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Abstract. We construct for an equivariant homology theory for proper equiv-
ariant CW-complexes an equivariant Chern character, provided that certain conditions
are satis®ed. This applies for instance to the sources of the assembly maps in the Farrell-
Jones Conjecture with respect to the family F of ®nite subgroups and in the Baum-
Connes Conjecture. Thus we get an explicit calculation in terms of group homology of
QnZ Kn�RG� and QnZ Ln�RG� for a commutative ring R with QHR, provided the
Farrell-Jones Conjecture with respect to F is true, and of QnZ K top

n

ÿ
C �r �G;F�

�
for

F � R;C, provided the Baum-Connes Conjecture is true.

0. Introduction and statements of results

In this paper we want to achieve the following two goals. Firstly, we want to
construct an equivariant Chern character for a proper equivariant homology theory H?

�
which takes values in R-modules for a commutative ring R with QHR. The Chern
character identi®es HG

n �X � with the associated Bredon homology, which is much easier
to handle and can often be simpli®ed further. Secondly, we apply it to the sources of
the assembly maps appearing in the Farrell-Jones Conjecture with respect to the family
F of ®nite subgroups and in the Baum-Connes Conjecture. The target of these assembly
maps are the groups we are interested in, namely, the rationalized algebraic K- and L-
groups QnZ Kn�RG� and QnZ Ln�RG� of the group ring RG of a (discrete) group G
with coe½cients in R and the rationalized topological K-groups QnZ K top

n

ÿ
C �r �G;F�

�
of the reduced group C �-algebra of G over F � R;C. These conjectures say that these
assembly maps are isomorphisms. Thus combining them with our equivariant Chern
character yields explicit computations of these rationalized K- and L-groups in terms of
group homology and the K-groups and L-groups of the coe½cient ring R or F (see Theo-
rem 0.4 and Theorem 0.5).

Throughout this paper all groups are discrete and R will denote a commutative asso-
ciative ring with unit. A proper G-homology theory HG

� assigns to any G-CW-pair �X ;A�
which is proper, i.e. all isotropy groups are ®nite, a Z-graded R-module HG

� �X ;A� such



that G-homotopy invariance, excision and the disjoint union axiom hold and there is a long
exact sequence of a proper G-CW-pair. An equivariant proper homology theory H?

� assigns
to any group G a proper G-homology theory HG

� , and these are linked for the various
groups G by an induction structure. An example is equivariant bordism for smooth ori-
ented manifolds with cocompact proper orientation preserving group actions. The main
examples for us will be given by the sources of the assembly maps appearing in the Farrell-
Jones Conjecture with respect to F and in the Baum-Connes Conjecture. These notions
will be explained in Section 1.

To any equivariant proper homology theory H?
� we will construct in Section 3 another

equivariant proper homology theory, the associated Bredon homology BH?
� . The point is

that BH?
� is much easier to handle than H?

� . Although we will not deal with equivariant
spectra in this paper, we mention that the equivariant Bredon homology BH?

� is given by a
product of equivariant Eilenberg-MacLane spaces, whose homotopy groups are given by
the collection of the R-modules HG

q �G=H�, and that the equivariant Chern character can
be interpreted as a splitting of certain equivariant spectra into products of equivariant
Eilenberg-MacLane spectra. We will construct an isomorphism of equivariant homology
theories ch?

�: BH?
� !

G
H?
� in Section 4, provided that a certain technical assumption is

ful®lled, namely, that the covariant R Sub�G;F�-module HG
q �G=?�GH?

q ��� is ¯at for
all q A Z and all groups G. The construction of chG

� for a given group G requires that H?
�

is de®ned for all groups, not only for G. There are some favourite situations, where the
technical assumption above is automatically satis®ed, and the Bredon homology BH?

� can
be computed further. Let FGINJ be the category of ®nite groups with injective group
homomorphisms as morphisms. The equivariant homology theory de®nes a covariant
functor H?

q ���: FGINJ!RÿMOD which sends H to HH
q ���. Functoriality comes from

the induction structure. Suppose that this functor can be extended to a Mackey functor.
This essentially means that one also gets a contravariant structure by restriction and the
induction and restriction structures are related by a double coset formula (see Section 5). An
important example of a Mackey functor is given by sending H to the rational, real or
complex representation ring.

Theorem 0.1. Let R be a commutative ring with QHR. Let H?
� be a proper equi-

variant homology theory with values in R-modules. Suppose that the covariant functor

H?
q ���: FGINJ! RÿMOD extends to a Mackey functor for all q A Z. Then there is an

isomorphism of proper homology theories

ch?
�: BH?

� !
G

H?
� :

Theorem 0.1 is the equivariant version of the well-known result (explained in Exam-
ple 4.1) that for a (non-equivariant) homology theory H� with values in R-modules and a
CW-pair �X ;A� there are natural isomorphismsL

p�q�n

Hp

ÿ
X ;A;Hq����GHn�X ;A�:

The associated Bredon homology can be decomposed further. De®ne for a ®nite
group H

SH

ÿ
HH

q ���
�

:� coker

 L
KHH
K3H

indH
K :

L
KHH
K3H

HK
q ��� !HH

q ���
!
:
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For a subgroup H HG we denote by NGH the normalizer and by CGH the centralizer of
H in G. Let H � CGH be the subgroup of NGH consisting of elements of the form hc for
h A H and c A CGH. Denote by WGH the quotient NGH=H � CGH. Notice that WGH is
®nite if H is ®nite.

Theorem 0.2. Consider the situation and assumptions of Theorem 0.1. Let I be the

set of conjugacy classes �H� of ®nite subgroups H of G. Then there is for any group G and

any proper G-CW-pair �X ;A� a natural isomorphism

BHG
n �X ;A�G

L
p�q�n

L
�H� A I

Hp

ÿ
CGHn�X H ;AH�; R

�
nR�WGH� SH

ÿ
HH

q ���
�
:

Theorem 0.1 and Theorem 0.2 reduce the computation of HG
n �X ;A� to the compu-

tation of the singular or cellular homology R-modules Hp

ÿ
CGHn�X H ;AH�; R

�
of the

CW-pairs CGHn�X H ;AH� including the obvious right WGH-operation and of the left
R�WGH�-modules SH

ÿ
HH

q ���
�

which only involve the values HG
q �G=H� �HH

q ���.

Suppose that H?
� comes with a restriction structure as explained in Section 6. Then

it induces a Mackey structure on H?
q ��� for all q A Z and a preferred restriction structure

on BH?
� so that Theorem 0.1 applies and the equivariant Chern character is compatible

with these restriction structures. If H?
� comes with a multiplicative structure as explained in

Section 6, then BH?
� inherits a multiplicative structure and the equivariant Chern character

is compatible with these multiplicative structures (see Theorem 6.3).

If we have the following additional structure, which will be available in the examples
we are interested in, then we can simplify the Bredon homology further. Namely, we assume
that the Mackey functor HH

q ��� is a module over the Green functor QnZ RQ�?� which
assigns to a ®nite group H the rationalized ring of rational H-representations. This notion
is explained in Section 7. In particular it yields for any ®nite group H the structure of a
QnZ RQ�H�-module on HH

q ���. Let classQ�H� be the ring of functions f : H ! Q which
satisfy f �h1� � f �h2� if the cyclic subgroups hh1i and hh2i generated by h1 and h2 are con-
jugate in H. Taking characters yields an isomorphism of rings

w: QnZ RQ�H� !G classQ�H�:

Given a ®nite cyclic group C, there is the idempotent yC
C A classQ�C� which assigns 1 to

a generator of C and 0 to the other elements. This element acts on HC
q ���. The image

im
ÿ
yC

C : HC
q ��� !HC

q ���
�

of the map given by multiplication with the idempotent yC
C is

a direct summand in HC
q ��� and will be denoted by yC

C �HC
q ���.

Theorem 0.3. Let R be a commutative ring with QHR. Let H?
� be a proper equi-

variant homology theory with values in R-modules. Suppose that the covariant functor

FGINJ! RÿMOD sending H to HH
q ��� extends to a Mackey functor for all q A Z, which

is a module over the Green functor QnZ RQ�?� with respect to the inclusion Q! R. Let

J be the set of conjugacy classes �C� of ®nite cyclic subgroups C of G. Then there is an iso-

morphism of proper homology theories

ch?
�: BH?

� !
G

H?
� :
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Moreover, for any group G and any proper G-CW-pair �X ;A� there is a natural isomorphism

BHG
n �X ;A� �

L
p�q�n

L
�C� A J

Hp

ÿ
CGCn�X C ;AC�; R

�
nR�WGC�

ÿ
yC

C �HC
q ���

�
:

Since QnZ Kq�R?�, QnZ Lq�R?� and QnZ K top
q

ÿ
C �r �?;F�

�
are Mackey functors

and come with module structures over the Green functor QnZ RQ�?� as explained in
Section 8, Theorem 0.3 implies

Theorem 0.4. Let R be a commutative ring with QHR. Denote by F the ®eld R or C.
Let G be a (discrete) group. Let J be the set of conjugacy classes �C� of ®nite cyclic subgroups

C of G. Then the rationalized assembly map in the Farrell-Jones Conjecture with respect

to the family F of ®nite subgroups for the algebraic K-groups Kn�RG� and the algebraic
L-groups Ln�RG� and in the Baum-Connes Conjecture for the topological K-groups

K top
n

ÿ
C �r �G;F�

�
can be identi®ed with the homomorphismsL

p�q�n

L
�C� A J

Hp�CGC; Q�nQ�WGC� y
C

C �
ÿ
QnZ Kq�RC��! QnZ Kn�RG�;

L
p�q�n

L
�C� A J

Hp�CGC; Q�nQ�WGC� y
C

C �
ÿ
QnZ Lq�RC��! QnZ Ln�RG�;

L
p�q�n

L
�C� A J

Hp�CGC; Q�nQ�WGC� y
C

C �
ÿ
QnZ K top

q

ÿ
C �r �C;F�

��! QnZ K top
n

ÿ
C �r �G;F�

�
:

In the L-theory case we assume that R comes with an involution R! R, r 7! r and that we

use on RG the involution which sends
P

g AG

rg � g to
P

g AG

rg � gÿ1.

If the Farrell-Jones Conjecture with respect to F and the Baum-Connes Conjecture are

true, then these maps are isomorphisms.

Notice that in Theorem 0.3 and hence in Theorem 0.4 only cyclic groups occur. The
basic input in the proof is essentially the same as in the proof of Artin's theorem that any
character in the complex representation ring of a ®nite group H is rationally a linear com-
bination of characters induced from cyclic subgroups. Moreover, we emphasize that all the
splitting results are obtained after tensoring with Q, no roots of unity are needed in our
construction. In the special situation that the coe½cient ring R is a ®eld F of characteristic
zero and we tensor with F nZ? for an algebraic closure F of F, one can simplify the expres-
sions further as carried out in Section 8. As an illustration we record the following partic-
ular nice case.

Theorem 0.5. Let G be a (discrete) group. Let T be the set of conjugacy classes �g� of
elements g A G of ®nite order. There is a commutative diagramL

p�q�n

L
�g� AT

Hp�CGhgi; C�nZ Kq�C� ���! CnZ Kn�CG�???y ???yL
p�q�n

L
�g� AT

Hp�CGhgi; C�nZ K top
q �C� ���! CnZ K top

n

ÿ
C �r �G�

�
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where CGhgi is the centralizer of the cyclic group generated by g in G and the vertical

arrows come from the obvious change of ring and of K-theory maps Kq�C� ! K top
q �C� and

Kn�CG� ! K top
n

ÿ
C �r �G�

�
. The horizontal arrows can be identi®ed with the assembly maps

occuring in the Farrell-Jones Conjecture with respect to F for Kn�CG� and in the Baum-

Connes Conjecture for K top
n

ÿ
C �r �G�

�
after applying CnZÿ. If these conjectures are true for

G, then the horizontal arrows are isomorphisms.

Notice that Theorem 0.5 and the results of Section 8 show that the computation of
the K- and L-theory of RG seems to split into one part, which involves only the group and
consists essentially of group homology, and another part, which involves only the coe½-
cient ring and consists essentially of its K-theory. Moreover, a change of rings or change of
K-theory map involves only the coe½cient ring R and not the part involving the group.
This seems to suggest to look for a proof of the Farrell-Jones Conjecture which works for
all coe½cients simultaneously. We refer to Example 1.5 and to [3], [9], [12], [13], [14] and
[15] for more information about the Farrell-Jones and the Baum-Connes Conjectures and
about the classes of groups, for which they have been proven.

We mention that a di¨erent construction of an equivariant Chern character has been
given in [2] in the case, where HG

� is equivariant K-homology after applying CnZÿ.
Moreover, the lower horizontal arrow in Theorem 0.5 has already been discussed there.

The computations of K- and L-groups integrally and with R � Z as coe½cients are
much harder (see for instance [18]).

I would like to thank Tom Farrell for a lot of fruitful discussions of the Farrell-Jones
Conjecture and related topics and the referee for his very detailed and very helpful report.

1. Equivariant homology theories

In this section we describe the axioms of a (proper) equivariant homology theory.
The main examples for us are the source of the assembly map appearing in the Farrell-
Jones Conjecture with respect to the family F of ®nite subgroups for algebraic K- and L-
theory and the equivariant K-homology theory which appears as the source of the Baum-
Connes assembly map and is de®ned in terms of Kasparov's equivariant KK-theory.

