K-Theory 3: 123-140, 1989. 123
¢ 1989 Kluwer Academic Publishers. Printed in the Netherlands.

The Involution on the
Equivariant Whitehead Group

FRANK CONNOLLY
Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.

and

WOLFGANG LUCK
Mathematisches Institut, Georg August Universitdt Gottingen, Bunsenstr. 3-5, 34 Gottingen, West Germany

(Received: 27 September 1988)

Abstract. For a finite group G we define an involution on the equivariant Whitehead group given by
reversing the direction of an equivariant h-cobordism. It turns out that the involution is not compatible with
the splitting of the equivariant Whitehead group into a direct sum of algebraic Whitehead groups, certain
correction terms involving the transfer maps of the normal sphere bundles of the various fixed point sets
come in. However, if the group has odd order. these transfer maps all vanish. We prove a duality formula for
a G-homotopy equivalence (£, ¢f): (M: M) — (N.2N) relating the equivariant Whitehead torsion of f and
(f-Cf).
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0. Introduction

Let G be a finite group. We study the involution on the equivariant Whitehead group of
a smooth G-manifold given by reversing the direction of an equivariant h-cobordism.
This involution does not typically preserve the splitting of Wh$(M) into non-
equivariant groups. But we show it does preserve the splitting when G has odd order.
We also give a general formula for it, and use this involution to compute the Whitehead
torsion of a G-homotopy equivalence of pairs (f. &f): (M,0M) = (N,¢N) from that of
f:M - N,if Mand N are G manifolds.

Here are a few more details. The equivariant Whitehead group WhE(N) of
a G-manifold N splits into algebraic Whitehead groups

whiny =@ D Whir, (EWHIO) X waOD)
(H) Ceno(NH)/WH

where WH(C) is the isotropy group of C € To(N*) under the WH-action. Let Wh$(N)
be the direct summand in WhY(N) corresponding to those components Cemy(N")
which contain an element x e C with isotropy group G, = H. Then any clement n
WhS(N) can be realized as the Whitehead torsion of an equivariant h-cobordism over
N, provided that certain codimension 3 conditions are satisfied. Hence, we can define
an involution *: WhS(N) — WhS(N) by reversing the direction of h-cobordisms
(see Section 2).
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There is an algebraic involution on each of the summands in the splitting of Wh§(N)
coming from involutions on the group rings. There are some places in the literature
where it is claimed that * corresponds under the splitting to the direct sum of these
involutions. But this is false. We do show that this is true if G has odd order (subject to
amild condition). See 4.2. In general, the involution on the split Whitehead group looks
like a triangular matrix. Its entries on the diagonal are the algebraic involutions
described above. The other entries are given by transfer homomorphisms associated
with the spherical normal bundles of the various fixed point sets. We show that these
transfer maps are nontrivial even for G = Z/27.

Consider a G-homotopy equivalence of G-manifold pairs (f, df): (M, M) — (N, N).
We will prove a formula:

() = — #1(£.f) — D,(x°(N,ON)),

where @ (x“(N,@N)) is a correction term depending only on the equivariant Euler
characteristic x“(N, dN) and certain G _-homotopy equivalences ¢, : STM, — STN,,
associated with f for any xe M. We show that @ is zero if G is a product of a group of
odd order and a 2-groupand TM, and TN, are linearly G-isomorphic for any xe M.
This formula is an important tool in the proof of the equivariant n-n-theorem in the
simple category.

We have chosen to work in a smooth context. A simple group, WhEP? (M),
parametrizing topological G-h-cobordisms is defined by West and by Steinberger in
[17]; this group has an analogous involution. In [ 17], the group we are using is denoted
Wh{E#(M). We should also mention that results analogous to those here hold when
G is a compact Lie group.

1. The Transfer Homomorphism

Let Wh%(X) be the equivariant Whitehead group associated with the finite G-CW-
complex X (see Illman [6]). Consider a G-O(n)-vector bundle p(¢): ¢ | X and sphere
bundle p(S&): S¢ | X. Then D¢ and S¢ carry the structure of finite G-CW-complexes,
unique up to simple G-homotopy equivalence, by the equivariant triangulation
theorem (see Illman [7]) and we can define transfer homomorphisms,

L1 p(S&*: Whé(X) —» WhE(S¢)

p(DE*: Whé(X) - Whé(D¢)
as follows. They send an element in Wh%(X) represented by the torsion t¢(f) of
a G-homotopy equivalence f: Y — X to t%(f,), where f, is the bundle map given by
the pull-back construction. If p(S¢&), and p(D¢), are induced by the projections we want
to study the compositions p(D&), p(DE)* and p(SE), p(SE)*: WhE(X) > Whe(X). We
start by collecting some properties of the Whitehead torsion. Proofs can be found in
Dovermann and Rothenberg [4], Hauschild [5], Illman [6], and Liick [13].
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1.2. ADDITIVITY

Let (X,, X,) be a pair of finite G-GW-complexes and i: X, — X, bea cellular G-map.
Denote by X the finite G-CW-complex given by the G-pushout. Define (Y,, Y,),
j: Y, — Y,and Ysimilarly. Letk;: Y; = Y be the obvious map for i = 0, 1,2. Consider
a pair of G-homotopy equivalences (fir fo): (X1, Xo) = (Y1, Yo) and a G-homotopy
equivalence f,: X, — Y, such that fi = jf. Let f: X — Y be the G-map given by the
G-push-out property. Then fisa G homotopy equivalence. (see, €.g., [13], Lemma
2.13). We have:

