Math. Ann. 309, 247-285 (1997)

Mathematische
Annalen

© Springer-Verlag 1997

Hilbert modules and modules
over finite von Neumann algebras
and applications to L2-invariants

Wolfgang Lick

Fachbereich Mathematik und Informatik, Wedische Wilhelms-Universitt Munster,
Einsteinstrasse 62, D-48149ivster, Germany (e-mail: lueck@math.uni-muenster.de)

Received: 18 December 1995 / Revised version: 28 August 1996

Mathematics Subject Classification (1995¥R99, 46L99

Introduction

Throughout this paper# is a finite von Neumann algebra and tr¢ — C is

a finite normal faithful trace. Recall that a von Neumann algebra is finite if and
only if it possesses such a trace. L&t #) be the Hilbert space completion of

.-¢ which is viewed as a pre-Hilbert space by the inner prodach) = tr(ab*).

A finitely generated Hilbert-2-module Vis a Hilbert spacé/ together with a

left operation of 2 by C-linear maps such that- 1 , acts by scalar multipli-
cation with A onV for A € C and there exists a unitaryZ-embedding ol in
12(.2)" = ®,12(.2). In the sequel # operates always from the left unless ex-
plicitly stated differently. A morphism of finitely generated Hilbe#-modules is

a bounded-#-operator. Let{fin. gen. Hilb.. 4-mod.} be the category of finitely
generated Hilbert-4-modules. This category plays an important role in the con-
struction of L?-invariants of finite connecte@W-complexes such ak?-Betti
numbers and Novikov-Shubin invariants. For a surveyl.éffco)homology we
refer for instance to [18], [32], [44]. More information abdL-invariants can

be found for instance in [1], [5], [8], [9] [13], [14], [17], [19], [24], [25] [26],
[29], [30], [31], [34], [40], [43]. These constructions af-invariants use the

rich functional analytic structure. However, it is a consequence of standard facts
about von Neumann algebras that they can be interpreted purely algebraically.
Namely, we will prove (see Theorem 2.2){fin. gen. proj.4-mod.} denotes

the category of finitely generated projectivé-modules

Theorem 0.1 There is an equivalence of categories compatible with the complex
vector space structures on the set of morphisms and the direct sums

v~1: {fin. gen. Hilb..4-mod} — {fin. gen. proj. 4-mod}. O
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This is quite convenient sinceZ viewed as a ring has the following nice
properties (see Corollary 2.4 and Theorem 1.2). Fo#amoduleM define

™ {xeM | f(x)=0forallf € homg(M,R)};
PM = M/TM.

Theorem 0.2 1. A finite von Neumann algebraZ is semi-hereditary, i.e. any
finitely generated submodule of a projectivé-module is projective;

2. The categoryfin. pres..2-mod} of finitely presented-#4-modules is abelian,
i.e. the kernel, the image and the cokernel of-&linear map of finitely
presented 4-modules is again finitely presented;

3. A.4-module is finitely presented if and only if it had-alimensional finitely
generated projective-4-resolution;

4. Let M be a finitely presented4-module. ThePTM = TPM =0and M is
finitely generated projective if and onlyT™ = 0. In particular PM is finitely
generated projective and the exact sequehee> TM — M — PM —
O splits. O

Hence the general strategy is to read loffinvariants of a finitely generated
Hilbert . Z-chain complexC from the homology of the finitely generated pro-
jective. -4-chain complex,—1(C) associated t€ by Theorem 0.1. Namely, one
can define for a finitely presented/-moduleM invariants

dimM) e R3O
a(M) € [0,00] I {o0c*};

and show (see Theorem 5.4)

Theorem 0.3 Let C be a finitely generated HilbertZ-chain complex. Then we
get for the 12-Betti numbers ﬁ)(C) and the Novikov-Shubin invariants,(C):

bP(C) = dimPH,(v~(C)));
ap(C) a(THp_1(v"HC))). O
We will actually consider more refined invariants than tReBetti numbers
and Novikov-Shubin invariants by substituting tfievalued trace tr by the center-

valued trace t. We obtain in Sect. 3 for each finitely presented-moduleM
and finitely generated Hilbert4-chain complexC invariants

dim'(M) € Z(.2);
bi(C) € Z(4);
WwW(M) € Z(2);
WI(C) € D(.2),

where the definition ofZ (_-4) will be given in Definition 3.8. Theorem 0.3
extends to these refined invariants and the refined invariants determine the others.
We use the refined invariants to show (see Corollary 3.2, Lemma 3.3 and Example
4.3)
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Theorem 0.4 1. Two finitely generated projectiveZ-modules P and Q are#-
isomorphic if and only itlim“(P) = dim"(Q);

2. If 2 is of type I, for instance if_ is the von Neumann algebra of a finitely
generated group which does not contdif as subgroup of finite index, then any
element in Z 2)* can be realized adim“(P) for a finitely generated projective
.¢4-module;

3. Let Sc C[Z] be the multiplicative subset of elementsUdfZ] which are in-
vertible in 1°(SY). Let M and N be finitely generated 8C[7]-modules. Then
M and N are isomorphic as S'C[Z]-modules if and only if the finitely presented
L>°(S1)-modules M®g-1¢5; L=(Sh) and N ®s-1¢(7 L>°(S?) are isomorphic as
L>°(S)-modules. The t(S)-isomorphism type of Mos-1¢;) L>(S?) resp. of
™™ ®s-1¢1z] L>°(S?) is determined by its elementary ideals respully O

Let I" be a discrete group an® be a finite I'-CW-complex with finite
isotropy groups. Examples foX are universal coverings of compa€w-
complexes with/" as fundamental group and smooth manifolds with smooth co-
compact proper I'-action. We will define L%-Betti numbers b®(X)
= b@(X;12(I")) and Novikov-Shubin invariants,(X) = a(X;12(I")) in Sect. 6
using the cellular_?-chain complex. In Sect. 6 we will briefly discuss singu-
lar homology, universal coefficient spectral sequences, the Leray-Serre spectral
sequence, Poincaduality, Morse inequalities,?-torsion, the “Zero in the spec-
trum” conjecture and will show (see Theorem 6.3 and Example 4.3)

Theorem 0.5 1. Suppose that’ is the free abelian groufi’ of rank r. LetCZ{,
be the quotient field of:Z". Then

bPOG12(Z) = dimegy, (He(X; C) @cz CZig)) ;

2. Suppose that’ is Z. Choose te C[Z] such that the principal ideal generated
by t is the annihilator of the torsion submodule of(X;C). Consider t as a

polynomial in z and z2. If the torsion submodule is trivial or t has no roots on
St, thenap(X;12(Z)) = co*. Otherwise we get for the the highest order a of all

roots of t on $

ap(X;12(2)) = ; O

John Lott has given in the cagé= Z" an expression of the Novikov-Shubin
invariants in terms of Massey products [24, pages 495 - 496].

In Sect. 7 we will generalize results of [30, Theorem 3.1]. We will prove in
Sect. 7

Theorem 0.6 LetI; C I, C ... C In+1 = I' be a nested sequence of subgroups
of I" for an integer n> 0. Suppose thaf} is infinite, I; is normal in Iy,

the quotientli.,/I; containsZ as subgroup forl <i < n and BI; has finite
i-skeleton forl <i <n+1 Then

b&(I") = bP(E;1%(I) = 0 forp<n. O
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We mention the following consequence which follows from Theorem 0.6
using the same arguments as in the proofs of [30, Theorem 4.1, Theorem 5.1
and Corollary 6.2]. Recall that the deficiency déf(f a finitely presented group
I'" is the maximum over all differences— r whereg resp.r is the number of
generators resp. relations in any presentatiofi.dt is known that this maximum
always exists.

Theorem 0.7 Letl — A — I' — © — 1 be an exact sequence of groups
such thatA is finitely generated and infinitd, is finitely presented and is a
subgroup ofr. Then:

1. b2 = o

2. def(l") < 1;

3. Let M be a connected closed orientaddlenanifold with I" as fundamental
group. Then we get for its signatusign(M) and Euler characteristig/(M)

[signM)| < x(M). O

We mention that in the version of this corollary in [30] the stronger as-
sumption was needed that is finitely presented. IM is a closed orientable
4-dimensional Einstein manifold, then the sharper inequality

> - Isign®)| < x(M)

holds [20].

Finally we mention the following observation about Thompson'’s grBujit
is the group of orientation preserving dyadic PL-automorphisms df][@here
dyadic means that all slopes are integral powers of 2 and the break points are
contained inZ[1/2]. It has the presentation

F= <X0,X1,X2, o | Xi_lxnxi = Xn+1 fori < n>.

This group has some very interesting properties. It is not elementary amenable
and does not contain a subgroup which is free on two generators [3], [7]. Hence
it is a very interesting question whethieris amenable. SincBF is of finite type

[4], the L2-Betti numbersh{®(F) are defined for alp > 0. We conclude from [9,
Lemma 3.1 on page 203] attf (EF; C) = 0 fori > 1 that a necessary condition

for F to be amenable is thw{f)(F) vanishes for alp > 0. This motivates the
following result whose proof is given at the end of Sect. 7:

Theorem 0.8 All L?-Betti numbers @(F) of Thompson’s group F vanish.O

The paper of Farber [15] is related to this paper as follows. Farber constructs
a category” (. -#) which contains the categogyin. gen. Hilb.. 2-mod.} as sub-
category. The main point is that it is an abelian category, it is a kind of abelian
extension of{fin. gen. Hilb..-2-mod} in the sense of [16]. An object i#'(.2)
is a map of finitely generated HilbertZ-modules ¢ : A — A). A morphism
in &(.2) from (o : A — A) to (3 : B’ — B) is an equivalence class of maps
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f : A— B such that there exists a mgpg A’ — B’ with f oa = 30 g. Here

f andf’ are called equivalent if and only ff — f’ = 8 o h for some morphism

h: A— B’. The embedding offin. gen. Hilb.. -2-mod.} into #(.¢) is used

in [15] to prove an analogue of Theorem 0.3 and to give impro&#orse
inequalities. The two approaches are unified by the following result which will
be proved at the end of Sect. 2.

Theorem 0.9 There is an equivalence of abelian categories
v=1: &(4) — {fin. pres..4-mod}
which induces the equivalence appearing in Theorem 0.1
v~1: {fin. gen. Hilb.. 4-mod} — {fin. gen. proj. 4-mod}. O
The paper is organized as follows :

0. Introduction

Semi-hereditary rings

Finitely generated Hilbert4-modules and finitely generated projectivé-
modules

Isomorphism invariants of finitely presented-modules

Abelian von Neumann algebras

L2-Betti numbers and Novikov-Shubin invariants for chain complexes
L2-Betti numbers and Novikov-Shubin invariants for spaces

L2-Betti numbers, fibrations and deficiency of groups

References
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Noosr®

1 Semi-hereditary rings

In this section we explain some elementary properties of semi-hereditary rings
and of finitely presented modules over them.

