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The projective class group

Definition (Projective R-module)

An R-module P is called projective if it satisfies one of the following
equivalent conditions:

P is a direct summand in a free R-module;

The following lifting problem has always a solution

M
p

// N // 0

P
f

``A
A

A
A

f

OO

If 0→ M0 → M1 → M2 → 0 is an exact sequence of R-modules, then
0→ homR(P,M0)→ homR(P,M1)→ homR(P,M2)→ 0 is exact.
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Over a field or, more generally, over a principal ideal domain every
projective module is free.

If R is a principal ideal domain, then a finitely generated R-module is
projective (and hence free) if and only if it is torsionfree.
For instance Z/n is for n ≥ 2 never projective as Z-module.

Let R and S be rings and R × S be their product. Then R × {0} is a
finitely generated projective R × S-module which is not free.

Example (Representations of finite groups)

Let F be a field of characteristic p for p a prime number or 0. Let G be a
finite group.
Then F with the trivial G -action is a projective FG -module if and only if
p = 0 or p does not divide the order of G . It is a free FG -module only if G
is trivial.
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Definition (Projective class group K0(R))

Let R be an (associative) ring (with unit). Define its projective class group

K0(R)

to be the abelian group whose generators are isomorphism classes [P] of
finitely generated projective R-modules P and whose relations are
[P0] + [P2] = [P1] for every exact sequence 0→ P0 → P1 → P2 → 0 of
finitely generated projective R-modules.

This is the same as the Grothendieck construction applied to the
abelian monoid of isomorphism classes of finitely generated projective
R-modules under direct sum.

The reduced projective class group K̃0(R) is the quotient of K0(R) by
the subgroup generated by the classes of finitely generated free
R-modules, or, equivalently, the cokernel of K0(Z)→ K0(R).
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Let P be a finitely generated projective R-module. It is stably free,
i.e., P ⊕ Rm ∼= Rn for appropriate m, n ∈ Z, if and only if [P] = 0 in
K̃0(R).

K̃0(R) measures the deviation of finitely generated projective
R-modules from being stably finitely generated free.

The assignment P 7→ [P] ∈ K0(R) is the universal additive invariant
or dimension function for finitely generated projective R-modules.

Induction

Let f : R → S be a ring homomorphism. Given an R-module M, let
f∗M be the S-module S ⊗R M. We obtain a homomorphism of
abelian groups

f∗ : K0(R)→ K0(S), [P] 7→ [f∗P].

Wolfgang Lück (Münster, Germany) Algebraic K -theory summer term 2010 5 / 77



Compatibility with products

The two projections from R × S to R and S induce isomorphisms

K0(R × S)
∼=−→ K0(R)× K0(S).

Morita equivalence

Let R be a ring and Mn(R) be the ring of (n, n)-matrices over R. We
can consider Rn as a Mn(R)-R-bimodule and as a R-Mn(R)-bimodule.
Tensoring with these yields mutually inverse isomorphisms

K0(R)
∼=−→ K0(Mn(R)), [P] 7→ [Mn(R)Rn

R ⊗R P];

K0(Mn(R))
∼=−→ K0(R), [Q] 7→ [RRn

Mn(R) ⊗Mn(R) Q].
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Example (Principal ideal domains)

If R is a principal ideal domain. Let F be its quotient field. Then we
obtain mutually inverse isomorphisms

Z
∼=−→ K0(R), n 7→ [Rn];

K0(R)
∼=−→ Z, [P] 7→ dimF (F ⊗R P).

Example (Representation ring)

Let G be a finite group and let F be a field of characteristic zero. Then
the representation ring RF (G ) is the same as K0(FG ). Taking the
character of a representation yields an isomorphism

RC(G )⊗Z C = K0(CG )⊗Z C
∼=−→ class(G ,C),

where class(G ; C) is the complex vector space of class functions G → C,
i.e., functions, which are constant on conjugacy classes.
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Example (Dedekind domains)

Let R be a Dedekind domain, for instance the ring of integers in an
algebraic number field.

Call two ideals I and J in R equivalent if there exists non-zero
elements r and s in R with rI = sJ. The ideal class group C(R) is the
abelian group of equivalence classes of ideals under multiplication of
ideals.

Then we obtain an isomorphism

C (R)
∼=−→ K̃0(R), [I ] 7→ [I ].

The structure of the finite abelian group

C (Z[exp(2πi/p)]) ∼= K̃0(Z[exp(2πi/p)]) ∼= K̃0(Z[Z/p])

is only known for small prime numbers p.

Wolfgang Lück (Münster, Germany) Algebraic K -theory summer term 2010 8 / 77



Theorem (Swan (1960))

If G is finite, then K̃0(ZG ) is finite.

Topological K -theory

Let X be a compact space. Let K 0(X ) be the Grothendieck group of
isomorphism classes of finite-dimensional complex vector bundles over
X .
This is the zero-th term of a generalized cohomology theory K ∗(X )
called topological K -theory. It is 2-periodic, i.e., Kn(X ) = Kn+2(X ),
and satisfies K 0(pt) = Z and K 1(pt) = {0}.
Let C (X ) be the ring of continuous functions from X to C.

Theorem (Swan (1962))

There is an isomorphism

K 0(X )
∼=−→ K0(C (X )).
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Wall’s finiteness obstruction

Definition (Finitely dominated)

A CW -complex X is called finitely dominated if there exists a finite (=
compact) CW -complex Y together with maps i : X → Y and r : Y → X
satisfying r ◦ i ' idX .

