K_1 and Whitehead torsion (Lecture II)

Wolfgang Lück Bonn Germany email wolfgang.lueck@him.uni-bonn.de http://131.220.77.52/lueck/

Berlin, August 2013

- Introduce $K_1(R)$ and the Whitehead group Wh(G).
- We define the Whitehead torsion of a homotopy equivalence of finite connected *CW*-complexes
- Discuss its algebraic and topological significance (e.g., s-cobordism theorem).
- Introduce negative *K*-theory and the Bass-Heller-Swan decomposition.

Definition (K_1 -group $K_1(R)$)

Define the K_1 -group of a ring R

$K_1(R)$

to be the abelian group whose generators are conjugacy classes [*f*] of automorphisms $f: P \rightarrow P$ of finitely generated projective *R*-modules with the following relations:

Given an exact sequence 0 → (P₀, f₀) → (P₁, f₁) → (P₂, f₂) → 0 of automorphisms of finitely generated projective *R*-modules, we get [f₀] + [f₂] = [f₁];

•
$$[g \circ f] = [f] + [g].$$

- Let $GL_n(R)$ be the group of invertible (n, n)-matrices.
- We get a sequence of inclusions

$$R^{ imes} = GL_1(R) \subseteq GL_2(R) \subseteq \cdots \subseteq GL_n(R) \subseteq GL_{n+1}(R) \subseteq \cdots$$

by sending an (n, n)-matrix A to the (n + 1, n + 1)-matrix $\begin{pmatrix} A & 0 \\ 0 & 1 \end{pmatrix}$.

- Let $GL(R) := \bigcup_{n \ge 1} GL_n(R)$.
- The obvious maps $GL_n(R) \to K_1(R)$ induce an epimorphism $GL(R) \to K_1(R)$).
- It induces an isomorphism

$$GL(R)/[GL(R), GL(R)] \xrightarrow{\cong} K_1(R).$$

 An invertible matrix A ∈ GL(R) can be reduced by elementary row and column operations and (de-)stabilization to the trivial empty matrix if and only if [A] = 0 holds in the reduced K₁-group

$$\widetilde{\mathsf{K}}_1(\mathsf{R}) := \mathsf{K}_1(\mathsf{R})/\{\pm 1\} = \operatorname{cok}\left(\mathsf{K}_1(\mathbb{Z}) o \mathsf{K}_1(\mathsf{R})
ight).$$

Exercise

Show for a commutative ring R that the determinant induces an epimorphism

det: $K_1(R) \rightarrow R^{\times}$.

The assignment A → [A] ∈ K₁(R) can be thought of as the universal determinant for R.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$$

Lemma

We have $Wh(\{1\}) = \{0\}.$

In contrast to K
₀(ℤG) the Whitehead group Wh(G) is computable for finite groups G.

Exercise

Show that $t - 1 - t^{-1} \in \mathbb{Z}[\mathbb{Z}/5]$ for $t \in \mathbb{Z}/5$ the generator is a unit and hence defines an element η in Wh($\mathbb{Z}/5$). Prove that we obtain a well-defined map

 $Wh(\mathbb{Z}/5) \to \mathbb{R}$

by sending the class represented by the $\mathbb{Z}[\mathbb{Z}/5]$ -automorphism $f: \mathbb{Z}[\mathbb{Z}/5]^n \to \mathbb{Z}[\mathbb{Z}/5]^n$ to $\ln(|\det(\overline{f})|)$, where $\overline{f}: \mathbb{C}^n \to \mathbb{C}^n$ is the \mathbb{C} -linear map $f \otimes_{\mathbb{Z}[\mathbb{Z}/5]} \operatorname{id}_{\mathbb{C}}: \mathbb{Z}[\mathbb{Z}/5]^n \otimes_{\mathbb{Z}[\mathbb{Z}/5]} \mathbb{C} \to \mathbb{Z}[\mathbb{Z}/5]^n \otimes_{\mathbb{Z}[\mathbb{Z}/5]} \mathbb{C}$ with respect to the $\mathbb{Z}/5$ -action on \mathbb{C} given by multiplication with $\exp(2\pi i/5)$. Finally show that η generates an infinite cyclic subgroup in Wh($\mathbb{Z}/5$).