Ring will always mean associative ring with unit aRdmodule will mean
left R-module unless explicitly stated differently. Amvolution on R is a
map x : R— R r+—r* which satisfies (+s)* =r* +s*, (rs)* =s*r* and
(r*)*=r and ¥ =1 for all r,s € R. Everything in this section does also make
sense without the involution if one is careful with left and right modules. We
call R semi-hereditaryf each finitely generated ideal is projective. This prop-
erty implies that each finitely generated submodule of a proje®eodule is
projective [6, Proposition 1.6.2. on page 15]. Recall that the dialof a (left)
R-module is the (leftR-module hora(M , R) where theR-multiplication is given
by (f)(x) =f(X)r* forf e M*, x e M andr € R.

Definition 1.1 Let M be a R-submodule of N. Define t#tlesure of M in N to
be the R-submodule of N

M={xeN | f(x)=0forallf € N* with M C ker(f)}.
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For a R-module M define the R-submodtilg and the R-quotient moduleM
by:

™
PM

{xeM | f(x)=0forallf e M*};
M/TM. O

Notice thatTM is the closure of the trivial submodule M. It can also be
described as the kernel of the canonical méy) : M — (M *)* which sends
x € M tothemapM* — R f — f(x)*. Notice thatTPM = 0 and thaPM =0
is equivalent toM * = 0.

Let R be a commutative ring without zero-divisors avidbe a finitely gener-
atedR-module. Then the torsion submoduleMf coincides withTM since any
torsion-free finitely generatdd-module can be embedded irR for appropriate
n [2, Proposition 3.3 in Chap. 9 on page 321].Mf is not finitely generated,
this is not true in general as the exampBle Z andM = () shows becaus® as
abelian group is torsionfree and satisfie8 = (). If we suppose additionally that
R is semi-hereditary theRM is projective, providedM is finitely generated. If
R is commutative but has zero-divisors, then in general the torsion submodule
of a finitely generatedR-moduleM does not agree witfiM . Our main example
of a semi-hereditary ring will be any finite von Neumann algebfa(see Corol-
lary 2.4). Notice that in generalZ has zero-divisors, is not noetherian and has
finitely generated modules! which are not finitely-presented. An example is
4 =L>(SY) andM =L>(Sh)/J,>1(xn) Where () is the ideal generated by
the characteristic function of the subs@xp(2rit) | t € [0,1— 1/n]} of St
Namely, [ J,-;(xn) cannot be finitely generated ag,{ 7 (xn+1) holds for alln
and hencéM is not finitely presented because the kernel of an epimorphism of
a finitely generated module onto a finitely presented module is always finitely
generated.

Theorem 1.2 Let R be a semi-hereditary ring with involution. Then:

1. The following statements are equivalent for a R-module M:
a) M is finitely presented;
b) M has al-dimensional finitely generated projective R-resolution;
c) M is of type FP, i.e. possesses a finite-dimensional finitely generated pro-
jective R-resolution;
d) M is of type FR., i.e. possesses a finitely generated projective R-resolu-
tion;
2. Iff:M — N is a R-map of finitely presented R-modules, then its kernel,
image and cokernel are again finitely presented;
3. If M is a finitely presented R-module, the! is a finitely generated projec-
tive R-module. If M is a finitely generated projective R-module, Bdn= M.

Proof. 1.) Is obvious.

2)If0— M; — M, — M3 — 0 is an exact sequence Bfmodules and
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two of the three are of type FP, then all three are of type FP [28, Theorem 11.2.c
on page 212]. Hence it suffices to show foRamapf : M — N of finitely pre-
sentedR-modules that its image is finitely presented. Eet—- Fq P.N—0O

be a finite presentation. Théh —— p~(im(f)) LN im(f) — 0 is exact. Since
p~1(im(f)) is a finitely generated submodule of a flRemodule, it is projective.

Let Q be a finitely generated projecti®module such tha® & p~(im(f)) = F§

for a finitely generated fre®-moduleFj. Then one easily constructs an exact
sequence oR-modulesF; & Fj; — Fj — im(f) — 0. Hence im{) is finitely
presented.

3.) Choose a finite presentati®” —— R" >~ M — 0 of the R-module M.

Then the sequence 8- M* — (R")* AR (R™* is exact. SinceR is semi-
hereditary the image df* and henceM * are finitely generated projective. The
projection pr:M — PM induces an isomorphism prPM* — M*. Since
TPM s trivial, the canonical map(PM) : PM — (PM*)* is an embedding
of a finitely generatedk-module into a finitely generated projecti®module.
HencePM is projective. This finishes the proof of Theorem 1.200

Define for any chain comple€ its dual R-cochain complex Chy the R-
cochain complex whosa-th R-cochain module i€;. Given aR-moduleM,
defineM by Exti(M,R). If PM =0 andM has a 1-dimensional projective
resolutionP thenP* defines a 1-dimensional projective resolution kr and
we get a canonical isomorphismt — (M ) .

Lemma 1.3 Let R be a semi-hereditary ring with involution. Let C be a finitely
generated projective R-chain complex. Then there is ain C natural exact sequence

-~

0 — (THn-1(C)) — H™(C") — (PHy(C))" — 0.

The sequence splits (but not naturally). In particular we obtain in C natural R-
isomorphismgTH,_1(C)) — TH"(C*) andPH"(C*) — (PH,(C))".

Proof. Notice that(TH,_1(C)) is canonically isomorphic to Ek(H,_1(C), R)
andH,(C)* is canonically isomorphic t¢PH,(C))*. Under these identifications
the proof for instance in [45, Theorem 13.10 on page 240] for free abelian chain
complexes goes through directly.O0

2 Finitely generated Hilbert . 4-modules
and finitely generated projective. 4-modules

In this section we identify the categories of finitely generated Hilbérmodules
and of finitely generated projectiveZ-modules and show that any finite von
Neumann algebra is semi-hereditary.
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For the rest of this paper letZ be a finite von Neumann algebra and
let tr :. 4 — C be some finite normal faithful trace. Recall that a von Neu-
mann algebra is finite if and only if it possesses such a tracel3(e#) be
the Hilbert space completion ofZ which is viewed as a pre-Hilbert space by
the inner product(a,b) =tr(ab*). A finitely generated Hilbert-4-module V
is a Hilbert spacev together with a left operation of4 by C-linear maps
such that\ - 1 , acts by scalar multiplication with onV for A € C and there
exists a unitary. 4-embedding ofV in @®L,1%(.#) for somen. A morphism
of finitely generated Hilbert-2-modules is a bounded#-operator. Denote by
{fin. gen. Hilb.. 4-mod} the category of finitely generated Hilber¢-modules.

For a survey on finite von Neumann algebras and Hilbemodules we refer
for instance to [34, Sect. 1].

A (C-category? is a category such that for each two objects the set of mor-
phisms between them carries the structure of a complex vector space for which
composition of morphisms is bilinear and théat has a (strict) sum which is
compatible with the complex vector space structures abovéstrct) involu-
tion on a C-categoryZ” is an assignment which associates to each morphism
f : x — y a morphismf* : y — x and has the following properties

) =
A-frp-g" = Af+pu-g%
(fog) = g of7
feg” = f"ag"

wheref ,g are morphisms) and . complex numbers. There is a canonical struc-
ture of aC-category with involution on{fin. gen. Hilb.. 2-mod.} where the
involution is given by taking adjoint operators. We call an endomorphism resp.
isomorphismf in # selfadjointresp.unitary if f =f* resp.f* =f 1 holds. A
functor ofC-categories with involutions a functor compatible with the complex
vector space structures on the morphisms, the sums and the involutions. A nat-
ural equivalencd of functors of(C-categories with involution is callednitary
if the evaluation ofT at each object is a unitary isomorphism. Aguivalence
of C-categories with involutions a functor of such categories such that there is
a functor of such categories in the other direction with the property that both
compositions are unitarily naturally equivalent to the identity.

Given a finitely generated projectiveZ-moduleP, aninner producton P is
a mapyu : P x P — . -4 satisfying (cf [48, Definition 15.1.1 on page 232])

1. p is.Z-linear in the first variable;

2. p is symmetric in the sense(Xx,y) = u(y, X)*;

3. u is positive-definite in the sense thafp, p) is a positive element in-, i.e.
of the forma*a for somea € . 4, andu(p,p) =0<«<= p =0;

4. The induced map : P — P* = hom ,(P,.2) defined byu(y)(X) = u(X,y)
is bijective.
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Notice thatu is a. 4-isomorphism such that the compositinﬂ (P*)* », pr
is u. Let {fin. gen. proj.4-mod. with ( )} be the C-category whose objects
are finitely generated projective4-modules with inner productP( ;) and
whose morphisms are#-linear maps. We get an involution on it if we spec-
ify £ (P1, 1) — (Po, o) for f : (Po, p10) — (P1, pa) by requiring pa(fx, y)
= po(x, T*(y)) for all x € Py andy € Py. In other words, we defing* := ™!
of *ouq where the secont refers to the 2-mapf * = hom ,(f,id) : P; — P{.
In the sequel we will use the symbbt for bothf*:P; — Py andf* : P}
— Pg.

Given a finitely generated projectiveZ-module P, i) with inner product
1, We obtain a pre-Hilbert structure dh by tro i : P x P — C. Let v(P) be
the associated Hilbert space. We will show later that this is a finitely generated
Hilbert . 4-module and that any--linear mapPy — P; of finitely generated
projective . -Z-modulesP; with inner productsy; extends to a morphism of
Hilbert . 2-modulesv(f) : v(Po, 110) — v(P1, 1). Moreover, we will prove

Theorem 2.1 1. The functor
v : {fin. gen. proj.4-mod. with( )} — {fin. gen. Hilb..4-mod}

is an equivalence of-categories with involutions;

2. Any finite generated projectiveZ-module has an inner product. Two finitely
generated projective 4-modules with inner product are unitarily-#-iso-
morphic if and only if the underlying#-modules are --isomorphic.

Proof. Put. 24" = @, 4 and|?(.#)" = @_,12(.2). Let {. 2"} resp.{I?(.4)"}
be the full subcategory of {fin. gen. proj.4-mod. with()} resp.
{fin. gen. Hilb.. 4-mod} whose objects are#" resp.l?(.¢)" forn=0,1,2.. ..
Here we equip 4" with the standard inner product

n
,U/S'(((ala ag, ..., aﬂ)7 (b17 b2a SRR} bn)) = Z g bi*-
i=1

Now v as defined above yields a well-defined isomorphisni -afategories with
involutions
vi{ " — {1%4)"

because the right regular representatieh— .2(12(. %), 1%(.4)) ¢ from . 4
into the space of bounded/-operators from 2(. #) to itself sendinga € . 4 to
the extension of the mapZz — .4 b+ ba* is known to be well-defined and
bijective [12, Theorem 1 in 1.5.2 on page 80, Theorem 2 in 1.6.2 on page 99].
The idempotent completioldem(#") of a C-categoryZ” with involution has
as objectsV\, p) selfadjoint idempotents : V. — V. A morphism from Vo, po)
to (V1, p1) is a morphisnt : Vo — V; satisfyingp, o f o pp = f. The identity on
(V,p) is given byp: (V,p) — (V,p). The idempotent completion Idefi()
inherits from Z~ the structure of aC-category with involution in the obvious
way. There are functors df-categories with involutions
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IM : Idem({. 2"}) — {fin. gen. proj..4-mod. with ( )};
IM : Idem({1%(.2)"}) — {fin. gen. Hilb.. 4-mod.};

which send.(-2", p) resp. (3(.4)", p) to the image op where the inner product
st On im(p) is given by restricting the standard inner produgton . 2".

