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Introduction

When we were asked to write this survey article for the Handbook of Geometry, we
began to wonder who will read such an article. Well, certainly not someone who wants to
fix his car. The possible readers could be 1.) students or more advanced mathematicians
who are looking for new problems, 2.) people who are curious about this topic and want
to get a first impression, 3.) others who are interested in this topic already and want to
invest some time to learn more about the techniques, 4.) experts who want to see new
developments and an extensive list of literature (with all their papers cited) or 5.) people
who want to read and absorb something new without big effort while watching a Star Trek
episode or a soccer game. We hope that any of these groups can get something from this
survey article. The appeal of the topic comes from its connections to rather different fields
of mathematics like spectral theory of the Laplace operator, questions about metrics with
certain curvature properties on manifolds, isomorphism conjectures in algebraic K-theory
and the Baum-Connes Conjecture, low-dimensional manifolds, group theory, index theory,
intersection homology, representation theory of Lie groups and so on.

For the groups 1.) and 2.) we recommend to glance at section 1 and then read section
2 where the main problems are stated. Moreover, there are other conjectures and open prob-
lems stated throughout the other sections. We treat Conjecture 2.1 about the rationality of
the L2-Betti numbers, the Singer Conjecture 2.6 about the vanishing of the L2-Betti numbers
outside the middle dimension of the universal covering of an aspherical closed manifold, the
Hopf Conjecture 2.7 which is a version of the Singer Conjecture for closed Riemannian man-
ifolds with negative sectional curvature, Conjecture 8.9 about the rationality and positivity
of the Novikov-Shubin invariants, Conjecture 9.10 about the triviality of the homomorphism
ΦΓ : Wh(Γ) −→ R

>0 given by the Fuglede-Kadison determinant, Conjecture 9.18 about the
relation of the simplicial volume and the L2-torsion of aspherical closed manifolds, Conjec-
ture 9.24 about the vanishing of the L2-torsion for closed aspherical manifolds with amenable
fundamental groups and the zero-in-the-spectrum Conjecture 11.1 and 11.4. None of these
problems seem to be easy and have created a lot of work as discussed in sections 3, 4, 7,
8 and 9. These sections and sections 5, 6, 10 and 12 are completely independent of one
another except for section 9 which uses some information from section 8, but nevertheless
can be read without knowing section 8. So the reader has not to be overwhelmed by the
length of this article, but pick what he is interested in. For section 11, however, we rec-
ommend to read through section 8 first. For the groups 1.), 2.) and in particular 3.) we
have included some of the proofs in the text although they are very often somewhere in the
literature. The motivation is sometimes that the proofs themselves are very illuminating or
just nice, that the proofs are hard to find or that the proofs presented here are, hopefully,
easier or better to understand than the one in the literature. It is certainly possible to read
only the definitions, lemmas and theorems and skip all the proofs or additional information.
We recommend this in particular to the fifth group of readers, and also the last episode of
Star Trek – The Next Generation, we believe the title is “All good things” (in German TV
“gestern, heute, morgen”). Although the list of references is quite long, it may well have
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happened that we have not cited a paper which should appear there, and we apologize for
that.

This survey contains also mini-surveys on the following topics: 3-manifolds in section
3, amenable groups in section 4, residually finite groups in section 5, Kähler manifolds in
section 7 and analytic Ray-Singer torsion and Reidemeister torsion in section 9. There are
other survey articles on topics of this survey article or related topics, for instance [42], [109,
section 8], [144], [158], [171] [203], [226], [234].

We mention that we have for simplicity restricted ourselves to the von Neumann algebra
of a group. One can formulate a lot of the results also for arbitrary von Neumann algebras.
Group means always discrete group. We have restricted ourselves to regular coverings,
applications of L2-cohomology to other topics are very briefly mentioned in section 12. We
wish to thank the Max-Planck-Institut in Bonn for its hospitality while parts of this article
were written, John Lott for a lot of discussions about this topic and Clemens Bratzler for
reading through the manuscript.

1. L2-Betti numbers for CW -complexes of finite type

In this section we introduce L2-Betti numbers for regular coverings of CW -complexes
of finite type and discuss their main properties.

Let X be a connected CW -complex of finite type. Finite type means that each skeleton
of X is finite, but X may have infinite dimension. The p-th Betti number bp(X) is defined by
the rank of the finitely generated abelian group Hp(X) given by the cellular or, equivalently,
singular homology. In algebraic topology it has turned out to be useful to improve classical
invariants such as Euler characteristic and signature by passing to the universal covering
and taking the action of the fundamental group into account. This leads, for instance, in the
case of the Euler characteristic to the finiteness obstruction, and in the case of the signature
to surgery obstructions such as symmetric signatures. We want to apply this strategy to
Betti numbers.

The following naive approach does not work. One could think of applying an appropri-
ate notion of dimension for modules over the integal group ring Zπ of the fundamental group
π to the homology Hp(X̃) of the universal covering. Notice that the π-action on X̃ induces

a Zπ-module structure on Hp(X̃). The problem is that in general Zπ is not Noetherian.

Hence Hp(X̃) is not necessarily finitely generated although X is of finite type and therefore

the p-th module Cp(X̃) of the cellular Zπ-chain complex is finitely generated over Zπ. So
the dimension may be infinite. Moreover, it is not at all clear that the dimension is additive.

The reason why a lot of algebraic manipulations work nicely for the complex group
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ring of a finite group is that this ring is semi-simple. It has this property because there
are enough projections, this being a consequence of the fact that CΓ is a Hilbert space.
Namely, an ideal I in CΓ is a direct summand because it has an orthogonal complement.
This property does not hold for infinite groups. However, if one enlarges the complex group
ring to the von Neumann algebra, all the convenient properties of the complex group ring of
a finite group carry over to arbitrary groups. This motivates the following definitions.

If Γ is a group, define l2(Γ) by the Hilbert space of square-summable formal sums∑
γ∈Γ λγγ with complex coefficients λγ. Square-summable, of course, means

∑
γ∈Γ |λγ|2 <∞

and the inner product is given by

〈
∑
γ∈Γ

λγγ,
∑
γ∈Γ

µγγ〉 =
∑
γ∈Γ

λγ · µγ.

The group von Neumann algebra of Γ is defined by the space of Γ-equivariant bounded
operators from l2(Γ) to itself

N (Γ) = B(l2(Γ), l2(Γ))Γ (1.1)

where l2(Γ) is equipped with the obvious left Γ-action. This is not the standard definition,
but equivalent to it. The standard trace of the von Neumann algebra is defined by

tr = trN (Γ) : N (Γ) −→ C f 7→ 〈f(e), e〉l(2)(Γ)

where e ∈ Γ ⊂ l2(Γ) is the unit element. This trace extends to matrices

tr : M(n, n,N (Γ)) −→ C (1.2)

by sending a matrix to the sum of the traces of the diagonal entries.

A Hilbert N (Γ)-module is a Hilbert space V together with a left action of Γ by linear
isometries such that there is a Hilbert space H and a Γ-equivariant isometric embedding
of V into the tensor product of Hilbert spaces l2(Γ)⊗̂H. The isometric embedding is not
part of the structure, only its existence is required. An example is l2(Γ) itself with the
obvious left Γ-action. A Hilbert N (Γ)-module is finitely generated if there is a surjective
bounded Γ-equivariant operator from l2(Γ)n = ⊕ni=1l

2(Γ) onto V for an appropriate positive
integer n. This is equivalent to the existence of an isometric Γ-equivariant embedding of
V into l2(Γ)n for an appropriate positive integer n and to the existence of an orthogonal
Γ-equivariant projection pr : l2(Γ)n −→ l2(Γ)n whose image is isometrically Γ-isomorphic to
V for an appropriate positive integer n.

A morphism of Hilbert N (Γ)-modules f : U −→ V is a bounded Γ-equivariant operator.
We call f a weak isomorphism if its kernel is trivial and its image is dense. The polar
decomposition of a weak isomorphism f looks like i ◦ |f | where |f | : U −→ U is a positive
morphism and i : U −→ V an isometric isomorphism. In particular U and V are isometrically
isomorphic if there is a weak isomorphism from U to V . A sequence of Hilbert N (Γ)-modules

0 −→ U
i−→ V

p−→ W −→ 0 is called exact if i is injective, im(i) = ker(p) and p is surjective. It
is called weakly exact if i is injective, clos(im(i)) = ker(p) and clos(im(p)) = W .
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Definition 1.3 Let V be a finitely generated Hilbert N (Γ)-module. Define its von Neumann
dimension by

dim(V ) = dimN (Γ)(V ) = tr(pr) ∈ [0,∞)

where pr : l2(Γ)n −→ l2(Γ)n is any orthogonal Γ-equivariant projection whose image is iso-
metrically Γ-isomorphic to V .

It is not hard to check that the definition above is independent of the choice of pro-
jection. The elementary proof of the next result is left to the reader. It follows from the
general properties of the universal center valued trace of a finite von Neumann algebra [131,
Theorem 8.2.8 on page 517, Proposition 8.3.10 on page 525 and Theorem 8.4.3 on page 532].

Lemma 1.4 Let U ,V and W be finitely generated Hilbert N (Γ)-modules. Then

1. Faithfulness

dimN (Γ)(U) = 0 if and only if U = 0;

2. Monotony

If U ⊂ V then
dimN (Γ)(U) ≤ dimN (Γ)(V );

3. Continuity

If U1 ⊃ U2 ⊃ . . . is a nested sequence of Hilbert N (Γ)-submodules of U , then

dimN (Γ)

(
∞⋂
n=1

Un

)
= lim

n→∞
dimN (Γ)(Un);

4. Weak exactness

If 0 −→ U
j−→ V

q−→ W −→ 0 is weakly exact, then

dimN (Γ)(V ) = dimN (Γ)(U) + dimN (Γ)(W ).

We will extend this notion to arbitrary modules over N (Γ) in section 10.

Definition 1.5 Let X be a (not necessarily connected) CW -complex of finite type. Let
p : X −→ X be a regular covering of X with group of deck transformations Γ acting from
the left. Define the cellular L2-chain complex of X by the chain complex of finitely generated
Hilbert N (Γ)-modules

C(2)
∗ (X) = l2(Γ)⊗ZΓ C∗(X).
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The cellular L2-cochain complex is defined by

C∗(2)(X) = homZΓ(C∗(X), l2(Γ))

where for γ ∈ Γ and f ∈ C∗(2)(X) the element γ · f sends x ∈ C∗(X) to f(x)γ−1. Define the

L2-homology of X by
H(2)
p (X) = ker(c(2)

p )/ clos(im(c
(2)
p+1))

where c
(2)
∗ is the differential of C

(2)
∗ (X). The definition of L2-cohomology is analogous.

Define the p-th L2-Betti number of X by

b(2)
p (X) = dimN (Γ)(H

(2)
p (X)) = dimN (Γ)(H

p
(2)(X)).

The decisive difference between L2-homology and the Γ-equivariant homology with
coefficients in l2(Γ) viewed as ZΓ-module is that we divide by the closure of the image of
the corresponding differential and not only by the image itself. The reason is that in the
L2-setting we want to keep the Hilbert space structure coming from the cellular L2-chain
complex. In order to guarantee completeness we must divide by a closed subspace. We will
investigate the difference between these two homologies later when we introduce Novikov-
Shubin invariants in section 8 which measure this difference. Hilbert complexes in general
(not necessarily over a finite von Neumann algebra) are treated in [39].

If we deal with a smooth manifoldM , then these definitions are understood for the CW -
complex structure given by some smooth triangulation. We will prove in Theorem 1.7 that
the choice of triangulation does not matter because two triangulations of M give homotopy
equivalent CW -complexes. In the sequel we will denote by X̃ the universal covering with the
fundamental group π1(X) as group of deck transformations Γ, provided that X is connected.

Notice that both H
(2)
p (X) and Hp

(2)(X) are isometrically Γ-isomorphic to the kernel of
the combinatorial Laplace operator

∆p = (c(2)
p )∗ ◦ c(2)

p + c
(2)
p+1 ◦ (c

(2)
p+1)∗ : C(2)

p (X) −→ C(2)
p (X). (1.6)

The elementary proof can be found in [163, Theorem 3.7 on page 230]. Hence there is no
difference between homology and cohomology in the L2-setting.

Next we discuss the main properties of L2-Betti numbers, in particular in comparison
with the ones of the ordinary Betti numbers.

Theorem 1.7 1. Homotopy invariance

Let X and Y be regular coverings of CW -complexes X and Y of finite type with the
same group Γ of deck transformations. Let f : X −→ Y be a Γ-equivariant map. If f
is a homotopy equivalence, then

b(2)
p (X) = b(2)

p (Y ) for 0 ≤ p.
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If f is d-connected, i.e. f induces an isomorphism on πn for n < d and an epimorphism
on πd, then

b(2)
p (X) = b(2)

p (Y ) for p < d;

b
(2)
d (X) ≥ b

(2)
d (Y ).

2. Euler-Poincaré formula

Let X be a regular covering of a finite CW -complex X. Let

χ(X) =
∑
p≥0

(−1)p · βp(X) ∈ Z

be the Euler characteristic of X where βp(X) is the number of p-cells of X. Then

χ(X) =
∑
p≥0

(−1)p · b(2)
p (X);

3. Poincaré duality

Let M be a regular covering of the closed manifold M of dimension n. Then

b(2)
p (M) = b

(2)
n−p(M);

4. Künneth formula

Let X and Y be CW -complexes of finite type. Let X and Y be regular coverings of X
and Y . Then X × Y is a regular covering of X × Y and

b(2)
n (X × Y ) =

∑
p+q=n

b(2)
p (X) · b(2)

q (Y ) for n ≥ 0;

5. Morse inequalities

Let X be a regular covering of a CW -complex X of finite type. Let β(X) be the number
of p-cells in X. Then

n∑
p=0

(−1)n−p · b(2)
p (X) ≤

n∑
p=0

(−1)n−p · βp(X) for n ≥ 0;

6. L2-Hodge-deRham decomposition

Let M be a covering of the oriented closed Riemannian manifold M with deck trans-
formation group Γ. Let Hp

(2)(M) be the space of harmonic smooth L2-p-forms on M ,

i.e. smooth p-forms ω on M such that
∫
M
ω ∧ ∗ω is finite and ω lies in the kernel

of the Laplace operator with respect to the induced Riemannian metric on M . Then
integration defines an isomorphism of finitely generated Hilbert N (Γ)-modules

Hp
(2)(M) −→ Hp

(2)(M);
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7. Multiplicative property for finite coverings

Let X be a CW -complex of finite type and p : X −→ X be a regular covering with group
of deck transformations Γ. Let Γ0 ⊂ Γ be a subgroup of Γ of finite index n. We obtain

a regular covering denoted by X by X −→ X/Γ0. Notice that the coverings X and X
have the same total spaces but different groups of deck transformations. Then

b(2)
p (X) = n · b(2)

p (X) for p ≥ 0;

8. L2-Betti numbers for finite groups Γ

Let X be a CW -complex of finite type and let p : X −→ X be a regular covering with
group of deck transformations Γ of finite order |Γ|. Then:

b(2)
p (X) =

1

|Γ|
· bp(X) for p ≥ 0;

9. Zero-th L2-Betti number

Let X be a connected CW -complex of finite type and let p : X −→ X be a regular
covering with group of deck transformations Γ and connected X. Then

b
(2)
0 (X) =

{ 1
|Γ| if |Γ| <∞;

0 otherwise;

10. S1-actions and L2-Betti numbers

Let M be a connected closed manifold with S1-action. Suppose that for one orbit S1/H
(and hence for all orbits) the inclusion into M induces a map on π1 with infinite image.
(In particular the S1-action has no fixed points.) Then

b(2)
p (M̃) = 0 for p ≥ 0.

Proof : 1.) Because of the Equivariant Cellular Approximation Theorem we can assume

that f is cellular. Since X and Y are free Γ-CW -complexes the map f is even a Γ-homotopy
equivalence. Because of the Equivariant Cellular Approximation Theorem there is a cellular
Γ-map g : Y −→ X such that there is a cellular Γ-homotopy between f ◦ g (resp. g ◦ f) and
the identity. One easily checks that two cellular Γ-maps which are connected by a cellular Γ-
homotopy induce the same map on L2-homology. Now the claim for a homotopy equivalence
f follows. The more general case of a d-connected Γ-map f is proven in [148, Lemma 3.3].

2.) This follows as in the classical situation, where χ(X) is expressed in terms of (ordinary)
Betti numbers, from the fact that the von Neumann dimension is weakly additive (see
Theorem 1.4.4).

3.) follows from the Poincaré ZΓ-chain homotopy equivalence [247, Theorem 2.1 on page 23]

∩[M ] : Cn−∗(M)) −→ C∗(M).
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4.) follows from the isomorphism of cellular chain complexes

C(X)⊗Z C(Y ) −→ C(X × Y ).

See also [255, Corollary 2.36 on page 181].

5.) analogous to 2.).

6.) is proven by Dodziuk [72].

7.) If V is a finitely generated N (Γ)-module and res(V ) its restriction to N (Γ0) which is a
finitely generated Hilbert N (Γ0)-module, then:

dimN (Γ0)(res(V )) = n · dimN (Γ)(V ).

8.) follows from 7.)

9.) If Γ has finite order, this follows from 8.). If Γ is infinite, this follows from the fact that
l2(Γ)Γ is trivial.

10.) is proven in [163, Theorem 3.20 on page 235].

More information about Morse inequalities and L2-invariants can be found in [89], [90],
[157], [172], [173], [196], [197], [234].

Example 1.8 A good source of well understood examples is given by the special case where
Γ is the free abelian group Zr of rank r. On one hand everything becomes simple, on the
other hand one can already see some of the important phenomenons in this special case. See
also [57, section 5.], [77].

One simplification comes from Fourier transformation. Namely, we obtain a natural
isometric Zr-equivariant isomorphism

l2(Zr) −→ L2(T r)

where L2(T r) is the Hilbert space of L2-functions on T r. Let L∞(T r) be the C∗-algebra
of essentially bounded measurable functions on T r. Then we obtain an isomorphism of
C∗-algebras

M : L∞(T r) −→ N (Zr) = B(L2(T r), L2(T r))Z
r

f 7→Mf

where Mf : L2(T r) −→ L2(T r) sends g to the function f · g which assigns to z ∈ T r the
element f(z) · g(z). A morphism of Hilbert N (Zr)-modules L2(T r) −→ L2(T r) is given by
Mf for some f ∈ L∞(T r). It is a weak isomorphism if and only if f−1(0) is a set of measure
zero, and it is an isomorphism if for some ε > 0 the set {z ∈ T r | |f(z)| < ε} has measure zero.

9



In particular we see concrete examples of weak isomorphisms which are not isomorphisms.
An important example is given by Mzi−1. The operator Mf is positive if and only if f takes
values in the non-negative real numbers. In this case the spectral family {Eλ | λ ∈ R} is
given by Eλ = Mχλ where χλ is the characteristic function of the set {z ∈ T r | f(z) ≤ λ}.
The von Neumann trace trN (Zr) becomes

trN (Zr) : L∞(T r) −→ C f 7→
∫
T r
f.

Let X −→ X be a regular covering of a CW -complex of finite type with Zr as group of
deck transformations. Let Z[Zr](0) be the quotient field of the integral group ring of Zr. Let
dimZ[Zr](0)

(
Hp(X)⊗Z[Zr] Z[Zr](0)

)
be the dimension of the finite-dimensional vector space of

the quotient field. Then we get [157, Example 4.3]

b(2)
p (X) = dimZ[Zr](0)

(
Hp(X)⊗Z[Zr] Z[Zr](0)

)
.

Remark 1.9 The L2-Hodge-deRham decomposition of Theorem 1.7.6 proves that for a reg-
ular covering M −→M of a closed Riemannian manifold M the L2-Betti numbers have the
following analytic interpretation. Let L2Ωp(M) be the Hilbert space of all square-integrable
C-valued p-forms on M . This is the Hilbert space completion of the space C∞0 Ωp(M) of
smooth C-valued p-forms on M with compact support and the standard L2-pre-Hilbert
structure. Since M is complete (with respect to the lifted Riemannian metric), the Laplace
operator ∆p is essentially selfadjoint in L2Ωp(M), i.e. its closure with respect to the do-
main C∞0 Ωp(M) is a self-adjoint operator on L2Ωp(M) [55]. Let ∆p =

∫
λdEp

λ be the spec-
tral decomposition with right-continuous spectral family {Ep

λ | λ ∈ R}. Let Ep
λ(x, y) be the

Schwartz kernel of Ep
λ. Since Ep

λ(x, x) is an endomorphism of a finite-dimensional complex
vector space, its trace trC is defined. Let F be a fundamental domain for the Γ-action on
M , i.e. an open subset F in M such that ∪γ∈Γ γclos(F) = M and γF ∩ F = ∅ for γ ∈ Γ
with γ 6= 1 [210, section 6.5]. Then the analytic p-th spectral density function is defined by

F p(λ) =

∫
F

trC (Ep
λ(x, x)) dx λ ∈ R. (1.10)

We will later investigate this spectral density function more closely. We mention the
equality

b(2)
p (M) = F p(0). (1.11)

By means of a Laplace transformation we obtain the equality

b(2)
p (M) = lim

t→∞

∫
F

trC
(
e−t∆p(x, x)

)
dx. (1.12)

where e−t∆p(x, y) denotes the heat kernel on M , i.e. the Schwartz kernel of e−t∆p .
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All the definitions and results above extend to pairs of proper cocompact Γ-CW -
complexes and manifolds with boundary and proper cocompact Γ-actions [163, section 3
and 5]. The L2-Hodge-deRham decomposition for manifolds with boundary is proven in
[228].

2. Basic conjectures

In this section we state the (in our view) most important conjectures concerning L2-
Betti numbers. They motivate a lot of the work done on this subject. We also give a
list of theorems which give evidence for them. Results of sections 3, 4 and 7 also prove
these conjectures in special cases. More questions and conjectures will be discussed in other
sections.

Conjecture 2.1 (Rationality of L2-Betti numbers) Let Γ be a group and A be a (m,n)-
matrix with coefficients in ZΓ. Let f : l2(Γ)m −→ l2(Γ)n be the Γ-equivariant bounded oper-
ator induced by right multiplication with A. Then

1. dimN (Γ)(ker(f)) is rational;

2. Let k be a positive integer such that the order of any finite subgroup of Γ divides k.
Then k · dimN (Γ)(ker(f)) is an integer;

3. If Γ is torsionfree, then dimN (Γ)(ker(f)) is an integer.

Conjecture 2.1 above has the following equivalent reformulations provided that Γ is
finitely presented.

Lemma 2.2 The following statements are equivalent for a finitely presented group Γ:

1. Γ satisfies Conjecture 2.1.1 (resp. 2.1.2, resp. 2.1.3);

2. If X is a connected CW -complex of finite type with Γ as fundamental group, then
b

(2)
p (X̃) satisfies the corresponding statement of Conjecture 2.1.1 (resp. 2.1.2, resp.

