K_0 and Wall's finiteness obstruction (Lecture I)

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Bonn, August 2013

- Introduce the projective class group $K_0(R)$.
- Discuss examples.
- State Swan's Theorem.
- Discuss its algebraic and topological significance (e.g., finiteness obstruction).

Definition (Projective R-module)

An *R*-module *P* is called **projective** if it satisfies one of the following equivalent conditions:

- *P* is a direct summand in a free *R*-module;
- The following lifting problem has always a solution

• If $0 \to M_0 \to M_1 \to M_2 \to 0$ is an exact sequence of *R*-modules, then $0 \to \hom_R(P, M_0) \to \hom_R(P, M_1) \to \hom_R(P, M_2) \to 0$ is exact.

- Over a field or, more generally, over a principal ideal domain every projective module is free.
- If *R* is a principal ideal domain, then a finitely generated *R*-module is projective (and hence free) if and only if it is torsionfree.
 For instance Z/n is for n ≥ 2 never projective as Z-module.
- Let *R* and *S* be rings and *R* × *S* be their product. Then *R* × {0} is a finitely generated projective *R* × *S*-module which is not free.

Example (Representations of finite groups)

Let *F* be a field of characteristic *p* for *p* a prime number or 0. Let *G* be a finite group. Then *F* with the trivial *G*-action is a projective *FG*-module if and only if p = 0 or *p* does not divide the order of *G*. It is a free *FG*-module only if *G* is trivial.

Definition (Projective class group $K_0(R)$)

Define the projective class group of an (associative) ring R (with unit)

$K_0(R)$

to be the following abelian group:

- Generators are isomorphism classes [*P*] of finitely generated projective *R*-modules *P*;
- The relations are $[P_0] + [P_2] = [P_1]$ for every exact sequence $0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ of finitely generated projective *R*-modules.

Exercise

Show that $K_0(R)$ is the same as the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective *R*-modules under direct sum.

A ring homomorphism *f*: *R* → *S* induces a homomorphism of abelian groups

$$f_*: \mathcal{K}_0(\mathcal{R}) \to \mathcal{K}_0(\mathcal{S}), \quad [\mathcal{P}] \mapsto [f_*\mathcal{P}].$$

 The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective *R*-modules.

- The reduced projective class group $K_0(R)$ is the quotient of $K_0(R)$ by the subgroup generated by the classes of finitely generated free *R*-modules, or, equivalently, the cokernel of $K_0(\mathbb{Z}) \to K_0(R)$.
- Let *P* be a finitely generated projective *R*-module. It is stably free, i.e., $P \oplus R^m \cong R^n$ for appropriate $m, n \in \mathbb{Z}$, if and only if [P] = 0 in $\widetilde{K}_0(R)$.
- $\widetilde{K}_0(R)$ measures the deviation of finitely generated projective *R*-modules from being stably finitely generated free.

Compatibility with products

The two projections from $R \times S$ to R and S induce an isomorphism

$$\mathcal{K}_0(\mathcal{R} \times \mathcal{S}) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{R}) \times \mathcal{K}_0(\mathcal{S}).$$

Morita equivalence

Let *R* be a ring and $M_n(R)$ be the ring of (n, n)-matrices over *R*. Then there is a natural isomorphism

$$K_0(R) \xrightarrow{\cong} K_0(M_n(R)).$$

Example (Principal ideal domains)

If R is a principal ideal domain and F is its quotient field, then we obtain mutually inverse isomorphisms

Example (Representation ring)

- Let *G* be a finite group and let *F* be a field of characteristic zero.
- Then the representation ring $R_F(G)$ is the same as $K_0(FG)$.
- $K_0(FG) \cong R_F(G)$ is the finitely generated free abelian group with the irreducible *G*-representations as basis.
- For instance $K_o(\mathbb{C}[\mathbb{Z}/n]) \cong \mathbb{Z}^n$.

Exercise

Compute $K_0(\mathbb{C}[S_3])$.

Example (Dedekind domains)

- Let *R* be a Dedekind domain, for instance the ring of integers in an algebraic number field.
- The ideal class group C(R) is the abelian group of equivalence classes of ideals.
- Then we obtain an isomorphism

$$C(R) \xrightarrow{\cong} \widetilde{K}_0(R), \quad [I] \mapsto [I].$$

• The structure of the finite abelian group

 $C(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\mathbb{Z}/p])$

is only known for small prime numbers *p*.

Solutions to the exercises

Wolfgang Lück (HIM)

 K_0 and Wall's finiteness obstruction

Bonn, August 2013 12 / 27

Wolfgang Lück (HIM)

Wolfgang Lück (HIM)

- Let X be a compact space. Let $K^0(X)$ be the Grothendieck group of isomorphism classes of finite-dimensional complex vector bundles over X.
- This is the zero-th term of a generalized cohomology theory $K^*(X)$, called topological *K*-theory, which is 2-periodic, i.e., $K^n(X) = K^{n+2}(X)$, and satisfies $K^0(\text{pt}) = \mathbb{Z}$ and $K^1(\text{pt}) = \{0\}$.
- Let C(X) be the ring of continuous functions from X to \mathbb{C} .

Exercise

Show that the $C(S^2)$ -module of sections of the tangent bundle TS^2 is finitely generated projective and and even stably finitely generated free, but not finitely generated free.

