The relation between the

Baum-Connes Conjecture and the Trace Conjecture

Wolfgang Lück*

Fachbereich Mathematik und Informatik Westfälische Wilhelms-Universität

Münster
Einsteinstr. 62
48149 Münster
Germany

June 7, 2003

Conjecture 1 (Baum-Connes Conjecture

 for G) The assembly map$$
\operatorname{asmb}: K_{p}^{G}(\underline{E} G) \rightarrow K_{p}\left(C_{r}^{*}(G)\right)
$$

which sends $\left[M, P^{*}\right]$ to $\operatorname{index}_{C_{r}^{*}(G)}\left(P^{*}\right)$ is bijective.

- $C_{r}^{*}(G)$ is the reduced C^{*}-algebra of G;
- $K_{p}\left(C_{r}^{*}(G)\right)$ is the topological K-theory of $C_{r}^{*}(G)$. This is for $p=0$ the same as the algebraic K-group. So elements in $K_{0}\left(C_{r}^{*}(G)\right)$ are represented by finitely generated modules over the ring $C_{r}^{*}(G)$;
- $\underline{E} G$ is the classifying space for proper G-actions. It is characterized uniquely up to G-homotopy by the property that it is a G - $C W$-complex whose isotropy groups are all finite and whose H-fixed point sets for $H \subset G$ are contractible. If G is torsionfree, this coincides with $E G$;
- $K_{p}^{G}(X)$ for a proper G - $C W$-complex X is the equivariant K-homology of X as defined for instance by Kasparov. If G acts freely on X, there is a canonical isomorphism

$$
K_{0}^{G}(X) \stackrel{\cong}{\Longrightarrow} K_{0}(G \backslash X)
$$

to the K-homology of $G \backslash X$. For $H \subset G$ finite, $K_{0}^{G}(G / H)$ is $\operatorname{Rep}_{\mathbb{C}}(H)$.

An element in $K_{p}^{G}(\underline{E} G)$ is given by a pair $\left(M, P^{*}\right)$ which consists of a smooth manifold with proper cocompact G-action and an elliptic G-complex P^{*} of differential operators of order 1 ;

- index $C_{r}^{*}(G)$ is the $C_{r}^{*}(G)$-valued index due to Mishchenko and Fomenko;

Next we explain the relevance of the BaumConnes Conjecture.

- Since $K_{p}^{G}(-)$ is an equivariant homology theory for proper G - $C W$-complexes, it is much easier to compute $K_{p}^{G}(\underline{E} G)$ than to compute $K_{p}\left(C_{r}^{*}(G)\right)$;
- Novikov-Conjecture for G

The Hirzebruch signature formula says

$$
\operatorname{sign}(M)=\langle\mathcal{L}(M),[M]\rangle .
$$

Given a map $f: M \rightarrow B G$ and $x \in$ $H^{*}(B G)$, define the higher signature by
$\operatorname{sign}_{x}(M, f)=\left\langle f^{*}(x) \cup \mathcal{L}(M),[M]\right\rangle$.
The Novikov Conjecture says that these are homotopy invariants, i.e. for f : $M \rightarrow B G, g: N \rightarrow B G$ and a homotopy equivalence $u: M \rightarrow N$ with $g \circ u \simeq f$ we have

$$
\operatorname{sign}_{x}(M, f)=\operatorname{sign}_{x}(N, g)
$$

The Baum-Connes Conjecture for G implies the Novikov Conjecture for G.

- Stable Gromov-Lawson-Rosenberg Conjecture for G
Let M be a closed Spin-manifold with fundamental group G of dimension \geq 5. Let B be the Bott manifold. Then $M \times B^{k}$ carries a Riemannian metric of positive scalar curvature for some $k \geq 0$ if and only if

$$
\operatorname{index}_{C_{r}^{*}(G)}(\widetilde{M}, \widetilde{D})=0
$$

Here D is the Dirac operator and \widetilde{D} its lift to \widetilde{M}.

