG) %fn =0;
K_1(ZG) if n=-1,
{0} if n < -2.

6.3.6 Algebraic K-Theory of Finite Fields

The following result has been proved by Quillen [820].

Theorem 6.23 (Algebraic K -theory of finite fields). LetF, be afinite field of order
q. Then K,(F,) vanishes if n = 2k for some integer k > 1, and is a finite cyclic
group of order g% — 1 if n = 2k — 1 for some integer k > 1.

Recall that Ko(F) = Zand K, (F) = {0} forn < —1if F isafield, see Example 2.4
and Theorem 4.7.

6.3.7 Algebraic K-Theory of the Ring of Integers in a Number Field

The computation of the higher algebraic K-groups of Z or, more generally, of the
ring of integers R in an algebraic number field F, is very hard. Quillen [820] showed
that these are finitely generated as abelian groups. Their ranks as abelian groups have
been determined by Borel [152].

Theorem 6.24 (Rational Algebraic K-theory of ring of integers of number
fields). Let R be a ring of integers in an algebraic number field. Let r| be the
number of distinct embeddings of F into R and let ry be the number of distinct
conjugate pairs of embeddings of F into C with image not contained in R. Then

{0} n<-l
Q n=0;
Qe =1

K,(R) ®zQ = QU+ p>2 and n=1 mod4;
Qn n>2 and n=3 mod 4,
{0} n>2 and n=0 mod 2.

We have K, (Z) = {0} for n < —1 and the first values of K, (Z) for n =

0,1,2,3,4,5,6,7 are given by Z, Z/2, Z/2, Z/48, {0}, Z, {0}, Z,/240.
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The Lichtenbaum-Quillen Conjecture makes a prediction about the torsion,
see [630, 631], relating the algebraic K-groups to number theory via the zeta-
function. We refer to the survey article of Weibel [994], where a complete picture
about the algebraic K-theory of ring of integers in algebraic number fields and in
particular of K, (Z) is given and a list of relevant references can be found. See also
Weibel [998, Section VI.10 on pages 5271f].

An outline of how the next corollary follows from Theorem 6.49 can be found
in [821, page 29] and [859, page 294]. It is a basic tool for computations.

Corollary 6.25. Let R be a Dedekind domain with quotient field F. Then there is an
exact sequence

+ = Kni1 (F) = @D Kn(R/P) = Kn(R) = Kn(F) = P Ku 1 (R/P)
P P

- = Ki(F) = €D Ko(R/P) = Ko(R) — Ko(F) = 0
P

where P runs through the maximal ideals of R.

Exercise 6.26. Consider the part of the sequence
2
Ki(Z) > K1(Q) = @D Ko(Fp) — Ko(Z) = Ko(@ — 0
p
of Corollary 6.25 for R = Z. Compute the five terms appearing in it. Guess what the

map 0 is and determine the others.

Exercise 6.27. Show that the map K,,(Z) — K,(Q) is injective if n = 2k for k > 1,
is surjective if n = 2k — 1 for k > 2, and rationally bijective for n > 2.

6.4 Algebraic K-Theory with Coefficients

By invoking the Moore space associated to Z/k, one can introduce K-theory mod k,
denoted by K,,(R;Z/k), for any integer k > 2 and every n € Z. Its main feature is
that there exists a long exact sequence

(6.28) -+ = Knri (RiZJK) = Ku(R) 5 Ky (R) — Ko (R Z/K)
— Kot (R) 255 Kot (R) = Kot (RSZ/K) — -+
The next theorem is due to Suslin [934].

Theorem 6.29 (Algebraic K-theory mod k of algebraically closed fields). The
inclusion of algebraically closed fields induces isomorphisms on K.(—;Z/k).
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Let p be a prime number. Quillen [820] has computed the algebraic K-groups for
any algebraic extension of the field IFj, of p elements for every prime p. One can
determine K, (IF_,,; Z/k) for the algebraic closure E of F,, from (6.28). Hence one
obtains K, (F;Z/k) for any algebraically closed field of prime characteristic p by
Suslin’s Theorem 6.29.