() = kptO(f1) + kput¥(f2) = Kot (fo):
1.3. COMPOSITION FORMULA

(g f) = 1%(9) + g, T° ()
{4, PRODUCT FORMULA

If X is a G-space let {G/? —> X} be the set of G-maps x: G/H — X for G 2 H. We call
x:G/H— X and y: G/K - X equivalent if there is a G-isomorphism ¢: G/H = G/K
satisfying yo ~ ¢ x. Let {G/? = X }/~ be the set of equivalence classes and U¢%(X)be the
free abelian group generated by {G/? > X 4/~ . If X¥(x) is the path component of X#
containing x(eH) we obtain a bijection {G/?-> X}~ > J.L(H, no(X*#)/WH sending the
class of x to the class of X#(x). In particular, U%(X) is & Ho(X™)"H. Let WH(x) (resp.
NH(x)) be the isotropy group of XH(x)e no(X™) under the WH-action (resp.
NH-action). If X is a finite G-CW-complex, define the equivariant Euler characteristic,
7%(X)e U%(X), by assigning to [x: G/H — X] the ordinary Euler characteristic,

AXH () WH(x), X1(x) 0 X~ #/WH(x)).

We get a natural pairing US(X) ® Whé(Y) » Whé(X x Y) by sending
[x: G/H - X]® 1°(g)to(x x id)*rG(id x g) for a G-homotopy equivalenceg: Y' - Y.
Then we have for two G-homotopy equivalences f: X' — X and g: Y' - Y-

5. 9(f x g) = 2%(X) ®°(g) + °(N ® (V).
1.6 SPLITTING INTO ALGEBRAIC WHITEHEAD GROUPS

The equivariant Whitehead group splits into algebraic Whitehead groups as follows.
For G2 H define i(H): Wh'(EWH x y, X*) - Whé(X) as the composition,
Wh'(EWH x 4y X7)
0, W EWH x X -2 whvn(en) S w2
WhE(G x g XH) 2 WhE(X),

where (1) is given by the pull back construction, (2) by the projection, (3) by restriction,
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(4) by induction and (5) by the map G x X" = X sending (g, x) to g x. We obtain an
isomorphism.

D i(H): © Wh'(EWH x y, X#) - WhE(X).

(H) (H)
If Z is a space Wh'(Z) is isomorphic to P Wh(Zr,(C)), where C runs over n,(Z).
Hence, we get an isomorphism

D WhZn (EWH(x) X iy X (x))) - WhE(X),

1G22 X}~
PROPOSITION 1.7. For any G vector bundle ¢ on a finite G-CW-complex
X, p(DS), p(DEY* is the identity on Whe(X).

Proof. We may as well assume X is a finite G simplicial complex. Let f+ X' — X be

a G-homotopy equivalence. By 1.3, we have

PDE) DV (E(S) = PO, (<°(S, ) = f,=(pDF*E)) + 18(f) — 1%(p(DE)).

Hence, it suffices to show t%(p(D¢)) = 0 for any bundle &. Because of the local triviality
of £, 1.2 and 1.4, this reduces first to the case when X is G-contractible, and then to the
obvious case p: DV — {x} for a G-representation V. O

The pairing in 1.4 induces a pairing A(G) ® Whé(X) > Wh(X) if we identify the
Burnside ring A(G) with US({x}) (the map sends [G/H] to x: G/H — {x}). Let
¢(X)e A(G) be the image of y°(X)e UC(X) under pr,: US(X) - US({x}) = A(G). If
B(H,n) is the number of cells of type G/H x D" in X we have

C(X)=3 Y (=) B(H,n)-[G/H]
(H) n20

in A(G). Formula 1.5 above now reduces to
(mx)y TOf % 1y) = 29(f)-€%(Y),
We derive from 1.4:

PROPOSITION 18. If &|X is the trivial G-O(n)-vector bundle X x V then
P(SE)p(SE*: Whé(X) — Wh(X) is multiplication by e%(SV).

PROPOSITION 1.9. Let ¢ | X be a G-O(n)-vector bundle and f,: Sf*& - SE be given
by the pull-back construction applied to a G-homotopy equivalence f:Y > X between
finite G-CW-complexes, then we have () PSf*E* = P(SEY*f,.. Similarly for the disc
bundle, we have: (f)P(Df*E* = p(D&*f,.
Proof. Follows directly from the definitions. |
In Liick [12], the equivariant (unstable) first Stiefel-Whitney class wé is defined for
any locally linear G-S"-fibration S¢.

PROPOSITION 1.10. Let & and n be G-O(n)-vector bundles over X with wé = wn. Then

P(S)p(SE)* and p(Sn), p(Sn)* agree.
Proof. This follows from the algebraic description of p(S&)* given in Lick[13]. An
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alternative proof uses the notion of an equivariant Eilenberg-MacLane space
introduced in Liick [11]. Let 2 | BF(G, n) be the classifying G-fibration and BF(G, n) the
classifying space for locally linear G-S"-fibrations. Let b(¢) and b(n): X — BF(G, n) be
the classifying maps for & and #. Let i: X —» K(n°X,u, 1) and j: BF(G,n)—
K(n“BF(G,n), 1, 1) be the canonical G-maps. We can interpret wé and wy as the
G-homotopy classes of the G-maps

K(n%X, u, 1) » K(n®BF(G, n), u, 1)

induced by jb(¢) and jb(n). By assumption we can find a G-map k: K(n°X,p, 1) —
K(n°BF(G,n),u,1) representing both wé and wsy. Consider the G-homo-
topy pull-back,

Z Ky BF(G, n)
. J lj
K(n%X,u, 1) —k——» K(n°BF(G,n), u, 1).