- Let C_* be a contractible finite based free *R*-chain complex.
- Choose a chain contraction γ_* .
- Then $(c_* + \gamma_*)_{odd} : C_{odd} \rightarrow C_{ev}$ is an isomorphism of finitely generated based free *R*-modules and hence defines an element called Reidemeister torsion

$$\rho(\mathcal{C}_*) := [(\mathcal{C}_* + \gamma_*)_{\text{odd}}] \in \mathcal{K}_1(\mathcal{R}).$$

Next we show that it is independent of the choice of γ_{*}.

- Let δ_* be another chain contraction.
- Define *R*-homomorphisms

$$egin{array}{rll} (oldsymbol{e}_*+\gamma_*)_{ extsf{odd}} & \colon E_{ extsf{odd}} & o & E_{ extsf{ev}}; \ (oldsymbol{e}_*+\delta_*)_{ extsf{ev}} & \colon E_{ extsf{ev}} & o & E_{ extsf{odd}}. \end{array}$$

Put

$$\mu_n := (\gamma_{n+1} - \delta_{n+1}) \circ \delta_n;$$

$$\nu_n := (\delta_{n+1} - \gamma_{n+1}) \circ \gamma_n.$$

One easily checks that

 $(\operatorname{id} + \mu_*)_{\operatorname{odd}},$ $(\operatorname{id} + \nu_*)_{\operatorname{ev}}$

and both compositions

$$(\mathbf{c}_* + \gamma_*)_{\mathsf{odd}} \circ (\mathsf{id} + \mu_*)_{\mathsf{odd}} \circ (\mathbf{c}_* + \delta_*)_{\mathsf{ev}}$$

 $(\mathbf{c}_* + \delta_*)_{\mathsf{ev}} \circ (\mathsf{id} + \nu_*)_{\mathsf{ev}} \circ (\mathbf{c}_* + \gamma_*)_{\mathsf{odd}}$

are given by upper triangular matrices whose diagonal entries are identity maps.

- In particular they represent zero in $K_1(R)$.
- This implies $[(c_* + \gamma_*)_{odd}] = -[(c_* + \delta_*)_{ev}]$ in $K_1(R)$ and hence that $[(c_* + \gamma_*)_{odd}] \in K_1(R)$ does not depend on the choice of γ .

- Consider a *R*-chain homotopy equivalence *f_{*}*: *C_{*}* → *D_{*}* of finite based free *R*-chain complexes.
- Then its mapping cone cone(*f*_{*}) is a contractible finite based free *R*-chain complexes.
- Define the Whitehead torsion of f_{*} to be

$$\tau(f_*) := \rho(\operatorname{cone}(f_*)) \in K_1(R)$$

Exercise

Let $r \in \mathbb{Q}$ be a rational number. Show that the following finite based free \mathbb{Q} -chain complex concentrated in dimensions 2, 1 and 0 is contractible and compute its Reidemeister torsion

$$\mathbb{Q} \xrightarrow{\begin{pmatrix} \mathbf{0} \\ r \end{pmatrix}} \mathbb{Q} \oplus \mathbb{Q} \xrightarrow{(\mathbf{1} \quad \mathbf{0})} \mathbb{Q}$$

Definition (Whitehead torsion of maps)

Given a homotopy equivalence of connected finite *CW*-complexes $f: X \rightarrow Y$, define its Whitehead torsion

 $\tau(f) \in Wh(\pi_1(Y))$

as follows.

