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Abstract: Let G be a finite group. We show that the Bass Nil-groups

NKn(RG), n ∈ Z, are generated from the p-subgroups of G by induction,

certain twistings maps depending on elements in the centralizers of the p-

subgroups, and the Verschiebung homomorphisms. As a consequence, the

groups NKn(RG) are generated by induction from elementary subgroups.

For NK0(ZG) we get an improved estimate of the torsion exponent.
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1. Introduction

In this note we study the Bass Nil-groups (see [2, Chap. XII])

NKn(RG) = ker(Kn(RG[t]) → Kn(RG)),

where R is an associative ring with unit, G is a finite group, n ∈ Z, and the

augmentation map sends t 7→ 0. Alternately, the isomorphism

NKn(RG) ∼= K̃n−1(NIL(RG))

identifies the Bass Nil-groups with the K-theory of the category NIL(RG) of

nilpotent endomorphisms (Q, f) on finitely-generated projective RG-modules [2,
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Chap. XII], [13, Theorem 2]. Farrell [8] proved that NK1(RG) is not finitely-

generated as an abelian group whenever it is non-zero, and the corresponding

result holds for NKn(RG), n ∈ Z (see [27, 4.1]), so some organizing principle is

needed to better understand the structure of the Nil-groups. Our approach is via

induction theory. The functors NKn are Mackey functors on the subgroups of G,

and we ask to what extent they can be computed from the Nil-groups of proper

subgroups of G.

The Bass-Heller-Swan formula [2, Chap. XII, §7], [12, p. 236] relates the Bass

Nil-groups with the K-theory of the infinite group G× Z. There are two (split)

surjective maps

N± : Kn(R[G× Z]) → NKn(RG)

which form part of the Bass-Heller-Swan direct sum decomposition

Kn(R[G× Z]) = Kn(RG)⊕Kn−1(RG)⊕NKn(RG)⊕NKn(RG).

Notice that both Kn(R[(−)×Z]) and NKn(R[−]) are Mackey functors on the sub-

groups of G (see Farrell-Hsiang [9, §2] for this observation about infinite groups).

We observe that the maps N± are actually natural transformations of Mackey

functors (see Section 6). It follows from Dress induction [7] that the functors

NKn(RG) and the maps N± are computable from the hyperelementary family

(see Section 4, and Harmon [17, Cor. 4] for the case n = 1). We will show how

the results of Farrell [8] and techniques of Farrell-Hsiang [10] lead to a better

generation statement for the Bass Nil-groups.

We need some notation to state the main result. For each prime p, we denote

by Pp(G) the set of finite p-subgroups of G, and by Ep(G) the set of p-elementary

subgroups of G. Recall that a p-elementary group has the form E = C×P , where

P is a finite p-group, and C is a finite cyclic group of order prime to p. For each

element g ∈ C, we let

I(g) = {k ∈ N | a prime q divides k ⇒ q divides |g|}

where |g| denotes the order of g. For each P ∈ Pp(G), let

C⊥
G(P ) = {g ∈ G | gx = xg,∀x ∈ P, and p ∤ |g|}

and for each g ∈ C⊥
G(P ) we define a functor

φ(P, g) : NIL(RP ) → NIL(RG)
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by sending a nilpotent RP -endomorphism f : Q → Q of a finitely-generated pro-

jective RP -module Q to the nilpotent RG-endomorphism

RG⊗RP Q → RG⊗RP Q, x⊗ q 7→ xg ⊗ f(q) .

Note that this RG-endomorphism is well-defined since g ∈ C⊥
G(P ). The functor

φ(P, g) induces a homomorphism

φ(P, g) : NKn(RP ) → NKn(RG)

for each n ∈ Z. For each p-subgroup P in G, define a homomorphism

ΦP : NKn(RP ) → NKn(RG)

by the formula

ΦP =
∑

g∈C⊥

G
(P ), k∈I(g)

Vk ◦ φ(P, g),

where

Vk : NKn(RG) → NKn(RG)

denotes the Verschiebung homomorphism, k ≥ 1, recalled in more detail in Sec-

tion 2.

Theorem A. Let R be an associative ring with unit, and G be a finite group.

For each prime p, the map

Φ = (ΦP ) :
⊕

P∈Pp(G)

NKn(RP )(p) → NKn(RG)(p)

is surjective for all n ∈ Z, after localizing at p.

