The role of lower and middle K-theory in topology (Lecture I)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

- Introduce the projective class group $K_0(R)$.
- Discuss its algebraic and topological significance (e.g., finiteness obstruction).
- Introduce $K_1(R)$ and the Whitehead group Wh(G).
- Discuss its algebraic and topological significance (e.g., s-cobordism theorem).
- Introduce negative *K*-theory and the Bass-Heller-Swan decomposition.

Definition (Projective R-module)

An *R*-module *P* is called *projective* if it satisfies one of the following equivalent conditions:

- P is a direct summand in a free R-module;
- The following lifting problem has always a solution

• If $0 \to M_0 \to M_1 \to M_2 \to 0$ is an exact sequence of *R*-modules, then $0 \to \hom_R(P, M_0) \to \hom_R(P, M_1) \to \hom_R(P, M_2) \to 0$ is exact.

- Over a field or, more generally, over a principal ideal domain every projective module is free.
- If *R* is a principal ideal domain, then a finitely generated *R*-module is projective (and hence free) if and only if it is torsionfree.
 For instance Z/n is for n ≥ 2 never projective as Z-module.
- Let *R* and *S* be rings and *R* × *S* be their product. Then *R* × {0} is a finitely generated projective *R* × *S*-module which is not free.

Example (Representations of finite groups)

Let *F* be a field of characteristic *p* for *p* a prime number or 0. Let *G* be a finite group. Then *F* with the trivial *G*-action is a projective *FG*-module if and only if p = 0 or *p* does not divide the order of *G*. It is a free *FG*-module only if *G* is trivial.

Definition (Projective class group $K_0(R)$)

Let *R* be an (associative) ring (with unit). Define its *projective class group*

$K_0(R)$

to be the abelian group whose generators are isomorphism classes [*P*] of finitely generated projective *R*-modules *P* and whose relations are $[P_0] + [P_2] = [P_1]$ for every exact sequence $0 \rightarrow P_0 \rightarrow P_1 \rightarrow P_2 \rightarrow 0$ of finitely generated projective *R*-modules.

- This is the same as the Grothendieck construction applied to the abelian monoid of isomorphism classes of finitely generated projective *R*-modules under direct sum.
- The *reduced projective class group* $\widetilde{K}_0(R)$ is the quotient of $K_0(R)$ by the subgroup generated by the classes of finitely generated free *R*-modules, or, equivalently, the cokernel of $K_0(\mathbb{Z}) \to K_0(R)$.

- Let *P* be a finitely generated projective *R*-module. It is stably free, i.e., $P \oplus R^m \cong R^n$ for appropriate $m, n \in \mathbb{Z}$, if and only if [P] = 0 in $\widetilde{K}_0(R)$.
- $\widetilde{K}_0(R)$ measures the deviation of finitely generated projective *R*-modules from being stably finitely generated free.
- The assignment P → [P] ∈ K₀(R) is the universal additive invariant or dimension function for finitely generated projective *R*-modules.
- Induction

Let $f: R \to S$ be a ring homomorphism. Given an *R*-module *M*, let f_*M be the *S*-module $S \otimes_R M$. We obtain a homomorphism of abelian groups

$$f_* \colon K_0(R) \to K_0(S), \quad [P] \mapsto [f_*P].$$

Compatibility with products

The two projections from $R \times S$ to R and S induce isomorphisms

$$\mathcal{K}_0(\mathcal{R} \times \mathcal{S}) \xrightarrow{\cong} \mathcal{K}_0(\mathcal{R}) \times \mathcal{K}_0(\mathcal{S}).$$

Morita equivalence

Let *R* be a ring and $M_n(R)$ be the ring of (n, n)-matrices over *R*. We can consider R^n as a $M_n(R)$ -*R*-bimodule and as a R- $M_n(R)$ -bimodule.