The next theorem is due to Suslin [935]. We will explain the topological K-groups
KJOP(R) and K,JOP (C) of the C*-algebras R and C in Subsection 10.3.2. There are
mod k versions K,JOF (R; Z/k) and K,JOF (C;Z/k), for which a long exact sequence
analogous to that of (6.28) exists.

Theorem 6.30 (Algebraic and topological K-theory mod & for R and C). The
comparison map from algebraic to topological K-theory induces for all integers
k > 2 and all n > 0 isomorphisms

Kn(R;Z/k) = KIOP(R: Z/k):
Kn(C;Z/k) = KIOP(C:Z/k).

Generalizations of Theorem 6.30 to C*-algebras will be discussed in Section 10.7.

Since K,JOP (C) is Z for n even and vanishes for n odd and for every algebraically
closed field F of characteristic 0 we have an injection Q — Fforthe algebraic closure
Q of Q, Theorem 6.29 and Theorem 6.30 imply for every algebraically closed field
F of characteristic zero

Z/k n>0,neven;
K,(F;Z/k) = {{0} n=>1,nodd.
{0} mn<-1.

Exercise 6.31. Using the fact that KJOP(R) is 8-periodic and its values for
n=20,1,2,3,4,56,7 are given by Z, Z/2, Z/2, {0}, Z, {0}, {0}, {0}, compute
K,(R;Z/k) and K,TOP(R; Z/k) for n € Z and k > 3 an odd natural number.

6.5 Other Constructions of Connective Algebraic K-Theory

The plus-construction works for rings and finitely generated free or projective mod-
ules. However, it turns out that it is important to consider more general situations
where one can feed in categories with certain extra structures. The main examples are
Quillen’s Q-construction, see [821, §2], [859, Chapter 5], [922, Chapter 4], designed
for exact categories, the group completion construction, see [434, 906], designed
for symmetric monoidal categories, and Waldhausen’s wS,-construction, see [979]
and Subsection 7.3.2, designed for categories with cofibrations and weak equiva-
lences. Given aring R, the category of finitely generated projective R-modules yields
examples of the type of categories above and the appropriate construction always
yields the same, namely, the K-groups as defined by the plus-construction above. The
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Q-construction and exact categories can be used to define K-theory for the category
of finitely generated R-modules (dropping projective) or the category of locally free
Ox-modules of finite rank over a scheme X. One important feature is that the notion
of exact sequences can be different from the one given by split exact sequences, or,
equivalently, by direct sums. Whereas in Quillen’s setting one needs exact structures
in an algebraic sense, Waldhausen’s wS,-construction is also suitable for categories
where the input are spaces and one can replace isomorphisms by weak equivalences.

We briefly recall the setup of exact categories beginning with additive categories.
A category C is called small if its objects form a set. An additive category A is a small
category A such that for two objects A and B the morphism set mor # (A, B) has the
structure of an abelian group, there exists a zero-object, i.e., an object which is both
initial and terminal, the direct sum A®B of two objects A and B exists, and the obvious
compatibility conditions hold, e.g., composition of morphisms is bilinear. A functor
of additive categories F: Ay — A, is a functor respecting the zero-objects such
that for two objects A and B in Ay the map mor #, (A, B) — morg, (F(A), F(B))
sending f to F(f) respects the abelian group structures and F (A & B) is a model
for F(A) @ F(B).

A skeleton D of a category C is a full subcategory such that D is small and the
inclusion D — C is an equivalence of categories, or, equivalently, for every object

C € C there is an object D in D together with an isomorphism C — D in C.

Definition 6.32 (Exact category). An exact category P is a full additive subcategory
of some abelian category A with the following properties:

e P is closed under extensions in A, i.e., for any exact sequence 0 — Py — P} —
P> — 0in A with Py, P> in P we have P, € P;
e P has a small skeleton.