Fix a discrete group G and an associative commutative ring R with unit. A G-CW-
pair �X ;A� is a pair of G-CW-complexes. It is called proper if all isotropy groups of X

are ®nite. Basic informations about G-CW-pairs can be found for instance in [16], Section
1 and 2. A G-homology theory HG

� with values in R-modules is a collection of covariant
functors HG

n from the category of G-CW-pairs to the category of R-modules indexed by
n A Z together with natural tranformations qG

n �X ;A�: HG
n �X ;A� !HG

nÿ1�A� :�HG
nÿ1�A; j�

for n A Z such that the following axioms are satis®ed:

(a) G-homotopy invariance.

If f0 and f1 are G-homotopic maps �X ;A� ! �Y ;B� of G-CW-pairs, then

HG
n � f0� �HG

n � f1� for n A Z.
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(b) Long exact sequence of a pair.

Given a pair �X ;A� of G-CW-complexes, there is a long exact sequence

. . . ���!HG
n�1� j�

HG
n�1�X ;A� ���!qG

n�1
HG

n �A� ���!HG
n �i�

HG
n �X � ���!HG

n � j�
HG

n �X ;A� ���!qG
n

. . . ;

where i: A! X and j: X ! �X ;A� are the inclusions.

(c) Excision.

Let �X ;A� be a G-CW-pair and let f : A! B be a cellular G-map of G-CW-
complexes. Equip �X Wf B;B� with the induced structure of a G-CW-pair. Then the
canonical map �F ; f �: �X ;A� ! �X Wf B;B� induces an isomorphism

HG
n �F ; f �: HG

n �X ;A� !
G

HG
n �X Wf B;B�:

(d) Disjoint union axiom.

Let fXi j i A Ig be a family of G-CW-complexes. Denote by ji: Xi !
ì A I

Xi the
canonical inclusion. Then the map

L
i A I

HG
n � ji�:

L
i A I

HG
n �Xi� !G HG

n
ì A I

Xi

� �
is bijective.

If HG
� is de®ned or considered only for proper G-CW-pairs �X ;A�, we call it a proper

G-homology theory HG
� with values in R-modules.

Let a: H ! G be a group homomorphism. Given an H-space X, de®ne the induction

of X with a to be the G-space inda X which is the quotient of G � X by the right H-action
�g; x� � h :� ÿga�h�; hÿ1x

�
for h A H and �g; x� A G � X . If a: H ! G is an inclusion, we

also write indG
H instead of inda.

A ( proper) equivariant homology theory H?
� with values in R-modules consists of

a (proper) G-homology theory HG
� with values in R-modules for each group G together

with the following so called induction structure: given a group homomorphism a: H ! G

and an H-CW-pair �X ;A� such that ker�a� acts freely on X, there are for all n A Z natural
isomorphisms

inda: HH
n �X ;A� !

G
HG

n

ÿ
inda�X ;A�

��1:1�

satisfying:

(a) Compatibility with the boundary homomorphisms.

qG
n � inda � inda � qH

n .
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(b) Functoriality.

Let b: G ! K be another group homomorphism such that ker�b � a� acts freely on
X. Then we have for n A Z

indb�a �HK
n � f1� � indb � inda: HH

n �X ;A� !HK
n

ÿ
indb�a�X ;A�

�
;

where f1: indb inda�X ;A� !G indb�a�X ;A�, �k; g; x� 7!
ÿ
kb�g�; x� is the natural K-

homeomorphism.

(c) Compatibility with conjugation.

For n A Z, g A G and a (proper) G-CW-pair �X ;A� the homomorphism

indc�g�: G!G: HG
n �X ;A� !HG

n

ÿ
indc�g�: G!G�X ;A�

�
agrees with HG

n � f2� for the G-homeomorphism f2: �X ;A� ! indc�g�: G!G�X ;A� which
sends x to �1; gÿ1x� in G �c�g� �X ;A�.

This induction structure links the various homology theories for di¨erent groups G.
It will play a key role in the construction of the equivariant Chern character even if we
want to carry it out only for a ®xed group G. We will later need

Lemma 1.2. Consider ®nite subgroups H;K HG and an element g A G with

gHgÿ1 HK. Let Rgÿ1 : G=H ! G=K be the G-map sending g 0H to g 0gÿ1K and c�g�: H ! K
be the homomorphism sending h to ghgÿ1. Let pr: �indc�g�: H!K�� ! � be the projection. Then

the following diagram commutes:

HH
n ��� ��������!HK

n �pr��indc�g�
HK

n ���

indG
H

????yG indG
K

????yG

HG
n �G=H� �������!HG

n �Rgÿ1 �
HG

n �G=K�:

Proof. De®ne a bijective G-map f1: indc�g�: G!G indG
H� ! indG

K indc�g�: H!K� by send-
ing �g1; g2; �� in G �c�g� G �H � to �g1gg2gÿ1; 1; �� in G �K K �c�g� �. The condition that
induction is compatible with composition of group homomorphisms means precisely that
the composite

HH
n ��� �!indG

H
HG

n �indG
H�� �����!indc�g�: G!G

HG
n �indc�g�: G!G indG

H�� ����!HG
n � f1�

HG
n �indG

K indc�g�: H!K��

agrees with the composite

HH
n ��� �����!indc�g�: H!K

HK
n �indc�g�: H!K�� �!indG

K
HG

n �indG
K indc�g�: H!K��:

Naturality of induction implies HG
n �indG

K pr� � indG
K � indG

K �HK
n �pr�. Hence the follow-

ing diagram commutes:

LuÈ ck, Chern characters 199



HH
n ��� ������������������!HK

n �pr��indc�g�: H!K

HK
n ���

indG
H

???y ???yindG
K

HG
n �G=H� ������������������!

HG
n �indG

K pr��HG
n � f1��indc�g�: G!G

HG
n �G=K�:

By the axioms the homomorphism indc�g�: G!G: HG
n �G=H� !HG

n �indc�g�: G!G G=H� agrees
with HG

n � f2� for the map f2: G=H ! indc�g�: G!G G=H which sends g 0H to �g 0gÿ1; 1H�
in G �c�g� G=H. Since the composite �indG

K pr� � f1 � f2 is just Rgÿ1 , Lemma 1.2 follows. r

Example 1.3. Let K� be a homology theory for (non-equivariant) CW-pairs with
values in R-modules. Examples are singular homology, oriented bordism theory or
topological K-homology. Then we obtain two equivariant homology theories with values
in R-modules by the following constructions:

HG
n �X ;A� �Kn�GnX ;GnA�;

HG
n �X ;A� �Kn

ÿ
EG �G �X ;A�

�
:

The second one is called the equivariant Borel homology associated to K. In both cases HG
�

inherits the structure of a G-homology theory from the homology structure on K�. Let
a: HnX !G Gn�G �a X� be the homeomorphism sending Hx to G�1; x�. De®ne

b: EH �H X ! EG �G G �a X

by sending �e; x� to
ÿ
Ea�e�; 1; x� for e A EH, x A X and Ea: EH ! EG the a-equivariant

map induced by a. Induction for a group homomorphism a: H ! G is induced by these
maps a and b. If the kernel ker�a� acts freely on X, the map b is a homotopy equivalence
and hence in both cases inda is bijective.

Example 1.4. Given a proper G-CW-pair �X ;A�, one can de®ne the G-bordism group
WG

n �X ;A� as the abelian group of G-bordism classes of maps f : �M; qM� ! �X ;A� whose
sources are oriented smooth manifolds with orientation preserving proper smooth G-actions
such that GnM is compact. The de®nition is analogous to the one in the non-equivariant
case. This is also true for the proof that this de®nes a proper G-homology theory. There
is an obvious induction structure coming from induction of equivariant spaces. It is well-
de®ned because of the following fact. Let a: H ! G be a group homomorphism. Let M

be an oriented smooth H-manifold with orientation preserving proper smooth H-action
such that HnM is compact and ker�a� acts freely. Then inda M is an oriented smooth G-
manifold with orientation preserving proper smooth G-action such that GnM is compact.
The boundary of inda M is inda qM.

Our main example will be

Example 1.5. Let R be a commutative ring. There are equivariant homology
theories H?

� such that HG
n ��� is the rationalized algebraic K-group QnZ Kn�RG� or the

rationalized algebraic L-group QnZ Ln�RG� of the group ring RG or such that HG
n ��� is

the rationalized topological K-theory QnZ K top
n

ÿ
C �r �G; R�� or QnZ K top

n

ÿ
C �r �G; C�� of the
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reduced real or complex C �-algebra of G. Denote by E�G;F� the classifying space of
G with respect to the family F of ®nite subgroups of G. This is a G-CW-complex whose
H-®xed point set is contractible for H A F and is empty otherwise. It is unique up to G-
homotopy because it is characterized by the property that for any G-CW-complex X whose
isotropy groups belong to F there is up to G-homotopy precisely one G-map from X to
E�G;F�. The G-space E�G;F� agrees with the classifying space EG for proper G-actions.
De®ne E�G;VC� for the family VC of virtually cyclic subgroups analogously. The as-
sembly map in the Farrell-Jones Conjecture with respect to F and in the Baum-Connes
Conjecture are the maps induced by the projection E�G;F� ! �

HG
n

ÿ
E�G;F��!HG

n ���;�1:6�

where one has to choose the appropriate homology theory among the ones mentioned
above. The Baum-Connes Conjecture says that this map is an isomorphism (even without
rationalizing) for the topological K-theory of the reduced group C �-algebra. The Farrell-
Jones Conjecture with respect to F is the analogous statement.

It is important to notice that the situation in the Farrell-Jones Conjecture is more
complicated. The Farrell-Jones Conjecture itself is formulated with respect to the family
VC, i.e. it says that the projection E�G;VC� ! � induces an isomorphism (even without
rationalizing)

HG
n

ÿ
E�G;VC��!HG

n ���:�1:7�

For the version of the Farrell-Jones Conjecture with respect to VC no counterexamples
are known, whereas the version for F is not true in general. In other words, the canonical
map E�G;F� ! E�G;VC� does not necessarily induce an isomorphism

HG
n

ÿ
E�G;F��!HG

n

ÿ
E�G;VC��:

This is due to the existence of Nil-groups. However, if for instance R is a ®eld of charac-
teristic zero, this map is bijective for algebraic K-theory. Hence the Farrell-Jones Conjec-
ture for QnZ Kn�FG� for a ®eld F of characteristic zero is true with respect to F if and
only if it is true with respect to VC. At the time of writing not much is known about this
conjecture for Kn�FG� for a ®eld F of characteristic zero, since most of the known results
are for the algebraic K-theory for ZG. The situation in L-theory is better since the change
of rings map QnZ Ln�ZG� ! QnZ Ln�QG� is bijective for any group G. The Farrell-
Jones Conjecture for both QnZ Ln�ZG� and QnZ Ln�QG� is true with respect to both
F and VC if G is a cocompact discrete subgroup of a Lie group with ®nitely many path
components [9], if G is a discrete subgroup of GLn�CG� [10], or if G is an elementary
amenable group [11].

The target of the assembly map for F in (1.6) is QnZ Kn�RG�, QnZ Ln�RG� or
QnZ K top

n

ÿ
C �r �G;F�

�
for F � R;C. These are the groups we would like to compute. The

source of the assembly map for F in (1.6) is the part which is better accessible for compu-
tations. We will apply the equivariant Chern character for proper equivariant homology
theories to it which is possible since E�G;F� is proper (in contrast to E�G;VC� and �).
Thus we get computations of the rationalized K- and L-groups, provided the Farrell-Jones
Conjecture with respect to F and the Baum-Connes Conjecture are true.
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For more informations about the relevant G-homology theories HG
� mentioned

above we refer to [3], [5], [9]. It is not hard to construct the relevant induction structures so
that they yield equivariant homology theories H?

� . We remark that one can construct for
them also restriction structures and multiplicative structures in the sense of Section 6.

2. Modules over a category

In this section we give a brief summary about modules over a category as far as
needed for this paper. They will appear in the de®nition of the source of the equivariant
Chern character.

Let C be a small category and let R be a commutative associative ring with unit.
A covariant RC-module is a covariant functor from C to the category RÿMOD of R-
modules. De®ne a contravariant RC-module analogously. Morphisms of RC-modules are
natural transformations. Given a group G, let Ĝ be the category with one object whose set
of morphisms is given by G. Then a covariant RĜ-module is the same as a left RG-module,
whereas a contravariant RĜ-module is the same as a right RG-module. All the construc-
tions, which we will introduce for RC-modules below, reduce in the special case C � Ĝ

under the identi®cation above to their classical versions for RG-modules. The reader should
have this example in mind.

The category RCÿMOD of (covariant or contravariant) RC-modules inherits the
structure of an abelian category from RÿMOD in the obvious way, namely objectwise.
For instance a sequence 0!M ! N ! P! 0 of RC-modules is called exact if its evalu-
ation at each object in C is an exact sequence in RÿMOD. The notion of a projective
RC-module is now clear. Given a family B � �ci�i A I of objects of C, the free RC-module
with basis B is

RC�B� :�L
i A I

R morC�ci; ?�:

The name free with basis B refers to the following basic property. Given a covariant
RC-module N, there is a natural bijection

homRC

ÿ
RC�B�;N�!G Q

i A I

N�ci�; f 7! ÿ
f �ci��idci

��
i A I
:�2:1�

Obviously RC�B� is a projective RC-module. Any RC-module M is a quotient of some free
RC-module. For instance, there is an obvious epimorphism from RC�B� to M if we take
B to be the family of objects indexed by

`
c AOb�C�

M�c�, where we assign c to m A M�c�.
Therefore an RC-module M is projective if and only if it is a direct summand in a free
RC-module. The analogous considerations apply to the contravariant case.

