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Outline

We first indicate how a proof of the Farrell-Jones Conjecture can
be achieved if one has appropriate flow spaces.
We give a idea of controlled topology and how to achieve control
by flow spaces
We briefly explain some basics concerning coverings.
We state and explain an axiomatic approach to the proof which
works for hyperbolic groups.
We discuss that the existence of an appropriate flow space
together with an appropriate flow estimate leads to a proof of the
Farrell-Jones Conjecture for hyperbolic groups.
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Controlled Topology

The assembly map can be thought of an approximation of the
algebraic K - or L-theory by a homology theory.
The basic feature between the left and right side of the assembly
map is that for the left side one has excision which is not present
on the right side.
In general excision is available if one can make representing
cycles small.
A best illustration for this is the proof of excision for simplicial or
singular homology which is based on the subdivision whose effect
is to make the support of cycles arbitrary small.
The first big step in the proof of the Farrell-Jones Conjecture is to
interpret the assembly map as a forget control map.
Then the basic idea of proof is obvious: Find a procedure to make
the support of a representing cocycle as small as possible without
changing its class, i.e., gain control.
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The next two results are prototypes of this idea.

Theorem (Controlled h-Cobordism Theorem, Ferry (1977))
Let M be a compact Riemannian manifold of dimension ≥ 5. Then
there exists an ε = εM > 0, such that every ε-controlled h-cobordism
over M is trivial.

Theorem (α-approximation theorem, Ferry (1979))
If M is a closed topological manifold of dimension ≥ 5 and α is an
open cover of M, then there is an open cover β of M with the following
property:
If N is a topological manifold of the same dimension and f : N → M is a
proper β-homotopy equivalence, then f is α-close to a
homeomorphism.
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One basic idea is to pass to geometric modules by remembering
the position a basis.
For instance, if we have a simplicial complex X , each basis
element of the simplicial chain complex has a position in X ,
namely the barycenter of the simplex. Similar, one may assign to
a handlebody a position in the underlying manifold.
Given a metric space X , let C(X ,R) be the following category:
Objects are collections {Mx} = {Mx | x ∈ X}, where each Mx is a
finitely generated free R-module and the support is requited to be
locally finite.
Morphisms {fx ,y} : {Mx} → {Ny} are given by collection of
R-morphisms fx ,y : Mx → Ny respecting certain finiteness
conditions so that the composition can be defined by the usual
formula for the multiplication of matrices.
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If X comes with a G-action, then G acts on C(X ; R) and we can
consider the G-fixed point set C(X ,R)G. Denote by T (X ; G) the
full subcategory of C(X ; R)G where we additionally require that the
support of a module is cocompact.
Obviously T (G; R) = C(G,R)G is the category of finitely
generated free RG-modules and hence

πn
(
K(T (G; R))

)
= Kn(RG).

If X a G-space, then the projection induces an equivalence of
categories T (G × X ; R)→ T (G; R). It induces for n ∈ Z a
homotopy equivalence after taking K -theory

πn
(
K(T (G × X ; R))

) ∼=−→ Kn(RG).

Imposing appropriate control conditions on T (G × X ; R), leads to
a subcategory Tc(G × X ; R) with the property that
X 7→ π∗

(
K(Tc(G × X ; R))

)
yields a G-homology theory.
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The forget control map

πn
(
K(Tc(G × EVCYC(G); R))

)
→ πn

(
K(T (G × EVCYC(G); R))