For every g ∈ C⊥
G(P ), the homomorphism φ(P, g) factorizes as

NKn(RP )
φ(P,g)
−−−−→ NKn(R[C × P ])

i∗−→ NKn(RG)

where C = 〈g〉 and i : C × P → G is the inclusion map. Since the Verschiebung

homomorphisms are natural with respect to the maps induced by group homo-

morphisms, we obtain:

Corollary B. The sum of the induction maps
⊕

E∈Ep(G)

NKn(RE)(p) → NKn(RG)(p)

from p-elementary subgroups is surjective, for all n ∈ Z.
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Note that Theorem A does not show that NKn(RG) is generated by induction

from p-groups, because the maps φ(P, g) for g 6= 1 are not the usual maps induced

by inclusion P ⊂ G.

The Bass Nil-groups are non-finitely generated torsion groups (if non-zero)

so they remain difficult to calculate explicitly, but we have some new qualita-

tive results. For example, Theorem A shows that the order of every element

of NKn(RG) is some power of m = |G|, whenever NKn(R) = 0 (since its q-

localization is zero for all q ∤ m). For R = Z and some related rings, this is a

result of Weibel [27, (6.5), p. 490]. In particular, we know that every element

of NKn(ZP ) has p-primary order, for every finite p-group P . If R is a regular

(noetherian) ring (e.g. R = Z), then NKn(R) = 0 for all n ∈ Z.

Note that an exponent that holds uniformly for all elements in NKn(RP ), over

all p-groups of G, will be an exponent for NKn(RG). As a special case, we have

NKn(Z[Z/p]) = 0 for n ≤ 1, for p a prime (see Bass-Murthy [4]), so Theorem A

implies:

Corollary 1.1. Let G be a finite group and let p be a prime. Suppose that p2

does not divide the order of G. Then

NKn(ZG)(p) = 0

for n ≤ 1.

As an application, we get a new proof of the fact that NKn(ZG) = 0, for n ≤ 1,

if the order of G is square-free (see Harmon [17]).

We also get from Theorem A an improved estimate on the exponent of NK0(ZG),

using a result of Connolly-da Silva [5]. If n is a positive integer, and nq = qk is

its q-primary part, then let cq(n) = ql, where l ≥ logq(kn). According to [5], the

exponent of NK0(ZG) divides

c(n) =
∏

q|n

cq(n), where n = |G|,

but according to Theorem A, the exponent of NK0(ZG) divides

d(n) =
∏

q|n

c(nq) .

For example, c(60) = 1296000, but d(60) = 120.
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2. Bass Nil-groups

Standard constructions in algebraic K-theory for exact categories or Wald-

hausen categories yield only K-groups in degrees n ≥ 0 (see Quillen [19], Wald-

hausen [26]). One approach on the categorial level to negative K-groups has

been developed by Pedersen-Weibel (see [18], [15, §2.1]). Another ring theoretic

approach is given as follows (see Bartels-Lück [1, Section 9], Wagoner [25]). The

cone ring ΛZ of Z is the ring of column and row finite N × N-matrices over Z,

i.e., matrices such that every column and every row contains only finitely many

non-zero entries. The suspension ring ΣZ is the quotient of ΛZ by the ideal of

finite matrices. For an associative (but not necessarily commutative) ring A with

unit, we define ΛA = ΛZ ⊗Z A and ΣA = ΣZ ⊗Z A. Obviously Λ and Σ are

functors from the category of rings to itself. There are identifications, natural in

A,

Kn−1(A) =Kn(ΣA)(2.1)

NKn−1(A) =NKn(ΣA)(2.2)

for all n ∈ Z. In our applications, usually A = RG where R is a ring with unit

and G is a finite group.

Using these identifications it is clear how to extend the definitions of certain

maps between K-groups given by exact functors to negative degrees. Moreover,

we will explain constructions and proofs of the commutativity of certain diagrams

only for n ≥ 1, and will not explicitly mention that these carry over to all

n ∈ Z, because of the identifications (2.1) and (2.2) and the obvious identification

Σ(RG) = (ΣR)G, or because of Pedersen-Weibel [18].

We have a direct sum decomposition

Kn(A[t]) =Kn(A)⊕NKn(A)(2.3)

which is natural in A, using the inclusion A → A[t] and the ring map A[t] → A

defined by t 7→ 0.
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Let P(A) be the exact category of finitely generated projective A-modules, and

let NIL(A) be the exact category of nilpotent endomorphism of finitely generated

projective A-modules. The functor P(A) → NIL(A) sending Q 7→ (Q, 0) and the

functor NIL(A) → P(A) sending (Q, f) 7→ Q are exact functors. They yield a

split injection on the K-groups Kn(A) := Kn(P(A)) → Kn(NIL(A)) for n ∈ Z.