Let P be a finitely generated projectiveZ-module. It is isomorphic to ing)
for some idempoteny : . 2" — . 2", Definep : . 4" — 2" to be the idem-
potent for whichv(p) : 12(.4)" — 12(._4)" is the orthogonal projection onto the
image ofv(q). Because of/((id — q) o p) = 0 we get (id— q) o p = 0. Similiarly
we get (id— p) o q = 0. This implies thagg andp have the same image. Hence
P is isomorphic to imf) for some selfadjoint idempotept: . 4" — . 2",

Next we prove the second assertion. Because of the argument above it suffices
to check the claim foP = im(p) for a selfadjoint idempotent : . 4" — . 2".
The standard inner product or?" induces a standard inner prodygt : P x P
— . It remains to show for a second inner productP x P — .2 that
there is a isometric 4-isomorphismg : (P, ) — (P, ust). Let f : P — P
be the .-Z-automorphism uniquely determined by the property thét,y)
= ust(f(X),y) holds for allx,y € P. Let f* be the adjoint off with respect
to ust. Then the following calculation shows thhtis positive with respect to

Hst-
st (X, F(Y)) = pst(f(Y), x)" = ply,X)" = u(x,y) = psi(f(x),y).

:LLSt(f (X)7 X) = :U’(Xa X) > 0.
Letg' :. 4" — . 4" be defined by the property thetg’) : 12(. 2)" — 12(_2)"
is positive andv(g’) o v(¢’) = v(i of op) wherei : P — ..2" is the inclusion
which is the adjoint ofp : . 4" — P with respect tous;. Defineg: P — P
by po g’ oi. Theng is selfadjoint with respect tpg, andg? = f. This implies

pst(9(x) 9)) = nst(9?(X),y) = psilf (x).y) = p(x, y)-

This finishes the proof of the second assertion.

Next we can conclude for any#-linear mapf : (Po, no) — (P1, 1) of
finitely generated projective 4-modules that the Hilbert space completion
v(Pi, i) is a finitely generated HilbertZ-module andf extends to a bounded
.¢-operatorv(Po, uo) — v(P1, 11). Because of assertion 2.) one can reduce the
claim to the caseR;, ui) = (4", ust) which we have already dealt with. Hence
v : {fin. gen. proj..-4-mod. with ( }} — {fin. gen. Hilb.. 4-mod} is well-
defined. It is obviously a functor of’-categories with involution. It remains
to show that it is an equivalence @fcategories with involutions.

The following diagram commutes

Idem()
_—

Idem{. 2"}) Idem({1%(-2)"}

" [

{fin. gen. proj..4-mod. with ()} —— {fin. gen. Hilb..-4-mod}
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The upper horizontal arrow is induced by the isomorphisnt-@fategories with
involutionsv : {. 2"} — {I%(._#)"}. Hence it suffices to show that the vertical
arrows are equivalences d@f-categories with involutions. This would follow

if IM is full, i.e. induces an epimorphism on the set of unitary isomorphism
classes of objects, and faithful, i.e. induces isomorphisms on the set of morphisms
between to arbitrary objects onto the set of morphisms between the images of
these objects (cf. [39, Theorem 1 on page 91]). Obviously IM is faithful in
both cases. It is full in the second case of finitely generated Hilbénnodules
since by definition of a finitely generated4-moduleV there is a selfadjoint
idempotentp : 12(.4)" — 12(.4)" whose image is unitarily-4-isomorphic to

V. Itis full in the first case of finitely generated projectivé-modules because

of the second assertion. This finishes the proof of Theorem 201.

A sequenceU v W of finitely generated Hilbert 4-modules is
weakly exact at Vresp.exact at Vif im(f) = ker(g) resp. im{) = ker(g) holds.
The definition for finitely generated projectiveZ-modules is analogous where
the notion of closure of Definition 1.1 is used. In the sequel is an inverse
of v which is well-defined up to unitary natural equivalence by Theorem 2.1.
Theorem 2.1 implies

Theorem 2.2 The composition af—* with the forgetful functor induces an equiv-
alence ofC-categories

{fin. gen. Hilb..4-mod} — {fin. gen. proj. 4-mod}. O
Lemma 2.3 v andv~! preserve weak exactness and exactness.

Proof. A sequencel LoV LW of finitely generated Hilbert-Z-modules

is weakly exact aVv if and only if the following holds:g o f =0 and for any
finitely generated Hilbert-4-modulesP andQ and morphismsi : V — P and
v:Q —V withuof =0andgov =0 we getuowv =0. It is exact atv if

and only if the following holdsy o f = 0 and for any finitely generated Hilbert
.¢-module P and morphismv : P — V with gov =0 there is a morphism
u:P — U satisfyingf o u =v. The same is true if one considers finitely gen-
erated projective Z-modules instead of finitely generated Hilber¢-modules.
Now v andv~! obviously preserve these criterions for weak exactness and ex-
actness and the claim follows. O

Corollary 2.4 A finite von Neumann algebraZ is semi-hereditary.

Proof. Let M C .2 be a finitely generated ideal in4. Choose a #4-map
f .. 2" — .2 whose image iM. It suffices to show that kefr] is a direct
summand. Lep : . 4" — . 2" be the_2-map for whichyv(p) is an idempotent
with ker(v(f)) as image. Because of Lemma $13s an idempotent with kef{
as image. O

Finally we give the promised proof of Theorem 0.9. We define

v=1: & (4) — {fin. pres..4-mod.}
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on objects by sendingy(: A’ — A) to the cokernel of/~*(«). A morphismf

in & () induces a -4-map in the obvious way. Clearly an object of the shape
0 — Ais sent tor—1(A). One easily checks using standard homological algebra
thatv—1is full and faithful. O

3 Isomorphism invariants of finitely presented. 4-modules

In this section we introduce some isomorphism invariants for finitely pre-
sented. -4-modules. We will completely classify finitely generated projective
.4-modules. This is a direct consequence of the following result which is taken
from [21, Theorem 8.2.8 on page 517, Proposition 8.3.10 on page 525 and The-
orem 8.4.3. on page 532].

Theorem 3.1 Let. 4 be a finite von Neumann algebra on H. There is a map
t =t . 2 — Z(.2)

into the center Z ) of . 4 called thecenter-valued trace or universal tracke
¢ uniquely determined by the following properties:

1. trY is C-linear;

2. If a € . is positivetri(a) is positive;
3. trY(ab) = tr¥(ba) for all a,b €. #;

4. t'"(a) =aforalla e Z( 4).

The mapr! has the following further properties:

5. If a € .4 is positive andr¥(a) = 0, then a=0;

6. trY is continuous in the ultraweak topology;

7. t“@)]] < ||a|| for a € .A4;

8. trY(ab) = atr!(b) for alla € Z(.4) and be . #;

9. Let p and q be projections inZ. Then p~ q, i.e there is a partial isometry
u € .4 satisfying p= uu* and q= u*u, if and only iftr¥(p) = tr“(q);

10. Any bounded linear functional :f. 4 — C which is central, i.e. {ab)

=f(ba) for all a,b € . ¢, factories as

2z o

Define thecenter-valued von Neumann dimensioh a finitely generated
Hilbert . 2-moduleV by

dim“(V) =dim",(V) = t'(p) € Z(. %)

wherep : 12(_4)" — 12(_4)" is any. #-projection whose image is isomorphic
as finitely generated HilbertZ-module toV and t¥(p) is the sum of the traces



Hilbert modules and.2-invariants 259

tr'(A; ;) of the diagonal entries of then(n)-matrix A with entries in. 4 given
by p. We define for a finitely presented4-moduleM

dim'(M) := dim'(W(PM,p) € Z(.42)

for any inner produci: on PM. These two definitions are independent of the
choices ofp and i by Theorem 2.1 and Theorem 3.1. We have ‘tivh)

= dim'(PM) by definition. Notice that the matrix algebidy(.4) is again a
finite von Neumann algebra. We will extend this notion to arbitrary modules
over finite von Neumann algebras in [33]. We get from Theorem 3.1

Corollary 3.2 1. The following statements are equivalent for two finitely gener-
ated projective 4-modules P and Q:
a) P and Q are -4-isomorphic;
b) P and Q are stably Z-isomorphic, i.e. PV and Q& V are . 2-
isomorphic for some finitely generated projectivé-module V ;
c) dim“(P) = dim“(Q);
d) [P]=[Q] in Ko(-2);

2. The center-valued dimension induces an injection
dim" : Ko(. 2) — Z(.#4)" ={a € Z(.¢) | a=bb* for some be . Z}.

If .2 is of type Il this map is an isomorphism (The imagdiof" is described
in [21, Theorem 8.4.4 on page 533] in general)O

Notice that for a finite groupr and. 4 the associated von Neumann algebra
which is Cr in this case Corollary 3.2 reduces to the well-known fact that
two finite-dimensional unitaryr-representations are unitarity-isomorphic if
and only if they have the same character.

In this context we mention the computationkf(. 4) andK“(.-4) (for any
von Neumann algebra#) in [35] and the following lemma. Recall that a finitely
generated grougd” is virtually abelian if and only if it containg" as normal
subgroup of finite index for some > 0. Let I3 be the normal subgroup of
elementsy € I" for which the setq) of elements conjugated tg is finite. The
definition of typel and typell; of a von Neumann algebra can be found in [21,
Definition 6.5.1] and of typd; means that the von Neumann algebra is finite
and of typel .

Lemma 3.3 Let I" be a finitely generated (discrete) group. Then:

1. The von Neumann algebrd"(I") of I is a factor, i.e. its center i§, if and
only if I} is trivial,

2. The von Neumann algebrd"(I") is of type | if I" is virtually abelian and
of type I otherwise.

Proof. 1.) follows from [12, Proposition 4 in 11.7.6 on page 319].

2.) For a subgroupd of I" define itscentralizerby



260 W. Liick
Ch={yel' | vth=hyforallheH}.

Given elementsy;,yz,. .. in I', we write (y1, 72, .. .7 ) for the subgroup of”
generated by these elements. We abbrev@te- C.y for v € I'. Notice that
the set §) of elements inI" which are conjugated tg is finite if and only if
C, has finite index inl". Obviously Cs-1,s = §71C,6. If Hy C Hp C T, then
Ch, C Cy,. We haveC<717,yz7,,_%> = ﬁ{zlcm.