- Let $\widetilde{f}: \widetilde{X} \to \widetilde{Y}$ be a lift of f to the universal coverings.
- It is a π₁(Y)-equivariant homotopy equivalence and hence induces a ℤ[π₁(Y)]-chain homotopy equivalence C_{*}(*f̃*): C_{*}(*X̃*) → C_{*}(*Ỹ*).
- The *CW*-structures induce Z[π₁(Y)]-basis on C_{*}(X̃) and C_{*}(Ỹ) which are unique up to multiplying a basis element with some element ±w for w ∈ π₁(Y) and up to permutation of the basis elements.
- Define τ(f) to be the Whitehead torsion of C_{*}(*f̃*) considered in Wh(π₁(Y)).

Definition (simple homotopy equivalence)

A homotopy equivalence of connected finite *CW*-complex is called simple if its Whitehead torsion is trivial.

- A homotopy equivalence is a simple homotopy equivalence if and only if it is homotopic to a composition of so called expansions and collapses.
- Any element in Wh(π₁(Y)) can be realized as τ(f) for some homotopy equivalence f: X → Y.
- Since there exist connected finite CW-complexes Y with Wh(π₁(Y)) ≠ 0, there exists homotopy equivalences of connected finite CW-complexes which are not simple.

Carrying out mathematics

"Umfragen haben gezeigt, dass 17 von 23 Betroffenen diese Lösung als richtig empfinden."

"Ms. Thomas, you'll have to come pick up your son. He's swinging from a chandelier claiming that he can and will divide by zero."

"Now, let's see... if I took the second derivative of α , this would yield the new natural constant β_0 which would in turn revolutionize the way we see the universe today... oops, time for lunch!"

Definition (*h*-cobordism)

An *h*-cobordism over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed (smooth) manifold of dimension ≥ 5 . Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is homeomorphic (diffeomorphic) to $M_0 \times [0, 1]$ relative M_0 if and only if its Whitehead torsion

$$au(W, M_0) \in Wh(\pi_1(M_0))$$

vanishes.

Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy sphere, i.e., homotopy equivalent to S^n . Then M is homeomorphic to S^n .

Theorem

For $n \ge 5$ the Poincaré Conjecture is true.

Proof.

We sketch the proof for $n \ge 6$.

- Let *M* be a *n*-dimensional homotopy sphere.
- Let *W* be obtained from *M* by deleting the interior of two disjoint embedded disks D_0^n and D_1^n . Then *W* is a simply connected *h*-cobordism.
- Since Wh({1}) is trivial, we can find a homeomorphism $f: W \xrightarrow{\cong} \partial D_0^n \times [0, 1]$ that is the identity on $\partial D_0^n = \partial D_0^n \times \{0\}$.
- By the Alexander trick we can extend the homeomorphism $f|_{\partial D_1^n} : \partial D_1^n \xrightarrow{\cong} \partial D_0^n$ to a homeomorphism $g : D_1^n \to D_0^n$.
- The three homeomorphisms *id*_{D₀ⁿ}, *f* and *g* fit together to a homeomorphism *h*: *M* → *D*₀ⁿ ∪_{∂D₀ⁿ×{0}} ∂*D*₀ⁿ × [0, 1] ∪_{∂D₀ⁿ×{1}} *D*₀ⁿ. The target is obviously homeomorphic to *Sⁿ*.

- The argument above does not imply that for a smooth manifold M we obtain a diffeomorphism $g: M \to S^n$, since the Alexander trick does not work smoothly.
- Indeed, there exist so called exotic spheres, i.e., closed smooth manifolds which are homeomorphic but not diffeomorphic to Sⁿ.
- Given a finitely presented group G, an element ξ ∈ Wh(G) and a closed manifold M of dimension n ≥ 5 with G ≅ π₁(M), there exists an h-cobordism W over M with τ(W, M) = ξ.

- The *s*-Cobordism Theorem is one step in the surgery program due to Browder, Novikov, Sullivan and Wall to decide whether two closed manifolds *M* and *N* are diffeomorphic what is in general a very hard question. It consists of the following steps.
- Construct a simple homotopy equivalence $f: M \to N$;
- **2** Construct a cobordism (W; M, N) and a map $(F, f, id): (W; M, N) \rightarrow (N \times [0, 1], N \times \{0\}, N \times \{1\});$
- Modify W and F relative boundary by surgery such that F becomes a simple homotopy equivalence and thus W becomes an h-cobordism whose Whitehead torsion is trivial.
- Apply the s-Cobordism Theorem.

