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By Wolfgang Liick at Miinster

Abstract. We continue the study of the generalized dimension function. We detect
elements in the Grothendieck group G,(CI") of finitely generated CI-modules, provided
that I' is amenable. We investigate the class of groups for which the zero-th and first
L?-Betti numbers resp. all L2 Betti numbers vanish. We study L*Euler characteristics and
introduce for a discrete group I its Burnside group extending the classical notions of
Burnside ring and Burnside ring congruences for finite I

Introduction

In part one of this paper [21] we have defined for a finite von Neumann algebra .o/
and an arbitrary module over .o/ (just viewed as a ring), its dimension

(0.1) dim (M) e [0, 0] .

It extends the classical notion of von Neumann dimension which is a priori defined for
finitely generated Hilbert .o/-modules and thus for finitely generated projective .o/-modules.
This dimension inherits all the useful properties such as Additivity, Cofinality and Con-
tinuity and is uniquely characterized by these properties. This allows to define for any
topological space with action of a discrete group I its p-th L*Betti number

(0.2) b (X; A (D)) =dim (H, (X; A(I')))
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214 Liick, von Neumann algebras and L*-Betti numbers 11

as the dimension of the homology of the ./"(I')-chain complex 4" (I') ® , C3"¢(X), where
Cy"(X) is the singular chain complex of X and (I') is the von Neumann algebra
associated to I'. For a group I" we define

(0.3) bR (1) = b, (EL;.4(I).

where EI' — BI is the universal I-principal bundle. If X is the universal covering of a
closed Riemannian manifold, this agrees with the definition of the p-th L?-Betti number
of Atiyah [1] in terms of the heat kernel on X

t=> 00

0.4) bP(X) = lim [ trp(e”"*#(x,x))dvol, €[0,0),

where # is a fundamental domain for the I'-action I' = 7, (x). We have shown in [21]
that for any infinite amenable group I', any CI-module M and any I-space X

(0.5) dim (Tors" (M, A/"(I'))) =0 forp=1,
(0.6) bP(X; (1)) = dim (N (1) @, Hy"™ (X)) ;
(0.7) bP(IT)=0 forp=0,

holds. In particular b (X;.4"(I')) depends only on the ZI-module given by the p-th
singular homology H,™(X) and (0.7) is just the theorem of Cheeger and Gromov [6],
Theorem 0.2 on page 191. The necessary ingredients of these results for the present paper
will be reviewed in Section 1.

Equation (0.5) plays a crucial role in detecting non-trivial elements in the Grothen-
dieck group G,(CI") of finitely generated CI-modules for amenable groups I" which will
be investigated in Section 2. We will construct for amenable I" a map

(0.8) Gy (CTI') ®;C — class(I),,,

where class(I'),, is the complex vector space of functions from the set con(I"),, of finite
conjugacy classes (y) of elements in I' to C (Lemma 2.3 and Theorem 2.12). This map is
related to the Hattori-Stallings rank and the universal center-valued trace and dimension
of /(') (Theorem 2.12). In particular we will show that the class of CI' in G,(CTI)
generates an infinite cyclic subgroup in G, (CI') if I' is amenable and is trivial if I' contains
a free group of rank 2 as subgroup (Remark 2.23).

We will investigate for d=0,1, ... and d = oo the class %, of groups I' for which
bp(EF ; (') =0 for p <d holds (Theorem 3.3) and discuss applications in Section 3
(Theorem 3.2).

We analyse L*-Euler characteristics and the Burnside group in Section 4 generalizing
the classical notions of Burnside ring, Burnside ring congruences and equivariant Euler
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Liick, von Neumann algebras and L*-Betti numbers 11 215

characteristic for finite groups to infinite groups (Theorem 4.4, Lemma 4.11, Lemma 4.13,
Remark 4.14 and Lemma 4.17). In particular the L*-Euler characteristic extends the notion
of virtual Euler characteristic of a group to a larger class of groups and we get some vanish-
ing results (Corollary 4.5).

In Section 5 we analyse the possible values of the L?-Betti numbers (Theorem 5.2).
If there is no bound on the orders of finite subgroups of I', then any non-negative real
number can be realized as 5 (X; 4"(I')) for p = 3 and a free I-C W-complex X. Otherwise
we show for the least common multiple d of the orders of finite subgroups that
d- b;,z)(X ; A°(I')) is an integer or infinite for any I-space X if this holds for any finite free
I-CW-complex Y (Theorem 5.2). The last condition holds for instance for elementary
amenable groups and free groups I by Linnell [14].

1. Review of the generalized dimension function

We review some of the notions and results of the dimension function introduced in
[21] for a finite von Neumann algebra o7 as far as needed here in order to keep this paper
rather self-contained. Recall that the dual module M* of a left .oZ-module is the left
o/-module hom, (M, /), where the .«Z-multiplication is given by (af)(x) = f(x)a* for
feM* xeM and ae.o/. Let K be an .&/-submodule of the .«Z-module M. Define the
closure of K in M to be the .oZ-submodule of M

(1.1) K:={xeM|f(x)=0 for all fe M* with K< ker(f)}.

For a finitely generated .«7-module M define the .&/-submodule T M and the .oZ-quotient
module PM by:

(1.2) TM:={xeM|f(x)=0 for all fe M*};
(1.3) PM:=M/TM .
The notion of T M and PM corresponds in [12] to the torsion part and the projective part.

Theorem 1.4. (1) of is semi-hereditary, i.e. any finitely generated submodule of a
projective module is projective.

(2) If K= M is a submodule of the finitely generated .of/-module M, then M|K is
finitely generated and projective and K is a direct summand in M.

(3) If M is a finitely generated o/-module, then PM is finitely generated projective and
M=PMPTM.
(4) The dimension dim has the following properties:

(a) Continuity.
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216 Liick, von Neumann algebras and L*-Betti numbers 11

If K< M is a submodule of the finitely generated o/-module M, then:

dim (K) = dim (K) .
(b) Cofinality.

Let {M;|ie I} be a cofinal system of submodules of M, i.e. M = | ) M; and for two
indices i and j there is an index k in I satisfying M;, M; = M,. Then: iel

dim (M) = sup {dim (M,)|ie I} .

(c) Additivity.

If0 - M, L, M, SN M, — 0 is an exact sequence of o/-modules, then:

dim (M,) = dim (M) + dim (M,),

where r + s for r,s € [0, 00] is the ordinary sum of two real numbers if both r and s are not
o0 and is oo otherwise.

