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Introduction

These slides cover parts of the course Groups, Geometry and Actions
of the summer term 2010, but also contain some additional material
which will not be presented in the lectures.

In the actual talks more background information, more examples and
more details are given on the blackboard.

This will be an on demand course, i.e., the audience can choose what
topic will be presented and also determine how much time shall be
spent on it

The first topic will be classifying spaces for families.
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Possible further topics are:

1 A basic short introduction to homological algebra and group
(co-)homology

2 Free actions of finite groups on homotopy CW -spheres
3 Introduction to Isomorphism Conjectures
4 Introduction to geometric group theory
5 Groups and L2-invariants

We will announce what topic is covered for which time period so that
people may choose to attend a topic or not.

I will put the slides on my homepage.

There will be a Tutorial run by Roman Sauer.

Next we have to decide on the forthcoming topics.
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G -CW -complexes

Definition (G -CW -complex)

A G -CW -complex X is a G -space together with a G -invariant filtration

∅ = X−1 ⊆ X0 ⊆ . . . ⊆ Xn ⊆ . . . ⊆
⋃
n≥0

Xn = X

such that X carries the colimit topology with respect to this filtration, and
Xn is obtained from Xn−1 for each n ≥ 0 by attaching equivariant
n-dimensional cells, i.e., there exists a G -pushout

∐
i∈In G/Hi × Sn−1

∐
i∈In

qni
//

��

Xn−1

��∐
i∈In G/Hi × Dn

∐
i∈In

Qn
i

// Xn
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A G -CW -complex X is the same as a CW -complex with a G -action
such that for any open cell e with g · e ∩ e 6= ∅ we have gx = x for all
x ∈ e.

Example (1- and 2-dimensional sphere with various actions)

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X .
Then G acts simplicially also on the barycentric subdivision X ′, and the
G -space X ′ inherits the structure of a G -CW -complex.

Example (Smooth actions)

If G acts properly and smoothly on a smooth manifold M, then M inherits
the structure of G -CW -complex.
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Classifying spaces for families

Definition (Family of subgroups)

A family F of subgroups of G is a set of subgroups of G which is closed
under conjugation and taking subgroups.

Examples for F are:
T R = {trivial subgroup};
F in = {finite subgroups};
VCyc = {virtually cyclic subgroups};
ALL = {all subgroups}.
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Definition (Classifying G -CW -complex for a family of subgroups, tom
Dieck(1974))

Let F be a family of subgroups of G . A model for the classifying
G -CW -complex for the family F is a G -CW -complex EF (G ) which has
the following properties:

All isotropy groups of EF (G ) belong to F ;

For any G -CW -complex Y , whose isotropy groups belong to F , there
is up to G -homotopy precisely one G -map Y → X .

We abbreviate E G := EF in(G ) and call it the universal G -CW -complex for
proper G -actions.

We abbreviate E G := EVCyc(G ).

We also write EG = ET R(G ).
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Theorem (Homotopy characterization of EF(G ))

Let F be a family of subgroups.

There exists a model for EF (G ) for any family F ;

Two models for EF (G ) are G-homotopy equivalent;

A G -CW -complex X is a model for EF (G ) if and only if all its
isotropy groups belong to F and for each H ∈ F the H-fixed point
set XH is contractible.

Sketch of the proof
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Trivial family

We have EG = E G if and only if G is torsionfree.

G → EG → BG is the universal G -principal bundle.

BG := G\EG is sometimes called the classifying space of G and is a
model for the Eilenberg-MacLane space of type (G,1).
It is unique up to homotopy.

A closed oriented surface Fg of genus g is a model for Bπ1(Fg ) if and
only if g ≥ 1.

A closed orientable 3-manifold M is a model for Bπ1(M) if and only
if its fundamental group is torsionfree, prime and different from Z.

A connected CW -complex is called aspherical if and only if
πn(X ) = 0 for n ≥ 2, or, equivalently, X is a model for Bπ1(X ).

Wolfgang Lück (Münster, Germany) Classifying spaces for families summer term 2010 9 / 34



Further elementary examples

We have EF (G ) = pt if and only if F = ALL.

We have E G = pt if and only if G is finite.