Tensoring with these yields mutually inverse isomorphisms

$$\begin{array}{rcl} \mathcal{K}_{0}(R) & \xrightarrow{\cong} & \mathcal{K}_{0}(\mathcal{M}_{n}(R)), & [P] & \mapsto & [_{\mathcal{M}_{n}(R)}\mathcal{R}^{n}{}_{R}\otimes_{R}P]; \\ \mathcal{K}_{0}(\mathcal{M}_{n}(R)) & \xrightarrow{\cong} & \mathcal{K}_{0}(R), & [Q] & \mapsto & [_{R}\mathcal{R}^{n}{}_{\mathcal{M}_{n}(R)}\otimes_{\mathcal{M}_{n}(R)}Q]. \end{array}$$

Example (Principal ideal domains)

If R is a principal ideal domain. Let F be its quotient field. Then we obtain mutually inverse isomorphisms

$$\mathbb{Z} \xrightarrow{\cong} K_0(R), \quad n \mapsto [R^n];$$

$$K_0(R) \xrightarrow{\cong} \mathbb{Z}, \qquad [P] \mapsto \dim_F(F \otimes_R P).$$

Example (Representation ring)

Let *G* be a finite group and let *F* be a field of characteristic zero. Then the representation ring $R_F(G)$ is the same as $K_0(FG)$. Taking the character of a representation yields an isomorphism

$$R_{\mathbb{C}}(G)\otimes_{\mathbb{Z}}\mathbb{C}=\mathcal{K}_0(\mathbb{C} G)\otimes_{\mathbb{Z}}\mathbb{C} \xrightarrow{\cong} \mathsf{class}(G,\mathbb{C}),$$

where $class(G; \mathbb{C})$ is the complex vector space of class functions $G \to \mathbb{C}$, i.e., functions, which are constant on conjugacy classes.

Example (Dedekind domains)

- Let *R* be a Dedekind domain, for instance the ring of integers in an algebraic number field.
- Call two ideals *I* and *J* in *R* equivalent if there exists non-zero elements *r* and *s* in *R* with *rI* = *sJ*. The ideal class group C(R) is the abelian group of equivalence classes of ideals under multiplication of ideals.
- Then we obtain an isomorphism

$$C(R) \xrightarrow{\cong} \widetilde{K}_0(R), \quad [I] \mapsto [I].$$

• The structure of the finite abelian group

 $C(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\exp(2\pi i/p)]) \cong \widetilde{K}_0(\mathbb{Z}[\mathbb{Z}/p])$

is only known for small prime numbers *p*.

Theorem (Swan (1960))

If G is finite, then $\widetilde{K}_0(\mathbb{Z}G)$ is finite.

• Topological K-theory

Let X be a compact space. Let $K^0(X)$ be the Grothendieck group of isomorphism classes of finite-dimensional complex vector bundles over X.

This is the zero-th term of a generalized cohomology theory $K^*(X)$ called topological *K*-theory. It is 2-periodic, i.e.,

- $K^{n}(X) = K^{n+2}(X)$, and satisfies $K^{0}(\text{pt}) = \mathbb{Z}$ and $K^{1}(\text{pt}) = \{0\}$.
- Let C(X) be the ring of continuous functions from X to \mathbb{C} .

Theorem (Swan (1962))

There is an isomorphism

$$K^0(X) \xrightarrow{\cong} K_0(\mathcal{C}(X)).$$

Definition (Finitely dominated)

A *CW*-complex *X* is called *finitely dominated* if there exists a finite (= compact) *CW*-complex *Y* together with maps $i: X \to Y$ and $r: Y \to X$ satisfying $r \circ i \simeq id_X$.

- A finite *CW*-complex is finitely dominated.
- A closed manifold is a finite *CW*-complex.

Problem

Is a given finitely dominated CW-complex homotopy equivalent to a finite CW-complex?

Definition (Wall's finiteness obstruction)

A finitely dominated CW-complex X defines an element

 $o(X)\in \mathit{K}_0(\mathbb{Z}[\pi_1(X)])$

called its *finiteness obstruction* as follows.

- Let \widetilde{X} be the universal covering. The fundamental group $\pi = \pi_1(X)$ acts freely on \widetilde{X} .
- Let C_{*}(X̃) be the cellular chain complex. It is a free Zπ-chain complex.
- Since X is finitely dominated, there exists a finite projective $\mathbb{Z}\pi$ -chain complex P_* with $P_* \simeq_{\mathbb{Z}\pi} C_*(\widetilde{X})$.

Define

$$o(X) := \sum_n (-1)^n \cdot [P_n] \in K_0(\mathbb{Z}\pi).$$

Theorem (Wall (1965))

A finitely dominated CW-complex X is homotopy equivalent to a finite CW-complex if and only if its reduced finiteness obstruction $\tilde{o}(X) \in \tilde{K}_0(\mathbb{Z}[\pi_1(X)])$ vanishes.