Denote by K̃n(NIL(A)) the cokernel for n ∈ Z. There is an identification (see

Grayson [13, Theorem 2])

K̃n−1(NIL(A)) =NKn(A),(2.4)

for n ∈ Z, essentially given by the passage from a nilpotent A-endomorphism

(Q, f) to the AZ-automorphism

AZ⊗A Q → AZ⊗A Q, u⊗ q 7→ u⊗ q − ut⊗ f(q),

for t ∈ Z a fixed generator.

The Bass Nil-groups appear in the Bass-Heller-Swan decomposition for n ∈ Z

(see [2, Chapter XII], [3], [12, p. 236], [19, p. 38], and [24, Theorem 10.1] for

the original sources, or the expositions in [21, Theorems 3.3.3 and 5.3.30], [22,

Theorem 9.8] ).

B : Kn(A)⊕Kn−1(A)⊕NKn(A)⊕NKn(A)
∼=
−→ Kn(AZ).(2.5)

The isomorphism B is natural in A and comes from the localization sequence

(2.6) 0 → Kn(A)
Kn(i)⊕−Kn(i)
−−−−−−−−−→ Kn(A[t])⊕Kn(A[t])

Kn(j+)+Kn(j−)
−−−−−−−−−−→ Kn(AZ)

∂n−→ Kn−1(A) → 0

where i : A → A[t] is the obvious inclusion and the inclusion j± : A[t] → AZ sends

t to t±1 if we write AZ = A[t, t−1], the splitting of ∂n

sn : Kn−1(A) → Kn(AZ)(2.7)

which is given by the natural pairing

Kn−1(A)⊗K1(Z[t, t
−1]) → Kn(A⊗Z Z[t, t−1]) = Kn(AZ)

evaluated at the class of unit t ∈ Z[t, t−1] in K1(Z[t, t
−1]), and the canonical

splitting (2.3). Let B be the direct sum of Kn(j+ ◦ i), sn, and the restrictions of

the maps Kn(j+) and Kn(j−) to NKn(A).
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In particular we get two homomorphisms, both natural in A, from the Bass-

Heller-Swan decomposition (2.5)

in : NKn(A)→Kn(AZ)

rn : Kn(AZ)→NKn(A),

by focusing on the first copy of NKn(A), such that rn ◦ in is the identity on

NKn(A).

Let σk : Z → Z be the injection given by t 7→ tk. We may consider the

ring A[t] as an A[t] − A[t] bimodule with standard left action, and right action

a(t) · b(t) = a(t)b(tk) induced by σk. This map induces an induction functor

Indk : P(A[t]) → P(A[t])

defined by P 7→ A[t]⊗σk
P . There is also a restriction functor

Resk : P(A[t]) → P(A[t])

defined by equipping P with the new A[t]-module structure a(t) · p = a(tk)p, for

all a(t) ∈ A[t] and all p ∈ P . The induction and restriction functors yield two

homomorphisms

Indk : Kn(AZ)→Kn(AZ)

Resk : Kn(AZ)→Kn(AZ) .

See [23] or [19, p. 27] for more details.

There are also Verschiebung and Frobenius homomorphisms

Vk, Fk : NKn(A)→NKn(A)(2.8)

induced on the Nil-groups (and related to Indk and Resk respectively). The

Frobenius homomorphism is induced by the functor NIL(A) → NIL(A) sending

(f : Q → Q) 7→ (fk : Q → Q),

while the Verschiebung homomorphism is induced by the functor

k⊕

i=1

Q →

k⊕

i=1

Q, (q1, q2, . . . qk) 7→ (f(qk), q1, q2, . . . , qk−1) .

The next result is proven by Stienstra [23, Theorem 4.7]). (Notice that Stien-

stra considers only commutative rings A, but his argument goes through in our
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case since the set of polynomials T we consider is {tn |n ∈ Z, n ≥ 0} and each

polynomial in T is central in A[t] with respect to the multiplicative structure.)

Lemma 2.9. The following diagrams commute for all n ∈ Z and k ∈ Z, k ≥ 1

NKn(A)
in

//

Fk

��

Kn(AZ)

Resk
��

NKn(A)
in

// Kn(AZ)

and

NKn(A)
in

//

Vk

��

Kn(AZ)

Indk

��

NKn(A)
in

// Kn(AZ)

The next result is well-known for n = 1 (see Farrell [8, Lemma 3]). The general

case is discussed by Weibel [27, p. 479], Stienstra [23, p. 90], and Grunewald [11,

Prop. 4.6].

Lemma 2.10. For every n ∈ Z and each x ∈ NKn(A), there exists a positive

integer M(x) such that Resm ◦ in(x) = 0 for m ≥ M(x).

Proof. The Frobenius homomorphism Fm : NKn(A) → NKn(A) is induced by

the functor sending (Q, f) in NIL(A) to (Q, fm). For a given object (Q, f) in

NIL(A) there exists a positive integer M(f) with (Q, fm) = (Q, 0) for m ≥ M(f).