ThenI5 is the set of elementsg € I" for which C, has finite index. This is
a normal subgroup of’. We get from [47] that/"(I") is type l; if and only
if I" has a (normal) abelian subgroup of finite index and from [41] tHa{(l")
is typell; if the index of I3 in I' is infinite. See also [22] or [23]. Hence it
remains to show for the finitely generated gralighat the normal subgroup;
has finite index if and only if" is virtually abelian.

Assume that/; has finite index. A subgroup of finite index in a finitely
generated group is again finitely generated. It suffices to prove this for a free
groupx Z of rankr. In this case, the claim follows from Schreier's Theorem [37,
Proposition 3.8 and 3.9 on page 16]. Choose a set of generatoys, . ..~ for
It. We obtain a normal subgroup of finite indéxn Cr, = I7 N (N{_,C,,). By
definition of the centralizer, this group is abelian. Herd¢és virtually abelian.

Assume thatl” containsZ" as a normal subgroup of finite index. Then for
all v € Z' the centralizelC, containsZ" and hence has finite index ifi. This
showsZ' C It. Hencel; has finite index inl”. O

Recall from Theorem 1.2 and Corollary 2.4 that any finitely presentéd
moduleM is isomorphic toTM @ PM and thatPM is finitely generated pro-
jective. In view of Corollary 3.2 we have a complete classification of finitely
generated projective4-modules. It remains to investigate finitely presented
modulesM with PM = 0.

A map of finitely generated Hilbertz-modules : V — W is called aweak
isomorphismif and only if it is injective and has dense image. By dimension
theory this is true if and only if is injective andvV and W are isomorphic
(see [9, Sect. 1]). Recall that.aZ-moduleM of type FP, i.e.M possesses a
finite-dimensional finitely generated projectivé-resolution, defines an element
[M] € Ko(-4) by [M]=3",-o(=1)"[Pa] for any choice of finite-dimensional
finitely generated projectiveZ-resolutionP of M. The next lemma is a direct
consequence of the results above, Lemma 2.3 and Corollary 3.2.

Lemma 3.4 The following assertions are equivalent for a finitely presentéd
module M:

PM =0;

dim“(M) = 0;

[M]=0in Kg( 4);

If P is al-dimensional finitely generated projective’-resolution, then P
and P, are. ~#-isomorphic;

5. There is an exact sequenge— . 24" G, " M — 0 with C =c;

PR
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6. 1f0— P; =% Py — M — 0 is a 1-dimensional finitely generated pro-
jective. ~#-resolution of M, then/(c,) is a weak isomorphism for each choice
of inner products on Pand P. O

Now we can define an invariant for finitely presented-modulesM with
PM = 0 under the assumption tha¥ is of typel;. Let

detorm : M(K, K, . 2) — Z(.2)

be the normalized determinant defined in [35, page 521}Zlis abelian, this is
the ordinary determinant for commutative rings. DenoteZify4)™ the multi-
plicative group of units in the center of4. Denote byZ (. 4)* the Grothendieck
group of the multiplicative abelian semigroup of elememts Z(. 2) for which
multiplication with a induces an injectiorZ(.2) — Z(.-4). If we identify
Z(.-¢) with L>=(X, i) for some measure spack¥,(), we can identifyZ (.4)"
with the multiplicative group Inw, ), whose elements are measurable func-
tions fromX to C U {o0}, for which the preimages of 0 angb are zero sets. In
particular, the canonical map

Z(U%)inv SN Z(.,/Z)w
is injective.

Definition 3.5 Suppose thatZ is of type |. Let M be a finitely presentedé-

f
module. For any exact sequence.of-modulesQ — . 2" — . 2" — TM
— 0 define

p"(M) := debom(f) €Z(A)"/Z(4)™. O

The existence of the exact sequence-8 . 4" L TM — 0 fol-
lows from Lemma 3.4. Using [35, Sect. 2] one can show that,agt) takes
value inZ(.-4)". By definition p“(M) = p“(TM) and p“(M) is trivial if M is
finitely generated projective. The independencep'fM) from the choice off
follows from the following lemma whose elementary proof is left to the reader.

Lemma 3.6 Let S be aring and pP- Pyand and Q - Q, be 1-dimensional
projective S -resolutions of the same S-module. Then there is a commutative square

f ®id
PLaQ —5 PpaQy

ul lv
QdPy —— Q@ Py

g®idp,

whose vertical arrows are isomorphismsO
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Notice that the definition of“(M) was based on the existence of the normal-
ized determinant and its basic properties. One could try to get another invariant
in the same way using any other notion of determinant which has the same prop-
erties. However, this cannot give a finer invariant in the tipease and leads
always to a trivial invariant in the typH,-case because of the results in [35,
Theorem 2.1 on page 521 and Theorem 3.3 on page 525].

The next result follows from Theorem 1.2 and the standard properties of the
normalized determinant and center-valued trace.

Lemma 3.7 Let0 — Mo — M; — M, — 0 be an exact sequence o¥-
modules such that two of them are finitely presented. Then:

1. All three are finitely presented;

2. dim"(My) = dim"(Mg) + dim" (M) € Z(.4),
3. PM1:O<:> PMp = PMZZO;

4. If .4 is of type | andPM; =0, then

p"(M1) = p"(Mo) - p*(M2) €Z( A" /Z(4)™. O

Next we construct invariants which are defined for all finite von Neumann al-
gebras. Lef : U — V be a morphism of finitely generated Hilberé-modules.
Let {E;*f | A e R} be the (right-continuous) family of spectral projections of
the positive operatoir*f . Define thecenter-valued spectral density functiohf
by

Y [0, 00) — Z(.4)* A dim? (im(E]")) = t(EL).

Notice thatF{' is a monotone increasing (right-continous) function. We call two
monotone increasing functior@y, G; : [0, c0) — Z(.4)* dilatationally equiv-
alentif there are constants C > 0 satisfying

Go(C71-)) < Gy()\) < Go(C - \) for all A € [0, €].

Definition 3.8 Denote byZ (. 4) the abelian semi-group of dilatational equiva-
lence classefd] of monotone increasing functions:d0, co) — Z(.-¢)* where
the addition is given byd] +[e] = [d + €]. For a morphism of finitely generated
Hilbert . 4-modules f: U — V define

Wi(f) = [FY] cI(4). O

Lemma 3.9 1. Iff : U — V is an isomorphism of finitely generated Hilbert
.4-modules, then
Wwi(f)=0;
2. Wi(f @ g) = WU(F) +w(9);
3. If f,g and h are composable morphisms of finitely generated Hilbert
modules and f and h are isomorphism, then:

W' ogoh) = w(yg).
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Proof. 1.) and 2.) are obvious.

3.) The elementary proof in [26, Lemma 1.6 on page 21] for the complex-valued
trace goes through word by word for the center-valued trace and shows

Fy() < Fau(lhll-A);
Fon®) < FJ(Ih™H]-);
Fg() < Fro(IIfI[-A);
FyO) < F(lFH1- 0

and the assertion follows. O

Definition 3.10 Let M be a finitely presented-module. For any choice of an
exact sequence — P; SN Py — M — 0 define

WI(M) := WU (F)) e I(A)

wherev(f) : v(P, u1) — v(Po, po) is the morphism of finitely generated Hilbert
.-4-modules defined in Sect. 2 after a choice of inner products O

We derive from Theorem 2.1, Lemma 3.6 and Lemma 3.9 that the defini-
tion above makes sense. We get for a finitely presentéanoduleM that i.)

W (M) =M(TM), i) w*(M) is trivial if and only if M is finitely generated
projective and iii.)M is trivial if and only if dim"(M) andw"(M) are trivial.

Recall that we have specified a trace tr& — C. The definitions of von
Neumann dimension and spectral density function of Sect. 3 for the universal
trace make also sense for the complex valued trace tr. This yields for a finitely
generated Hilbert-4-moduleV, a finitely presented-4-moduleM and a mor-
phismf : V — W of finitely generated Hilbert-Z-modules thevon Neumann
dimension (with respect tiv)

dim(V),dim(M) € =%
the spectral density function (with respectt)
Fr 1 [0, 50) — [0, <] A — dim (im(E;;‘f)) = trE€",");
and thew-invariants with respect to tr
w(f),w(M) € Z(C).
We get from Theorem 3.1 that tr induces a map
tr: (. 4) — Z(C) [d] — [tr o d]

and dimy/), dim(M), w(f) andw(M) can be read off from diH(V), dim“(M),
wY(f) andw"(M) defined in Sect. 3 by
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dim(V) = tr(dim*(V));
dimM) = tr(dim"(M));
w(f) = ()
wM) = trw“(M)).

Of course one looses information by passing from the universal trace to the

complex valued trace, but for most of the applications the invariants based on

the standard complex valued trace for a von Neumann algebra of a group are

sufficient mainly, because the vanishingbﬁ)(C) is equivalent to the vanishing

of Hp(z)(C). Moreover, one can assign in the complex-valued case an interesting

real number to elements i (C). The Novikov-Shubin invariantf [d] € Z/(C)

° In@(Y) — d(0))
In(\)

provided thatd()\) > d(0) holds for allA > 0. Otherwise, we put([d]) = co*.
Here oo™ is a new formal symbol which should not be confused veith

a([d]) = liminf € [0, ¢l

Definition 3.11 Define theNovikov-Shubin invariant of a morphism of finitely
generated Hilbert 2-modules f: U — V by

aff) = a(w(f)) € [0, 00] I {o0™}.

The Novikov-Shubin invariant a(M) of a finitely presented-4-module M is
defined by
a(M) = a(wM)) €[0,00] I {x"}. O

Letf : U — V be a morphism of finitely generated Hilber#Z-modules.
Sincef andf*f have the same kernel we have dim(kg§r& F; (0). We have
a(f) = oo if and only if f *f has a gap in the spectrum at zero, i.e. there exists
e > 0 such thatF (\) = F¢(0) for 0 < A\ < e. Moreover,f is an isomorphism if
and only iff has trivial kernela(f) = co* and dinf(U) = dim"(V) € Z(.4). A
finitely presented 4-module M is finitely generated projective if and only if
a(M) = oo™, Itis trivial if and only if dim(M) =0 anda(M) = co*.

Finally we prove the following two lemmas we will need later.

Lemma 3.12 Let C afinitely generated freeZ-chain complex. For a-4-module
M let (M) be the minimal numbers of generators. Then

dim(Cp) > 1 (Hp(C) ® TH,-1(C)) .

Proof.Choose a direct sum decomposition kgy(® P1 = Cp. LetPy C ker(cp—1)
be the preimage ofH,_; under the canonical projection keg(1) — Hn—1(C).

We get a 1-dimensional finitely generated projective resolutienr-0P; %ley Po

— THp—1(C) — 0. From Lemma 3.4 we conclude theg and P, are.2-
isomorphic. Hence we can construct an epimorphisty — Hp(C)
®THp,—1(C). O
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Lemma 3.13 Let C be a._#-chain complex and d be an integer such that C
is finitely presented witPC, = 0 for n < d and G is finitely generated. Then
Hn(C) is finitely presented witlPH,(C) =0 for n < d and Hy.+1(C) is finitely
generated.