A model for E D∞ is the real line with the obvious
D∞ = Z o Z/2 = Z/2 ∗ Z/2-action.
Every model for ED∞ is infinite dimensional, e.g., the universal
covering of RP∞ ∨ RP∞.

The spaces E G are interesting in their own right and have often very
nice geometric models which are rather small.

On the other hand any CW -complex is homotopy equivalent to
G\E G for some group G (see Leary-Nucinkis (2001)).
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The family of finite subgroups

We want to illustrate that the space E G = E G often has very nice
geometric models and appear naturally in many interesting situations.

Let C0(G ) be the Banach space of complex valued functions of G
vanishing at infinity with the supremum-norm. The group G acts
isometrically on C0(G ) by (g · f )(x) := f (g−1x) for f ∈ C0(G ) and
g , x ∈ G .
Let PC0(G ) be the subspace of C0(G ) consisting of functions f such
that f is not identically zero and has non-negative real numbers as
values.

Theorem (Operator theoretic model, Abels (1978))

The G -space PC0(G ) is a model for E G .
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Theorem (Another operator theoretic model)

A model for E G is the space

XG =

{
f : G → [0, 1]

∣∣∣∣ f has finite support,
∑
g∈G

f (g) = 1

}

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let P∞(G ) be the geometric realization of the simplicial set whose
k-simplices consist of (k + 1)-tupels (g0, g1, . . . , gk) of elements gi in G .
This is a model for EG .
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The spaces XG and P∞(G ) have the same underlying sets but in
general they have different topologies.

The identity map induces a G -map P∞(G )→ XG which is a
G -homotopy equivalence, but in general not a G -homeomorphism.
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The Rips complex Pd(G ,S) of a group G with a symmetric finite set
S of generators for a natural number d is the geometric realization of
the simplicial set whose set of k-simplices consists of (k + 1)-tuples
(g0, g1, . . . gk) of pairwise distinct elements gi ∈ G satisfying
dS(gi , gj) ≤ d for all i , j ∈ {0, 1, . . . , k}.
The obvious G -action by simplicial automorphisms on Pd(G ,S)
induces a G -action by simplicial automorphisms on the barycentric
subdivision Pd(G , S)′.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators.
Suppose that (G , S) is δ-hyperbolic for the real number δ ≥ 0. Let d be a
natural number with d ≥ 16δ + 8.
Then the barycentric subdivision of the Rips complex Pd(G ,S)′ is a finite
G -CW -model for E G .
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Let Γs
g ,r be the mapping class group of an orientable compact surface

F of genus g with s punctures and r boundary components.
We will always assume that 2g + s + r > 2, or, equivalently, that the
Euler characteristic of the punctured surface F is negative.

It is well-known that the associated Teichmüller space T s
g ,r is a

contractible space on which Γs
g ,r acts properly.

Theorem (Teichmüller space)

The Γs
g ,r -space T s

g ,r is a model for E Γs
g ,r .
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Let Fn be the free group of rank n.

Denote by Out(Fn) the group of outer automorphisms of Fn, i.e., the
quotient of the group of all automorphisms of Fn by the normal
subgroup of inner automorphisms.

Culler-Vogtmann (1996) have constructed a space Xn called outer
space on which Out(Fn) acts with finite isotropy groups. It is
analogous to the Teichmüller space of a surface with the action of the
mapping class group of the surface.

The space Xn contains a spine Kn which is an Out(Fn)-equivariant
deformation retraction.

This space Kn is a simplicial complex of dimension (2n − 3) on which
the Out(Fn)-action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K ′n is a finite (2n − 3)-dimensional model of
E Out(Fn).
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Theorem (Lie groups)

Let L be a connected Lie group L, let K ⊆ L be a maximal compact
subgroup and let G ⊆ L a discrete subgroup.
Then L/K with the obvious G -action is a model for EG .

Theorem (CAT(0)-spaces)

A CAT(0)-space with proper isometric G -actions is a model for E G .

Examples for CAT(0)-spaces are connected Riemannian manifolds
with non-positive sectional curvature and trees.
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Example (SL2(Z))

In order to illustrate some of the general statements above we
consider the special example SL2(Z).