This implies by a filtration argument (see [23, p. 90] or [11, Prop. 4.6]), that for

x ∈ NKn(A) there exists a positive integer M(x) with Fm(x) = 0 for m ≥ M(x).

Now the claim follows from Lemma 2.9. �

3. Subgroups of G× Z

A finite group G is called p-hyperelementary if is isomorphic to an extension

1 → C → G → P → 1

where P is a p-group, and C is a cyclic group of order prime to p. Such an

extension is a semi-direct product, and hence determined by the action map

α : P → Aut(C) defined by conjugation. The group G is p-elementary precisely

when α is the trivial map, or in other words, when there exists a retraction
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G → C. Notice that for a cyclic group C = Z/qk, where q 6= p is a prime,

Aut(C) = Z/qk−1(q − 1), if q odd, or Aut(C) = Z/2k−2 × Z/2, k ≥ 2, if q = 2.

In either case, Aut(C)(p) ∼= Aut(Q)(p) by projection to any non-trivial quotient

group C → Q.

Lemma 3.1. Let p be a prime, and let G be a finite p-hyperelementary group.

Suppose that for every prime q 6= p which divides the order of G, there exists an

epimorphism fq : G → Qq onto a non-trivial cyclic group Qq of q-power order.

Then G is p-elementary.

Proof. Let Q be the product of the groups Qq over all primes q 6= p which divide

the order of G. Let f : G → Q be the product of the given epimorphisms. Since

every subgroup in G of order prime to p is characteristic, we have a diagram

1 // C //

��

G //

��

P // 1

1 // Q // Ḡ // P // 1 .

But the epimorphism f : G → Q induces a retraction Ḡ → Q of the lower se-

quence, hence its action map ᾱ : P → Aut(Q) is trivial. As remarked above, this

implies that α is also trivial and hence G is p-elementary. �

We now combine this result with the techniques of [10]. Given positive integers

m, n and a prime p, we choose an integer N = N(m,n, p) satisfying the following

conditions:

(i) p ∤ N , but q | N if and only if q | n for all primes q 6= p.

(ii) k ≥ logq(mn) (i.e. qk ≥ mn) for each full prime power qk‖N .

The Farrell-Hsiang technique is to compute K-theory via p-hyperelementary sub-

groups H ⊂ G× Z/N , and their inverse images ΓH = pr−1(H) ⊂ G× Z via the

second factor projection map pr: G× Z → G× Z/N .

Lemma 3.2. Let G be a finite group and let M be a positive integer. Let p be

a prime dividing the order of |G|, and choose an integer N = N(M, |G|, p). For

every p-hyperelementary subgroup H ⊂ G× Z/N , one of the following holds:

(i) the inverse image ΓH ⊂ G×m · Z, for some m ≥ M , or

(ii) the group H is p-elementary.
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In the second case, we have the following additional properties:

(a) There exists a finite p-group P and isomorphism

α : P × Z
∼=

−−→ ΓH .

(b) There exists a positive integer k, a positive integer ℓ with (ℓ, p) = 1, an

element u ∈ Z/ℓ and an injective group homomorphism

j : P × Z/ℓ → G

such that the following diagram commutes

P × Z
α

//

idP ×β
��

ΓH

i

��

P × Z/ℓ× Z
j×k·idZ

// G× Z

where i : ΓH → G × Z is the inclusion and β : Z → Z/ℓ × Z sends n to

(nu, n).

Proof. In the proof we will write elements in Z/N additively and elements in

G multiplicatively. Let H ⊂ G × Z/N be a p-hyperelementary subgroup, and

suppose that ΓH is not contained in G × m · Z for any m ≥ M . We have a

pull-back diagram

G′′

��

��

G′′

��

��

Z/N ′′ // // H // //

��
��

G′

��
��

Z/N ′′ // // Z/N ′ // // Z/ℓ

where G′ ⊂ G and Z/N ′ are the images of H ⊂ G×Z under the first and second

factor projection, respectively. Notice that Z/ℓ is the common quotient group of

G′ and Z/N ′. In terms of this data, H ⊆ G′ × Z/N ′ and hence the pre-image

ΓH ⊆ G′ ×m · Z ⊆ G×m · Z, where m = N/N ′.