An exact functor F: Py — P is a functor of additive categories that sends exact
sequences to exact sequences.

Examples of exact categories are abelian categories possessing a small skeleton,
the category of finitely generated projective R-modules, the category of finitely
generated R-modules, the category of vector bundles over a compact space, the
category of algebraic vector bundles over a projective algebraic variety, and the
category of locally free sheaves of finite rank on a scheme.

An additive category becomes an exact category in the sense of Quillen with re-
spect to split exact sequences. On the other hand there are interesting exact categories
where the exact sequences are not necessarily split exact sequences.

The Q-construction, see [821, §2], [859, Chapter 5], [922, Chapter 4], assigns to
any exact category P its K-theory space K (#) and one defines K, (P) := 7, (K(P))
for n > 0.If P is the category of finitely generated projective R-modules, this defini-
tion coincides with the Definition 6.9 of K,,(R) coming from the plus-construction.

The Q-construction allows us to define algebraic K-theory for objects naturally
appearing in algebraic geometry, arithmetic geometry, and number theory, since
these give exact categories as described above.
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Example 6.33 (The category of nilpotent endomorphism). Let NIL(R) be the
exact category whose objects are pairs (P, f) of finitely generated projective
R-modules together with nilpotent endomorphisms f: P — P. Its K-theory
Nil,, (R) := K, (NIL(R)) splits as K,,(R) & Nil,,(R) for n > 0 where Nil, (R) is
the cokernel of the homomorphism K, (R) — K, (NIL(R)) induced by the obvious
functor sending a finitely generated projective R-module P to 0: P — P. We get for
n>1
NK,(R) = Nily-1(R).

This has been considered for n = 1 already in Theorem 3.72. A proof, which works
also for the more general context of non-connective K-theory of additive categories
where a twist with an automorphism is allowed, can be found in [686, Theorem 0.4],
see also [436].

6.6 Non-Connective Algebraic K-Theory of Additive Categories

The approaches mentioned in Section 6.5 will always yield spaces K(R) such that
the algebraic K-groups are defined to be its homotopy groups. Since a space has no
negative homotopy groups, this definition will not encompass the negative algebraic
K-groups. In order to take these into account, one has to find appropriate deloopings.

So the task is to replace the space K (R) by a (non-connective) spectrum K(R) such
that one can define K, (R) by n,,(K(R)) for n € Z and this definition coincides with
the other definitions for all n € Z. For rings this has been achieved by Gersten [422]
and Wagoner [973].

We would like to feed in additive categories.

The category of spectra SPECTRA will be introduced in Section 12.4. Denote
by ADDCAT the category of additive categories. There is an obvious notion of
the direct sum of two additive categories. We will use a construction of Pedersen-
Weibel [800], see also Schlichting [209] or Liick-Steimle [684], of a functor

(6.34) K: ADDCAT — SPECTRA, A — K(A).

Definition 6.35 (Algebraic K-groups of additive categories). We call K(A) the
non-connective K-theory spectrum associated to an additive category. Define for
n € Z the n-th algebraic K-group of an additive category A by

Kn(A) = 1, (K(A)).

Definition 6.36 (Flasque and Eilenberg swindle). An additive category A is called
flasque if there exists a functor of additive categories S: A — A together with
a natural equivalence T: idg4 @S — S. Sometimes the pair (S,7) is called an
Eilenberg swindle.

The next result follows from Pedersen-Weibel [800], see also Cardenas-Pedersen
[209] or Liick-Steimle [684].
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Theorem 6.37 (Properties of K(A)).

(1) If R is a ring and A is the additive category of finitely generated projective
R-modules, then K, (A) coincides with K, (R) forn € Z;

(i) Let F and F; be functors of additive categories. If there exists a natural equiva-
lence of such functors from F to F;, then the maps of spectra K(Fy) and K(F>)
are homotopic;

In particular, a functor F: A — A’ of additive categories which is an equiva-
lence of categories induces a homotopy equivalence K(F): K(A) — K(A’);
(>iii) If A is flasque, then K(A) is weakly contractible.