Given a contravariant RC-module M and a covariant RC-module N, one de®nes
their tensor product over RC to be the following R-module M nRC N. It is given by

M nRC N � L
c AOb�C�

M�c�nR N�c�=@;
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where @ is the typical tensor relation mf n n � mn fn, i.e. for each morphism f : c! d

in C, m A M�d� and n A N�c� we introduce the relation M� f ��m�n nÿmnN� f ��n� � 0.
The main property of this construction is that it is adjoint to the homR-functor in the sense
that for any R-module L there are natural isomorphisms of R-modules

homR�M nRC N;L� !G homRC

ÿ
M; homR�N;L�

�
;�2:2�

homR�M nRC N;L� !G homRC

ÿ
N; homR�M;L��:�2:3�

Consider a functor F : C! D. Given a covariant or contravariant RD-module M,
de®ne its restriction with F to be resF M :�M � F . Given a covariant RC-module M, its
induction with F is the covariant RD-module indF M given by

�indF M��??� :� R morD
ÿ
F�?�; ??

�
nRC M�?�:

Given a contravariant RC-module M, its induction with F is the contravariant RD-module
indF M given by

�indF M��??� :�M�?�nRC R morD
ÿ
??;F�?��:

Restriction with F can be written in the covariant case as

resF N�?� � homRD

ÿ
R morD

ÿ
F�?�; ??

�
;N�??��

and in the contravariant case as resF N�?� � homRD

ÿ
R morD

ÿ
??;F�?��;N�??�� because

of (2.1). We conclude from (2.3) that induction and restriction form an adjoint pair, i.e.
for two RC-modules M and N, which are both covariant or both contravariant, there is
a natural isomorphism of R-modules

homRD�indF M;N� !G homRC�M; resF N�:�2:4�

Given a contravariant RC-module M and a covariant RD-module N, there is a natural
R-isomorphism

�indF M�nRD N !G M nRC �resF N�:�2:5�

It is explicitly given by
ÿ

f : ??! F�?��nmn n 7! mnN� f ��n� or can be obtained for-
mally from (2.2) and (2.4). One easily checks

indF R morC�c; ?� � R morD
ÿ
F�c�; ??

��2:6�
for c A Ob�C�. This shows that indF respects direct sums and the properties free and
projective.

Next we explain how one can reduce the study of projective RC-modules to the study
of projective R aut�c�-modules, where aut�c� is the group of automorphisms of an object
c in C. Given a covariant RC-module M, we obtain for each object c in C a left R aut�c�-
module RcM :�M�c�. Given a left R aut�c�-module N, we obtain a covariant RC-module
EcN by

EcN�?� :� R morC�c; ?�nR aut�c�N:�2:7�
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Notice that Ec resp. Rc is induction resp. restriction with the obvious inclusion of categoriesdaut�c� ! C. Hence Ec and Rc form an adjoint pair by (2.4). In particular we get for any
covariant RC-module M an in M natural homomorphism

ic�M�: EcM�c� !M�2:8�

by the adjoint of id: RcM ! RcM. Explicitly ic�M� maps � f : c! ?�nm to M� f ��m�.
Given a covariant RC-module M, de®ne M�c�s to be the R-submodule of M�c� which
is spanned by the images of all R-maps M� f �: M�b� !M�c�, where f runs through all
morphisms f : b! c with target c which are not isomorphisms in C. Obviously M�c�s is
an R aut�c�-submodule of M�c�. De®ne a left R aut�c�-module ScM by

ScM :�M�c�=M�c�s:�2:9�

We call C an EI-category if any endomorphism in C is an isomorphism. Notice that
Ec maps R aut�c� to R morC�c; ?�. Provided that C is an EI-category,

ScR morC�d; ?�GR aut�c�R aut�c�; if cG d;

and ScR morC�d; ?� � 0 otherwise. This implies for a free RC-module

M �L
i A I

R morC�ci; ?�;L
�c� A Is�C�

EcScM GRC M;

where Is�C� is the set of isomorphism classes �c� of objects c in C. This splitting can be
extended to projective modules as follows.

Let M be an RC-module. We want to check whether it is projective or not. Since
Sc is compatible with direct sums and each projective module is a direct sum in a free
RC-module, a necessary (but not su½cient) condition is that ScM is a projective R aut�c�-
module. Assume that ScM is R aut�c�-projective for all objects c in C. We can choose an
R aut�c�-splitting sc: ScM !M�c� of the canonical projection

M�c� ! ScM �M�c�=M�c�s.

Then we obtain after a choice of representatives c A �c� for any �c� A Is�C� a morphism of
RC-modules

T :
L

�c� A Is�C�
EcScM ��������!�

�c� A Is�C�
Ecsc L

�c� A Is�C�
EcM�c� ��������!�

�c� A Is�C�
ic�M�

M;�2:10�

where ic�M� has been introduced in (2.8).

The length l�c� A NW fyg of an object c is the supremum over all natural numbers

l for which there exists a sequence of morphisms c0 !f1
c1 !f2

c2 !f3
. . .!fl

cl such that no fi

is an isomorphism and cl � c. If each object c has length l�c� <y, we say that C has ®nite

length.
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Theorem 2.11. Let C be an EI-category of ®nite length. Let M be a covariant

RC-module such that the R aut�c�-module ScM is projective for all objects c in C. Let
sc: ScM !M�c� be an R aut�c�-section of the canonical projection M�c� ! ScM. Then the

map introduced in (2.10)

T :
L

�c� A Is�C�
EcScM !M

is surjective. It is bijective if and only if M is a projective RC-module.

Proof. We show by induction over the length l�d� that T�d� is surjective for any
object d in C. For any object d and R aut�d�-module N there is an in N natural aut�d�-
isomorphism N�d� !G SdEdN which sends n to the class of �id: d ! d�n n. If d1 and d2

are non-isomorphic objects in C, then Sd1
Ed2

N � 0. This implies that SdT is an iso-
morphism for all objects d A C. Hence it su½ces for the proof of surjectivity of T�d� to
show that each element of M�d�s is in the image of T�d�. It is enough to verify this for an
element of the form M� f ��x� for x A M�d 0� and a morphism f : d 0 ! d which is not an
isomorphism in C. Since C is an EI-category, l�d 0� < l�d�. By induction hypothesis T�d 0�
is surjective and the claim follows.

Suppose that T is injective. Then T is an isomorphism of RC-modules. Its source is
projective since Ec sends projective R aut�c�-modules to projective RC-modules. Therefore
M is projective. We will not need the other implication that for projective M the map T
is bijective in this paper. Therefore we omit its proof but refer to [16], Theorem 3.39 and
Corollary 9.40. r

Given a contravariant RC-module M and a left R aut�c�-module N, there is a natural
isomorphism

M nRC EcN GM�c�nR aut�c�N:�2:12�

It is explicitly given by mn � f : c! ?�n n 7!M� f ��m�n n. It is due to the fact that
tensor products are associative. For more details about modules over a category we refer
to [16], Section 9A.

3. The associated Bredon homology theory

Given a (proper) G-homology theory resp. equivariant homology theory with values
in R-modules, we can associate to it another (proper) G-homology theory resp. equivariant
homology theory with values in R-modules called Bredon homology, which is much simpler.
The equivariant Chern character will identify this simpler proper homology theory with the
given one.

Before we give the construction we have to organize the coe½cients of a G-homology
theory HG

� . The smallest building blocks of G-CW-complexes or G-spaces in general are
the homogeneous spaces G=H. The book keeping of all the values HG

� �G=H� is organized
using the following two categories.

The orbit category Or�G� has as objects homogeneous spaces G=H and as mor-
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phisms G-maps. Let Sub�G� be the category whose objects are subgroups H of G. For two
subgroups H and K of G denote by conhomG�H;K� the set of group homomorphisms
f : H ! K , for which there exists an element g A G with gHgÿ1 HK such that f is given
by conjugation with g, i.e. f � c�g�: H ! K , h 7! ghgÿ1. Notice that c�g� � c�g 0� holds
for two elements g; g 0 A G with gHgÿ1 HK and g 0H�g 0�ÿ1 HK if and only if gÿ1g 0 lies in
the centralizer CGH � fg A G j gh � hg for all h A Hg of H in G. The group of inner auto-
morphisms of K acts on conhomG�H;K� from the left by composition. De®ne the set of
morphisms

morSub�G��H;K� :� Inn�K�nconhomG�H;K�:

There is a natural projection pr: Or�G� ! Sub�G� which sends a homogeneous
space G=H to H. Given a G-map f : G=H ! G=K, we can choose an element g A G with
gHgÿ1 HK and f �g 0H� � g 0gÿ1K. Then pr� f � is represented by c�g�: H ! K. Notice
that morSub�G��H;K� can be identi®ed with the quotient morOr�G��G=H;G=K�=CGH,
where g A CGH acts on morOr�G��G=H;G=K� by composition with Rgÿ1 : G=H ! G=H,
g 0H 7! g 0gÿ1H. We mention as illustration that for abelian G, morSub�G��H;K� is empty
if H is not a subgroup of K, and consists of precisely one element given by the inclusion
H ! K if H is a subgroup in K.

Denote by Or�G;F�HOr�G� and Sub�G;F�H Sub�G� the full subcategories,
whose objects G=H and H are given by ®nite subgroups H HG. Both Or�G;F� and
Sub�G;F� are EI-categories of ®nite length.

Given a proper G-homology theory HG
� with values in R-modules we obtain for

n A Z a covariant R Or�G;F�-module

HG
n �G=?�: Or�G;F� ! RÿMOD; G=H 7!HG

n �G=H�:�3:1�

Let �X ;A� be a pair of proper G-CW-complexes. Then there is a canonical identi-

®cation X H � map�G=H;X�G. Thus we obtain contravariant functors

Or�G;F� ! CW ÿ PAIRS; G=H 7! �X H ;AH�;
Sub�G;F� ! CW ÿ PAIRS; G=H 7! CGHn�X H ;AH�;

where CW ÿ PAIRS is the category of pairs of CW-complexes. Composing them with
the covariant functor CW ÿ PAIRS! Rÿ CHCOM sending �Z;B� to its cellular chain
complex with coe½cients in R yields the contravariant R Or�G;F�-chain complex

C
Or�G;F�
� �X ;A� and the contravariant R Sub�G;F�-chain complex C

Sub�G;F�
� �X ;A�. Both

chain complexes are free. Namely, if Xn is obtained from Xnÿ1 WAn by attaching the
equivariant cells G=Hi �Dn for i A In, then

COr�G;F�
n �X ;A�GL

i A In

R morOr�G;F��G=?;G=Hi�;�3:2�

CSub�G;F�
n �X ;A�GL

i A In

R morSub�G;F��?;Hi�:�3:3�

Given a covariant R Or�G;F�-module M, the equivariant Bredon homology (see [4]) of a
pair of proper G-CW-complexes �X ;A� with coe½cients in M is de®ned by
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HOr�G;F�
n �X ;A; M� :� Hn

ÿ
COr�G;F�
� �X ;A�nR Or�G;F�M

�
:�3:4�

This is indeed a proper G-homology theory. Hence we can assign to a proper G-homology
theory HG

� another proper G-homology theory which we call the associated Bredon

homology

BHG
n �X ;A� :� L

p�q�n

HOr�G;F�
p

ÿ
X ;A;HG

q �G=?��:�3:5�

There is a canonical homomorphism indpr C
Or�G;F�
� �X ;A� !G C

Sub�G;F�
� �X ;A� which is bi-

jective (see (2.6), (3.2), (3.3)). Given a covariant R Sub�G;F�-module M, it induces using
(2.5) a natural isomorphism

HOr�G;F�
n �X ;A; respr M� !G Hn

ÿ
CSub�G;F�
� �X ;A�nR Sub�G;F�M

�
:�3:6�

This will allow to view modules over the category Sub�G;F� which is smaller than the
orbit category and has nicer properties from the homological algebra point of view. In
particular we will exploit the following elementary lemma.

Lemma 3.7. Suppose that the covariant R Sub�G;F�-module M is ¯at, i.e. for any

exact sequence 0! N1 ! N2 ! N3 ! 0 of contravariant R Sub�G;F�-modules the induced
sequence of R-modules

0! N1 nR Sub�G;F�M ! N2 nR Sub�G;F�M ! N3 nR Sub�G;F�M ! 0

is exact. Then the natural map

Hn

ÿ
CSub�G;F�
� �X ;A��nR Sub�G;F�M !G Hn

ÿ
CSub�G;F�
� �X ;A�nR Sub�G;F�M

�
is bijective.

Suppose, we are given a proper equivariant homology theory H?
� with values in R-

modules. We get from (3.1) for each group G and n A Z a covariant R Sub�G;F�-module

HG
n �G=?�: Sub�G;F� ! RÿMOD; H 7!HG

n �G=H�:�3:8�

We have to show that for g A CGH the G-map Rgÿ1 : G=H ! G=H, g 0H ! g 0gÿ1H induces
the identity on HG

n �G=H�. This follows from Lemma 1.2. We will denote the covariant
Or�G;F�-module obtained by restriction with pr: Or�G;F� ! Sub�G;F� from the
Sub�G;F�-module HG

n �G=?� of (3.8) again by HG
n �G=?� as introduced already in (3.1).

Next we show that the collection of the G-homology theories BHG
� �X ;A� de®ned

in (3.5) inherits the structure of a proper equivariant homology theory. We have to specify
the induction structure.