)
can be identified with the assembly map appearing in the
K -theoretic Farrell-Jones Conjecture.
The control conditions say, very roughly speaking, that for
morphisms {(fx ,y} the set {dX (x , y) | (fx ,y 6= 0} is small.
Suppose that G = π1(M) for a closed Riemannian manifold with
negative sectional curvature.
The idea is to use the geodesic flow on the universal covering to
gain the necessary control.
We will briefly explain this in the case, where the universal
covering is the two-dimensional hyperbolic space H2.
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Consider two points with coordinates (x1, y1) and (x2, y2) in the
upper half plane model of two-dimensional hyperbolic space. We
want to use the geodesic flow to make their distance smaller in a
functorial fashion. This is achieved by letting these points flow
towards the boundary at infinity along the geodesic given by the
vertical line through these points, i.e., towards infinity in the
y -direction.
There is a fundamental problem: if x1 = x2, then the distance of
these points is unchanged. Therefore we make the following
prearrangement. Suppose that y1 < y2. Then we first let the point
(x1, y1) flow so that it reaches a position where y1 = y2. Inspecting
the hyperbolic metric, one sees that the distance between the two
points (x1, τ) and (x2, τ) goes to zero if τ goes to infinity. This is
the basic idea to gain control in the negatively curved case.
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Why is the non-positively curved case harder?
Again, consider the upper half plane, but this time equip it with the
flat Riemannian metric coming from Euclidean space.
Then the same construction makes sense, but the distance
between two points (x1, τ) and (x2, τ) is unchanged if we change
τ .
The basic first idea is to choose a focal point far away, say
f :=

(
(x1 + x2)/2, τ + 169356991

)
, and then let (x1, τ) and (x2, τ)

flow along the rays emanating from them and passing through the
focal point f .
In the beginning the effect is indeed that the distance becomes
smaller, but as soon as we have passed the focal point the
distance grows again. Either one chooses the focal point very far
away or uses the idea of moving the focal point towards infinity
while the points flow.
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The problem with this idea is obvious, we must describe this
process in a functorial way and carefully check all the estimates to
guarantee the desired effects.
The comments above are all rather vague. At least we want to
give a precise axiomatic approach, which works at least in the
case of hyperbolic groups. The axiomatic approach for
CAT(0)-groups is more complicated and will be omitted, some of
the extra difficulties will be discussed when appropriate.
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Coverings

Definition (Open covering)
An open covering U of a space X is a collection of open subsets
{Ui | i ∈ I} satisfying X = ∪i∈IUi .

The dimension dim(U) of U is the smallest natural number n for
which every element in X is contained in at most (n + 1) members
of U .
An open covering V is a refinement of the open covering U if for
every U ∈ U there exists V ∈ V with V ⊆ U.
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Definition (Covering dimension)
The (topological) dimension or covering dimension dim(X ) of a space
X is the smallest natural number n for which every open covering
possesses an n-dimensional refinement. (If no such n exists, we write
dim(X ) =∞.)

If Y ⊆ X is closed, then dim(Y ) ≤ dim(X ).
IF X = Y ∪ Z for closed Y ,Z ⊆ X , then

dim(X ) = max{dim(Y ),dim(Z )}.

If M is a n-dimensional manifold, then dim(M) = n.
If X is a n-dimensional CW -complex, then dim(X ) = n.
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Definition (Nerve)
Let U be an open covering. The realization of its nerve |U| is the
following simplicial complex: The set of vertices is U itself. The vertices
U0,U1, . . . ,Un span a n-simplex if and on if ∩n

i=0Ui 6= ∅.

Points |U| are formal sums x =
∑

U∈U xUU, with xU ∈ [0,1] such
that

∑
U∈U xU = 1 and the intersection of all the U with xU 6= 0 is

non-empty, i.e., {U | xU 6= 0}.
Every simplicial complex and in particular the realization of the
nerve of an open cover can be equipped with the l1-metric d|U|,
i.e., the metric where the distance between points x =

∑
U xUU

and y =
∑

U yUU is given by d1(x , y) =
∑

U |xU − yU |.
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Let (X ,dX ) be a metric space and U an open covering of finite
dimension N.
Suppose that β ≥ 1 is a Lebesgue number for U , i.e., for every
x ∈ X there exists U ∈ U with Bβ(x) ⊆ U.
There is a map

f = fU : Z → |U|, x 7→
∑
U∈U

fU(x)U,

where

fU(x) =
aU(x)∑

V∈U aV (x)
;

aU(x) = d(x ,Z − U) = inf{d(x ,u) | u /∈ U}.
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Theorem (Contracting map)

If x , y ∈ X satisfy dX (x , y) ≤ β
4(N+1) , then we get

d|U|(f (x), f (y)) ≤ 12(N + 1)2

β
· dX (x , y).