2.1.3) for all p ≥ 0;

3. If M is a closed manifold with Γ as fundamental group, then b
(2)
p (M̃) satisfies the

corresponding statement of Conjecture 2.1.1 (resp. 2.1.2, resp. 2.1.3) for all p ≥ 0.

11



Proof : Obviously 1.) implies 2.) and 2.) implies 3.) so that it remains to prove that
3.) implies 1.). The key observation is the following. Let A be a (m,n)-matrix over ZΓ and
d ≥ 3 be an integer. Choose a finite connected 2-dimensional CW -complex X with Γ as
fundamental group. By attaching n (d − 1)-cells to X with a trivial attaching map and m
d-cells one can construct a finite CW -complex Y such that the d-th differential of the cellular
ZΓ-chain complex C(Ỹ ) is, for d ≥ 4, given by A and for d = 3 by the map induced by A
composed with the canonical inclusion l2(Γ)n −→ l2(Γ)n ⊕ l2(Γ)n

′
where n′ is the number

of 2-cells in X. Let f : l2(Γ)m −→ l2(Γ)n be the bounded Γ-equivariant operator induced

by A. Since Y has no (d + 1)-cells, the kernel of f is just H
(2)
d (Ỹ ). Next one can embed

the finite d-dimensional CW -complex Y into R2d+2. Let M be the boundary of a regular
neighborhood of X [221, chapter 3]. Then there is a (d + 1)-connected map M −→ X and
because of Theorem 1.7.1

b
(2)
d (M̃) = b

(2)
d (Ỹ ) = dim(ker(f)).

Remark 2.3 If Conjecture 2.1 holds for all finitely generated groups it holds for all groups.
Namely, given a (m,n) matrix A with coefficients in ZΓ, it suffices to look at the subgroup Γ′

generated by those elements which appear in one of the entries of A with non-zero coefficients.
Namely, A can be viewed as a matrix over ZΓ′ and the dimension over Γ of the associated
Γ-equivariant bounded operator agrees with the one over Γ′.

Lemma 2.2 remains true if we substitute the assumption finitely presented for Γ by
finitely generated and substitute the universal coverings X̃ (resp. M̃) by regular coverings
X −→ X (resp. M −→M) for a connected finite CW -complex (resp. closed manifold M).
The modification in the proof is as follows. Choose a finitely generated free group F together
with an epimorphism p : F −→ Γ. Lift A to a matrix A′ over Z[F ] and construct X, Y and
M as explained in the proof of Lemma 2.2 for F and A′. Then take the coverings of Y (resp.
M) associated to p with Γ as group of deck transformations.

Hence Conjecture 2.1 is true for all groups Γ and matrices A if and only if for all
regular coverings M −→M of closed manifolds M with a finitely generated group of deck
transformations b

(2)
p (M) satisfies the corresponding statement.

The question of whether the third statement in Lemma 2.2 is true was asked by Atiyah
[3, page 72]. Next we show that Conjecture 2.1 implies the Zero-Divisor-Conjecture. For a
discussion of the Zero-Divisor-Conjecture and related conjectures we refer to [138, page 95] .

Lemma 2.4 If the group Γ satisfies Conjecture 2.1.3, then it also satisfies the Zero-Divisor-
Conjecture which says: The rational group ring QΓ has no non-trivial zero-divisors if and
only if Γ is torsionfree.
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Proof : Suppose that Γ is not torsionfree. Let g ∈ Γ be an element of finite order

|g| 6= 1. Then the norm element N =
∑|g|

k=1 g
k is a zero-divisor in QΓ since it satisfies

N · (|g| −N) = 0.

Suppose that Γ is torsionfree. Let x ∈ QΓ be a zero-divisor. We have to show, under
the assumption that Conjecture 2.1.3 is true, that x is trivial. By multiplying x with an
appropriate integer, we can assume without loss of generality that x belongs to ZΓ. Right
multiplication with x induces a Γ-equivariant bounded operator rx : l2(Γ) −→ l2(Γ). Con-
jecture 2.1 implies that dimN (Γ)(ker(rx)) is an integer. As x is a zero-divisor, the kernel of
rx is not trivial and hence dimN (Γ)(ker(rx)) is not zero. Since dimN (Γ)(ker(rx)) is bounded
by the dimension of l2(Γ), which is 1, we get dimN (Γ)(ker(rx)) = 1 = dimN (Γ)(l

2(Γ)). As the
kernel of rx is a closed subspace of l2(Γ), this implies that rx is the trivial map. Hence x is
zero. This shows that the rational group ring has no non-trivial zero-divisors.

Let C be the smallest class of groups which i.) contains all free groups, ii.) is closed
under directed unions and iii.) satisfies G ∈ C whenever G contains a normal subgroup H
such that H belongs to C and G/H is elementary amenable. We recall that the class of
elementary amenable groups is defined as the smallest class of groups which contains all
finite and all abelian groups, and is closed under taking subgroups, forming factor groups,
group extensions, and upwards directed unions.

Theorem 2.5 (Linnell [140]) Conjecture 2.1 holds for the class C of groups.

The key result in [140] is that for a torsionfree group Γ in the class C there is a division
ring D(Γ) satisfying CΓ ⊂ D(Γ) ⊂ U(Γ), where U(Γ) is the algebra of closed densely defined
operators l2(Γ) −→ l2(Γ) which are affiliated to the group von Neumann algebra. Linnell
uses the Fredholm technique developed by Connes for his proof that the reduced C∗-algebra
of a free group has no non-trivial projections [62, section 7], [83], Moody’s induction theorem
cite[Theorem 1]Moody (1989) and Cohn’s theory of universal fields of fractions [61]. This
indicates that there must be a connection between Conjecture 2.1 and the Baum-Connes
Conjecture for the topological K-theory of the reduced C∗-algebra of a group [13, Conjecture
3.15 on page 254] and the Isomorphisms Conjecture for the algebraic K-theory of the integral
group ring of Farrell and Jones [93, 1.6 on page 257]. See [68] for a unified treatment of the
last two conjectures and see [214] for more details on this connection and a general strategy
based on Linnell’s work how to approach Conjecture 2.1. The Baum-Connes Conjecture
says that one can compute the topological K-theory of the reduced C∗-algebra of a group
Γ by a complicated induction process from the topological K-theory of the complex group
rings of all finite subgroups of Γ. Conjecture 2.1 can be interpreted similarly, namely all the
possible dimensions of kernels of Γ-equivariant bounded operators l2(Γ)m −→ l2(Γ)n which
are induced by matrices over ZΓ are coming from the dimensions of kernels of Γ-equivariant
bounded operators l2(Γ)m −→ l2(Γ)n which are induced by matrices over ZG for all finite
subgroups G ⊂ Γ. Notice that the dimension of such operators coming from a finite group
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G are rational numbers which become integral when multiplied with the order of G. The
missing link seems to be the not at all understood passage from finitely presented ZΓ-modules
to modules over the C∗-algebra of Γ. The connection between the generalization of the Euler
Poincaré formula for finitely dominated CW -complexes and the Bass Conjecture [12, page
156] which is related to the Baum-Connes Conjecture and the Isomorphisms Conjecture for
the algebraic K-theory is treated by Eckmann [82].

Conjecture 2.6 (Singer Conjecture) If M is a closed aspherical Riemannian manifold
of dimension n, then

b(2)
p (M̃) = 0 for 2p 6= n.

If additionally n = 2d, then
(−1)d · χ(M) ≥ 0.

The conjecture above was originally only formulated for closed Riemannian mani-
folds with non-positive sectional curvature. Notice that any such manifold is aspherical
by Hadamard’s Theorem [99, 3.87 on page 134]. We recall that a space X is aspherical if
its universal covering is contractible, or equivalently, all the higher homotopy groups of X
are trivial. We will see that the Singer Conjecture 2.6 is true if π1(M) contains a normal
non-trivial amenable subgroup in section 4, and if M has dimension 3 and is not exceptional
in section 3. The Singer Conjecture 2.6 is true if M̃ is a symmetric space of non-compact
type. It is also true if M carries a non-trivial S1-action, because then the inclusion of an
orbit into M induces a map on the fundamental groups with infinite image [66, Lemma 5.1
on page 242 and Corollary 5.3 on page 243] and Theorem 1.7.10 applies.

Conjecture 2.7 (Hopf Conjecture) If M is a closed 2d-dimensional Riemannian mani-
fold of negative sectional curvature, then

b
(2)
d (M̃) > 0;

(−1)d · χ(M) > 0.

In the Hopf Conjecture 2.7 above, the part about the Euler characteristic goes back to
Hopf. The statements about the Euler characteristic in Conjecture 2.6 and 2.7 follow from the
one about the L2-Betti numbers by the Euler -Poincaré formula χ(M) =

∑
p≥0(−1)p · b(2)

p (M̃)
of Theorem 1.7.2.

Conjecture 2.7 has been proven by Dodziuk for a hyperbolic closed Riemannian man-
ifold. Namely, we have already mentioned in Theorem 1.7 that there is L2-Hodge-deRham
decomposition [72]. Since the universal covering of a closed n-dimensional hyperbolic man-
ifold is isometrically isomorphic to the n-dimensional hyperbolic space Hn, and the von
Neumann dimension of a finitely generated Hilbert N (Γ)-module is zero if and only if the
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module is zero, the p-th L2-Betti number of M is trivial if and only if the space of harmonic
L2-integrable p-forms on Hn is trivial. This space is computed in [73] using the rotational
symmetry of Hn. Donnelly and Xavier [79] have proven for a closed n-dimensional Rieman-
nian manifold M whose sectional curvature is pinched between −1 and Dn for some real

number −1 ≤ Dn < − (n−2)2

(n−1)2 that

b(2)
p (M̃) = 0 for p 6= n

2
,
n± 1

2
.

In particular, the Singer Conjecture 2.6 is true for such a manifold if n is even. This result
has been improved by Jost-Yuanlong [129]. They assume that the sectional curvature of M
satisfies −a2 ≤ K ≤ 0 and the Ricci curvature is bounded from above by −b2 for positive
constants a, b and show that

b(2)
p (M̃) = 0 for p 6= n

2
, 2pa ≤ b.

We will see in section 7 that the Hopf Conjecture 2.7 is true if M is a Kähler manifold.
Without some finiteness conditions on X̃, such as being the total space of a regular covering
over a finite CW -complex, Conjecture 2.6 becomes false. This follows from the work of
Anderson [2] where the non-vanishing of the (reduced) L2-cohomology of perturbations of
the hyperbolic metric on the hyperbolic space is proved.

3. Low-dimensional manifolds

In this section we give information about the L2-Betti numbers of universal coverings
of compact manifolds of dimension ≤ 3. We will only consider orientable manifolds since one
gets the general case by passing to the orientation covering and the multiplicative property
of the L2-Betti numbers of Theorem 1.7.7.

Example 3.1 We begin with a compact connected 1-dimensional manifold M . If M has
boundary, it is [0, 1] and hence homotopy equivalent to a point, and its L2-Betti numbers
agree with the (ordinary) Betti numbers of the one-point-space, i.e. they are trivial except
the 0-th one which is 1. If M has no boundary, then M is S1. Since there is a covering
S1 −→ S1 of degree d for d ≥ 2, we conclude from the multiplicative property in Theorem
1.7.7

b(2)
p (S̃1) = 0 for p ≥ 0.

It is illuminating to compute b
(2)
p (S̃1) directly. One easily checks that the cellular L2-

chain complex is concentrated in dimension 0 and 1 and its first differential l2(Z)
t−1−−→ l2(Z)
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is given by multiplication with the element t− 1 for t a generator of the fundamental group
π1(S1) = Z. Its Fourier transformation is the bounded Z-equivariant operator

Mz−1 : L2(S1) −→ L2(S1) f(z) 7→ (z − 1) · f(z)

where we regard S1 as a subset of the complex numbers C. Obviously the kernel of Mz−1

and hence H
(2)
1 (S̃1) is trivial. One easily checks that H

(2)
0 (S̃1) is the kernel of M∗

z−1, which
is the kernel of Mz−1−1 and hence trivial.

Example 3.2 Let F d
g be the orientable closed surface of genus g with d embedded open

2-disks removed. From Theorem 1.7 and the fact that a compact surface with boundary is
homotopy equivalent to a bouquet of circles, one derives

b
(2)
0 (F̃ d

g ) =

{
1 g = 0, d = 0, 1
0 otherwise

;

b
(2)
1 (F̃ d

g ) =

{
0 g = 0, d = 0, 1
d+ 2(g − 1) otherwise

;

b
(2)
2 (F̃ d

g ) =

{
1 g = 0, d = 0
0 otherwise

.

In the sequel 3-manifold means a compact connected orientable 3-dimensional mani-
fold. Notice that in dimension 3 there is no difference between topological, PL- or smooth
manifolds [176], [191]. We want to compute the L2-Betti numbers of the universal covering
of a 3-manifold. For this purpose we have to recall some basic facts about such manifolds
which are interesting in their own right. For more information about 3-manifolds we refer
to [116],[231] and [240].

A 3-manifold M is prime if, given a decomposition M1]M2 of M as a connected sum,
M1 or M2 is homeomorphic to S3. It is irreducible if every embedded bicollared 2-sphere
bounds an embedded 3-disk. Any prime 3-manifold is irreducible or is homeomorphic to
S1 × S2 [116, Lemma 3.13]. One can write a 3-manifold M as a connected sum

M = M1]M2] . . . ]Mr

where each Mj is prime, and this prime decomposition is unique up to renumbering and
oriented homeomorphism [116, Theorems 3.15, 3.21]. By the Sphere Theorem [116, Theo-
rem 4.3], an irreducible 3-manifold is aspherical if and only if it is a 3-disk or has infinite
fundamental group.

A properly-embedded orientable connected surface in a 3-manifold is incompressible if
it is not a 2-sphere and the inclusion induces an injection on the fundamental groups. One
says that ∂M is incompressible in M if and only if ∂M is empty or any component C of
∂M is incompressible in the sense above. An irreducible 3-manifold is Haken if it contains
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an embedded orientable incompressible surface. If M is irreducible, and in addition H1(M)
is infinite, which is implied if ∂M contains a surface other than S2, then M is Haken [116,
Lemma 6.6 and 6.7]. (With our definitions, any properly embedded 2-disk is incompressible,
and the 3-disk is Haken.)

We call a manifold hyperbolic if its interior admits a complete Riemannian metric whose
sectional curvature is constant −1. Provided that M has no boundary, this is equivalent to
the statement that the universal covering with the lifted Riemannian metric is isometrically
isomorphic to the hyperbolic space of the same dimension as M . We use the definition of a
Seifert 3-manifold of [231, page 429]. If π1(M) is infinite, M is Seifert if and only if some
finite covering of M is the total space of an S1-principal bundle over a compact 2-dimensional
manifold. The work of Casson and Gabai shows that an irreducible 3-manifold with infinite
fundamental group π is Seifert if and only if π contains a normal infinite cyclic subgroup
[98, Corollary 2 on page 395].

Next we mention what is known about Thurston’s Geometrization Conjecture for irre-
ducible 3-manifolds with infinite fundamental groups. Johannson [127] and Jaco and Shalen
[125] have shown that, given an irreducible 3-manifold M with incompressible boundary,
there is a finite family of disjoint, pairwise-nonisotopic incompressible tori in M which are
not isotopic to boundary components and which split M into pieces that are Seifert mani-
folds or are geometrically atoroidal, meaning that they admit no embedded incompressible
torus (except possibly parallel to the boundary). A minimal family of such tori is unique
up to isotopy, and we will say that it gives a toral splitting of M . We will say that the
toral splitting is geometric if the geometrically atoroidal pieces which do not admit a Seifert
structure are hyperbolic. Thurston’s Geometrization Conjecture for irreducible 3-manifolds
with infinite fundamental groups states that such manifolds have geometric toral splittings.
For completeness we mention that Thurston’s Geometrization Conjecture says, for a closed
3-manifold with finite fundamental group, that its universal covering is homeomorphic to
S3, the fundamental group of M is a subgroup of SO(4) and the action of it on the universal
covering is conjugated by a homeomorphism to the restriction of the obvious SO(4)-action
on S3. This implies, in particular, the Poincaré Conjecture that any homotopy 3-sphere is
homeomorphic to S3.

Suppose that M is Haken. The pieces in its toral splitting are certainly Haken. Let
N be a geometrically atoroidal piece. The Torus Theorem says that N is a special Seifert
manifold or is homotopically atoroidal, i.e. any subgroup of π1(N) which is isomorphic to
Z×Z is conjugate to the fundamental group of a boundary component. Thurston has shown
that a homotopically atoroidal Haken manifold is a twisted I-bundle over the Klein bottle
(which is Seifert) or is hyperbolic.

Thus the case in which Thurston’s Geometrization Conjecture for an irreducible 3-
manifold M with infinite fundamental group is still open is when M is a closed non-Haken
irreducible 3-manifold with infinite fundamental group which is not Seifert. The conjecture
states that such a manifold is hyperbolic.
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We want to compute the L2-Betti numbers of the universal covering of a 3-manifold
under the assumption that Thurston’s Geometrization Conjecture holds for the pieces in the
prime decomposition with infinite fundamental group. First we deal with the case where the
fundamental group of M is finite. In this case the L2-Betti numbers are the ordinary Betti
numbers of M̃ divided by the order |π| of the fundamental group π of M . If M is closed,

M̃ is homotopy equivalent to S3, and hence b
(2)
0 (M̃) = b

(2)
3 (M̃) = |π|−1 and b

(2)
p (M̃) = 0 for

p 6= 0, 3. Suppose that ∂M is non-trivial. Then M is a connected sum of homotopy spheres
and k disks for some positive integer k, and hence b

(2)
0 (M̃) = |π|−1, b

(2)
2 (M̃) = (k − 1) · |π|−1

and b
(2)
p (M̃) = 0 for p 6= 0, 2. Hence we only have to treat the case where π1(M) is infinite.

Let us say that a prime 3-manifold is exceptional if it is closed and no finite covering
of it is homotopy equivalent to a Haken, Seifert or hyperbolic 3-manifold. No exceptional
prime 3-manifolds are known, and Thurston’s Geometrization Conjecture and Waldhausen’s
Conjecture that any 3-manifold is finitely covered by a Haken manifold imply that there are
none. Notice that any exceptional manifold has infinite fundamental group.

Theorem 3.3 (Lott and Lück [148], Theorem 0.1) Let M be the connected sum M1] . . . ]Mr

of (compact connected orientable) non-exceptional prime 3-manifolds Mj. Assume that

π1(M) is infinite. Then the L2-Betti numbers of the universal covering M̃ are given by

b
(2)
0 (M̃) = 0;

b
(2)
1 (M̃) = (r − 1)−

r∑
j=1

1

| π1(Mj) |
− χ(M) +

∣∣{C ∈ π0(∂M) | C ∼= S2}
∣∣ ;

b
(2)
2 (M̃) = (r − 1)−

r∑
j=1

1

| π1(Mj) |
+
∣∣{C ∈ π0(∂M) | C ∼= S2}

∣∣ ;
b

(2)
3 (M̃) = 0.

Proof : We give a sketch of the strategy of proof. Since the fundamental group is infinite, we

get b
(2)
0 (M̃) = 0 from Theorem 1.7.9. If M is closed, we get b

(2)
3 (M̃) = 0 because of Poincaré

duality 1.7.3. If M has boundary, it is homotopy equivalent to a 2-dimensional CW -complex
and hence b

(2)
3 (M̃) = 0. It remains to compute the second L2-Betti number, because the first

one is then determined by the Euler-Poincaré formula 1.7.2.

It is not hard to find a general formula for the L2-Betti numbers of a connected sum in
terms of the summands. With this formula we reduce the claim to prime 3-manifolds. Since
a prime 3-manifold is either irreducible or S1 × S2, the claim is reduced to the irreducible
case. If the boundary is compressible, we use the Loop Theorem [116, Theorem 4.2 on
page 39] to reduce the claim to the incompressible case. By doubling M we can reduce the
claim further to the case of an irreducible 3-manifold with infinite fundamental group and
incompressible torus boundary. By the toral splitting and the assumptions about Thuston’s
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Geometrization Conjecture we can reduce further to the claim that the L2-Betti numbers
vanish if M is Seifert with infinite fundamental group or is hyperbolic with incompressible
torus boundary. All these steps use the weakly exact Mayer-Vietoris sequence for L2-(co)-
homology of Cheeger and Gromov [52, Theorem 2.1 on page 10]. In the Seifert case we
can assume by the multiplicative property (see Theorem 1.7.7) that M is an S1-principal
bundle over a 2-dimensional manifold. Then we use induction over the cells of the base space
and the fact that the L2-Betti numbers of S1 vanish. The hyperbolic case is reduced to the
known closed case by a careful analysis at the boundary using the fact that such a hyperbolic
manifold with incompressible torus boundary has finite volume.

Let χvirt(π1(M)) be the rational-valued group Euler characteristic of the group π1(M)
in the sense of [35, IX.7],[246]. Then the conclusion in Theorem 3.3 is equivalent to

b
(2)
1 (M̃) = −χvirt(π1(M));

b
(2)
2 (M̃) = χ(M)− χvirt(π1(M)).

This is proven in [148, page 53 - 54].

Notice that Theorem 3.3 proves Conjecture 2.6 and the third of the three equivalent
assertions in Lemma 2.2 for compact 3-manifolds, provided that Thurston’s Geometrization
Conjecture or Waldhausen’s Conjecture is true. Notice that this does not imply Conjecture
2.1 for Γ the fundamental group of a compact 3-manifold satisfying Thurston’s or Wald-
hausen’s Conjecture.

4. Aspherical manifolds and amenability

This section is devoted to a result of Cheeger and Gromov about the vanishing of the
L2-Betti numbers of the universal covering of an aspherical CW -complex whose fundamental
group contains a non-trivial normal amenable subgroup.

Let l∞(Γ,R) be the space of bounded functions from Γ to R with the supremum norm.
Denote by 1 the constant function with value 1. A group Γ is called amenable if there is a
Γ-invariant linear operator µ : l∞(Γ,R) −→ R with µ(1) = 1 which satisfies

inf{f(γ) | γ ∈ Γ} ≤ µ(f) ≤ sup{f(γ) | γ ∈ Γ} for f ∈ l∞(Γ).

The last condition is equivalent to the condition that µ is bounded and µ(f) ≥ 0 if f(γ) ≥ 0
for all γ ∈ Γ.