(d) Extension Property.

If M is finitely generated projective, then dim (M) is the von Neumann dimension of
the finitely generated Hilbert N (I')-module associated to M (see [21], Definition 1.6 and
Theorem 1.8.

(e) If M is a finitely generated «/-module, then:

dim(M) =dim(PM);
dim(TM)=0.

(f) The dimension dim is uniquely determined by Continuity, Cofinality, Additivity and
the Extension Property. O

Notice that in view of Theorem 1.4 there are some similiarities between the ring Z
of the integers and the ring .o/ given by a finite von Neumann algebra. If one substitutes
in the statements of Theorem 1.4 .o/ by Z and requires in the Extension Property that
dim (M) for a finitely generated abelian group is the usual rank, then all statements remain
true and dim (M) becomes the dimension of the rational vector space M &, (). Moreover,
TM of a finitely generated Z-module is just its torsion submodule in the ordinary sense.
However, there are two important differences. A finite von Neumann algebra is in general
not Noetherian and hence harder to study than the Noetherian ring Z. On the other hand
the dimension of a finitely generated projective .2Z-module can be an arbitrary small positive
real number and hence the dimension of a countable direct sum of non-trivial finitely
generated projective .2Z-modules can be a finite number what can never happen over Z
(see also [21], Remark 2.14).
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Liick, von Neumann algebras and L*-Betti numbers 11 217

2. Dimension functions and G,(CI")

Let G,(GTI') be the abelian group which has as set of generators the isomorphism
classes of finitely generated (not necessarily projective) CI-modules and has for each
exact sequence of finitely generated CI-modules 0 - M, - M, - M, — 0 the relation
[My]—[M,]+[M,]=0. Given a finitely generated CI-module M, the A"(I')-module
N (') ®er M is a finitely generated .A4"(I")-module. We have defined T A (I') ®y M and
PA'(I') ®cr M in (1.2) and (1.3). Recall from Theorem 1.4(3) that P/ (I') @y M is a
finitely generated projective 4" (I")-module. Define maps

2.1) i:Ky(CT) - G,(CT),  [P]—[P];

(2.2) k:Koy(CI) = Ko(N(I), [PIr> [N () ®cr P

Lemma 2.3. If T is amenable, the map
J:1Go(Cr) = Ko(N(I), [M]+>[PN () ®cpM]

is a well-defined homomorphism. The composition jo i agrees with k for the maps i and k
defined in (2.1) and (2.2) above.

Proof. If0 - M, M 1 2, M, — 0 is an exact sequence of finitely generated
CI-modules we have to check in K, (A"(I"))

[PJ‘/(F) ®<DFM0] - [PJV(F) ®<1:FM1] + [PJV(F) ®ch2] =0.

Consider the induced sequence

P (I') ®cho—i> PNV () Qcr M, L’ PN () ®crM,.

Obviously p is surjective as p is surjective. We conclude from Theorem 1.4 (1) that ker(7)
and ker(p) are finitely generated projective .4 (I')-modules. Theorem 1.4(4) and (0.5)
imply

dim ;. (ker(7)) = 0;

dim -, (im (7)) = dim ;.1 (ker (p)) .

Notice that a finitely generated projective .o/-module is trivial if and only if its dimension
is zero. We conclude from Theorem 1.4 that i: PA(I') ® oy M, — ker(p) is a weak iso-
morphism, i.e. its kernel is trivial and im (i) = ker (). Since the functor v of [21], Theorem
1.8 respects weak exactness and the Polar Decomposition Theorem applied to a weak
isomorphism has an isomorphism as unitary part, PA(I') ® .y M, and ker(p) are iso-
morphic as A"(I')-modules. Since ker(p) ® PN (I') @ cr M, and PN (I') ® o M, are iso-
morphic, Lemma 2.3 follows. 0O

If we regard homg (M, A/ "(I')) as left A4 (I')-module by (af)(x) =f(x)-a* for
ae N (I'), fehomg, (M, /' (I')) and x € M, we obtain isomorphisms of .4 (I")-modules
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218 Liick, von Neumann algebras and L*-Betti numbers 11

home, (M, /(') —=— (N(I') Qcp M)*;
(PN () ®crM)* —=— (N () Qcr M)*.

Since for a finitely generated projective .4 (I')-module P its dual P* is isomorphic to P,
we conclude for a finitely generated CI-module M

(2.4) j([M1]) = [home (M, A (I)] .
For a finitely generated projective 4" (I')-module P let
(2.5) dimY, 1 (P) € cent (W)

be its center-valued von Neumann dimension which is given in terms of the universal center-
valued trace tr') -, [13], Theorem 8.2.8 on page 517, Proposition 8.3.10 on page 525 and
Theorem 8.4.3 on page 532, [19], section 3. The center-valued von Neumann dimension
is additive under direct sums and two finitely generated projective ./"(I")-modules P and
Q are isomorphic if and only if dim’, ,(P) = dim’. ,(Q). We obtain an injection

(2.6) dim’ -, : K, (N(IN)) - cent (AN (I'))*
= {aecent(AN(I)|a = bb* for be /' (I)},

which is an isomorphism if A"(I") is of type I, for instance if I is finitely generated and
does not contain an abelian subgroup of finite index ([19], Corollary 3.2 and Lemma 3.3).

Next we investigate the relationship between K,(CI) and G,(CI') and between
dim’, -, and the Hattori-Stallings rank. Let con(I") be the set of conjugacy classes of
elements in I'. Let con(I'), be the subset of con (I") of conjugacy classes (y) for which each
representative ) has finite order. Let con(I'), , be the subset of con(I") of conjugacy classes
(y) which contain only finitely many elements. We denote by class, (I') and class, (I'),
respectively the complex vector space with the set con(I') and con(I'), respectively as
basis. We denote by class(I') and class(I'),, respectively the complex vector space of
functions from the set con(I") and con(I'),, respectively to C. Notice that class, (I') is the
complex vector space of class functions from I' to C with finite support. Define the uni-
versal CI-trace of ) 1,7€CI by

yel

(2.7) trfér< Y Zﬂ) =y A, (y) eclassy(I),

vell vel

This extends to square matrices in the usual way

(2.8) tré . : M(n,n,CI') — classy(I'), A Y trip(a;;).

i=1
Let P be a finitely generated projective CI-module. Define its Hattori-Stallings rank by

(2.9) HS(P):=tr¢(4) eclass,(I),
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where A is any element in M (n,n, CI') with 4> = A such that the image of the map
CI'" — CI'" given by right multiplication with A4 is CI-isomorphic to P. This definition
is independent of the choice of 4. The Hattori-Stallings rank defines a homomorphism

(2.10) HS: K,(CI') — class,(I'), [P]+— HS(P).
Define a homomorphism

(2.11) ¢ : cent(AN () — class(I'),,
by assigning to u € cent(.A"(I'))

¢):con(I'),, - C, () —tr, <u > (5’)_1>.