Stolz has shown that the Baum-Connes Conjecture for G implies the stable Gromov-Lawson-Rosenberg Conjecture for G. The unstable version of the Gromov-Lawson-Rosenberg Conjecture, i.e. $k=$ 0 , is false in general by a construction of Schick;

Conjecture 2 (Trace Conjecture for G)

 The image of the composite$$
K_{0}\left(C_{r}^{*}(G)\right) \rightarrow K_{0}(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}
$$

is the additive subgroup of \mathbb{R} generated by $\left\{\frac{1}{|H|}|H \subset G,|H|<\infty\}\right.$. Here $\mathcal{N}(G)$ is the group vol Neumann algebra and $\operatorname{tr}_{\mathcal{N}(G)}$ the vol Neumann trace.

Notice that $\mathbb{C}[G] \subset C_{r}^{*}(G) \subset \mathcal{N}(G)$ and equality holds if and only if G is finite.

Conjecture 3 (Madison Conjecture for G)

 Let G be torsionfree. Let $p \in C_{r}^{*}(G)$ be an idempotent, ie. $p^{2}=p$. Then $p=0,1$.Lemma 4 The Trace Conjecture for G implies the Kadison Conjecture for torsionfree G.

Proof:

$$
\begin{gathered}
0 \leq p \leq 1 \Rightarrow 0=\operatorname{tr}(0) \leq \operatorname{tr}(p) \leq \operatorname{tr}(1)=1 \\
\Rightarrow \operatorname{tr}(p) \in \mathbb{Z} \cap[0,1] \Rightarrow \operatorname{tr}(p)=0,1 \\
\Rightarrow \operatorname{tr}(p)=\operatorname{tr}(0), \operatorname{tr}(1) \Rightarrow p=0,1 .
\end{gathered}
$$

Lemma 5 Let G be torsionfree. Then the Baum-Connes Conjecture for G implies the Trace Conjecture for G.

Proof: The following diagram commutes

$$
\begin{aligned}
& K_{0}^{G}(E G) \longrightarrow K_{0}\left(C_{*}^{r}(G)\right) \longrightarrow K_{0}(\mathcal{N}(G)) \longrightarrow \mathbb{R} \\
& \mid \cong \\
& K_{0}(B G) \longrightarrow K_{0}(*) \longrightarrow \mathbb{Z}
\end{aligned}
$$

This follows from the Atiyah index theorem. Namely, the upper horizontal composite sends $\left[M, P^{*}\right] \in K_{0}^{G}(E G)$ to the $L^{2}-$ index in the sense of Atiyah

$$
L^{2}-\operatorname{index}\left(M, P^{*}\right) \in \mathbb{R},
$$

the right vertical arrow sends [M, P^{*}] to [$G \backslash M, G \backslash P^{*}$] and the lower horizontal composite sends [$G \backslash M, G \backslash P^{*}$] to the ordinary index

$$
\text { index }\left(G \backslash M, G \backslash P^{*}\right) \in \mathbb{Z}
$$

The L^{2}-index theorem of Atiyah says $L^{2}-\operatorname{index}\left(M, P^{*}\right)=\operatorname{index}\left(G \backslash M, G \backslash P^{*}\right)$.

Theorem 6 (Roy 99) The Trace Conjecture is false in general.

Proof: Define an algebraic smooth variety

$$
\begin{aligned}
& M=\left\{\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \in \mathbb{C P}^{3} \mid\right. \\
&\left.z_{0}^{15}+z_{1}^{15}+z_{2}^{15}+z_{3}^{15}=0\right\} .
\end{aligned}
$$

The group $G=\mathbb{Z} / 3 \times \mathbb{Z} / 3$ acts on it by
$\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \mapsto\left[\exp (2 \pi i / 3) \cdot z_{0}, z_{1}, z_{2}, z_{3}\right]$ $\left[z_{0}, z_{1}, z_{2}, z_{3}\right] \mapsto\left[z_{0}, z_{3}, z_{1}, z_{2}\right]$
One obtains

$$
\begin{aligned}
M^{G} & =\emptyset ; \\
\operatorname{sign}(M) & =-1105 ; \\
\pi_{1}(M) & =\{1\} .
\end{aligned}
$$

An equivariant version of a construction due to Davis and Januszkiewicz yields

- A closed oriented aspherical manifold N with G-action;
- A G-map $f: N \rightarrow M$ of degree one;
- An isomorphism $f^{*} T M \cong T N$.