A finite CW -complex is finitely dominated.

A closed manifold is a finite CW -complex.

Problem

Is a given finitely dominated CW -complex homotopy equivalent to a finite
CW -complex?
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Definition (Wall’s finiteness obstruction)

A finitely dominated CW -complex X defines an element

o(X ) ∈ K0(Z[π1(X )])

called its finiteness obstruction as follows.

Let X̃ be the universal covering. The fundamental group π = π1(X )
acts freely on X̃ .

Let C∗(X̃ ) be the cellular chain complex. It is a free Zπ-chain
complex.

Since X is finitely dominated, there exists a finite projective Zπ-chain
complex P∗ with P∗ 'Zπ C∗(X̃ ).

Define
o(X ) :=

∑
n

(−1)n · [Pn] ∈ K0(Zπ).
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Theorem (Wall (1965))

A finitely dominated CW -complex X is homotopy equivalent to a finite
CW -complex if and only if its reduced finiteness obstruction
õ(X ) ∈ K̃0(Z[π1(X )]) vanishes.

A finitely dominated simply connected CW -complex is always
homotopy equivalent to a finite CW -complex since K̃0(Z) = {0}.
Given a finitely presented group G and ξ ∈ K0(ZG ), there exists a
finitely dominated CW -complex X with π1(X ) ∼= G and o(X ) = ξ.
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Theorem (Geometric characterization of K̃0(ZG ) = {0})
The following statements are equivalent for a finitely presented group G :

Every finite dominated CW -complex with G ∼= π1(X ) is homotopy
equivalent to a finite CW -complex.

K̃0(ZG ) = {0}.

Conjecture (Vanishing of K̃0(ZG ) for torsionfree G )

If G is torsionfree, then
K̃0(ZG ) = {0}.
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The Whitehead group

Definition (K1-group K1(R))

Define the K1-group of a ring R

K1(R)

to be the abelian group whose generators are conjugacy classes [f ] of
automorphisms f : P → P of finitely generated projective R-modules with
the following relations:

Given an exact sequence 0→ (P0, f0)→ (P1, f1)→ (P2, f2)→ 0 of
automorphisms of finitely generated projective R-modules, we get
[f0] + [f2] = [f1];

[g ◦ f ] = [f ] + [g ].
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This is the same as GL(R)/[GL(R),GL(R)].

An invertible matrix A ∈ GL(R) can be reduced by elementary row
and column operations and (de-)stabilization to the trivial empty
matrix if and only if [A] = 0 holds in the reduced K1-group

K̃1(R) := K1(R)/{±1} = cok (K1(Z)→ K1(R)) .

If R is commutative, the determinant induces an epimorphism

det : K1(R)→ R×,

which in general is not bijective.

The assignment A 7→ [A] ∈ K1(R) can be thought of the universal
determinant for R.
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Definition (Whitehead group)

The Whitehead group of a group G is defined to be

Wh(G ) = K1(ZG )/{±g | g ∈ G}.

Lemma

We have Wh({1}) = {0}.

Proof.

The ring Z possesses an Euclidean algorithm.

Hence every invertible matrix over Z can be reduced via elementary
row and column operations and destabilization to a (1, 1)-matrix
(±1).

This implies that any element in K1(Z) is represented by ±1.
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Let G be a finite group. Then:

Let F be Q, R or C.
Define rF (G ) to be the number of irreducible F -representations of G .
This is the same as the number of F -conjugacy classes of elements of
G .
Here g1 ∼C g2 if and only if g1 ∼ g2, i.e., gg1g−1 = g2 for some
g ∈ G . We have g1 ∼R g2 if and only if g1 ∼ g2 or g1 ∼ g−1

2 holds.
We have g1 ∼Q g2 if and only if 〈g1〉 and 〈g1〉 are conjugated as
subgroups of G .

The Whitehead group Wh(G ) is a finitely generated abelian group.

Its rank is rR(G )− rQ(G ).

The torsion subgroup of Wh(G ) is the kernel of the map
K1(ZG )→ K1(QG ).

In contrast to K̃0(ZG ) the Whitehead group Wh(G ) is computable.
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Whitehead torsion

Definition (h-cobordism)

An h-cobordism over a closed manifold M0 is a compact manifold W
whose boundary is the disjoint union M0 qM1 such that both inclusions
M0 →W and M1 →W are homotopy equivalences.

Theorem (s-Cobordism Theorem, Barden, Mazur, Stallings,
Kirby-Siebenmann)

Let M0 be a closed (smooth) manifold of dimension ≥ 5. Let (W ; M0,M1)
be an h-cobordism over M0.
Then W is homeomorphic (diffeomorphic) to M0 × [0, 1] relative M0 if and
only if its Whitehead torsion

τ(W ,M0) ∈Wh(π1(M0))

vanishes.
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Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy
sphere, i.e., homotopy equivalent to Sn.
Then M is homeomorphic to Sn.

Theorem

For n ≥ 5 the Poincaré Conjecture is true.
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Proof.

We sketch the proof for n ≥ 6.

Let M be a n-dimensional homotopy sphere.

Let W be obtained from M by deleting the interior of two disjoint
embedded disks Dn

1 and Dn
2 . Then W is a simply connected

h-cobordism.