We now show that G′′ is a p-group. Suppose, if possible, that some other prime

q 6= p divides |G′′|. Since H is p-hyperelementary the Sylow q-subgroup of H is
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cyclic. However G′′ × Z/N ′′ ⊆ H, so q ∤ N ′′. But N ′ = N ′′ · ℓ, hence this implies

that the q-primary part N ′
q = ℓq ≤ |G′| ≤ |G|. Now

m = N/N ′ ≥ qk/N ′
q ≥ qk/|G| ≥ M

by definition of N = N(M, |G|, p). This would imply that ΓH ⊂ G ×m · Z for

some m ≥ M , contrary to our assumption. Hence P := G′′ is a p-group, or more

precisely the p-Sylow subgroup of G′ since p ∤ ℓ.

Alternative (ii) is an immediate consequence. If q 6= p is a prime dividing |H|,

then q | N ′ since G′′ is a p-group. Hence H admits an epimorphism onto a non-

trivial finite cyclic q-group. By Lemma 3.1, this implies that H is p-elementary.

Note that there is an isomorphism

j′ = (idP × s) : P × Z/ℓ
∼=
−→ G′

defined by the inclusion idP : P ⊂ G′ and a splitting s : Z/ℓ → G′ of the projection

G′ → Z/ℓ.

Next we consider assertion (a). A similar pull-back diagram exists for the

subgroup ΓH ⊂ G× Z. We obtain a pull-back diagram of exact sequences

1 // P // ΓH
//

��

Z //

��

1

1 // P // G′ // Z/ℓ //

s
tt

1

since P = ΓH ∩ (G × 0), and prZ(ΓH) = k · Z for some positive integer k. This

exact sequence splits, since it is the pull-back of the lower split sequence: we

can choose the element (g0, k) ∈ ΓH ⊆ G′ × Z which projects to a generator of

prZ(ΓH), by taking g0 = s(u) where u ∈ Z/ℓ is a generator. The isomorphism

α : P × Z
≈
−→ ΓH is defined by α(g, n) = (ggn0 , n) for g ∈ P and n ∈ Z.

Assertion (b) follows by composing the splitting (idP × s) : P ×Z/ℓ ∼= G′ with

the inclusion G′ ⊆ G to obtain an injection j : P × Z/ℓ → G. By the definition

of g0, the composite (j × k · idZ) ◦ (idP × β) = i ◦ α, where i : ΓH → G×Z is the

inclusion. �

4. The Proof of Theorem A

We will need some standard results from induction theory for Mackey functors

over finite groups, due to Dress (see [6], [7]), as well as a refinement called the
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Burnside quotient Green ring associated to a Mackey functor (see [14, §1] for a

description of this construction, and [16] for the detailed account).

For any homomorphism pr : Γ → G from an infinite discrete group to a finite

group G, the functor

M(H) := Kn(RΓH),

where ΓH = pr−1(H), is a Mackey functor defined on subgroups H ⊆ G. The

required restriction maps exist because the index [ΓH : ΓK ] is finite for any pair

of subgroups K ⊂ H in G. This point of view is due to Farrell and Hsiang [9, §2].

The Swan ring SW (G,Z) acts as a Green ring on M, and it is a fundamental

fact of Dress induction theory that the Swan ring is computable from the family

H of hyperelementary subgroups of G. More precisely, the localized Green ring

SW (G,Z)(p) is computable from the family Hp of p-hyperelementary subgroups

of G, for every prime p. If follows from Dress induction that the Mackey functor

M(G)(p) is also p-hyperelementary computable. We need a refinement of this

result.

Theorem 4.1 ([14, Theorem 1.8]). Suppose that G is a Green ring which acts on

a Mackey functor M. If G ⊗ Z(p) is H-computable, then every x ∈ M(G)⊗ Z(p)

can be written as

x =
∑

H∈Hp

aH IndGH(ResHG (x))

for some coefficients aH ∈ Z(p).

We fix a prime p. For each element x ∈ NKn(RG), let M = M(x) as in Lemma

2.10 applied to the ring A = RG. Then

Resm : Kn(R[G× Z]) → Kn(R[G× Z])

sends in(x) to zero for m ≥ M(x). Now let N = N(M, |G|, p), as defined in

Section 3, and consider M(H) = Kn(RΓH) as a Mackey functor on the subgroups

H ⊆ G× Z/N , via the projection pr: G× Z → G× Z/N .

Let Hp(x) denote the set of p-hyperelementary subgroups H ⊆ G×Z/N , such

that ΓH is not contained in G × m · Z, for any m ≥ M(x). By the formula

of Theorem 4.1, applied to y = in(x), we see that x lies in the image of the

composite map
⊕

H∈Hp(x)

Kn(RΓH)(p)
i∗−→Kn(R[G× Z])(p)

rn−→ NKn(RG)(p).(4.2)
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We conclude from Lemma 3.2 (b) (using that notation) that the composite

(4.3) Kn(R[P × Z])
α∗−→ Kn(RΓH)

i∗−→ Kn(R[G × Z])
rn−→ NKn(RG)

agrees with the composite

(4.4) Kn(R[P × Z])
(idP ×β)∗
−−−−−−→ Kn(R[P × Z/ℓ× Z])

(j×idZ)∗
−−−−−→ Kn(R[G× Z])

(idG ×k·idZ)∗
−−−−−−−−→ Kn(R[G× Z])

rn−→ NKn(RG).