Let H2 be the 2-dimensional hyperbolic space. It is a
simply-connected 2-dimensional Riemannian manifold, whose
sectional curvature is constant −1. In particular it is a CAT(0)-space.
The group SL2(Z) acts properly and isometrically by diffeomorphisms
on the upper half-plane by Moebius transformations.
Hence the SL2(Z)-space H2 is a model for E SL2(Z).
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Example (continued)

The group SL2(R) is a connected Lie group and SO(2) ⊆ SL2(R) is a
maximal compact subgroup.
Hence SL2(R)/SO(2) is a model for E SL2(R)

The group SL2(R) acts by isometric diffeomorphisms on the upper
half-plane by Moebius transformations. This action is proper and
transitive and the isotropy group of z = i is SO(2).
Hence the SL2(Z)-manifolds SL2(R)/SO(2) and H2 are
SL2(Z)-diffeomorphic.
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Example (continued)

The group SL2(Z) is isomorphic to the amalgamated product
Z/4 ∗Z/2 Z/6. This implies that there is a tree on which SL2(Z) acts
with finite stabilizers. The tree has alternately two and three edges
emanating from each vertex. This is a 1-dimensional model for
E SL2(Z).

The tree model and the other model given by H2 must be
SL2(Z)-homotopy equivalent. They can explicitly be related by the
following construction.
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Example (continued)

Divide the Poincaré disk into fundamental domains for the
SL2(Z)-action. Each fundamental domain is a geodesic triangle with
one vertex at infinity, i.e., a vertex on the boundary sphere, and two
vertices in the interior. Then the union of the edges, whose end points
lie in the interior of the Poincaré disk, is a tree T with SL2(Z)-action
which is the tree model above. The tree is a SL2(Z)-equivariant
deformation retraction of the Poincaré disk. A retraction is given by
moving a point p in the Poincaré disk along a geodesic starting at the
vertex at infinity, which belongs to the triangle containing p, through
p to the first intersection point of this geodesic with T .
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The family of virtually cyclic subgroups

In the case of the Farrell-Jones Conjecture we will have to deal with
E G = EVCyc(G ) instead of E G = EF in(G ).

Unfortunately, E G is much more complicated than E G .

Example (EZn)

A model for EZn is Rn with the free standard Zn-action.

If we cross it with R with the trivial action, we obtain another model
for EZn.

Let {Ck | k ∈ Z} be the set of infinite cyclic subgroups of Zn. Then a
model for EZn is obtained from Rn ×R if we collapse for every k ∈ Z
the n-dimensional real vector space Rn × {k} to the
(n − 1)-dimensional real vector space Rn/VC , where VC is the
one-dimensional real vector space generated by the C -orbit through
the origin.
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Finiteness properties

Finiteness properties of the spaces EG and E G have been intensively
studied in the literature. We mention a few examples and results.

If EG has a finite-dimensional model, the group G must be
torsionfree.

There are often finite models for E G for groups G with torsion.

Often geometry provides small model for E G in cases, where the
models for EG are huge.

These small models can be useful for computations concerning BG
itself.
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Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let K ⊆ L be a
maximal compact subgroup K . Let G ⊆ L be a discrete subgroup of L.
Then L/K with the left G -action is a model for EG .
Suppose additionally that G is virtually torsionfree, i.e., contains a
torsionfree subgroup ∆ ⊆ G of finite index.
Then we have for its virtual cohomological dimension

vcd(G ) ≤ dim(L/K ).

Equality holds if and only if G\L is compact.
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Theorem (A criterion for 1-dimensional models for BG , Stallings
(1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

There exists a 1-dimensional model for EG ;

There exists a 1-dimensional model for BG ;

The cohomological dimension of G is less or equal to one;

G is a free group.

Theorem (A criterion for 1-dimensional models for EG , Dunwoody
(1979))

Let G be a discrete group. Then there exists a 1-dimensional model for
E G if and only if the cohomological dimension of G over the rationals Q is
less or equal to one.
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Theorem (Virtual cohomological dimension and dim(EG ), L. (2000))

Let G be a discrete group which is virtually torsionfree.

Then
vcd(G ) ≤ dim(E G )

for any model for E G .

