Groups, Geometry and Actions: Classifying spaces for families

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

summer term 2010

- These slides cover parts of the course Groups, Geometry and Actions of the summer term 2010, but also contain some additional material which will not be presented in the lectures.
- In the actual talks more background information, more examples and more details are given on the blackboard.
- This will be an on demand course, i.e., the audience can choose what topic will be presented and also determine how much time shall be spent on it
- The first topic will be classifying spaces for families.

- Possible further topics are:
 - A basic short introduction to homological algebra and group (co-)homology
 - Pree actions of finite groups on homotopy CW-spheres
 - Introduction to Isomorphism Conjectures
 - Introduction to geometric group theory
 - Groups and L²-invariants
- We will announce what topic is covered for which time period so that people may choose to attend a topic or not.
- I will put the slides on my homepage.
- There will be a Tutorial run by Roman Sauer.
- Next we have to decide on the forthcoming topics.

Definition (G-CW-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that X carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\underbrace{\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} }_{\coprod_{i \in I_n} Q_i^n} \xrightarrow{\bigcup}_{X_n} X_n$$

A G-CW-complex X is the same as a CW-complex with a G-action such that for any open cell e with g · e ∩ e ≠ Ø we have gx = x for all x ∈ e.

Example (1- and 2-dimensional sphere with various actions)

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and the G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

If G acts properly and smoothly on a smooth manifold M, then M inherits the structure of G-CW-complex.

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and taking subgroups.

Examples for \mathcal{F} are:

- $\mathcal{TR} = \{ trivial subgroup \};$
- \mathcal{F} in = {finite subgroups};
- $\mathcal{VCyc} = \{ virtually cyclic subgroups \};$
- $\mathcal{ALL} = \{ all subgroups \}.$

Definition (Classifying *G-CW*-complex for a family of subgroups, tom Dieck(1974))

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any G-CW-complex Y, whose isotropy groups belong to F, there is up to G-homotopy precisely one G-map Y → X.

We abbreviate $\underline{E}G := E_{\mathcal{F}in}(G)$ and call it the *universal* G-CW-complex for proper G-actions.

We abbreviate $\underline{\underline{E}}G := E_{\mathcal{VCyc}}(G)$. We also write $\underline{E}G = E_{\mathcal{TR}}(G)$.

Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two models for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is contractible.
- Sketch of the proof

- We have $EG = \underline{E}G$ if and only if G is torsionfree.
- $G \rightarrow EG \rightarrow BG$ is the universal *G*-principal bundle.
- BG := G\EG is sometimes called the classifying space of G and is a model for the Eilenberg-MacLane space of type (G,1).
 It is unique up to homotopy.
- A closed oriented surface F_g of genus g is a model for Bπ₁(F_g) if and only if g ≥ 1.
- A closed orientable 3-manifold M is a model for Bπ₁(M) if and only if its fundamental group is torsionfree, prime and different from Z.
- A connected *CW*-complex is called aspherical if and only if $\pi_n(X) = 0$ for $n \ge 2$, or, equivalently, X is a model for $B\pi_1(X)$.

- We have $E_{\mathcal{F}}(G) = \text{pt if and only if } \mathcal{F} = \mathcal{ALL}$.
- We have $\underline{E}G = pt$ if and only if G is finite.
- A model for <u>E</u>D_∞ is the real line with the obvious
 D_∞ = ℤ ⋊ ℤ/2 = ℤ/2 ∗ ℤ/2-action.
 Every model for ED_∞ is infinite dimensional, e.g., the universal covering of ℝP[∞] ∨ ℝP[∞].
- The spaces <u>E</u>G are interesting in their own right and have often very nice geometric models which are rather small.
- On the other hand any CW-complex is homotopy equivalent to $G \setminus \underline{E}G$ for some group G (see Leary-Nucinkis (2001)).

- We want to illustrate that the space $\underline{E}G = \underline{E}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.

Let $PC_0(G)$ be the subspace of $C_0(G)$ consisting of functions f such that f is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for <u>E</u>G.