Theorem (Swan (1962))

There is an isomorphism

$$\mathcal{K}^0(X) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{C}(X)).$$

Definition (Finitely dominated)

A *CW*-complex *X* is called finitely dominated if there exists a finite (= compact) *CW*-complex *Y* together with maps $i: X \to Y$ and $r: Y \to X$ satisfying $r \circ i \simeq id_X$.

Problem

Is a given finitely dominated CW-complex homotopy equivalent to a finite CW-complex?

Definition (Wall's finiteness obstruction)

A finitely dominated CW-complex X defines an element

 $o(X) \in K_0(\mathbb{Z}[\pi_1(X)])$

called its finiteness obstruction as follows:

- Let \widetilde{X} be the universal covering. The fundamental group $\pi = \pi_1(X)$ acts freely on \widetilde{X} .
- Let C_{*}(X̃) be the cellular chain complex, which is a free Zπ-chain complex.
- Since X is finitely dominated, there exists a finite projective $\mathbb{Z}\pi$ -chain complex P_* with $P_* \simeq_{\mathbb{Z}\pi} C_*(\widetilde{X})$.

Define

$$o(X) := \sum_n (-1)^n \cdot [P_n] \in \mathcal{K}_0(\mathbb{Z}\pi).$$

Let *f*_{*}: *C*_{*} → *D*_{*} be a *R*-chain homotopy equivalence of finite projective *R*-chain complexes. We want to show that

$$\sum_{n}(-1)^{n}\cdot [C_{n}]=\sum_{n}(-1)^{n}\cdot [D_{n}].$$

• Define the mapping cone cone(*f*_{*}) of *f*_{*} to be the chain complex whose *n*-th differential is

$$\operatorname{cone}(f_*)_n := C_{n-1} \oplus D_n \xrightarrow{\begin{pmatrix} -C_{n-1} & 0 \\ f_{n-1} & d_n \end{pmatrix}} \operatorname{cone}(f_*)_{n-1} := C_{n-2} \oplus D_{n-1}$$

• It is contractible if and only if *f*_{*} is a *R*-chain homotopy equivalence.

- Let E_* be any contractible *R*-chain complex.
- Let γ and δ be two chain contractions.
- Define *R*-homomorphisms

$$egin{array}{rll} (m{e}_*+\gamma_*)_{ ext{odd}} & : E_{ ext{odd}} &
ightarrow & E_{ ext{ev}}; \ (m{e}_*+\delta_*)_{ ext{ev}} & : E_{ ext{ev}} &
ightarrow & E_{ ext{odd}}. \end{array}$$

Put

$$\mu_n := (\gamma_{n+1} - \delta_{n+1}) \circ \delta_n;$$

$$\nu_n := (\delta_{n+1} - \gamma_{n+1}) \circ \gamma_n.$$

One easily checks that

 $(\operatorname{id} + \mu_*)_{\operatorname{odd}},$ $(\operatorname{id} + \nu_*)_{\operatorname{ev}}$

and both compositions

$$(e_* + \gamma_*)_{\mathsf{odd}} \circ (\mathsf{id} + \mu_*)_{\mathsf{odd}} \circ (e_* + \delta_*)_{\mathsf{ev}}$$

 $(e_* + \delta_*)_{\mathsf{ev}} \circ (\mathsf{id} + \nu_*)_{\mathsf{ev}} \circ (e_* + \gamma_*)_{\mathsf{odd}}$

are given by upper triangular matrices whose diagonal entries are identity maps.

- In particular these four maps are isomorphisms.
- This implies that $(e_* + \gamma_*)_{odd} : E_{odd} \rightarrow E_{ev}$ is an isomorphism.

- Hence $\sum_{n} (-1)^{n} \cdot [E_{n}] = 0$ in $K_{0}(R)$.
- If we apply this to $E_* = \operatorname{cone}(f_*)$, we get in $K_0(R)$

$$\sum_{n} (-1)^{n} \cdot [C_{n-1} \oplus D_{n}] = \sum_{n} (-1)^{n} \cdot ([C_{n-1}] + [D_{n}]) = 0.$$

• This implies in $K_0(R)$

$$\sum_n (-1)^n \cdot [C_n] = \sum_n (-1)^n \cdot [D_n].$$

Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite CW-complex if and only if its reduced finiteness obstruction $\tilde{o}(X) \in \tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ vanishes.

Exercise

Show that a finitely dominated simply connected CW-complex is always homotopy equivalent to a finite CW-complex.

Given a finitely presented group G and ξ ∈ K₀(ℤG), there exists a finitely dominated CW-complex X with π₁(X) ≅ G and o(X) = ξ.

Theorem (Geometric characterization of $K_0(\mathbb{Z}G) = \{0\}$) The following statements are equivalent for a finitely presented group *G*:

 Every finite dominated CW-complex with G ≅ π₁(X) is homotopy equivalent to a finite CW-complex;

•
$$\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$$

Conjecture (Vanishing of $\widetilde{K}_0(\mathbb{Z}G)$ for torsion free G)

If G is torsion free, then

 $\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$

Question

What is $K_1(R)$?

To be continued Stay tuned Next talk: Tuesday 9:15