Recall that β : Z → Z/ℓ × Z sends n to (nu, n) for some generator u ∈ Z/ℓ.

Let NIL(RP ) → NIL(R[P × Z/ℓ]) be the functor which sends a nilpotent RG-

endomorphism f : Q → Q of a finitely generated RP -module Q to the nilpotent

R[G× Z/ℓ]-endomorphism

R[P × Z/l]⊗RP Q 7→ R[P × Z/ℓ]⊗RP Q, x⊗ q 7→ xu⊗ f(q).

Let φ : NKn(RP ) → NKn(R[P × Z/ℓ]) denote the induced homomorphism.

Lemma 4.5.

(a) The following diagram commutes

Kn(R[P × Z])
(idP ×β)∗

//

rn
��

Kn(R[P × Z/ℓ× Z])

rn
��

NKn(RP )
φ

// NKn(R[P × Z/ℓ]) .

(b) The following diagram commutes

Kn(R[P × Z/ℓ× Z])
(j×idZ)∗

//

rn
��

Kn(R[G× Z])

rn
��

NKn(R[P × Z/ℓ)
j∗

// NKn(RG) .

(c) The following diagram commutes

Kn(R[G× Z])
Indk

//

rn
��

Kn(R[G× Z])

rn
��

NKn(RG)
Vk

// NKn(RG) .
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Proof. (a) The tensor product ⊗Z induces a pairing

µR,Γ : Kn−1(R)⊗Z K1(ZΓ) → Kn(RΓ)(4.6)

for every group Γ, which is natural in R and Γ. It suffices to prove that the

following diagram is commutative for every ring R (since we can replace R by

RP ). Let A = R[Z/ℓ] for short.

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)

















i1,1 0 0 0

i1,2 i2,2 0 0

0 0 φ 0

0 0 0 φ

















��

B

∼=
// Kn(RZ)

β∗

��

Kn(A)⊕Kn−1(A)⊕NKn(A)⊕NKn(A)
B

∼=
// Kn(AZ)

Here the vertical arrows are the isomorphisms given by the Bass-Heller-Swan

decomposition (2.5), the homomorphisms i1,1 and i2,2 are induced by the inclusion

R → R[Z/ℓ] and the homomorphism i1,2 comes from the pairing

µR,Z/ℓ : Kn−1(R)⊗Z K1(Z[Z/ℓ]) → Kn(R[Z/ℓ])(4.7)

evaluated at the class of the unit u ∈ Z[Z/ℓ] in K1(Z[Z/ℓ]) and the obvious

change of rings homomorphisms K1(R[Z/ℓ]) → K1(R[Z/ℓ× Z])

In order to show commutativity it suffices to prove its commutativity after

restricting to one of the four summands in the left upper corner.

This is obvious for Kn(RG) since induction with respect to group homomor-

phisms is functorial.

For Kn−1(R) this follows from the naturality of the pairing (4.6) in R and the

group Z/ℓ and the equality

K1(β)(t) = K1(R[jZ])(t) +K1(R[jZ/ℓ])(u)

where jZ : Z → Z/ℓ× Z and jZ/ℓ : Z/ℓ → Z/ℓ× Z are the obvious inclusions.

The commutativity when restricted to the two Bass Nil-groups follows from a

result of Stienstra [23, Theorem 4.12 on page 78].

(b) This follows from the naturality in R of rn.
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(c) It suffices to show that the following diagram commutes (since we can replace

R by RG)

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)

















id 0 0 0

0 k · id 0 0

0 0 Vk 0

0 0 0 Vk

















��

B

∼=
// Kn(RZ)

Indk

��

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R)
B

∼=
// Kn(RZ)

where the vertical arrows are the isomorphisms given by the Bass-Heller-Swan

decomposition (2.5).

In order to show commutativity it suffices to prove its commutativity after

restricting to one of the four summands in the left upper corner.

This is obvious for Kn(R) since induction with respect to group homomor-

phisms is functorial.

Next we inspect Kn−1(R). The following diagram commutes

Kn−1(R)⊗Z K1(Z[Z]) //

id⊗ Indk

��

Kn(RZ)

Indk
��

Kn−1(R)⊗Z K1(Z[Z]) // Kn(RZ)

where the horizontal pairings are given by µR,Z from (4.6). Since in K1(Z[Z]), k

times the class [t] of the unit t is the class [tk] = Indk([t]), the claim follows for

Kn−1(R).