Since Wh({1}) is trivial, we can find a homeomorphism

f : W
∼=−→ ∂Dn

1 × [0, 1] which is the identity on ∂Dn
1 = Dn

1 × {0}.
By the Alexander trick we can extend the homeomorphism

f |Dn
1×{1} : ∂Dn

2

∼=−→ ∂Dn
1 × {1} to a homeomorphism g : Dn

1 → Dn
2 .

The three homeomorphisms idDn
1
, f and g fit together to a

homeomorphism h : M → Dn
1 ∪∂Dn

1×{0} ∂Dn
1 × [0, 1] ∪∂Dn

1×{1} Dn
1 .

The target is obviously homeomorphic to Sn.
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The argument above does not imply that for a smooth manifold M
we obtain a diffeomorphism g : M → Sn.
The Alexander trick does not work smoothly.
Indeed, there exists so called exotic spheres, i.e., closed smooth
manifolds which are homeomorphic but not diffeomorphic to Sn.

The s-cobordism theorem is a key ingredient in the surgery program
for the classification of closed manifolds due to Browder, Novikov,
Sullivan and Wall.

Given a finitely presented group G , an element ξ ∈Wh(G ) and a
closed manifold M of dimension n ≥ 5 with G ∼= π1(M), there exists
an h-cobordism W over M with τ(W ,M) = ξ.
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Theorem (Geometric characterization of Wh(G ) = {0})
The following statements are equivalent for a finitely presented group G
and a fixed integer n ≥ 6

Every compact n-dimensional h-cobordism W with G ∼= π1(W ) is
trivial;

Wh(G ) = {0}.

Conjecture (Vanishing of Wh(G ) for torsionfree G )

If G is torsionfree, then
Wh(G ) = {0}.
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Negative K -theory

Definition (Bass-Nil-groups)

Define for n = 0, 1

NKn(R) := coker (Kn(R)→ Kn(R[t])) .

Theorem (Bass-Heller-Swan decomposition for K1 (1964))

There is an isomorphism, natural in R,

K0(R)⊕ K1(R)⊕ NK 1(R)⊕ NK 1(R)
∼=−→ K1(R[t, t−1]) = K1(R[Z]).
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Definition (Negative K -theory)

Define inductively for n = −1,−2, . . .

Kn(R) := coker
(
Kn+1(R[t])⊕ Kn+1(R[t−1])→ Kn+1(R[t, t−1])

)
.

Define for n = −1,−2, . . .

NKn(R) := coker (Kn(R)→ Kn(R[t])) .

Theorem (Bass-Heller-Swan decomposition for negative K -theory)

For n ≤ 1 there is an isomorphism, natural in R,

Kn−1(R)⊕ Kn(R)⊕ NKn(R)⊕ NKn(R)
∼=−→ Kn(R[t, t−1]) = Kn(R[Z]).
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Definition (Regular ring)

A ring R is called regular if it is Noetherian and every finitely generated
R-module possesses a finite projective resolution.

Principal ideal domains are regular. In particular Z and any field are
regular.

If R is regular, then R[t] and R[t, t−1] = R[Z] are regular.

If R is regular, then RG in general is not Noetherian or regular.
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Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

Kn(R) = 0 for n ≤ −1;

NKn(R) = 0 for n ≤ 1,

and the Bass-Heller-Swan decomposition reduces for n ≤ 1 to the natural
isomorphism

Kn−1(R)⊕ Kn(R)
∼=−→ Kn(R[t, t−1]) = Kn(R[Z]).
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Construction of higher algebraic K -theory for rings

There are also higher algebraic K -groups Kn(R) for n ≥ 2 due
to Quillen (1973).

Nowadays there several constructions: plus-construction, group
completion, Q-construction, S•-construction.

We give a quick review of the technically less demanding
Q-construction.

Most of the well known features of K0(R) and K1(R) extend to both
negative and higher algebraic K -theory.
For instance the Bass-Heller-Swan decomposition and Morita
equivalence holds also for higher algebraic K -theory.
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Definition (Acyclic space)

A space Z is called acyclic if it has the homology of a point, i.e., the
singular homology with integer coefficients Hn(Z ) vanishes for n ≥ 1 and
is isomorphic to Z for n = 0.

An acyclic space is path connected.

The fundamental group π of an acyclic space is perfect, i.e.,
π = [π, π], and satisfies H2(π; Z) = 0.
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In the sequel we will suppress choices of and questions about base
points.

The homotopy fiber hofib(f ) of a map f : X → Y of path connected
spaces has the property that it is the fiber of a fibration pf : Ef → Y
which comes with a homotopy equivalence h : Ef → X satisfying
pf = f ◦ h.

The long exact homotopy sequence associated to a map f : X → Y
looks like

· · · ∂3−→ π2(hofib(f ))
i2−→ π2(X )

f2−→ π2(Y )
∂2−→ π1(hofib(f ))

i1−→ π1(X )

f1−→ π1(Y )
∂1−→ π0(hofib(f ))

i0−→ π0(X )
f0−→ π0(Y )→ {0}.
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Definition (Acyclic map)

Let X and Y be path connected CW -complexes. A map f : X → Y is
called acyclic if its homotopy fiber hofib(f ) is acyclic.

We conclude from the long exact homotopy sequence that
f1 : π1(X )→ π1(Y ) is surjective and its kernel is a normal perfect
subgroup P of π1(X ) provided that f is acyclic.