Theorem (Geometric characterization of $Wh(G) = \{0\}$)

The following statements are equivalent for a finitely presented group G and a fixed integer $n \ge 6$

• Every compact n-dimensional h-cobordism W with $G \cong \pi_1(W)$ is trivial;

•
$$Wh(G) = \{0\}.$$

Conjecture (Vanishing of Wh(G) for torsion free G)

If G is torsion free, then

 $\mathsf{Wh}(G) = \{0\}.$

There exist K-groups K_n(R) for every n ∈ Z. The negative K-groups were introduced by Bass, the higher algebraic K-groups by Quillen.

Theorem (Bass-Heller-Swan decomposition)

For $n \in \mathbb{Z}$ there is an isomorphism, natural in R,

 $\mathcal{K}_{n-1}(R) \oplus \mathcal{K}_n(R) \oplus \mathrm{NK}_n(R) \oplus \mathrm{NK}_n(R) \xrightarrow{\cong} \mathcal{K}_n(R[t, t^{-1}]) = \mathcal{K}_n(R[\mathbb{Z}]).$

Definition (Regular ring)

A ring *R* is called regular if it is Noetherian and every finitely generated *R*-module possesses a finite projective resolution.

Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

 $K_n(R) = 0$ for $n \le -1$; NK_n(R) = 0 for $n \in \mathbb{Z}$;

• The Bass-Heller-Swan decomposition reduces for $n \in \mathbb{Z}$ to the natural isomorphism

$$\mathcal{K}_{n-1}(\mathcal{R}) \oplus \mathcal{K}_n(\mathcal{R}) \xrightarrow{\cong} \mathcal{K}_n(\mathcal{R}[t, t^{-1}]) = \mathcal{K}_n(\mathcal{R}[\mathbb{Z}]).$$

Example (Eilenberg swindle)

- Consider a ring R. Let $\mathcal{P}(R)$ be the additive category of finitely generated projective R-modules.
- Suppose that there exists a functor S: P(R) → P(R) of additive categories together with a natural equivalence S ⊕ id_{P(R)} [≅]→ S.

• Then
$$K_n(R) = 0$$
 for $n \in \mathbb{Z}$ since
 $K_n(S) + id_{K_n(R)} = K_n(S \oplus id_{\mathcal{P}(R)}) = K_n(S)$ holds.

Exercise

Let *R* be a ring. Consider the ring *E* of *R*-endomorphisms of $\bigoplus_{i \in \mathbb{N}} R$. Show that $K_n(E) = 0$ for $n \in \mathbb{Z}$. Notice the similarity between following formulas for a regular ring *R* and a generalized homology theory *H*_{*}:

$$egin{array}{lll} \mathcal{K}_n(R[\mathbb{Z}]) &\cong \mathcal{K}_n(R) \oplus \mathcal{K}_{n-1}(R); \ \mathcal{H}_n(B\mathbb{Z}) &\cong \mathcal{H}_n(\operatorname{pt}) \oplus \mathcal{H}_{n-1}(\operatorname{pt}). \end{array}$$

• If *G* and *K* are groups, then we have the following formulas, which also look similar:

$$\begin{array}{lll} \widetilde{K}_n(\mathbb{Z}[G \ast K]) &\cong & \widetilde{K}_n(\mathbb{Z}G) \oplus \widetilde{K}_n(\mathbb{Z}K); \\ \widetilde{\mathcal{H}}_n(B(G \ast K)) &\cong & \widetilde{\mathcal{H}}_n(BG) \oplus \widetilde{\mathcal{H}}_n(BK). \end{array}$$

Question (K-theory of group rings and group homology)

Is there a relationship between $K_n(RG)$ and the group homology of G?

To be continued Stay tuned Next talk: Thursday 14:30