- A finitely dominated simply connected CW-complex is always homotopy equivalent to a finite CW-complex since K̃₀(ℤ) = {0}.
- Given a finitely presented group G and ξ ∈ K₀(ℤG), there exists a finitely dominated CW-complex X with π₁(X) ≅ G and o(X) = ξ.

Theorem (Geometric characterization of $\widetilde{K}_0(\mathbb{Z}G) = \{0\}$)

The following statements are equivalent for a finitely presented group *G*:

- Every finite dominated CW-complex with $G \cong \pi_1(X)$ is homotopy equivalent to a finite CW-complex.
- $\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$

Conjecture (Vanishing of $\widetilde{K}_0(\mathbb{Z}G)$ for torsionfree *G*)

If G is torsionfree, then

 $\widetilde{K}_0(\mathbb{Z}G) = \{0\}.$

Definition (K_1 -group $K_1(R)$)

Define the K₁-group of a ring R

$K_1(R)$

to be the abelian group whose generators are conjugacy classes [*f*] of automorphisms $f: P \rightarrow P$ of finitely generated projective *R*-modules with the following relations:

Given an exact sequence 0 → (P₀, f₀) → (P₁, f₁) → (P₂, f₂) → 0 of automorphisms of finitely generated projective *R*-modules, we get [f₀] + [f₂] = [f₁];

•
$$[g \circ f] = [f] + [g].$$

- This is the same as GL(R)/[GL(R), GL(R)].
- An invertible matrix A ∈ GL(R) can be reduced by elementary row and column operations and (de-)stabilization to the trivial empty matrix if and only if [A] = 0 holds in the reduced K₁-group

$$\mathsf{K}_1(\mathsf{R}) := \mathsf{K}_1(\mathsf{R})/\{\pm 1\} = \mathsf{cok}\left(\mathsf{K}_1(\mathbb{Z}) \to \mathsf{K}_1(\mathsf{R})\right).$$

• If *R* is commutative, the determinant induces an epimorphism

det: $K_1(R) \rightarrow R^{\times}$,

which in general is not bijective.

The assignment A → [A] ∈ K₁(R) can be thought of the universal determinant for R.

Definition (Whitehead group)

The Whitehead group of a group G is defined to be

$$\mathsf{Wh}(G) = K_1(\mathbb{Z}G)/\{\pm g \mid g \in G\}.$$

Lemma

We have $Wh(\{1\}) = \{0\}.$

Proof.

- The ring \mathbb{Z} possesses an Euclidean algorithm.
- Hence every invertible matrix over Z can be reduced via elementary row and column operations and destabilization to a (1, 1)-matrix (±1).
- This implies that any element in $K_1(\mathbb{Z})$ is represented by ± 1 .

Let *G* be a finite group. Then:

• Let F be \mathbb{Q} , \mathbb{R} or \mathbb{C} .

Define $r_F(G)$ to be the number of irreducible *F*-representations of *G*.

This is the same as the number of F-conjugacy classes of elements of G.

Here $g_1 \sim_{\mathbb{C}} g_2$ if and only if $g_1 \sim g_2$, i.e., $gg_1g^{-1} = g_2$ for some $g \in G$. We have $g_1 \sim_{\mathbb{R}} g_2$ if and only if $g_1 \sim g_2$ or $g_1 \sim g_2^{-1}$ holds. We have $g_1 \sim_{\mathbb{Q}} g_2$ if and only if $\langle g_1 \rangle$ and $\langle g_1 \rangle$ are conjugated as subgroups of *G*.

• The Whitehead group Wh(G) is a finitely generated abelian group.

- Its rank is $r_{\mathbb{R}}(G) r_{\mathbb{Q}}(G)$.
- The torsion subgroup of Wh(G) is the kernel of the map K₁(ℤG) → K₁(ℚG).
- In contrast to $\widetilde{K}_0(\mathbb{Z}G)$ the Whitehead group Wh(G) is computable.

Definition (*h*-cobordism)

An *h-cobordism* over a closed manifold M_0 is a compact manifold W whose boundary is the disjoint union $M_0 \amalg M_1$ such that both inclusions $M_0 \to W$ and $M_1 \to W$ are homotopy equivalences.