We give an overview of some basic properties of this notion. The class of amenable
groups satisfies the conditions appearing in the definition of elementary amenable groups in
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section 2, namely, it contains all finite and all abelian groups, and is closed under taking
subgroups, forming factor groups, group extensions, and upwards directed unions [17, Propo-
sition F.6.11 on page 309]. Hence any elementary amenable group is amenable. Recently
Grigorchuk has constructed a finitely presented group which is amenable but not elementary
amenable. Any group containing the free group on two letters Z ∗ Z as subgroup is not
amenable [17, Proposition F.6.12 on page 310]. There are finitely generated, but not finitely
presented groups, which are not amenable but do not contain Z ∗Z [200]. However, no non-
amenable finitely presented group is known which does not contain Z∗Z. A useful geometric
characterization of amenable groups is given by the Fölner criterion [17, Theorem F.6.8 on
page 308] which says that a finitely presented group Γ is amenable if and only if for any
positive integer n, any connected closed Riemannian manifold M with fundamental group
π1(M) = Γ, and ε > 0, there is a domain Ω ⊂ M̃ with (n − 1)-measurable boundary such
that the (n − 1)-measure of ∂Ω does not exceed ε times the measure of Ω. Such a domain
can be constructed by an appropriate finite union of translations of a fundamental domain
if Γ is amenable. The fundamental group of a closed connected manifold is not amenable
if M admits a Riemannian metric of non-positive curvature which is not zero everywhere
[9]. A group is amenable if and only if all its finitely generated subgroups are amenable
[17, Proposition F.6.11 on page 309]. Any finitely generated group which is not amenable
has exponential growth [17, Proposition F.6.24 on page 318]. A group Γ is amenable if and
only if the canonical map from the full C∗-algebra of Γ to the reduced C∗-algebra of Γ is an
isomorphism [207, Theorem 7.3.9 on page 243]. A group Γ is amenable if and only if the
reduced C∗- algebra of Γ is nuclear [139]. For more information about amenable groups we
refer to [206].

The next result gives a positive answer to the Singer Conjecture 2.6 for special funda-
mental groups.

Theorem 4.1 (Cheeger and Gromov [54]) If X is an aspherical connected CW -complex
of finite type such that its fundamental group contains a non-trivial normal amenable sub-
group, then we get for the universal covering X̃

b(2)
p (X̃) = 0 for p ≥ 0.

In this section we will explain only one of the decisive steps in the proof of Theorem 4.1 in
order to illustrate the meaning of the condition about amenability. We will complete the
proof in section 10.

Let X be a finite CW -complex with regular covering X −→ X with group of deck
transformations Γ. Let C∗(X) be the dual cochain complex with complex coefficients
homZ(C∗(X),C) of the cellular chain complex C∗(X). An element in Cp(X) is a function
u : Sp(X) −→ C from the set of p-cells of X to the complex numbers. We call u square-
summable if

∑
e∈Sp(X) |u(e)|2 is finite. The square-summable elements form a subcomplex

C∗(2)(X) ⊂ C∗(X). We equip the chain modules of C∗(2)(X) with the obvious Hilbert space
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structure. This definition agrees with the Definition 1.5. Let Hp
(2)(X) be the Hilbert sub-

module of Cp
(2)(X) consisting of those elements u which satisfy cp(2)(u) = 0 and (cp−1

(2) )∗(u) = 0.
There are obvious maps

ip : Hp
(2)(X) −→ Hp

(2)(C
∗
(2)(X)) = Hp

(2)(X); (4.2)

jp : Hp
(2)(X) −→ Hp(C∗(X)) = Hp(X;C). (4.3)

The first map 4.2 is always an isomorphism by an elementary argument.

Lemma 4.4 (Cheeger and Gromov [54], Lemma 3.1 on page 203) The map jp of 4.3
is injective, provided that Γ is amenable.

Proof : Let D ⊂ X be a fundamental domain for the Γ-action on X. Such a D is constructed

by choosing for each closed p-cell e ∈ Sp(X) one lift e ∈ Sp(X) and taking the union of these
lifts for all p ≥ 0. Because Γ is amenable, one can find a sequence of subcomplexes Xj ⊂ X
and natural numbers nj and ∂nj such that Xj is the union of nj translates with distinct
elements in γkj ∈ Γ for k = 1, 2, . . . nj of D, ∂nj is the numbers of cells of D which meet the

boundary (in the sense of point set topology) of Xj and

lim
j→∞

∂nj
nj

= 0. (4.5)

Let Kp ⊂ Hp
(2)(X) be the kernel of jp. We have to show that Kp is trivial. Let prKp (resp.

prpj) be the orthogonal projection Cp
(2)(X) −→ Cp

(2)(X) onto Kp (resp. onto the complex

subspace of square-summable cochains u which are supported on Xj, i.e. u(e) = 0 unless e
belongs to Xj). Let χe denote the characteristic function Sp(X) −→ C for a given e ∈ Sp(X).
We get

dimN (Γ)(K
p) = trN (Γ)(prKp)

=
∑

e∈Sp(X)

〈prKp(χe), χe〉

=
∑

e∈Sp(D)

〈prKp(χe), χe〉

=
1

nj
·
∑

e∈Sp(D)

nj · 〈prKp(χe), χe〉

=
1

nj
·
∑

e∈Sp(D)

nj∑
k=1

〈prKp(χγkj e), χγkj e〉

=
1

nj
·
∑

e∈Sp(Xj)

〈prKp(χe), χe〉

=
1

nj
· trC(prpj ◦ prKp).
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Since prpj and prKp have norm 1, we conclude

dimN (Γ)(K
p) ≤ 1

nj
· dimC

(
im(prpj ◦ prKp)

)
. (4.6)

We fix the orthogonal decomposition

u = ui + u∂ + ue ∈ Cp
(2)(X) ⊂ map(Sp(X),C)

where ui is only supported on (closed) cells in the interior of Xj, u∂ is supported on cells
which meet the boundary of Xj and ue is supported on cells which do not meet Xj (and
hence do not meet the boundary of Xj).

Now consider an element u ∈ Kp such that u∂ = 0. Choose v ∈ Cp−1(X) such that
cp−1 : Cp−1(X) −→ Cp(X) maps v to u regarded as an element in Cp(X). Notice that
prpj extends to a map prpj : Cp(X) −→ Cp(X), namely prpj(y) for y ∈ Cp(X) sends a cell

e ∈ Sp(X) to y(e) if e belongs to Xj and to zero otherwise. From this description we con-
clude prpj(u) = ui. The cochain prpj ◦cp−1(v) vanishes on cells which do not meet Xj. The

difference cp−1 ◦ prp−1
j (v)− prpj ◦cp−1(v) is supported on cells which meet the boundary of Xj

because the boundary of a cell which does not belong to Xj cannot lie in the interior of Xj.
Hence we get

0 ≤ 〈prpj(u), prpj(u)〉
= 〈prpj ◦cp−1(v), ui〉
= 〈cp−1 ◦ prp−1

j (v), ui〉
= 〈cp−1 ◦ prp−1

j (v), u〉
= 〈prp−1

j (v), (cp−1)∗(u)〉
= 〈prp−1

j (v), 0〉
= 0.

This implies that prj vanishes on Kp ∩ {u ∈ Cp
(2)(X) | u∂ = 0}. Since

dimC

(
Kp
/(

Kp ∩ {u ∈ Cp
(2)(X) | u∂ = 0}

))
≤ dimC

(
Cp

(2)(X)
/
{u ∈ Cp

(2)(X) | u∂ = 0}
)

= ∂nj,

we conclude

dimC
(
im(prpj ◦ prKp)

)
≤ ∂nj. (4.7)
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We get from 4.6 and 4.7

dimN (Γ)(K
p) ≤ ∂nj

nj
.

Since the limit of the right hand side is zero by 4.5, we get

dimN (Γ)(K
p) = 0.

This finishes the proof of Lemma 4.4.

Notice that Lemma 4.4 proves Theorem 4.1 in the special case where the fundamental
group of X is itself amenable by the following argument. In order to show that b

(2)
p (X)

vanishes, we can pass to the (d+ 1)-skeleton Y ⊂ X and prove that b
(2)
p (Y ) vanishes. Since

X is aspherical, we conclude

Hp(Y ;C) = Hp(X;C) = 0.

Now Lemma 4.4 implies

Hp
(2)(Y ) = 0;

bp(2)(Y ) = 0.

If Γ contains a normal amenable infinite group ∆ such thatB∆ is of finite type, then Theorem
4.1 follows by the L2-version of the Leray-Serre spectral sequence (see, for instance, [239])
applied to the fibration B∆ −→ BΓ −→ BΓ/∆. We will give the proof in the general case,
where no assumptions about B∆ are made, in section 10.

5. Approximating L2-Betti numbers by ordinary Betti
numbers

In this section we get the L2-Betti numbers of a regular covering X −→ X of a CW -
complex of finite type as the limit of the normalized ordinary Betti numbers of a tower of
finite coverings Xm −→ X which converges in some sense to X.

Let X −→ X be a regular covering of a CW -complex of finite type with group of deck
transformations Γ. Suppose that Γ is residually finite, i.e. for each element γ ∈ Γ with
γ 6= 1 there is a homomorphism φ : Γ −→ G to a finite group with φ(γ) 6= 1. We will assume
that Γ is countable. Under this assumption Γ is residually finite if and only if there is a
nested sequence of normal in Γ subgroups . . . ⊂ Γm+1 ⊂ Γm ⊂ . . .Γ0 = Γ such that the index
[Γ : Γm] is finite for all m ≥ 0 and the intersection ∩m≥0Γm is the trivial group. We give
some information about residually finite groups at the end of this section. Consider any
such sequence (Γm)m≥0. Let pm : Xm = Γm\X −→ X be the covering of X associated with
Γm ⊂ Γ. Notice that this is a finite regular covering of X, and hence Xm is again of finite
type. Denote by bp(Xm) the (ordinary) p-th Betti number of Xm.
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Theorem 5.1 (Lück [156]) Under the conditions above we get for all p ≥ 0

lim
m→∞

bp(Xm)

[Γ : Γm]
= b(2)

p (X).

The inequality lim supm→∞
bp(Xm)

[Γ:Γm]
≤ b

(2)
p (X) forX a closed manifold is discussed by Gromov

[109, 0.5.F., 8.A] and is essentially due to Kazhdan [132]. The paper of Donnelly [75]
deals with the operator f(∆0) acting on 0-forms for a function f ∈ C∞0 (R+). Theorem
5.1 is proven by Yeung [254] in the special case of a closed Kähler manifold with negative
sectional curvature and by DeGeorge-Wallach [102], [103] in the special case of a closed
locally symmetric space of non-compact type. In the last case all the L2-Betti numbers
vanish, so one gets

lim
m→∞

bp(Xm)

[Γ : Γm]
= 0.

This leads to the question of how fast this sequence goes to zero; in other words, one wants
to know the largest ε for which

lim
m→∞

bp(Xm)

[Γ : Γm]1−ε
= 0.

is true. Such questions are treated in [227], [251], [252].

The general case of a CW -complexX of finite type is proven in [156]. There actually the
entire spectral density function of the combinatorial Laplace operator on the cellular L2-chain
complex of X is approximated by the spectral density function for the combinatorial Laplace
operator on the cellular chain complexes of the various Xm. The spectral density function for
Xm simply encodes the eigenvalues and their multiplicities of the Laplace operator because
Xm is compact, whereas the one for X is more complicated as, in general, X is not compact
and the spectrum is not discrete. In some sense we try to approximate continous information
by discrete data. The philosophy is that the tower of finite coverings Xm converges to X.

The inequality lim supm→∞
bp(Xm)

[Γ:Γm]
≤ b

(2)
p (X) is the easier part of the proof of Theorem

5.1. The main trick in the proof of the other inequality is not to forget and to use essentially
the fact that the combinatorial Laplace operator on the cellular chain complex already lives
over the integral group ring. This allows the use of the obvious inequality |n| ≥ 1 for an
integer n different from zero. The results for the combinatorial Laplace operator on the
cellular chain complexes carry over to the analytic Laplace operator acting on smooth p-
forms on X provided that X is a compact smooth manifold. One can formulate Theorem 5.1
for any elliptic differential operator on a closed smooth Riemannian manifold X if one uses
on each Xm and on X the lifted Riemannian metric and elliptic differential operator and
substitutes the Betti numbers by the dimensions of the kernels. It seems not hard to prove
the analogue of the inequality lim supm→∞

bp(Xm)

[Γ:Γm]
≤ b

(2)
p (X), but it is not known whether

the equality holds. The question is whether the result is only true for the Laplacian because
it has a cellular analogue which allows us to use the fact that everything already lives over
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the integral group ring. Again we see from this discussion as we have mentioned in section
2 that the passage from the integral group ring of Γ to the reduced C∗-algebra, or even the
von Neumann algebra of Γ, plays a fundamental role and any understanding of it seems to
give new results.

Finally we collect some basic facts about residually finite groups in order to explain
how restrictive the assumption is that Γ is residually finite. For more information we refer
to the survey article of Magnus [169].

The free product of two residually finite groups is again residually finite [60, page 27],
[113]. A finitely generated residually finite group has a solvable word problem [183]. The
automorphism group of a finitely generated residually finite group is residually finite [14]. A
finitely generated residually finite group is Hopfian, i.e. any surjective endomorphism is an
automorphism [168], [195, Corollary 41.44]. Let Γ be a finitely generated group possessing
a faithful representation into GL(n, F ) for F a field. Then Γ is residually finite [168], [248,
Theorem 4.2]. The fundamental group of a compact 3-manifold whose prime decomposition
consists of manifolds which have finite fundamental groups, or are non-exceptional in the
sense of section 3 (i.e. which are finitely covered by a manifold which is homotopy equivalent
to a Haken, Seifert or hyperbolic manifold), is residually finite [117, page 380]. Let Γ be
a finitely generated group. Let Γrf be the quotient of Γ by the normal subgroup which is
the intersection of all normal subgroups of Γ of finite index. The group Γrf is residually
finite and any finite-dimensional representation of Γ over a field factorizes over the canonical
projection Γ −→ Γrf .

The upshot of this discussion is the slogan that the fundamental group of a geometri-
cally interesting closed manifold is very likely to be residually finite. However, there is an
infinite group Γ with four generators and four relations which has no finite quotient except
the trivial one and hence satisfies Γrf = {1} [119].

Meanwhile Theorem 5.1 has been generalized and put into somewhat different context
in [56], [74], [92] and [229].

6. L2-Betti numbers and groups

In this section we explain some applications of L2-Betti numbers to group theory.
Given a group Γ, we define its L2-Betti number b

(2)
p (Γ) by b

(2)
p (EΓ) where EΓ −→ BΓ is the

universal principal Γ-bundle. This is only well-defined if the (p+ 1)-skeleton of BΓ is finite.
The definition for arbitrary groups will be given in Definition 10.9.

The next result of Cheeger and Gromov was proven in special cases by Gottlieb [104]
and Rosset [212].
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Theorem 6.1 (Cheeger and Gromov [54], Corollary 0.6 on page 193) Let Γ be a group
such that there exists a subgroup Γ′ of finite index whose classifying space BΓ′ is a finite CW -
complex. Let χvirt(Γ) be the rational-valued virtual Euler characteristic of the group Γ in the
sense of [35, IX.7], [246]. Suppose that Γ contains an infinite normal amenable subgroup.
Then

χvirt(Γ) = 0.

Proof : By definition χvirt(Γ) = 1
[Γ:Γ′]

· χ(BΓ′). We derive from the Euler-Poincaré formula
of Theorem 1.7.2

χvirt(Γ) =
1

[Γ : Γ′]
·
∑
p≥0

(−1)p · b(2)
p (BΓ′).

Now the claim follows from Theorem 4.1.

We mention the following result

Theorem 6.2 (Reich [214],Corollary 9.3) Let Γ be an infinite group which belongs to
Linnell’s class C introduced in Section 2 and has an upper bound on the orders of its finite
subgroups. Suppose that there exists a subgroup Γ′ of finite index whose classifying space BΓ′

is a finite CW -complex. Then
χvirt(Γ) ≤ 0.

Next we mention the following observation about Thompson’s group F . It consists of
orientation preserving dyadic PL-automorphisms of [0, 1],where dyadic means that all slopes
are integral powers of 2 and the break points are contained in Z[1/2]. It has the presentation

F = 〈x0, x1, x2, . . . | x−1
i xnxi = xn+1 for i < n〉.

This group has some very interesting properties. It is not elementary amenable and does not
contain a subgroup which is free on two generators [33], [45]. Hence it is a very interesting
question whether F is amenable. Since BF is of finite type [36], the L2-Betti numbers

b
(2)
p (F ) are defined for all p ≥ 0. We conclude from Theorem 4.1 of Cheeger and Gromov

that a necessary condition for F to be amenable is that b
(2)
p (F ) vanishes for all p ≥ 0. This

motivates the following result.

Theorem 6.3 (Lück [157], Theorem 0.8) All the L2-Betti numbers b
(2)
p (F ) of Thomp-

son’s group F vanish.

For the proof of Theorem 6.3 we need the next result.

Given a selfmap f : F −→ F , its mapping cylinder Mf is obtained by gluing the bottom
of the cylinder F × [0, 1] to F by the identification (x, 0) = f(x). Its mapping torus Tf is
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obtained from the mapping cylinder by identifying the top and the bottom by the identity.
If f is a homotopy equivalence, Tf is homotopy equivalent to the total space of a fibration
over S1 with fiber F . Conversely, the total space of such a fibration is homotopy equivalent
to the mapping torus of the self homotopy equivalence of F given by the fiber transport with
a generator of π1(S1). The homotopy type of Tf depends only on the homotopy class of f .
There is an obvious map from Tf to S1 which induces an epimorphism µ : π1(Tf ) −→ Z.

Theorem 6.4 (Lück [155], Theorem 2.1. on page 207) Let F be a connected CW -com-
plex of finite type and f : F −→ F be a selfmap. Let

µ : π1(Tf )
φ−→ Γ

ψ−→ Z

be a factorization of µ into epimorphisms. Let Tf −→ Tf be the regular covering of Tf with
Γ as group of deck transformations which is associated to φ. Then

b(2)
p (Tf ) = 0 for p ≥ 0.

Proof : For simplicity we give here only the proof in the case where f is a homotopy

equivalence and φ is the identity on π1(Tf ), i.e. Tf is the universal covering T̃f . Consider

any positive integer d. Let Γd be the preimage of dZ under µ : π1(Tf ) −→ Z. Let Tf be

the covering T̃f −→ Γd\T̃f with Γd as group of deck transformations. We get from the
multiplicative property of Theorem 1.7.7

b(2)
p (T̃f ) =

1

d
· b(2)
p (Tf ).

One easily checks that Γd\T̃f is homotopy equivalent to Tfd . On Tfd there is a CW -complex
structure whose number of p-cells is bounded by the number C which is the sum of the
numbers of p-cells and the number of (p − 1)-cells in F . Notice that C is independent of

d. Since the p-th chain module in the cellular L2-chain complex of Tfd is ⊕Ci=1l
2(Γd), we

conclude
b(2)
p (Tfd) = dimN (Γd)(H

(2)
p (Tfd)) ≤ dimN (Γd)(C

(2)
p (Tfd)) = C.

Hence we have shown that for all d ≥ 1

0 ≤ b(2)
p (T̃f ) ≤

C

d
.

Taking the limit for d→∞ finishes the proof of Theorem 6.4.

Next we give the proof of Theorem 6.3. There is a subgroup F1 ⊂ F together with a
monomorphism Φ : F1 −→ F1 such that F1 is isomorphic to F and F is the HNN-extension
of F1 with respect to Φ with one stable letter [36, Proposition 1.7 on page 370]. From
the topological description of HNN-extensions [166, page 180] we conclude that F is the
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fundamental group of the mapping torus TBΦ of the map BΦ : BF1 −→ BF1 induced by
Φ. The inclusion BF1 −→ BF induces on the fundamental groups the inclusion of F1 in F .
The calculation in [155, page 207] shows that the cellular ZF -chain complex of the universal

covering T̃BΦ of TBΦ is the mapping cone of a certain ZF -chain map from ZF ⊗ZF1 C(EF1)
to itself. Since ZF is free over ZF1, we conclude for p ≥ 1

Hp(ZF ⊗ZF1 C(EF1)) = ZF ⊗ZF1 Hp(C(EF1)) = 0.

This implies Hp(T̃BΦ;Z) = 0 for p ≥ 2. Hence TBΦ is a model for BF . Now Theorem 6.3
follows from Theorem 6.4.

Next we treat the notion of deficiency. Let Γ be a finitely presented group. Its deficiency
is the maximum over all differences g − r,where g resp. r is the number of generators resp.
relations of a presentation of Γ. One can show that the maximum does exist. Sometimes
the deficiency of a group is what one would guess from an obvious presentation as in the
following cases

group presentation deficiency
∗gi=1Z 〈s1, . . . sg | ∅〉 g

Z/n, n ≥ 2 〈s | sn = 1〉 0
Z/n× Z/n, n ≥ 2 〈s, t | sn = tn = [s, t] = 1〉 −1

On the other hand, the group (Z/2× Z/2) ∗ (Z/3× Z/3) has the obvious presentation

〈s0, t0, s1, t1 | s2
0 = t20 = [s0, t0] = s3

1 = t31 = [s1, t1] = 1〉

and one may think that its deficiency is −2. However, it turns out that its deficiency is −1.
For instance, there is the following presentation, which looks on the first glance to be the
presentation above with one relation missing

〈s0, t0, s1, t1 | s2
0 = 1, [s0, t0] = t20, s

3
1 = 1, [s1, t1] = t31, t

2
0 = t31〉.

The following calculation shows that, from the five relations appearing in the presentation
above, the relation t20 = 1 follows which shows that the presentation above indeed is a
presentation of (Z/2× Z/2) ∗ (Z/3× Z/3).

We start with proving inductively for k = 1, 2, . . . the relation ski tis
−k
i = t

rki
i for i = 0, 1

where r0 = 3 and r1 = 4. The beginning of the induction is obvious, the induction step
follows from the calculation

sk+1
i tis

−(k+1)
i = sis

k
i tis

−k
i s−1

i = sit
rki
i s
−1
i =

(
sitis

−1
i

)rki = (trii )r
k
i = t

rk+1
i
i .

This implies, for k = 2, i = 0 and k = 3 ,i = 1

t0 = t3
2

0 ;

t1 = t4
3

1 .
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Since t20 = t31, we conclude

(t20)4 = 1;

(t20)21 = 1.

As 4 and 21 are prime, we get t20 = 1 and the claim follows.

The example above is a special case of a family of examples described by Hog-Ancheloni,
Lustig and Metzler [122]. The example shows that the deficiency is not additive under free
products in general. However, we believe that this is true for torsionfree finitely presented
groups. The example above plays a fundamental role in the counterexample, up to homotopy,
of the Kneser Conjecture in dimension 4 [137].

The link between the deficiency and the L2-Betti numbers of a group is the following
elementary lemma.

Lemma 6.5 1. Let Γ be a finitely presented group. Then

def(Γ) ≤ 1− b(2)
0 (Γ) + b

(2)
1 (Γ)− b(2)

2 (Γ).