9'e(0)

Theorem 2.12. Suppose that I' is amenable. Then the following diagram commutes:

HS
K,(CI) —_— class, (1)

/| rl

. < u
dim’y

Go(CT) —— Ko(N (1) =% cent (N (I')) —2— class(T),,

where r is given by restriction and the other maps have been defined in (2.1), Lemma 2.3,
(2.6), (2.10) and (2.11).

Proof. One has to show for an element 4 € M (n,n, CI') and 6 € I" such that (9) is
finite

(2.13) trgr (A)(0) = (¢ o trly 1y (4)) (9) -

It suffices to show for y e I' and 6 € I' such that (0) is finite

(2.14) trer (1)) = (¢ oty (1)) (9) -

The universal center-valued von Neumann trace satisfies for ye I’

y7E(y)

()~ Yy if (p) is finite,
trj‘,m:

otherwise .

This follows from the facts that tr'y. ., is ultraweakly continuous and the identity on the
1 n

center of /"(I') and that trf. (— -y 5i> = tr-(0) holds for elements 6,,9,, ..., 9, in
noi=y

(0). Notice that tr . (6) is 1 if 6 =1 and 0 otherwise and that tr¢ () (0) = 0 if (0) is finite

and (y) is infinite. Hence (2.14) and thus (2.13) follow from the computation for y, eI’

such that (y) and (6) are finite
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220 Liick, von Neumann algebras and L*-Betti numbers 11

oI~ ¥ v’)(5)=trmn<<l(y)|‘1‘ Y y>< Yy (5')—1>>

y'e(y) y'e(y) 9'e(d)

= Z Z |(V)|_1'trm(r)(V"(él)_l)

V'e(y) d'€(9)

= > ()]

7'e(y),0'€(0),y' =46’
_ {1 it () = ().
0 otherwise
= trgr(7)(9).
This finishes the proof of Theorem 2.12. 0O

Lemma 2.15. Let I' be a discrete group. Then there is a commutative diagram whose
the left vertical arrow is an isomorphism:

. !
(colime, (1, 554 Ko (CH)) ®;,C —— Ko (CI) ®,C
h| = JHS

class, ('), — classy, (I') .

Proof. Firstly we explain the maps in the square. The colimit is taken for the
covariant functor

Or(G, ZJN) - ABEL, G/H > K,(CH)

to the category of abelian groups which is given by induction. Here Or (G, Z44") is the
full subcategory of the orbit category Or(G) consisting of objects G/ H with finite H. The
map [ is induced by the universal property of the colimit and the various maps
K,(CH) — K,(CI') induced by the inclusions of finite subgroups H of I" in I. The map
e is given by the inclusion con(I"), — con(I).

Define for a group homomorphism v : I' —» I'" a map y,, : con(I") — con(I"") by send-
ing (h) to (1 (h)). It induces a homomorphism y, : classy(I") — class, (I""). One easily checks

that the following diagram commutes:

K,(CI') —2> K (CI")
(2.16) HS | HS |

classy (I') SLLEN classo(I'') .
There is a canonical isomorphism
217) f;: (colimy, . 5y4, Ko(CH)) ®,C —=— colimg, 1. 55y, Ko (CH) ®, C..
The Hattori-Stallings ranks for the various finite subgroups H of I' induce an isomorphism

(2.18)  f5:colime,y; 54y Ko (CH) ®,C - colime, 1, g4\ Class (H) .
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Let f3:colimg, 74 con(H) — con(I'), be the map induced by the inclusions of the
finite subgroups H of I. Define a map f;: con(I'), — colimg, . 5, con(H) by sending
(y)econ(l'), to the image of (y) econ({y)) under the canonical structure map from
con({y) to colimy, . 5,4 con(H), where {y) is the finite cyclic subgroup generated by 7.
One easily checks that this is independent of the choice of the representative y in (y) and
that f3 and f, are inverse to one another. The bijection f; induces an isomorphism

(2.19) S5 colimg, 544 Class(H) — class(I),,
because colimit and the functor sending a set to the complex vector space with this set as
basis commute. Now the isomorphism / is defined as the composition of the isomorphisms
fi from (2.17), f, from (2.18) and f; from (2.19). It remains to check that the square in

Lemma 2.15 commutes. This follows from the commutativity of (2.16). This finishes the
proof of Lemma 2.15. O

Corollary 2.20. Suppose that I' is amenable. Then the image of the composition

Go(CI) ®,C 25 Ko (N (1) ®,C 25, cent (N7(I') —2— class(I),,
contains the complex vector space class, (I'), ., with con(I") ,~con(I'),, as basis. O
Remark 2.21. There is the conjecture that the canonical map
colim, ;. 5.4, Ko (CH) —=— K,(CT')

is bijective for all groups I'. In particular this would imply by Lemma 2.15 that the Hattori-
Stallings rank induces an isomorphism

HS: Ky (6T) ®,C —= class,(I'),. O
Theorem 2.22. (1) The map

[ (colimp, 554y Ko (CH)) ®,C > Ko(CI') ®,C

is injective.
(2) If I is virtually polycyclic, then we obtain isomorphisms

HS: K, (CT) ®,C —= class,(I), ;
i: Ky(CI) —=- G,(CT).

Proof. (1) follows directly from Lemma 2.15.

(2) Moody has shown [23] that the obvious map @ G,(CH) —» G,(CrI’) given
HeFIN

by induction is surjective. Since I' is virtually polycyclic the complex group ring CI is

regular, i.e. noetherian and any CI-module has a finite-dimensional projective resolution

[24], Theorem 8.2.2 and Theorem 8.2.20. Now (1) and Lemma 2.15 prove the claim. O
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222 Liick, von Neumann algebras and L*-Betti numbers 11

Theorem 2.22 (2) has already been proven in [5].
Remark 2.23. In particular we get from Theorem 2.12 that the map
1:7 - G,(CI'), n—[CI'"]
isinjective, provided that I is amenable. It is likely that this property characterizes amenable

groups. At least we can show for a group I" which contains the free group F, in two letters
as subgroup, that 1 is trivial by the following argument.