Theorem (*s*-Cobordism Theorem, Barden, Mazur, Stallings, Kirby-Siebenmann)

Let M_0 be a closed (smooth) manifold of dimension ≥ 5 . Let $(W; M_0, M_1)$ be an h-cobordism over M_0 . Then W is homeomorphic (diffeomorpic) to $M_0 \times [0, 1]$ relative M_0 if and only if its Whitehead torsion

$\tau(W, M_0) \in \mathsf{Wh}(\pi_1(M_0))$

vanishes.

Conjecture (Poincaré Conjecture)

Let M be an n-dimensional topological manifold which is a homotopy sphere, i.e., homotopy equivalent to S^n . Then M is homeomorphic to S^n .

Theorem

For $n \ge 5$ the Poincaré Conjecture is true.

Proof.

We sketch the proof for $n \ge 6$.

- Let *M* be a *n*-dimensional homotopy sphere.
- Let *W* be obtained from *M* by deleting the interior of two disjoint embedded disks D_1^n and D_2^n . Then *W* is a simply connected *h*-cobordism.
- Since Wh({1}) is trivial, we can find a homeomorphism $f: W \xrightarrow{\cong} \partial D_1^n \times [0, 1]$ which is the identity on $\partial D_1^n = D_1^n \times \{0\}$.
- By the Alexander trick we can extend the homeomorphism $f|_{D_1^n \times \{1\}} : \partial D_2^n \xrightarrow{\cong} \partial D_1^n \times \{1\}$ to a homeomorphism $g : D_1^n \to D_2^n$.
- The three homeomorphisms $id_{D_1^n}$, f and g fit together to a homeomorphism $h: M \to D_1^n \cup_{\partial D_1^n \times \{0\}} \partial D_1^n \times [0, 1] \cup_{\partial D_1^n \times \{1\}} D_1^n$. The target is obviously homeomorphic to S^n .

- The argument above does not imply that for a smooth manifold *M* we obtain a diffeomorphism g: M → Sⁿ.
 The Alexander trick does not work smoothly.
 Indeed, there exists so called exotic spheres, i.e., closed smooth manifolds which are homeomorphic but not diffeomorphic to Sⁿ.
- The *s*-cobordism theorem is a key ingredient in the surgery program for the classification of closed manifolds due to Browder, Novikov, Sullivan and Wall.
- Given a finitely presented group G, an element ξ ∈ Wh(G) and a closed manifold M of dimension n ≥ 5 with G ≅ π₁(M), there exists an h-cobordism W over M with τ(W, M) = ξ.

Theorem (Geometric characterization of $Wh(G) = \{0\}$)

The following statements are equivalent for a finitely presented group G and a fixed integer $n \ge 6$

- Every compact n-dimensional h-cobordism W with G ≅ π₁(W) is trivial;
- $Wh(G) = \{0\}.$

Conjecture (Vanishing of Wh(G) for torsionfree G)

If G is torsionfree, then

 $\mathsf{Wh}(G) = \{0\}.$

Definition (Bass-Nil-groups)

Define for n = 0, 1

$$\mathsf{NK}_n(R) := \mathsf{coker}\left(K_n(R) \to K_n(R[t])\right).$$

Theorem (Bass-Heller-Swan decomposition for K_1 (1964))

There is an isomorphism, natural in R,

 $K_0(R) \oplus K_1(R) \oplus \mathsf{NK}_1(R) \oplus \mathsf{NK}_1(R) \xrightarrow{\cong} K_1(R[t, t^{-1}]) = K_1(R[\mathbb{Z}]).$

Definition (Negative *K*-theory)

Define inductively for $n = -1, -2, \ldots$

$$\mathcal{K}_{n}(\mathcal{R}) := \operatorname{coker}\left(\mathcal{K}_{n+1}(\mathcal{R}[t]) \oplus \mathcal{K}_{n+1}(\mathcal{R}[t^{-1}]) \to \mathcal{K}_{n+1}(\mathcal{R}[t,t^{-1}])\right)$$

Define for n = -1, -2, ...

$$\mathsf{NK}_n(R) := \mathsf{coker}\left(K_n(R) \to K_n(R[t])\right).$$

Theorem (Bass-Heller-Swan decomposition for negative *K*-theory)

For $n \leq 1$ there is an isomorphism, natural in R,

$$K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]) = K_n(R[\mathbb{Z}]).$$

Definition (Regular ring)

A ring *R* is called *regular* if it is Noetherian and every finitely generated *R*-module possesses a finite projective resolution.