2. If M is a closed oriented 4-manifold, then we get for its signature

| sign(M)| ≤ b
(2)
2 (M̃).

Proof : 1.) Given a presentation with r relations and g generators, let X be the corre-
sponding connected 2-dimensional CW -complex with fundamental group isomorphic to Γ
which has precisely one cell of dimension 0, g cells of dimension 1 and r cells of dimension
2. Since the classifying map X −→ BΓ is 2-connected, we conclude from Theorem 1.7

1− g + r = χ(X) = b
(2)
0 (X̃)− b(2)

1 (X̃) + b
(2)
2 (X̃) ≥ b

(2)
0 (Γ)− b(2)

1 (Γ) + b
(2)
2 (Γ).

2.) According to the L2-signature theorem [3, page 71], the signature σ(M) is the difference of
the von Neumann dimensions of two complementary subspaces of the second L2-cohomology
H2

(2)(M̃). This implies

| sign(M)| ≤ dimN (π1(M))(H
2
(2)(M̃)) = b

(2)
2 (M̃).

Lemma 6.5 has an analogous formulation if one uses ordinary L2-Betti numbers with
coefficients in any field. The values of the deficiencies of the groups in the list above follow
from Lemma 6.5. In particular, one sees that the deficiency is defined as a natural number,
i.e. there is an upper bound on the possible values g − r appearing in the definition of
deficiency. One also rediscovers the well-known fact that the deficiency of a finite group is
less than or equal to zero.

29



If Γ is a torsion-free one-relator group, the 2-dimensional CW -complex associated with
the presentation is aspherical and hence BΓ is 2-dimensional [166, chapter III §§9 -11]. If Γ
has a presentation with g generators and one (non-trivial) relation, its deficiency is g − 1.
We conjecture that for a torsion-free group having a presentation with g ≥ 2 generators
and one non-trivial relation b

(2)
2 (Γ) = 0 and b

(2)
1 (Γ) = def(Γ)− 1 = g − 2 holds. This would

follow from Conjecture 2.1. Namely, the kernel of the second differential of the L2-chain
complex of ẼΓ is a submodule of l2(Γ) so that its dimension b

(2)
2 (Γ) is less or equal to

the dimension of l2(Γ) which is 1. Since Γ is by assumption torsionfree, the dimension of
the kernel is an integer by Conjecture 2.1. The second differential in the cellular ZΓ-chain
complex cannot be trivial because the relation in Γ is assumed to be non-trivial. Hence the
dimension of kernel of the second differential of the L2-chain complex of EΓ is trivial. This
shows b

(2)
2 (Γ) = 0. The Euler Poincaré formula of Theorem 1.7.2 and Theorem 1.7.9 imply

b
(2)
0 (Γ) = 0 and b

(2)
1 (Γ) = g − 2. We get from Lemma 6.5 that def(Γ) = g − 1.

The following is a direct consequence of [87, Theorem 2.5]. Let M be a compact
3-manifold with fundamental group Γ and prime decomposition M = M1]M2] . . . ]Mr. Let
s(M) be the number of prime factors Mi with non-empty boundary and t(M) be the number
of prime factors which are S2-bundles over S1. Denote by χ(M) the Euler characteristic.
Then

def(π1(M)) = dimZ/2(H1(π;Z/2))− dimZ/2(H2(π;Z/2))

= s(M) + t(M)− χ(M).

Theorem 6.6 (Lück [157], Theorem 0.7) Let 1 −→ ∆ −→ Γ −→ π −→ 1 be an exact
sequence of groups such that ∆ is finitely generated and infinite, Γ is finitely presented and
Z is a subgroup of π. Then

1. b
(2)
1 (Γ) = 0;

2. def(Γ) ≤ 1;

3. Let M be a connected closed orientable 4-manifold with Γ as fundamental group. Then
we get for its signature sign(M) and Euler characteristic χ(M)

| sign(M)| ≤ χ(M).

Proof : Assertion 1.) follows from Theorem 6.7 below applied to B∆ −→ BΓ −→ Bπ. The
other two assertions follow from the first one by Lemma 6.5.

The structure of groups of deficiency greater than or equal to 2 is examined in [15].
Theorem 6.6 generalizes results of [80], [81], [120] [128] and [250]. The key ingredient in the
proof of Theorem 6.6 is the next result.
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Theorem 6.7 (Lück [157], Theorem 7.1) Let d ≥ 0 be an integer. Let F −→ E
p−→ B be

a fibration of spaces such that F (resp. E) has the homotopy type of a connected CW -complex
with finite d-skeleton (resp. (d+ 1)-skeleton). Suppose that the image of π1(F ) −→ π1(E) is
infinite and Z is a subgroup of π1(B). Then

b
(2)
1 (Ẽ) = 0.

Proof : We give only a sketch of the proof. The idea is to consider the L2-version of the
Leray-Serre type spectral sequence associated to the fibration which is explained in [157] (see
also [239]). It suffices to show that its E2-term vanishes on the p-axis and on the q-axis. The
vanishing on the p-axis is essentially a consequence of Theorem 1.7.9 and the assumption
that the image of π1(F ) −→ π1(E) is infinite. Since Z is a subgroup of π1(B), there is a map
f : S1 −→ B inducing an injection on the fundamental groups. Let p0 : E0 −→ S1 be the
pull back of p : E −→ B with f . A spectral sequence comparison argument shows that it
suffices to prove the vanishing of the E2-term of p0 on the q-axis. Since S1 is 1-dimensional,
the E2-term is the E∞-term, so that this is equivalent to the vanishing of the L2-homology
of Ẽ0. This follows from Theorem 6.4.

More information about groups with vanishing first L2-Betti number can be found in
[16]. See also [121], [147].

7. Kähler hyperbolic manifolds

In this section we explain Gromov’s notion of Kähler-hyperbolic manifolds and his
computations of the L2-Betti numbers of the universal coverings of closed Kähler hyperbolic
manifolds. In particular, we prove the Hopf Conjecture 2.7 for closed Kähler manifolds. In
this section all manifolds have no boundary and come with a complex structure.

We recall some basic facts about Kähler manifolds which are standard in the com-
pact case and extend to the not necessarily compact but complete situation. More details
can be found for instance in [249, chapter V]. Let M be a (complex) manifold. Let h
be a Hermitian metric on M . In particular, we have for each x ∈ M a Hermitian form
hx : TxM × TxM −→ C. This induces a Riemannian metric g on M and a 2-form called
fundamental 2-form ω defined on M by

gx = <(hx) : TxM × TxM −→ R;

ωx = −1

2
· =(hx) : TxM × TxM −→ R.
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Definition 7.1 A Kähler manifold M is a complex manifold M with Hermitian metric h
such that (M, g) is complete and ω is closed, i.e. dω = 0. In this context ω is called the
Kähler form.

Let M be a Kähler manifold of complex dimension m = dimC(M) and real dimension
n = dimR(M) = 2m. Next we deal with its Hodge theory. We introduce the following
notations and identifications:

TxM ⊗R C = resR TxM ⊗R C;

Altp(TxM ⊗R C) = {alternating p-forms over the complex vector space TxM ⊗R C};
AltpR(resR TxM, resRC) = {real alternating p-forms on resR TxM with values in resRC};

Altp(TxM ⊗R C) = AltpR(resR TxM, resRC);

Ωp(M) = C∞(Altp(TM ⊗R C)) = {smooth p-forms on the smooth

manifold M with values in resRC}.

Let Jx : TxM −→ TxM be multiplication with i and (Jx ⊗R id) : TxM ⊗R C −→ TxM ⊗R C
be the induced map. Let (TxM ⊗R C)′ resp. (TxM ⊗R C)′′ be the eigenspace of (Jx ⊗R id)
for the eigenvalue i (resp. −i). We obtain identifications (resp. decompositions):

TxM ⊗R C = (TxM ⊗R C)′ ⊕ (TxM ⊗R C)′′;

TxM = (TxM ⊗R C)′;

Altp,q(TxM ⊗R C) = Altp((TxM ⊗R C)′)⊗C Altq((TxM ⊗R C)′′)

Altr(TxM ⊗R C) = ⊕p+q=r Altp,q(TxM ⊗R C);

Ωp,q(M) = C∞(Altp,q(TM ⊗R C))

Ωr(M) = ⊕p+q=rΩp,q(M).

We denote the map induced by complex conjugation by

− : Ωp,q(M) −→ Ωp,q(M)

and the Hodge star operator by

∗ : Ωp,q(M) −→ Ωm−p,m−q(M).

Let L2Ωp(M) be the Hilbert space of square-integrable p-forms on M with respect to the
inner product

〈ω, η〉 = ω ∧ ∗η =

∫
〈ω, η〉x dvol .

Let d : Ωr(M) −→ Ωr+1(M) be the exterior differential. Its adjoint

d∗ = (−1)(n+1)r+1∗d∗ : Ωr+1(M) −→ Ωr(M)
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satisfies 〈dω, η〉 = 〈ω, d∗η〉. Define

∂ : Ωp,q(M) −→ Ωp+1,q(M);

∂ : Ωp,q(M) −→ Ωp,q+1(M)

as the composition

Ωp,q(M) ↪→ Ωr(M)
d−→ Ωr+1(M)

pr−→
{

Ωp+1,q(M)
Ωp,q+1(M)

.

Define Laplace operators

∆ = dd∗ + d∗d : Ωr(M) −→ Ωr(M);

2 = ∂∂∗ + ∂∗∂ : Ωp,q(M) −→ Ωp,q(M);

2 = ∂∂
∗

+ ∂
∗
∂ : Ωp,q(M) −→ Ωp,q(M).

These operators are related as follows.

Lemma 7.2 If M is a Kähler manifold, then

∂ ◦ ∂ = 0;

∂ ◦ ∂ = 0;

d = ∂ + ∂;

∆ = 2 ·2 = 2 ·2.

Definition 7.3 Define the space of harmonic L2-forms by

Hp,q
(2)(M) =

{
ω ∈ Ωp,q(M) | 2(ω) = 0,

∫
ω ∧ ∗ω <∞

}
;

Hr
(2)(M) =

{
ω ∈ Ωr(M) | ∆(ω) = 0,

∫
ω ∧ ∗ω <∞

}
.

Theorem 7.4 (L2-Hodge-deRham decomposition in the Kaehler case) If M is Kähler,
then

L2Ωr(M) = Hr
(2)(M)⊕ d(L2Ωr−1(M))⊕ d∗(L2Ωr+1(M));

Hr
(2)(M) = ⊕p+q=rHp,q

(2)(M).

Theorem 7.5 (L2-Lefschetz Theorem) Let M be Kähler with Kähler form ω and real
dimension n = 2m. Define

Lk : Ωr(M) −→ Ωr+2k(M) φ 7→ φ ∧ ωk.

Then
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1. Lk commutes with d, d∗ and ∆;

2. Lk induces bounded operators

Lk : L2Ωr(M) −→ L2Ωr+2k(M);

Lk : Hr(M) −→ Hr+2k(M);

3. These operators are quasi-isometries, i.e. C−1 · ‖φ‖ ≤ ‖Lk(φ)‖ ≤ C · ‖φ‖ for appropri-
ate C > 0, and in particular injective for 2r + 2k ≤ n and surjective for 2r + 2k ≥ n.

Proof : We give a sketch of the proof. The Kähler condition implies that ωmx 6= 0 for x ∈M
and ω is parallel with respect to the Levi-Civita connection of (M, g). If w : I −→M is a
path from x to y and Tw is the induced isometric parallel transport, then T ∗wωy = ωx and
the following diagram commutes

Altr(TxM ⊗R C)
Lkx−−−→ Altr+2k(TxM ⊗R C)

T ∗w

y yT ∗w
Altr(TyM ⊗R C) −−−→

Lky

Altr+2k(TyM ⊗R C)

Linear algebra shows that Lkx : Altr(TxM ⊗R C) −→ Altr+2k(TxM ⊗R C) is injective for
2r+2k ≤ n and surjective for 2r+2k ≥ n. Now everything follows except for the surjectivity
statement for Lk. It suffices to prove surjectivity in the case 2r + 2k = n because of the
factorization

Ll+k : Ωr−2l(M)
Ll−→ Ωr(M)

Lk−→ Ωr+2k(M).

If M is compact, the claim follows for Hr(M) as the Hodge star operator yields an iso-
morphism Hr(M) ∼= Hr+2k(M) and Lk is an injective map Hr(M) −→ Hr+2k(M) of finite
dimensional complex vector spaces of the same dimension. In general, one argues as follows.
Consider the adjoint of Lkx

Kk
x : Altr+2k(TxM ⊗R C) −→ Altr(TxM ⊗R C).

As Lkx is surjective, each Kk
x is injective and we get a quasi-isometry

K : L2Ωr+2k(M) −→ L2Ωr(M)

which is the adjoint of L. As K is injective, L has dense image. As L is a quasi-isometry, L
has closed image. Hence Lk is surjective. The proof for Hr(M) is analogous.

Corollary 7.6 Let M be a compact Kähler manifold with n = dimR(M), m = dimC(M).
Put br(M) = dimQ(Hr(M,Q)) = dimC(Hr(M)) and hp,q(M) = dimC(Hp,q(M)). Then:
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1. br(M) =
∑

p+q=r hp,q(M);

2. br(M) = bn−r(M), hp,q(M) = hm−p,m−q(M);

3. hp,q(M) = hq,p(M);

4. br(M) is even for r odd;

5. h1,0(M) = 1
2
· b1(M) depends only on π1(M);

6. br(M) ≤ br+2(M) for r ≤ m.

The following definitions are taken from [108].

Definition 7.7 A p-form η is bounded if

‖η‖∞ = sup{‖ηx‖ | x ∈M} <∞.

A p-form ω is d(bounded) if ω = dη for a bounded (p− 1)-form η. We call ω d̃(bounded) if

its lift ω̃ to M̃ is d(bounded).

Definition 7.8 A Kähler hyperbolic manifold M is a compact Kähler manifold M whose
Kähler form is d̃(bounded).

Theorem 7.9 (Gromov [108], Main Theorem 2.5 on page 283) Let M be a Kähler

hyperbolic manifold with n = 2m = dimR(M) and universal covering M̃ . Then

1. We get outside the middle dimension:

Hp,q
(2)(M̃) = 0 for p+ q 6= m;

b(2)
r (M̃) = 0 for r 6= m;

2. We get for the middle dimension:

Hp,q
(2)(M̃) 6= 0 for p+ q = m;

b(2)
m (M̃) 6= 0;

3. (−1)m · χ(M) > 0.
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Proof : We only give the proof of the easy part 1.). Notice that 3.) follows from 1.) and 2.)
by the Euler-Poincaré formula 1.7.2. Because of Poincaré duality and the L2-Hodge-deRham
decomposition 1.7, it suffices to prove

Hr
(2)(M̃) = 0 for r < m.

Choose k with 2r + 2k = n. Let ω̃ be the lift of the Kähler form ω on M to the universal
covering M̃ . Then by the L2-Lefschetz Theorem 7.5

Lk : Hr
(2)(M̃) −→ Hr+2k

(2) (M̃) φ 7→ φ ∧ ω̃k

is bijective. Put µ = φ ∧ ω̃k−1 ∧ η for ω̃ = dη with ‖η‖∞ <∞. As ‖ωk−1‖∞ <∞, µ is an
L2-form. Obviously Lk(φ) = d(µ). By the L2-Hodge-deRham decomposition Theorem 7.4,
Lk(φ) = 0 and hence φ = 0.

Theorem 7.9 has been generalized by Jost and Zuo [130]. Further information about
L2-cohomology and Kähler manifolds can be found in [1].

Next we make some comments about the notion of Kähler hyperbolicity and applica-
tions of Theorem 7.9. Here is a list of examples of Kähler hyperbolic manifolds (see [108,
section 0]):

• M is a compact Kähler manifold and homotopy equivalent to a compact Riemannian
manifold of negative sectional curvature;

• M is a compact Kähler manifold, π1(M) is hyperbolic in Gromov’s sense [107] and
π2(M) = 0;

• M̃ is a symmetric Hermitian space of non-compact type with no Euclidean factor;

• M is a submanifold of a Kähler hyperbolic manifold;

• M is a product of two Kähler hyperbolic manifolds.

Next we give two compact Kähler manifolds which are not Kähler hyperbolic. Equip
CP n with the Fubini-study metric which is, up to a positive constant, uniquely determined
by the property that it is U(n+1)-invariant. Then the fundamental 2-form is the first Chern
class c1(L). This is closed but not exact. Hence CP n is Kähler but not Kähler hyperbolic.
The torus T 2n with a complex structure is Kähler but cannot be Kähler hyperbolic because
χ(T 2n) = 0.

Theorem 7.10 Let M be a compact Kähler manifold. Then the following assertions are
equivalent and they are true if M is Kähler hyperbolic:
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1. M is Moishezon, i.e. the transcendental degree of the field of meromorphic functions
on M is dimC(M);

2. M is Hodge, i.e. the Kähler form represents an integral cohomology class, i.e. it
represents an element in the image of H2(M,Z) −→ H2(M,C);

3. M can be holomorphically embedded in CP n;

4. M is a projective algebraic variety.

Proof : The equivalence of these statements is due to Kodaira [134], [249, Chapter VI] and
Moishezon [177]. The first assertion is a consequence of Theorem 7.9 and proven in [108,
section 3] using a version of the L2-index theorem.

8. Novikov-Shubin invariants

In this section we introduce and study spectral density functions and Novikov-Shubin
invariants. They were introduced analytically by Novikov and Shubin in [196].

Definition 8.1 Let f : U −→ V be a morphism of finitely generated Hilbert N (Γ)-modules.
Let {Ef∗f

λ | λ ∈ R} denote the (right-continuous) family of spectral projections of the positive
operator f ∗f . Define the spectral density function of f by

F (f, λ) : R −→ [0,∞) λ 7→ dimN (Γ)

(
im(Ef∗f

λ2 )
)
.

The spectral density function is monotone and right-continuous. It takes values in
[0, ‖f‖]. Here, and in the sequel, |x| denotes the norm of an element x of a Hilbert N (Γ)-
module and ‖f‖ the operator norm of a morphism. Since f and f ∗f have the same kernel,
dimN (Γ)(ker(f)) = F (f, 0). Given two morphisms f and g, we call their spectral density
functions dilatationally equivalent if there are constants C > 0 and ε > 0 such that

F (f, C−1 · λ) ≤ F (g, λ) ≤ F (f, C · λ) for λ ≤ ε

holds.

Example 8.2 Suppose that Γ is finite. Then a morphism f : U −→ V of finitely gener-
ated Hilbert N (Γ)-modules is just a linear Γ-equivariant map of (over C finite-dimensional)
unitary Γ-representations. Let 0 ≤ λ0 < . . . < λr be the eigenvalues of f ∗f and µi be the
multiplicity of λi, i.e. the dimension of the eigenspace of λi. Then the spectral density func-
tion is a right continuous step function which is zero for λ < 0 and has a step of height µi

|Γ| at

each
√
λi. Given two such maps f and g, their spectral density functions are dilatationally

equivalent if and only if the kernels of f and g have the same complex dimension.
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These notions become much more interesting in the case when Γ is infinite, because
then the spectrum of f ∗f is in general not discrete anymore.

Lemma 8.3 1. Let f : U −→ V be a morphism of finitely generated Hilbert N (Γ)-modules.
Let L(f, λ) denote the set of all Hilbert N (Γ)-submodules L of U with the property that
|f(x)| ≤ λ · |x| holds for x ∈ L. Then

F (f, λ) = sup
{

dimN (Γ)(L) | L ∈ L(f, λ)
}

;

2. Let f : U −→ V and g : V −→ W be morphisms of finitely generated Hilbert N (Γ)-
modules. Then

F (f, λ) ≤ F (gf, ‖g‖ · λ).

If additionally f has dense image, then

F (g, λ) ≤ F (gf, ‖f‖ · λ);

3. Let u : U −→ V , f : V −→ W and i : W −→ X be morphisms of finitely generated
Hilbert N (Γ)-modules. Suppose that u is an isomorphism and i is injective with closed
image. Then the spectral density functions of f and i ◦ f ◦ u are dilatationally equiva-
lent.

4. Let fi : Ui −→ Vi be morphisms of finitely generated Hilbert N (Γ)-modules for i = 0, 1.
Then

F (f0 ⊕ f1, λ) = F (f0, λ) + F (f1, λ).

Proof : 1.) If Ef∗f
λ2 (x) = x,

|f(x)|2 =

∣∣∣∣∫ ∞
0

µ d〈Ef∗f
µ (x), x〉

∣∣∣∣ ≤ λ2 ·
∣∣∣∣∫ ∞

0

1 d〈Ef∗f
µ (x), x〉

∣∣∣∣ ≤ λ2 · |x|2.

Hence the image of Ef∗f
λ2 belongs to L(f, λ). This shows

F (f, λ) ≤ sup
{

dimN (Γ)(L) | L ∈ L(f, λ)
}
.

It remains to prove that dimN (Γ)(L) ≤ dimN (Γ)(im(Ef∗f
λ2 )) holds for all L ∈ L(f, λ). If λ ≥ 0

and x ∈ U satisfies Ef∗f
λ2 (x) = 0 and x 6= 0, then |f(x)| > λ · |x|. Hence Ef∗f

λ2 induces a weak

isomorphism from L to clos(Ef∗f
λ2 (L)) and the claim follows from Lemma 1.4.

2.) Consider L ∈ L(f, λ). For all x ∈ L we get |gf(x)| ≤ ‖g‖ · |f(x)| ≤ ‖g‖ · λ · |x|. This
implies that L ∈ L(gf, ‖g‖ · λ), and the first equation follows.

Now suppose that f has dense image. Consider L ∈ L(g, λ). For all x ∈ f−1(L), we
have

|gf(x)| ≤ λ · |f(x)| ≤ λ · ‖f‖ · |x|.
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This implies f−1(L) ∈ L(gf, ‖f‖ · λ). It remains to show dimN (Γ)(L) ≤ dimN (Γ)(f
−1(L)).

Let p : U −→ U/ ker f be the projection and let f : U/ ker(f) −→ V be the map induced by
f . Since p is surjective, we get from Lemma 1.4

dimN (Γ)

(
f−1(L)

)
≥ dimN (Γ)

(
p(f−1(L))

)
= dimN (Γ)

(
f
−1

(L)
)
.

Next we show that the weak isomorphism f induces a weak isomorphism from f
−1

(L) to

L. Notice that then dimN (Γ)(f
−1

(L)) = dimN (Γ)(L) because of Lemma 1.4, and the second
equation will follow.