Theorem (Another operator theoretic model)

A model for $\underline{E}G$ is the space

$$X_G = \left\{ f \colon G o [0,1] \; \middle| \; f \; \textit{has finite support, } \sum_{g \in G} f(g) = 1
ight\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose *k*-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

- The spaces X_G and $P_{\infty}(G)$ have the same underlying sets but in general they have different topologies.
- The identity map induces a G-map $P_{\infty}(G) \rightarrow X_G$ which is a G-homotopy equivalence, but in general not a G-homeomorphism.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious G-action by simplicial automorphisms on P_d(G, S) induces a G-action by simplicial automorphisms on the barycentric subdivision P_d(G, S)'.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for EG.

- Let Γ^s_{g,r} be the mapping class group of an orientable compact surface F of genus g with s punctures and r boundary components. We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface F is negative.
- It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^{s}$ -space $\mathcal{T}_{g,r}^{s}$ is a model for $\underline{E}\Gamma_{g,r}^{s}$.

- Let F_n be the free group of rank n.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which $Out(F_n)$ acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction.
- This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of \underline{E} Out (F_n) .

Theorem (Lie groups)

Let L be a connected Lie group L, let $K \subseteq L$ be a maximal compact subgroup and let $G \subseteq L$ a discrete subgroup. Then L/K with the obvious G-action is a model for <u>E</u>G.

Theorem (CAT(0)-spaces)

A CAT(0)-space with proper isometric G-actions is a model for $\underline{E}G$.

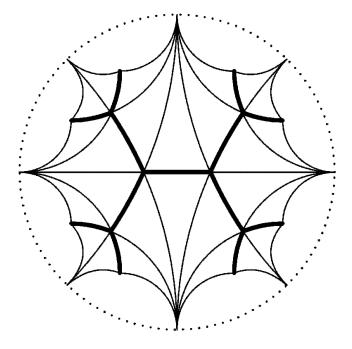
• Examples for CAT(0)-spaces are connected Riemannian manifolds with non-positive sectional curvature and trees.

Example $(SL_2(\mathbb{Z}))$

- In order to illustrate some of the general statements above we consider the special example $SL_2(\mathbb{Z})$.
- Let H² be the 2-dimensional hyperbolic space. It is a simply-connected 2-dimensional Riemannian manifold, whose sectional curvature is constant −1. In particular it is a CAT(0)-space. The group SL₂(Z) acts properly and isometrically by diffeomorphisms on the upper half-plane by Moebius transformations. Hence the SL₂(Z)-space H² is a model for <u>E</u>SL₂(Z).

- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- The group SL₂(ℝ) acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive and the isotropy group of z = i is SO(2). Hence the SL₂(ℤ)-manifolds SL₂(ℝ)/SO(2) and ℍ² are SL₂(ℤ)-diffeomorphic.

- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by \mathbb{H}^2 must be $SL_2(\mathbb{Z})$ -homotopy equivalent. They can explicitly be related by the following construction.



• Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree T with $SL_2(\mathbb{Z})$ -action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$ -equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.

The family of virtually cyclic subgroups

- In the case of the Farrell-Jones Conjecture we will have to deal with $\underline{\underline{E}}G = E_{\mathcal{VCyc}}(G)$ instead of $\underline{\underline{E}}G = E_{\mathcal{Fin}}(G)$.
- Unfortunately, $\underline{E}G$ is much more complicated than $\underline{E}G$.

Example $(\underline{E}\mathbb{Z}^n)$

- A model for $\underline{E}\mathbb{Z}^n$ is \mathbb{R}^n with the free standard \mathbb{Z}^n -action.
- If we cross it with ℝ with the trivial action, we obtain another model for <u>E</u>Zⁿ.
- Let {C_k | k ∈ Z} be the set of infinite cyclic subgroups of Zⁿ. Then a model for <u>E</u>Zⁿ is obtained from Rⁿ × R if we collapse for every k ∈ Z the *n*-dimensional real vector space Rⁿ × {k} to the (n-1)-dimensional real vector space Rⁿ/V_C, where V_C is the one-dimensional real vector space generated by the C-orbit through the origin.

- Finiteness properties of the spaces EG and $\underline{E}G$ have been intensively studied in the literature. We mention a few examples and results.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree.
- There are often finite models for $\underline{E}G$ for groups G with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge.
- These small models can be useful for computations concerning *BG* itself.

Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

Theorem (A criterion for 1-dimensional models for *BG*, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Theorem (Virtual cohomological dimension and $\dim(\underline{E}G)$, L. (2000))

Let G be a discrete group which is virtually torsionfree.