Let l ≥ 0 be an integer such that for any chain of finite subgroups
H0 ( H1 ( . . . ( Hr we have r ≤ l .
Then there exists a model for E G of dimension max{3, vcd(G )}+ l .

Wolfgang Lück (Münster, Germany) Classifying spaces for families summer term 2010 27 / 34



The following problem has been stated by Brown (1979) and has
created a lot of activities.

Problem

For which discrete groups G , which are virtually torsionfree, does there
exist a G -CW -model for E G of dimension vcd(G )?

The results above do give some evidence for a positive answer.

However, Leary-Nucinkis (2003) have constructed groups, where the
answer is negative.
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A computation

Let G be a discrete group. Let MF in be the subset of F in consisting
of elements in F in which are maximal in F in.

Assume that G satisfies the following assertions:

(M) Every non-trivial finite subgroup of G is contained in a unique maximal
finite subgroup;

(NM) M ∈MF in,M 6= {1} ⇒ NGM = M.

Here are some examples of groups G which satisfy conditions (M)
and (NM):

Extensions 1→ Zn → G → F → 1 for finite F such that the
conjugation action of F on Zn is free outside 0 ∈ Zn;
Fuchsian groups;
One-relator groups G .
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For such a group there is a nice model for E G with as few non-free
cells as possible.

Let {(Mi ) | i ∈ I} be the set of conjugacy classes of maximal finite
subgroups of Mi ⊆ G .

By attaching free G -cells we get an inclusion of G -CW -complexes
j1 :

∐
i∈I G ×Mi

EMi → EG .

Define E G as the G -pushout

∐
i∈I G ×Mi

EMi
j1

//

u1
��

EG

f1

��∐
i∈I G/Mi

k1
// E G

where u1 is the obvious G -map obtained by collapsing each EMi to a
point.

Wolfgang Lück (Münster, Germany) Classifying spaces for families summer term 2010 30 / 34



Next we explain why E G is a model for the classifying space for
proper actions of G .

Its isotropy groups are all finite. We have to show for H ⊆ G finite
that E GH contractible.

We begin with the case H 6= {1}. Because of conditions (M) and
(NM) there is precisely one index i0 ∈ I such that H is subconjugated
to Mi0 and is not subconjugated to Mi for i 6= i0. We get(∐

i∈I
G/Mi

)H

= (G/Mi0)H = pt.

Hence E GH = pt.

It remains to treat H = {1}. Since u1 is a non-equivariant homotopy
equivalence and j1 is a cofibration, f1 is a non-equivariant homotopy
equivalence. Hence E G is contractible.
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Consider the pushout obtained from the G -pushout above by dividing
the G -action ∐

i∈I BMi //

��

BG

��∐
i∈I pt // G\E G

The associated Mayer-Vietoris sequence yields

. . .→ H̃p+1(G\E G )→
⊕
i∈I

H̃p(BMi )→ H̃p(BG )

→ H̃p(G\E G )→ . . .

In particular we obtain an isomorphism for p ≥ dim(E G ) + 1⊕
i∈I

Hp(BMi )
∼=−→ Hp(BG ).

Wolfgang Lück (Münster, Germany) Classifying spaces for families summer term 2010 32 / 34



Example (One-relator groups)

Let G = 〈s1, s2, . . . sg | r〉 be a finitely generated one-relator-group.

If G is torsionfree, the presentation complex associated to the
presentation above is a 2-dimensional model for BG and we get

Hn(BG ) = 0 for n ≥ 3.

Now suppose that G is not torsionfree.
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Example (continued)

Let F be the free group with basis {q1, q2, . . . , qg}. Then r is an
element in F . There exists an element s ∈ F and an integer m ≥ 2
such that r = sm, the cyclic subgroup C generated by the class s ∈ Q
represented by s has order m, any finite subgroup of G is
subconjugated to C and for any g ∈ G the implication
g−1Cg ∩ C 6= 1⇒ g ∈ C holds.

Hence G satisfies (M) and (NM).

There is an explicit two-dimensional model for E G with one 0-cell
G/C × D0, g 1-cells G × D1 and one free 2-cell G × D2.

We conclude for n ≥ 3

Hn(BC ) ∼= Hn(BG ).
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