Let a: H ! G be a group homomorphism and �X ;A� be an H-CW-pair such that
ker�a� acts freely on X. We only explain the case, where a is injective. In the general case
one has to replace F by the smaller family F�X � of subgroups of H which occur as sub-
groups of isotropy groups of X. Induction with a yields a functor denoted in the same way
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a: Or�H;F� ! Or�G;F�; H=K 7! inda�H=K� � G=a�K�:

There is a natural isomorphism of Or�G;F�-chain complexes

inda COr�H;F�
� �X ;A� !G COr�G;F�

�
ÿ
inda�X ;A�

�
and a natural isomorphism (see (2.5))

ÿ
inda COr�H;F�

� �X ;A��nR Or�G;F�H
G

q �G=?� !
G

COr�H;F�
� �X ;A�nR Or�H;F�

ÿ
resa H

G
q �G=?��:

The induction structure on H?
� yields a natural equivalence of R Or�H;F�-modules

HH
q �H=?� !G resa H

G
q �G=?�:

The last three maps can be composed to a chain isomorphism

COr�H;F�
� �X ;A�nR Or�H;F�H

H
q �H=?� !G C�

ÿ
inda�X ;A�

�
nR Or�G;F�H

G
q �G=?�;

which induces a natural isomorphism

inda: HOr�H;F�
p

ÿ
X ;A;HH

q �H=?��!G HOr�G;F�
p

ÿ
inda�X ;A�;HG

q �G=?��:
Thus we obtain the required induction structure.

Remark 3.9. For any G-homology theory HG
� with values in R-modules for a com-

mutative ring R there is an equivariant version of the Atiyah-Hirzebruch spectral sequence.

It converges to HG
p�q�X ;A� and its E2-term is E2

p;q � H
Or�G�
p

ÿ
X ;A;HG

q �G=?��. If �X ;A� is

proper, the E2-term reduces to H
Or�G;F�
p

ÿ
X ;A;HG

q �G=?�
�
. Existence of a bijective equiv-

ariant Chern character amounts to saying that this spectral sequence collapses completely
for proper G-CW-pairs �X ;A�.

4. The construction of the equivariant Chern character

In this section we want to construct the equivariant Chern character. It is motivated
by the following non-equivariant construction.

Example 4.1. Consider a (non-equivariant) homology theory H� with values in
R-modules for QHR. Then a (non-equivariant) Chern character for a CW-complex X is
given by the following composite:

chn:
L

p�q�n

Hp

ÿ
X ;Hq���

� G
a

L
p�q�n

Hp�X ; R�nR Hq���

 ����������
p�q�n

hurnid

G

L
p�q�n

ps
p�X�; ��nZ RnR Hq��� ������!�

p�q�n

Dp; q

Hn�X �:
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Here the canonical map a is bijective, since any R-module is ¯at over Z because of the
assumption QHR. The second bijective map comes from the Hurewicz homomorphism.
The map Dp;q is de®ned as follows. For an element an b A ps

p�X�; ��nZ Hq��� choose a

representative f : S p�k ! S k5X� of a. De®ne Dp;q�an b� to be the image of b under the
composite

Hq��� !s Hp�q�k�S p�k; �� �����!Hp�q�k� f �
Hp�q�k�S k5X�; �� �!sÿ1

Hp�q�X�;

where s denotes the suspension isomorphism. This map turns out to be a transformation
of homology theories and induces an isomorphism for X � �. Hence it is a natural equi-
valence of homology theories. This construction is due to Dold [7].

Let �X ;A� be a proper G-CW-pair. Let R be a commutative ring with QHR. Let H?
�

be an equivariant homology theory with values in R-modules. Let G be a group. Consider
a ®nite subgroup H HG. We want to construct an R-homomorphism

chG
p;q�X ;A��H�: Hp

ÿ
CGHn�X H ;AH�; R

�
nR HG

q �G=H� !HG
p�q�X ;A�;�4:2�

where Hp

ÿ
CGHn�X H ;AH�; R

�
is the cellular homology of the CW-pair CGHn�X H ;AH�

with R-coe½cients. For (notational) simplicity we give the details only for A � j. The map
is de®ned by the following composite:

Hp�CGHnX H ; R�nR HG
q �G=H�

Hp�pr1;R�nR id

x???G

Hp�EG �CGH X H ; R�nR HG
q �G=H�

hur�EG�CGH X H �nR indG
H

x???G

ps
p

ÿ�EG �CGH X H��
�
nZ RnR HH

q ���
DH

p; q�EG�CGH X H�
???y

HH
p�q�EG �CGH X H�

indpr: CGH�H!H

x???G

HCGH�H
p�q �EG � X H�

indmH

???yG

HG
p�q�indmH

EG � X H�
HG

p�q�indmH
pr2�
???y

HG
p�q�indmH

X H�
HG

p�q�vH �
???y

HG
p�q�X�:
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Some explanations are in order. We have a left CGH-action on EG � X H by

g�e; x� � �egÿ1; gx�

for g A CGH, e A EG and x A X H . The map pr1: EG �CGH X H ! CGHnX H is the canon-
ical projection. It induces an isomorphism

Hp�pr1; R�: Hp�EG �CGH X H ; R� !G Hp�CGHnX H ; R�

by the following argument. Each isotropy group of the CGH-space X H is ®nite. The pro-
jection induces an isomorphism Hp�BL; R�GHp��; R� for p A Z and any ®nite group L

because by assumption the order of L is invertible in R. Hence Hp�pr1; R� is bijective if
X H � CGH=L for some ®nite LHCGH. Now apply the usual Mayer-Vietoris and colimit
arguments.

For any space Y let hur�Y �: ps
p�Y��nZ R! Hp�Y ; R� be the Hurewicz homo-

morphism. It is bijective since QHR and therefore hur is a natural tranformation of
(non-equivariant) homology theories which induces for the one-point space Y � � an
isomorphism ps

p����nZ RGHp��; R� for p A Z.

Given a space Z and a ®nite group H, consider Z as an H-space by the trivial action
and de®ne a map

DH
p;q�Z�: ps

p�Z��nZ HH
q ��� � ps

p�Z��nZ RnR HH
q ��� !HH

p�q�Z�

as follows. For an element an b A ps
p�Z��nZ HH

q ��� choose a representative

f : S p�k ! S k5Z�

of a. De®ne DH
p;q�Z��an b� to be the image of b under the composite

HH
q ��� !

s
HH

p�q�k�S p�k; �� �����!HH
p�q�k� f �

HH
p�q�k�S k5Z�; �� �!sÿ1

HH
p�q�Z�;

where s denotes the suspension isomorphism. Notice that H is ®nite so that any H-CW-
complex is proper.

The group homomorphism pr: CGH �H ! H is the obvious projection and the
group homomorphism mH : CGH �H ! G sends �g; h� to gh. Notice that the CGH �H-
action on EG � X H comes from the given CGH-action and the trivial H-action and that the
kernels of the two group homomorphisms above act freely on EG � X H . So the induction
isomorphisms on homology for these group homomorphisms exists for the CGH �H-space
EG � X H .

We denote by pr2: EG � X H ! X H the canonical projection. The G-map
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vH : indmH
X H � G �mH

X H ! X

sends �g; x� to gx.

Lemma 4.3. Let G be a group and let X be a proper G-CW-complex. Then:

(a) The map chG
p;q�X ��H� is natural in X.

(b) Consider H;K HG and g A G with gHgÿ1 HK . Let

Lgÿ1 : X K ! X H and Lgÿ1 : CGKnX K ! CGHnX H

be the map induced by left multiplication with gÿ1. Let Rgÿ1 : G=H ! G=K be given by right

multiplication with gÿ1. Then the following square commutes:

Hp�CGKnX K ; R�nR HG
q �G=H� ���������!Hp�Lgÿ1 ;R�nR id

Hp�CGHnX H ; R�nR HG
q �G=H�

idnR HG
q �Rgÿ1 �

???y ???ychG
p; q�X��H�

Hp�CGKnX K ; R�nR HG
q �G=K� ���������!

chG
p; q�X ��K�

HG
p�q�X �:

(c) Consider a G-map f : G=H ! X . Let u A p0�CGHnX H�HH0�CGHnX H ; R� be
the element represented by f �eH�. Then the map

HG
q �G=H� !HG

q �X�; v 7! chG
0;q�X��H��unR v�

agrees with the map HG
q � f �.

Proof. (a) is obvious.

(b) Since gHgÿ1 HK we can de®ne a group homomorphism c�gÿ1�: CGK ! CGH

by mapping g 0 to gÿ1g 0g. The map

Rg � Lgÿ1 : EG � X K ! EG � X H ; �e; x� 7! �eg; gÿ1x�

is
ÿ
c�gÿ1�: CGK ! CGH

�
-equivariant with respect to the CGK-action on EG � X K

given by g 0 � �e; x� � �eg 0ÿ1; g 0x� and the analogous CGH-action on EG � X H . It induces
a map

Rg � Lgÿ1 : EG �CGK X K ! EG �CGH X H :

If we extend the CGH-action on EG � X H and the CGK-action on EG � X K to a
CGH �H-action and a CGK �H-action in the trivial way, we also get CGH �H-maps
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Rg �gLgÿ1 : indc�gÿ1�id�: CGK�H!CGH�H EG � X K

� �CGH �H� �c�gÿ1��id EG � X K ! EG � X H ; �c; h; e; x� 7! �egcÿ1; cgÿ1x�

and

gLgÿ1 : indc�gÿ1��id: CGH�H!CGH�H X K

� �CGH �H� �c�gÿ1��id X K ! X H ; �c; h; x� 7! �cgÿ1x�:

In the sequel the maps pi denote the canonical projections. They are of the form
Y � K=gHgÿ1 ! Y . The maps fi denote canonical equivariant homeomorphisms which
describe the natural identi®cations of indb�a Z with indb inda Z. One easily checks using
the axioms of an induction structure that the following three diagrams commute:

Hp�CGKnX K ; R� ��������!Hp�Lgÿ1 ;R�
Hp�CGHnX H ; R�

G

x???Hp�pr1;R� Hp�pr1;R�
x???G

Hp�EG �CGK X K ; R� ��������!Hp�Rg�L
gÿ1 ;R�

Hp�EG �CGH X H ; R�
G

x???hur�EG�CGK X K � hur�EG�CGH X H �
x???G

ps
p

ÿ�EG �CGK X K��
�
nZ R ��������!p s

p�Rg�L
gÿ1 �

ps
p

ÿ�EG �CGH X H��
�
nZ R

and

ps
p

ÿ�EG �CGK X K��
�
nZ HK

q ���  �������������idnHK
q �p1��indc�g�: H!K

ps
p

ÿ�EG �CGK X K��
�
nZ HH

q ���???yDK
p; q DH

p; q

???y
HK

p�q�EG �CGK X K�  �������������HK
q �p2��indc�g�: H!K

HH
p�q�EG �CGK X K�

G

x???indpr: CGK�K!K indpr: CGK�H!H

x???G

HCGK�K
p�q �EG � X K�  �������������HK

q �p3��indid�c�g�
HCGK�H

p�q �EG � X K�???yindmK
indmK �id�c�g�

???y
HG

p�q�indmK
EG � X K�  �������������HG

p�q�indmK
p3��HG

p�q� f1�
HG

p�q�indmK�id�c�g� EG � X K�???yHG
p�q�indmK

pr2� HG
p�q�indmK �id�c�g� pr2�

???y
HG

p�q�indmK
X K�  �������������HG

p�q�indmK
p4��HG

p�q� f2�
HG

p�q�indmK�id�c�g�X K�

and
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ps
p

ÿ�EG �CGK X K��
�
nR HH

q ��� ���������������������!p s
p�Rg�L

gÿ1 �n id
ps

p

ÿ�EG �CGK X H��
�
nR HH

q ���???yDH
p; q DH

p; q

???y
HH

p�q�EG �CGK X K� ���������������������!HG
p�q�Rg�L

gÿ1 �
HH

p�q�EG �CGK X H�
G

x???indpr: CGK�H!H indpr: CG H�H!H

x???G

HCGK�H
p�q �EG � X K� ���������������������!HG

p�q� gRg�L
gÿ1 ��ind

c�gÿ1��id

HCGH�H
p�q �EG � X H�???yindmK �id�c�g� indmH

???y
HG

p�q�indmK�id�c�g� EG � X K� ���������������������!HG
p�q�indmH

gRg�L
gÿ1 ��HG

p�q� f3��ind
c�gÿ1�

HG
p�q�indmH

EG � X H�???yHG
p�q�indmK �id�c�g� pr2� HG

p�q�indmH
pr2�
???y

HG
p�q�indmK�id�c�g�X K� ���������������������!HG

p�q�indmH
gL

gÿ1 ��HG
p�q� f4��ind

c�gÿ1�
HG

p�q�indmH
X H�???yHG

p�q�indmK
p4��HG

p�q� f2� HG
p�q�vH �

???y
HG

p�q�indmK
X K� ���������������������!HG

p�q�vK �
HG

p�q�X �:

Now assertion (b) follows from an easy diagram chase in the three commutative diagrams
above and Lemma 1.2.

(c) Its proof is similar to the one of (b) but much easier and hence left to the reader.
This ®nishes the proof of Lemma 4.3. r

Theorem 4.4. Let R be a commutative ring with QHR. Let H?
� be a proper equi-

variant homology theory with values in R-modules. Suppose for every group G that the
R Sub�G;F�-module HG

q �G=?� is ¯at for all q A Z. Then there is an isomorphism, called

equivariant Chern character, of proper equivariant homology theories

ch?
�: BH?

� !
G

H?
� ;

i.e. for every group G and any proper G-CW-pair �X ;A� there is an in �X ;A� natural

isomorphism

chG
n �X ;A�:

L
p�q�n

HOr�G;F�
p

ÿ
X ;A;HG

q �G=?�
�!G HG

n �X ;A�

such that the obvious compatibility conditions for the boundary homomorphisms of pairs and
the induction structures hold.