The larger β is, the estimate applies more often and the stronger
map f is contracting.
The larger N is, the estimate applies less often and the weaker f
is contracting. If N =∞, there is no conclusion at all.
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Proof:

Put bV (x , y) := aV (x)− aV (y) for V ∈ U .
|bV (x , y)| ≤ dX (x , y) since dX is a metric.
Since there are at most 2(N + 1) elements V ∈ U with
bV (x , y) 6= 0, we get∑

V

|bV (x , y)| ≤ 2(N + 1)d(x , y) ≤ β

2
.

Since there is U ∈ U with Bβ(x) ⊆ U, we get∑
V

aV (x) ≥ aU(x) ≥ β.

Wolfgang Lück (Bonn, Germany) Strategy of Proof Göttingen, June 23, 2011 16 / 28



We compute:

fU(y)− fU(x)

=
aU(y)∑

V∈U aV (y)
− aU(x)∑

V∈U aV (x)

=
aU(y) · (

∑
V∈U aV (x))− aU(x) · (

∑
V∈U aV (y)

(
∑

V∈U aV (x)) · (
∑

V∈U aV (y))

=
aU(x) ·

∑
V bV (x , y)− aU(x) ·

∑
V aV (x) + aU(y) ·

∑
V aV (x)

(
∑

V aV (x)) · (
∑

V aV (x)− bV (x , y))

=
aU(x) ·

∑
V bV (x , y)− bU(x , y) ·

∑
V aV (x)

(
∑

V aV (x)) · (
∑

V aV (x)− bV (x , y))
.
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We estimate:∑
U

|fU(x)− fU(y)|

=
∑

U

aU(x) ·
∑

V bV (x , y)− bU(x , y) ·
∑

V aV (x)

(
∑

V aV (x)) · (
∑

V aV (x)− bV (x , y))

≤
∑

U,aU(x)6=0

∣∣∣∣ ∑
V bV (x , y)∑

V aV (x)− bV (x , y)

∣∣∣∣+

∑
U,bU(x ,y)6=0

∣∣∣∣ bU(x , y)∑
V aV (x)− bV (x , y)

∣∣∣∣
≤ 3(N + 1)

∑
V |bV (x , y)|

|
∑

V aV (x)− bV (x , y)|
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= 3(N + 1)

∑
V |bV (x , y)|

|
∑

V aV (x)− bV (x , y)|

≤ 3(N + 1)
2(N + 1)d(x , y)

|
∑

V aV (x)− bV (x , y)|

≤ 6(N + 1)2d(x , y)∑
V aV (x)−

∑
|bV (x , y)|

≤ 6(N + 1)2d(x , y)

β − 2(N + 1)d(x , y)

≤ 6(N + 1)2d(x , y)

β − β
2

=
12(N + 1)2d(x , y)

β
.
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Definition (Open F-covering)
Let F be a family of subgroups of G and let Y be a G-space. An open
F-covering U is an open covering of Y satisfying

U ∈ U ,g ∈ G =⇒ gU ∈ U ;

U ∈ U ,g ∈ G,gU ∩ U 6= ∅ =⇒ gU = U;

For U ∈ U the subgroup GU := {g ∈ G | gU = U} belongs to F .

Example
Put X = R and G = Z. Then

U = {(n,n + 1) | n ∈ Z} ∪ {(n + 1/2,n + 3/2) | n ∈ Z};
V = {(n − 1/2,n + 3/2 | n ∈ Z},

are open G-invariant coverings.
U is a open T R-covering, whereas there is no F for which V is an
open F-covering.
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Lemma
Let U be an open F-covering. Then U is a simplicial complex with
simplicial G-action and also a G-CW-complex such that all isotropy
groups belong to F .

Definition (Weak Z-set condition)

A pair (X ,X ) satisfies the weak Z -set condition if exists a homotopy
H : X × [0,1]→ X , such that H0 = idX and Ht (X ) ⊂ X for every t > 0.