There is an extension of groups

$$
1 \rightarrow \pi=\pi_{1}(N) \rightarrow \Gamma \xrightarrow{p} G \rightarrow 1
$$

and a Γ-action on \widetilde{N} extending the π-action on \widetilde{N} and covering the G-action on N. We compute using the Hirzebruch signature formula

$$
\begin{aligned}
& \operatorname{sign}(N)=\langle\mathcal{L}(N),[N]\rangle=\left\langle f^{*} \mathcal{L}(M),[N]\right\rangle \\
& \left.=\left\langle\mathcal{L}(M), f_{*}([N])\right\rangle=\langle\mathcal{L}(M),[M])\right\rangle=\operatorname{sign}(M)
\end{aligned}
$$

Next we prove that any finite subgroup $H \subset \Gamma$ satisfies

$$
|H| \in\{1,3\} .
$$

Since \widetilde{N} turns out to be a CAT(0)-space, any finite subgroup $H \subset \Gamma$ has a fixed point by a result of Bruhat and Tits. This implies
$\widetilde{N}^{H} \neq \emptyset \Rightarrow N^{p(H)} \neq \emptyset \Rightarrow M^{p(H)} \neq \emptyset \Rightarrow p(H) \neq G$.
Since $\pi_{1}(N)$ is torsionfree, $\left.p\right|_{H}: H \rightarrow p(H)$ is bijective.

On \widetilde{N} we have the signature operator \widetilde{S}. We claim that the composite
$K_{0}^{\Gamma}(\underline{E} \Gamma) \xrightarrow{\text { asmb }} K_{0}\left(C_{r}^{*}(\Gamma)\right) \rightarrow K_{0}(\mathcal{N}(\Gamma)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(\Gamma)}} \mathbb{R}$ sends $[\widetilde{N}, \widetilde{S}]$ to

$$
\frac{1}{[\Gamma: \pi]} \cdot \operatorname{sign}(N)=\frac{-1105}{9} .
$$

The Trace Conjecture for Γ says

$$
\frac{-1105}{9} \in\{r \in \mathbb{R} \mid 3 \cdot r \in \mathbb{Z}\} .
$$

This is not true (by some very deep number theoretic considerations).

Conjecture 7 (Modified Trace Conjecture)

 Let $\wedge^{G} \subset \mathbb{Q}$ be the subring of \mathbb{Q} obtained from \mathbb{Z} by inverting the orders of finite subgroups of G. Then the image of composite$$
K_{0}\left(C_{r}^{*}(G)\right) \rightarrow K_{0}(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}
$$

is contained in \wedge^{G}.

Theorem 8 ($\mathbf{L} \mathbf{0 1)}$ The image of the composite

$$
\begin{aligned}
K_{0}^{G}(\underline{E} G) \xrightarrow{\text { asmb }} & K_{0}\left(C_{r}^{*}(G)\right) \\
& \rightarrow K_{0}(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R}
\end{aligned}
$$

is contained in \wedge^{G}.

In particular the Baum-Connes Conjecture for G implies the Modified Trace Conjecture for G.

Theorem 9 (Generalized L^{2}-index theorem (L 01)) The following diagram commutes
$K_{0}^{G}(E G) \longrightarrow K_{0}^{G}(\underline{E} G) \longrightarrow K_{0}\left(C_{r}^{*}(G)\right) \longrightarrow K_{0}(\mathcal{N}(G)$

or, equivalently, we get for a free cocompact G-manifold M with elliptic G-complex P^{*} of differential operators of order 1 in $K_{0}(\mathcal{N}(G))$
$\operatorname{index}_{\mathcal{N}(G)}\left(M, P^{*}\right)=\operatorname{index}\left(G \backslash M, G \backslash P^{*}\right) \cdot[\mathcal{N}(G)]$.