Induction with the inclusion F, —» I' induces a homomorphism G,(CF,) - G,(CI')
which sends [CF,] to [CI']. Hence it suffices to show [CF,] =0 in G,(CF,). The cellular
chain complex of the universal covering of S! v S yields an exact sequence of CI-modules
0 - (CF,)>* - CF, » C - 0, where C is equipped with the trivial F,-action. Hence it
suffices to show [C]=0 in G,(CF,). Choose an epimorphism f: F, - Z. Restriction
with f defines a homomorphism G,(CZ) —» G,(CF,). It sends C viewed as trivial CZ-
module to C viewed as trivial CF,-module. Hence it remains to show [C] =0 in G,(CZ).

This follows from the exact sequence 0 - CZ S cz>C>0forsa generator of
Z. O
3. Groups with vanishing L?-Betti numbers
In this section we investigate the following class of groups:
Definition 3.1. Define the class of groups

By={T|bP(I)=0for0=p<d};
B,={TbP()=0for0<p}. O

Notice that 4, is the class of infinite groups by [21], Theorem 4.10. Definition 3.1
is motivated among other things by Corollary 4.5 and the following result.

Theorem 3.2. Let1 > A —> I - 1 — 1 be an exact sequence of groups. Suppose that
I is finitely presented and one of the following conditions is satisfied:

(1) |A| = o0, b?(A) < o0 and m contains an element of infinite order or contains finite
subgroups of arbitrary large order.

(2) The ordinary first Betti number of A satisfies b,;(A) < oo and © belongs to %,.
Then:
(1) Let M be a closed oriented 4-manifold with I' as fundamental group. Then

|sign(M)| = x(M).

Bereitgestellt von | ULB Bonn
Angemeldet
Heruntergeladen am | 09.04.18 17:07



Liick, von Neumann algebras and L*-Betti numbers 11 223

(2) Let def(I') be the deficiency, i.e. the maximum g(P) — r(P) for all presentations
P where g(P) is the number of generators and r(P) the number of relations. Then

def(I') <1.

Proof. If the first condition is satisfied, then I" belongs to %, by Theorem 3.3 (5).
Now apply [18], Theorem 5.1 and Theorem 6.1 on page 212.

Suppose that the second condition is satisfied. Let p : M — M be the regular covering
associated to A. There is a universal coefficient spectral sequence converging to
Hy. (M; A (n) with E; = Tory™(H,(M;C), ./ (n)) [27], Theorem 5.6.4 on page 143.
Since H, (M;C) is C with the trivial n-action for ¢ = 0 and finite-dimensional as complex
vector space by assumption for ¢ =1, Theorem 1.4(4) and [21], Lemma 3.4.3 imply
dim(E},) = 0 for p + ¢ =1 and hence b{® (M; A (n)) = 0. The arguments in [18], Theorem
5.1 and Theorem 6.1 on page 212 for the universal covering of M apply also to M. O

The idea to take another covering than the universal covering in the proof of Theorem
3.2 is taken from [10], Corollary 5.2 on page 391. More information about results like
Theorem 3.2 can be found in [11].

Theorem 3.3. Let d be a non-negative integer or d = oo. Then:
(1) The class B, contains all infinite amenable groups.
(2) If I contains a normal subgroup A with A€ B,, then I' € %,.

(3) If T is the union of a directed system of subgroups {I};|i€ I} such that each I,
belongs to %B,, then I' € %,.

(4) Let 1 > A —— T —"— 11 be an exact sequence of groups such that bP(A)
is finite for all p <d. Suppose that Br has finite d-skeleton and that there is an injective
endomorphism j:m — © whose image has finite index, but is not equal to © ( for example
n=2"). Then I' € %,.

(5) Let 1> A "5 a1 be an exact sequence of groups such that
AeB,_,, bP(A) < oo and n contains an element of infinite order or a finite subgroup of
arbitrary large order. Then I' € %,.

(6) Suppose that there are groups Iy and I, and group homomorphisms ¢,: I, — I;
for i=1,2 such that ¢, and ¢, are injective, I, belongs to B,_,, I, and T, belong to %,
and I' is the amalgamated product Iy % I, with respect to ¢, and ¢,. Then I' belongs to
B,.

Proof. (1) follows from 0.7 or [6], Theorem 0.2 on page 191.

(2) We obtain a fibration BA — BI' — Bn for m=1I/A. There is the Leray-Serre
spectral sequence converging to

HY, (EI,L/ () with E, =HEAN(T))®,,C,(En)
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224 Liick, von Neumann algebras and L*-Betti numbers 11

for an appropriate Z-action on H, qA (EA; A/°(I')) coming from the fiber transport. Because
of Additivity (see Theorem 1.4 (4)) it suffices to show for p+ ¢ <d

(3.4) dimy gy (EL,) = 0.

Since b{*(A) = dim ;. (HS (EA; A°(I'))) by [21], Theorem 4.9, and C,(En) is a direct
sum of copies of Z=, Cofinality (see Theorem 1.4 (4)) proves (3.4).

(3) Using for instance the bar-resolution model for ET, one gets that ET is the
colimit of a directed system of subspaces of the form ET; x . I" directed by 1. Hence

HY(ET; /°(IN) = colim,  HY (EL; %, I'; /' (I)) .

Since dim . (HY (ET; %, I'; A°(I))) = b (I;) by [21], Theorem 4.9 the claim follows
from [21], Theorem 2.9.