Since jb(E) ~; ki, there is a G-map a(é): X —» Z satisfying k,a(¢) ~;b(¢) and
Jaa(Q) =i Let { = (k,)*A. By 1.6, i, and j, are isomorphisms of Whitehead groups.
From Proposition 1.9 we get:

i PSO) PSS iyt = (j,)4al) P(SE), PSE*iy ' .
= ()5 PO, PSEN* (D) (1) ™" = ()PSO PSE)* ) 5 -

This is also true for 7 so that i p(S&), p(SE*i, ' = i, p(Sn), p(Sn)*i, ' holds. But i,isan
isomorphism by 1.6. O

Remark. In the above argument (only) we make use of Wh¢(X) for an infinite
G-complex X. This is defined exactly as in [6] by means of strong deformation
retractions Y — X, with the modest adjustment that we require only that Y-X have
finitely many cells. (See Liick [13] for a full treatment.)

We also make use of the transfer p*: Wh%(X) — Wh¢(S(¢)) for a locally linear G-S"
fibration ¢; the definition is analogous to that in 1.1, but the details are given in [13].

PROPOSITION 1.11. Let & and n be G-O(n)-vector bundles over X. Suppose that G
has odd order, and the nonequivariant first Stiefel-Whitney classes w, (&) and
wi(nye H'(X; Z/27) agree. Suppose also that for any xe X,SE. ~;. Sn.. Then
wé = wn.

Proof. See Liick [12]. O

THEOREM 1.12. Let ¢ | X be a G-O(n)-vector bundle with trivial w (&) e H (X, Z/22).
Assume G has odd order and that there is some G representation V such that &, ~ ; SV,
for any xe X. Then p(S&), p(SE)*: Whe(X) >Whé(X) is (1 — (—1)")-id.

Proof. Because of Propositions 1.10 and 1.11, we can assume that ¢ is the trivial
‘G-O(n)-vector bundle X x V. Since G is odd, V/V¢ is of complex type so that
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e%(SV)e A(G)is (1 + (— 3™ .1G/G]. Now apply Proposition 1.8. O

Next we consider G-O(n)-vector bundles ¢ and n over X and a G-fibre homotopy
equivalence,

seLosy

|

X——Y

Define a homomorphism ®p: US(Y) - Wh(Sy) as follows. Any base element of U¢(Y)
can be represented by y =fx for some x: G/H — X. Let @, ([y]) be the image of
T9(F | x*SE: x*S¢ & y*Sn) under (y,), : Whé(y*Sy) - WhE(Sy).

THEOREM L13. t%(F) = p(Sn)*(%(f)) + ®(3%(Y).

Proof. Write F as the composite se 5 f*Sn I3 Sn. Now 19(F) = 19(f,) +
Sfurt%(F,) from 1.3. By definition, 1%(f,) = p(Sn*z%(f) and we derive fu18(F,) =
@ (x°(Y)) from 1.2, O

COROLLARY 1.14. Suppose that G has odd order and wi(n)e H'(Y;Z/2) vanishes.
Assume there is a G-module V with S(ny) =g, S(V)forall ye Y. Ifx%(Y)e US(Y)is zero or
if ¢, and Nyx are linearly G -isomorphic Jor any xe X, then S, (z°(f) =
(T + (=12 f).

Proof. Apply Theorems 1.12 and 1.13 and the fact that any G,-map S¢_ - Sn,, is
G,-homotopic to one induced by a linear isomorphism, as A(G,)* = {+1} holds; in
either case, ®,(3%(Y)) = 0. O

2. The Involution on the Equivariant Whitehead Group

Let M be a G-manifold, i.e., a smooth compact manifold possibly with boundary on
which G acts smoothly. Denote

My ={xeM|G, =H}, My ={xeM|@G,) = (H)} and
M® = {xe M|(G,) > (H)).

The isovariant Whitehead group is defined by
21 Whil,(M) = B Wh' (M, /WH).

(H)
Here Wh'(M,,/WH) means the Whitehead group of the compact manifold obtained
by removing an open regular neighborhood of M>#/WH from M* /WH.