Exercise 6.38. Give a definition of Ko(A) and K (A) as abelian groups in terms of
generators and relations such that in the case where R is a ring and A is the category
of finitely generated projective R-modules, this definition coincides with the ones
appearing in Definitions 2.1 and 3.1. Show that Ko(A) and K (A) are trivial if A
is flasque.

Exercise 6.39. Let A be the category of countably generated projective R-modules.
Show that K,,(A) = 0 for all n € Z.

Remark 6.40 (Non-connective K-theory spectra for exact categories). Schlicht-
ing [900] has constructed for an exact category # a delooping of the space K(P).
Thus he can assign to an exact category # a (non-connective) spectrum K(%) and
define K, (P) := m,(K(P)) for n € Z. If P is the category of finitely generated pro-
jective R-modules, this definition coincides with our previous definition of K, (R).
If the exact sequences in P are given by split exact sequences, this definition agrees
with the one of Definition 6.35 when we consider £ as an additive category.

Later we will use the following construction for additive categories.

Given an additive category A, its idempotent completion Idem(A) is defined to
be the following additive category. Objects are morphisms p: A — A in A satisfying
pop = p. A morphism f from p;: Ay — Aj to pa: A, — Ay is a mor-
phism f: A; — Aj in A satisfying pp o f o p; = f. The identity of an object
(A, p) is given by the morphism p: (A, p) — (A, p). The structure of an addi-
tive category on A induces the structure of an additive category on Idem(A) in
the obvious way. A functor of additive categories F: A — A’ induces a func-
tor Idem(F): Idem(A) — Idem(A’) of additive categories by sending (A, p) to
(F(A), F(p)).

There is an obvious embedding

n(A): A — Idem(A)

sending an object A to idg: A — A and a morphism f: A — B to the mor-
phism given by f again. An additive category A is called idempotent complete if
n(A): A — ldem(A) is an equivalence of additive categories, or, equivalently,
if for every idempotent p: A — A in A there exists objects B and C and an iso-

morphism f: A — B® Cin A suchthat fopo f~': B&C — B® C is given



6.6 Non-Connective Algebraic K-Theory of Additive Categories 149

00
idempotent complete.

b idg 0 . The idempotent completion Idem(A) of an additive category A is
y p p gory

Theorem 6.41. The map n induces an equivalence
K(n): K(A) > K(Idem(A))
on the non-connective K-theory spectra.

Proof. This follows from [949, Theorem A.9.1] and [684, Corollary 3.7]. a

Note that Theorem 6.41 is not true for the standard construction of the connective
K-theory of an additive category. Therefore in the construction of the connective
K-theory spectrum we always replace A by its idempotent completion Idem(A).
This passage does not change K, (A) for n > 1, but it does change Ko (A), see [949,
Theorem A.9.1]. This is analogous to the fact that in previous constructions of the
connective K-theory of a ring we had to take the cross product with Ky(A), see
Definition 6.9.

Let R be a ring. Let R-MODyyr and R-MODyg, respectively be the additive
category of finitely generated free R-modules and of finitely generated projective

R-modules. We obtain an equivalence of additive categories Idem(R-MODygr) 5
R-MODgy, by sending an object (F, p) to im(p). Let R be the additive category
which has as objects the natural numbers 0, 1,2, ... and morphisms from m to n
are given by (m, n)-matrices over R. The composition is given by multiplication
of matrices, more precisely, given morphisms A: [ — m and B: m — n, their
composite is AB: [ — m. The direct sum of two objects m and 7 is the object m + n
and the direct sum of morphisms is given by the block sum of matrices. We have the
obvious equivalence of additive categories

(6.42) Ry — R-MODyyr

which sends an object m to R™ and a morphism A: m — n to the R-linear homomor-
phismra: R™ — R", (s1,...,8m) — (S1,...,5,)A given by right multiplication
with A. Thus we obtain an equivalence of additive categories, natural in the ring R,

(6.43) Ok : Idem(R,) — R-MODyy.