Proof. We get for a pair of proper G-CW-complexes �X ;A� from the collection of
the homomorphisms of (4.2), the identi®cation (3.6), Lemma 3.7 and Lemma 4.3 (a) and
(b) (which holds for pairs �X ;A� also) a natural R-homomorphism
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chG
p;q�X ;A�: H

Or�G;F�
p

ÿ
X ;A;HG

q �G=?��
GHp

ÿ
C

Sub�G;F�
� �X ;A��nR Sub�G;F�H

G
q �G=?� !HG

p�q�X�:

Taking their direct sum for p� q � n yields an in �X ;A� natural homomorphism

chG
n �X ;A�: BHG

n �X ;A� !HG
n �X�:�4:5�

One easily checks that chG
� : BHG

� !HG
� is a transformation of G-homology theories.

Essentially one has to check that it is compatible with the boundary maps in the long exact
sequences of pairs.

Next we show that chG
� is a natural equivalence, i.e. chG

n �X ;A� is bijective for all n A Z

and all proper G-CW-pairs �X ;A�. The disjoint union axiom implies that both G-homology
theories are compatible with colimits over directed systems indexed by the natural numbers
such as the system given by the skeletal ®ltration X0 HX1 HX2 . . .

S
nf0

Xn � X . The argu-

ment for this claim is analogous to the one in [24], 7.53. Hence it su½ces to prove the
bijectivity of chG

n �X ;A� for ®nite-dimensional pairs. By excision, the exact sequence of
pairs, the disjoint union axiom and the ®ve-lemma one reduces the proof of the bijectivity
of chG

n �X ;A� to the special case �X ;A� � �G=H; j� for ®nite H HG. In this case the bi-
jectivity follows from the consequence of Lemma 4.3 (c) that chG

n �G=H� is the identity
under the obvious identi®cation of its source with HG

n �G=H� coming from (3.2). r

Example 4.6. Given a homology theory K with values in R-modules for QHR, we
can associate to it an equivariant homology theory H?

� in two ways as explained in Example
1.3. There is an obvious equivariant Chern character coming from the non-equivariant
one of Remark 4.1. Our general construction reduces to it by the following elementary
observation. For any ®nite group H the natural map Kq�BH� !Kq��� is an isomorphism
by the Atiyah-Hirzebruch spectral sequence since Hp�BH; Q� ! Hq��; Q� is bijective.
Hence in both cases the R Sub�G;F�-module HG

q �G=?� �H?
q ��� is constant with value

Kq���. Therefore it is isomorphic to Q morSub�G;F��1; ?�nQ Kq��� which is obviously a
projective R Sub�G;F�-module. By (2.12) the source of our equivariant Chern character
reduces in this special case toL

p�q�n

HOr�G;F�
p

ÿ
X ;A;HG

q �G=?��G L
p�q�n

Hp

ÿ
Gn�X ;A�;Kq���

�
:

Remark 4.7. Let H�
G be an equivariant proper cohomology theory with values in

F-modules for a ®eld F of characteristic zero. It is de®ned axiomatically in the obvious
way analogous to the de®nition of a proper equivariant homology theory. Suppose that
Hn

H ��� is a ®nite-dimensional F-vector space for all ®nite groups H and n A Z. Put

HG
n �X ;A� :� homF

ÿ
Hn

G �X ;A�;F
�
:

This de®nes an equivariant homology theory for proper ®nite G-CW-pairs �X ;A�. We can
rediscover Hn

G �X ;A� by homF

ÿ
HG

n �X ;A�;F
�

for proper ®nite G-CW-pairs �X ;A�. If one
obtains a bijective Chern character for HG

� for proper ®nite G-CW-pairs, dualizing yields
a bijective Chern character from H�

G to the associated equivariant Bredon cohomology for
proper ®nite G-CW-pairs.
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This applies for instance to equivariant K-cohomology after tensoring with Q over
Z. Equivariant Chern characters for equivariant K-cohomology have been constructed for
K �G�X�nZ C in [2] and for K �G�X �nZ Q in [17]. Our construction of an equivariant Chern
character for proper equivariant homology theories is motivated by [17].

5. Mackey functors

In order to apply Theorem 4.4, we have to check the ¯atness condition about the
R Sub�G;F�-module HG

q �G=?�. We will see that the existence of a Mackey structure will
guarantee that it is projective and hence ¯at. This would not work if we would consider
HG

q �G=?� over the orbit category. Recall that we can consider it over Sub�G;F� because
of Lemma 1.2 which is a consequence of the induction structure. The desired Mackey
structures do exist in all relevant examples.

Let R be an associative commutative ring with unit. Let FGINJ be the category of
®nite groups with injective group homomorphisms as morphisms. Let

M: FGINJ! RÿMOD

be a bifunctor, i.e. a pair �M�;M �� consisting of a covariant functor M� and a contravariant
functor M � from FGINJ to RÿMOD which agree on objects. We will often denote
for an injective group homomorphism f : H ! G the map M�� f �: M�H� !M�G� by indf

and the map M �� f �: M�G� !M�H� by resf and write indG
H � indf and resH

G � resf if f

is an inclusion of groups. We call such a bifunctor M a Mackey functor with values in
R-modules if

(a) for an inner automorphism c�g�: G ! G we have

M�
ÿ
c�g�� � id: M�G� !M�G�;

(b) for an isomorphism of groups f : G !G H the composites resf � indf and indf � resf

are the identity;

(c) double coset formula:

We have for two subgroups H;K HG

resK
G � indG

H �
P

KgH AKnG=H

indc�g�: HXgÿ1Kg!K � resHXgÿ1Kg
H ;

where c�g� is conjugation with g, i.e. c�g��h� � ghgÿ1.

Our main examples of Mackey functors will be RQ�H�, Kq�RH�, Lq�RH� and
K top

q

ÿ
C r
��H;F��. Recall that for a subgroup H HG we denote by NGH and CGH the

normalizer and the centralizer of H in G and by WGH the quotient NGH=H � CGH. In
the sequel we will use the identi®cation WGH G autSub�G;F��H� which sends the class of
n A NGH to the class of c�n�: H ! H. We have introduced SHP � P�H�=P�H�s for a
covariant R Sub�G;F�-module P in (2.9). Notice for the sequel that
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P�H�s � im

 L
KHH
K3H

indH
K :

L
KHH
K3H

P�K� ! P�H�
!
:�5:1�

Given a left R�WGH�-module Q, we have de®ned the covariant R Sub�G;F�-module EHQ
in (2.7). Recall that �H� has two meanings, namely, the set of subgroups of G which are
conjugate to H and the isomorphism class of objects in Sub�G;F�. One easily checks that
these two interpretations give the same.

Theorem 5.2. Let R be a commutative ring with QHR. Let M be a Mackey functor

with values in R-modules. It induces a covariant R Sub�G;F�-module denoted in the same
way

M: Sub�G;F� ! RÿMOD; � f : H ! K� 7! ÿ
M�� f �: M�H� !M�K��:

Each R�WGH�-module SHM is projective. For any ®nite subgroup H HG choose a section
sH : SHM !M�H� of the canonical projection M�H� ! SHM. Put I � Is

ÿ
Sub�G;F��.

Then the homomorphism de®ned in (2.10)

T :
L
�H� A I

EH � SHM !M

is an isomorphism and the R Sub�G;F�-module M is projective and hence ¯at.

Proof. Since WGH is ®nite, any R�WGH�-module is projective. Because of Theo-
rem 2.11 it su½ces to show for any ®nite subgroup K HG that T�K� is injective. Consider
an element u in the kernel of T�K�. Put J�H� � morSub�G;F��H;K�=�WGH�. Choose for
any �H� A I a representative H A �H�. Then ®x for any element f A J�H� a representa-
tive f : H ! K in morSub�G;F��H;K�. We can ®nd elements xH; f A SHM for �H� A I and
f A J�H� such that only ®nitely many are di¨erent from zero and u can be written as

u � P
�H� A I

P
f A J�H�

� f : H ! K�nR�WGH� xH; f :

We want to show that all elements xH; f are zero. Suppose that this is not the case. Let
�H0� be maximal among those elements �H� A I for which there is f A J�H� with xH; f 3 0,
i.e. if for �H� A I the element xH; f is di¨erent from zero for some morphism f : H ! K
in Sub�G;F� and there is a morphism H0 ! H in Sub�G;F�, then �H0� � �H�. In the
sequel we choose for any of the morphisms f : H ! K in Sub�G;F� a group homo-
morphism denoted in the same way f : H ! K representing it. Recall that f : H ! K is
given by conjugation with an appropriate element g A G. Fix f0: H0 ! K with xH0�f0

3 0.
We claim that the composite

A:
L
�H� A I

EH � SHM�K� ��!T�K�
M�K� ����!res

im� f0�
K

M
ÿ
im� f0�

� ��������!ind
fÿ1
0

: im� f0�!H0

M�H0� ��!prH0
SH0

M

maps u to m � xH0; f0
for some integer m > 0. This would lead to a contradiction because of

T�K��u� � 0 and xH0; f0
3 0.
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Consider �H� A I and f A J�H�. It su½ces to show that A
ÿ� f : H ! K�nR�WGH� xH; f

�
is �K XNG im� f0� : im� f0�� � xH; f if �H� � �H0� and f � f0, and is zero otherwise. One
easily checks that A

ÿ� f : H ! K�nR�WGH� xH; f

�
is the image of xH; f under the composite

a�H; f �: SHM �!sH
M�H� ������!indf : H!im� f �

M
ÿ
im� f �� �����!indK

im� f �
M�K�

�����!res
im� f0�
K

M
ÿ
im� f0�

� ��������!ind
fÿ1
0

: im� f0�!H0

M�H0� ��!prH0
SH0

M:

The double coset formula implies

res
im� f0�
K � indK

im� f � �
P

k A im� f0�nK=im� f �
indc�k�: im� f �Xkÿ1 im� f0�k!im� f0� � res

im� f �Xkÿ1 im� f0�k
im� f � :

The composites prH0
� indf ÿ1

0
: im� f0�!H0

� indc�k�: im� f �Xkÿ1 im� f0�k!im� f0� is trivial, if

c�k�: im� f �X kÿ1 im� f0�k ! im� f0�

is not an isomorphism. Suppose that c�k�: im� f �X kÿ1 im� f0�k ! im� f0� is an isomor-
phism. Then kÿ1 im� f0�k H im� f �. Since H0 has been choosen maximal among the H

for which xH; f 3 0 for some morphism f : H ! K , this implies xH; f � 0 or that

kÿ1 im� f0�k � im� f �.

Suppose kÿ1 im� f0�k � im� f �. Then �H� � �H0� which implies H � H0. Moreover, the
homomorphisms in Sub�G;F� represented by f0 and f agree. Hence the group homo-
morphisms f0 and f agree themselves and we get k A NG im� f0�XK. This implies that
a�H; f � � �K XNG im� f0� : im� f0�� � id if �H� � �H0� and f � f0, and that otherwise
a�H; f � � 0 or xH; f � 0 holds. Hence the map T is injective. This ®nishes the proof of
Theorem 5.2. r

Now Theorem 0.1 and Theorem 0.2 follow from Theorem 4.4 and Theorem 5.2 using
(2.12).

6. Restriction structures and multiplicative structures

Before we simplify the source of the equivariant Chern character further in the pres-
ence of a module structure over the Green functor QnZ RQ�?� on H?

q ��� in Section 7, we
introduce an additional structure on an equivariant homology theory called restriction
structure. It will guarantee that the Mackey structure appearing in Theorem 0.1 and
Theorem 0.2 exists. This restriction structure is canonically given in all relevant examples.
We also brie¯y deal with multiplicative structures. The material of this section is not
needed for the following sections.

A restriction structure on an equivariant homology theory H?
� consists of the follow-

ing data. For any injective group homomorphism a: H ! G, whose image has ®nite index
in G, we require in �X ;A� natural homomorphisms
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resa: HG
n �X ;A� !HH

n

ÿ
resa�X ;A�

�
;

where �X ;A� is a pair of G-CW-complexes and resa�X ;A� is the H-CW-pair obtained from
�X ;A� by restriction with a. If a is an inclusion of a subgroup H HG, we also write resH

G

instead of resa. We require:

(a) Compatibility with the boundary homomorphisms.

The restriction homomorphism resa is compatible with the boundary homomorphism
dG

n and dH
n .

(b) Functoriality.

If b: G ! K is another injective group homomorphism whose image has ®nite index
in K, then resb�a � resa � resb.

(c) Compatibility of induction and restriction for isomorphisms.

If a: H !G G is an isomorphism of groups, then the composite

HG
n �X � ��!resa

HH
n �resa X� ��!inda

HG
n �inda resa X� ��!T�X�

HG
n �X �

is the identity, where T�X�: inda resa X ! X is the canonical G-homeomorphism.

(d) Double coset formula.

Let H;K HG be subgroups such that K has ®nite index in G. Let �X ;A� be an
H-CW-pair. (Notice for the sequel that KnG=H is ®nite.) Denote by

f :
`

KgH AKnG=H

indc�g�: HXgÿ1Kg!K resHXgÿ1Kg
H �X ;A� !G resK

G indG
H�X ;A�

the canonical K-homeomorphism. Then the following two composites agree for all q A Z

HH
q �X � �������������������������!KgH AKnG=H

ind
c�g�: HXgÿ1Kg!K

� resHXgÿ1Kg
H

Q
KgH AKnG=H

HK
q

ÿ
indc�g�: HXgÿ1Kg!K resHXgÿ1Kg

H �X ;A��
!G HK

q

`
KgH AKnG=H

indc�g�: HXgÿ1Kg!K resHXgÿ1Kg
H �X ;A�

 ! ���!HK
q � f �

HK
q

ÿ
resK

G indG
H�X ;A�

�

Q

and

resK
G � indG

H : HH
q �X ;A� !HK

q

ÿ
resK

G indG
H�X ;A�

�
:
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If H?
� is an equivariant homology theory with a restriction structure, BH?