(4) Fix an integer n=1. Put I''= p~'(im(j")). If k is the index of im (/) in &, then
k" is the index of im (j") in @ and of I'" in I" and we conclude
b;_,z)([”)

(3.5) bR =

Since im (/") is isomorphic to 7, we have an exact sequence 1 > A - I'" > — 1. Let i,
be the number of p-cells in Bn. We get from the Leray-Serre spectral sequence and Additivity
(see Theorem 1.4)

)4
(3.6) PAI) < Y bP(A) i,
n=0
Equations (3.5) and (3.6) imply

Zp: b (B) i, -,
3.7 (I = 12 o

Since k>1 and (3.7) holds for all =1 and Z bP(A) -,
assumption, the claim follows. 1=

is finite for p <d by

-4

(5) Using the spectral sequence which converges to erq(EF A(I')) and has an
Ez-tf;rmf E},=HI(En; HF(EA; A°(I))) the proof of assertion (5) is reduced to the
proof o

(3.8) dim . (H3 (En; HE (EA; A/(I)))) =0,

since dim . (HS (EA; A7(I))) = b (A) by [21], Theorem 4.9 and hence vanishes for
q < d by assumption. Let #’' < 7 be a subgroup (not necessarily normal). Let "< I" be
the preimage of ©’ under the canonical projection I' — 7. Then we obtain an exact sequence
1->A—>T"—1. We have
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HE (En's Hi (EA; A/ (I'))) = Hi (EA; A (I') ®@an Cs
Hi(En; Hp (EA; //(T))) = Hy (EA; /(1) ® ¢ C -

Since H (EA; A (I')) ® ¢y C is a quotient of Hj* (EA; A" (I')) ® ¢ C we conclude from
Additivity (see Theorem 1.4) and from [21], Theorem 4.9

dim g (H (EA; /' (I) ® 1y ©) < dim iy (HE (EA; N (1)) ® oy C) ;
dim -y (Hp (EA; N/ (I') @ ¢y C) = dim oy (Hi (EA; A (1) @ C) -
This implies
dim .y (Hg (En; Hi (EA; A/(I))) < dim ) (HE (En's HE (EA; //(I'))).
Hence (3.8) would follow if we can find for each ¢ <0 a subgroup n’ < =« satisfying
(3.9) dim 0 (H5 (En'; Hy (EA; /(7)) S 6.
We begin with the case where n” is Z. From assertion 4 we conclude
(3.10) dim . (H) (ET"; /(') =0 forp<d.

The Leray-Serre spectral sequence associated to 1 - A - I'"' - Z — 1 has an E*-term
which satisfies E; , = 0 for ¢ # 0,1 since BZ has the 1-dimensional model S*. Since it con-
verges to HY, (EI’; /"(I'")), we conclude (3.9) for ¢ = 0 from (3.10) and Additivity (see

ptgq
Theorem 1.4). Now suppose n’ is finite. Then we get

dim ) (Hg (En's Hy (EA; (1)) = dimﬂ(r,)(Hf/(EF’;JV(F/)))
S
P )

|7’

If we can find n" with arbitrary large |7’| we get (3.9).

(6) One easily checks using the Seifert-van Kampen Theorem, that there is a I'-push
out

I, EI, —— I'x, EI,

l l

=, El, — ET.

We conclude from [21], Theorem 4.9: dim (H,) (EIL; % I'; A (I'))) = b?(I;). Now the
claim follows from Additivity (see Theorem 1.4 (4)) and the long exact homology sequence
for HY(—, 4"(I')). This finishes the proof of Theorem 3.3. O

So far we have no example with negative answer to the following question and can
give an affirmative answer in some special cases.
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Question 3.11. Let1 - A > I' > n — 1 be an exact sequence such that 5{*(A) < oo
for all p =20 and = belongs to 4,,. Does then I belong to %, ? Using Theorem 3.3 one
can prove this for instance if 7 is elementary amenable.

More generally, if F — E — B is a fibration such that b (F; A (n,(E))) < oo and
b (B; A (n(B))) = 0 holds for p = 0, does then 2 (E; A" (n, (E))) = 0 hold forp = 0? O

Remark 3.12. Compact 3-manifolds whose fundamental groups belong to %, are
characterized in [16], Proposition 6.5 on page 54. The generalized Singer-Conjecture says
that for an aspherical closed manifold M all the L2-Betti numbers of its universal covering
vanish possibly except in the middle dimension. In particular it implies that the fundamental
group of an aspherical closed odd-dimensional manifold belongs to %,. Thompson’s
group F belongs to 4, [19], Theorem 0.8. More information about the class %, is given
in[3]. O

4. L*-Euler characteristics and the Burnside group

In this section we extend some of the results [6] about L2-Euler characteristics and
investigate the Burnside group of a discrete group I'. This extends the classical notions of
the Burnside ring, Burnside ring congruences and equivariant Euler characteristics for
finite groups.

If X is a I-CW-complex, denote by /(X)) the set of its equivariant cells. For a cell
cel(X) let (I) be the conjugacy class of subgroups of I" given by its orbit type and let
dim(c) be its dimension. Denote by |I| ! the inverse of the order of any representative
of (I), where |I,] ! is to be understood to be zero if the order is infinite.

Definition 4.1. Let X be a (left) I-space and V' be a .&/-ZI-module. Define

hX;V):= Y bP(X;V) €[0,00];

pz0

1P V)= Y (=) bP(X;V) eR, ifh(X;V)<o;

pz0
mX)= ) |I| 'e[0,0], if X isa I~-CW-complex. O

cel(X)

The condition 4(X; V) < oo ensures that the sum defining ® (X; V') converges and
that ¥ (X; V) satisfies the usual additivity formula, i.e. for a I-CW-complex X with
I'-CW-subcomplexes X, X; and X, satisfying X = X;u X,, Xy, =X nX,and h(X; V) < 0
for k =0,1,2 one has

(4.2) WX;V) < o0:;
(4.3) 1PXV) = PX V) + 1P X V) — P (X V).

The next theorem generalizes [6], Theorem 0.3 on page 191.
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Theorem 4.4. Let and Y be I'-CW-complexes such that m(X) < oo and m(Y') < o0
holds. Then:

1)
h(X; NV (TN) < o0;
Y (=DHEmO LT = P (X D).

cel(X)

(2) Suppose that I is amenable. Then

Y (=D LTt =Y (=17 dim (N () ®cp H,(X;0)).,

cel(X) p=0

where H,(X;C) is the cellular or the singular homology of X with complex coefficients. In
particular Y, (=1 |T|=1 depends only on the CI-isomorphism class of the CI-

cel(X

)
modules H,(X;C) for all n= 0.
(3) If for all ce I(X) the group T, is finite or belongs to the class %, then

bP(X; N (D) = bP(ETx X; A(I)  for p=0;
12 (X; N (D)) = yP(ECx X; N (T));
Y (=)@ n Tt = y@(Erx X; A/ (T)) .

cel(X)

(4) Suppose that f: X — Y is a I'-equivariant map, such that the induced map H ,( f;C)
on the singular or cellular homology with complex coefficients is bijective. Suppose that for
all ce I(X) and ce I(Y) the group T, is finite or belongs to the class %, . Then

Y (=D)L = Y (=i )t

cel(X) cel(Y)
Proof. (1) Additivity and Cofinality (see Theorem 1.4) and [21], Lemma 3.4 (1)
imply
dim (C,(X;.4°(I)) = > I

cel(X),dim(c)=p
dim (H; (X;.//(I")) < dim (C, (X;A"(I));
Y (=17 dim(C,(X; A(I)) = P (X; (D)) .

pz0

(2) follows from the first assertion and (0.6).