Note that Idem(R,) is small, in contrast to R-MODyg,. The non-connective
K-theory spectrum of a ring K(R) is defined to be K(R,) for K defined in (6.34).
Then 7, (K(R)) can be identified with all other definitions of K, (R) above for every
nez.
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6.7 Survey on Main Properties of Algebraic K-Theory of Exact
Categories

Next we state some basic and important general results about the algebraic K-theory
of exact categories.

6.7.1 Additivity

For a proof of the next result we refer for instance to [821, Corollary 1 in §3 on
page 22], [922, Corollary 4.3 on page 41], [998, Theorem 1.2 in Section V.I on
page 366] (at least in the connective setting), and [900, Corollary 4 in Section 7].

Theorem 6.44 (Additivity Theorem for exact categories). Let 0 — Fj —l> Fy 2,
F> — 0 be an exact sequence of functors Fi.: P, — P of exact categories P and

P, i.e., i and p are natural transformations such that for each object P the sequence

i(P P
0 = Fo(P) "5 £ (P 22 By(P) = 0is exact.

Then we get for the induced morphisms K, (Fy): K, (P1) — K, (P>) for every
nez

Kn(Fl) = Kn(FO) + Kn(F2)~

6.7.2 Resolution Theorem

Let M and P be exact categories which are contained in the same abelian category A.
Suppose that P is a full subcategory of M. A finite resolution of an object M of M by
objects in P is an exact sequence 0 - P, - P,_1 —» -+ —> P, > Py—> M — 0
for some natural number n. We say that P is closed under extensions in M if for
any exact sequence 0 — My — M; — M, — 0 in M with My, M, in P we have
M; € P. For a proof of the next theorem we refer for instance to [821, Corollary 1
in §4 on page 25] or [922, Theorem 4.6 on page 41], [998, Theorem 3.1 in Section V.3
on page 385] (at least in the connective setting), and [900].

Theorem 6.45 (Resolution Theorem). Let M and P be exact categories which are
contained in the same abelian category A. Suppose that P is a full subcategory of
M and is closed under extensions in M. Suppose that every object in M has a finite
resolution by objects in P.

Then the inclusion P — M induces for every n € Z an isomorphism

Kn(P) = Ku(M).

Exercise 6.46. Let R be a regular ring. Show that for every n € Z the canonical map
K,(R) — G,(R) is bijective.
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6.7.3 Devissage

For a proof of the next result we refer for instance to [821, Theorem 4 in §5 on
page 28], [922, Theorem 4.8 on page 42], or [998, Theorem 4.1 in Section V.4 on
page 400].

Theorem 6.47 (Devissage). Let A be an abelian category. Let B be a full abelian
subcategory of A which is closed under taking subobjects, quotients, and finite
products in A. Suppose that each object A in A has a finite filtration in ‘A

0=A)CA CAC---CA,=A

such that A;[A;_ is isomorphic to an object in B fori =1,2,...,n.
Then the inclusion of exact categories i: B — A induces an isomorphism

Ka(i): Ku(B) > Ku(A)
forn > 0.

Note that in Theorem 6.47 the condition n > 0 appears. To the author’s knowledge
it is not known whether Theorem 6.47 also holds for n < —1. If A is a Noetherian
abelian category, then its negative K-groups vanish and Theorem 6.47 also holds for
negative K-groups for trivial reasons, see [900, Theorem 7].