- Principal ideal domains are regular. In particular \mathbb{Z} and any field are regular.
- If *R* is regular, then R[t] and $R[t, t^{-1}] = R[\mathbb{Z}]$ are regular.
- If *R* is regular, then *RG* in general is not Noetherian or regular.

Theorem (Bass-Heller-Swan decomposition for regular rings)

Suppose that R is regular. Then

$$K_n(R) = 0 \text{ for } n \le -1;$$

NK $_n(R) = 0 \text{ for } n \le 1,$

and the Bass-Heller-Swan decomposition reduces for $n \leq 1$ to the natural isomorphism

$$K_{n-1}(R) \oplus K_n(R) \xrightarrow{\cong} K_n(R[t, t^{-1}]) = K_n(R[\mathbb{Z}]).$$

- There are also higher algebraic *K*-groups $K_n(R)$ for $n \ge 2$ due to Quillen (1973).
- They are defined as homotopy groups of certain spaces or spectra. We refer to the lectures of Grayson.
- Most of the well known features of K₀(R) and K₁(R) extend to both negative and higher algebraic K-theory.
 For instance the Bass-Heller-Swan decomposition holds also for higher algebraic K-theory.

 Notice the following formulas for a regular ring R and a generalized homology theory H_{*}, which look similar:

$$egin{array}{lll} \mathcal{K}_n(R[\mathbb{Z}]) &\cong \mathcal{K}_n(R) \oplus \mathcal{K}_{n-1}(R); \ \mathcal{H}_n(B\mathbb{Z}) &\cong \mathcal{H}_n(\operatorname{pt}) \oplus \mathcal{H}_{n-1}(\operatorname{pt}). \end{array}$$

• If *G* and *K* are groups, then we have the following formulas, which look similar:

$$\begin{array}{lll} \widetilde{K}_n(\mathbb{Z}[G \ast K]) &\cong & \widetilde{K}_n(\mathbb{Z}G) \oplus \widetilde{K}_n(\mathbb{Z}K); \\ \widetilde{\mathcal{H}}_n(B(G \ast K)) &\cong & \widetilde{\mathcal{H}}_n(BG) \oplus \widetilde{\mathcal{H}}_n(BK). \end{array}$$

Question (*K*-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and group homology of G?

To be continued Stay tuned

The Isomorphism Conjectures in the torsionfree case (Lecture II)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

- We have introduced $K_n(R)$ for $n \in \mathbb{Z}, n \leq 1$.
- We have discussed the topological relevance of $K_0(RG)$ and the Whitehead group Wh(*G*), e.g., the finiteness obstruction and the *s*-cobordism theorem.
- We have stated the conjectures that *K*₀(ℤG) and Wh(G) vanish for torsionfree G.
- We have presented the Bass-Heller-Swan decomposition and indicated some similarities between K_n(RG) and group homology.
- Cliffhanger

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

- We introduce spectra and how they yield homology theories.
- We state the Farrell-Jones-Conjecture and the Baum-Connes Conjecture for torsionfree groups.
- We discuss applications of these conjectures such as the Kaplansky Conjecture and the Borel Conjecture.
- We explain that the formulations for torsionfree groups cannot extend to arbitrary groups.

Definition (Spectrum)

A spectrum

$$\mathbf{E} = \{ (E(n), \sigma(n)) \mid n \in \mathbb{Z} \}$$

is a sequence of pointed spaces $\{E(n) \mid n \in \mathbb{Z}\}$ together with pointed maps called *structure maps*

$$\sigma(n) \colon E(n) \wedge S^1 \longrightarrow E(n+1).$$

A map of spectra

$$f \colon E \to E'$$

is a sequence of maps $f(n) \colon E(n) \to E'(n)$ which are compatible with the structure maps $\sigma(n)$, i.e., $f(n+1) \circ \sigma(n) = \sigma'(n) \circ (f(n) \wedge id_{S^1})$ holds for all $n \in \mathbb{Z}$.

 Given two pointed spaces X = (X, x₀) and Y = (Y, y₀), their one-point-union and their smash product are defined to be the pointed spaces

$$\begin{array}{lll} X \lor Y & := & \{(x,y_0) \mid x \in X\} \cup \{(x_0,y) \mid y \in Y\} \subseteq X \times Y; \\ X \land Y & := & (X \times Y)/(X \lor Y). \end{array}$$

We have $S^{n+1} \cong S^n \wedge S^1$.