• Then

$$\operatorname{vcd}(G) \leq \dim(\underline{E}G)$$

for any model for $\underline{E}G$.

 Let l ≥ 0 be an integer such that for any chain of finite subgroups H₀ ⊊ H₁ ⊊ ... ⊊ H_r we have r ≤ l. Then there exists a model for <u>E</u>G of dimension max{3,vcd(G)} + l. • The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for $\underline{E}G$ of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

- Let G be a discrete group. Let \mathcal{MF} in be the subset of \mathcal{F} in consisting of elements in \mathcal{F} in which are maximal in \mathcal{F} in.
- Assume that G satisfies the following assertions:
 - (M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
- (NM) $M \in \mathcal{MFin}, M \neq \{1\} \Rightarrow N_G M = M.$
- Here are some examples of groups G which satisfy conditions (M) and (NM):
 - Extensions 1 → Zⁿ → G → F → 1 for finite F such that the conjugation action of F on Zⁿ is free outside 0 ∈ Zⁿ;
 - Fuchsian groups;
 - One-relator groups G.

- For such a group there is a nice model for <u>E</u>G with as few non-free cells as possible.
- Let {(M_i) | i ∈ I} be the set of conjugacy classes of maximal finite subgroups of M_i ⊆ G.
- By attaching free *G*-cells we get an inclusion of *G*-*CW*-complexes $j_1: \coprod_{i \in I} G \times_{M_i} EM_i \to EG$.
- Define <u>E</u>G as the G-pushout

$$\coprod_{i \in I} G \times_{M_i} EM_i \xrightarrow{j_1} EG \downarrow^{u_1} \qquad \qquad \downarrow^{f_1} \\ \coprod_{i \in I} G/M_i \xrightarrow{k_1} \underline{E}G$$

where u_1 is the obvious *G*-map obtained by collapsing each EM_i to a point.

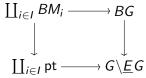
- Next we explain why <u>E</u>G is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for H ⊆ G finite that <u>E</u>G^H contractible.
- We begin with the case $H \neq \{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_0 \in I$ such that H is subconjugated to M_{i_0} and is not subconjugated to M_i for $i \neq i_0$. We get

$$\left(\prod_{i\in I} G/M_i\right)^H = (G/M_{i_0})^H = \text{pt.}$$

Hence $\underline{E}G^H = pt$.

• It remains to treat $H = \{1\}$. Since u_1 is a non-equivariant homotopy equivalence and j_1 is a cofibration, f_1 is a non-equivariant homotopy equivalence. Hence <u>E</u>G is contractible.

• Consider the pushout obtained from the *G*-pushout above by dividing the *G*-action



• The associated Mayer-Vietoris sequence yields

$$\dots \to \widetilde{H}_{p+1}(G \setminus \underline{E}G) \to \bigoplus_{i \in I} \widetilde{H}_p(BM_i) \to \widetilde{H}_p(BG)$$
$$\to \widetilde{H}_p(G \setminus \underline{E}G) \to \dots$$

• In particular we obtain an isomorphism for $p \ge \dim(\underline{E}G) + 1$

$$\bigoplus_{i\in I} H_p(BM_i) \xrightarrow{\cong} H_p(BG).$$

Example (One-relator groups)

- Let $G = \langle s_1, s_2, \dots s_g \mid r \rangle$ be a finitely generated one-relator-group.
- If G is torsionfree, the presentation complex associated to the presentation above is a 2-dimensional model for BG and we get

$$H_n(BG) = 0$$
 for $n \ge 3$.

• Now suppose that G is not torsionfree.

- Let F be the free group with basis $\{q_1, q_2, \ldots, q_g\}$. Then r is an element in F. There exists an element $s \in F$ and an integer $m \ge 2$ such that $r = s^m$, the cyclic subgroup C generated by the class $\overline{s} \in Q$ represented by s has order m, any finite subgroup of G is subconjugated to C and for any $g \in G$ the implication $g^{-1}Cg \cap C \neq 1 \Rightarrow g \in C$ holds.
- Hence G satisfies (M) and (NM).
- There is an explicit two-dimensional model for $\underline{E}G$ with one 0-cell $G/C \times D^0$, g 1-cells $G \times D^1$ and one free 2-cell $G \times D^2$.
- We conclude for $n \ge 3$

$$H_n(BC)\cong H_n(BG).$$