Namely, P is a quotient of the perfect group π2(hofib(f )) and
π0(hofib) consists of one element.

Obviously a space Z is acyclic if and only if the map Z → pt is
acyclic.
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Definition (Plus-construction)

Let X be a connected CW -complex and P ⊆ π1(X ) be a normal perfect
subgroup. A map f : X → Y to a CW -complex is called a
plus-construction of X relative to P if f is acyclic and the kernel of
f1 : π1(X )→ π1(Y ) is P.
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Theorem (Properties of the plus-construction)

Let Z be a connected CW -complex and let P ⊆ π1(X ) be a normal
perfect subgroup. Then:

There exists a plus-construction f : X → Y relative P;

Let f : X → Y be a plus-construction relative P and let g : X → Z be
a map such that the kernel of g1 : π1(X )→ π1(Z ) contains P. Then
there is a map g : Y → Z which is up to homotopy uniquely
determined by the property that g ◦ f is homotopic to g;

If f1 : X → Y1 and f2 : X → Y2 are two plus-constructions for X
relative P, then there exists a homotopy equivalence g : Y1 → Y2

which is up to homotopy uniquely determined by the property
g ◦ f1 ' f2;
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Theorem (continued)

The map f1 : π1(X )→ π1(X +) can be identified with the canonical
projection π1(X )→ π1(X )/P;

The map Hn(f ; M) : Hn(X ; f ∗M)→ Hn(X +; M) is bijective for every
n ≥ 0 and every local coefficient systems M on X +.

Every group G has a unique largest perfect subgroup P ⊆ G , called
the perfect radical

In the sequel we will always use the prefect radical of G for P unless
explicitly stated differently.
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Definition (Higher algebraic K -groups of a ring)

Let BGL(R)→ BGL(R)+ be a plus-construction for the classifying space
BGL(R) of GL(R) (with respect to the perfect radical of GL(R) which is
E (R)).
Define the K -theory space associated to R

K (R) := K0(R)× BGL(R)+,

where we view K0(R) with the discrete topology.
Define the n-th algebraic K -group

Kn(R) := πn(K (R)) for n ≥ 0.

Wolfgang Lück (Münster, Germany) Algebraic K -theory summer term 2010 34 / 77



This definition makes sense because of the Theorem above.

Notice that for n ≥ 1 we have Kn(R) = πn(BGL(R)+).

For n = 0, 1 the last definition coincides with the ones given earlier in
terms of generator and relations.

A ring homomorphism f : R → S induces maps GL(R)→ GL(S) and
hence maps BGL(R)→ BGL(S) and BGL(R)+ → BGL(S)+. We
have a map K0(R)→ K0(S). Therefore f induces a maps

K (f ) : K (R) → K (S);

Kn(f ) : Kn(R) → Kn(S);
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Definition (Relative K -groups)

Define for a two-sided ideal I ⊆ R and n ≥ 0

Kn(R, I ) := πn

(
hofib(K (pr)) : K (R)→ K (R/I ))

)
.

for pr : R → R/I the projection.

Theorem (Long exact sequence of an ideal for algebraic K -theory)

Let I ⊆ R be a two sided ideal. Then there is a long exact sequence,
infinite to both sides

· · · ∂3−→ K2(R, I )
j2−→ K2(R)

pr2−−→ K2(R/I )
∂2−→ K1(R, I )

j1−→ K1(R)

pr1−−→ K1(R/I )
∂1−→ K0(R, I )

j1−→ K0(R)
pr0−−→ K0(R/I )

∂0−→ K−1(R, I )
j1−→ K−1(R)

pr0−−→ K−1(R/I )
∂−1−−→ · · · .
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Definition (Spectrum)

A spectrum
E = {(E (n), σ(n)) | n ∈ Z}

is a sequence of pointed spaces {E (n) | n ∈ Z} together with pointed
maps called structure maps

σ(n) : E (n) ∧ S1 −→ E (n + 1).

A map of spectra
f : E→ E′

is a sequence of maps f (n) : E (n)→ E ′(n) which are compatible with
the structure maps σ(n), i.e., f (n + 1) ◦ σ(n) = σ′(n) ◦ (f (n) ∧ idS1)
holds for all n ∈ Z.

The category of spectra is denoted by Spectra.
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Definition (Homotopy groups of a spectrum)

The i-th homotopy group of a spectrum E is defined by

πi (E) := colim
k→∞

πi+k(E (k)), (0.1)

where the system πi+k(E (k)) is given by the composite

πi+k(E (k))
S−→ πi+k+1(E (k) ∧ S1)

σ(k)∗−−−→ πi+k+1(E (k + 1))

of the suspension homomorphism S and the homomorphism induced by
the structure map.

The homotopy groups of a spectrum can be non-trivial also in
negative degrees.

Definition (Weak equivalence)

A weak equivalence of spectra is a map f : E→ F of spectra inducing an
isomorphism on all homotopy groups.
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Given a spectrum E, a classical construction in algebraic topology
assigns to it a homology theory H∗(−,E) with the property

Hn(pt; E) = πn(E).

Put
Hn(X ; E) := πn (X+ ∧ E) .

One also gets a cohomology theory H∗(−,E) with the property

Hn(pt; E) = π−n(E).

The basic example of a spectrum is the sphere spectrum S. Its n-th
space is Sn and its n-th structure map is the standard

homeomorphism Sn ∧ S1
∼=−→ Sn+1.