An object N in an abelian category is called simple if N # 0 and any monomor-
phism M — N is the zero-homomorphism or an isomorphism. For a simple object
M its ring of automorphisms end # (M) is a skew-field (Schur’s Lemma). An object
N in an abelian category is called semisimple if it is isomorphic to a finite direct sum
of simple objects. A zero object is called an object of length 0. Call the simple objects
of an abelian category objects of length < 1. We define inductively for / > 2 an object
M to be of length < [ if there exists an exact sequence 0 - M| - M — M, — 0
for an object M of length < 1 and an object M, of length < (/ — 1). An object is
of finite length if it has length < / for some natural number /. For a proof of the
following corollary of Theorem 6.47 we refer to [821, Corollary 1 in §5 on page 28].

Corollary 6.48. Let A be an abelian category. Suppose that there is a subset S of
the set of objects of ‘A with the property that any simple object in ‘A is isomorphic
to precisely one object in S. Let Ay be the full subcategory of A consisting of
semisimple objects and let Ay be the full subcategory consisting of objects of finite
length. Then we obtain for every n € Z,n > 0 isomorphisms

(D Knlenda(M)) = Kn(Ass) = Ku(Ap).

MeS
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In particular we get in the situation of Corollary 6.48 from Example 2.4 and
Theorem 3.6

Ko(Agp) = @Z;
S

Ki(Ap) = | [enda($)*/[enda($)*, enda(S)"].
S

6.7.4 Localization

Theorem 6.49 (Localization). Let A be a small abelian category and let B be an
additive subcategory such that for any exact sequence 0 — My — My — M, — 0
in A the object M| belongs to B if and only if both My and M, belong to B. Then
there exists a well-defined quotient abelian category A | B. It has the same objects as
A, and its morphisms are obtained from those in A by formally inverting morphisms
whose kernel and cokernel belong to B.

Then there are obvious functors B8 — A and A — A[B that induce a long
exact sequence

2 K1 (A/B) = Kn(B) = Kn(A) = Kn(A/B) — -+ - .

The full description of A/B can be found in [922, Appendix B.3] or [998,
Section I1.6 on page 119]. A proof of the last theorem is given in [821, Theorem 5
in §5 on page 29], [922, Theorem 4.9 on page 42], [998, Theorem 5.1 in Section V.5
on page 402] (at least in the connective setting), and [900, Theorem 1].

The next example is taken from [998, Application 6.1 in Section V.6 on page 406]

Example 6.50. Let R be a Noetherian ring and s be an element in the center of R
which is different from 0. Then one can consider the subcategory of finitely generated
s-torsion modules of the abelian category of finitely generated R-modules and the
localization sequence of Theorem 6.49 reduces to a long exact sequence

+ = Gus1 (R[s7']) = Gu(R/(5)) = Gu(R) = Gu(R[s™'])
— Guo1(R/(5)) = Gpo1(R) > -+

where, roughly speaking, R[s~'] is obtained from R by inverting s.

Exercise 6.51. Let p be a prime number. Then we obtain a long exact sequence

= Kpr1(Z[p']) = Kn(Fp) — Ku(Z) = Kn(Z[p~'])
= Ki{(Z[p~']) = Ko(Fp,) — Ko(Z) —> Ko(Z[p~']) — 0.
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6.7.5 Filtered Colimits

For a proof of the next theorem we refer for instance to [821, (9) in §2 on page 20]
or [922, Lemma 3.8 on page 35], [998, (6.4) in Section IV.6 on page 321] (at least
in the connective setting), and [900, Corollary 5].

Theorem 6.52 (K-theory and directed colimits). Let A be an exact category. Let
{A; | i € I} be a directed set of exact subcategories of A, directed by inclusion
such that A is the union of the categories A in the sense that for every object A in
A and every morphism f: A — A’ thereisani € I with A € A and f € A;. Then
the canonical map

colim;e; K, (A;) — K, (A)

is bijective for n € Z.

Theorem 6.52 holds more generally for filtered colimits.

6.8 The K-Theoretic Farrell-Jones Conjecture for Torsionfree
Groups and Regular Rings

The Farrell-Jones Conjecture for algebraic K-theory, which we will formulate in full
generality in Conjecture 13.1, reduces for a torsionfree group and a regular ring to
the following conjecture. Under the additional assumption that there is a finite model
for BG it appears already in [503].