Proof.From Lemma 3.7 we conclude that kgy), im(c,) andH,_1(C) are finitely
presented an® ker(c,), Pim(c,) and PH,_1(C) are trivial forn < d. The ob-
vious sequence 6— im(Cq+1) — ker(cg) — Hg(C) — 0 is exact, im€q+1)

is finitely generated and kex() is finitely presented withP ker(cqy) = 0. Hence
Hg(C) and imgq+1) are finitely presented an@Hy(C) =0 by Lemma 3.7. As
0 — ker(cgs1) — Cas1 =% im(cqs1) — O is exact,Cq41 is finitely generated
and imEqy+1) is finitely presented, ket.1) is finitely generated. This finishes the
proof of Lemma 3.13 . O

4 Abelian von Neumann algebras

Next we consider the special case whew# is abelian. Recall that any abelian
von Neumann algebra# can be identified with_>°(X, 1) for an appropriate
measure spac&( i) [12, Theorem 1 in I.7.3 on page 132]. We recall the classical
notion of thek-th elementary ideal (M) of a finitely presenteds-module for

any commutative ringS [11, Chapter VII]. LetS™ L, 8" .M be a finite
presentation and\ the (m, n)-matrix describingf by f(x) = xA for x € S™. A
(I, 1)-minor of A is the (ordinary) determinant (of commutative rings) of A )-
submatrix ofA. Define

0 ,ifn—k>mork<0
S ,ifn—k<0

ideal generated by all

(n—k,n —k)-minors ,if0<n—-k<m.

Ik(M) =

The following result was stated without proof in [35, Lemma 2.2. on page 522].
For the readers convenience we include a proof here.

Lemma 4.1 Let .4 =L>(X,u) be an abelian von Neumann algebra and
t:. 24" — 2" be a normal morphism, i.e. t and tommute. Then there exists
a unitary isomorphism u. 4" — . 2" such that 0 ot o u is diagonal.

Proof. We first construct a measurable map
A Mp(C) — C

with the property that\(A) is an eigenvalue ofA for all A € M(C). Set-
theoretically, the map is defined as follows. Lgtd) be the eigenvalue of
with the following property. Let\(A) =r - e?™t for r > 0 andt € [0, 1] be the
polar decomposition oA(A). If ) is any other eigenvalue @k with polar de-
composition\’ =r’ - €™’ then either’ < r, orr’ =r andt < t’ holds. In other
words, the norm of\(A) is maximal and among those eigenvalues with the same
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norm asA(A), the angle between the real axis ax(@) with respect to the origin
in the anticlockwise direction is minimal. The mags of course not continuous
but, as we will see, measurable. Define the following sets farkL< n

S
&
where we count the eigenvalues with multiplicity a@dis the complement o
in Mp(C). The eigenvalues oA are the roots of its characteristic polynomial and
the map sendind\ to its characteristic polynomial is continuous. The roots of a
polynomial depend continuously on the coefficients in the following sense. Given
a polynomialp of degreen ande > 0, there isH > 0 such that for any polynomial
g of degreen with the property that the difference of theh coefficients ofp
and g have norm less than or equal &ofor all i, there are numerations of the
roots )i (p) of p and of the roots\(q) of q, satisfying|Ai(p) — Ai(q)| < e for
all'i. This implies that\ is continuous on each s&f and that the disjoint union
HL:le is an open set for all £ | < n. The setS is closed. Hence each of the
setsS¢ and the setS are measurable and the restrictions)ofo these sets is
measurable. Hence the maps measurable.
We leave it to the reader to verify that the functidp(C) — M, (C), sending
A to the orthogonal projection jf, onto the image oA, is measurable.
Next, we construct a measurable map: Mp(C) — C" such that]|v1(A)]|
=1 andAvi(A) = A(A)v1(A) holds for allA in M, (C). Namely, define

{AeMp(C) | MA) € R},
{A€ S° | there arek eigenvalues ofA satisfying|\'| = |A(A)|};

Pliera—x@ayn (&)
[Pera— ey (@)l

if Prera—x@(@-1) = 0 and pgera_ (@) # 0, whereey, & , ... e, are the
standard basis vectors. Givep, one easily constructs measurable mags . .,

vp from Mp(C) to C" such that{v;(A), v2(A), . .., vn(A)} is an orthonormal basis
for all A. LetU (A) be the unitary map having this orthonormal basis as columns.
Provided thatA is normal, the matrixJ (A)~*AU(A) is a diagonal block matrix.

w9 3,

v1(A) =

and the 0 — 1, n — 1)-matrix B(A) is normal again. Iterating this process, we can
even assume that (A)"1AU(A) is a diagonal matrix. Since the composition of
measurable functions is again measurable, we get for nofn@aMp (L>° (X, 1))

the desired unitary elemebt € M, (L*°(X, 1)) by puttingU (x) = U (T (x)). This
finishes the proof of Lemma 4.1. O

Example 4.2Let . Z = L>°(X, u) be an abelian von Neumann algebra andJet
be any finitely presented4-moduleM . Because of the polar decomposition and
Lemma 4.1 there are elemernist,, ..., t in .- such that

M ~al . 2/t).
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Let Zerog) be {x € X | ti(x) = 0} and lety; be the characteristic function of
Zerot;). Then

PM = &,0a6)
TM = @i 2/(x +1);
|
dim‘(M) = ZXi;
i-1

|
pM) = J0a +t);
i=1

(M) (Hti | |c{1,2,...,n},|||:|_k> for0<k<lI.
icl

In particular. 4/(t) and.-2/(s) are.-¢-isomorphic if and only if Zerd) =

Zero(s) (up to sets of measure zero) ahfs and s/t are essentially bounded

outside Zerd() = Zerog). O

Example 4.3Next we consider the von Neumann algebfa(z) = L>(S?) with
its standard trace trL>°(S') — C given by integration and want to classify
L>°(S1)-modules of the shape

BLLE(SY/ ()

where p;(z) is a polynomial inz. SinceC[Z] is a principal ideal domain [2,
Proposition V.5.8 on page 151 and Corollary V.8.7 on page 162] any such
L>°(S1)-module is of the shape

N ®¢zy L>(SY)

for some finitely generated[Z]-moduleN. Let S C C[Z] be the multiplicative
subset of elements ifi[Z] which become invertible ih.>°(S*). This is the set of
elements which can be written as finite products of non-zero complex numbers
and elements of the form — a with |a| # 1. The localizatiorS ~1C[Z] is again

a principal ideal domain [2, Corollary V.8.7 on page 162] and we have

N ®¢iz; L(SY) = S™IN ®g-1¢p57 L=(SY).

Hence it suffices to investigate for a finitely generagd C[Z]-moduleM the
L>°(St)-module
M®@ = M ®g-10p5 L=(SH).

From [2, Theorem X.5.7 on page 370] we get non-negative integdrsand
elementdy, ty, ..., t; in STIC[Z] such that nd; is zero or a unitt; dividest;.;
and

M = s7iC[z]" @ @, STIC[Z]/(t)

andn, | and the idealst() are uniquely determined by this property. We can also
write M in the form
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M = S7IC[Z]" @ @k, STICIZ] /(2 — &)")

where n,k,r; are integers withn.k > 0 andr; > 1 anda € S'. For
a=expivy) € Standr € Z,r > 1 define

far 1[0, 00) — L®(SH)* A = X {cos@)H sin) | A>|¢—u|}-
We claim
dim'(M) = n-1 sy,
|
P COREN | F
k(M) = 6:1 fork <n
n+l —k

kM) = (J][t) forn<k
i=1

k
M) = D Tfanl;
i=1

min{* | i=1...k} ,ifk>0
o= {oo+{n | } if k = 0.

The first four equations follow directly from Example 4.2. We get from Lemma
3.9

k
WHM) = Y WL (SH/ (2 - &)).
i=1
Hence it suffices to check for the fourth equation the special cade ¢08* and
rez,r>1
WHLXSH/(Z = b)) = [forl-

Since the group of isometries @t acts transitively org?, it suffices to treat the
caseb = 1. The spectral density function of the morphigft(S) — L>°(S?)

given by multiplication with ¢ — 1) assigns to\ € [0, ) the characteristic
function of the set

{zeS' | A>|z—1"} = {cosg)+isin(@) | \>[2—2cosp)|'/*}
This proves the fifth equation. Since

. 2=2
im cos() _

the sixth equation follows.
The last equation follows from the fourth using [26, Lemma 1.10 on page
23]
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a(d]+[e) = min{a(d]), a(e])} for [d], [e] € Z(C);
tr((far]) = [AY'] € 7(C);
a@y =

r

We mention the consequence of these equations that the elementary ideals
I (M @) for k > 0 determine the isomorphism type of bdth andM @ and that
w¥(M @) determines the isomorphism type of both TM3(andTM @ .

Namely, the computations above show that the elementary idg@lk®)
determine botm and H:‘:lti up to multiplication with units inL>°(S*). Hence
n and Hikzlti for all k are up to multiplication with units i5—1C[7] uniquely
determined by the isomorphism type Mf®). This implies that the isomorphism
type of M @ determines and theS—1C[Z]-ideals ¢) and hence th&~1C[Z]-
isomorphism type oM itself.

In order to show that(M @) determines the isomorphism type of Tavsy
we must show the following. Given non-negative integerand q, pairwise
disjoint elementsy; € S* for i = 1,2,...,q and non-negative integers, ; for
i=12...,qandj € Z,j > 1 for which only finitely many are different from
zero, the class

q
DO> my - [fa ] € ()

i=1j>1
determinesq, & and m;; up to permutation of the indices. We have al-
ready introduced an (additive) semi-abelian group structurezo-¢) by
[d +€e] =[d] +[€e]. Analogously multiplication defines a (multiplicative) struc-
ture of an abelian semi-group by

[d] -[e] := [d-e].