(3) Because of the first equation it suffices to prove that the dimension of the kernel
and the cokernel of the map induced by the projection

pr,: HY(ET < X; /(') - H} (X;A4°(I))
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are trivial. Notice that X is the colimit of its finite I-subcomplexes. Since H, (—, /()
is compatible with colimits and colimit preserves exact sequences, we can assume by [21],
Theorem 2.9, and Additivity (see Theorem 1.4) that X itself is finite. By induction over
the number of equivariant cells, the long exact homology sequence and Additivity (see
Theorem 1.4) the claim reduces to the case where X is of the shape I'/ H. Because of [21],
Theorem 4.9 it suffices to prove for the map pr,: H'(EH; A (H)) - H({x}; A (H))
that its kernel and cokernel have trivial dimension, provided that H is finite or belongs
to 4.,. This is obvious for finite H and follows for H € 4, from the definition of %, and
[21], Theorem 4.10.

(4) Since EI' X X is free and the map id X f: EI' X X — ET XY induces an isomor-
phism on singular homology it induces an isomorphism

HY(ET xX; /() > Hy(ET xY; A(I'))

and we conclude y?(EL % X; /(') = y®(ET xY; A°(I')). Now assertion (4) follows
from assertion (3). This finishes the proof of Theorem 4.4. O

As explained in [6], Proposition 0.4 on page 192, the L*-Euler characteristic extends
the notion of the virtual Euler characteristic which is due to Wall [25]. Information about
this notion can be found for instance in [4], chaper IX. The next result generalizes [6],
Corollary 0.6 on page 193.

Corollary 4.5. Let I be a group belonging to A.,. Then y>(ET'; A (I')) is defined and
vanishes. If its virtual Euler characteristic y;. (I') is defined, then it vanishes. In particular
« (BI') vanishes if BI can be choosen to be a finite CW-complex. 0O

Next we introduce the Burnside group and the equivariant Euler characteristic. The
elementary proof the following lemma is left to the reader.

Lemma 4.6. Let H and K be subgroups of I'. Let NK be the normalizer of K in T’
and WK be NK|K. Then:

(1) I'/H® = {g"'Kg = H}.

(2) The map
¢:I'/HX - consub(H), gHw— g 'Kg
induces an injection
WEK\(I') HX) — consub(H),
where consub(H) is the set of conjugacy classes in H of subgroups of H.

e -1sotropy group of gH € s (gHg "N c = .
3) The WK-i Hel'/H* is (gHg 'n NK)/K< NK/K= WK

(4) If H is finite, then I') HX is a finite union of WK-orbits of the shape WKL for
finite subgroups L <« WK. O
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Definition 4.7. Define the Burnside group A(I') by the Grothendieck group of the
abelian monoid under disjoint union of I'-isomorphism classes of proper cocompact I-sets
S, i.e. I'-sets S for which the isotropy group of each element in S and the quotient I'\S
are finite. O

Notice that A4(I") is the free abelian group generated by I-isomorphism classes of
orbits I'/ H for finite subgroups H < I' and that I'/H and I'/ K are I-isomorphic if and
only if H and K are conjugate in I". If I' is a finite group, A(I') is the classical Burnside
ring [8], section 5, [9], chapter IV. If I is infinite, then the cartesian product of two proper
cocompact I'-sets with the diagonal action is not cocompact any more so that the cartesian
product does not induce a ring structure on A4 (I"). At least there is a bilinear map induced
by the cartesian product 4(I7) ® A(l,) - A} X I).

Definition 4.8. Let X be a proper finite I'-C W-complex. Define its equivariant Euler
characteristic
2N(X)i= Y, (=D [I[]eA). O

cel(X)

An additive invariant (A, a) for proper finite I'-C W-complexes X consists of an abelian
group A and a function ¢ which assigns to any proper finite I'-C W-complex X an element
a(X) e A such that the following three conditions hold, (i) if X and Y are I-homotopy
equivalent, then a(X)=a(Y), (i) if X,, X; and X, are I'-CW-subcomplexes of X with
X=X,0X, and X, = X,n X,, then a(X) = a(X,) + a(X,) — a(X,), and (iii) a() = 0. We
call an additive invariant (U, u) universal, if for any additive invariant (A4, a) there is pre-
cisely one homomorphism y : U — 4 such that y(u(X)) = a(X) holds for all proper finite
I'-CW-complexes. One easily checks using induction over the number of equivariant cells

Lemma 4.9. (A(I), ") is the universal additive invariant for finite proper I'-CW-
complexes. 0O

Definition 4.10. Define for a finite subgroup K < I' the L?-character map

chk: A - @, [S]— Y |L]!

i=1

if WK/L,, WK/L,, ..., WK/L, are the WK-orbits of S¥. Define the global L*-character
map by
ch":==][chg: A > [[ @

(K) (K)

where (K) runs over the conjugacy classes of finite subgroups of I'. O

Lemma 4.11. Let X be a finite proper I'-CW-complex and K < I' be a finite subgroup.
Then XX is a finite proper WK-CW-complex and

1P (XE N (WK)) = chg (77 (X)).

Proof. The WK-space XX is a finite proper WK-CW-complex because for finite
H < T the WK-set I'/ HX is proper and cocompact by Lemma 4.6. Since the assignment
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which associates to a finite proper I'-C W-complex X the element y® (X*; /" (WK)) in Q
is an additive invariant, it suffices by Lemma 4.9 to check the claim for X' = I'/ H for finite
H < I. Then the claim follows from the fact that y'* (WK/L; /"(WK)) =|L|™* holds for
finite Lc WK. O

Notice that one gets from Lemma 4.6 the following explicit formula for the value
of chk(I'/H). Namely, define

Y (H):={(L) econsub(H)| L conjugated to K in I'} .
For (L) e % (H) choose Le (L) and ge L with g"'Kg = L. Then
g(HNNL)g '=gHg 'n NK;

_ _ |K|
He 'ANK)/K| ‘= ——" .
[(gHg "N NK)/K]| HANL|

This implies

| K|
(4.12) chik(I'/H) = _—
K (L)e;K(H) |[HANL|

Lemma 4.13.  The global L*-character map of Definition 410 induces a map denoted
by
ch’'®,0: AN ®,Q0 > ]]Q.