If M is a manifold with boundary, then (M, ∂M) satisfies the weak
Z -set condition because of the existence of a collar.
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Theorem (Axiomatic Formulation)
Let G be a finitely generated group. Let F be a family of subgroups of
G. Suppose:

There exists a G-space X such that the underlying space X is the
realization of an abstract simplicial complex;
There exists a G-space X which contains X as an open
G-subspace such that the underlying space of X is compact,
metrizable and contractible;
The pair (X ,X ) satisfies the weak Z-set condition.
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Theorem (continued)
There exists wide open F-coverings, i.e.:
There is N ∈ N, which only depends on the G-space X, such that
for every β ≥ 1 there exists an open F-cover U(β) of G × X with
the following two properties:

For every g ∈ G and x ∈ X there exists U ∈ U(β) such that

Bβ(g)× {x} ⊂ U;

The dimension of the open cover U(β) is smaller than or equal to N.

Then both the K - and L-theoretic Farrell-Jones Conjecture (with
coefficients) holds for (G,F).
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An obvious choice for (X ,X ) is X = X = {•}. But then the
existence of wide open coverings implies F = ALL.
Proof: We can choose β so large that Bβ(e) contains a (finite) set
of generators S. Choose U ∈ U with Bβ(e) ∈ U. Then we have
gU ∩ U 6= ∅ and hence gU = U for all g ∈ S. This implies GU = G
and hence G ∈ F .
In some sense we will need the space X to obtain some additional
spaces to maneuver open sets around in order avoid two many
intersections.
It is crucial that X is compact.
In some sense N and β conflict another. The larger we take β, the
higher is the chance that many members of U intersect.
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If M is a closed manifold with non-positive sectional curvature and
G = π1(M), then the canonical choice for X is M̃ and for X its
standard compactification M = M̃ ∪ ∂M̃.
If G is a hyperbolic group, one uses for X the Rips complex and
for X = X ∪ ∂G, where ∂G is the boundary of a hyperbolic group.
In the sequel we consider this case.
The main technical point is then the construction of the wide
VCYC-covering U(β).
This will be achieved with the help of a flow space FS(X ). We will
use a variant which is closely related to the construction
of Mineyev(2005).
Our main contribution to the flow space in the case of a hyperbolic
group is the following flow estimate.
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Theorem (Flow space estimate)
There exists a continuous G-equivariant map

j : G × X → FS(X )

such that for every α > 0 there exists a number β = β(α) such that the
following holds:
If g,h ∈ G with dG(g,h) ≤ α and x ∈ X then there is τ0 ∈ [−β, β] such
that for all τ ∈ R

dFS(φτ j(g, x), φτ+τ0 j(h, x)) ≤ fα(τ).

Here fα : R→ [0,∞) is a function that depends only on α and has the
property that limτ→∞ fα(τ) = 0.
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Then the next big step is to construct an appropriate open VCYC-
covering on the flow space FS(X ) such that the desired covering
on G × X is obtained by pulling back this open covering on FS(X )
with Φτ ◦ j for appropriate τ .

Theorem (Long thin coverings)
There exists a natural number N such that for every β > 0 there is an
VCYC-cover U of FS(X ) with the following properties:

dimU ≤ N;
For every x ∈ X there exists U ∈ U such that

Φ[−β,β](x) := {Φτ (x) | τ ∈ [−β, β]} ⊆ U;

G\U is finite.
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One ingredient in the proof that the existence of long thin
coverings implies the existence of wide open coverings is the
conclusion by a compactness argument, that there exists δ > 0
such that for every c ∈ FS(X ) there exists Uc ∈ U with
Bδ(Φ[−β,β](x)) ⊆ Uc , if U is the long thin covering for β.
Next we explain why our strategy will not work for a smaller family
than VCYCI .
Consider a subgroup H ⊆ G which can be written as an extension
1→ F → H → Z→ 1 for a finite group H. Choose g ∈ H which
maps to a generator of Z. Then there are x ∈ X and t ∈ (0,∞)
such that φt (x) = gx and hx = x holds for all h ∈ F . If α satisfies
t < α, then Φ[−α,α](x) ⊆ U implies gx ∈ U and hx ∈ U for all
h ∈ F . Hence gU ∩ U 6= ∅ and hU ∩ U 6= ∅ for all h ∈ F . This
implies g ∈ GU and h ∈ GU for all h ∈ F . Hence GU contains H.

Question
Does there exist an appropriate flow space for CAT(0)-spaces and
CAT(0)-groups?
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