Let xi,,. be the characteristic function for the sdtosg)+isin(@) | ¢

> |p—1p|} if we write &, = cosg)) +i sin(y). Denote the corresponding constant
function [0, 00) — L°°(S?) in the same way. Then one easily checks for small
enoughe:

i=1j>1 j>1

q
(ZZm,j -[fa,j]) Dol = Y Mg - [fa ]

Since the group of isometries @t acts transitively or?, it suffices to show
for a sequence of non-negative integagsfor j = 1,2, ... for which only finite
many are different from zero that

>om - [fy] € 7(A)

j>1

determines the integers . It suffices to show for all positive integejgthat the
sums) ., my are determined. Fod[, [e] € & (. ¢) we write
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[d] <[e]

if and only if there are representativdsand e and constant€, ¢ > 0 with the
property thatd(A) < e(C - A) holds for all\ € [0, €). It suffices to prove

dYom = max{keZ

i>io
Considerk € Z with k > 0, 0< ¢ < 1 andC > 1 such that for\ € [0, €]
K-fjp(h) < > m-fj(C- N

j>1

k>0 andk - [fj,] <> m-[f] } :

j>1

holds. Fix\ € [0, €] satisfying A2 /2 > (C - X)l " for all j < jo. Let y be the
characteristic function of the sgtosg) +i sin(@) | ¢ € [N°/2, No]}. Multiply-
ing the inequality of elements ib>°(S)* above withy yields

k-x <) om-x.
i =io
This impliesk < Zj >io M- Since fuj,] < [f1;] for j > jo, the claim follows.
O

5 L2-Betti numbers and Novikov-Shubin invariants for chain complexes

In this section we introduck?-invariants such as>-homology,L2-Betti numbers
and Novikov-Shubin invariants for finitely generated Hilbe#-chain complexes
and express them in terms of the homology of finitely generated projective
chain complexes which is associated to it by Theorem 2.1. In the seqdds

an inverse ofv which is well-defined up to unitary equivalence as described in
Theorem 2.1.

Definition 5.1 If C is a chain complex of finitely generated Hilber¢-chain
modules, define its-th L@-homology to be the finitely generated Hilbert#-
module

HP(C) = ker(cp) /im(Cps1),

its center-valued p-th L2-Betti number by

bp(C) := dim'(H;?(C)) €Z(.),
its p-th L2-Betti number by
bP(C) = dimHAC)  eE=,
its p-th w-invariant by
(JJ'L)I(C) = w(Cp . Cp —_— Cp—l) c %(' /z)7

and its pth Novikov-Shubin invariant by
ap(C) = alc : Cy — Cp_1) €[0,00] T {x*}. O
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Lemma 5.2 Let C be a finitely generated HilbertZ-chain complex. Then there
is a in C natural isomorphism

h(C) : v {(H{A(C)) — PHy(v*(C)).

Proof.We defineh(C) by the following commutative diagram whose columns are
exact and whose middle and lower vertical arrows are isomorphisms by Lemma

2.3
0 0

I I

v YHP(C) L PHy(Y(C))

V’l(q)T TT

v lkerGy)) U ker((cy))

o] 1

v~ H(im(Cp+1) EaCR im(—1(Cp+1))

I I

0 0

wherei, j ,k andl are the obvious inclusions agdandr the obvious projections.
Thenh(C) is an isomorphism by the five-lemmanO

Lemma 5.3If f :C — D is a chain homotopy equivalence of finitely gener-
ated Hilbert. 4-chain complexes, then we get for all p

wp(C) = wp(D).

Proof. We will need the following fact for an exact sequence of finitely generated

Hilbert . -2-chain complexes 6— C — D —p> E— 0O: If E is contractible
then there is a chain map: E — D with p o s = idg. Namely, choose for any
n > 0 a morphismr, : E, — Dy with py 0 0y = idg,. If «y is a chain contraction
for E, define

Sv = Oh+100n410Yn +0n ©Yn—1 0 €En.
If conef) resp. cylf) is the mapping cone resp. mapping cylindef ofC — D
(see [28, page 213)), there are canonical exact sequences

0— C — cyl(f) — conef) — 0

and
0— D — cyl(f) — coneC) — 0.

In both sequence the third chain complex is contractible. Hence we obtain from
the fact above an isomorphism o#-chain complexes
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C @ conef) ¥ D 4 cone(C).

The w-invariants are invariant under isomorphisms. ef-chain complexes by
Lemma 3.9. Hence it suffices to show for finitely generated projecti#hain
complexesC and D that C and C & D have in all dimensions the same
invariants, provided thdD is contractible. A -4-chain complex is elementary if
for somen it is concentrated in two consecutive dimensionandn — 1 and
the n-th differential is an isomorphism. Sind2 is contractible D is a sum of
elementary contractible finitely generated Hilbe#-chain complexes. Hence we
can assume without loss of generality tiatis elementary. But then the claim
follows Lemma 3.9. O

The next theorem enables us to read of the center-valéeRetti numbers
and w-invariants of a finitely generated HilbertZ-chain complexC from the
homology of the #-chain complexH,(v~(C)).

Theorem 5.4 Let C be a finitely generated HilbertZ-chain complex. Then:

bi(C) = dim'(PHy(v X (C)));
bP(C) = dimPHy(v *(C))):
WC) = W(THy 1 (O
ap(C) = a(TH, 1 XC)). O

Proof. It suffices to prove the claim for the invariants based on the center-valued
trace since they determine the others. The assertion about the centerd&lued
Betti numbers follows from Lemma 5.2. We will now and later need the following
general observation which follows from the fact that a chain map of projective
chain complexes is a homotopy equivalence if and only if it induces an isomor-
phism on homology. Lef’P denote thep-fold suspensiony'y ... X,

Lemma 5.5 Let S be a ring and C be a projective S-chain complex. Suppose
that for each p there is 4-dimensional projective S -resolution[g] of Hy(C).
Then there is a S -chain mapp] : XPP[p] — C which induces the identity on
the p-th homology. The S-chain map

@p>0] [P] : Bp>0XPP[p] — C
is a S-chain homotopy equivalencen

Because of Theorem 1.2 and Lemma 3.4 we can find a 1-dimensional finitely
generated projective-resolutionP[p] of TH,(v~*(C)) and PHy(v~1(C)) is
finitely generated projective. Lgi[PH,(v~1)] be the obvious Z-chain com-
plex concentrated in dimensign From Lemma 5.5 we get a chain homotopy
equivalence

®p>02PP[p] @ p[PHp (v~ (C))] — v~ X(C).

From Lemma 5.3 we conclude
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W!(THp-1(v1(C)))

wp(ZP v (Plp — 11)

= wp(ZPw(Plp — 1)) @ (p — DI¥(PHp—1(v HC)))
= w!(@p>0ZPr(P[p]) @ Plv(PHp (v H(C))])

= wp(rH(C))

= wp(C)

This finishes the proof of Theorem 5.40

6 L2-Betti numbers and Novikov-Shubin invariants for spaces

In this section we will extend the notions and results of Sect. 4 #Hilbert
chain complexes to propdr-CW-complexes of finite type and discuss applica-
tions.

Let I" be a discrete group and be a properl’-CW-complex of finite type.
Finite type means that all its skeleta are finite. Recall thdi-@W-complex
is finite resp. of finite type if and only if"\X is finite resp. of finite type,
and is proper if and only if all isotropy groups of tHéaction are finite [28,
Theorem 1.23 on page 18]. An example of a prope€W-complex which is
finite resp. of finite type is the universal covering ofC&V-complex which is
finite resp. of finite type with fundamental group. Let .2 be a finite von
Neumann algebra arM be a finitely generated HilbertZ-module together with
a unitary representation : I' — U_,(V)°? into the (opposite of the) group of
unitary. 4-automorphism o¥ . In particularV is a. 4-ZI'-bimodule. Then the
cellular L?-chain complex of X with coefficients in ¥ the finitely generated
Hilbert . 2-chain complex

COX;V) = V @z CXX)

where C¢(X) is the cellularZI'-chain complex. ItsL2-homology is thel?-
homology of X with coefficients in nd denoted byH®(X;V). For details
about"-CW-complexes and the HilbertZ-module structure o€ @(X; V) we
refer to [34, Sect. 3]. If we specify an inverse! as described in Theorem 2.1,
thenV and the unitary representatipndetermine a #-ZI-bimoduleQ which

is finitely generated projective ovet. Thecellular. 4-chain complex of X with
coefficients in Qis the finitely generated-#-chain complex

Cr(X;Q) =Q®zr CX).

Its homology is thehomology of X with coefficients in @Qnd denoted by

H, (X; Q). The center-valued.>-Betti numberbf(X;V), the L>-Betti number
b&)(X V), the w-invariantwy(C) and the Nowkov Shubin invariard, (X; V)
are defined as the correspondlng invariants@&P(X; V) (see Definition 5.1).
Everything above has also a cohomological analogue which gives the same in-
formation [34, Lemma 3.10 on page 231]. Now Theorem 5.4 applied to this
situation gives:
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Theorem 6.1 Under the conditions above we get

by(X;V) = dim'(PH, (X,Q));

b@(X;V) = dimPH, (X,Q));
wp(C) = W(THY 4(X,Q));
ap(C) = o(THy 4(X,Q)). O

The advantage of this theorem is that it reduces the computatiohs-of
invariants of the_?-chain complex oiX to the study of the homology of with
coefficents in a-2-ZI'- bimoduleQ and that 4 is semi-hereditary. In particular
all standard results for homology with coefficients over a semi-hereditary ring
apply toH 7' (X; Q). Next we give a list of these tools and their applications.

1. Singular homology

If we want to computeH I'(X, Q) we can also use the singular chain complex
C3(X) of X which is (up toZI'-chain homotopy naturally)I"-homotopy equiv-
alent to the cellular one [28, Proposition 13.10 on page 264]. There are problems
in the L?-setting. For instance, for an arbitrary fréeCW-complex the differ-
entials in theL?-chain complex need not to be bounded operators. Notice that
using the singular chain complex one can defhe(X; Q) for all I'-spacesX.
Sometimes it can be useful for the computation of the homology of a proper
I'-CW-complex of finite type to consider also the homology of more general
spaces. We will make use of this for instance in Sect. 7. We will explain in a
different paper how to use this approach to give a convenient reformulation of
the notion of singulat.>-cohomology in [9, Sect. 2].

2. Universal coefficient spectral sequences

If one knows the homology with complex coefficieig(X; C) of X, then there

are spectral sequences computing the homology resp. cohomologywath
coefficients inQ (see [38, Theorem 12.1 on page 400], [42, Theorem 3.14 on
pezlge 73]). Namely, there is a spectral sequence convergnglaQX; Q) whose
E--term is

EZq = Tors"(Q,Hq(X; )

and a spectral sequence converging—lt;ifq(x; Q) whoseE,-term is

EYY = Ext (Hq(X;C); Q).
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3. Leray-Serre spectral sequence

Let F — E — B be a fibration such tha is a CW-complex. Assume for
simplicity thatF, E andB are connected and possess universal coverings. We
abbreviate” = 71(E) andw = m1(B). Let S be a ring and) be aS-ZI'-bimodule.

Let E andB be the universal coverings & andB and letF be the covering of

F associated to the map(F) — I" induced by the inclusion. The composition
q:E — B of p with the universal covering o is a I'-equivariant fibration
with fiber F if we equipB with the trivial I"-action. The equivariant fiber trans-
port yields a homomorphism — ([F, F]F)Op into the opposite of the monoid

of I"-homotopy classes df-maps fromF to itself. Thus we get the structure of

a S-Zm-bimodule oanF(F; Q). The Leray-Serre spectral sequence converges to

HL(E; Q) and has a&2-term
2 — TR .
EZq = Hy(BiH{ (F;Q)).