An (isovariant) h-cobordism (W,M,N) is a G-manifold W with boundary
dW = M U N, such that oM = M AN = 0N and the inclusions M->Wand N> w
are (isovariant) G-homotopy equivalences. We define the isovariant Whitehead torsion
(W, M, N) of an isovariant h-cobordism (W, M, N) inductively over the number of
orbit types (H) with He Iso M — {HIMy, # Q). Let (H) be maximal among these.
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Then M, = M"" is a compact G-submanifold of M with normal G-vector bundle
vy, = WM™ M), Define vy and vy, similarly. Note that vy, | M = vy and vy [N = vy.
Sometimes we will denote by v, also the NH-normal bundle of M"
in M. Consider the G-manifolds M = M\int Dv,,, N = N\int Dvy U Sv,, and W =
WiintDv,. We get an isovariant h-cobordism (W,M,N). since an
h-cobordism is isovariant if and only if M, — Wy and Ny — W, are homotopy
equivalences for each HelsoM (Hauschild [S]). By the induction hypothesis
0 (W N.N)e Whi, (M) is defined as (W.M,N) and has one orbit type less. Let
oW, WH, M,/WH, N,/WH)e Wh'(M,,/WH) be the Whitehead torsion of the
nonequivariant h-cobordism (W, /WH, M;;/WH, N, /WH). The obvious map:

2.2. st Whi,(M) @ Wh'(M,,/WH) > Wh{,(M)

is an isomorphism as M, — M is a WK-homotopy equivalence for any K€ Iso M.
Define

23 U (W, M, N) = s(tly (W, M. N) @ t(W,,/WH. M,/ WH. N,/ WH))

THEOREM 2.4. (Equivariant s-cobordism Theorem): Let M be a G-manifold such that
dim(M ) = S for each He Iso M.

(i) Two isovariant h-cobordisms (W,M,N) and (W',M,N') over M are G-diffeo-
morphic rel M if and only if (W, M. N) and tl((W' M. N') agree.

(i) Any element in the isovariant Whitehead group WhE (M) can be realized as
U (W. M. N) for some isovariant h-cobordism (W, M, N).

Proof. See Browder and Quinn [1], Hauschild [S]. Rothenberg [16]. ]
A (not necessarily isovariant) h-cobordism (W, M, N) defines 19 (W, M,N)e Wh (M)
by the formula: j, t(W,M,N) = 19(j: M — W). By Theorem 2.4, and the equivariant
triangulation theorem, there is a map,
®: Whi, (M) - Whe(M)

uniquely determined by the property that ®(cil,(W, M, N)) = t9(W. M, N), for any
h-cobordism (W, M, N). Define the direct summand,

2.5, Wh$(M) < Wh(M)
to be the image of
D  WhZn,(EWH x yy M7 (x)
INGP->M|/~

under the isomorphism of 1.6, where 1{G/? - M}/~ is the subset of {G/? > M}~
represented by elements [x: G/H — X ] with MH¥(x), # ©.Inother words, we consider
only components C of M containing a point xe C with Gy = H. For each xe M
with G_ = H, WH(x) acts freely on My(x), so ® sends the summand corresponding
to Wh!(M,(x)/WH(x)) to the summand of Wh%(M) corresponding, via 1.6, to
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Wh(Zr,(EWH X yy0M"(x)). Therefore, @ is a map
26. ®: Whi,(M) - Wh{ (M).
For the rest of this paper we make the following assumption.
ASSUMPTION 2.7. M has codimension 3 gaps. That is to say, dim D-dim C # 1 and

2. when Cemny(M¥),De mo(M™),C = D.H = K. Moreover, dim(M ) = 5 holds for
any He lso M.
THEOREM 28. (i) ® is an isomorphism of abelian groups. (i) Any h-cobordism over
M is isovariant.

Proof. (i) The proofis done inductively over the number of orbit types. Choose (H)
so that H € Iso M is maximal. Consider an isovariant h-cobordism (W, M, N) and define
(W, M, N) as above. Let

29, trf: Wh'(M,;/WH) > Wh{ (M)
be the composition:
Wh(M,,/WH) - Wh¥"(M,,) > Wh™'(M ) S, WhW(Syy,) -
WhO(G % ny S¥ae) = Whi (M).
We claim that the following diagram commutes if k., r, and s are the obvious

isomorphisms.

N

210, WhY, (M) @ Wh' (M ,;/WH)

Whii (M)

~

} [d)w ftrf:| \
: o,
0 k ‘
WhE(§) @ Wh(EWH x M) —— Whii(M)

(k is an isomorphism by 1.6).

By definition, ®,,s(1%(W,M,N)® (W, /WH, M, /WH, N, /WH)) is
(W, M, N). The following calculation in Wh& (M) is a consequence of 1.2. The phrase
‘in thf(M)’ means that all torsion e¢lements are mapped to thf(M) by a homo-
morphism which is obvious from the context.

(M = W) =M — int Dvy, © W —int Dvy) — t9(Svy < Svy)
4 t%(Dv,, = Dv,) = t(M = W) — trf(r' (M /WH) = W, /WH)
+ ' (M, /WH & W, /WH)

Hence, 2.10 is commutative. Since ®y is an isomorphism of abelian groups by
induction hypothesis, the same is true for @y

(ii) Noticethat M — M¥ is 2-connected for K € Iso M and (W, M, N)is isovariant if
and only if My —» Wy and Ng — Wy are weak homotopy equivalences for K € Iso M
(see Hauschild [5]). The details of the induction over the orbit types is left to the

reader. 3
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Next we define maps * such that the following diagram commutes:

211, Whé(M) —— Wh§(M)

N

Wh¢ (M) ——Wh{,(M)

Namely,  sends tl,(W, M, N) (resp. t(W, M, N)) to (M), 1j(N), The( W, N, M) (resp.
J(M), .j(N)*rG(W’, N, M)). Here j(N) and j(M) denote the obvious inclusions. This is
well defined by Theorems 2.4 and 2.8.