Its associated homology theory is stable homotopy πs
∗(−) = H∗(−; S).
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Definition (Non-connective algebraic K -theory spectrum)

One can assign to ring R a spectrum K(R), the so called non-connective
algebraic K -theory spectrum such that we get for all n ∈ Z

πn(K(R)) ∼= Kn(R).
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Main properties of higher algebraic K -theory for rings

Theorem (Algebraic K -theory and finite products)

Let R0 and R1 be rings. Denote by pri : R0 × R1 → Ri for i = 0, 1 the
projection. Then we obtain for n ∈ Z isomorphisms

(pr0)n × (pr1)n : Kn(R0 × R1)
∼=−→ Kn(R0)× Kn(R1)

Theorem (Morita equivalence for algebraic K -theory)

For every ring R and integer k ≥ 1 there are for all n ∈ Z natural
isomorphisms

µn : Kn(R)
∼=−→ Kn(Mk(R)).
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Theorem (Algebraic K -theory and directed colimits)

Let {Ri | i ∈ I} be a directed system of rings. Then the canonical map

colim
i∈I

Kn(Ri )
∼=−→ Kn

(
colim

i∈I
Ri

)
is bijective for n ∈ Z.
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Theorem (Bass-Heller-Swan decomposition for algebraic K -theory)

The following maps are isomorphisms of abelian groups for n ∈ Z

NKn(R)⊕ Kn(R)
∼=−→ Kn(R[t]);

Kn(R)⊕ Kn−1(R)⊕ NKn(R)⊕ NKn(R)
∼=−→ Kn(R[t, t−1]).

The following sequence is natural in R and split exact (with in R
natural splitting) for n ∈ Z

0→ Kn(R)
(k+)∗⊕−(k−)∗−−−−−−−−−→ Kn(R[t])⊕ Kn(R[t−1])

(τ+)∗⊕(τ−)∗−−−−−−−−→ Kn(R[t, t−1])
C−→ Kn−1(R)→ 0.

If R is regular, then

NKn(R) = {0} for n ∈ Z;

Kn(R) = {0} for n ≤ −1.
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Theorem (Algebraic K -theory of finite fields Quillen(1973))

Let Fq be a finite field of order q. Then Kn(Fq) vanishes if n = 2k for
some integer k ≥ 1, and is a finite cyclic group of order qk − 1 if
n = 2k − 1 for some integer k ≥ 1.
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Theorem (Rational Algebraic K -theory of ring of integers of number
fields Borel(1972))

Let R be a ring of integers in an algebraic number field. Let r1 be the
number of distinct embeddings of F into R and let r2 be the number of
distinct conjugate pairs of embeddings of F into C with image not
contained in R. Then:

Kn(R)⊗Z Q ∼=



{0} n even or n ≤ −1;

Q n = 0;

Qr1+r2−1 n = 1;

Qr1+r2 n ≥ 2 and n = 1 mod 4;

Qr2 n ≥ 2 and n = 3 mod 4.
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Theorem (Localization sequence in K -theory for Dedekind domains
Quillen(1973))

Let R be a Dedekind domain with quotient field F . Then there is an exact
sequence

· · · → Kn+1(F )→
⊕
P

Kn(R/P)→ Kn(R)→ Kn(F )→
⊕
P

Kn−1(R/P)

→ · · · →
⊕
P

K0(R/P)→ K0(R)→ K0(F )→ 0,

where P runs through the maximal ideals of R.

We have Kn(Z) = {0} for n ≤ −1 and the first values of Kn(Z) for
n = 0, 1, 2, 3, 4, 5, 6, 7 are given by Z, Z/2, Z/2, Z/48, {0}, Z, {0},
Z/240.
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Algebraic K -Theory with Coefficients

By invoking the Moore space associated to Z/k , one can introduce
K -theory Kn(R; Z/k) for n ∈ Z with coefficients in Z/k for any
integer k ≥ 2.

They fit into long exact sequences

· · · → Kn+1(R; Z/k)→ Kn(R)
k·id−−→ Kn(R)→ Kn(R; Z/k)

→ Kn−1(R)
k·id−−→ Kn−1(R)→ Kn−1(R; Z/k)→ · · ·
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Theorem (Algebraic K -theory mod k of algebraically closed fields
Suslin(1983))

The inclusion of algebraically closed fields induces isomorphisms on
K∗(−; Z/k).

Let p be a prime number. Quillen(1973a) has computed the algebraic
K -groups for any algebraic extension of the field Fp of p-elements for
every prime p.

One can determine Kn(Fp; Z/k) for the algebraic closure of Fp from
the long exact sequence above.

Hence one obtains Kn(F ; Z/k) for any algebraically closed field of
prime characteristic p by Suslin’s Theorem.
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Theorem (Algebraic and topological K -theory mod k for R and C
Suslin(1983))

The comparison map from algebraic to topological K -theory induces for all
integers k ≥ 2 and all n ≥ 0 isomorphisms

Kn(R; Z/k)
∼=−→ K top

n (R; Z/k);

Kn(C; Z/k)
∼=−→ K top

n (C; Z/k).

For every algebraically closed field F of characteristic 0 we have an
injection Q → F for the algebraically closure Q of Q,

Hence the theorems above imply for every algebraically closed field F
of characteristic zero:

Kn(F ; Z/k) ∼=


Z/k n ≥ 0, n even;

{0} n ≥ 1, n odd.