Because of the Polar Decomposition Theorem applied to f , it suffices to prove for a pos-
itive weak isomorphism h : V −→ V and a Hilbert N (Γ)-submodule L ⊂ V that h(h−1(L)) is
dense in L. Now L has an orthogonal decomposition of the form L = clos(h(h−1(L)))⊕M ,
where M is a N (Γ)-submodule of L. If we can show dimN (Γ)M = 0, then Lemma 1.4.1
will imply M = 0 and we will be done. As h(h−1(M)) ⊂M and h(h−1(M)) ⊂ h(h−1(L)),
it follows that h(h−1(M)) = 0. Therefore M ∩ im(h) = 0. For λ > 0, consider the map
πλ : M −→ Eh

λ(V ) given by πλ(m) = Eh
λ(m). If m ∈ ker(πλ), then the spectral theorem

shows that m ∈ im(h). Therefore ker(πλ) = 0, and Lemma 1.4 implies

dimN (Γ)M ≤ dimN (Γ)(E
h
λ(V )).

As h is injective, continuity of the dimension 1.4.3 and the right-continuity of the spectral
family implies

lim
λ→0+

dimN (Γ)(E
h
λ(V )) = dimN (Γ)(E

h
0 (V )) = dimN (Γ)(ker(h)) = 0.

Hence dimN (Γ)M = 0 and assertion 2.) is proven.

3.) By the Open Mapping Theorem there is a constant D > 0 such that

D−1 · |x| ≤ |i(x)| ≤ D · |x|

holds for all x ∈ W . Hence F (i ◦ f ◦u) and F (f ◦u) are dilatationally equivalent by the first
assertion. By the second assertion, F (f ◦ u) and F (f) are dilatationally equivalent.

4.) This follows from additivity of the dimension 1.4.4.

Definition 8.4 Let f : U −→ V be a morphism of finitely generated Hilbert N (Γ)-modules.
Define its Novikov-Shubin invariant by

α(f) = lim inf
λ→0+

ln(F (f, λ)− F (f, 0))

ln(λ)
∈ [0,∞],

provided that F (f, λ) > F (f, 0) holds for all λ > 0. Otherwise, we put

α(f) = ∞+.
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Here ∞+ is a new formal symbol which should not be confused with ∞.

Let X −→ X be a regular covering over the CW -complex X of finite type with Γ as
group of deck transformations. Define its p-th Novikov-Shubin invariant

αp(X) = α(c(2)
p ) ∈ [0,∞]q {∞+}

where c
(2)
p is the p-th differential in the L2-chain complex of X introduced in Definition 1.5.

Example 8.5 We consider the example of the universal covering of S1 with Z as group
of deck transformations using the notation and results of Example 1.8 and Example 3.1.
The spectral family of the first differential c

(2)
1 of the L2-chain complex has as projec-

tion for λ the operator given by multiplication with the characteristic function of the set
{z ∈ S1 | |z − 1| ≤ λ}. Hence for small λ > 0 we get for the spectral density function

F (c
(2)
1 , λ) = vol{z ∈ S1 | |z − 1| ≤ λ} = vol{cos(φ) + i · sin(φ) | λ ≥ |2− 2 cos(φ)|}.

Because of

lim
φ→0

2− 2 cos(φ)

φ2
= 1

F (c
(2)
1 ,Λ) and λ are dilatationally equivalent, and hence we get

α1(S̃1) = 1.

Notice that α(f) =∞+ precisely if and only if f ∗f has a gap in the spectrum above
0. Moreover, a morphism f : U −→ V of finitely generated Hilbert N (Γ)-modules is an
isomorphism if and only if dimN (Γ)(ker(f)) = 0, dimN (Γ)(U) = dimN (Γ)(V ) and α(f) =∞+.
If there is no gap in the spectrum above 0, then α(f) is the supremum over all non-negative
numbers β for which there is an ε > 0 such that

F (f, λ)− F (f, 0) ≤ tλβ for 0 ≤ λ ≤ ε.

The invariant α(f) measures how fast F (f, λ) approaches F (f, 0) for λ→ 0+.

Remark 8.6 Notice that the Novikov-Shubin invariant αp(X) is ∞+ if and only if the

image of the p-th differential c
(2)
p of the L2-chain complex of X is closed. Hence αp(X)

measures the difference between the L2-homology of X, which is ker(c
(2)
p )/ clos(im(c

(2)
p+1)),

and the Γ-equivariant homology of X with coefficients in the ZΓ-module l2(Γ), which is

ker(c
(2)
p )/ im(c

(2)
p+1). We will continue this discussion in section 10.
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Before we give the main properties of the Novikov-Shubin invariants, we recall some
notions and facts from group theory. A finitely generated group Γ is nilpotent if Γ possesses
a finite lower central series

Γ = Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γs = {1} Γk+1 = [Γ,Γk].

If Γ contains a nilpotent subgroup Γ of finite index, then Γ is said to be virtually nilpotent.
Let di be the rank of the quotient Γi/Γi+1 and let d be the integer

∑
i≥1 idi. Then Γ has

polynomial growth of degree d [11]. Note that a group has polynomial growth if and only if
it is virtually nilpotent [105].

Theorem 8.7 1. Homotopy invariance

Let X and Y be regular coverings of CW -complexes X and Y of finite type with the
same group Γ of deck transformations. Let f : X −→ Y be a Γ-equivariant map. If f
is a homotopy equivalence, then the spectral density functions of c

(2)
p for X and Y are

dilatationally equivalent for all p, and in particular

αp(X) = αp(Y ) for 0 ≤ p.

If f is d-connected, i.e. f induces an isomorphism on πn for n < d and an epimor-
phism on πd, then the spectral density functions of c

(2)
p for X and Y are dilatationally

equivalent for p ≤ d, and in particular

αp(X) = αp(Y ) for p ≤ d;

2. Equality of analytic and combinatorial version

Let M be a covering of the oriented closed Riemannian manifold M with deck trans-
formation group Γ. We can define the spectral density function (see Example 1.9)
and Novikov-Shubin invariants analytically in terms of the Laplace operator acting on
differential forms on M . Then the analytic and the combinatorial spectral density func-
tion are dilatationally equivalent. In particular, the analytically defined Novikov-Shubin
invariants and the combinatorial Novikov-Shubin invariants agree.

3. Poincaré duality

Let M be a regular covering of the closed manifold M of dimension n. Then

αp(M) = αn+1−p(M);

4. Dependency on the fundamental group

The Novikov-Shubin invariants of the universal covering of a connected CW -complex
of finite type αp(X̃) for p ≤ 2 depend only on π1(X). If M is a closed n-dimensional

manifold with n ≤ 4, then αp(M̃) depends only on π1(M) for all p;
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5. Invariance under finite coverings

Let X be a CW -complex of finite type and p : X −→ X be a regular covering with group
of deck transformations Γ. Let Γ0 ⊂ Γ be a subgroup of Γ of finite index n. We obtain

a regular covering denoted by X by X −→ X/Γ0. Notice that the coverings X and X
have the same total spaces but different groups of deck transformations. Then

αp(X) = αp(X) for p ≥ 0;

6. First Novikov-Shubin invariant

Let X be a connected CW -complex of finite type with fundamental group π and uni-
versal covering X̃. Then

(a) α1(X̃) is finite if and only if π is infinite and virtually nilpotent. In this case

α1(X̃) is the growth rate of π;

(b) α1(X̃) is ∞+ if and only if π is finite or nonamenable;

(c) α1(X̃) is ∞ if and only if π is amenable and not virtually nilpotent;

7. S1-actions and Novikov-Shubin invariants

Let M be a connected closed manifold with S1-action. Suppose that for one orbit S1/H
(and hence all orbits) the inclusion into M induces a map on π1 with infinite image.
(In particular, the S1-action has no fixed points.) Then

αp(M̃) ≥ 1 for all p;

8. Positivity of the Novikov-Shubin invariants for 3-manifolds

Let M be a 3-manifold which has finite fundamental group or satisfies the assump-
tions of Theorem 3.3. Then we get for the Novikov-Shubin invariants of the universal
covering

αp(M̃) > 0 for all p;

9. Novikov-Shubin invariants for Z as group of deck transformations

Let X −→ X be a regular covering of the CW -complex X of finite type with Z as
group of deck transformations. Since C[Z] is a principal ideal domain, one can write
the C[Z]-module

Hp−1(X,C) = C[Z]n ⊕⊕ki=1C[Z]/((z − ai)ri)

for integers n, k and ri with n, k ≥ 0 and ri ≥ 1 and ai ∈ C with ai 6= 0 and ai 6= aj
for i 6= j, where z ∈ Z is the generator. Then

αp(X) = min

{
1

ri

∣∣∣∣ i = 1, 2 . . . , r, ai ∈ S1

}
if k ≥ 1 and there is at least one ai with ai ∈ S1, and

αp(X) = ∞+

otherwise;
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10. Hyperbolic manifolds

If M is a hyperbolic closed manifold of dimension n, then

αp(M) = 1 if n is odd and p = n±1
2
, and

αp(M) = ∞+ otherwise;

11. Kähler hyperbolic manifolds

If M is Kähler hyperbolic in the sense of Definition 7.8, then

αp(M̃) =∞+ for p ≥ 0.

Proof : 1.) As in the proof of Theorem 1.7.1, one justifies the assumption that f is a cellular
Γ-homotopy equivalence. Hence it suffices to show, for a chain map f : C −→ D of chain
complexes of finitely generated Hilbert N (Γ)-modules, that the spectral density functions of
the p-th differentials cp and dp are dilatationally equivalent for all p.

We begin with the case D = 0. This means that C is contractible and we must
prove αp(C) =∞+. Let γ∗ be a chain contraction for C, i.e. a collection of morphisms
γp : Cp −→ Cp+1 satisfying cp+1 ◦ γp + γp−1 ◦ cp = id. Using cp and γp−1, we can construct
morphisms cp : Cp/ clos(im(cp+1)) −→ Cp−1 and γp−1 : Cp−1 −→ Cp/ clos(im(cp+1)) such that
γp−1 ◦ cp = id. Hence cp induces an invertible operator onto its image. Lemma 8.3.3 implies
α(cp) = α(cp) =∞+.

The case where f is an isomorphism of chain complexes follows from Lemma 8.3.3.
Now we can treat the general case.

There are exact sequences of chain complexes 0 −→ C −→ cyl(f) −→ cone(f) −→ 0
and 0 −→ D −→ cyl(f) −→ cone(C) −→ 0, where cone denotes the mapping cone. The
chain complexes cone(f) and cone(C) are contractible as chain complexes of Hilbert N (Γ)-
modules since f is a homotopy equivalence by assumption. We obtain chain isomorphisms
C ⊕ cone(f) −→ cyl(f) and D ⊕ cone(C) −→ cyl(f) by the following general construction

for an exact sequence 0 −→ C
j−→ D

q−→ E −→ 0 with contractible E: Choose a chain
contraction ε for E, and for each p a morphism tp : Ep −→ Dp such that qp ◦ tp = id . Put

sp = dp+1 ◦ tp+1 ◦ εp + tp ◦ εp−1 ◦ ep.

This defines a chain map s : E −→ D such that q ◦ s = id. Define a chain map u : D → C
by mapping x ∈ Dp to y = up(x) which is the unique element y ∈ Cp such that x =
spqp(x) + jp(y). Then j + s is a chain isomorphism C ⊕ E −→ D with inverse u⊕ q. Since
C ⊕ cone(f) and D ⊕ cone(C) are isomorphic and cone(f) and cone(C) are contractible, the
claim follows from the special cases which we have already proven and Lemma 8.3.4.

The more general case of a d-connected map is proven in [148, Lemma 3.3 on page 33].
The homotopy invariance of the analytically defined Novikov-Shubin invariants is proven by
Gromov and Shubin [110].
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2.) This is proven by Efremov [84], [85].

3.) This follows from homotopy invariance as in the proof of Theorem 1.7.3.

4.) This follows from 1.) applied to the classifying map X̃ −→ EΓ and Poincaré duality.

5.) This is similar to the proof of Theorem 8.3.7.

6.) This is proven in [148, Lemma 3.5 on page 34] using [34] and [241].

7.) This is proven in [148, Theorem 3.1].

8.) This is proven in [148, Theorem 0.1].

9.) This is proven in [157, Example 4.3].

10.) This is proven in [142, Proposition 46 on page 499] and [76].

11.) This is proven in [108, Theorem 1.4.A on page 274].

Remark 8.8 We have already mentioned in Remark 1.9 that the L2-Betti numbers are
invariants of the asymptotic large time behaviour of the heat kernel on the regular covering
M −→M of a closed Riemannian manifold M (see 1.12). The Novikov-Shubin invariants
measure the speed of convergence of the limit as t → ∞ in the analytic definition of the
L2-Betti numbers. Namely, one gets

min{αp(M), αp−1(M)} = sup

{
βp ∈ [0,∞)

∣∣∣∣∣ lim
t→∞

∫
F trC

(
e−t∆p(x, x)

)
dx− b(2)

p (M)

tβp/2
= 0

}
in [0,∞] where we do not distinguish between ∞ and ∞+ here. The supremum of the right
is the same as the supremum over all numbers βp ≥ 0 for which there is a K > 0 such that∫

F
trC
(
e−t∆p(x, x)

)
dx− b(2)

p (M) ≤ tβp/2 for K ≤ t.

See the discussion in [110, appendix] about decay exponents and Laplace transforms.

We mention that more explicit calculations of the Novikov-Shubin invariants for 3-
manifolds can be found in [148]. The connection for abelian fundamental groups with Massey
products and information about locally symmetric spaces can be found in [142, section VI
and VII]. Finally we mention the following conjecture [148, Conjecture 7.1 on page 56].

Conjecture 8.9 (Rationality and Positivity of Novikov-Shubin invariants)

The Novikov-Shubin invariants of the universal covering M̃ of a closed Riemannian manifold
M are all positive and rational.
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Conjecture 8.9 is true if M is hyperbolic or Kähler hyperbolic, or if the fundamental
group of M is abelian or free. The positivity of the Novikov-Shubin invariants plays a role
in the definition of L2-torsion of Section 9 and is proven in [148, Theorem 0.1 on page 16]
for all 3-manifolds satisfying the asumption of Theorem 3.3 that none of its prime factors is
exceptional. A similar discussion as for Conjecture 2.1, Lemma 2.2 and Remark 2.3 can be
made for the Conjecture 8.9 above [148, section 7]. Novikov-Shubin invariants for arbitrary
spaces with Γ-action (without any finiteness assumptions) are constructed in [162]. Further
references on Novikov-Shubin invariants are [89], [90], [111], [157].

9. L2-torsion

In this section we introduce and study L2-torsion. This is the L2-version of the classical
combinatorially defined Reidemeister torsion and the analytically defined Ray-Singer torsion.
We will restrict ourselves in this section to the case of the universal covering X̃ −→ X of a
connected finite CW -complex , for simplicity and due the fact that this is the most important
case for applications. The general case of a regular covering is not much harder.

We begin with recalling the notions of combinatorial Reidemeister torsion and analytic
Ray-Singer torsion in order to motivate the L2-versions we will introduce later. A reader
who is familiar with these concepts may skip this part.

Definition 9.1 Let X̃ −→ X be the universal covering of a connected finite CW -complex
with group of deck transformations Γ = π1(X). Let V be a unitary (finite-dimensional) Γ-

representation. Let C∗(X̃) be the cellular ZΓ-chain complex. We obtain a C-chain complex

V ⊗ZΓ C∗(X̃). Its chain modules inherit a Hilbert space structure from the cellular ZΓ-basis

and the inner product on V . Suppose that Hp(V ⊗ZΓ C∗(X̃)) is trivial for all p ≥ 0. Define

the combinatorial Laplace operator of X̃ with coefficients in V by

∆p = cp+1 ◦ c∗p + c∗p−1 ◦ cp : V ⊗ZΓ Cp(X̃) −→ V ⊗ZΓ Cp(X̃).

Then the Reidemeister torsion of X̃ with coefficients in V is defined as

ρ(X̃;V ) = −
∑
p≥0

(−1)p · p · ln (detC(∆p)) .

The original definition uses chain contractions of V ⊗ZΓ C(X̃). The calculation in the
proof of [163, Lemma 7.12 on page 257] shows that the definition above agrees with the
logarithm of the classical one. We use the logarithm because then the combinatorial version
will coincide with the analytic one.
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Reidemeister [215] introduced this invariant to classify lens spaces up to PL-homeo-
morphism (and up to diffeomorphism) using the work of Franz [94] (see also [59, chapter
V], [175, section 3]). This classification of lens spaces was generalized by deRham [216] who
proved that two orthogonal G-representations V and W are isometrically RG-isomorphic if
and only if their unit spheres are G-diffeomorphic (see also [149, Proposition 3.2 on page
478], [153, page 317], [220, section 4]).

The result of deRham does not hold in the topological category. Namely, there are non-
linearly isomorphic G-representations V and W whose unit spheres are G-homeomorphic,
by the work of Cappell-Shaneson [46] (see also [114]). However, if G has odd order, G-
homeomorphic implies G-diffeomorphic for unit spheres in G-representations as shown by
Hsiang-Pardon [124] and Madsen-Rothenberg [167].

Let M be a closed Riemannian manifold with Γ = π1(M). Then one defines ρ(M̃ ;V ) to

be ρ(X̃;V ) for any smooth triangulation X of M , provided that Hp(V ⊗ZΓ C∗(X̃)) vanishes
for all p ≥ 0. The last condition ensures that the definition is independent of the choice
of triangulation and depends only on the simple homotopy type of M and, in particular,
only on the homeomorphism type of M . If this condition is not satisfied, one modifies the
definition by a term which is essentially given by the torsion of the deRham isomorphism
and which relates this homology (which is canonically isomorphic to the cohomology) to
the finite-dimensional Hilbert space given by harmonic forms on M with coefficients in V .
Then ρ(M̃ ;V ) is independent of the choice of triangulation but depends on the Riemannian
metric.

Ray-Singer [211] defined the analytic counterpart of Reidemeister torsion using a reg-
ularization of the zeta-function as follows. Let M be a closed Riemannian manifold with
Γ = π1(M). Let ∆p : Ωp(M ;V ) −→ Ωp(M ;V ) be the Laplace operator acting on smooth p-
forms on M with coefficients in the unitary (finite-dimensional) Γ-representation V . This is
an essentially selfadjoint operator with discrete spectrum as M is compact. The zeta-function
is defined by

ζp(s) =
∑
λ>0

λ−s

where λ runs through the positive eigenvalues of ∆p listed with multiplicity. The zeta-
function is holomorphic for <(s) > dim(M)/2 and has a meromorphic extension to C with
no poles in 0 [232]. So its derivative for s = 0 is defined. Now the Ray-Singer torsion of M
is defined by [211, Definition 1.6 on page 149] (our definition is the old one multiplied by
the factor 2)

ρ(M ;V ) =
∑
p≥0

(−1)p · p · d
ds

ζp(s)|s=0 .

The basic idea is that d
ds
ζp(s)|s=0 is a generalization of the ordinary determinant detC.

Namely, if f : V −→ V is a positive linear automorphism of the finite-dimensional com-
plex vector space V and λ1, λ2, . . ., λr are the eigenvalues of f listed with multiplicity, then
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we get

d

ds
ζp(s)|s=0 =

d

ds

r∑
i=1

λ−s

∣∣∣∣∣
s=0

=
r∑
i=1

(
− ln(λ) · λ−s

)∣∣
s=0

= − ln

(
r∏
i=1

λi

)
= − ln (detC(f)) .

Ray and Singer conjectured that the analytic and combinatorial versions agree. This
conjecture was proven independently by Cheeger [50] and Müller [184]. Manifolds with
boundary and manifolds with symmetries, sum (= glueing) formulas and fibration formulas
are treated in [67], [149], [153], [165], [242], [243], [244]. Non-unitary coefficient systems are
studied in [25], [26], [186]. Further references are [18], [19], [20], [21], [22], [23], [24], [32],
[40], [69], [88], [95], [96], [101], [135], [136], [143], [181], [187], [208], [213], [245].

The definition of combinatorial L2-torsion is based on the notion of the determinant
which we treat next.

Definition 9.2 Let f : U −→ V be a morphism of finitely generated Hilbert N (Γ)-modules.
Let F (f, λ) be the spectral density function of Definition 8.1 which is a monotone non-
decreasing right-continuous function. Let dF be the unique measure on the Borel σ-algebra
on R which satisfies dF (]a, b]) = F (b)− F (a) for a < b. Then define the (generalized)
Kadison-Fuglede determinant

detN (Γ)(f) ∈ [0,∞)

by the positive real number

detN (Γ)(f) = exp

(∫ ∞
0+

ln(λ) dF

)
if the Lebesgue integral

∫∞
0+

ln(λ) dF converges to a real number and by 0 otherwise.

Example 9.3 To illustrate this definition, we look at the example where Γ is finite. We
essentially get the ordinary determinant detC. Namely, we have computed the spectral
density function for finite Γ in Example 8.2. Let λ1, λ2, . . ., λr be the non-zero eigenvalues
of f ∗f with multiplicity µi. Then one obtains, if f ∗f is the automorphism of the orthogonal
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complement of the kernel of f ∗f induced by f ∗f ,

detN (Γ)(f) = exp

(
r∑
i=1

µi
|Γ|
· ln(

√
λi)

)

=
r∏
i=1

λ
µi

2·|Γ|
i

= detC(f ∗f))
1

2·|Γ| .

If f is an isomorphism we get

detN (Γ)(f) = |detC(f)|
1
|Γ| .

If f is an isomorphism, then Definition 9.2 of detN (Γ)(f) reduces to the classical notion
due to Fuglede and Kadison [97]. The proof of the next two lemmas can be found in [154,
Lemma 4.1 on page 94 and Lemma 4.2 on page 97].

Lemma 9.4 Let f : M −→ N be a morphism of finitely generated Hilbert N (Γ)-modules.
Then

1. We have for 0 < ε ≤ a:∫ a

ε

ln(λ) dF = −
∫ a

ε

1

λ
· (F (λ)− F (0)) dλ

+ ln(a) · (F (a)− F (0))− ln(ε) · (F (ε)− F (0));∫ a

0+

ln(λ) dF = lim
ε→0+

∫ a

ε

ln(λ) dF ;∫ a

0+

1

λ
· (F (λ)− F (0)) dλ = lim

ε→0+

∫ a

ε

1

λ
· (F (λ)− F (0)) dλ;

2. If the Novikov-Shubin invariant satisfies α(f) > 0 and a ≥ ‖f‖, then the integrals∫ ∞
0+

ln(λ) dF

and

ln(a) · (F (a)− F (0))−
∫ a

0+

1

λ
· (F (λ)− F (0)) dλ

do converge to the same real number and we have

detN (Γ)(f) > 0.
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Lemma 9.5 Let M and N be finitely generated Hilbert N (Γ)-modules. Let s, t : M −→M ,
u : M −→ N and v : N −→ N be morphisms. Suppose that s, t and v have trivial kernel.
Then we get

1. detN (Γ)(s) = detN (Γ)(s
∗) =

√
detN (Γ)(s∗s) =

√
detN (Γ)(ss∗);

2. If 0 ≤ s (i.e. s is a positive operator), then

lim
ε→0+

detN (Γ)(s+ ε · id) = detN (Γ)(s);

3. If 0 ≤ s ≤ t, then
detN (Γ)(s) ≤ detN (Γ)(t);

4. detN (Γ)(st) = detN (Γ)(s) · detN (Γ)(t);

5. detN (Γ)

(
s u
0 v

)
= detN (Γ)(s) · detN (Γ)(v).