Of course there is also a cohomological version. The fiber transport I6f a
fibration is explained in [27, Sect. 1 and Theorem 6.1]. The construction of
the Leray-Serre spectral sequence and the identification dg%tgerm is for
instance given in [42, Sect. 5.1] in the language of local coefficient systems,
provided thatl" acts trivially on Q. We will expain in a different paper the
rather straightforward extension of the proof to the general case if one uses [27,
Sect. 7]. The ?-Leray-Serre spectral sequence for a fibratiolC¥¥-complexes

of finite type was constructed in [46].

4. Poincage duality

Suppose thaK is a smooth orientable manifold of dimensionwith a smooth
proper['-action such thaf"\M is compact. Then there are smodtkequivariant
triangulations so that we get a finite progétCW-complex structure and we can
talk about the cellulafZl’-chain complexC€¢(X). There is a fundamental class
[X] in Hn(X, 0X; Q™) wherew is the homomorphisnw : I' — {£1} sending
v € I' to 1 resp.—1 if ~ acts orientation preserving resp. reversing &t
is the rational numbers with the riglit-action given byr~y = w(y)r forr € @
and~ € I'. The.#4-chain complexC™P(X, 9X;*Q) has ag-th-chain module
homy - (Cr_p(X),“Q) where “Q is the left ZI™-module obtained fronQ by
vq =w(y)qy~t for v € I andq € Q and carries the same leftZ-operation
asQ. Then we obtain a-2-chain homotopy equivalence unique up.té-chain
homotopy

N[X]: C™P(X,0X;"Q) — Cp(X; Q).

Details of these facts above can be found in [34, Sect. 5].Q%tbe the. 2-
ZI'-bimodule obtained from the#-ZI'-bimoduleQ by changing thel"-action
to qy = w(y)qy for v € I' andq € Q. We conclude from Lemma 1.3 that for
all p there are natural identifications
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H™P(X,0X;“Q) = Hp(X;Q);
(PHm_p(X,0X;Q"))" = PHy(X;Q);
(THm—lfp(XaaxiQw)) = THp(X;Q).

Notice for any finitely presentedZ-moduleM that PM)* resp. TM) andPM
resp.TM are (not canonically) isomorphic. In particular we get back the Paincar
duality assertions for the?-Betti numbers and Novikov-Shubin invariants [26,
Proposition 3.2 on page 33].

5. Morse inequalities

Assume thatl” acts freely onX so that"\X is a CW-complex of finite type.
Let ix(p) be the number op-cells in I"\X. Then we get from Lemma 3.12 (see
also [15, Sect. 8])

ix(P) > u(Hy (X; Q) & THy 1(X; Q).

Since the left side of the equation is equal or greater thanpttie L2-Betti
numberbr(,z)(X;V), this improves the Morse inequalities of [43]. In particular
one gets ifop(X; V) Z co™ the inequality

ix(p) > BA(X).

6. Deficiency of groups

It is shown in [30, Theorem 6.1 on page 212] for a group grdupvhose
classifying spaceBI' = I'\EI" has finite 3-skeleton that the deficiency bf
satisfies

def(l) < 1—bPE; V) +bPET; V) — bPET; V).

Suppose thati3(ET"; V) # oo what is equivalent tadHJS (ET"; Q) # 0. Then this
inequality must be a strict inequality. This follows from an elementary modifi-
cation of the proof in [30, Theorem 6.1 on page 212] which is based on the
following observation. IfX is the universal covering of a finite 2-dimensional
CW-complex with fundamental groufs, then the classifying map is 2-connected
and induces an epimorphisiy (X; Q) — HS (EI; Q) andTH.) (X; Q) = 0. If
THS(ET; Q) is not trivial, we conclude:

bA(X; V) > bP(ET; V).
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7. L2-torsion

Using for instance [5] or [34] one can also translate the definitioh%etbrsion

for finite-dimensional finitely generated Hilbert##-chain complexes to the set-
ting of finite-dimensional finitely generated projectivé-chain complexes using

the same pattern as above for feBetti numbers and Novikov-Shubin invari-
ants. This allows for instance to carry over the results in [36] about torsion
invariants and fibrations from ordinary torsionlté-torsion. Analogously to the
extension ofL?-Betti numbers and Novikov-Shubin invariants one can try to
use the center-valued trace to define a refined Fuglede-Kadison determinant and
L2-torsion taking values ii,(. -4) or Z(. -#)*. This has been done in [34]. How-
ever, in thel ;-case this requires a suitable center-valued version of the condition
necessary for the definition of the real-valuedtorsion that the Novikov-Shubin
invariants are positive. The details have so far not yet been carried out. Without
such additional conditions one would always get a trivial invariant in the type
Il;-case because of the computationskgf(.#) in [35, Theorem 2.1 on page
521 and Theorem 3.3 on page 525].

8. The “Zero in the spectrum” conjecture

The “Zero in the spectrum” conjecture says that there is no contractible closed
Riemannian manifoldM with an isometric proper cocompact action of a discrete
group” such that for alb zero is not in the spectrum of the Laplace operator in
dimensionp [18, page 238], [25]. The author does not even know an example of
a finite proper-CW-complexX such that for alp zero is not in the spectrum of

the combinatorial Laplace operator in dimenspriNotice that the last condition

on X is equivalent to the purely algebraic statement t-H@(x; () is trivial

for all p, or equivalentlyC”'(X;.#(I)) is contractible.

9. Homological computations

In some special situationsl @(X;V) depends only on the homology of
with complex coefficientsH (X; C). Namely, suppose that,(X;C) has a 1-
dimensional finitely generated projecti¢& -resolutionP[p] for all p > 0. Let

Q be the. 2-ZI'-bimodule associated %@ as explained in Sect. 4. Then we get
from Lemma 5.5 aCI'-chain homotopy equivalence

@p0j [P] : Bp>0ZPP[p] — CE(X; C).
It induces a chain homotopy equivalence. af-chain complexes
Bp=0Q ®cr LPP[p] — C(X; Q).
We get isomorphisms ofZ-modules

Q ®@er Hp(X; ©) & Torf " (Q, Hp—1(X; ©)) — H (X; V).
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Notice that TO?F(Q, Hp—1(X; ©)) is finitely generated projective as% is semi-
hereditary. Hence we get

Lemma 6.2 Suppose that j{X;C) has al-dimensional finitely generated pro-
jectiveC I -resolution for all p> 0. Then we obtain isomorphisms.e#-modules

P(Q®Hy(X;0)) & Torf" (Q, Hp-1(X; ©)) — PH. (X;V);
T(Q®Hp(X;C)) — THI(X;V).

In particular Hy(X; C) determines the 4-Betti numbers and Novikov-Shubin in-
variants. 0O

Notice that the assumption ary(X) is always satisfied ifl" is a finitely
generated free group. Namely, the complex group ring of a finitely generated free
group is a fir, i.e free ideal ring [10, Corollary 3 on page 68]. This phenomenon
was already observed in [15].

One can make computations more explicite in the following case.

Theorem 6.3 Suppose thal” is the free abelian groug” of rank r. LetCZ{,
be the quotient field of Z". Then

béz)(x; 12(z")) = dimez, (Hp(X; C) ®czr CZfg)) -

Proof. We abbreviateC = C @z C%(X), C@ =12(Z") ® ¢z C and Cy) = CZy,
®cxrC. We first treat the case wher€g, has trivial homology. Then we
can find aC[Z']g-chain contractiomy’. Chooseu € CZ" with u ¥ 0 and
maps v, : Cy — Cp+1 such thatly o4, = ()@ holds for all n where |,
is multiplication with u. Then~ is a chain homotopy ofC[Z']-chain maps
l, ~0:C — C. This induces a chain homotopy of chain maps of finite Hilbert
N (Z")-chain complexeg, ~ 0 : C® — C®. Hence multiplication withu in-
duces the zero map on thé-homology of C@. This is only possible if the
L2-homology is trivial and hence all?>-Betti numbers ofC@ vanish.

Next we treat the general case. PHt= dimeyz, (Hn(C(g))). Then there is a
C[Z"](0)-isomorphism

B, CIZ ) — Hn(Co) = Hn(C) @iz CIZ (o).

By composing it with a map given by multiplication with a suitable element in
C[Z"] one can construct &[Z"]-map

in : ®71,C[Z"] — Ha(C)

such that i) ) is a C[Z"])-isomorphism. LeD be the finite freeC[Z"]-chain
complex whosa-th chain module i®,, = @f’21©[zr] and whose differentials are
all trivial. Choose aC[Z']-chain mapj : D — C which induces on tha-th
homology the map,. Let conef) be its mapping cone. There is a canonical
exact sequence

0—C —cone{) — XD — 0.
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It remains exact under the passage frénto C) or C@. We conclude from the
long exact homology sequence that cg)gy is acyclic. Hence thé&2-homology

of cone{)@ is trivial by the first step. We conclude from the long weakly exact
L2-homology sequence [8, Theorem 2.1 on page 10]

bP(C®@) = bPD®) = dim ;4 (DP) = by = dimez (Hn(C))

0)

and the claim follows. O

7 L2-Betti numbers, fibrations and deficiency of groups

In this section we generalize [30, Theorem 3.1] using the algebraic description
of L?-homology as described in this paper. We mention that the proof presented
here seems to be more conceptual than the one in [30]. We will show

Theorem 7.1 Let d > 0 be an integer and let —— E — B be a fibration

of spaces such that F resp. E has the homotopy type of a connected CW -
complex with finite d-skeleton resp.+dl-skeleton. LeF be the covering of F
associated to the map,(F) — m1(E) induced by the inclusion. Suppose that

b (F;12(m1(E))) = 0 for p < d — 1 and m1(B) contains an element of infinite
order. Then we get

b@(E) := b@P(E;1¥(m(E)) =0 forp<d. O

Before we give the proof of Theorem 7.1 we prove the next lemma which
is probably well-known but for whose second assertion we could not find a
reference.

Lemma 7.2 Let F — E - B be a fibration of path-connected spaces and let
d > 0 be an integer. Then:

1. If both F and B are homotopy equivalent to finite CW -complexes resp. finite-
dimensional CW -complexes resp. CW -complexes of finite type resp. CW -
complexes, then the same is true for E.

2. Suppose that F is homotopy equivalent to a CW -complex with finite d-skeleton
resp. CW -complex of finite type, E is homotopy equivalent to a CW -complex
with finite d+ 1-skeleton resp. CW -complex of finite type and B has the homo-
topy type of a CW -complex. Then B is homotopy equivalent to a CW -complex
with finite d+ 1-skeleton resp. CW -complex of finite type.

Proof. 1.) This is done by induction over the skeletonsBofand the fact that
any fibration oveD" is fiber homotopy equivalent to the trivial fibration. More
details can be found for instance in [36, Sect. 1].

2.) We only treat the case wheFehas finited-skeleton andE has finited + 1-
skeleton. Ifd = 0, the claim follows from the fact that a connected sp&cef
the homotopy type of £W-complex is homotopy equivalent to@N-complex
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with finite 1-skeleton if and only ifr;(X) is finitely generated. Hence it remains
to treat the casd > 1.