� inherits
a restriction structure as follows. For K HH we get a natural map H=K ! resa inda H=K
as the adjoint of the identity on inda H=K . It induces HH

q �H=K� !HH
q �resa inda H=K�.

We get an R Or�G;F�-module HH
q �resa G=?� which assigns to G=K the R-module

HH
q �resa G=K�. Thus we obtain a transformation of covariant R Or�H;F�-modules

HH
q �H=?� ! resa H

H
q �resa G=?�. Its adjoint is a map of R Or�G;F�-modules

iq: inda H
H

q �H=?� !G HH
q �resa G=?�;

which turns out to be bijective. This can be seen from its more explicit description as the
composite of isomorphisms

inda H
H

q �H=?� � R morOr�G;F��inda H=?;G=??�nR Or�H;F�H
H

q �H=?�

!m R morOr�H;F��H=?; resa G=??�nR Or�H;F�H
H

q �H=?� !n HG
q �G=??�;

where m comes from the adjunction of inda and resa and n sends � f : H=?! resa G=??�n x
to HH

q � f ��x�. The restriction structure on H?
� induces a map of Or�G;F�-modules

HG
q �G=?� !HH

q �resa G=?�:

There is a natural isomorphism of R Or�H;F�-chain complexes

COr�H;F�
�

ÿ
resa�X ;A�

�!G resa COr�G;F�
� �X ;A�:

There is a natural isomorphism of R-modules (compare (2.5))

ÿ
resa COr�G;F�

� �X ;A��nR Or�H;F�H
H

q �H=?� !G COr�G;F�
� �X ;A�nR Or�G;F�

ÿ
inda H

H
q �H=?��:

The last four maps together can be combined to a map of R-chain complexes

COr�G;F�
� �X ;A�nR Or�G;F�H

G
q �G=?� ! COr�H;F�

�
ÿ
resa�X ;A�

�
nR Or�H;F�H

H
q �H=?�:

It induces on homology homomorphisms

resa: HOr�G;F�
p

ÿ
X ;A;HG

q �X ;A�
�! HOr�H;F�

p

ÿ
resa�X ;A�;HH

q �H=?��:
Their direct sum yields the desired natural homomorphism

resa: BHG�X ;A� ! BHH
ÿ
resa�X ;A�

�
:

We leave it to the reader to check that the axioms of a restriction structure are ful®lled.

Next we introduce multiplicative structures. An external product on HG
� assigns to any

two groups G and G 0 and pairs of (proper) G-CW-complexes �X ;A� and G 0-CW-complexes
�X 0;A 0� an in �X ;A� and �X 0;A 0� natural homomorphism

�: HG
n �X ;A�nR HG 0

n 0 �X 0;A 0� !HG�G 0
n�n 0

ÿ�X ;A� � �X 0;A 0��;�6:1�
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where �X ;A� � �X 0;A 0� is the pair of (proper) G � G 0-CW-complexes

�X � X 0;X � A 0WA� X 0�.

We mention that we work in the category of compactly generated spaces (see [24], [26], I.4)
so that �X ;A� � �X 0;A 0� is indeed a (proper) G � G 0-CW-pair. These pairings are required
to be compatible with the boundary homomorphisms, namely, for u A HG

p �X ;A� and
v A HG

q �X 0;A0� we have

q�u� v� � q�u� � v� �ÿ1�p � u� q�v�:

We also assume that these pairings are compatible with induction, i.e. for group homo-
morphisms a: H ! G and a 0: H 0 ! G 0 and u A HH

p �X ;A� and u 0 A HH 0
q �X 0;A0� we re-

quire

HG�G 0
p�p 0 � f �

ÿ
inda�u� � inda 0 �u 0�

� � inda�a 0 �u� v�

for f : inda�X ;A� � inda 0 �X 0;A 0� !G inda�a 0
ÿ�X ;A� � �X 0;A 0�� the canonical G � G 0-

homeomorphism. Furthermore we require that the external product � is associative,
graded commutative and has a unit element 1 in H

f1g
0 ���.

If H?
� comes with an external product, we call it a multiplicative ( proper) equivariant

homology theory with values in R-modules. If H?
� comes with a restriction structure, we will

require that the multiplicative structure and restriction structure are compatible. Namely,
for injective group homomorphisms a: H ! G and a 0: H 0 ! G 0, whose images have ®nite
index, and u A HG

p �X ;A� and u 0 A HG 0
q �X 0;A0� we require

resa�u� � resa 0 �u 0� � resa�a 0 �u� u 0�:

Next we explain how a multiplicative structure on H?
� induces a multiplicative

structure on the associated Bredon homology BH?
� . Let �X ;A� be a proper G-CW-pair

and let �X 0;A 0� be a proper G 0-CW-pair. Let C��X ;A�nR C��X 0;A 0� be the obvious
R Or�G;F� �Or�G 0;F�-chain complex. Denote by

I : Or�G;F� �Or�G 0;F� ! Or�G � G 0;F�

the functor sending �G=H;G 0=H 0� to G � G 0=H �H 0. There is a natural isomorphism of
Or�G �H;F�-chain complexes

indI

ÿ
COr�G;F�
� �X ;A�nR COr�G 0;F�

� �X 0;A 0��!G COr�G�G 0;F�
�

ÿ�X ;A� � �X 0;A 0��;
which comes from the adjunction (2.4) and the natural isomorphism of the cellular chain
complex of a product of two (non-equivariant) CW-complexes with the tensor product
of the individual cellular chain complexes. The multiplicative structure on H?

� induces a
natural transformation of R Or�G;F� �Or�H;F�-modules

HG
p �G=?�nR HG 0

q �G 0=? 0� ! resI H
G�G 0

p�q �G � G 0=??�:
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There are natural isomorphisms of R-chain complexes

ÿ
C

Or�G;F�
� �X ;A�nR Or�G;F�H

G
p �G=?��nR

ÿ
C

Or�G 0;F�
� �X 0;A 0�nR Or�G 0;F�H

G 0
p �G 0=? 0��

!G ÿ
C

Or�G;F�
� �X ;A�nR C

Or�G 0;F�
� �X 0;A 0��nR Or�G;F��Or�G 0;F�

ÿ
HG

p �G=?�nR HG 0
p �G 0=? 0��

and (see (2.5))

indI

ÿ
C

Or�G;F�
� �X ;A�nR C

Or�G 0;F�
� �X 0;A 0��nR Or�G�G 0;F�H

G�G 0
p�q �G � G 0=??�

!G ÿ
C

Or�G;F�
� �X ;A�nR C

Or�G 0;F�
� �X 0;A 0��nR Or�G;F��Or�G 0;F�

ÿ
resI H

G�G 0
p�q �G � G 0=??��:

Combining the last four maps yields a chain map

ÿ
C

Or�G;F�
� �X ;A�nR Or�G;F�H

G
p �G=?��nR

ÿ
C

Or�G 0;F�
� �X 0;A 0�nR Or�G 0;F�H

G 0
p �G 0=? 0�

�
! C

Or�G�G 0;F�
�

ÿ�X ;A� � �X 0;A 0��nR Or�G�G 0;F�H
G�G 0

p�q �G � G 0=??�:

It induces the required multiplicative structure

BHG
m �X ;A�nR BHG 0

n �X 0;A 0� ! BHG�G 0
m�n

ÿ�X ;A� � �X 0;A 0��:�6:2�

We leave it to the reader to verify the axioms of a multiplicative proper equivariant
homology theory for BH?

� .

Theorem 6.3. Let R be a commutative ring with QHR. Let H?
� be a proper equiv-

ariant homology theory with values in R-modules. Suppose that H?
� possesses a restriction

structure. Let I be the set of conjugacy classes �H� of ®nite subgroups H of G. Then there is

an isomorphism of proper homology theories

ch?
�: BH?

� !
G

H?
�

such that

BHG
n �X ;A�G

L
p�q�n

L
�H� A I

Hp

ÿ
CGHn�X H ;AH�; R

�
nR�WGH� SHHG

q �G=?�:

The isomorphism ch?
� is compatible with the given restriction structure on H?

� and the induced
restriction structure on BH?

� . If H?
� comes with a multiplicative structure and we equip BH?

�
with the associated multiplicative structure, ch?

� is also compatible with the multiplicative

structures.

Proof. Given a proper equivariant homology theory H?
� with values in R-modules

together with restriction structure, then H?
q ��� inherits a Mackey structure in the obvi-

ous way. Given an injective group homomorphism f : H ! K of ®nite groups, induc-

tion is given by the composite HH
q ��� �!indf

HK
q �indf �� ���!HK

q �pr�
HK

q ��� and restriction by
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resf : HK
q ��� !HH

q ���: Now apply Theorem 0.1 and Theorem 0.2. We leave the lengthy
but straighforward veri®cation that the equivariant Chern character is compatible with
the restriction structures and multiplicative structures to the reader. r

Example 6.4. Equivariant bordism as introduced in Example 1.4 has an obvious
restriction structure coming from restriction of spaces and an obvious multiplicative struc-
ture coming from the cartesian product. Hence Theorem 6.3 applies to it and yields
an isomorphism of multiplicative proper equivariant homology theories with restriction
structure

chG
n �X ;A�:

L
p�q�n

L
�H� A I

Hp

ÿ
CGHn�X H ;AH�; Q

�
nQ�WGH� SH

ÿ
QnZ WG

q �G=?��
!G QnZ WG

n �X ;A�;

where SH

ÿ
QnZ WG

q �G=?�
� � coker

� L
KHH;K3H

QnZ WK
q ��� ! QnZ WH

q ���
�
:

7. Green functors

Next we simplify the source of the equivariant Chern character further in the presence
of a module structure over the Green functor QnZ RQ�?� on H?

q ���. Such an additional
structure is given in the situation of our main Example 1.5.

Let f: R! S be a homomorphism of associative commutative rings with unit. Let M

be a Mackey functor with values in R-modules and let N and P be Mackey functors with
values in S-modules. A pairing with respect to f is a family of maps

m�H�: M�H� �N�H� ! P�H�; �x; y� 7! m�H��x; y� �: x � y;

where H runs through the ®nite groups and we require the following properties for all
injective group homomorphisms f : H ! K of ®nite groups:

�x1 � x2� � y � x1 � y� x2 � y for x1; x2 A M�H�; y A N�H�;
x � �y1 � y2� � x � y1 � x � y2 for x A M�H�; y1; y2 A N�H�;
�rx� � y � f�r��x � y� for r A R; x A M�H�; y A N�H�;
x � sy � s�x � y� for s A S; x A M�H�; y A N�H�;
resf �x � y� � resf �x� � resf �y� for x A M�K�; y A N�K�;
indf �x� � y � indf

ÿ
x � resf �y�

�
for x A M�H�; y A N�K�;

x � indf �y� � indf

ÿ
resf �x� � y

�
for x A M�K�; y A N�H�:

A Green functor with values in R-modules is a Mackey functor U together with a
pairing U �U ! U with respect to id: R! R and elements 1H A U�H� for each ®nite
group H such that for each ®nite group H the pairing U�H� �U�H� ! U�H� induces the

LuÈ ck, Chern characters222



structure of an R-algebra on U�H� with unit 1H and for any morphism f : H ! K in
FGINJ the map U �� f �: U�K� ! U�H� is a homomorphism of R-algebras with unit. Let U
be a Green functor with values in R-modules and M be a Mackey functor with values in
S-modules. A (left) U-module structure on M with respect to the ring homomorphism
f: R! S is a pairing U �M !M such that any of the maps U�H� �M�H� !M�H�
induces the structure of a (left) module over the R-algebra U�H� on the R-module
f�M�H� which is obtained from the S-module M�H� by rx :� f�r�x for r A R and
x A M�H�.

Lemma 7.1. Let f: R! S be a homomorphism of associative commutative rings with
unit. Let U be a Green functor with values in R-modules and let M be a Mackey functor with

values in S-modules such that M comes with a U-module structure with respect to f. Let S be

a set of subgroups of the ®nite group H. Suppose that the map

L
K AS

indH
K :

L
K AS

U�K� ! U�H�

is surjective. Then the map

L
K AS

indH
K :

L
K AS

M�K� !M�H�

is surjective.

Proof. By hypothesis there are elements uK A U�K� for K A S satisfying
1H �

P
K AS

indH
K uK in U�H�. This implies for x A M�H�.

x � 1H � x �
� P

K AS
indH

K uK

�
� x � P

K AS
indH

K �uK � resK
H x�: r

Our main example of a Green functor with values in Q-modules QnZ RQ�?� assigns
to a ®nite group H the Q-module QnZ RQ�H�, where RQ�H� denotes the rational rep-
resentation ring. Notice that RQ�H� is the same as the projective class group K0�QH�.
The Mackey structure comes from induction and restriction of representations. The pairing
QnZ RQ�H� �QnZ RQ�H� ! QnZ RQ�H� comes from the tensor product PnQ Q of
two QH-modules P and Q equipped with the diagonal H-action. The unit element is the
class of Q equipped with the trivial H-action.