The commutativity when restricted to the copies of NKn(R) follows from

Lemma 2.9. This finishes the proof of Lemma 4.5. �

Lemma 4.5 implies that the composite (4.4) and hence the composite (4.3)

agree with the composite

Kn(R[P × Z])
rn−→ NKn(RP )

φ
−→ NKn(R[P × Z/ℓ])

j∗
−−→ NKn(RG)

Vk−→ NKn(RG).
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Since we have already shown that the element x ∈ NKn(RG)(p) lies in the image

of (4.2), we conclude that x lies in the image of the map

Φ = (ΦP ) :
⊕

P∈Pp(G)

NKn(RP )(p) → NKn(RG)(p)

subject only to the restriction k ∈ I(g) in the definition of ΦP .

Consider k ≥ 1, P ∈ Pp and g ∈ C⊥
GPp. We write k = k0k1 for k1 ∈ I(g) and

(k0, |g|) = 1. We have Vk = Vk1 ◦ Vk0 (see Stienstra [23, Theorem 2.12]). Since

(k0, |g|) = 1, we can find an integer l0 such that (l0, |g|) = 1 and (gl0)k0 = g. We

conclude from Stienstra [23, page 67]

Vk0 ◦ φ(P, g) = Vk0 ◦ φ(P, (g
l0)k0) = φ(P, gl0) ◦ Vk0 .

Hence the image of Vk ◦ φ(P, g) is contained in the image of Vk1 ◦ φ(P, g
l0) and

gl0 ∈ C⊥
GPp. This finishes the proof of Theorem A. �

5. Examples

We briefly discuss some examples. As usual, p is a prime and G is a finite

group. The first example shows that Theorem A gives some information about

p-elementary groups.

Example 5.1. Let P be a finite p-group and let ℓ ≥ 1 an integer with (ℓ, p) = 1.

Then Theorem A says that NKn(R[P ×Z/ℓ])(p) is generated by the images of the

maps

Vk ◦ φ(P, g) : NKn(RP )(p) → NKn(R[P × Z/ℓ])(p)

for all g ∈ Z/ℓ, and all k ∈ I(g). Since the composite Fk ◦ Vk = k · id for k ≥ 1

(see [23, Theorem 2.12]) and (k, p) = 1, the map

Vk : NKn(RG)(p) → NKn(RG)(p)

is injective for all k ∈ I(g). For g = 1, φ(P, 1) is the map induced by the first

factor inclusion P → P × Z/ℓ, and this is a split injection. In addition, the

composition of φ(P, g) with the functor induced by the projection P × Z/ℓ → P

is the identity on NIL(RP ), for any g ∈ Z/ℓ. Therefore, all the maps Vk ◦φ(P, g)

are split injective. It would be interesting to understand better the images of

these maps as k and g vary. For example, what is the image of Φ{1} where we

take P = {1} ? �
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In some situations the Verschiebung homomorphisms and the homomorphisms

φ(P, g) for g 6= 1 do not occur.

Example 5.2. Suppose that R is a regular ring. We consider the special situation

where the p-Sylow subgroup Gp is a normal subgroup of G, and furthermore

where CG(P ) ⊆ P holds for every non-trivial subgroup P ⊆ Gp. For P 6= {1}, we

have C⊥
G (P ) = {1} and the homomorphism ΦP = φ(P, 1), which is the ordinary

induction map. We can ignore the map Φ{1} since NKn(R) = 0 by assumption.

Therefore, the (surjective) image of Φ in Theorem A is just the image of the

induction map

NKn(RGp)(p) → NKn(RG)(p) .

Note that NKn(RGp) is p-local, and we can divide out the conjugation action

on NKn(RGp) because inner automorphisms act as the identity on NKn(RG).

However, G/Gp is a finite group of order prime to p, so that

H0(G/Gp; NKn(RGp)) = H0(G/Gp; NKn(RGp)) = NKn(RGp)
G/Gp .

Hence the induction map on this fixed submodule

λn : NKn(RGp)
G/Gp → NKn(RG)(p)

is surjective. An easy application of the double coset formula shows that the

composition of λn with the restriction map Res
Gp

G : NKn(RG)(p) → NKn(RGp)(p)
is given by |G/Gp|-times the inclusion NKn(RGp)

G/Gp → NKn(RGp). Since

(|G/Gp|, p) = 1 this composition, and hence λn, are both injective. We conclude

that λn is an isomorphism.