{0} n ≤ −1.
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Algebraic K -Theory of spaces

So far we have only considered algebraic K -theory of algebraic
objects, e.g., of rings, modules or exact categories.

Next we want to describe the most general version of algebraic
K -theory which applies to spaces and is due to Waldhausen.

This will allow to get information about spaces of topological or
smooth automorphisms of topological or smooth manifolds.

Other relevant theories are spaces of pseudoisotopies and spaces of
h-cobordism over a manifold.

We begin with the relevant generalization of an exact category.

A category C is called pointed if it comes with a distinguished
zero-object i.e., an object with is both initial and terminal.
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Definition (Category with cofibrations and weak equivalences)

A category with cofibrations and weak equivalences is a small pointed
category C with a subcategory coC, called category of cofibrations in C
and a subcategory wC, called category of weak equivalences in C such that
the following axioms are satisfied:

The isomorphisms in C are cofibrations, i.e., belong to coC;

For every object C the map ∗ → C is a cofibration, where ∗ is the
distinguished zero-object;

If in the diagram A B
i

oo
f

// C the left arrow is a cofibration,
the pushout

A //
i

//

f
��

B

f
��

C //
i

// D

exists and i is a cofibration;
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Definition (Continued)

The isomorphisms in C are contained in wC;

If in the commutative diagram

B

'
��

Aoooo //

'
��

C

'
��

B ′ A′oooo // C ′

the horizontals arrow on the left are cofibrations, and all vertical
arrows are weak equivalences, then the induced map on the pushout of
the upper row to the pushout of the lower row is a weak isomorphism.
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Example (Topological spaces)

Let Spaces be the category of pointed topological spaces.

Ignoring the condition small, we obtain a category with cofibrations
and weak equivalences is follows.

The one-point space is the zero object.

We declare cofibration of topological spaces to be the cofibrations.

We declare the weak equivalences to consists of one of the following
classes:

homeomorphisms
homotopy equivalences
weak homotopy equivalences
homology equivalences with respect to a given homology theory
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Example (Exact categories are categories with cofibrations and weak
equivalences)

Let P ⊆ A be an exact category.

It becomes a category with cofibrations and weak equivalences as
follows.

The zero-object is just a zero-object in the abelian category A.

An admissible monomorphism in P is a morphism i : A→ B which
occurs in an exact sequence 0→ A→ B → C → 0 of P. They form
the cofibrations.

The weak equivalences are given by the isomorphisms.
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Example (The category R(X ) of retractive spaces)

Let X be a space.

A retractive space over X is a triple (Y , r , s) consisting of a space Y
and maps s : X → Y and r : Y → X satisfying r ◦ s = idX .

A morphism from (Y , r , s) to (Y ′, r ′, s ′) is a map f : X → X ′

satisfying r ′ ◦ f = r and f ◦ s = s ′.

The zero-object is (X , idX , idX ).

A morphism f : (Y , r , s)→ (Y ′, r ′, s ′) is declared to be a cofibration
if the underlying map of spaces f : Y → Y ′ is a cofibration.

Now there are several possibilities to define weak equivalences. One
may require that f : Y → Y ′ is a homeomorphism, a homotopy
equivalence, weak homotopy equivalence or a homology equivalence
with respect to some fixed homology theory.

Then one obtains a category R(X ) with cofibrations and weak
equivalences except that R(X ) is not small.
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Example (The category Rf (X ) of relatively finite retractive
CW -complexes)

The following subcategory Rf (X ) of R(X ) will be relevant for us and
is indeed a (small) category with cofibrations and weak equivalences.

We require that (Y ,X ) is a relative CW -complex which is relatively
finite, and s : X → Y is the inclusion and morphisms to be cellular
maps.

We choose all weak homotopy equivalences as weak equivalences and
inclusion of relative CW -complexes as cofibrations.

We obtain a covariant functor from Spaces to the category
Catcofwe of categories with cofibrations and weak equivalences.
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Next we explain how to associate to a category with cofibrations and
weak equivalences an infinite loop space.

This is a generalization of the Q-construction.

For an integer n ≥ 0 let [n] be the ordered set {0, 1, 2, . . . , n}.
Let ∆ be the category whose set of objects is {[n] | n = 0, 1, 2 . . .}
and whose set of morphisms from [m] to [n] consists of the order
preserving maps.

A simplicial category is a contravariant functor from ∆ to the
category Cat of categories.

Analogously, a simplicial category with cofibrations and weak
equivalences is a contravariant functor from ∆ to Catcofwe.
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Let C be a category with cofibrations and weak equivalences.

We want to assign to it a a simplicial category with weak cofibrations
and weak equivalences S•C as follows.

Define SnC to be the category for which an object is a sequence of

cofibrations A0,1
k0,1−−→ A0,2

k0,2−−→ · · ·
k0,n−1−−−→ A0,n together with explicit

choices of quotient objects pri ,j : A0,j → Ai ,j = A0,j/Ai ,0 for
i , j ∈ {1, 2, . . . , n}, i < j , i.e., we fix pushouts

Ai ,0
k0,j−1◦···◦k0,i

//

��

Aj ,0

pri,j
��

0 // Ai ,j
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Morphisms are given by collection of morphisms {fi ,j} which make the
obvious diagram commute.