We construct inductively fon > 1 a maxX2, n}-dimensionalCW-complex
Xn together with an-connected mafy, : X, — B such thatry(f,) is an isomor-
phisms,X; is finite, fo.1 extendsf, and, provided thah < d, the spaceX,.; is
obtained fromX,, by attaching finitely many cells of dimension+ 1. Then the
direct limit yields aCW-complexX with finite d + 1-skeleton and a homotopy
equivalence : X — B.

The induction begim = 1 is done as follows. Sinceg(F) is trivial, m1(F)
is finitely generated and;(E) is finitely presented, we conclude from the long
homotopy sequence of the fibration that(B) is finitely presented. LeX; be
the finite 2-dimensionaCW-complex associated to some finite presentation of
m1(B). Obviously there is a mafy : X; — B which induces an isomorphism
on the fundamental groups.

The induction step fromm > 1 ton+1 is done as follows. Lat, : Y, — Xu
be the pull back fibration o with respect td,

Yn 9n

SEEE

Xn —— B

fn

Let B — B be the universal covering & with = = 71(B) as group of deck
transformations. We obtain the followingequivariant pull back by pulling back
the universal covering dB using the square above

Yn 9n

N

¥n —— B

fn

Notice thatX, is the universal covering ofy,, as(fy) is bijective. The coverings

Y, and E are not-necessarily the universal coverings but they have connected
total spaces aB is path-connected. The following diagram commuteskfor 1
where the horizontal maps are Hurewicz homomorphisms and the vertical maps
are induced by the square above

mk(gn) —— Hk(gn)
() ——— Hi(fn)

The left vertical arrow is an isomorphism fér > 1 by [49, Corollary 8.8 on
page 187]. In particulay, is n-connected becaudg is n-connected. Sinc#,
and E are path-connected, we conclude from [49, Corollary 7.9 on page 180]
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thatHy(gn) is zero fork < n. The lower horizontal arrow is an isomorphism for
k < n+1 by the Hurewicz isomorphism sincg andB are simply-connected
andf, is n-connected [49, Corollary 7.10 on page 181]). Hence the right vertical
arrow is surjective fok =n + 1.

Next we show that+1(gn) is a finitely generatedr-module providech <
d. As F and X, have finiten-skeletons up to homotopy, the same is trueXer
by the first assertion. By assumpti@nhas finiten + 1-skeleton up to homotopy.
Hence we can assume without loss of generality, that the cellidachain
complexes ofY, resp.E have finitely generated fréér-modules in dimensions
< nresp.< n+ 1. Hence the mapping con2 of the Zr-chain mapC(gn) has
finitely generated fre@&n-modules as chain modules in dimensicas + 1. By
definition Hx(D) and Hk(gn) agree so thaby (D) is trivial for k < n as shown
above. Hence there is a long exact sequencémemodules

{0} — ker(he1) — Dper 2 Dy 5 ... %5 Dy — {0}

SinceDy is finitely generated free for ak < n+ 1, we conclude that kek.1 is
a finitely generated projectivér-module. This implies thatin.1(D) = Hns+1(gn)
is finitely generated oveF.w. Since Hn.(fn) is @ quotient ofHn.1(gn), it is
finitely generated ovef.nr. This shows thatrn+1(f) is finitely generated ovetr
providedn < d.

Given a set of generators of ttigér-module 7y (f,) = 7rn(f~n), there is the
standard procedure of attaching cellsXg, one for each generator, to obtain
Xn+1 such thatf, extends to an(+ 1)-connected mafh+1 : Xn+1 — B. This
finishes the proof of Lemma 7.2. O

The second assertion 2.) in Lemma 7.2 becomes false if one substitutes of fi-
nite type by homotopy equivalent to a fini®V-complex or by homotopy equiv-
alent to a finite-dimension&@W-complex. Here is a counterexample. Realize the

exact sequence of abelian groups-©6- 7 27— 7Z./2 — 0 by a fibration
of Eilenberg-MacLane spaces of type 1. Notice tiéZ., 1) is homotopy equiva-
lent to a circle anK (Z/2, 1) is not-homotopy equivalent to a finite-dimensional
CW-complex because its cohomology ring wittf 2-coefficients is a free poly-
nomial algebra in one generator. One can say nothing about the fiber if one has
only information about the total and the base space. For instance the homotopy
fiber of the mapS! v St to S which is the identity on each component is an
infinite wedge ofS'-s and hence not homotopy equivalent t€\&-complex of
finite type. Other examples come from path fibratige¥ — PX — X over
finite CW-complexes sinc#X is contractible and2X has often homology in
all dimensions.

Now we are ready to give the proof of Theorem 7.1. Because of Lemma
7.2 we can assume that bdthandB are connecte@W-complexes with finite
d + 1-skeletons andr is a connectedCW-complex with finited-skeleton. We
abbreviatel” = 71(E) andr = m1(B). Recall from Sect. 4 that the?-term of the
Leray-Serre spectral sequence which convergéﬁplig(ﬁ;./V(F)) is
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EZ2, = HI(B;H{ (F;A7(1)).

Next we show for allr > 2 thatEj , is finitely presented withPE], =0 if
p+q < dandq #d and and is finitely generatedpf+q =d + 1andg < d —r.
Notice that then the same is true for= oo since the Leray-Serre spectral
sequence is a first quadrant spectral sequence.

Since F has finite d-skeleton ancbéz)(F;.,/f/'(F)) =0 forg<d-1, the
A7 (I)-moduleHq(F;.77(IN) is finitely presented wittPHq(F;.#(I")) = O for
g < d — 1 because of Lemma 3.7 and Theorem 6.1. Heh'sﬁ;g is finitely pre-
sented WithPEp'{q =0 forp<dandg<d-1 and is finitely generated for
p=d+1andg <d -1 sinceB has finited + 1-skeleton. This finishes the in-
duction beginr = 2. The induction step follows from an iterated application of
Lemma 3.13 using the fact that tf& *!-term is the homology of th&"-term
and ther-th differentials aredy , : E; ¢ — Ej_; qur_1-

We get from Lemma 3.7 and the Leray-Serre spectral sequence
PHnF(E;./V(F)) =0 for n<d -1 and that there is an exact sequence of
V7 (I')-modules

HJ(B;HY (F;. 1 () — Hy(E; 4" (I) — M — 0

whereH/" (E;.1"(I')) andM are finitely presented/"(I")-modules and®M = 0.
Recall from Theorem 6.1 thdﬂgz)(ﬁ) = br(,z)(ﬁ; 12(I")) vanishes for alp < d if
and only if PHpF (E;.1(I) vanishes for alp < d. Hence it suffices because
of Lemma 3.7 to construct a finitely presentetd’(1")-moduleN with PN =0
such that there is an epimorphism frd¥nonto Hgf(l§; Hd (F;.47°(I))).

Let f : S' — B be a map which induces an injection on the fundamen-
tal groups. LetF — Eg P, 81 andfy: Eo — E be given by the pull back
construction. The Leray-Serre spectral sequenc@datields an exact sequence

0 — Hg'(S" HY (F;. /(1)) — Hd (Eo;. (1)

— HESYHE ((F; () — 0

where we identifyr(S') = Z and Ey — Ey is the covering given by (fo) :
m1(Eg) — I'. Letg : F — F be a cellular map whose homotopy class is given
by the fiber transport fagy with a generator ir¥.. Let T, be the mapping torus @f
which is obtained from the cylinder ovér by identifying the bottom and the top
by g. There is a homotopy equivalenbe T, — Eg such that its composition
with po is homotopic to the canonical projectidy — S*. Let gq : Fg — Fq

be the restriction ofy to the d-skeleton ofF. Denote byj : T,, — T, the
inclusion. LetT,, and T, be the coverings associated to the homomorphisms
from m1(T,,) and m1(T,)) to I” which are induced by, h andf,. SinceT, is
obtained fromT,, by attaching cells of dimensions d + 1, the inclusionj
induces an epimorphism

jo T HY (Tyui (D)) — HE (Ty (D).
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Let A be the image ofry(fo) : m1(Eg) — I'. Then the mapry(Ty,) — 7Z in-
duced by the canonical projectidn, — S! factorizes over the epimorphism

m(Ty) “8 m(T,) 20 m(Eo) B A,

Let T,, be the covering o, associated to the map(T,,) — A above. Since
Ty, is finite, we conclude from [30, Lemma 1.2.3 on page 205 and Theorem 2.1.
on page 207]

b (Tye; A (1)) = BP(Tyy;47°(4)) = 0.

HenceH{ (T, (I") is finitely presented an®H{ (T,,;. 7 (I)) is trivial.
Since the.J"(I')-module HZ(SY HL ((F;.47(I")) is finitely presented and
PHZ(SY HE ((F;.47(I)) = 0, the kerneN of the composition

HE (Tges A (1) 25 HE (Ty (D)) 25 HE (Bor. 1 7(1))

— HE(SYHY(F; 17 (1))

is finitely generated and satisfi®N = 0 because of Lemma 3.7. The epimor-
phismh, o j, induces an epimorphism

N — HZ(SLHE (F; 7 (D))).
The mapf induces a surjective homomorphism
Hg' (S HA (F;.47(1) — Hg (B Hd (F:.17(1)

as it can be identified with the projectionC @z HS (F;. 4 (1)
— C ®¢r HY (F;.47(I')) where Z and 7 act trivially on C. This finishes
the proof Theorem 7.1. O

Next we give the promised proof of Theorem 0.6 and Theorem 0.8. Theorem
0.6 follows by induction ovem from Theorem 7.1 applied to the fibrations
BI; — BIjs1 — BIi.a/Ii since b@(I7) = b@(BI3;1%(I3+1)) holds for the
coveringBI; associated to the inclusiafi — Ij+; [30, Lemma 1.2.3 on page
205]. The induction begin follows fromd{®(I") = |I"|~! [30, Lemma 1.2.5 on
page 205]. O

Next we prove Theorem 0.8. There is a subgréypC F together with a
monomorphism® : F; — F; such thatF; is isomorphic toF and F is the
HNN-extension ofF; with respect to® with one stable letter [4, Proposition
1.7 on page 370]. From the topological description of HNN-extensions [37, page
180] we conclude th&f is the fundamental group of the mapping tofiss of
the mapB¢® : BF; — BF; induced by®. The inclusionBF; — BF induces
on the fundamental groups the inclusionFafin F. The argument in [30, page
207] shows that the cellulaF-chain complex of the universal coveriigg of
Tes is the mapping cone of a certaifF-chain map fromZF @zg, C(EF;) to
itself. SinceZF is free overZF,, we conclude fop > 1
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Hp(ZF ®zr, C(EF1)) = ZF ®zr, Hp(C(EFy)) = 0.

This impliesHp('I'AB;;Z) =0 for p > 2. HenceTgg is a model forBF. Now the
claim follows from [30, Theorem 2.1. on page 207]O
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