The notation of determinant class below is taken from [43].

Definition 9.6 Let X̃ −→ X be the universal covering of a finite CW -complex X with Γ
as group of deck transformations. We call X̃ of determinant class if det(∆p) > 0 holds

for all p ≥ 0 where ∆p is the combinatorial Laplace operator introduced in 1.6. If X̃ is of
determinant class, we define its L2-torsion as

ρ(2)(X̃) = −
∑
p≥0

(−1)p · p · ln
(
detN (Γ)(∆p)

)
∈ R.

Schick [229] has introduced the class G of groups which has the following properties.
All amenable groups belong to G. Moreover, if 1→ ∆→ Γ→ π → 1 is an extension, ∆ ∈ G
and π is amenable, then Γ ∈ G. If Γ is the direct limit or the inverse limit of a directed
system {Γi | i ∈ I} of groups with Γi ∈ G for all i ∈ I, then Γ ∈ G. The class G is closed
under free products. It is residually closed and, in particular, contains all residually finite
groups.

Lemma 9.7 1. Let X be a connected finite CW -complex. If αp(X̃) > 0 for all p ≥ 0 or

if π1(X) belongs to G, then X̃ is of determinant class;

2. Let f : X −→ Y be a homotopy equivalence of finite connected CW -complexes. If X̃
or Ỹ is of determinant class, then both X̃ and Ỹ are of determinant class.
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Proof : 1.) If αp(X̃) > 0, this follows from Lemma 9.4.2. If Γ ∈ G, the claim is proven in
[229, Theorem 1.14] (see also [41, appendix], [56], [156, Theorem 3.4.2 on page 476].

2.) We get from Theorem 8.7 that the spectral density functions of the p-th differential, and

hence of the combinatorial Laplace operator ∆p on the L2-chain complex of X̃ and of Ỹ , are

dilatationally equivalent. Lemma 9.4.1 implies that ∆p for X̃ is of determinant class if and

only if the one for Ỹ is.

Next we describe the favorite situation for L2-torsion.

Definition 9.8 Let X̃ −→ X be the universal covering of a connected finite CW -complex
X with Γ = π1(X). We call X̃ of acyclic determinant class if X̃ is of determinant class and

b
(2)
p (X̃) = 0 holds for all p ≥ 0. We call X̃ admissible if αp(X̃) > 0 and b

(2)
p (X̃) = 0 holds

for all p ≥ 0.

Of course admissible implies of acyclic determinant class because of Lemma 9.4.2. If
X is not connected, we mean by the phrase that X̃ is of acyclic determinant class (resp.
admissible) that the universal covering of each component of X has this property, and we

write ρ(2)(X̃) for the sum of the L2-torsions of the universal coverings of the components of
X. This remark is relevant for the sum formula appearing in the next theorem.

The L2-torsion for universal coverings of finite CW -complexes of acyclic determinant
class behaves like a multiplicative Euler characteristic, as the following result illuminates.

Theorem 9.9 1. Homotopy invariance

Let f : X −→ Y be a homotopy equivalence of connected finite CW -complexes with
Γ = π1(X) = π1(Y ). Suppose that X̃ or Ỹ is of acyclic determinant class (resp. ad-
missible). Let

ΦΓ : Wh(Γ) −→ R
>0

be the map from the Whitehead group of Γ (see [59, §11], [175, page 373]) to the multi-
plicative group of positive real numbers which assigns to the class of an invertible (n, n)-
matrix A over ZΓ the determinant detN (Γ)(f) of the isomorphism f : l2(Γ)n −→ l2(Γ)n

which is induced by right multiplication with A. Let τ(f) ∈Wh(Γ) be the Whitehead

torsion [59, chapter IV], [175, page 377]. Then both X̃ and Ỹ are of acyclic determi-
nant class (resp. admissible) and we get

ρ(2)(Ỹ )− ρ(2)(X̃) = ln (ΦΓ(τ(f))) ;

2. Fundamental groups belonging to G

50



Let f : X −→ Y be a homotopy equivalence of connected finite CW -complexes. Suppose
that Γ = π1(X) = π1(Y ) ∈ G and that b

(2)
p (X̃) or b

(2)
p (Ỹ ) is trivial for all p ≥ 0. Then

both X̃ and Ỹ are of acyclic determinant class and

ρ(2)(X̃) = ρ(2)(Ỹ );

3. Sum formula

Consider the pushout of finite CW -complexes such that j1 is an inclusion of CW -
complexes and j2 is cellular

X0
j1−−−→ X1

j2

y yi1
X2 −−−→

i2
X

Assume that X̃0, X̃1 and X̃2 are of acyclic determinant class (resp. admissible) and
that for i = 0, 1, 2 the map π1(Xi) −→ π1(X) induced by the inclusion is injective for

all base points in Xi. Then X̃ is of acyclic determinant class (resp. admissible) and
we get

ρ(2)(X̃) = ρ(2)(X̃1) + ρ(2)(X̃2)− ρ(2)(X̃0);

4. Fibration Formula

Let F −→ E −→ B be a fibration of connected finite CW -complexes. Suppose that F̃ is
of acyclic determinant class (resp. admissible) and the inclusion induces an injection

π1(F ) −→ π1(E). Then Ẽ is of acyclic determinant class (resp. admissible) and we
get

ρ(2)(Ẽ) = χ(B) · ρ(2)(F̃ )

where χ(B) is the Euler characteristic of B;

5. Product formula

Let X and Y be connected finite CW -complexes. Suppose that X̃ is of acyclic deter-
minant class (resp. admissible). Then X̃ × Ỹ is of acyclic determinant class (resp.
admissible) and we get

ρ(2)
(
X̃ × Ỹ

)
= χ(Y ) · ρ(2)(X̃);

6. Poincaré duality

Let M be a closed manifold of even dimension. Suppose M̃ is of acyclic determinant
class. Then we get

ρ(2)(M̃) = 0;
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7. Multiplicative property for finite coverings

Let X be a connected finite CW -complex and p : Y −→ X be a finite d-sheeted covering.
Suppose that Ỹ or X̃ is of acyclic determinant class (resp. admissible). Then both Ỹ

and X̃ are of acyclic determinant class (resp. admissible) and we get

ρ(2)(Ỹ ) = d · ρ(2)(X̃);

8. S1-actions

Let M be a connected closed manifold with S1-action. Suppose that for one orbit S1/H
(and hence all orbits) the inclusion into M induces a map on π1 with infinite image. (In

particular, the S1-action has no fixed points.) Then M̃ is admissible, and in particular,
of acyclic determinant class and

ρ(2)(M̃) = 0.

Proof : The proof is given for admissible CW -complexes in [156]. The case of determinant
class follows analogously using the following result. Let 0 −→ C −→ D −→ E −→ 0 be
a short exact sequence of Hilbert N (Γ)-chain complexes which are finite-dimensional and
whose chain modules are finitely generated. Suppose for two of the chain complexes that
they are L2-acyclic and the associated Laplace operators are of determinant class in each
dimension. Then the third chain complex has the same property. The statement about the
acyclicity follows from the long weakly exact homology sequence of Cheeger and Gromov
[52, Theorem 2.1 on page 10]. The strategy of proof for the determinant class is similiar to
the one in [148, Theorem 2.3 on page 27] using Lemma 9.5.5 instead of [148, Lemma 1.12 on
page 25]. The case, where the fundamental group belongs to G follows from [229, Theorem
1.14].

We mention the following conjecture

Conjecture 9.10 The map ΦΓ : Wh(Γ) −→ R
>0 defined in Theorem 9.9.1 is always trivial.

Suppose that M is a closed Riemannian manifold. Then one defines its L2-torsion
analogously to the classical definition of ρ(M̃ ;V ). If the L2-Betti numbers are not all trivial,
one has to invoke a correction term analogously to the classical definition which involves the
L2-Hodge-deRham isomorphism. Details can be found, for instance, in [163, section 5].

As for L2-Betti numbers and for Novikov-Shubin invariants there are analytic versions
of the L2-torsion due to Lott [142] and Matthai [170].
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Definition 9.11 Let M̃ −→M be the universal covering of a closed Riemannian manifold
M with Γ = π1(M). Suppose that M̃ is of determinant class. Define

trN (Γ)

(
e−t∆p

)
=

∫
F

trC
(
e−t∆p(x̃, x̃)

)
dx̃

using the notation of Remark 1.9. Then we define the analytic L2-torsion of M̃

ρ(2)(M̃) =
∑
p≥0

(−1)p · p ·
(
d

ds

1

Γ(s)

∫ ε

0

ts−1 ·
(

trN (Γ)

(
e−t∆p

)
− b(2)

p (M̃)
)
dt

∣∣∣∣
s=0

+

∫ ∞
ε

t−1 ·
(

trN (Γ)

(
e−t∆p

)
− b(2)

p (M̃)
)
dt

)
.

The definition is independent of the choice of ε by the following calculation. The
Γ-function

Γ(s) =

∫ ∞
0

ts−1e−t dt

satisfies Γ(s+ 1) = s · Γ(s) and Γ(1) = 1. In the sequel we abbreviate

T (t) = trN (Γ)

(
e−t∆p

)
− b(2)

p (M̃).

We compute for 0 < ε ≤ δ

d

ds

1

Γ(s)

∫ δ

ε

ts−1 · T (t) dt

∣∣∣∣
s=0

=
d

ds
s · 1

Γ(s+ 1)

∫ δ

ε

ts−1 · T (t) dt

∣∣∣∣
s=0

=
d

ds
s|s=0 ·

1

Γ(s+ 1)

∫ δ

ε

ts−1 · T (t) dt

∣∣∣∣
s=0

+ 0 · d
ds

1

Γ(s+ 1)

∫ δ

ε

ts−1 · T (t) dt

∣∣∣∣
s=0

=

∫ δ

ε

t−1 · T (t) dt.

The following calculation shows the relation of the definition above with the classical
Ray-Singer torsion. Namely, we get in the setting of the Ray-Singer torsion the following
equation, where λ runs over the eigenvalues of the Laplace operator in dimension p listed
with multiplicity:
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∑
λ>0

λ−s =
∑
λ>0

1

Γ(s)
· λ−s ·

∫ ∞
0

ts−1e−t dt

=
∑
λ>0

1

Γ(s)
·
∫ ∞

0

(tλ−1)s−1e−λ(tλ−1)λ−1 dt

=
∑
λ>0

1

Γ(s)
·
∫ ∞

0

ts−1e−λt dt

=
1

Γ(s)
·
∫ ∞

0

ts−1 ·
∑
λ>0

e−λt dt

=
1

Γ(s)
·
∫ ∞

0

ts−1 ·
(
trC
(
e−t∆p

)
− dimcc(Hp(M ;V ))

)
dt.

The integral from 0 to ε appearing in the Definition 9.11 exists by an argument analo-
gous to the proof that the zeta-function is meromorphic without pole in 0 in the classical case.
Given p ≥ 0, the integral from ε to ∞ obviously converges if the Novikov-Shubin invariant
αp(M̃) is positive. It does converge if and only if for the analytic defined spectral density
function Fp of the Laplace operator acting on p-forms on the universal covering 1.10 the

integral
∫ 1

0+
ln(λ) dF does converge [43, Proposition 2.12]. Since the analytic and combina-

torial spectral density functions are dilatationally equivalent by Theorem 8.7.2,
∫ 1

0+
ln(λ) dF

converges if and only if M̃ is of determinant class.

Next we mention the important result of Burghelea, Friedlander, Kappeler and McDonald
which generalizes the Theorem of Cheeger and Müller to the L2-case. The main technical
tool is the generalization of the calculus of elliptic pseudo-differential operators, and of the
Helffer-Sjöstrand analysis of the Witten deformation of the deRham complex for a closed
Riemannian manifold with coefficients in a unitary finite-dimensional representation to a
unitary representation on a finitely generated Hilbert N (Γ)-module.

Theorem 9.12 (Burghelea-Friedlander-Kappeler-McDonald [43]) The analytic and
the combinatorial L2-torsion of the universal covering of a closed Riemannian manifold agree.

Theorem 9.12 above allows us to combine the results we have already mentioned for
the combinatorial version with analytic results. The following result is taken from [53,
Proposition 6.4 on page 149]

Lemma 9.13 Let X be a simply-connected Riemannian manifold and f : X → R be a
function which is invariant under the isometries of X. Then there is a constant C(f) with
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the property that for any cocompact free proper action of a discrete group Γ by isometries
and any fundamental domain F∫

F
fd volX = C(f) · vol(X/Γ)

holds.

The next result is a consequence of the analytic definitions of L2-Betti numbers,
Novikov-Shubin invariants and L2-torsion and Lemma 9.13.

Lemma 9.14 Let X be a complete Riemannian manifold. Then there are constants B
(2)
p (X)

for p ≥ 0, Ap(X) for p ≥ 1 and T (X) such that for any closed Riemannian manifold M
whose universal covering is isometrically diffeomorphic to X the following holds

b(2)
p (M) = B(2)

p (X) · vol(M);

α(2)
p (M) = A(2)

p (X);

ρ(2)(M) = T (2)(M) · vol(M).

The constant T (2)(X) appearing in Lemma 9.14 can be computed for X = H
d as

follows. Consider the polynomial with integer coefficients for j ∈ {0, 1, 2, . . . n− 1}

P n
j (ν) :=

∏n
i=0(ν2 + i2)

ν2 + (n− j)2
=

2n∑
k≥0

Kn
k,j · ν2k.

Define

Cd :=
n−1∑
j=0

(−1)n+j+1 n!

(2n)! · πn
·
(

2n
j

)

·
n∑
k=0

Kn
k,j ·

(−1)k+1

2k + 1
· (n− j)2k+1. (9.15)

The first values of Cd are computed in [118, Theorem 2]

C3 = 1
3π

≈ 0.106103;
C5 = 62

45π2 ≈ 0.139598;
C7 = 221

35π3 ≈ 0.203645;
C39 ≈ 4.80523 · 107,

and the constants Cd are positive, strictly increasing and grow very fast, namely they satisfy
[118, Proposition 6]

C2n+1 ≥
n

2π
· C2n−1;

C2n+1 ≥
2n!

3(2π)n
.
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The next result has been proven for 3-manifolds by Lott [142, Proposition 16] and Matthai
[170, Corollary 6.7].

Theorem 9.16 (Hess-Schick [118], Theorem 2) Let M be a closed hyperbolic d-dimensional
manifold for odd d = 2n+ 1. Let Cd > 0 be the constant introduced in 9.15. Then

ρ(2)(M̃) = (−1)n · Cd · vol(M).

Recall that we have introduced the basic notions and results about 3-manifolds in
Section 3.

Theorem 9.17 (Lück-Schick [164], Theorem 0.7) Let M be a compact connected ori-
entable prime 3-manifold with infinite fundamental group such that the boundary of M is
empty or a disjoint union of incompressible tori. Suppose that M satisfies Thurston’s Ge-
ometrization Conjecture which implies that there is a decomposition along disjoint incom-
pressible 2-sided tori in M whose pieces are Seifert manifolds or hyperbolic manifolds. Let
M1, M2, . . ., Mr be the hyperbolic pieces. They all have finite volume [179, Theorem B on
page 52]. Then M is admissible and

ρ(2)(M̃) = − 1

3π
·

r∑
i=1

vol(Mi).

In particular, ρ(2)(M̃) is 0 if and and only if there are no hyperbolic pieces.

Examples of manifolds satisfying the assumptions of Theorem 9.17 are complements of
knots in S3.

We recall the definition of simplicial volume of an n-dimensional oriented closed man-
ifold M [106, Section 0.2]. Let Csing

∗ (M,R) be the singular chain complex of M with co-
efficients in the real numbers R. An element c in Csing

p (M,R) is given by a finite R-linear
combination c =

∑s
i=1 ri · σi of singular p-simplices σi in M . Define the l1-norm of c by

setting

‖c‖1 =
s∑
i=1

|ri|.

For α ∈ Hm(M ;R) define

‖α‖1 = inf
{
‖c‖1 | c ∈ Csing

m (M ;R) is a cycle representing α
}
.

The simplicial volume of M is defined by

‖M‖ = ‖ [M ] ‖1,

where [M ] is the image of the fundamental class of M under the change of ring homomor-
phism on singular homology Hn(M ;Z) −→ Hn(M ;R). We mention the following extension
of a question of Gromov [109, section 8A].
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Conjecture 9.18 Let M be a closed aspherical orientable manifold with vanishing simplicial
volume. Then M is admissible and its L2-torsion is trivial.

This conjecture is based on a variety of calculations and similarities of the properties of
L2-torsion and simplicial volume. The simplicial volume and the L2-torsion are multiplicative
under finite coverings (see [106, page 8] and Theorem 9.9.7). If the universal coverings of
two closed Riemannian manifolds M and N are isometrically diffeomorphic, then [106, page
11]

‖M‖
vol(M)

=
‖N‖

vol(N)
. (9.19)

The corresponding proportionality principle holds for the L2-torsion by Lemma 9.14. There
are constants Tn and Vn, depending only on the dimension n, such that for any closed
orientable hyperbolic manifold of dimension n we have

‖M‖ = Vn · vol(M); (9.20)

ρ(2)(M̃) = Tn · vol(M), (9.21)

where V −1
n is the supremum of all n-dimensional geodesic simplices, i.e. the convex hull of

(n+ 1) points in general position, in the n-dimensional hyperbolic space Hn, and Tn is zero
for even n and T3 = − 1

3π
(see [106, section 2.2] and Theorem 9.16). Conjecture 9.18 is true

for a closed aspherical orientable manifold with non-trivial smooth S1-action. Namely, then
its simplicial volume vanishes [106, Section 3.1], [253] and the map induced by evaluation
π1(S1) −→ π1(M) is injective [66, Lemma 5.1 on page 242 and Corollary 5.3 on page 243]

which implies that M is admissible and ρ(2)(M̃) = 0 by Theorem 9.9.8. Theorem 9.17 is true

for ‖M‖ instead of ρ(2)(M̃), if one substitutes V3 for − 1
3π

, by [236],[240]. Hence Conjecture
9.18 is true for 3-manifolds satisfying the hypothesis of Theorem 9.17.

The considerations above may suggest that one should conjecture for a closed oriented
n-dimensional aspherical manifold M of dimension n that

ρ(2)(M̃) = Cn · ‖M‖ (9.22)

holds for a dimension constant Cn. This is true with Cn = 0 for even n and possibly true for
n = 3 with C3 = − 1

3π·V3
. However, it is definitely false in all odd dimensions n ≥ 9 by the

following argument. Let M be a 3-dimensional oriented closed hyperbolic 3-manifold. Let
N be M ×M ×M and F be an oriented closed hyperbolic surface. Let F d be the d-fold
cartesian product of F with itself. We get from 9.20, 9.21, Theorem 9.9.5 and the product
inequality for the simplicial volume in [106, page 10]

ρ(2)( ˜N × F d) = 0;

ρ(2)( ˜M × F d+3) 6= 0;

‖N × F d‖ 6= 0.
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Since all the manifolds appearing in the list above are orientable closed aspherical manifolds
of dimension 9 + 2d, equation 9.22 is wrong for odd n ≥ 9.

The simplicial volume of an n-dimensional closed oriented manifold and its vanishing
can be interpreted cohomologically as follows. Recall that a singular p-cochain on M with
coefficients in R can be interpreted as a function f : Sp(M) −→ R, where Sp(M) is the set
of all singular p-simplices on M . Define its norm

‖f‖∞ = sup{|f(s)| | s ∈ Sp(M)}.

The bounded cochain complex Ĉ∗(M) is the subcochain complex of the singular cochain
complex C∗(M ;R) with real coefficients which consists of bounded cochains f , i.e. cochains

f with ‖f‖∞ <∞. The bounded cohomology Ĥ∗(M) is the cohomology of this chain complex.

For β ∈ Hn(M ;R) define

‖β‖∞ = inf{‖f‖∞ | f ∈ Cn(M ;R) is a cocycle representing β} ∈ [0,∞].

Let β(M) ∈ Hn(M ;R) be the cohomological fundamental class of M . Then we get

‖M‖ = 0 if ‖β(M)‖∞ =∞;
‖M‖ = ‖β(M)‖−1

∞ if ‖β(M)‖∞ <∞.

Moreover, ‖M‖ vanishes if and only if the canonical map Ĥn(M) −→ Hn(M ;R) is trivial
[17, pages 278,279], [106, page 17].

If f : M −→ Bπ1(M) is the classifying map of M , then the induced map on bounded

cohomology f ∗ : Ĥp(Bπ1(M)) −→ Ĥp(M) is an isometric isomorphism [106, page 40], [126,
page 1105]. This implies that ‖M‖ depends only on the image of the fundamental class
under the classifying map f∗([M ]) ∈ Hn(Bπ1(M);R). Namely, it is given by

‖M‖ = ‖f∗(β(M))‖1. (9.23)

Of course the L2-torsion of a closed Riemannian manifold depends in general on more than
f∗([M ]) ∈ Hn(Bπ1(M);R), so that we see that Conjecture 9.18 only has a chance to be true

for aspherical manifolds. Since the bounded cohomology Ĥp(BΓ) vanishes for p ≥ 1 for
an amenable group, we get for any closed orientable manifold with amenable fundamental
group that ‖M‖ = 0 [106, page 40], [126, Theorem 4.3 on page 1105]. Hence Conjecture 9.18
implies for an aspherical closed Riemannian manifold with amenable fundamental group
that its L2-Betti numbers vanish and its L2-torsion is trivial. We have already proven the
statement for the L2-Betti numbers in Theorem 4.1. We conjecture

Conjecture 9.24 If X is an aspherical connected finite CW -complex such that its funda-
mental group contains a non-trivial normal amenable subgroup, then its universal covering
X̃ is admissible and

ρ(2)(X̃) = 0.
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Conjecture 9.24 is true if the fundamental group contains Zn as normal subgroup for
n ≥ 1, because then Theorem 9.9.4 applies to the fibration T n −→ X −→ B(π1(X)/Zn).

Any closed smooth manifold satisfies

‖M‖ ≤ (n− 1)nn! ·minvol(M) (9.25)

where minvol(M) is the minimum over all volumes of M for all Riemannian metrics on M
whose sectional curvature is pinched between −1 and 1 [106, page 12]. So the vanishing of the
minimal volume implies the vanishing of the simplicial volume. In view of Conjecture 9.18,
the question arises whether for a closed aspherical manifold the vanishing of the minimal
volume implies that M is admissible and its L2-torsion is trivial. Under certain conditions on
the sectional curvature there are also estimates of the volume from above by the simplicial
volume due to Thurston [106, page 10], [240].

