The stable Cannon Conjecture

Wolfgang Lück
Bonn
Germany
email wolfgang.lueck@him.uni-bonn.de
http://131.220.77.52/lueck/

Fields Institute, May 2018

The main conjectures

Definition (Finite Poincaré complex)

A (connected) finite n-dimensional CW-complex X is a finite n-dimensional Poincaré complex if there is $[X] \in H_n(X; \mathbb{Z}^w)$ such that the induced $\mathbb{Z}\pi$ -chain map

$$-\cap [X]\colon \mathit{C}^{n-*}(\widetilde{X}) \to \mathit{C}_*(\widetilde{X})$$

is a $\mathbb{Z}\pi$ -chain homotopy equivalence.

Theorem (Closed manifolds are Poincaré complexes)

A closed n-dimensional manifold M is a finite n-dimensional Poincaré complex with $w = w_1(X)$.

Definition (Poincaré duality group)

A Poincaré duality group *G* of dimension *n* is a finitely presented group satisfying:

- G is of type FP;
- $H^{i}(G; \mathbb{Z}G) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$

Theorem (Wall)

If G is a d-dimensional Poincaré duality group for $d \geq 3$ and $\widetilde{K}_0(\mathbb{Z}G) = 0$, then there is a model for BG which is a finite Poincaré complex of dimension d.

Corollary

If M is a closed aspherical manifold of dimension d, then $\pi_1(X)$ is a d-dimensional Poincaré duality group.

Theorem (Hadamard)

If M is a closed smooth Riemannian manifold whose section curvature is negative, then $\pi_1(M)$ is a torsionfree hyperbolic group with $\partial G = S^{n-1}$.

Theorem (Bieri-Eckmann, Linnell)

Every 2-dimensional Poincaré duality group is the fundamental group of a closed surface.

Conjecture (Gromov)

Let G be a torsionfree hyperbolic group whose boundary is a sphere S^{n-1} . Then there is a closed aspherical manifold M with $\pi_1(M) \cong G$.

Theorem (Bartels-Lück-Weinberger)

Gromov's Conjecture is true for $n \ge 6$.

Conjecture (Wall)

Every Poincaré duality group is the fundamental group of an aspherical closed manifold.

Conjecture (Cannon's Conjecture in the torsionfree case)

A torsionfree hyperbolic group G has S^2 as boundary if and only if it is the fundamental group of a closed hyperbolic 3-manifold.

Theorem (Cannon-Cooper, Eskin-Fisher-Whyte, Kapovich-Leeb)

A Poincaré duality group G of dimension 3 is the fundamental group of an aspherical closed 3-manifold if and only if it is quasiisometric to the fundamental group of an aspherical closed 3-manifold.

• A closed 3-manifold is a Seifert manifold if it admits a finite covering $\overline{M} \to M$ such that there exists a S^1 -principal bundle $S^1 \to \overline{M} \to S$ for some closed orientable surface S.

Theorem (Bowditch)

If a Poincaré duality group of dimension 3 contains an infinite normal cyclic subgroup, then it is the fundamental group of a closed Seifert 3-manifold.

Theorem (Bestvina)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Then its boundary is homeomorphic to S^2 .

Theorem (Bestvina-Mess)

Let G be an infinite torsionfree hyperbolic group which is prime, not infinite cyclic, and the fundamental group of a closed 3-manifold M. Then M is hyperbolic and G satisfies the Cannon's Conjecture.

• In order to prove the Cannon Conjecture, it suffices to show for a hyperbolic group G, whose boundary is S^2 , that it is quasiisometric to the fundamental group of some aspherical closed 3-manifold.

Theorem

Let G be the fundamental group of an aspherical oriented closed 3-manifold. Then G satisfies:

- G is residually finite and Hopfian.
- All its L²-Betti numbers b_n⁽²⁾(G) vanish;
- Its deficiency is 0. In particular it possesses a presentation with the same number of generators and relations.
- Suppose that M is hyperbolic. Then G is virtually compact special and linear over \mathbb{Z} . It contains a subgroup of finite index G' which can be written as an extension $1 \to \pi_1(S) \to G \to \mathbb{Z} \to 1$ for some closed orientable surface S.
- Recall that any finitely presented groups occurs as the fundamental group of a closed d-dimensional smooth manifold for every $d \ge 4$.

Theorem (Bestvina-Mess)

A torsionfree hyperbolic G is a Poincaré duality group of dimension n if and only if its boundary ∂G and S^{n-1} have the same Čech cohomology.

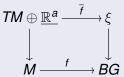
Theorem

If the boundary of a hyperbolic group contains an open subset homeomorphic to \mathbb{R}^n , then the boundary is homeomorphic to \mathbb{S}^n .

