The relation between the Baum-Connes Conjecture and the Trace Conjecture

Wolfgang Lück* Fachbereich Mathematik und Informatik Westfälische Wilhelms-Universität Münster Einsteinstr. 62 48149 Münster Germany

June 7, 2003

Conjecture 1 (Baum-Connes Conjecture for *G***)** *The assembly map*

asmb : $K_p^G(\underline{E}G) \to K_p(C_r^*(G))$ which sends $[M, P^*]$ to $index_{C_r^*(G)}(P^*)$ is bijective.

- $C_r^*(G)$ is the reduced C^* -algebra of G;
- K_p(C^{*}_r(G)) is the topological K-theory of C^{*}_r(G). This is for p = 0 the same as the algebraic K-group. So elements in K₀(C^{*}_r(G)) are represented by finitely generated modules over the ring C^{*}_r(G);
- <u>E</u>G is the classifying space for proper G-actions. It is characterized uniquely up to G-homotopy by the property that it is a G-CW-complex whose isotropy groups are all finite and whose H-fixed point sets for $H \subset G$ are contractible. If G is torsionfree, this coincides with EG;

 K^G_p(X) for a proper G-CW-complex X is the equivariant K-homology of X as defined for instance by Kasparov. If G acts freely on X, there is a canonical isomorphism

$$K_0^G(X) \xrightarrow{\cong} K_0(G \setminus X)$$

to the *K*-homology of $G \setminus X$. For $H \subset G$ finite, $K_0^G(G/H)$ is $\operatorname{Rep}_{\mathbb{C}}(H)$.

An element in $K_p^G(\underline{E}G)$ is given by a pair (M, P^*) which consists of a smooth manifold with proper cocompact G-action and an elliptic G-complex P^* of differential operators of order 1;

• $index_{C_r^*(G)}$ is the $C_r^*(G)$ -valued index due to Mishchenko and Fomenko;

Next we explain the relevance of the Baum-Connes Conjecture.

- Since K^G_p(-) is an equivariant homology theory for proper G-CW-complexes, it is much easier to compute K^G_p(<u>E</u>G) than to compute K_p(C^{*}_r(G));
- Novikov-Conjecture for G
 The Hirzebruch signature formula says

 $\operatorname{sign}(M) = \langle \mathcal{L}(M), [M] \rangle.$

Given a map $f : M \to BG$ and $x \in H^*(BG)$, define the higher signature by

 $\operatorname{sign}_x(M, f) = \langle f^*(x) \cup \mathcal{L}(M), [M] \rangle.$

The Novikov Conjecture says that these are homotopy invariants, i.e. for f: $M \rightarrow BG$, $g: N \rightarrow BG$ and a homotopy equivalence $u: M \rightarrow N$ with $g \circ u \simeq f$ we have

$$\operatorname{sign}_x(M, f) = \operatorname{sign}_x(N, g).$$

The Baum-Connes Conjecture for G implies the Novikov Conjecture for G.

• Stable Gromov-Lawson-Rosenberg Conjecture for *G*

Let M be a closed Spin-manifold with fundamental group G of dimension \geq 5. Let B be the Bott manifold. Then $M \times B^k$ carries a Riemannian metric of positive scalar curvature for some $k \geq 0$ if and only if

$$\operatorname{index}_{C_r^*(G)}(\widetilde{M},\widetilde{D}) = 0.$$

Here D is the Dirac operator and \widetilde{D} its lift to \widetilde{M} .

Stolz has shown that the Baum-Connes Conjecture for G implies the stable Gromov-Lawson-Rosenberg Conjecture for G. The unstable version of the Gromov-Lawson-Rosenberg Conjecture, i.e. k =0, is false in general by a construction of Schick; **Conjecture 2 (Trace Conjecture for** *G***)** *The image of the composite*

 $K_0(C_r^*(G)) \to K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$

is the additive subgroup of \mathbb{R} generated by $\{\frac{1}{|H|} \mid H \subset G, |H| < \infty\}$. Here $\mathcal{N}(G)$ is the group von Neumann algebra and $\operatorname{tr}_{\mathcal{N}(G)}$ the von Neumann trace.

Notice that $\mathbb{C}[G] \subset C_r^*(G) \subset \mathcal{N}(G)$ and equality holds if and only if G is finite.

Conjecture 3 (Kadison Conjecture for *G*) Let *G* be torsionfree. Let $p \in C_r^*(G)$ be an idempotent, i.e. $p^2 = p$. Then p = 0, 1.