Example 10 Let M be a closed oriented $4 k$-dimensional manifold. Suppose that the finite group G acts on M freely and orientation preserving. Define the equivariant signature

$$
\operatorname{sign}^{G}(M) \in \operatorname{Rep}_{\mathbb{C}}(G)
$$

by
$\operatorname{sign}^{G}(M)=\left[H_{2 k}(M ; \mathbb{C})^{+}\right]-\left[H_{2 k}(M ; \mathbb{C})^{-}\right]$.
Then the theorem above implies the wellknown statement that for a free G-action we get

$$
\begin{aligned}
\operatorname{sign}^{G}(M) & =\operatorname{sign}(G \backslash M) \cdot[\mathbb{C} G] \\
\operatorname{sign}(M) & =|G| \cdot \operatorname{sign}(G \backslash M) .
\end{aligned}
$$

Theorem 11 (Artin's Theorem) Let G be finite. Then the map

$$
\bigoplus_{C \subset G} \operatorname{ind}_{C}^{G}: \bigoplus_{C \subset G} \operatorname{Rep}_{\mathbb{C}}(C) \rightarrow \operatorname{Rep}_{\mathbb{C}}(G)
$$

is surjective after inverting $|G|$, where $C \subset$ G runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$
\bigoplus_{D \subset C, D \neq C} \operatorname{ind}_{D}^{C}: \bigoplus_{D \subset C, D \neq C} \operatorname{Rep}_{\mathbb{C}}(D) \rightarrow \operatorname{Rep}_{\mathbb{C}}(C) .
$$

For an appropriate idempotent

$$
\theta_{C} \in \operatorname{Rep}_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]
$$

the Artin defect becomes after inverting the order of $|C|$ canonically isomorphic to

$$
\theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]
$$

Theorem 12 (L 01) Let X be a proper G-CW-complex. For a finite cyclic subgroup $C \subset G$ let (C) be its conjugacy class, $N_{G} C$ its normalizer, $C_{G} C$ its centralizer and $W_{G} C=N_{G} C / C_{G} C$. Then there is a natural isomorphism called equivariant Chern character

$$
\begin{gathered}
\oplus_{(C)} K_{p}\left(C_{G} C \backslash X^{C}\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\operatorname{ch}^{G} \mid \cong \\
K_{p}^{G}(X) \otimes_{\mathbb{Z}} \wedge^{G}
\end{gathered}
$$

Example 13 Suppose that G is torsionfree. Then the trivial subgroup $\{1\}$ is the only finite cyclic subgroup of C. We have $C_{G}\{1\}=N_{G}\{1\}=G$ and $W_{G}\{1\}=\{1\}$. We get an isomorphism

$$
\oplus_{(C)} K_{p}\left(C_{G} C \backslash X^{C}\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G}
$$

$$
\begin{gathered}
\mid \cong \\
K_{p}(G \backslash X) \otimes_{\mathbb{Z}} \mathbb{Z} \\
\mid \cong \\
K_{p}(G \backslash X)
\end{gathered}
$$

Under this identification the inverse of ch^{G} becomes the canonical isomorphism

$$
K_{p}^{G}(X) \stackrel{ }{\cong} K_{p}(G \backslash X) .
$$

Example 14 Let G be finite and $X=\{*\}$. Then we get an improvement of Artin's theorem, namely, the equivariant Chern character induces an isomorphism

$$
\begin{gathered}
\oplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right] \\
\mathrm{ch}^{G} \mid
\end{gathered} \begin{gathered}
\cong \\
\operatorname{Rep}_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Z}\left[\frac{1}{|C|}\right]
\end{gathered}
$$

Example 15 Take G to be any (discrete) group and $X=\underline{E} G$. There is a natural isomorphism
$K_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}} \wedge^{G} \cong K_{p}\left(C_{G} C \backslash(\underline{E} G)^{C}\right) \otimes_{\mathbb{Z}} \wedge^{G}$.
The equivariant Chern character induces an isomorphism

$$
\begin{gathered}
\oplus_{(C)} K_{p}\left(B C_{G} C\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\operatorname{ch} G \cong \\
K_{p}^{G}(\underline{E} G) \otimes_{\mathbb{Z}} \wedge^{G}
\end{gathered}
$$