The main results

Theorem (Ferry-Lück-Weinberger, (preprint, 2018), Vanishing of the surgery obstruction)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Then there is a normal map of degree one (in the sense of surgery theory)



satisfying

- The space BG is a finite 3-dimensional CW-complex;
- ② The map $H_n(f,\mathbb{Z})\colon H_n(M;\mathbb{Z})\stackrel{\cong}{\to} H_n(BG;\mathbb{Z})$ is bijective for all $n\geq 0$;
- **3** The simple algebraic surgery obstruction $\sigma(f, \overline{f}) \in L_3^s(\mathbb{Z}G)$ vanishes.

Theorem (Ferry-Lück-Weinberger, (preprint, 2018), Stable Cannon Conjecture)

Let G be a hyperbolic 3-dimensional Poincaré duality group. Let N be any smooth, PL or topological manifold respectively which is closed and whose dimension is ≥ 2 .

Then there is a closed smooth, PL or topological manifold M and a normal map of degree one

$$TM \oplus \underline{\mathbb{R}^{a}} \xrightarrow{\underline{f}} \xi \times TN$$

$$\downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{f} BG \times N$$

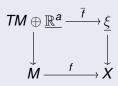
such that the map f is a simple homotopy equivalence.

- Obviously the last two theorems follow from the stable Cannon Conjecture.
- By the product formula for surgery theory the second last theorem implies the last theorem.
- The manifold M appearing in the last theorem is unique up to homeomorphism by the Borel Conjecture, provided that $\pi_1(N)$ satisfies the Farrell-Jones Conjecture.
- If we take $N = T^k$ for some $k \ge 2$, then the Cannon Conjecture is equivalent to the statement that this M is homeomorphic to $M' \times T^k$ for some closed 3-manifold M'.

The existence of a normal map

Theorem (Existence of a normal map)

Let X be a connected oriented finite 3-dimensional Poincaré complex. Then there are an integer $a \ge 0$ and a vector bundle ξ over BG and a normal map of degree one



Proof.

- Notice that by the Pontrjagin-Thom construction this claim is equivalent to the existence of a vector bundle reduction of the stable Spivak normal spherical fibration.
- Recall that this is a (k-1)-spherical fibration $p \colon E \to X$ together with a map $c \colon S^{n+k} \to \mathsf{Th}(p)$ such that the Hurewicz homomorphism $\pi_{n+k}(\mathsf{Th}(p)) \to H_{n+k}(\mathsf{Th}(p))$ sends [c] to a generator of the infinite cyclic group $H_{n+k}(\mathsf{Th}(p))$.
- Stable vector bundles over X are classified by the first and second Stiefel-Whitney class $w_1(\xi)$ and $w_2(\xi)$ in $H^*(X; \mathbb{Z}/2)$.
- Let ξ be a k-dimensional vector bundle over X such that $w_1(\xi) = w_1(X)$ and $w_2(\xi) = w_1(\xi) \cup w_1(\xi)$ holds.

Proof (continued).

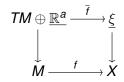
- A spectral sequence argument applied to $\Omega_3(X, w_1(X))$ shows that there is a closed 3-manifold M together with a map $f: M \to X$ of degree one such that $f^*w_1(X) = w_1(M)$.
- Then $w_1(f^*\xi) = w_1(M)$ and the Wu formula implies $w_2(M) = w_1(f^*\xi) \cup w_1(f^*\xi)$.
- Hence $f^*\xi$ is stably isomorphic to the stable tangent bundle of M and hence there is a collaps map $c' \colon S^{3+k} \to \operatorname{Th}(f^*\xi)$ such that the Hurewicz homomorphism $\pi_{n+k}(\operatorname{Th}(f^*\xi)) \to H_{n+k}(\operatorname{Th}(f^*\xi))$ sends [c'] to a generator of the infinite cyclic group $H_{n+k}(\operatorname{Th}(\rho))$.

Proof (continued).

- Now define $c := \operatorname{Th}(\overline{f}) \circ c'$, where (\overline{f}, f) is the bundle map from $f^*\xi$ to ξ given by the pullback construction. Then the Hurewicz homomorphism $\pi_{n+k}(\operatorname{Th}(\xi)) \to H_{n+k}(\operatorname{Th}(\xi))$ sends [c] to a generator of the infinite cyclic group $H_{n+k}(\operatorname{Th}(p))$.
- By the uniqueness of the stable Spivak fibration ξ is a vector bundle reduction of the Spivak normal fibration.

The total surgery obstruction

We have to find one normal map of degree one



whose simple surgery obstruction $\sigma^s(f, \bar{f}) \in L_3^s(\mathbb{Z}G)$ vanishes.

• Consider an aspherical finite n-dimensional Poincaré complex X such that $\pi_1(X)$ is a Farrell-Jones group, i.e., satisfies both the K-theoretic and the L-theoretic Farrell-Jones Conjecture with coefficients in additive categories, and $\mathcal{N}(X)$ is non-empty. (For simplicity we assume $w_1(X) = 0$ in the sequel.)