(K)

It is injective. If T has only finitely many conjugacy classes of finite subgroups, then it is
bijective.

n

Proof. Consider an element Y r,-[I'/H,] in the kernel of ch'®, Q. We show by

i=1
induction over n that the element must be trivial. The begin n = 0 is trivial, the induction
step done as follows. We can choose the numeration such that H; subconjugated to H;

implies i = j. We get from (4.12)

chi(I/H) =1, if H=K;
chk(I'/H) =0, if K is not subconjugated to H in I'.

This implies
Ch§1< 2T [F/Hl]> =n

i=1

and hence r, = 0. Hence the global L*-character map is injective. If I" has only finitely
many conjugacy classes of finite subgroups, then the source and target of ch’®, Q are
rational vector spaces of the same finite dimension and ch! ® , @ must be bijective. O

Remark 4.14. Suppose that there are only finitely many conjugacy classes
(H,), (H,), ..., (H,) of finite subgroups in I". Without loss of generality we can assume that
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H; subconjugated to H; implies i = j. With respect to the obvious ordered basis for the
source and target the map ch’ ®,Q is described by an upper triangular matrix A4 with
ones on the diagonal. One can get an explicit inverse 4~ ' which again has ones on the
diagonal. This leads to a characterization of the image of A (I") under the global L?-character

map x'. Namely, an element in 7€ [] Q lies in ch” (A4(I)) if and only if the following
i=1
Burnside integrality conditions are satisfied:

(4.15) A 'nel] z.
i=1

Now suppose that I' is finite. Then the global L?-character map is related to the
classical character map by the factor |WK| ™!, i.e. we have for each subgroup K of I' and
any finite I-set S

(4.16) chL(S) = |WK| '-|SK|.
K

One easily checks that under the identification (4.16) the integrality conditions (4.15)
correspond to the classical Burnside ring congruences for finite groups [8], section 5.8,
[9], section IV.5. O

Let E(I', Z9.4") be the classifying I-space for the family %44  of finite subgroups.
This I'-CW-complex is characterized up to I~-homotopy by the property that its H-fixed
point set is contractible if H < I' is finite and empty otherwise. It is also called the classifying
space for proper I-spaces and denoted by ET in the literature. For more information
about E(I', Z9/4") we refer for instance to [2], [7], section 7, [9], section 1.6,

Lemma 4.17. Suppose that there is a model for E(I', Z9N") which is a finite I-CW-

complex. Then there are only finitely many conjugacy classes of finite subgroups and for a
finite subgroup K< I’

chL (1" (E(L, ZIN))) = 12 (WK).
If I is amenable, then we get for a finite subgroup K< I’
chi /" (E(N7IA)) = [WK| ™",
where |WK |~ 1is to be understood as 0 for infinite WK.
Proof. We get from Lemma 4.11 since E(I', Z4A" )X is a model for E(WK, ZIN")
chk (" (E, FINY))) = yP(EWK, FIN); N (WK)) .
Now apply Theorem 4.4 (3) and (0.7). O
Example 4.18. Let1 > Z"—> I — Z/p — 1 be an extension of groups for n > 1 and
a prime number p. Then E(I, #4/") can be choosen as a finite I-CW-complex because

only the following cases can occur. If I' contains a finite subgroup, then I" is a semi-direct
product of Z" and Z/p and one can construct a finite I'-CW-complex as model for
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E(I, #J4") with R" as underlying space. If the group I' contains no finite subgroup, one
shows inductively over 7 that there is a finite model for BT In the induction step use the
fact that I' can be written as an extension of a group for which the induction hypothesis
applies and Z. We want to compute y'(E(I', #44")). The conjugation action of I" on the
normal subgroup Z" factorizes through the projection I' - Z/p into an operation ¢ of
Z/p onto Z". If this operation has a non-trivial fixed point, then WH is infinite for any
finite subgroup H of I and we conclude from Lemma 4.13 and Theorem 4.17 that

1"(E(, FIN)) =0.

Now suppose that this operation ¢ has no non-trivial fixed points. Let H, be the trivial
subgroup and H,, H,, ..., H, be a complete set of representatives of the conjugacy classes
of finite subgroups. Each H, is isomorphic to Z /p. One easily checks that there is a bijection

Hl(Z/p;ZZ) - {(H)|HcIL1<|H|< o}

and in particular r = 1, where Z; denotes the Z[Z/p]-module given by Z" and o. We
compute using (4.12)
chy, () Hy) =1;

1
Ch{Io(F/I_Ij)Z_7 j:1’2,"'ar;

=

chfy (I/H) =1, i=j ij=1,2,....r;
Chgl(r/l_lj) :05 l:|:]a ia.j:1723"'ar;
We conclude

W (B, FIN)) = — % [T/H+ Y [T/H].

i=1

The integrality conditions of (4.15) become in this case

5. Values of L?-Betti numbers
In this section we investigate the possible values of L?-Betti numbers.
Conjecture 5.1. Let I' be a group and let X be a free finite I'-CW-complex. Then
b (X; N/ (IN)e.
If d is a positive integer such that the order of any finite subgroup of I divides d, then

d-bP(X; N/ (IN)eZ. O
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The significance of Conjecture 5.1 and its relation to a question of Atiyah [1], page
72 about the rationality of the analytic L?-Betti numbers of (0.4) are explained in [20],
Section 2. Let ¥ be the smallest class of groups which contains all free groups, is closed
under directed unions and satisfies G € ¥ whenever G contains a normal subgroup H such
that H belongs to ¥ and G/H is elementary amenable. Conjecture 5.1 has been proven
for groups I'e C by Linnell [14], provided that there is an upper bound on the order of
finite subgroups of I

Theorem 5.2. (1) Let I" be a group such that there is no bound on the order of finite
subgroups. Then:

(a) Given Be[0,c0], there is a countably generated projective ZI-module P satisfying
dim ., (N () @z P)=f.