We want to express * on Wh$ (M) in terms of nonequivariant Whitehead groups and
show that  is an involution of abelian groups. Again we use induction over the orbit
types starting with the case where M has only one orbit type (H). Let C be a component
of M/G = M;/WH. Letw,(C): m,(C) — { £ 1} beits first Stiefel-Whitney class and n(C)
its dimension. Equip Zn,(C) with the involution 4,9 — X4, w, (C)g) g It
induces an involution on Wh(r,(C)). Multiplying it with the sign (— 1) we get an
involution *(C). Then the following diagram commutes, where C runs over n,(M/G)
(see Milnor [15]).

*

Whé(M) —Whi (M)

;l ;l

& Whir, (€) ~22 @ Wh(x, ()

This finishes the initial step. In the induction step choose (H), H € Iso M maximal. Next
we prove the commutativity of the diagram

2.12. Wh$(M)@ Wh'(M,,/WH) L WhS(M)

[

WhE (M) & Wh' (M, /WH) —— Wh{(M)
This is a consequence of the following calculations in Whi(M):
(W, M,N) = t9(M | Sy Dvy = W{JSvyDvy)
— 19(M = W) — 19(Svy, < Svyy) + 19(Dvy < Dvy)
— S(W, M, N) — trf(e" (W,,/WH, M, /WH, N ;;,/WH))
+ (W, /WH, M, /WH,N,/WH),
and, using 1.3,
213, *+t9(W,M,N) = 1¢(N ¢ W) = 19N = N | DvyDvW) + (N W)
= ¢}(W,/WH, N, /WH, M, /WH) + (N = W).

Hence *: Wh%(M) - Wh (M) is an isomorphism of abelian groups. It remains to show
that = is an involution. In the sequel, all torsion elements are understood to be mapped
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into Wh%(M). Represent xe Wh§ (M) by t9(W, M, N) and * (x) by —19(W, M, N). Then
we have, by definition,

*(x) = 1tC(W,N,M) and =*x(x)= —tG(W, N, M).
By assumption

W W.N,N) = %W, N, M) + t%(W.M,N) = *(x) — *(x) = 0.
Therefore t%(W| ) W.N,N)=0 also, by Theorems 24 and 28. Therefore,
t9(W,N. M) + t(W, M, N) = —*x(x) + x vanishes. This finishes the proof that the
maps * in 2.11 are involutions of abelian groups.

Since there is an algebraic description of trf in Liick [13], we obtain, all in all, an

algebraic description of *: WhS(M) > Wh(M).
We close this section by collecting some elementary properties of * and p(S(<)*.

LEMMA 2.14. Let i: M — M be the inclusion of the boundary of the G-manifold M.
Then we have *i, = —i, *

Proof. Let (W,0M, L) be a h-cobordism on ¢M. Identify (M x I < M =M x {1
with a collar. Up to straightening the angle, we have an h-cobordism (V, M, N) where
Fois M x Ty /W x LM is M x {0} and N is ¢V-int M. We want to compute
t“(N < V) in Wh(M). Let M be M-int(’M x ).

N e VY=L x T o Wox Ao oMU cM Dy e W T M x )
=L x I qaWxdlcecWxI)
=L xIcW x )= 1%L xcW x7l) + %W xcla W x )
=L W)=2-1%Lc W)= —1%Lc W)

oM
M

M X ] =

W

We also have in Whe(M):
M V)=1"McWxI{Jy.aM)
=M x Tt M e W x I i1 M)
=19(M x I < W xI)=1M < W)
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Hence, we get
xi (T9(W.0M, L)) = #(t9(V,M,N)) = 1°(V,N.M) = —i, 1%L c W)
=i, *(t°(W,éM, L)). O

LEMMA 2.15. Let & | M be a G-O(n)-vector bundle on a closed G-manifold M. and let
i S&— DE be the inclusion. The we have

(i) *p(DE* = p(DEY* * — i, p(SE)* *,
(ii) *p(SE* = p(S)* *,
(i) iy %= —*i
Proof. (i) Consider the h-cobordism (W, M, N) over M. Let n | W be a G-O(n)-
vector bundle with 5 |,, = & Then (Dn, D, Dy |y v Sy) is an h-cobordism over D¢, and
we have
(D, DE, Dy | N L Sn) = p(DE* (W, M. N).
We get in Whé(D&):
* p(DE* 19 (W, M, N)
= t9(Dn, Dy |y © Sn, D<)
=1%(Dnly = Dn) — %(Snly <= Sn)
= p(DEFTUN = W) — p(SE* 1N = W)
= p(DEY*(+1%(W, M, N)) — p(SEV* (+t¢(W, M, N)),

which proves (i). Property (ii) is verified similarly, and (iii) follows from Lemma 2.14.

O
3. Maps between G-Manifolds

Let (f.¢f): (M,dM) — (N,EN) be a G-homotopy equivalence of pairs of G-manifolds.
We define a homomorphism

3L, US(N) - WHE(N)

as follows. Any base element [y: G/H — N] in US(N) can be represented by
f x:G/H—-N for some Xx: G/H—-M. Let @:tpy—f*tpy be the OrG-
equivalence uniquely determined by DEG(f,¢ ~ ') = 1(see Liick [12]). From ¢, we get
for any xe M¥ and H = G, an H-homotopy equivalence

O(G/H)(X),gy: TMS — TN

between the one point compactifications of the tangent spaces. In the sequel, the
only input we need from ¢ is the desuspension of o(G/H)(X).y denotedby ¢,: STM_ —
STN,. Recall that the Burnside ring A(H) acts on WhH#(STN,). Let ® ([y]) denote the
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image of
(1 — H(STN,) (e,)e WhH¥(STN ).
under the composition
WhA(STN,) 22 WhH ({+}) _ind, \Wheé(G/H) 2> WhO(N).