Lemma 4 The Trace Conjecture for G implies the Kadison Conjecture for torsionfree G.

Proof:

$$0 \le p \le 1 \Rightarrow 0 = tr(0) \le tr(p) \le tr(1) = 1$$

$$\Rightarrow tr(p) \in \mathbb{Z} \cap [0,1] \Rightarrow tr(p) = 0,1$$

$$\Rightarrow tr(p) = tr(0), tr(1) \Rightarrow p = 0,1.$$

Lemma 5 Let G be torsionfree. Then the Baum-Connes Conjecture for G implies the Trace Conjecture for G.

Proof: The following diagram commutes

This follows from the Atiyah index theorem. Namely, the upper horizontal composite sends $[M, P^*] \in K_0^G(EG)$ to the L^2 index in the sense of Atiyah

 $L^2 - \operatorname{index}(M, P^*) \in \mathbb{R},$

the right vertical arrow sends $[M, P^*]$ to $[G \setminus M, G \setminus P^*]$ and the lower horizontal composite sends $[G \setminus M, G \setminus P^*]$ to the ordinary index

$$index(G \setminus M, G \setminus P^*) \in \mathbb{Z}.$$

The L^2 -index theorem of Atiyah says

 $L^2 - \operatorname{index}(M, P^*) = \operatorname{index}(G \setminus M, G \setminus P^*).$

Theorem 6 (Roy 99) The Trace Conjecture is false in general.

Proof: Define an algebraic smooth variety

$$M = \{ [z_0, z_1, z_2, z_3] \in \mathbb{CP}^3 \mid z_0^{15} + z_1^{15} + z_2^{15} + z_3^{15} = 0 \}.$$

The group $G = \mathbb{Z}/3 \times \mathbb{Z}/3$ acts on it by
 $[z_0, z_1, z_2, z_3] \mapsto [\exp(2\pi i/3) \cdot z_0, z_1, z_2, z_3]$
 $[z_0, z_1, z_2, z_3] \mapsto [z_0, z_3, z_1, z_2]$
One obtains

$$M^G = \emptyset;$$

 $sign(M) = -1105;$
 $\pi_1(M) = \{1\}.$

An equivariant version of a construction due to Davis and Januszkiewicz yields

- A closed oriented aspherical manifold N with G-action;
- A G-map $f: N \to M$ of degree one;
- An isomorphism $f^*TM \cong TN$.

There is an extension of groups

$$1 \to \pi = \pi_1(N) \to \Gamma \xrightarrow{p} G \to 1$$

and a Γ -action on \widetilde{N} extending the π -action on \widetilde{N} and covering the *G*-action on *N*. We compute using the Hirzebruch signature formula

$$\operatorname{sign}(N) = \langle \mathcal{L}(N), [N] \rangle = \langle f^* \mathcal{L}(M), [N] \rangle$$
$$= \langle \mathcal{L}(M), f_*([N]) \rangle = \langle \mathcal{L}(M), [M] \rangle \rangle = \operatorname{sign}(M).$$

Next we prove that any finite subgroup $H \subset \Gamma$ satisfies

$$|H| \in \{1, 3\}.$$

Since \widetilde{N} turns out to be a CAT(0)-space, any finite subgroup $H \subset \Gamma$ has a fixed point by a result of Bruhat and Tits. This implies

 $\widetilde{N}^{H} \neq \emptyset \Rightarrow N^{p(H)} \neq \emptyset \Rightarrow M^{p(H)} \neq \emptyset \Rightarrow p(H) \neq G.$ Since $\pi_{1}(N)$ is torsionfree, $p|_{H} : H \rightarrow p(H)$ is bijective. On \widetilde{N} we have the signature operator \widetilde{S} . We claim that the composite

 $K_0^{\Gamma}(\underline{E}\Gamma) \xrightarrow{\operatorname{asmb}} K_0(C_r^*(\Gamma)) \to K_0(\mathcal{N}(\Gamma)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(\Gamma)}} \mathbb{R}$ sends $[\widetilde{N}, \widetilde{S}]$ to

$$\frac{1}{[\Gamma:\pi]} \cdot \operatorname{sign}(N) = \frac{-1105}{9}$$

The Trace Conjecture for Γ says

$$\frac{-1105}{9} \in \{r \in \mathbb{R} \mid 3 \cdot r \in \mathbb{Z}\}.$$

This is not true (by some very deep number theoretic considerations).