Let classQ�H� be the Q-vector space of functions H ! Q which are invariant under
Q-conjugation, i.e. we have f �h1� � f �h2� for two elements h1; h2 A H if the cyclic sub-
groups hh1i and hh2i generated by h1 and h2 are conjugate in H. Elementwise multiplica-
tion de®nes the structure of a Q-algebra on classQ with the function which is constant 1 as
unit element. Taking the character of a rational representation yields an isomorphism of
Q-algebras ([23], Theorem 29 on page 102)

wH : QnZ RQ�H� !G classQ�H�:�7:2�

We de®ne a Mackey structure on classQ�?� as follows. Let f : H ! K be an injective group
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homomorphism. For a character w A classQ�H� de®ne its induction with f to be the char-
acter indf �w� A classQ�K� given by

indf �w��k� � 1

jHj �
P

l AK;h AH

f �h��lÿ1kl

w�h�:

For a character w A classQ�H� de®ne its restriction with f to be the character

resf �w� A classQ�H�

given by

resf �w��h� :� w
ÿ

f �h��:
One easily checks that this yields the structure of a Green functor on classQ�?� and that
the family of isomorphisms wH de®ned in (7.2) yields an isomorphism of Green functors
from QnZ RQ�?� to classQ�?�.

For a ®nite group H and any cyclic subgroup C HH, de®ne

yH
C A classQ�H��7:3�

to be the function which sends h A H to 1 if hhi and C are conjugate in H and to 0
otherwise.

Lemma 7.4. Let f: Q! R be a homomorphism of associative commutative rings with
unit. Let M be a Mackey functor with values in R-modules which is a module over the Green

functor QnZ RQ�H� with respect to f. Then:

(a) For a ®nite group H the mapL
CHH

C cyclic

indH
C :

L
CHH

C cyclic

M�C� !M�H�

is surjective.

(b) Let C be a ®nite cyclic group. Let

yC
C : M�C� !M�C�

be the map induced by the QnZ RQ�C�-module structure and multiplication with the pre-

image of the element yC
C A classQ�C� under the isomorphism wC : QnZ RQ�C�G classQ�C�

of (7.2). Then the cokernel

L
DHC
D3C

indC
D :
L

DHC
D3C

M�D� !M�C�

is equal to the image of the map yC
C : M�C� !M�C�.
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Proof. Let C HH be a cyclic subgroup of the ®nite group H. Then we get for
h A H

1

�H : C� � indH
C yC

C �h� �
1

�H : C � �
1

jCj �
P

l AH
lÿ1hl AC

yC
C �lÿ1hl� � 1

jHj �
P

l AH
hlÿ1hli�C

1:

This implies in QnZ RQ�H�G classQ�H�

1H �
P

CHH
C cyclic

1

�H : C � � indH
C yC

C�7:5�

since for any l A H and h A H there is precisely one cyclic subgroup C HH with
C � hlÿ1hli. Now assertion (a) follows from the following calculation for x A M�H�

x � 1H � x �
 P

CHH
C cyclic

1

�H : C � � indH
C yC

C

!
� x � P

CHH
C cyclic

1

�H : C � � indH
C �yC

C � resC
H x�:

It remains to prove assertion (b). Obviously yC
C is an idempotent for any cyclic group C.

We get for x A M�C� from (7.5)

�1C ÿ yC
C � � x �

 P
DHC
D3C

1

�C : D� � indC
D yD

D

!
� x � P

DHC
D3C

1

�C : D� � indC
D �yD

D � resD
C x�

and for DHC; D3C and y A M�D�

yC
C � indC

D y � indC
D�resD

C yC
C � y� � indC

D�0 � y� � 0:

This ®nishes the proof of Lemma 7.4. r

Now Theorem 0.3 follows from Theorem 0.1, Theorem 0.2 and Lemma 7.4. For
more information about Mackey and Green functors and induction theorems we refer
for instance to [6], Section 6 and [8].

8. Applications to K- and L-theory

In this section we apply Theorem 0.3 to the equivariant homology theories of Ex-
ample 1.5. Thus we obtain explicit computations of the rationalized source of the assembly
map (1.6). These give explicit computations of the rationalized algebraic K- and L-groups
of RG and of the topological K-groups of the real and complex reduced group C �-algebras
of G, provided that the Farrell-Jones Conjecture with respect to the family F of ®nite
subgroups and the Baum-Connes Conjecture are true for G. Before we carry out this pro-
gram, we mention the following facts. Notice for the sequel that the di¨erent versions of
L-groups, symmetric, quadratic or decorated L-groups, di¨er only by 2-torsion and hence
agree after inverting 2.
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Theorem 8.1. There are natural isomorphisms

Ln�ZG��1=2� !G Ln�QG��1=2�;

Kn

ÿ
C �r �G;R�

��1=2� !G Ln

ÿ
C �r �G;R�

��1=2�;

Kn

ÿ
C �r �G;C�

��1=2� !G Ln

ÿ
C �r �G;C�

��1=2�:

Proof. The proof of the ®rst isomorphism can be found in [20], page 376. The other
two isomorphisms are explained in [22], Theorem 1.8 and 1.11, where they are attributed to
Karoubi, Miller and Mishchenko. r

Next we introduce a Mackey structure and then a module structure over the Green
functor QnZ RQ�?� on the various K- and L-groups. Let R be an associative commutative
ring with unit satisfying QHR and let F be R, C. Induction and restriction yield obvious
Mackey functors

QnZ Kq�R?�: FGINJ! QÿMOD; H 7! QnZ Kq�RH�;
QnZ Lq�R?�: FGINJ! QÿMOD; H 7! QnZ Lq�RH�;

QnZ K top
q

ÿ
C �r �?;F�

�
: FGINJ! QÿMOD; H 7! QnZ K top

q

ÿ
C �r ; �H;F��:

The tensor product over R or F with the diagonal action induces on QnZ K0�R?�,
QnZ L0�R?� and QnZ K

top
0

ÿ
C ��?;F�� the structure of a Green functor with values in

Q-modules and the structure of a module over these Green functors on QnZ Kq�R?�,
QnZ Lq�R?� and QnZ K top

q

ÿ
C ��?;F�� for all q A Z. The change of ring maps

QnZ K0�Q?� ! QnZ K0�R?�;
QnZ L0�Q?� ! QnZ L0�R?�;

QnZ K
top
0

ÿ
C �r �?;R�

�! QnZ K
top
0

ÿ
C �r �?;C�

�
induce maps of Green functors. Since QnZ K0�Q?�GQnZ RQ�?�, we get a module
structure over the Green functor QnZ RQ�?� on each Mackey functor QnZ Kq�R?�. The
change of rings map

QnZ L0�Q?� !G QnZ L0�R?�

is known to be an isomorphism (see [21], Proposition 22.19 on page 237). There is an iso-
morphism of Green functors (see Theorem 8.1 or [21], Proposition 22.33 on page 252)

QnZ K0�R?� !G QnZ L0�R?�:

Thus we get a morphism of Green functors

QnZ RQ�?� !G QnZ L0�Q?�:

LuÈ ck, Chern characters226



Hence we obtain a module structure over the Green functor QnZ RQ�?� on the Mackey
functor QnZ Lq�R?�. Since K0�R?� � K

top
0

ÿ
C �r �?;R�

�
, we ®nally obtain also a module

structure over the Green functor QnZ RQ�?� on the Mackey functor QnZ K top
q

ÿ
C �r �?;F�

�
.

If QHR, then the cellular R�CGH�-chain complex C�
ÿ
E�G;F�H� is a projective resolution

of the trivial R�CGH�-module R and we obtain for any ®nite group H HG an identi®cation

Hp

ÿ
CGHnE�G;F�H ; R

�
GHp�CGH; R�:�8:2�

Notice that now Theorem 0.4 follows from Theorem 0.3 and Example 1.5. The homo-
morphisms appearing in Theorem 0.4 are compatible with the various change of ring or
of K-theory maps since these maps are compatible with the relevant module structures
over the Green functor QnZ RQ�?�.

If the ring R is a ®eld of characteristic zero and we are willing to extend Q to a larger
®eld, then we can simplify the right side of the various maps appearing in Theorem 0.4 as
follows. Let F be a ®eld of characteristic zero. Fix an integer mf 1. Let F�zm�IF be the
Galois extension given by adjoining the primitive m-th root of unity zm to F. Denote by
G�m;F� the Galois group of this extension of ®elds, i.e. the group of automorphisms
s: F�zm� ! F�zm� which induce the identity on F. It can be identi®ed with a subgroup of
Z=m� by sending s to the unique element u�s� A Z=m� for which s�zm� � zu�s�

m holds. Given
a ®nite cyclic group C of order jCj, the Galois group G�jCj;F� acts on C by sending c to
cu�s�, and thus on the set Gen�C� of generators of C. Let V be an F�zjCj�-module. Denote
by ress V for s A G�jCj;F� the F�zjCj�-module obtained from V by restriction with s, i.e.
the underlying abelian groups of ress V and V agree and multiplication with x A F�zm� on
ress V is given by multiplication with s�x� on V. Thus we obtain an action of G�jCj;F� on
Kq

ÿ
F�zjCj�

�
by sending s A G�jCj;F� to the automorphism ress: Kq

ÿ
F�zjCj�

�! Kq

ÿ
F�zjCj�

�
coming from the functor V 7! ress V . This action extends to an action of the Galois group
G�jCj;F� on F�zjCj�nZ Kq

ÿ
F�zjCj�

�
by s � �vnw� :� vn ress�w�. Equip

map
ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F�

and F�zjCj�nZ yC
C �
ÿ
QnZ Kq�F �C ��

�
with the obvious F�zjCj�-module structures.

Lemma 8.3. Let F be a ®eld of characteristic zero. Let C be a ®nite cyclic group.
Then there is an isomorphism of F �zjCj�-modules

map
ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F� !G F�zjCj�nQ yC
C �
ÿ
QnZ Kq�F �C ��

�
;

which is natural with respect to automorphisms of C.

Its proof needs some preparation. Let G be a group. Given a positive integer m and
an F�zm��G�-module V, we de®ne an in V natural isomorphism of F�zm��G�-modules

F: ind
F�zm�
F resF

F�zm�V � F�zm�nF V !G L
s AG�m;F�

ress V ; xn v 7! ÿ
s�x�v�

s AG�m;F�:

Obviously F is natural in V and F�zm��G�-linear. We claim that an inverse of F is given
by
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Fÿ1:
L

s AG

ress V ! ind
F�zm�
F resF

F�zm�V � F�zm�nF V ;

�vs�s AG�m;F� 7!
1

m
�Pm

i�1

P
s AG�m;F�

zÿi
m nF s�zm� ivs:

This follows from an easy calculation using the facts that for an m-th root of unity z the

sum
Pm
i�1

z i is zero if z3 1, and is m if z � 1, and that an element x A F�zm� belongs to F if

and only if s�x� � x for all s A G�m;F� holds. Fix an F-basis fbs j s A G�m;F�g for F�zm�.
Given an FG-module W, we obtain an in W natural FG-isomorphism

C:
L

G�m;F�
W !G resF

F�zm� ind
F�zm�
F W � F�zm�nF W ; �ws�s AG�m;F� 7!

P
s AG�m;F�

bs nF ws

and an in W natural F�zm��G�-isomorphism for s A G�m;F�

L: ind
F �zm�
F W � F�zm�nF W ! ress ind

F �zm�
F W ; xnF w 7! s�x�nF w:

From the existence of the natural isomorphisms F, C and L above we conclude for the
homomorphisms

ind
F�zm�
F : Kq�FG� ! Kq

ÿ
F�zm��G�

�
;

resF
F�zm�: Kq

ÿ
F�zm��G�

�! Kq�FG�;

ress: Kq

ÿ
F�zm��G�

�! Kq

ÿ
F�zm��G�

�
;

that resF
F �zm� � ind

F�zm�
F � jG�m;F�j � id, ind

F�zm�
F � resF

F�zm� �
P

s AG�m;F�
ress and

ress � ind
F�zm�
F � ind

F�zm�
F

holds for s A G�m;F�. The various maps ress induce a G�m;F�-action on Kq

ÿ
F�zm��G�

�
.

We conclude

Lemma 8.4. Induction induces an isomorphism

QnZ ind
F�zm�
F : QnZ Kq�FG� !G QnZ Kq

ÿ
F�zm��G�

�G�m;F�
:

Let C be a ®nite cyclic group of order jCj. Then all irreducible F�zjCj�-representations
of C are 1-dimensional. The number of isomorphism classes of irreducible F�zjCj�-
representations is equal to jCj. Given a ®nite-dimensional F�zjCj�-representation V of C, we
obtain a functor from the category of ®nitely generated projective F�zjCj�-modules to the
category of ®nitely generated projective F�zjCj��C �-modules by tensoring with V over F�zm�
and thus a map Kq

ÿ
F�zjCj�

�! Kq

ÿ
F�zjCj��C �

�
. This yields a homomorphism

a: K0

ÿ
F�zjCj��C�

�
nZ Kq

ÿ
F�zjCj�

�!G Kq

ÿ
F�zjCj��C �

�
;�8:5�

which is an isomorphism by the following elementary facts. Given an F�zjCj��C �-module
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U and an irreducible F�zjCj��C �-module V, denote by UV the V-isotypical summand. This
is the F�zjCj��C �-submodule of U generated by all elements u A U for which there exists
an F�zjCj��C �-submodule U 0HU which contains u and is F�zjCj��C �-isomorphic to V. For
any homomorphism f : U !W of ®nitely generated projective F�zjCj��C �-modules there
are natural splittings U �L

V

UV and W �L
V

WV , where V runs over the irreducible rep-

resentations, f maps UV to WV and autF�zjCj��C��V� � fx � idV j x A F�zjCj�g.