These explicit choices of quotient objects are needed to define the
relevant face and degeneracy maps.

For instance the face map di : SnC → Sn−1C is given for i ≥ 1 by
dropping A0,i and for i = 0 by passing to
A0,2/A0,1 → A0,3/A0,1 → · · · → A0,n/A0,1.

An arrow in SnC is declared to be a cofibration if each arrow
Ai ,j → Ai ′,j ′ is a cofibration and analogously for weak equivalences.
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We obtain a simplicial category wS•C by considering the category of
weak equivalences of S•C.

Let |wS•C| be the geometric realization of the simplicial category
wS•C which is the geometric realization of the bisimplicial set
obtained by the composite of the functor nerve of a category with
wS•C.

Definition (Algebraic K -theory space of a category with cofibrations
and weak equivalences)

Let C be a category with cofibrations and weak equivalences. Its algebraic
K -theory space is defined by

K (C) := Ω|wS•C|.
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There is a canonical map |wC| → Ω|wS•C| which is the adjoint of the
obvious identification of the 1-skeleton in the S• direction of |wS•C|
with the reduced suspension |wC| ∧ S1.

Since one can iterate this construction, one obtains a sequence of
maps

|wC| → Ω|wS•C| → ΩΩ|wS•S•C| → · · ·

It turns out that all these maps except the first one are weak
homotopy equivalences.

So K (C) is an infinite loop space.
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Definition ((Connective) A-theory)

Let X be a topological space. Let Rf (X ) be the category with cofibrations
and weak equivalences defined above. Define the A-theory space A(X )
associated to X to be the algebraic K -theory space K (Rf (X )) defined
above.

Waldhausen’s A-construction encompasses the Q-construction of
Quillen.

There are many other instances where linear constructions were
generalized to constructions for spaces and thus yield significant
improvements, e.g., topological Hochschild homology and topological
cyclic homology.
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As in the case of algebraic K -theory of rings it will be crucial for us to
consider a non-connective version.

Vogell has defined a delooping of A(X ) yielding a non-connective
Ω-spectrum A(X ) for a topological space X .

This construction actually yields a covariant functor

A : Spaces → Ω-Spectra

Definition (Non-connective A-theory)

We call A(X ) the (non-connective) A-theory spectrum associated to the
topological space X . We write for n ∈ Z

An(X ) := πn(X )
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Let X be a connected space with fundamental group π = π1(X )
which admits a universal covering pX : X̃ → X .

Consider an object in Rf (X ). Recall that it is given by a relatively
finite relative CW -complex (Y ,X ) together with a map r : X → Y
satisfying r |X = idX .

Let Ỹ → Y be the π-covering obtained from pX : X̃ → X by the
pullback construction applied to r : X → Y .

The cellular Zπ-chain complex C∗(X̃ , Ỹ ) of the relative free
π-CW -complex (X̃ , Ỹ ) is a finite free Zπ-chain complex.

This gives essentially a functor of categories with cofibrations and
weak equivalences from Rf (X ) to the category of finite free Zπ-chain
complexes.

The algebraic K -theory of the category of finite free Zπ-chain complex
agrees with the one of the finitely generated free Zπ-modules.

Hence we get a natural map of spectra called linearization map

L : A(X ) → K(Zπ)
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Theorem (Connectivity of the linearization map)

Let X be an aspherical CW -complex. Then:

The linearization map L is 2-connected, i.e., the map

Ln := πn(L) : An(X )→ Kn(Zπ1(X ))

is bijective for n ≤ 1 and surjective for n = 2;

Rationally the map Ln is bijective for all n ∈ Z.

This implies that the map of spectra A(X )→ A(X ) is a weak
homotopy equivalence if X = pt, but not in general.
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Pseudoisotopy and Whitehead spaces

A topological pseudoisotopy of a compact manifold M is a
homeomorphism h : M × I → M × I , which restricted to
M × {0} ∪ ∂M × I is the obvious inclusion.

This is a weaker notion than the one of isotopy.

The space P(M) of pseudoisotopies is the group of all such
homeomorphisms, where the group structure comes from
composition. If we allow M to be non-compact, we will demand that
h has compact support, i.e., there is a compact subset C ⊆ M such
that h(x , t) = (x , t) for all x ∈ M − C and t ∈ [0, 1].

There is a stabilization map P(M)→ P(M × I ) given by crossing a
pseudoisotopy with the identity on the interval I .
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The stable pseudoisotopy space is defined as

P(M) = colim
j

P(M × I j).

There exists also a smooth versions PDiff(M) and PDiff(M).

The natural inclusions P(M)→ P(M) and PDiff(M)→ PDiff(M)
induces an isomorphism on the i-th homotopy group if the dimension
n of M is large compared to i , roughly for i ≤ n/3
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Next we want to define a delooping of P(M).

Let p : M × Rk × I → Rk denote the natural projection.

For a manifold M the space Pb(M; Rk) of bounded pseudoisotopies is
the space of all self-homeomorphisms h : M × Rk × I → M × Rk × I
satisfying:

The restriction of h to M ×Rk ×{0} ∪ ∂M ×R× [0, 1] is the inclusion.
the map h is bounded in the Ri -direction, i.e., the set
{p ◦ h(y)− p(y) | y ∈ M × Rk × I} is a bounded subset of Rk .
the map h has compact support in the M-direction.

There is an obvious stabilization map Pb(M; Rk)→ Pb(M × I ; Rk).