One easily verifies that @ ([y]e Wh§(N).

Recall that all G-manifolds are supposed to satisfy Assumption 2.7.

Let t9(f,df)e Whe(N) be 19(f) — i,7°(0f) and let #%(N,@N)e U®(N) denote
79 (N) — i*zG(é‘N), where i: 9N — N is the inclusion map. It is easy to verify that
lso M = Iso N and that f induces an isomorphism o(MH) x mo(N") for each H in
Iso M. Tt follows that t9(f,df) and °(f) lie in WhE(N). The involution * on WhS(N)
was introduced in the last section.

THEOREM3.2. Let (f.df):(M,dM) — (N,@N) be a G-homotopy equivalence of pairs of
G-manifolds. Then, 1°(f) = —x18(£,8f) — * @ (°(N,CN)).

Proof. By Kawakubo [8], we can assume that (M,éM)and (N,cN)are embedded in
(DV,SV) for a G-representation V with normal bundles v,, and vy and the following is
true.

3.3. (i) There is a pair of G-fibre homotopy equivalences
(B, SP): (Dvyg, Svpg) = (Dvy, Svy) covering f
(ii) There is an embedding b: (Dvy, Svy) —(Dvy,Dvy — int $Dvy) such that
the G-maps (Dv,, Svy) = (DVy, Dv, — int3Dvy) induced by and b are G
homotopic. Moreover, 3Dvy < h(Dv,;) holds. The homotopy sends
Dvy | &M to Dvy|éN.
(iii)y The inclusion S(vy) < D(vy)t is 2-connected for all H = G.

Moreover, Svy and Dvy satisfy Assumption 2.7.

To achieve (iii), one may have to enlarge V. Consider the following cobordism
(W.1Svy, X) given by ((Dvy)-int 3DV, 5Svy, B(SYp) h(Dv,, | EM)-int 5(Dvy [ CN)).
Since h(Dvy) < Dvy 18 a G-homotopy equivalence and W< b(Dvy) and
Dvy-int5Dvy < Dvy induce 2-connected maps on the H-fixed point sets forany H < G,
the inclusion W © Dvy-int3Dvyisa G-homotopy equivalence by excision. Moreover,

because b: Dv,, — Dvy is G-homotopic to f, we get, 1n Wh{ (Dvy):
34. 1S(W < Dyy-int5Dvy)
= 19(b(Dvy) = Dvy)
= 19(b: Dy, — Dvy) = t9(B: Dvyy — Dvy) = pDvy)* (/).
Since iSvy © Dvy-int3Dvy is a simple G-homotopy equivalence, 1Svyy e W s
a G homotopy equivalence, and in Wh§(Dvy) we obtain, by means of 3.4:

3.5 19(3Svy = W) = —p(Dvy)*1°(f)-
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Now b: Sv,, — b(Sv ) is a simple G-homotopy equivalence and its composition with
b(Svy) © D\ L-int $Dvy is G-homotopy equivalent to Sf: Svy, — Dvy-int 3Dv,. Hence

b(Sv,,) < Dyvy-int $Dvy is a G-homotopy equivalence. By Theorem 1.13, where @y, was
defined. we get, in WhE(Svy):

3.6. t¢(h(Svy,) © Dvy-int5Dvy) = TSP Svyy = Svy) = PSYA*TE(f) + Dy (N))
Let j: Svy — Dvy denote inclusion. Because of 3.4 and 3.6, we obtain in Wh§(Dvy):

3.7 19(b(Svy) © W) = t%(b(Svy) = Dvy — int3Dvy)

— 19(W < Dvy — int1Dvy)
= J PSR TO(f) + j Dp(xE(N) — p(DVy)*7(f).

Similarly, we get in WhS(Dvy):

38, tO(b(Svy | M) © b(Dvy |0M) — int Dvy | ON)

= j PSVN)*i, T9(0f) + j, Dspli 1O (ON)) — pDvy)*i, TO(0f).

Combining 3.7 and 3.8, we obtain, in WhS(Dv,):

39, 19X < W) = 19(b(Svy) = W) — t9(b(Svy | M) < B(Dvy | M)

— intiDvy | N)
= j PSS 0f) 4y @sp(x (N, EN)) — pDvy)* (£ Of ).

Let k: X — Sv, be the obvious homotopy equivalence, and now identify 1Sv, with Sv,.
Because of Lemma 2.15, for the torsion of (W,1Svy, X) in Wh§(Dvy) we obtain:

310, j, T9(W,5Svy, X) =, *k, TO(W, X, 3Svy) = —xj kT (W, X, 3Svy).
We now conclude from Lemmas 2.15, 3.5, 3.9, and 3.10, that in Whg(DvN):
301 —p(Dvy)*t G(f)
= —#/,p(Svy) f of ) — %j, D5y ((C(N,ON)) + +p(DyyY*Te(f.0f)
= j DS+ T 0f) = %), Dy C(NLON)) + p(Dvy)* *1(£.0f)
—j* (Svy ) (e
p(DvyV* % 19(f,f ) — % j, D (2 (N, EN)).