Since the simplicial volume of a closed orientable manifold with non-trivial S1-action
vanishes [106, Section 3.1], [253], one could ask whether the vanishing of the simplicial
volume is an obstruction to the existence of an S1-foliation. Boileau, Druck and Vogt have
dealt with this question in [27], [28]. A positive answer would rule out the existence of an
S1- foliation on a closed hyperbolic manifold because the simplicial volume in that case is
(up to a non-zero factor) the volume. In view of Conjecture 9.18, one could ask whether
the existence of an S1-foliation on a closed aspherical manifold implies the vanishing of all
the L2-Betti numbers and of the L2-torsion. Again a positive answer to this question would
settle the problem of the existence of an S1-foliation on a closed hyperbolic manifold.

Suppose that the closed oriented manifold M admits a selfmap of degree different from
0 and ±1. Then the simplicial volume is trivial [106, page 8]. Assume additionally that M

is aspherical. Then Conjecture 9.18 implies that ρ(2)(M̃) is trivial. This would be obvious if
M would cover itself non-trivially. This raises the question of when a map f : M −→M for
M a closed aspherical manifold of positive degree d is homotopic to a covering of degree d.

Obviously the L2-torsion is hard to compute, even in the combinatorial version where
one does not have to deal with the regularization process. The problem is that it is very
difficult to compute the spectral density function. Next we state a more algorithmic approach
which was developed in [154]. Here we again exploit the fact that the combinatorial Laplace
operator already lives over the integral group ring of the fundamental group.

Let A ∈M(n,m,CΓ) be an (n,m)-matrix over CΓ. It induces, by right multiplication,
a CΓ-homomorphism of left CΓ-modules

RA : ⊕ni=1CΓ −→ ⊕mi=1CΓ x 7→ xA

and by completion a bounded Γ-equivariant operator

R
(2)
A : ⊕ni=1l

2(Γ) −→ ⊕mi=1l
2(Γ).
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We define an involution of rings on CΓ by∑
w∈Γ

λw · w =
∑
w∈Γ

λw · w−1.

Denote by A∗ the (m,n)-matrix obtained from A by transposing and applying the involution

above to each entry. As the notation suggests, the bounded Γ-equivariant operator R
(2)
A∗ is

the adjoint of the bounded Γ-equivariant operator R
(2)
A . Define the CΓ-trace of an element

u =
∑

w∈Γ λw · w ∈ CΓ by
trCΓ(u) = λe ∈ C

for e the unit element in Γ. This extends to a square (n, n)-matrix A over CΓ by

trCΓ(A) =
n∑
i=1

trCΓ(ai,i) ∈ C. (9.26)

It follows directly from the definitions that the CΓ-trace trCΓ(A) of 9.26 agrees with the von

Neumann trace trN (Γ)(R
(2)
A ) defined in 1.2.

Let A ∈M(n,m,CΓ) be an (n,m)-matrix over CΓ. In the sequel let K be any positive
real number satisfying

K ≥ ‖R(2)
A ‖

where ‖R(2)
A ‖ is the operator norm ofR

(2)
A . For u =

∑
w∈Γ λw · w ∈ CΓ, define |u|1 =

∑
w∈Γ |λw|.

Then a possible choice for K is given by

K =
√
m ·max {|ai,j|1 | 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

The bounded Γ-equivariant operator 1−K−2 ·R∗ARA : ⊕ni=1l
2(Γ) −→ ⊕ni=1l

2(Γ) is positive.
Let (1−K−2 · A∗A)

p
be the p-fold product of matrices and (1−K−2 ·R∗ARA)

p
be the p-fold

composition of operators.

Definition 9.27 The characteristic sequence of a matrix A ∈ M(n,m,CΓ) and a non-

negative real number K satisfying K ≥ ‖R(2)
A ‖ is the sequence of real numbers

c(A,K)p = trCΓ

((
1−K−2 · AA∗

)p)
= trN (Γ)

((
1−K−2 · (R(2)

A )∗R
(2)
A

)p)
.

Theorem 9.28 (Lück [154], Theorem 4.4 on page 100) Let A ∈ M(n,m,CΓ) be an

(n,m)-matrix over CΓ. Denote by F the spectral density function of R
(2)
A . Let K be a

positive real number satisfying K ≥ ‖R(2)
A ‖. Then

1. The characteristic sequence c(A,K)p is a monotone decreasing sequence of non-negative
real numbers;
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2. We have
dimN (Γ)(ker(R

(2)
A )) = F (0) = lim

p→∞
c(A,K)p;

3. Define β(A) ∈ R≥0 ∪ {∞} by

β(A) = sup

{
β ∈ R≥0 | lim

p→∞
pβ ·

(
c(A,K)p − dimN (Γ)(ker(R

(2)
A ))

)
= 0

}
.

Then we have

β(A) ≥ α(R
(2)
A ) if α(R

(2)
A ) is a real number;

β(A) = ∞ otherwise;

where α(R
(2)
A ) is the Novikov-Shubin invariant of Definition 8.4;

4. Let K be any positive real number satisfying K ≥ ‖R(2)
A ‖. Then the sum of positive

real numbers
∞∑
p=1

1

p
·
(
c(A,K)p − dimN (Γ)(ker(R

(2)
A ))

)
converges if and only if R

(2)
A is of determinant class, i.e. the integral

∫∞
0+

ln(λ) dF

converges. If R
(2)
A is of determinant class, then

2 · ln(detN (Γ)(R
(2)
A )) = 2 ·

(
n− dimN (Γ)(ker(R

(2)
A ))

)
· ln(K)

−
∞∑
p=1

1

p
·
(
c(A,K)p − dimN (Γ)(ker(R

(2)
A ))

)
;

5. Suppose α(R
(2)
A ) > 0. Then detN (Γ)(R

(2)
A ) is a positive real number. Given a real

number α satisfying 0 < α < α(R
(2)
A ), there is a real number C such that we have for

all L ≥ 1

0 ≤ c(A,K)L − dimN (Γ)(ker(R
(2)
A )) ≤ C

Lα

and

0 ≤ −2 · ln(detN (Γ)(R
(2)
A )) + 2 ·

(
n− dimN (Γ)(ker(R

(2)
A ))

)
· ln(K)

−
L∑
p=1

1

p
·
(
c(A,K)p − dimN (Γ)(ker(R

(2)
A ))

)
≤ C

Lα

Theorem 9.28 gives the possibility of computing dimN (Γ)(ker(R
(2)
A )) and ln(detN (Γ)(R

(2)
A ))

by a sequence whose individual terms can be computed by an algorithm, provided a con-
crete presentation of Γ is given and the word problem can be solved for Γ. The speed of
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convergence can be predicted by the Novikov-Shubin invariants. However, we do not have
a concrete value for the constant C appearing in Theorem 9.28.5. At any rate one gets
upper bounds for dimN (Γ)(ker(R

(2)
A )) and ln(detN (Γ)(R

(2)
A )) since the characteristic sequence

is monotone decreasing and positive. In this context Conjecture 2.1 is interesting. If, for
instance, Γ is torsionfree and one of the elements of the characteristic sequence is smaller
than 1, then Conjecture 2.1 implies that ker(R

(2)
A ) is trivial.

In particular, 3-manifolds are interesting since the cellular ZΓ-chain complex of the
universal covering can be computed from an appropriate presentation of the fundamental
group. Theorem 9.28 implies [154, Theorem 2.4 on page 84]:

Theorem 9.29 Let M be a compact connected orientable irreducible 3-manifold with infinite
fundamental group Γ. Let

Γ = 〈s1, s2, . . . sg | R1, R2, . . . Rr〉

be a presentation of Γ. Let the (r, g)-matrix

F =


∂R1

∂s1
. . . ∂R1

∂sg
...

. . .
...

∂Rr
∂s1

. . . ∂Rr
∂sg


be the Fox matrix of the presentation. Denote by α2(M) the second Novikov-Shubin invariant
of M . Now there are two cases:

1. Suppose ∂M is non-empty. We make the assumption that ∂M is a union of incompress-
ible tori and that g = r − 1. Then M is admissible. Define A to be the (g − 1, g − 1)-
matrix with entries in ZΓ obtained from the Fox matrix by deleting one of the columns.
Let α be any real number satisfying 0 < α < 2·α2(M)

α2(M)+2
;

2. Suppose ∂M is empty. We make the assumption that a finite covering of M is homotopy
equivalent to a hyperbolic, Seifert or Haken 3-manifold and that the given presentation
comes from a Heegaard decomposition. Then M is admissible and g = r. Define A
to be the (g − 1, g − 1)-matrix with entries in ZΓ obtained from the Fox matrix by
deleting one of the columns and one of the rows. Let α be any real number satisfying
0 < α < 2·α2(M)

α2(M)+1
;

Let K be any positive real number satisfying K ≥ ‖R(2)
A ‖. A possible choice for K is

the product of (g − 1)2 and the maximum over the word length of those relations Ri whose
Fox derivatives appear in A.
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Then the sum of non-negative rational numbers
∑L

p=1
1
p
· trZπ

(
(1−K−2 · AA∗)p

)
con-

verges to the real number ρ(2)(M̃) + 2(g − 1) · ln(K). More precisely, there is a constant
C > 0 such that we get for all L ≥ 1

0 ≤ ρ(2)(M̃) + 2(g − 1) · ln(K)−
L∑
p=1

1

p
· trZπ

((
1−K−2 · AA∗

)p) ≤ C

Lα
.

Remark 9.30 Let M be a closed n-dimensional hyperbolic manifold. Then Mostow’s Rigid-
ity Theorem says that the isometric diffeomorphism type, and in particular the volume of
M , depends only on its fundamental group [17, Theorem C.0 on page 83], [182]. We get from
Theorem 9.12, Theorem 9.16 and Theorem 9.29 a way of computing the volume purely in
terms of a presentation of the fundamental group without using information about M itself.
If for a group Γ the classifying space BΓ is a finite CW -complex and EΓ is admissible, then
its L2-torsion is defined and is a generalization of the volume in the case where Γ is the
fundamental group of an odd-dimensional hyperbolic closed manifold.

Example 9.31 In [154, Example 2.7] the complement M of the figure eight knot is com-
puted. For the presentation of Γ = π1(M)

Γ = 〈s1, s2, t | ts1t
−1s−1

2 = ts2t
−1s1s

−3
2 = 1〉

and the (2, 2)-matrix

B =

(
13 + s2 + s−1

2 −1 + s2 + s1s
3
2 − s2s1s

−3
2 − ts1s

−3
2

−1 + s−1
2 + s3

2s
−1
1 − s3

2s
−1
1 s−1

2 − s3
2s
−1
1 t−1 13 + s3

2s
−1
1 + s1s

−3
2

)
we obtain

ρ(2)(M̃) = −8 ln(2) +
∞∑
p=1

1

p · 16p
· trZΓ(Bp).

We have already mentioned in Conjecture 2.1 and Conjecture 8.9 what possible values
we expect for the L2-Betti numbers and Novikov-Shubin invariants. We do not have a good
guess in the case of L2-torsion for spaces of acyclic determinant class. This question only
makes sense if the space is L2-acyclic, otherwise one could vary the Riemannian metric to
get any real number as the L2-torsion. Recall that for an (m,n)-matrix A, we denote by
RA : l2(Γ)m −→ l2(Γ)n the bounded Γ-equivariant operator induced by right multiplication
with A.

Definition 9.32 For a group Γ, define a multiplicative subgroup of the positive real numbers

R(Γ) =
{

detN (Γ)(RA) | A ∈M(n, n,ZΓ), detN (Γ)(RA) 6= 0, ker(RA) = 0
}

∪
{(

detN (Γ)(RA)
)−1 | A ∈M(n, n,ZΓ), detN (Γ)(RA) 6= 0, ker(RA) = 0

}
.
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Lemma 9.33 Let Γ be a finitely presented group Γ. Suppose that there is at least one
connected finite CW -complex Y with Γ = π1(Y ) such that Ỹ is of acyclic determinant class.
Then

2 · ln (R(Γ)) ⊂
{
ρ(2)(X̃) | X a connected finite CW -complex with π1(X) = Γ

and X̃ of acyclic determinant class
}

⊂ ln (R(Γ))

and

4 · ln (R(Γ)) ⊂
{
ρ(2)(M̃) |M a closed manifold with π1(M) = Γ

and M̃ of acyclic determinant class
}

⊂ ln (R(Γ)) .

Proof : The non-trivial inclusion in the first assertion is

2 · ln (R(Γ)) ⊂
{
ρ(2)(X̃) | X a connected finite CW -complex with π1(X) = Γ

and X̃ of acyclic determinant class
}
.

Let Z = Y × S3. Then π1(Z) = Γ and Z̃ is of acyclic determinant class with ρ(2)(Z̃) = 0 by
Theorem 9.9.5. LetA be an (n, n)-matrix over ZΓ such that ker(RA) = 0 and detN (Γ)(RA) 6= 0.
Let n be an integer such that 2n is greater than or equal to the dimension of Z. By attaching
cells to Z in dimensions 2n+2 and 2n+3 we obtain a connected finite CW -complex X such
that Γ = π1(X) and the cellular ZΓ-chain complex of X̃ is the direct sum of the one of Z̃
and the chain complex concentrated in dimensions 2n+ 2 and 2n+ 3 whose only non-trivial
differential is given by RA. Then Lemma 9.5 implies that X̃ is of determinant class and

ρ(2)(X̃) = −(−1)2n+3 · (n+ 3) · ln
(
detN (Γ)(R

∗
ARA)

)
−(−1)2n+2 · (n+ 2) · ln

(
detN (Γ)(RAR

∗
A)
)

= 2 · ln
(
detN (Γ)(RA)

)
.

This shows the first assertion.

Let X be a connected finite CW -complex such that Γ = π1(X) and X̃ is of acyclic
determinant class. Let n be an integer such that 2n is greater or equal to the dimension of
X. We embed X into R2n+2. Let M be the boundary of a regular neighborhood N of X.
Now L2-torsion and the notions of acyclic determinant class can also be defined for pairs
and simple homotopy invariance, the sum formula and Poincaré duality extend to this case
[154]. Since the inclusion of X into N is a simple homotopy equivalence and X is of acyclic
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determinant class, Ñ by homotopy invariance, (Ñ , M̃) by Poincaré duality, and hence M̃ by
additivity (= formula for pairs) are of acyclic determinant class, and we get

ρ(2)(M̃) = ρ(2)(Ñ)− ρ(2)(Ñ , M̃)

= ρ(2)(Ñ) + ρ(2)(Ñ)

= 2 · ρ(2)(Ñ)

= 2 · ρ(2)(X̃).

This finishes the proof of Lemma 9.33.

If Γ is countable, then R(Γ) is countable because then ZΓ, and hence M(n, n,ZΓ), is
countable for all n and R(Γ) is a countable union of countably sets.

If Γ = Z, then each element in R(Γ) is an algebraic number, i.e. the root of a non-trivial
polynomial with rational coefficients, by the following argument.

We get from [163, section 4]

R(Z) =
{

detN (Z)(Rp) | p ∈ Z[Z], p 6= 0
}
.

We can write p in C[Z] as

p(z) = C · zn ·
l∏

k=1

(z − ai)

for complex numbers C, a0, a1, . . . , al and integers n and l ≥ 0. Since p is a non-zero poly-
nomial with integer coefficients, C must be a non-zero integer and each ai is algebraic. We
get from Lemma 9.5.4

detN (Z)(Rp) = detN (Z)(RC) · detN (Z)(Rzn) ·
l∏

k=1

detN (Z)(R(z−ai)) =
l∏

k=1

detN (Z)(R(z−ai)).

Hence the claim follows from the following equation

detN (Z)(R(z−a)) =

{
|a| for |a| ≥ 1
1 for |a| ≤ 1

(9.34)

which we prove next. We have to show that, for a ∈ C, if we equip S1 with the obvious
measure satisfying vol(S1) = 1∫

S1

ln((z − a)(z−1 − a)) dvol =

{
2 · ln(|a|) for |a| ≥ 1
0 for |a| ≤ 1

. (9.35)

We have ∫
S1

ln((z − a)(z−1 − a)) dvol =

∫
S1

ln((z − |a|)(z−1 − |a|)) dvol .
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Hence we may suppose in the sequel a ∈ R≥0.

We compute for a 6= 1 and the path γ : [0, 1] −→ S1 t 7→ exp(2πit), using the Residue
Theorem ∫

S1

d

da
ln((z − a)(z−1 − a)) dvol

=

∫
S1

1

a− z
+

1

a− z−1
dvol

= 2 ·
∫
S1

1

a− z
dvol

= 2 ·
∫
S1

1

(a− z) · 2πiz
· 2πiz · dvol

=
2

2πi
·
∫
γ

1

(a− z) · z
dz

=

{
2
a

for a > 1
0 for a < 1

.

This implies for a ∈ R≥0, a 6= 1

d

da

∫
S1

ln((z − a)(z−1 − a)) dvol =

{
2
a

for a > 1
0 for a < 1

.

We conclude for an appropriate number C∫
S1 ln((z − a)(z−1 − a)) dvol = 2 · ln(a) + C for a > 1∫
S1 ln((z − a)(z−1 − a)) dvol = 0 for a < 1

.

We get from Levi’s Theorem of Monotone Convergence∫
S1

ln((z − 1)(z−1 − 1)) dvol = C.

We get from Lebesgue’s Theorem of Majorized Convergence∫
S1

ln((z − 1)(z−1 − 1)) dvol = 0.

This proves 9.35, and hence 9.34.

More information about L2-torsion can be found in [42], [44], [47], [48] [70], [71], [146],
[172].

10. Algebraic dimension theory of finite von Neumann
algebras

66



In this section we give a purely algebraic approach to L2-Betti numbers and the von
Neumann dimension and extend all these notions for a finitely generated Hilbert N (Γ)-
module which is essentially the same as a finitely generated projective N (Γ)-module to
arbitrary N (Γ)-modules.

We mention the following observations and facts which first were made by Farber [89],
[90] and then independently by the author [157]. Farber’s approach is different in that he
works with a more abstract category than the category of finitely presented modules. Both
approaches are compared and identified in [157, Theorem 0.9].

There is an equivalence of categories

ν : {fin. gen. proj. N (Γ)−mod.} −→ {fin. gen. Hilb. N (Γ)−mod.} (10.1)

where {fin. gen. proj. N (Γ)−mod.} is the category of finitely generated projective modules
over the ringN (Γ) withN (Γ)- linear maps as morphisms, and {fin. gen. Hilb. N (Γ)−mod.}
is the category of finitely generated Hilbert N (Γ)-modules with bounded N (Γ)-equivariant
operators as morphisms [157, Theorem 2.2]. It sends N (Γ) to l2(Γ). It is compatible
with finite direct sums, with the complex vector space structures on the set of morphisms
and with the involutions given by taking dual N (Γ)-modules and dual homomorphisms in
{fin. gen. proj. N (Γ)−mod.} and adjoint operators in {fin. gen. Hilb. N (Γ)−mod.}. The
category of finitely generated projective N (Γ)-modules is a subcategory of the category of
finitely presented N (Γ)-modules

{fin. gen. proj. N (Γ)−mod.} ⊂ {fin. pres. N (Γ)−mod.}. (10.2)

The point is that N (Γ) is a semi-hereditary ring, i.e. finitely generated N (Γ)-submodules
of projective N (Γ)-modules are projective and the category {fin. pres. N (Γ)−mod.} is
abelian, i.e. the kernel, the image and the cokernel of anN (Γ)-linear map of finitely presented
N (Γ)-modules are again finitely presented [90, §2], [157, Theorem 1.2 and Corollary 2.4]. Let
M be an N (Γ)-submodule of N . Define the closure of M in N to be the N (Γ)-submodule
of N

M = {x ∈ N | f(x) = 0 for all f ∈ homN (Γ)(N,N (Γ)) with M ⊂ ker(f)}. (10.3)

The functor ν of 10.1 respects exact and weakly exact sequences [157, Lemma 2.3] where
weakly exact for {fin. gen. Hilb. N (Γ)−mod.} was defined in section 1 and translates
to {fin. gen. proj. N (Γ)−mod.} using 10.3. For an N (Γ)-module M define the N (Γ)-
submodule TM and the N (Γ)-quotient module PM by (see also [90, §3])

TM = {x ∈M | f(x) = 0 for all f ∈ homN (Γ)(M,N (Γ))}; (10.4)

PM = M/TM. (10.5)

Notice that TM is the closure of the trivial module in M . If M is finitely generated,
then PM is finitely generated projective [157, Theorem 1.2]. These notions now allow one
to read off the L2-Betti numbers and the Novikov-Shubin invariants of a regular covering
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X −→ X with Γ as group of deck transformations from the finitely presented N (Γ)-module
Hp(N (Γ)⊗ZΓ C(X)) [90], [157]. Moreover, one can generalize all these invariants using the
universal center-valued trace of N (Γ) as carried out in [157].

Because of 10.1, one can define for a finitely generated projective N (Γ)-module

dimN (Γ)(P ) = dimN (Γ)(ν(P )) ∈ [0,∞) (10.6)

where dimN (Γ)(ν(P )) is defined in 1.3.

Theorem 10.7 (Lück, [159], Theorem 0.6) There is a dimension function

dimN (Γ) : {N (Γ)−modules} −→ [0,∞]

which has the following properties:

1. Extension property

If M is finitely generated projective, then dimN (Γ)(M) agrees with the number given in
10.6;

2. Invariance under closure

If K ⊂M is a submodule of the finitely generated N (Γ)-module M , then

dimN (Γ)(K) = dimN (Γ)(K);

3. Cofinality

Let {Mi | i ∈ I} be a cofinal system of submodules of M , i.e. M = ∪i∈IMi and for two
indices i and j there is an index k in I satisfying Mi,Mj ⊂Mk. Then

dimN (Γ)(M) = sup{dimN (Γ)(Mi) | i ∈ I};

4. Additivity

If 0 −→M0
i−→M1

p−→M2 −→ 0 is an exact sequence of N (Γ)-modules, then

dimN (Γ)(M1) = dimN (Γ)(M0) + dimN (Γ)(M2);

5. If M is a finitely generated N (Γ)-module, then

dimN (Γ)(M) = dimN (Γ)(PM);

dimN (Γ)(TM) = 0;
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6. Uniqueness

This dimension function is uniquely determined by the extension property, invariance
under closure, cofinality and additivity.

Meanwhile this dimension function (and its properties) has been extended from the
von Neumann algebra N (Γ) to the associated algebra of affiliated operators by Reich [214].

Let i : ∆ −→ Γ be an injective group homomorphism. We claim that associated to i
there is a ring homomorphism of the group von Neumann algebras, also denoted by

i : N (∆) −→ N (Γ).