Concrete examples are provided by semi-direct products G = P ⋊C, where P

is a cyclic p-group, C has order prime to p, and the action map α : C → Aut(P )

is injective. If we assume, in addition, that the order of C is square-free, then

NKn(ZP )C
∼=
−→ NKn(Z[P ⋊ C])

for all n ≤ 1 (this dimension restriction, and setting R = Z, are only needed to

apply Bass-Murthy [4] in order to eliminate possible torsion in the Nil-group of

orders prime to p). �
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6. NKn(A) as a Mackey functor

Let G be a finite group. We want to show that the natural maps

in : NKn(RG) → Kn(R[G × Z])

and

rn : Kn(R[G× Z]) → NKn(RG)

in the Bass-Heller-Swan isomorphism are maps of Mackey functors (defined on

subgroups of G). Hence NKn(RG) is a direct summand of Kn(R[G × Z]) as

a Mackey functor. Since RG is a finitely generated free RH-module, for any

subgroup H ⊂ G, it is enough to apply the following lemma to A = RH and

B = RG.

Lemma 6.1. Let i : A → B be an inclusion of rings. Then the following diagram

commutes

Kn(A)⊕Kn−1(A) ⊕NKn(A)⊕NKn(A)
∼=

//

i∗⊕i∗⊕i∗⊕i∗
��

Kn(AZ)

i[Z]∗
��

Kn(B)⊕Kn−1(B)⊕NKn(B)⊕NKn(B)
∼=

// Kn(BZ)

where the vertical maps are given by induction, and the horizontal maps are

the Bass-Heller-Swan isomorphisms. If B is finitely generated and projective,

considered as an A-module, then

Kn(B)⊕Kn−1(B)⊕NKn(B)⊕NKn(B)
∼=

//

i∗⊕i∗⊕i∗⊕i∗

��

Kn(BZ)

i[Z]∗

��

Kn(A)⊕Kn−1(A) ⊕NKn(A)⊕NKn(A)
∼=

// Kn(AZ)

where the vertical maps are given by restriction, and the horizontal maps are the

Bass-Heller-Swan isomorphisms.

Proof. One has to show the commutativity of the diagram when restricted to

each of the four summands in the left upper corner. In each case these maps

are induced by functors, and one shows that the two corresponding composites

of functors are naturally equivalent. Hence the two composites induce the same

map on K-theory. As an illustration we do this in two cases.
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Consider the third summand NKn(A) in the first diagram. The Bass-Heller-

Swan isomorphism restricted to it is given by the the restriction of the map

(j+)∗ : Kn(A[t]) → Kn(A[t, t
−1]) = Kn(AZ) induced by the obvious inclusion

j+ : A[t] → A[t, t−1] restricted to NKn(A) = ker (ǫ∗ : Kn(A[t]) → Kn(A)), where

ǫ : A[t] → A is given by t = 0. Since all these maps come from induction with

ring homomorphisms, the following two diagrams commute

Kn(A[t])
ǫ∗

//

i[t]∗
��

Kn(A)

i∗
��

Kn(B[t])
ǫ∗

// Kn(B)

and

Kn(A[t])
(j+)∗

//

i[t]∗
��

Kn(A[t, t
−1])

i[t,t−1]∗
��

Kn(B[t])
(j+)∗

// Kn(B[t, t−1])

and the claim follows.

Consider the second summand Kn−1(B) in the second diagram. The restric-

tion of the Bass-Heller-Swan isomorphism to Kn−1(B) is given by evaluating the

pairing (4.6) for Γ = Z for the unit t ∈ Z[Z]. Hence it suffices to show that

the following diagram commutes, where the horizontal maps are given by the

pairing (4.6) for Γ = Z and the vertical maps come from restriction

Kn−1(B)⊗K1(Z[Z]) //

i∗⊗id
��

Kn(BZ)

i[Z]∗

��

Kn−1(A)⊗K1(Z[Z]) // Kn(AZ)

This follows from the fact that for a finitely generated projective A-module P

and a finitely generated projective Z[Z]-module Q there is a natural isomorphism

of BZ-modules

(ResA P )⊗Z Q
∼=
−→ ResAZ(P ⊗Z Q), p⊗ q 7→ p⊗ q. �

Corollary 6.2. Let G be a finite group, and R be a ring. Then, for any subgroup

H ⊂ G, the induction maps IndGH : NKn(RH) → NKn(RG) and the restriction

maps ResHG : NKn(RG) → NKn(RH) commute with the Verschiebung and Frobe-

nius homomorphisms Vk, Fk, for k ≥ 1.
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Proof. We combine the results of Lemma 6.1 with Stienstra’s Lemma 2.9 (note

that these two diagrams also commute with in replaced by rn). �
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