The stable bounded pseudoisotopy space is defined by

Pb(M; Rk) = colim
j

Pb(M × I j ; Rk).
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There is a homotopy equivalence Pb(M; Rk)→ ΩPb(M; Rk+1).

Hence the sequences of spaces Pb(M; Rk) for k = 0, 1, 2, . . . and
Ω−iPb(M) for i = 0,−1,−2, . . . define an Ω-spectrum P(M).

Analogously one defines the differentiable versions PDiff
b (M; Rk) and

PDiff(M).

Definition ((Non-connective) pseudo-isotopy spectrum)

We call the Ω-spectra P(X ) and PDiff(X ) associated to a topological
space X the (non-connective) pseudoisotopy spectrum and the smooth
(non-connective) pseudoisotopy spectrum of X .

There is a simplicial construction which allows to extend these
definitions for manifolds to all topological spaces.
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Waldhausen defines the functor WhPL from spaces to infinite loop
spaces which can be viewed as connective Ω-spectra, and establishes
a fibration sequence

X+ ∧ A(pt)→ A(X )→WhPL(X ).

After taking homotopy groups, it can be compared with the algebraic
K -theory assembly map via the commutative diagram

πn(X+ ∧ A(pt))

∼=
��

// πn(A(X ))

��

πn(X+ ∧ A(pt)) = Hn(X ; A(pt))

��

// πn(A(X ))

��

Hn(Bπ1(X ); K(Z)) // Kn(Zπ1(X )).
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The left upper vertical arrow is bijective for n ∈ Z.

The right upper vertical arrow is bijective for n ≥ 1.

The vertical arrows from the second row to the third row come from
the linearization map.

The left lower vertical arrow is bijective for n ≤ 1 and rationally
bijective for n ∈ Z.

In the case where X is aspherical, the lower right vertical map is
bijective for n ≤ 1 and rationally bijective for all n ∈ Z.
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Theorem (Relating the Whitehead space and pseudisotopy)

Ω2 WhPL(X ) ' P(X ).

Corollary

Suppose that M is a closed aspherical manifold. Suppose that the
K -theoretic Farrell-Jones Conjecture holds for R = Z and G = π1(M), i.e.,
the lowest horizontal arrow in the diagram above is bijective.
Then we get for all n ≥ 0

πn(WhPL(M))⊗Z Q = 0;

πn(P(M))⊗Z Q = 0.
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There is also a smooth version of the Whitehead space WhDiff(X ).

We have Ω2 WhDiff(M) ' PDiff(M).

A result of Waldhausen says that there is a natural splitting of
connective spectra

A(X ) ' Σ∞(X+) ∨WhDiff(X ).

Corollary

Let M be a closed aspherical manifold. Suppose that the K -theoretic
Farrell-Jones Conjecture holds for R = Z and G = π1(M). Then we get
for all n ≥ 0

πn(WhDiff(M))⊗Z Q ∼=
∞⊕

k=1

Hn−4k−1(M; Q);

πn(PDiff(M))⊗Z Q ∼=
∞⊕

k=1

Hn−4k+1(M; Q).
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If one additionally also assumes the Farrell-Jones Conjectures for
L-theory, one gets

Theorem (Homotopy Groups of Top(M))

Let M be an orientable closed aspherical manifold of dimension > 10 with
fundamental group G . Suppose the L-theory assembly map

Hn(BG ; L〈−∞〉(Z))→ L
〈−∞〉
n (ZG )

is an isomorphism for all n and suppose the K -theory assembly map

Hn(BG ; K(Z))→ Kn(ZG )

is an isomorphism for n ≤ 1 and a rational isomorphism for n ≥ 2.
Then for 1 ≤ i ≤ (dim M − 7)/3 one has

πi (Top(M))⊗Z Q =

{
center(G )⊗Z Q if i = 1,
0 if i > 1
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In the differentiable case one additionally needs to study involutions
on the higher K -theory groups. The corresponding result reads:

Theorem (Homotopy Groups of Diff(M))

Let M be an orientable closed aspherical differentiable manifold of
dimension > 10 with fundamental group G . Suppose that the same
assumptions as in the last theorem hold.
Then we have for 1 ≤ i ≤ (dim M − 7)/3

πi (Diff(M))⊗ZQ =


center(G )⊗Z Q if i = 1;⊕∞

j=1 H(i+1)−4j(M; Q) if i > 1 and dim M odd;

0 if i > 1 and dim M even.
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There is also a space of parametrized h-cobordisms H(M) for a
compact topological manifold M.

Roughly speaking, the space is designed such that a map N → H(M)
is the same as a bundle over N whose fibers are h-cobordisms over M.

The set of path components π0(H(M)) agrees with the isomorphism
classes of h-cobordisms over M.

In particular the s-Cobordism Theorem is equivalent to the statement

that for dim(M) ≥ 5 we obtain a bijection π0(H(M))
∼=−→Wh(π1(M))

coming from taking the Whitehead torsion, or, equivalently that we
obtain a bijection

π0(H(M))
∼=−→ π0(Ω Wh(M)).

There is also a stable version, the space of stable parametrized
h-cobordisms

K(M) := colim
j

H(M × I j).
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Theorem (The stable parametrized h-cobordism Theorem)

If M is a compact topological manifold, then there is a homotopy
equivalence

K(M)
'−→ Ω Wh(M).
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