Conjecture 6.53 (Farrell-Jones Conjecture for K-theory for torsionfree groups
and regular rings). Let G be a torsionfree group. Let R be a regular ring. Then the
assembly map

Hp(BG;K(R)) = Ky (RG)

is an isomorphism for n € Z.

Here H.(—; K(R)) denotes the homology theory that is associated to the (non-
connective) K-spectrum K(R). Recall that H,, ({e}; K(R)) is K,,(R) forn € Z, where
here and elsewhere {e} denotes the space consisting of one point. The space BG
is the classifying space of the group G, which is up to homotopy characterized by
the property that it is a CW-complex with 71 (BG) = G whose universal covering
is contractible. The technical details of the construction of H,(—; K(R)) and the
assembly map will be explained in a more general setting in Sections 12.4 and 12.5.

The point of Conjecture 6.53 is that on the right-hand side of the assembly
map we have the group K, (RG) we are interested in, whereas the left-hand side is a
homology theory and hence much easier to compute. A basic tool for the computation
of a homology theory is the Atiyah-Hirzebruch spectral sequence, which in our case
has as E2-term Elz,’q = H,(BG; K, (R)) and converges to H,.4(BG; K(R)).
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Remark 6.54 (The conditions appearing in Conjecture 6.53 are necessary). The
condition that G is torsionfree and that R is regular are necessary in Conjecture 6.53.
If one drops one of these conditions, one obtains counterexamples as follows.

If G is a finite group, then we obtain an isomorphism

K.(R) ® Q = H,({s};K(R)) ® Q = H,(BG;K(R)) ® Q.

Hence Conjecture 6.53 would predict for a finite group that the change of rings

homomorphism K, (R) ® Q — K,(RG) ®z Q is bijective. This contradicts for
instance Lemma 2.89.

In view of the Bass-Heller-Swan decomposition 6.16, Conjecture 6.53 is true for
G = Z in degree n only if NK,,(R) vanishes.

Exercise 6.55. Let R be a regular ring. Let G = G| *g, G2 be an amalgamated
free product of torsionfree groups, where G is a common subgroup of G and G».
Suppose that Conjecture 6.53 is true for Gg, G|, G2, and G with coefficients in the
ring R. Show that then there exists a long exact Mayer-Vietoris sequence

-+ = K,(RGo) — K,,(RG1) ® K,,(RG2) — K, (RG)
— K, 1(RGy) — K,,_1(RG1) ® K;,-1(RG3) — -+

Exercise 6.56. Let R be a regular ring. Let ¢: G — G be an automorphism of the
torsionfree group G. Suppose that Conjecture 6.53 is true for G and the semidirect
product G =4 Z with coefficients in the ring R. Show that then there exists a long
exact Wang sequence

id =K (¢)
o+ = Kp(RG) —— Ku(RG) — Ku(R[G =4 Z])
id-Ky-1(9)
- Kn—l(RG) . Kn—l(RG) —
Remark 6.57 (K.(ZG) ®z Q for torsionfree G). Rationally the Atiyah-Hirzebruch

spectral sequence always collapses and the homological Chern character gives an
isomorphism

ch: P H,(BG:Q) &g (K4(R) ®2 Q) > H,(BG:K(R)) 82 Q.
p+tg=n

The Atiyah-Hirzebruch spectral sequence and the Chern character will be dis-
cussed in a much more general setting in Subsection 12.6.1 and Section 12.7.

Because of Theorem 6.24 the left-hand side of the isomorphism described in
Remark 6.57 specializes for R = Z to H,(BG;Q) & P Hu-(ax+1)(BG; Q).
Hence Conjecture 6.53 predicts for a torsionfree group G

(6.58)  Ku(ZG) 82Q = H,(BG:Q) & () Hy— (4141 (BG: Q).
k=1
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Conjecture 6.59 (Nil-groups for regular rings and torsionfree groups). Let G be
a torsionfree group and let R be a regular ring. Then we get

NK,(RG) =0 forallneZ.