Hence we get, by applying p(Dvy), to 3.11, and using Proposition 1.7, that, in
WhS(Dvy):

3120 10(f) = —*t9(L£3f) + pDvy)y * iy Psp(x*(N.EN)).
Therefore it suffices to verify
313, #®, = —p(Dvy), *j,Dss: US(N) > WhI(N).

For this we need the following lemma.
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LEMMA 3.14. Letf:SV' — SV and g: SW’' — SWhe G-homotopy equivalences between
spheres of G-representations. Then we have in Whe({*}):
(1 — 7SV SW)-0(fxg) = (1 = x5SV 1(f) + (1 = 76 (SW))-°(g)

Proof. The join X x Y is defined as Cone(X) x Y [ Jy,y X x Cone(Y). Now the
result follows from 1.2 and 1.4 C]

To verify 3.13 we have to show:

35 @p(y) = —*p(Dvy), *j, DPsp(y)

for any y: G/H — N of the form y = fo x where x: G/H - M is a G-map.

Since * commutes with codimension zero embeddings, we can replace N and Dv, by
DT and DT x DW, where T and W denote the fibers at y of TN and vN. Since
+ commutes with ind§: Wh#(X) - WhS(G x ,; X), we can also assume H = G.

To establish 3.15, we have to prove

3.16. (1 — eC(STH,t%(p,) = —*p, *1*1G(Sﬂx)

where1: SW— DT x DWand 1 : ST —» DT x DWareinclusionsand p,: DT x DW —
DT is projection. In view of Lemma 3.14, this reduces to proving

317, ,1%¢@,) = xp, *(1 — eS(SW,t%(0,)

because the join of SB, and ¢, is homotopic to the identity.
But according to 1.8 and 1.9, the map

(x DW — x SW): Whé(DT) - WhS(DT x DW)

sends any element p,,(a) to (1 — e9(SW))a, and the map x DW: Whé(DT) —
WhE(DT x DW) is inverse to p,.
So to prove 3.17, it suffices to show that the diagram below commutes:
Whi(DT) WhA(DT)

*

{(x DW — xSW) x DW

WhE(DT x DW) ——WhE(DT x DW)

But this is clear from 2.15(i).
This completes the proof of 3.2. O

4. Examples and Applications

We begin with some illustrations of the results of Section 2 by computing the involution
on WhY(N) in the case of a semi-free action. Namely, let N be a G-manifold such
that G and {1} are the only isotropy groups. For simplicity, we assume that N and N¢
are connected. Assume n = dim(N¢) and n + k = dim(N). Assumption 2.7 reduces
to:n > 5and k > 3. Write n = n,(N¢) and T = =,(N). Since N has a fixed point, G
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acts on I and we can consider the semi-direct product I' x G. One easily verifies
[ %, G=m(EG % N). Let w (N9):m— {+1] be the first Stiefel- Whitney class of
NG We equip 7 with the w, (N9)-twisted involution, 4,*g — i, w (NOYG)» g L
Let *: Wh(m) — Wh(n) be the induced involution multiplied with the sign (— 1"
Define *: Wh(I” x,G) = Wh(I" x G) analogously using w (N — N¢/G)and (— 1tk
Consider the normal G-vector bundle v = WNY9 N) of N in N and the induced
fibre bundle p: Sv/G — N¢. Notice that n,(Sv/G)=n x G. In Liick [9]. the transfer
p*: Wh(n) > Wh(n x G)is defined algebraically. The obvious map i: 7 x G-I x,G
induces i,: Wh(m x G) » Wh(l" x| G). Then the following diagram commutes by the
results of Section 2.

WhS(N) Wh(r) @ Wh(I" x,G)
[ )
*
Ai*p** *
Wh(N) Wh(n) @ Wh(T x, G)

Let V be the normal G-slice of N in N. Then p has SV/G as typical fibre.

The algebraic transfer depends only on the pointed transport of the pointed fibre
olp):m x G— [SV/G,SV/G]", ie. a homomorphism into the monoid of pointed
homotopy classes of pointed self-maps of SV/G. Now suppose that G has odd order.
Then any self-G-homotopy equivalence SV — SV is G-homotopic to the identity as
VS =0 and A(G)* = {+1} holds. If g: NG x V — NG is the trivial G — R*-vector
bundle, then o(p) = a(q) and, hence, the transfer maps p* and g* agree. By the product
formula ¢* and p* vanish, as x(SV/G) is zero. Hence (—i, p*)* is trivial and the
involution on Whg(N) is given by the direct sum of the involutions on Wh(m) and
Wh(I' x  G) described above (compare with Theorem 4.2).