Conjecture 7 (Modified Trace Conjecture) Let $\Lambda^G \subset \mathbb{Q}$ be the subring of \mathbb{Q} obtained from \mathbb{Z} by inverting the orders of finite subgroups of G. Then the image of composite

.. ـ

$$K_0(C_r^*(G)) \to K_0(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

is contained in Λ^G .

Theorem 8 (L 01) The image of the composite

$$K_0^G(\underline{E}G) \xrightarrow{\text{asmb}} K_0(C_r^*(G)) \longrightarrow K_0(\mathcal{N}(G)) \xrightarrow{\text{tr}_{\mathcal{N}(G)}} \mathbb{R}$$

is contained in Λ^G .

In particular the Baum-Connes Conjecture for G implies the Modified Trace Conjecture for G.

Theorem 9 (Generalized L²-index theorem (L 01)) The following diagram commutes

$$\begin{array}{cccc} K_0^G(EG) \longrightarrow K_0^G(\underline{E}G) \longrightarrow K_0(C_r^*(G)) \longrightarrow K_0(\mathcal{N}(G) \\ \downarrow \cong & & \uparrow \\ K_0(BG) \longrightarrow K_0(*) & \cong & K_0(\mathcal{N}(1)) \\ or, \ equivalently, \ we \ get \ for \ a \ free \ cocompact \ G-manifold \ M \ with \ elliptic \ G- \ complex \ P^* \ of \ differential \ operators \ of \ order \ 1 \\ in \ K_0(\mathcal{N}(G)) \end{array}$$

 $\operatorname{index}_{\mathcal{N}(G)}(M, P^*) = \operatorname{index}(G \setminus M, G \setminus P^*) \cdot [\mathcal{N}(G)].$

Example 10 Let M be a closed oriented 4k-dimensional manifold. Suppose that the finite group G acts on M freely and orientation preserving. Define the *equivariant* signature

$$\operatorname{sign}^{G}(M) \in \operatorname{Rep}_{\mathbb{C}}(G)$$

by

sign^G(M) =
$$\left[H_{2k}(M;\mathbb{C})^+\right] - \left[H_{2k}(M;\mathbb{C})^-\right].$$

Then the theorem above implies the wellknown statement that for a free G-action we get

$$\operatorname{sign}^{G}(M) = \operatorname{sign}(G \setminus M) \cdot [\mathbb{C}G];$$

 $\operatorname{sign}(M) = |G| \cdot \operatorname{sign}(G \setminus M).$

Theorem 11 (Artin's Theorem) Let G be finite. Then the map

$$\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G} : \bigoplus_{C \subset G} \operatorname{Rep}_{\mathbb{C}}(C) \to \operatorname{Rep}_{\mathbb{C}}(G)$$

is surjective after inverting |G|, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

 $\bigoplus_{D \subset C, D \neq C} \operatorname{ind}_{D}^{C} : \bigoplus_{D \subset C, D \neq C} \operatorname{Rep}_{\mathbb{C}}(D) \to \operatorname{Rep}_{\mathbb{C}}(C).$

For an appropriate idempotent

$$heta_C \in \operatorname{\mathsf{Rep}}_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[rac{1}{|C|}
ight]$$

the Artin defect becomes after inverting the order of |C| canonically isomorphic to

$$heta_c \cdot \mathsf{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[rac{1}{|C|}
ight]$$

Theorem 12 (L 01) Let X be a proper G-CW-complex. For a finite cyclic subgroup $C \subset G$ let (C) be its conjugacy class, N_GC its normalizer, C_GC its centralizer and $W_GC = N_GC/C_GC$. Then there is a natural isomorphism called equivariant Chern character

$$\bigoplus_{(C)} K_p(C_G C \setminus X^C) \otimes_{\mathbb{Z}[W_G C]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G$$

$$\operatorname{ch}^G \downarrow \cong$$

$$K_p^G(X) \otimes_{\mathbb{Z}} \Lambda^G$$

Example 13 Suppose that G is torsionfree. Then the trivial subgroup $\{1\}$ is the only finite cyclic subgroup of C. We have $C_G\{1\} = N_G\{1\} = G$ and $W_G\{1\} = \{1\}$. We get an isomorphism

$$\bigoplus_{(C)} K_p(C_G C \setminus X^C) \otimes_{\mathbb{Z}[W_G C]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G$$

$$\downarrow \cong$$

$$K_p(G \setminus X) \otimes_{\mathbb{Z}} \mathbb{Z}$$

$$\downarrow \cong$$

$$K_p(G \setminus X)$$

Under this identification the inverse of ch^G becomes the canonical isomorphism

 $K_p^G(X) \xrightarrow{\cong} K_p(G \setminus X).$

Example 14 Let G be finite and $X = \{*\}$. Then we get an improvement of Artin's theorem, namely, the equivariant Chern character induces an isomorphism

$$\bigoplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}[W_G C]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z} \left[\frac{1}{|C|} \right]$$

$$\operatorname{ch}^G \downarrow \cong$$

$$\operatorname{Rep}_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Z} \left[\frac{1}{|C|} \right]$$