An element s A G�jCj;F� induces automorphisms ress of Kq

ÿ
F�zjCj�

�
and of

Kq

ÿ
F�zjCj��C �

�
by restriction with s: F�zjCj� ! F�zjCj� and s: F�zjCj��C � ! F�zjCj��C �,P

c AC

xc � c 7!
P

c AC

s�xc� � c. We get for s A G�jCj;F�

ress � a � a � �ress nZ ress�:

Taking the character of a representation yields an isomorphism

w: F�zjCj�nZ K0

ÿ
F�zjCj��C �

�!G map
ÿ
C;F�zjCj�

�
; xn �V � 7! x � wV :�8:6�

The operation of G�jCj;F� on K0

ÿ
F�zjCj��C �

�
extends to an operation on

F�zjCj�nZ K0

ÿ
F�zjCj��C �

�
by taking the tensor product idnZ?. We de®ne a G�jCj;F�-operation on map

ÿ
C;F�zjCj�

�
by assigning to s A G�jCj;F� and w A map

ÿ
C;F�zjCj�

�
the element s � w which sends c A C

to w�cu�s��. The map w is compatible with these G�jCj;F�-actions. It su½ces to check this for
1nZ �V � if V is an irreducible F�zjCj��C �-representation. Its character is a homomorphism
wV : C ! F�zjCj� whose values are multiples of zjCj and c A C acts on V by multiplication
with wV�c�. Hence c A C acts on ress V by multiplication with s

ÿ
wV �c�

�
on V. This implies

wress V �c� � s
ÿ
wV �c�

� � wV �c�u�s� � wV �cu�s��. We have the obvious isomorphism

b: map
ÿ
C;F�zjCj�

�
nZ Kq

ÿ
F�zjCj�

�!G map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

��
:�8:7�

Now the maps a, w and b de®ned in (8.5), (8.6) and (8.7) can be combined to an iso-
morphism of F�zjCj�-modules

g � �idn a� � �wn id�ÿ1 � bÿ1: map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

���8:8�

!G F�zjCj�nZ Kq

ÿ
F�zjCj��C �

�
:

It is G�jCj;F�-equivariant, where we use on the source the action given by

�s � w��c� :� �idn s�ÿw�cu�s���
and on the target by ress n id.

Next we treat the various QnQ RQ�C�-module structures. The source of a and the
source of w inherit a module structure over QnQ RQ�C� by the obvious ring homo-

morphism ind
F�zjCj�
Q : RQ�C� � K0�Q�C �� ! K0

ÿ
F�zjCj��C �

�
. We equip the target of a with
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the QnQ RQ�C�-module structure for which a becomes a QnQ RQ�C�-homomorphism.

We have introduced the isomorphism of Q-algebras wC : QnZ RQ�C� !G classQ�C� in (7.2).
The target of the isomorphism wC is a module over classQ�C� by the obvious inclusion
of rings classQ�C� ! map

ÿ
C;F�zjCj�

�
. Then w is a QnQ RQ�C�-homomorphism. Equip

the source of the isomorphism b with the QnZ RQ�C�-module structure given by the
one on the target of w and the trivial one on Kq

ÿ
F�zjCj�

�
. Equip the target of b with

the QnQ RQ�C�-structure for which b becomes a QnQ RQ�C�-homomorphism. Then
the isomorphism g is a QnQ RQ�C�-homomorphism. Therefore we obtain a commutative
diagram of F�zjCj�-modules where all maps are G�jCj;F�-equivariant:

map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

�� ���!g Kq

ÿ
F�zjCj��C �

�
nZ F�zjCj�

yC
C

???y ???yyC
C

map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

�� ���!
g

Kq

ÿ
F�zjCj��C �

�
nZ F�zjCj�:

By taking the ®xed point sets, we obtain a commutative diagram of F�zjCj�-modules:

map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F� ���!g Kq

ÿ
F�zjCj��C �

�G�jCj;F�
nZ F�zjCj�

yC
C

???y ???yyC
C

map
ÿ
C;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F� ���!
g

Kq

ÿ
F�zjCj��C �

�G�jCj;F�
nZ F�zjCj�:

Thus we obtain an isomorphism from the image of the left vertical arrow in the diagram
above to the image of the right vertical arrow. Recall that yC

C is the character which sends
a generator of C to 1 and all other elements to 0. Hence the image of the left vertical arrow

is canonically isomorphic to map
ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

�G�jCj;F��
. The image of

the right vertical arrow is by Lemma 8.4 canonically isomorphic to the image of

yC
C : Kq�F �C ��nZ F�zjCj� ! Kq�F �C ��nZ F�zjCj�:

This ®nishes the proof of Lemma 8.3. r

We conclude from Theorem 0.4 and Lemma 8.3

Theorem 8.9. Let G be a group. Let F be a ®eld of characteristic zero. Let F HF be
a ®eld extension such that for any ®nite cyclic subgroup C HG the primitive jCj-th root

of unity belongs to F . Let J be the set of conjugacy classes �C� of ®nite cyclic subgroups of

G. Then the assembly map (1.6) in the Farrell-Jones Conjecture with respect to F for the
algebraic K-groups Kn�FG� can be identi®ed after applying F nZ? with

L
p�q�n

L
�C� A J

Hp�CGC; F�nF �WGC�map
ÿ
Gen�C�;F nZ Kq

ÿ
F�zjCj�

��G�jCj;F� ! F nZ Kn�FG�:

If the Farrell-Jones Conjecture with respect to F is true, then this map is an isomorphism.

Remark 8.10. The following remark was pointed out by the referee. Notice that
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the ®xed point set of the operation of G�jCj;F� on F�zjCj� is F itself. There is a second
G�jCj;F�-operation on map

ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

��
which comes from the ob-

vious operations on Gen�C� and F�zjCj� and the trivial operation on Kq

ÿ
F�zjCj�

�
. De®ne

a G�jCj;F�-operation on F�zjCj�nQ yC
C �
ÿ
QnZ Kq�F �C ��

�
by the obvious operation on

F�zjCj� and the trivial operation on yC
C �
ÿ
QnZ Kq�F �C ��

�
. Then the isomorphism appear-

ing in Lemma 8.3 is G�jCj;F�-equivariant with respect to these operations and we obtain
an isomorphism of F-modules

map
ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F��G�jCj;F� !G F nQ yC
C �
ÿ
QnZ Kq�F �C ��

�
;

which is natural with respect to automorphisms of C. Moreover, we get an improvement
of the isomorphism appearing in Theorem 8.9 to an isomorphism of F-modules

L
p�q�n

L
�C� A J

Hp�CGC; F�nF �WGC�map
ÿ
Gen�C�;F�zjCj�nZ Kq

ÿ
F�zjCj�

��G�jCj;F��G�jCj;F�

!G F nZ Kn�FG�:

Example 8.11. If F � C, then F�zjCj� � C and G�jCj;C� � 1. Let T be the set of

conjugacy classes �g� of elements g A G of ®nite order. The action of WGC on Gen�C� is
free. Then the assembly maps (1.6) in the Farrell-Jones Conjecture with respect to F and
in the Baum-Connes conjecture can be identi®ed after applying CnZ? withL

p�q�n

L
�g� AT

Hp�CGhgi; C�nZ Kq�C� ! CnZ Kn�CG�;

L
p�q�n

L
�g� AT

Hp�CGhgi; C�nZ Lq�C� ! CnZ Ln�CG�;

L
p�q�n

L
�g� AT

Hp�CGhgi; C�nZ K top
q �C� ! CnZ K top

n

ÿ
C �r �G;C�

�
;

where we use in the de®nition of Lq�C� and Ln�CG� the involutions coming from complex
conjugation. We get the ®rst one from Theorem 8.9. The proof for the third is completely
analogous to the one of the ®rst. The proof of the second can be reduced to the one of the
third by Theorem 8.1. In particular this proves Theorem 0.5. We mention that the restric-
tion of the upper horizontal arrow in Theorem 0.5 to the part for q � 0 has been shown
to be split injective for all groups G using the Dennis trace map but not the Farell-Jones
Conjecture in [19].

If we use the trivial involution on C in the de®nition of Ln�CG�, then the Farrell-
Jones Conjecture with respect to F implies Ln�CG��1=2� � 0 since Ln�CH��1=2� � 0 is
known for all ®nite groups H with respect to the trivial involution on C [21], Proposition
22.21 on page 239. Notice that the Farrell-Jones Conjecture with respect to F and the
Baum-Connes Conjecture together with Theorem 8.1 imply that the change of ring maps
Ln�CG� ! Ln

ÿ
C �r �G;C�

�
becomes a bijection after inverting 2.

Example 8.12. Next we consider the case F � R. Put F � C. We call g1 and g2 in G
R-conjugate if �g1� � �g2� or �g1� � �gÿ1

2 �. Denote by �g�R the R-conjugacy class of g A G.
Denote by TR the set of R-conjugacy classes of elements of ®nite order in G. This splits
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as the disjoint union T 0R
`

T 00R , where T 0R resp. T 00R consists of classes �g�R with �g�3 �gÿ1�
resp. �g� � �gÿ1�. For a class �g�R A T 00R we can ®nd an element g 0 A G such that the ho-
momorphism c�g 0�: G ! G given by conjugation with g 0 maps g to gÿ1. Then c�g 0� induces
also an automorphism CGhgi! CGhgi. The induced automorphism of Hp�CGhgi; C�
does not depend on the choice of g 0 and is of order two. Thus we obtain a Z=2-action
on Hp�CGhgi; C�. The Galois group of the ®eld extension RHC is Z=2 with complex
conjugation as generator. Complex conjugation induces a Z�Z=2�-structure on Kq�C� and
K top

q �C�. We obtain analogously to Example 8.11 an identi®cation of the assembly maps
(1.6) in the Farrell-Jones Conjecture with respect to F and in the Baum-Connes conjecture
after applying CnZ? with

L
p�q�n

 � L
�g�R A T 0

R

Hp�CGhgi; C�nZ Kq�C�
�
l

� L
�g�R A T 00

R

Hp�CGhgi; C�nZ�Z=2�Kq�C�
�!

! CnZ Kn�RG�;

L
p�q�n

 � L
�g�R A T 0

R

Hp�CGhgi; C�nZ Lq�C�
�
l

� L
�g�R A T 00

R

Hp�CGhgi; C�nZ�Z=2� Lq�C�
�!

! CnZ Ln�RG�;

L
p�q�n

 � L
�g�R A T 0

R

Hp�CGhgi; C�nZ K top
q �C�

�
l

� L
�g�R A T 00

R

Hp�CGhgi; C�nZ�Z=2�K top
q �C�

�!
! CnZ K top

n

ÿ
C �r �G;R�

�
;

where we use in the de®nition of Lq�C� the involution coming from complex conjugation.
Notice that the Farrell-Jones Conjecture with respect to F and the Baum-Connes Conjec-
ture together with Theorem 8.1 imply that the change of ring maps Ln�QG� ! Ln�RG� and
Ln�RG� ! Ln

ÿ
C �r �G;R�

�
become bijections after inverting 2 since Ln�QH� ! Ln�RH� is

known to be bijective after inverting 2 for ®nite groups H [21], Proposition 22.33 on
page 252.

Example 8.13. If F � Q, then G�jCj;Q� � Z=jCj� � aut�C�. Since G�jCj;Q� acts
freely and transitively on Gen�C�, we obtain after the choice of a generator c A C an iso-
morphism

map
ÿ
Gen�C�;Q�zjCj�nZ Kq

ÿ
Q�zjCj�

��G�jCj;Q�GQ�zjCj�nZ Kq

ÿ
Q�zjCj�

�
:

It is natural with respect to automorphisms of C, if f A aut�C� acts on

Q�zjCj�nZ Kq

ÿ
Q�zjCj�

�
by idn ress for the element s in the Galois group G�jCj;Q� for which s�z� � zu and
f �c� � cu holds. Let J be the set of conjugacy classes �C� of ®nite cyclic subgroups of
G. We conclude from Theorem 8.9 that the assembly map (1.6) in the Farrell-Jones Con-
jecture with respect to F can be identi®ed withL

p�q�n

L
�C� A J

Hp�CGC; Q�n
Q�WGC�QnZ Kq

ÿ
Q�zjCj�

�! QnZ Kn�QG�:
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Example 8.14. Let F be a ®eld of characteristic zero and let G be a group. Let g1 and
g2 be two elements of G of ®nite order. We call them F-conjugate if for some (and hence all)
positive integers m with gm

1 � gm
2 � 1 there exists an element s in the Galois group G�m;F�

with the property �gu�s�
1 � � �g2�. Denote by conF �G� the set of F-conjugacy classes �g�F

of elements g A G of ®nite order. Let classF �G� be the F-vector space with the set conF �G�
as basis, or, equivalently, the F-vector space of functions conF �G� ! F with ®nite support.
Recall that for a ®nite group H taking characters yields an isomorphism ([23], Corollary 1
on page 96)

w: F nZ RF �H� � F nZ K0�FH� !G classF �H�:�8:15�

By Theorem 0.4 and (8.15) the assembly map (1.6) of the Farrell-Jones Conjecture with
respect to F for K0�FG� can be identi®ed with a map

classF �G� ! F nZ K0�FG�:

If the Farrell-Jones Conjecture with respect to F for K0�FG� is true, this map is an
isomorphism. This generalizes (8.15) for ®nite groups to in®nite groups. This example is
related to the Hattori-Stalling rank and the Bass Conjecture [1].
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