(b) Given a sequence By, B, ... of elements in [0, 0], there is a free I'-CW-complex
X satisfying
bP(X: A (D) =B, forpz3.

If T is countably presented, one can arrange that X has countably many I'-equivariant cells.

(2) Let I be a group such that there is a bound on the order of finite subgroups. Let
d be the least common multiple of the orders of finite subgroups of I'. Suppose that Conjec-
ture 5.1 holds for I'. Then we get for any I'-space X and p =0

d-bP(X; /() eZu{wn}.

(3) Given a sequence of elements B, B,, ..., [0,00], there is a countable group I' with
bP (') = B, for p 1. If B, is rational, I' can be chosen to be finitely generated.

Proof. (1)(a) Since there is no bound on the order of finite subgroups, we can find

a sequence of finite subgroups H,, H,, ... of I'such that = ) |H;|"'. Then

i=1

P= 59 CII'/H.]

i=1

is the desired module by [21], Lemma 3.4 (1) and Additivity and Cofinality (see Theorem
1.4 (4).

(1) (b) By assertion (1) (a) we can choose a sequence of countably generated projective
CI-modules P, P,, ... such that for p =3

(5.3) dim,/v'(r) (*/V(F) ®zr };;) = ﬁp'

Next we construct inductively a nested sequence X, = X; < ... of I-CW-complexes
together with I-retractions r,: X, — X,_; for p =3 such that X, is the 2-skeleton of a
model for ET, X, is obtained from X,_, by attaching countably many free I-equivariant
p-cells and p 4 1-cells and
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Ppa nzp’

5.4 H,(X, X =
( ) n( p° p—1) {0, n=|=p

Cp+1

The Eilenberg-swindle yields a split-exact sequence 0 -» C,,,—— C, —» P, —> 0 of CI~-
modules such that C,,, and C, are countably generated free ZI-modules with a basis.
Now one attaches for each element of the basis of C, trivially a free I-equivariant p-cell
to X. Then one attaches for each element of the basis of C, . ; a free [-equivariant p + 1-cell
to X, where the attaching maps are choosen such that the cellular CI-chain complex of
(Y, X) is just the ZTI-chain complex which is concentrated in dimension p + 1 and p and
given there by C, 4 BTN C,. Details of the construction of the I-CW-complexes X, and
I-retractions r, can be found in [22], Theorem 2.2, page 201, [26]. Now define Y = colim X,
One easily checks for p =3 P

HpF(YQ /V(F)) =N()®zr b,
bP(Y; N (D) =B,
(2) Letf:Y - X be a I'-CW-approximation of X [17], page 35,1i.e. a I'-C W-complex
Y with a Imap f such that /¥ is a weak homotopy equivalence and hence a weak homology
equivalence [28], Theorem IV.7.15 on page 182 for H<I. We get from [21], Lemma

4.8(2) that b (Y; 4 (I') = b (X; A°(I')) holds for all p>0. Hence we can assume
without loss of generality that X is a I'-C W-complex.

Conjecture 5.1 is equivalent to the statement that for any finitely presented ZI-
module M

(5.5) d-dim . (N (T @z M)e Z.

This follows essentially from [20], Lemma 2.2. Now let D, be any Z I-chain complex such

that D, is isomorphic to @ Z[I'/ H] for some non-negative integer r and finite subgroups
i=1

H;. Then the cokernel of each of the differentials d, is a finitely presented Z I-module and

(5.5) yields for all p = 0 using Additivity (see Theorem 1.4 (4))

(5.6) d-dim ;. (cok(id o ® 7 d,)) €Z;

d-dimp, (im(3id ., ®,rd,) €Z;

d- dim g, (ker(id . ® 7 d,)) € Z;

d-dim . (H,(AV(I') ®,rD,))eZ.
Let X* be the I-CW-subcomplex of X consisting of points whose isotropy groups are
infinite. The sequence 0 — C, (X *) - C, (X) - C,(X,X*) — 0 of cellular ZI-chain com-
plexes is exact. Since it is Z I'-split exact in each dimension, the sequence obtained by ten-

soring with A"(I') is still exact. The associated long exact homology sequence, Additivity
(see Theorem 1.4(4)) [21], Lemma 3.4 (1) imply for p =0

(5.7) dim ) (N () @7 C, (X)) = 0;
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(5.8) béz)(X; /V(F)) = dimm(r)(Hp(/V(r) ®zr Cy (XaXOO))) .

Notice that C,(X,X”) is a sum of ZI-modules of the shape Z[I'/H] for finite groups
HcT. Hence C, (X, X*) is a colimit over a directed set I of subcomplexes D, [7] (directed

by inclusion) such that each D,[7] is isomorphic to @ z[I'/H,] for some non-negative
i=1

integer r and finite subgroups H,. Since homology commutes with colimits we conclude

from (5.8) and [21], Theorem 2.9 (2)

bR (X: A1) = sup {inf {dim ¢, (im (H, (V" () ® 2 D, [i]) > H,(N' () ®z; D, [j1)))]
jelLisj}liel}.

Since the set {re R|d-reZ} is discrete in R, it suffices to show for each inclusion
1:D,[i]->D,[jlandallp=0

(5.9 4 dimm(r)(im(l* : Hp(JV(F) ®zr D, [l]) - Hp(M(F) ®zr D, []]))) €zl.

Let F, be any acyclic A"(I')-chain complex with F, =0 for p < 0 such that d - dim(F,) e Z
holds for all p = 0. Then we get d - dim (im( f,: F, » F,_,)) € Z for all p = 0 since we have
the short exact sequences 0 — im( f,, ;) = F, » im(f,) = 0 and im( f;) = F,. Hence we
obtain (5.9) from (5.6) and the conclusion above for the case where F is the long exact
homology sequence of the pair (cyl(z), D, [i]) since there is a ZI-chain homotopy equi-
valence from the mapping cylinder cyl(z) to D, [j ] whose composition with the inclusion
of D, [i]1in cyl(1) is 1.

(3) is proven in [6], section 4. This finishes the proof of Theorem 5.2. O

Remark 5.10. The group I'= || Z = Z satisfies HI,F(EF;JV’(F)) =0 for all p=0.
i=1
This is interesting in connection with the zero-in-the-spectrum conjecture ([15], [20],
section 11). O
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