Example 15 Take *G* to be any (discrete) group and $X = \underline{E}G$. There is a natural isomorphism

 $K_p(BC_GC)\otimes_{\mathbb{Z}} \Lambda^G \xrightarrow{\cong} K_p(C_GC\setminus(\underline{E}G)^C)\otimes_{\mathbb{Z}} \Lambda^G.$

The equivariant Chern character induces an isomorphism

$$\bigoplus_{(C)} K_p(BC_GC) \otimes_{\mathbb{Z}[W_GC]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G$$

$$\operatorname{ch}^G \downarrow \cong$$

$$K_p^G(\underline{E}G) \otimes_{\mathbb{Z}} \Lambda^G$$

Corollary 16 The ordinary Chern character induces for a CW-complex Y an isomorphism

$$\oplus_k H_{2k+p}(Y) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} K_p(Y) \otimes_{\mathbb{Z}} \mathbb{Q}$$

If the Baum-Connes Conjecture holds for G, then we obtain an isomorphism $\bigoplus_{(C)} \bigoplus_k H_{p+2k}(BC_GC) \otimes_{\mathbb{Z}[W_GC]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q}$ $\operatorname{ch}^G \subseteq$ $K_p^G(C_r^*(G)) \otimes_{\mathbb{Z}} \mathbb{Q}$ Let X be a proper G-CW-complex. Define two homomorphisms

 $\bigoplus_{(C)} K_0(C_G C \setminus X^C) \otimes_{\mathbb{Z}[W_G C]} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G$ $\xi_i \Big|$ $K_0(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \Lambda^G$

as follows. The first one is the composition of the equivariant Chern character with the assembly map

asmb^G \otimes id : $K_0^G(X) \otimes_{\mathbb{Z}} \Lambda^G \to K_0(C_r^*(G)) \otimes_{\mathbb{Z}} \Lambda^G$ and the change of rings homomorphism

$$K_0(C_r^*(G)) \otimes_{\mathbb{Z}} \Lambda^G \to K_0(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \Lambda^G.$$

This is the homomorphism which we want to understand. In particular we are interested in its image. We want to identify it with the easier to compute homomorphism ξ_2 . The homomorphism ξ_2 is induced by the composition

$$\begin{array}{l} \bigoplus_{(C)} K_0(C_G C \setminus X^C) \otimes_{\mathbb{Z}} \theta_c \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G \\ \oplus_{(C)} K_0(\mathsf{pr}) \otimes_{\mathbb{Z}} \operatorname{Incl} \\ \oplus_{(C)} K_0(\ast) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G \\ \cong \\ & \cong \\ \oplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G \\ & \cong \\ & \oplus_{(C)} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^G \\ & \oplus_{(C)} \operatorname{Ind}_C^G \\ & \\ & K_0(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \Lambda^G \end{array}$$

The proof of the next result uses the generalized L^2 -Atiyah index theorem.

Theorem 17 Let X be a proper G-CWcomplex. Then the maps ξ_1 and ξ_2 agree. **Theorem 18** The image of the composite

$$K_{0}(\underline{E}G) \otimes_{\mathbb{Z}} \Lambda^{G} \to K_{0}(C_{r}^{*}(G)) \otimes_{\mathbb{Z}} \Lambda^{G}$$
$$\to K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \Lambda^{G}$$

is contained in the image of

 $\bigoplus_{(C)} \operatorname{ind}_{C}^{G} : \bigoplus_{(C)} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \Lambda^{G} \to K_{0}(\mathcal{N}(G) \otimes_{\mathbb{Z}} \Lambda^{G}.$

Remark 19 If we compose the second map above with

 $\operatorname{tr}_{\mathcal{N}(G)} : K_0(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \Lambda^G \to \mathbb{R}$

it is easy to see that its image is contained in Λ^G . Hence the following composition has Λ^G as image

$$K_0^G(\underline{E}G) \xrightarrow{\text{asmb}} K_0(C_r^*(G)) \longrightarrow K_0(\mathcal{N}(G)) \xrightarrow{\text{tr}_{\mathcal{N}(G)}} \mathbb{R}.$$