Recall from 1.1 thatN (∆) is the same as the ring B(l2(∆), l2(∆))∆ of bounded ∆-equivariant
operators f : l2(∆) −→ l2(∆). Notice that CΓ⊗C∆ l2(∆) can be viewed as a dense subspace
of l2(Γ) and that f defines a CΓ-homomorphism id⊗C∆f : CΓ⊗C∆ l2(∆) −→ CΓ⊗C∆ l2(∆)
which is bounded with respect to the pre-Hilbert structure induced on CΓ⊗C∆ l2(∆) from
l2(Γ). Hence id⊗C∆f extends to a Γ-equivariant bounded operator i(f) : l2(Γ) −→ l2(Γ).

Given an N (∆)-module M , define induction with i to be the N (Γ)-module

i∗(M) = N (Γ)⊗N (∆) M.

Obviously i∗ is a covariant functor from the category of N (∆)-modules to the category of
N (Γ)-modules, preserves direct sums and the properties finitely generated and projective
and sends N (∆) to N (Γ). We get from [159, Theorem 3.3]

Theorem 10.8 Let i : ∆ −→ Γ be an injective group homomorphism. Then

1. i∗ is an exact functor, i.e. for any exact sequence of N (∆)-modules M0 −→M1 −→M2

the induced sequence of N (Γ)-modules i∗M0 −→ i∗M1 −→ i∗M2 is exact;

2. For any N (∆)-module M we have

dimN (∆)(M) = dimN (Γ)(i∗M).

This allows us to extend the definition of L2-Betti numbers to arbitrary topological
spaces with Γ-action and to arbitrary groups.

Definition 10.9 Let Γ be a group acting on the topological space Z. Let Csing
∗ (Z) be the

singular chain complex, which becomes a ZΓ-chain complex by the Γ-action. Define

HΓ
p (Z;N (Γ)) = Hp

(
N (Γ)⊗ZΓ C

sing
∗ (Z)

)
;

b(2)
p (Z) = dimN (Γ)

(
HΓ
p (Z;N (Γ))

)
∈ [0,∞].
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Given a group Γ, define

b(2)
p (Γ) = b(2)

p (EΓ) ∈ [0,∞].

These L2-Betti numbers are investigated in [159], [160] and [214], where also their relation
with the generalized L2-Betti numbers defined in [54] is explained. Obviously they depend
only on the Γ-homotopy type of Z and they agree with the L2-Betti numbers of Definition
1.5 in the special case where Z is the total space X of a regular covering X −→ X of a CW -
complex X of finite type with Γ as deck transformation group. The point of this extension
is that it is useful to have the notion of L2-Betti numbers for arbitrary Γ-spaces, even if
one wants to compute them only for a regular covering of a CW -complex of finite type.
For instance in Theorem 4.1 one wants to compute the L2-Betti numbers of EΓ in the case
where BΓ is assumed to be of finite type, using the information that Γ contains a non-trivial
amenable subgroup ∆ ⊂ Γ, but no information on B∆ is given. Next we sketch how Theorem
4.1 follows from Lemma 4.4. Details of this proof and a comparison with the original proof
in [54] are given in [159, section 5]. We will show the more general result

Theorem 10.10 1. Let Γ be an infinite amenable group. Then

b(2)
p (Γ) = 0 for p ≥ 0;

2. Let ∆ be a normal subgroup of Γ with b
(2)
p (∆) = 0 for p ≥ 0. Then

b(2)
p (Γ) = 0 for p ≥ 0.

Proof : 1.) In the sequel colimits are taken over the directed system of finite subcomplexes

Y of BΓ and Y is the restriction of the universal Γ-principal bundle EΓ −→ BΓ to Y .
Notice that a colimit over a directed system is an exact functor and compatible with tensor
products. Hence the following diagram commutes and has isomorphisms as horizontal maps

colimN (Γ)⊗ZΓ Hp(Y )
∼=−−−→ N (Γ)⊗ZΓ Hp(EΓ)

i1

y yi2
colimHΓ

p (Y ;N (Γ)) −−−→∼= HΓ
p (EΓ;N (Γ))

where the horizontal arrows are given by the inclusions of Y into EΓ and the vertical arrows
are the canonical maps. It is not hard to deduce from Lemma 4.4 the in (some sense dual)
statement that the dimension dimN (Γ) of the cokernel of each of the maps

N (Γ)⊗ZΓ Hp(Y ) −→ HΓ
p (Y ;N (Γ))
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is zero because Γ is amenable. Since colimit over a directed system is an exact functor,
we conclude from cofinality and additivity of dimN (Γ) of Theorem 10.7 that the dimension
dimN (Γ) of the cokernel of the left vertical arrow in the diagram above is zero. From additivity
of the dimension dimN (Γ) (see Theorem 10.7) we conclude

dimN (Γ) (N (Γ)⊗ZΓ Hp(EΓ)) ≥ dimN (Γ)

(
HΓ
p (EΓ;N (Γ))

)
.

Since Hp(EΓ) vanishes for p ≥ 1, we get b
(2)
p (Γ) = 0 for p ≥ 1. Since Γ is infinite, a direct

calculation shows b
(2)
0 (Γ) = 0.

2.) We have the fibration B∆ −→ BΓ −→ Bπ for π = Γ/∆. Since Bπ is a CW -complex and
we are dealing with homology, the associated Leray-Serre spectral sequence with coefficients
in N (Γ) converges to HΓ

p (EΓ;N (Γ)). Its E2-term is given by

E2
p,q = Hπ

p

(
Eπ;HΓ

q (Γ×∆ E∆;N (Γ))
)

for a certain action of π on theN (Γ)-moduleHΓ
q (Γ×∆ E∆;N (Γ)) which comes from the fiber

transport [150, section 1], [151, section 4]. We get from Theorem 10.8 and the assumption

dimN (Γ)

(
HΓ
q (Γ×∆ E∆;N (Γ))

)
= dimN (∆)

(
N (Γ)⊗N (∆) H

∆
q (E∆;N (∆))

)
= dimN (∆)

(
H∆
q (E∆;N (∆))

)
= 0.

Now we conclude from additivity of the dimension dimN (Γ) (see Theorem 10.7)

dimN (Γ)

(
E2
p,q

)
= 0 for p, q ≥ 0;

dimN (Γ)

(
HΓ
p (EΓ;N (Γ))

)
= 0 for p ≥ 0.

This finishes the proof of Theorem 10.10.

More information about extending the definition of L2-cohomology can be found in
[91], [235]. The same program has been carried out for Novikov-Shubin invariants in [162].

11. The zero-in-the-spectrum Conjecture

In this section we deal with the zero-in-the-spectrum Conjecture. To our knowledge
this conjecture is due to John Lott. We recommend to the reader the survey article [144]
where more information can be found. Gromov deals with this problem in the aspherical
case in [109].

Conjecture 11.1 (zero-in-the-spectrum Conjecture) There is no connected closed Rieman-
nian manifold M such that for all p ≥ 0 zero is not in the spectrum of the Laplace operator
∆p acting on smooth p-forms of the universal covering M̃ .
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Lott [144] gives five versions of this conjecture, stated as a question, namely, that for
some p ≥ 0 zero is in the spectrum of the Laplace operator ∆p acting on smooth p-forms of

M̃ if

1. M̃ is a complete Riemannian manifold;

2. M̃ is a complete Riemannian manifold with bounded geometry, i.e. the injectivity
radius is positive and the sectional curvature is pinched between −1 and 1;

3. M̃ is a uniformly contractible Riemannian manifold, i.e. for all r > 0 there is an
R(r) > 0 such that for all m ∈M the metric ball Br(m) is contractible within BR(r)(m);

4. M̃ is the universal covering of a closed Riemannian manifold;

5. M̃ is the universal covering of a closed aspherical Riemannian manifold.

We emphasize that the next definition makes sense for arbitrary groups and spaces.

Definition 11.2 Let Z be a topological space with an action of the group Γ. Let HΓ
p (Z;N (Γ))

be the N (Γ)-module given by the singular homology with coefficients in N (Γ) as defined in
10.9. We say that Z is N (Γ)-acyclic. (resp. n-N (Γ)-connected) if HΓ

p (Z;N (Γ)) vanishes
for p ≥ 0 (resp. 0 ≤ p ≤ n).

A group Γ is called N (Γ)-acyclic. resp. n-N (Γ)-connected if the universal Γ-space EΓ
has this property.

Lemma 11.3 The following statements are equivalent for a finitely presented group Γ:

1. There is no connected closed Riemannian manifold M with fundamental group Γ such
that, for all p ≥ 0, zero is not in the spectrum of the Laplace operator ∆p acting on

smooth p-forms of the universal covering M̃ ;

2. There is no connected closed Riemannian manifold M with fundamental group Γ such
that

b
(2)
p (M̃) = 0 p ≥ 0;

αp(M̃) = ∞+ p ≥ 0;

3. There is no connected finite CW -complex X with fundamental group Γ such that

b
(2)
p (X̃) = 0 p ≥ 0;

αp(X̃) = ∞+ p ≥ 0;
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4. There is no connected finite CW -complex X with fundamental group Γ such that for
all p ≥ 0 the combinatorial Laplace operator ∆p acting on the p-th chain module of the

L2-chain complex of the universal covering X̃ is invertible;

5. There is no connected finite CW -complex X with fundamental group Γ such that X̃ is
N (Γ)-acyclic.

Proof : The equivalence 1.) ⇐⇒ 2.) follows from the analytic definition of L2-Betti numbers
and Novikov-Shubin invariants.

2.) ⇐⇒ 3.) The implication 3.) =⇒ 2.) is obvious since a closed manifold is a finite CW -
complex. To prove 2.) =⇒ 3.), let X be a connected finite CW -complex with fundamental
group Γ such that

b
(2)
p (X̃) = 0 p ≥ 0;

αp(X̃) = ∞+ p ≥ 0;

Let n be the dimension of X. Since X cannot be S1 because of Example 8.5, and cannot
be ∨ri=1S

1 for r ≥ 2 because the Euler characteristic of X must be trivial (see Theorem 1.7),
we have n ≥ 2. Let M be the boundary of a regular neighbourhood N of an embedding of
X into R2n+1 [221, chapter 3]. Then M is 2n-dimensional and there is an n-connected map
from M to X. We conclude from Theorem 1.7 and Theorem 8.7

b
(2)
p (M̃) = b

(2)
p (X̃) = 0 for p ≤ n− 1;

b
(2)
p (M̃) = b

(2)
2n−p(M̃) = 0 for p ≥ n+ 1;

b
(2)
n (M̃) = (−1)n · χ(M);

αp(M̃) = αp(X̃) = ∞+ for p ≤ n;

αp(M̃) = α2n+1−p(X̃) = ∞+ for p ≥ n+ 1.

Poincaré duality applied to (M,N), the fact that N is homotopy equivalent to X, and
Theorem 1.7.2 imply

χ(M) = 2 · χ(N) = 2 · χ(X) = 0.

Hence M is a closed Riemannian manifold satisfying

b
(2)
p (M̃) = 0 p ≥ 0;

αp(M̃) = ∞+ p ≥ 0;

3.) ⇐⇒ 4.) follows from [148, Lemma 2.5 on page 31].

4.) ⇐⇒ 5.) follows from [157, remark after Definition 3.11, Theorem 6.1].

Conjecture 11.4 (zero-in-the-spectrum Conjecture for a group) For any finitely presented
group Γ the five equivalent assertions of Lemma 11.3 are true.
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Remark 11.5 It makes sense to formulate a version of Conjecture 11.4 for arbitrary groups
Γ, where one has to substitute the universal coverings M̃ (resp. X̃) by regular coverings of the
closed manifold M (resp. the finite CW -complex X) with Γ as group of deck transformations.
Of course, one then has to drop the condition that Γ is the fundamental group of M (resp.
X). Also a lot of the following results can be reformulated for arbitrary groups Γ. It is likely
that this more general version is true if Conjecture 11.4 holds, because the decisive condition
seems to be the finiteness of X, not that X̃ is simply-connected. Moreover, one may weaken
the condition that X is finite to the condition that X is of finite type.

Lemma 11.6 Let X be a connected finite CW -complex with fundamental group Γ which is
a counterexample to the zero-in-the-spectrum Conjecture 11.4 for the group Γ. Then

1. Γ is 2-N (Γ)-connected;

2. χ(X) = 0;

3. If X is a closed manifold, its signature is trivial;

4. If X is a closed Riemannian manifold, then X̃ is not hyperEuclidean, where hyper-
Euclidean means that there is a proper distance non-increasing map from X̃ to Rdim(X)

of nonzero degree. In particular, X̃ and hence X, do not admit Riemannian metrics
with non-positive sectional curvature;

5. If X is an oriented closed manifold and f : X −→M a map to an oriented closed
manifold of the same dimension as X which has non-zero degree and induces an iso-
morphism on the fundamental groups, then M is also a counterexample to the zero-in-
the-spectrum Conjecture 11.4 for the group Γ;

6. If X −→ E −→ B is a fibration of connected finite CW -complexes and the inclusion of
X into E induces an injection on the fundamental groups, then E is a counterexample
to the zero-in-the-spectrum Conjecture 11.4 for π1(E).

Proof : 1.) The classifying map f : X̃ −→ EΓ is a Γ-equivariant 2-connected map and

induces an isomorphism HΓ
p (X̃;N (Γ)) −→ HΓ

p (EΓ;N (Γ)) for p = 0, 1 and an epimorphism
for p = 2.

2.) This follows from Theorem 1.7.

3.) This is shown as in the proof of Lemma 6.5.

4.) This is proven in Gromov [109, section 8] and in [144, Proposition 7].
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5.) If d is the degree of f and n the dimension of X and M , then the following diagram
commutes and has isomorphisms as vertical maps by Poincaré duality

HΓ
p (X̃;N (Γ))

ef∗−−−→ HΓ
p (M̃ ;N (Γ))

∩[X]

x∼= d·∩[M ]

x∼=
Hn−p

Γ (X̃;N (Γ))
ef∗←−−− Hn−p

Γ (M̃ ;N (Γ)) .

Hence the upper horizontal map is split-surjective and the claim follows.

6.) This is proven by a spectral sequence argument analogous to the proof of Theorem 10.10.

Hence the zero-in-the-spectrum Conjecture 11.4 is true for any finitely presented group
Γ which is not 2-N (Γ)-connected. The next result collects some information about such
groups.

Definition 11.7 (Lott [144], Definition 8 in section 5.1) A finitely presented group Γ

is called big , if Γ is non-amenable, b
(2)
1 (EΓ) = 0 and α2(EΓ) =∞+. It is called small if it

is not big.

Lemma 11.8 1. Let Γ be a group and n an integer such that BΓ has finite (n + 1)-
skeleton. Then Γ is n-N (Γ)-connected if and only if

b
(2)
p (EΓ) = 0 0 ≤ p ≤ n;
αp(EΓ) = ∞+ 0 ≤ p ≤ n+ 1;

2. A finitely presented group Γ is big in the sense of Lott’s Definition 11.7 if and only if
Γ is 1-N (Γ)-connected. A finitely presented group Γ is non-amenable if and ony if it
is 0-N (Γ)-acyclic;

3. The fundamental group of a compact 2-manifold is small;

4. The fundamental group of a compact connected orientable 3-manifold, which satisfies
the assumptions of Theorem 3.3 that none of its prime factors is exceptional, is small;

5. Let ∆ be a normal subgroup of Γ. If ∆ is p-N (∆)-connected (resp. N (∆)-acyclic),
then Γ is p-N (Γ)-connected (resp. N (Γ)-acyclic). In particular, a finitely presented
normal subgroup of a small finitely presented group is small;

6. Let Γ0 and Γ1 be non-trivial groups. Then Γ0 ∗ Γ1 is not 1-N (Γ0 ∗ Γ1)- connected;
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7. Let Γ be finitely presented. If Γ is big, then we get for the integer (see [115])

q(Γ) = min {χ(M) |M connected closed oriented 4-manifold with π1(M) = Γ}

and the deficiency def(Γ)

def(Γ) ≤ 1;

q(Γ) ≥ 0.

If Γ satisfies the zero-in-the-spectrum Conjecture 11.4, then

def(Γ) ≤ 0;

q(Γ) ≥ 1.

Proof : 1.) This follows from [157, remark after Definition 3.11, Theorem 6.1].

2.) This follows from 1.), Theorem 1.7.9 and Theorem 8.7.6.

3.) This follows from [144, Proposition 12].

4.) This follows from [148] as carried out in [144, Proposition 13].

5.) This is proven by a spectral sequence argument analogously to the proof of Theorem
10.10.

6.) We abbreviate Γ = Γ0 ∗ Γ1. Assume that Γ0 and Γ1 are non-trivial and Γ is 1-N (Γ)-
connected. A model for BΓ is the wedge of BΓ1 and BΓ2. Hence one obtains a pushout of
Γ-spaces

Γ −−−→ Γ×Γ1 EΓ1y y
Γ×Γ0 EΓ0 −−−→ EΓ .

The low-dimensional part of the associated Mayer-Vietoris sequence looks like

. . . −→ HΓ
1 (EΓ;N (Γ)) −→ l2(Γ) −→ HΓ

0 (Γ×Γ0 EΓ0;N (Γ))⊕HΓ
0 (Γ×Γ1 EΓ1;N (Γ))

−→ HΓ
0 (EΓ;N (Γ)).

As Γ is by assumption 1-N (Γ)-connected, we get an isomorphism

l2(Γ)
∼=−→ HΓ

0 (Γ×Γ0 EΓ0;N (Γ))⊕HΓ
0 (Γ×Γ1 EΓ1;N (Γ)).
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If one applies dimN (Γ), then Theorem 10.8 implies

1 = b
(2)
0 (Γ0) + b

(2)
0 (Γ1).

Theorem 1.7.9 extends to arbitrary groups [160, section 3]. Hence both Γ0 and Γ1 are of
order 2 and Γ is Z/2 ∗ Z/2. This group contains Z as a normal subgroup of index 2. We
conclude from Example 8.5 and Theorem 8.7.5 that α1(Γ) = 1, a contradiction.

7.) Theorem 6.6 gives the first two inequalities. The improved ones in the case that Γ satisfies
the zero-in-the-spectrum Conjecture are proven in [144, section 5.2 and 5.3].

Remark 11.9 In view of Lemma 11.8.7, Lott has conjectured that def(Γ) ≤ 0 and q(Γ) ≥ 1
holds for any finitely presented group Γ which is big [144, Conjecture 1 in 5.2 and Con-
jecture 2 in 5.3]. We remark that it suffices to prove this conjecture for finitely presented
2-N (Γ)-connected groups. Namely, suppose that the finitely presented group Γ satisfies

b
(2)
1 (Γ) = 0 and HΓ

2 (EΓ;N (Γ)) 6= 0. Then def(Γ) ≤ 0 and q(Γ) ≥ 1 follow from [157, section
6.6]. An example of a finitely presented group Γ which is big, but not 2-N (Γ)-acyclic, is
(Z ∗ Z)× (Z ∗ Z).

Example 11.10 If Γk is an nk-N (Γk)-connected group for k = 0, 1, then Γ0 × Γ1 is (n0+n1)-
N (Γ0 × Γ1)-connected. This follows from the fact that the canonical Z[Γ0 × Γ1]-chain map

C∗(EΓ0)⊗Z C∗(EΓ1) −→ C∗(E(Γ0 × Γ1))

is an isomorphism. The (not finitely generated) group Γ =
∏∞

i=1(Z ∗ Z) is N (Γ)-acyclic be-
cause of Lemma 11.8.5, because it contains for each p the normal subgroup Γn =

∏n
i=1(Z ∗ Z)

which is n-N (Γn)-acyclic. This shows that it is crucial in the formulation of the zero-in-the-
spectrum Conjecture 11.4 that in Lemma 11.3.3 to 11.3.5, the CW -complex X in question
satsifies some finiteness conditions such as being finite. It may be possible that being of
finite type suffices.

For residually finite Γ the results of section 5 can be extended to the question whether
zero is in the spectrum of the Laplace operator on the universal covering X̃ of a connected
finite CW -complex with Γ as fundamental group. Namely, the answer to this question can
be read off from the low eigenvalue distributions of the Laplace operators of the various finite
coverings of X given by a tower of coverings [156, Theorem 0.2 on page 456].

12. Miscellaneous
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In this section we briefly mention some further aspects of L2-invariants and give refer-
ences for the reader who wants to know more about them.

The L2-version of the index theorem was proven by Atiyah [3]. Let P be an elliptic
differential operator on a closed Riemannian manifold M and let M −→M be a regular
covering of M with Γ as group of deck transformations. Then we can lift the Riemannian
metric and the operator P to M . The operator P is Fredholm and its index is defined by

ind(P ) = dimC(ker(P ))− dimC(ker(P ∗)).

Using the von Neumann trace one can define the L2-index of the lifted operator P analogously

indN (Γ)(P ) = dimN (Γ)(ker(P ))− dimN (Γ)(ker(P
∗
)).

Then the L2-index theorem says

indN (Γ)(P ) = ind(P ).

If one puts elliptic boundary conditions on the operator, this result was generalized to
the case where M is compact and has a boundary by Schick [228]. This generalization is
the L2-version of the index theorem in [4]. These boundary conditions are local. There
are also versions of the index theorem for manifolds with boundary using global boundary
conditions which apply in contrast to the local conditions, to important geometrically defined
operators such as the signature operator due to Atiyah, Patodi and Singer [5], [6], [7]. This
index theorem involves, as a correction term, the eta-invariant. The L2-version of the eta-
invariant is defined and studied by Cheeger and Gromov [52], [53]. The L2-version of this
index theorem for manifolds with boundary and global boundary conditions is proven by
Ramachandran [209] for Dirac type operators. Further references on L2-index theory are [8],
[10], [37], [38], [57], [58], [63], [64], [65], [78], [86], [133], [180], [185], [217], [218], [219], [233],
[237], [238].

Of course L2-cohomology is not only of interest for regular coverings of closed manifolds
or CW -complexes of finite type. See for instance [30], [49], [145], [174]. In particular, the
Cheeger-Goresky-MacPherson Conjecture [51] and the Zucker Conjecture [256] have created
a lot of activity. They link the L2-cohomology of the regular part with the intersection
homology of an algebraic variety. References on this topic are [29], [31], [123], [141], [192],
[193], [194], [198], [199], [204], [205], [222], [223], [224], [225], [226], [255], [257], [258], [259].

Connections of L2-cohomology and discrete series of representations of Lie groups are
investigated, for instance, in [8], [65], [102], [103], [230].

One can also define and investigate Lp-cohomology, as done for instance by Gromov
[109, section 8] and Pansu [201],[202].
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determinant class, 49
dimension function for arbitraryN (Γ)-modules,

68

Euler characteristic
virtual, 26

finite type, 3
Fourier transformation, 9
fundamental 2-form, 31

Geometrization Conjecture of Thurston, 17
group

amenable, 19
big, 75
elementary amenable, 13
nilpotent, 41
residually finite, 23
small, 75
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