Now suppose that G is Z/2Z. Then two pointed homotopy equivalences fand ¢
SV/G — SV/G are pointed homotopic, if and only if deg(f~) = deglg™)e (T 1] holds
for the lifts f~ and g~. Therefore we can interpret o(p) as a homomorphism
nx G- {+1}. Let wi(Sv)e H'(N®;Z/2Z) be the first Stiefel-Whitney class of
S(v) | N¢. If we write G = {1} then a(p) sends (v,g)e ™ x G to w,(Sv)(t) g. Now
consider p,p*: Wh(r) — Wh(n). Let Sw(n) be the Grothendieck-group of Zn-modules
which are finitely generated free over Z. It acts on Wh(r) by ®. If Z* stands for Z,
equipped with the m-action coming from w,(Sv) and Z is the trivial Zr-module then
p,p* is multiplication with [Z] + (— D¥[Z*] € Sw(n) (see Liick [10]). Hence, p, p* and
p* are not trivial in general. If kiseven andw,(Sv) = 0p,p*is multiplication by 2. Even
if k is odd and #(SV/G) = x(SV) = 0. p,p* and p* can be non-trivial for appropriate
n and w,(SV).

One can also give examples of a group G and a G-manifold N such that N has two
orbit types, all fixed point sets are empty or simply connected, and the involution on
Whg(N) is not the direct sum of involutions on the summands. However, in some
favorable cases the involution on Wh§(N) splitsin such a simple fashion. Namely, make
the following assumptions. Let the order of G be odd. Consider a connected G-manifold
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N such that for any x: G/H — N there is an NH(x)-representation V such that
res;(V) and the normal H-slice w(N"(x), N}, are H-homotopy equivalent. (This
condition is always fullfilled for abelian G.) Since

Lo 7, (N(x)) %7, (EWHI(X) X wigey N (x)) > WH(x) — |

is exact and WH(x) has odd order, there is a homomorphism v(x): 7, (EWH(x) x WH(x)
N"(x)) > { £1} uniquely determined by the property v(x)i, = w, (N)|N"(x).
Let

*: Wh(n (EWH(x) X wyi N¥(x))) » Wh(r, (EWH(x) x whn N(x))
be the v(x)-twisted involution multiplied with the sign (— 1)dim™,

THEOREM 4.2. With the assumptions above, the following diagram commutes where
the sum runs over 1{G/? - N1/~

WhE(N) —— @& Wh(r,(EWH(x) X wie N¥(x))

I le*
Wh{(N) —— @ Wh(r, (EWH(x) X wiee N (x)).

Proof. This follows from 2.13 and Theorem 1.12. O

This splitting result is quite helpful in the calculation of H*(Z/2Z; Whl?(M)) in
Connolly and Kozniewski [2], where crystallographic manifolds corresponding to
crystallographic groups I" with holonomy group G of odd order are examined.

THEOREM 4.3. Consider a G-homotopy  equivalence (f, Yy (M. éM) — (N, &N)
hetween G-manifolds. Suppose my(i"): ny(ON") = n,(N") and M x) (AN x) —
T NYX) are bijective for any H < G and xe NY. Assume any one of the following
conditions:

(i) The map @ - US(N) - Wh(N) appearing in 3.1 is zero.

(i) If @:tpy — f*tpy denotes the unique OrG-equivalence with DEG( f. ) = 1, then
O(G/H)X),y: TMS — TNS is a simple H homotopy equicalence for any H < G
and xe M1,

(i) For xe M" the G -representations I'M, and TN, are linearly G -isomorphic
and G is the product of a group of odd order and a 2-group.

(iv)  z“(Nye U%(N) or y°(N,ON)e US(N) vanishes.

Then: If one of the elements, t%(f)e WhY(N) or (. &f)e WhY(N) canishes, then all
the elements 1°(0fye WhE(ON), 19(f)e WhE(N). and 9(f.f) e WhO(N) are zero.

Proof. If (i) or (iv) is true, this follows from the formula ) = —=1°(f.0f) —
*® (y“(N,CN)) of Theorem 3.2. Notice that i, Wh®(CN) > WhY(N) is bijective by
assumption and 1.6. Obviously, (ii) implies (i) Moreover, under condition (ii1), any
G homotopy equivalence TM¢ — TN is G homotopicto a G map induced by a linear
G-isomorphism and, hence, is simple. This follows from a result of Tornhave [18]. The
proof is carried out in detail in Dovermann and Rothenberg [4]. J
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This theorem is an important tool for the proof of the equivariant n-n-theorem for
G-manifolds and simple G-homotopy equivalence (see Dovermann and Rothenberg
[4], Lick and Madsen [14]).

Finally, we want to illustrate by an example the appearance of the correction term
(Df(x‘;(N,(?N)) in the formula of Theorem 3.2. Notice that it does not appear in the
nonequivariant case. Namely, consider a G-homotopy equivalence df: SV —SW
between spheres of G-representations. Define (f, of): (DV, SV) — (DW,SW) by coning.
Suppose for simplicity that SV¢ is nonempty. Then U®(DW) is just A(G) and
@.:ST(DV), - ST(DW),, is given by res§(df: SV — SW) for H= G and xe MH.
Moreover, ®,: A(G) - WhY(DW) sends the base element [G/H] to ind§resf(1 —
1C(SW))-24(ef).

Hence we have

44. @ (y°(DW,SW)) = (C(DW,SW)-(1 — 19(SW)-1¢(@f) = ().
Now, from Theorem 3.2. we get

45 19(f) = =% £.0f) — * @, (;°(DW,SW))
Obviously, t9(f) is zero. Hence, 4.5 reduces to

46. 0 =#19af) — *®(x*(DW, SW))
But 4.4 and 4.6 match up. So t9(f) # —*1°(f,¢f) in general.
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