Corollary 16 The ordinary Chern character induces for a $C W$-complex Y an isomorphism

$$
\oplus_{k} H_{2 k+p}(Y) \otimes_{\mathbb{Z}} \mathbb{Q} \stackrel{\cong}{\Longrightarrow} K_{p}(Y) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

If the Baum-Connes Conjecture holds for G, then we obtain an isomorphism
$\oplus_{(C)} \oplus_{k} H_{p+2 k}\left(B C_{G} C\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{C} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q}$

$$
\begin{gathered}
\mathrm{ch}^{G} \mid \cong \\
K_{p}^{G}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \mathbb{Q}
\end{gathered}
$$

Let X be a proper G - $C W$-complex. Define two homomorphisms

$$
\left.\begin{gathered}
\oplus_{(C)} K_{0}\left(C_{G} C \backslash X^{C}\right) \otimes_{\mathbb{Z}\left[W_{G} C\right]} \theta_{c} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\xi_{i}
\end{gathered} \right\rvert\, \begin{gathered}
K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \wedge^{G}
\end{gathered}
$$

as follows. The first one is the composition of the equivariant Chern character with the assembly map
$\operatorname{asmb}^{G} \otimes \mathrm{id}: K_{0}^{G}(X) \otimes_{\mathbb{Z}} \wedge^{G} \rightarrow K_{0}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \wedge^{G}$ and the change of rings homomorphism

$$
K_{0}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \wedge^{G} \rightarrow K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \wedge^{G} .
$$

This is the homomorphism which we want to understand. In particular we are interested in its image. We want to identify it with the easier to compute homomorphism ξ_{2}.

The homomorphism ξ_{2} is induced by the composition

$$
\begin{gathered}
\oplus_{(C)} K_{0}\left(C_{G} C \backslash X^{C}\right) \otimes_{\mathbb{Z}} \theta_{C} \cdot \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\oplus_{(C)} K_{0}(\operatorname{pr}) \otimes_{\mathbb{Z}}{ }^{\text {incl }} \mid \\
\oplus_{(C)} K_{0}(*) \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\cong \mid \\
\oplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\cong \mid \\
\oplus_{(C)} \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \\
\oplus_{(C)} \operatorname{ind}_{C}^{G} \mid \\
K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \wedge^{G}
\end{gathered}
$$

The proof of the next result uses the generalized L^{2}-Atiyah index theorem.

Theorem 17 Let X be a proper $G-C W$ complex. Then the maps ξ_{1} and ξ_{2} agree.

Theorem 18 The image of the composite

$$
\begin{aligned}
& K_{0}(\underline{E} G) \otimes_{\mathbb{Z}} \wedge^{G} \rightarrow K_{0}\left(C_{r}^{*}(G)\right) \otimes_{\mathbb{Z}} \wedge^{G} \\
& \rightarrow K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \wedge^{G}
\end{aligned}
$$

is contained in the image of
$\bigoplus \operatorname{ind}_{C}^{G}: \bigoplus \operatorname{Rep}_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \wedge^{G} \rightarrow K_{0}\left(\mathcal{N}(G) \otimes_{\mathbb{Z}} \wedge^{G}\right.$. (C) (C)

Remark 19 If we compose the second map above with

$$
\operatorname{tr}_{\mathcal{N}(G)}: K_{0}(\mathcal{N}(G)) \otimes_{\mathbb{Z}} \wedge^{G} \rightarrow \mathbb{R}
$$

it is easy to see that its image is contained in Λ^{G}. Hence the following composition has \wedge^{G} as image
$K_{0}^{G}(\underline{E} G) \xrightarrow{\text { asmb }} K_{0}\left(C_{r}^{*}(G)\right)$

$$
\rightarrow K_{0}(\mathcal{N}(G)) \xrightarrow{\operatorname{tr}_{\mathcal{N}(G)}} \mathbb{R} .
$$