Recall that the simple surgery obstruction defines a map

$$\sigma^s \colon \mathcal{N}(X) \to L_n^s(\mathbb{Z}G)$$

- Fix a normal map $(f_0, \overline{f_0})$.
- Then there is a commutative diagram

whose vertical arrows are bijections thanks to the Farrell-Jones Conjecture and the upper arrow sends the class of (f, \overline{f}) to the difference $\sigma^s(f, \overline{f}) - \sigma^s(f, \overline{f_0})$ of simple surgery obstructions.

 An easy spectral sequence argument yields a short exact sequence

$$0 \to H_n(X; \mathbf{L}_{\mathbb{Z}}^s\langle 1 \rangle) \xrightarrow{H_n(\mathsf{id}_X; \mathbf{i})} H_n(X; \mathbf{L}_{\mathbb{Z}}^s) \xrightarrow{\lambda_n^s(X)} L_0(\mathbb{Z}).$$

Consider the composite

$$\mu_n^s(X) \colon \mathcal{N}(X) \xrightarrow{\sigma^s} L_n^s(\mathbb{Z}G, w) \xrightarrow{\operatorname{asmb}_n^s(X)^{-1}} H_n(X; \mathbf{L}_\mathbb{Z}^s) \xrightarrow{\lambda_n^s(X)} L_0(\mathbb{Z}).$$

 We conclude that there is precisely one element, called the total surgery obstruction,

$$s(X) \in L_0(\mathbb{Z}) \cong \mathbb{Z}$$

such that for any element $[(f, \overline{f})]$ in $\mathcal{N}(X)$ its image under $\mu_n^s(X)$ is s(X).

Theorem (Total surgery obstruction)

- There exists a normal map of degree one (f, f) with target X and vanishing simple surgery obstruction $\sigma^s(f, \overline{f}) \in L_n^s(\mathbb{Z}G)$ if and only if $s(X) \in L_0(\mathbb{Z}) \cong \mathbb{Z}$ vanishes.
- The total surgery obstruction is a homotopy invariant of X and hence depends only on G.

ANR-homology manifolds

Definition (Homology ANR-manifold)

A homology ANR-manifold X is an ANR satisfying:

- X has a countable basis for its topology;
- The topological dimension of *X* is finite;
- X is locally compact;
- for every $x \in X$ we have for the singular homology

$$H_i(X, X - \{x\}; \mathbb{Z}) \cong \begin{cases} 0 & i \neq n; \\ \mathbb{Z} & i = n. \end{cases}$$

If X is additionally compact, it is called a closed ANR-homology manifold.

- Every closed topological manifold is a closed ANR-homology manifold.
- Let M be homology sphere with non-trivial fundamental group. Then its suspension ΣM is a closed ANR-homology manifold but not a topological manifold.

Quinn's resolution obstruction

Theorem (Quinn (1987))

There is an invariant $\iota(M) \in 1 + 8\mathbb{Z}$ for homology ANR-manifolds with the following properties:

- if $U \subset M$ is an open subset, then $\iota(U) = \iota(M)$;
- $i(M \times N) = i(M) \cdot i(N)$;
- Let M be a homology ANR-manifold of dimension ≥ 5 . Then M is a topological manifold if and only if $\iota(M) = 1$.
- The Quinn obstruction and the total surgery obstruction are related for an aspherical closed ANR-homology manifold M of dimension ≥ 5 by

$$\iota(M) = 8 \cdot s(X) + 1.$$

Proof of the Theorem about the vanishing of the surgery obstruction

Proof.

- We have to show for the aspherical finite 3-dimensional Poincaré complex *X* that its total surgery obstruction vanishes.
- The total surgery obstruction satisfies a product formula

$$s(X \times Y) = s(X) + s(Y).$$

This implies

$$s(X \times T^3) = s(X).$$

• Hence it suffices to show that $s(X \times T^3)$ vanishes.

Proof (continued).

- There exists an aspherical closed ANR-homology manifold M and a homotopy equivalence to $f: M \to X \times T^3$.
- There is a Z-compactification $\overline{\widetilde{X}}$ of \widetilde{X} by the boundary $\partial G = S^2$.
- One then constructs an appropriate Z-compactification \widetilde{M} of \widetilde{M} so that we get a ANR-homology manifold $\overline{\widetilde{M}}$ whose boundary is a topological manifold and whose interior is \widetilde{M} .
- By adding a collar to \widetilde{M} one obtains a ANR-homology manifold Y which contains \widetilde{M} as an open subset and contains an open subset U which is homeomorphic to \mathbb{R}^6 .

Proof (continued).

Hence we get

$$8s(X \times T^3) + 1 = 8s(M) + 1 = i(M) = i(\widetilde{M})$$

= $i(Y) = i(U) = i(\mathbb{R}^6) = 1$.

• This implies $s(X \times T^3) = 0$ and hence s(X) = 0.