Exercise 6.60. Show that a torsionfree group G satisfies Conjecture 6.59 for all
regular rings R if it satisfies Conjecture 6.53 for all regular rings R.

6.9 Mayer-Vietoris Sequences for Amalgamated Free Products
and Wang Sequences for HNN-Extensions

We have seen in the introduction that for the topological K-theory of reduced group
C~-algebras there exist Mayer-Vietoris sequences associated to amalgamated free
products, see (1.4), and long exact Wang sequences for semidirect products of the
shape G = H >4 Z, see (1.5). These lead to the final formulation of the Baum-
Connes Conjecture 1.1. Because of Exercises 6.55 and 6.56 one can expect similar
long exact sequences to exist for the algebraic K-theory of group rings for torsionfree
groups and regular rings, but not in general, as one can derive for instance from the
Bass-Heller-Swan decomposition 6.16.

We want to explain the more complicated general answer for the algebraic
K-theory of group rings, which is given by Waldhausen [975] and [976].

Aring R is called regular coherent if every finitely presented R-module possesses
a finite projective resolution. A ring R is regular if and only if it is regular coherent
and Noetherian. A group G is called regular or regular coherent respectively if for
any regular ring R the group ring RG is regular or regular coherent. If G = G *g, G2
for regular coherent groups G and G and a regular group G or if G = H >4 Z for
aregular group H, then G is regular coherent. In particular, Z" is regular and regular
coherent, whereas a non-abelian finitely generated free group is regular coherent but
not regular. For proofs of the claims above and for more information about regular
coherent groups we refer to [976, Theorem 19.1].

The maps of spectra appearing in the theorem below are all induced by obvious
functors between categories.

Theorem 6.61 (Waldhausen’s cartesian squares for non-connective algebraic
K-theory). Let G = G| *g, G2 be an amalgamated free product and let R be a ring.

(1) There exists a homotopy cartesian square of spectra

Nil(RGo; RG1, RG>) —— K(RG) v K(RG>)

K(RGy) K(RG)
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where Nil(RG; RG |, RG>) is a certain non-connective Nil-spectrum associ-
atedto G = G %G, G2 and R and K is the (non-connective) K-theory spectrum;

(i) There isamap f: K(RG() VK(RG() — Nil(RGy; RG, RG;) and fork = 1,2
amap gi: Nil(RGy; RG, RG;) — K(RG) with the following properties. The
composite g o f: K(RGy) V K(RGo) — K(RG)) is the projection to the k-th
summand, the composite

K(RGQ) \% K(RG()) i) Nil(RGy; RG1, RGz) —l> K(RGl) VvV K(RG»)

is homotopic to K(j1) V K(j2) for ji.: Go — Gy the canonical inclusion, and
iof is homotopic toid vid: K(RGy) V K(RGy) — K(RGy),

(iii) If R is regular and G is regular coherent, then f: K(RG() vV K(RGy) —
Nil(RGy; RG, RG;) is a weak homotopy equivalence;

(iv) The composite of the map QK(RG) — Nil(RGy; RG1, RG3) associated to
the homotopy cartesian square of assertion (i) with the canonical map from
Nil(RGy; RG, RG,) to the homotopy cofiber of the map f induces a split
surjection on homotopy groups.

Proof. All these claims are proved for connective K-theory in Waldhausen [976,
11.2,11.3,11.6].In[75, Section 9 and 10] the definitions and assertions are extended
to the non-connective version except for assertion (iv). Assertion (iv) can be derived
from the connective version by using the Bass-Heller-Swan decomposition 6.16. O

Theorem 6.62 (Mayer-Vietoris sequence of an amalgamated free product for
algebraic K-theory). Let G = G *g, G2 be an amalgamated free product and
let R be a ring. Denote by i