- The sphere spectrum **S** has as *n*-th space S^n and as *n*-th structure map the homeomorphism $S^n \wedge S^1 \xrightarrow{\cong} S^{n+1}$.
- Let X be a pointed space. Its suspension spectrum Σ[∞]X is given by the sequence of spaces {X ∧ Sⁿ | n ≥ 0} with the homeomorphism (X ∧ Sⁿ) ∧ S¹ ≅ X ∧ Sⁿ⁺¹ as structure maps. We have S = Σ[∞]S⁰.

Definition (Ω -spectrum)

Given a spectrum **E**, we can consider instead of the structure map $\sigma(n): E(n) \land S^1 \rightarrow E(n+1)$ its adjoint

$$\sigma'(n)\colon E(n)\to \Omega E(n+1)=\operatorname{map}(S^1,E(n+1)).$$

We call **E** an Ω -spectrum if each map $\sigma'(n)$ is a weak homotopy equivalence.

Definition (Homotopy groups of a spectrum)

Given a spectrum **E**, define for $n \in \mathbb{Z}$ its *n*-th homotopy group

$$\pi_n(\mathsf{E}) := \operatorname{colim}_{k \to \infty} \pi_{k+n}(E(k))$$

to be the abelian group which is given by the colimit over the directed system indexed by \mathbb{Z} with *k*-th structure map

$$\pi_{k+n}(\boldsymbol{E}(k)) \xrightarrow{\sigma'(k)} \pi_{k+n}(\Omega \boldsymbol{E}(k+1)) = \pi_{k+n+1}(\boldsymbol{E}(k+1)).$$

 Notice that a spectrum can have in contrast to a space non-trivial negative homotopy groups.

• If **E** is an Ω -spectrum, then $\pi_n(\mathbf{E}) = \pi_n(E(0))$ for all $n \ge 0$.

Eilenberg-MacLane spectrum

Let *A* be an abelian group. The *n*-th Eilenberg-MacLane space EM(A, n) associated to *A* for $n \ge 0$ is a *CW*-complex with $\pi_m(EM(A, n)) = A$ for m = n and $\pi_m(EM(A, n)) = \{0\}$ for $m \ne n$. The associated Eilenberg-MacLane spectrum H(A) has as *n*-th space EM(A, n) and as *n*-th structure map a homotopy equivalence $EM(A, n) \rightarrow \Omega EM(A, n + 1)$.

Algebraic K-theory spectrum

For a ring *R* there is the algebraic *K*-theory spectrum K_R with the property

$$\pi_n(\mathbf{K}_R) = K_n(R) \quad \text{ for } n \in \mathbb{Z}.$$

• Algebraic *L*-theory spectrum

For a ring with involution *R* there is the algebraic *L*-theory spectrum $L_R^{\langle -\infty \rangle}$ with the property

$$\pi_n(\mathsf{L}_R^{\langle -\infty
angle}) = L_n^{\langle -\infty
angle}(R) \quad ext{ for } n \in \mathbb{Z}.$$

Topological K-theory spectrum
 By Bott periodicity there is a homotopy equivalence

$$\beta \colon BU \times \mathbb{Z} \xrightarrow{\simeq} \Omega^2(BU \times \mathbb{Z}).$$

The topological *K*-theory spectrum \mathbf{K}^{top} has in even degrees $BU \times \mathbb{Z}$ and in odd degrees $\Omega(BU \times \mathbb{Z})$.

The structure maps are given in even degrees by the map β and in odd degrees by the identity id: $\Omega(BU \times \mathbb{Z}) \rightarrow \Omega(BU \times \mathbb{Z})$.

Definition (Homology theory)

Let Λ be a commutative ring, for instance \mathbb{Z} or \mathbb{Q} .

A *homology theory* \mathcal{H}_* with values in Λ -modules is a covariant functor from the category of CW-pairs to the category of \mathbb{Z} -graded Λ -modules together with natural transformations

$$\partial_n(X,A) \colon \mathcal{H}_n(X,A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- Homotopy invariance
- Long exact sequence of a pair
- Excision

If (X, A) is a *CW*-pair and $f: A \rightarrow B$ is a cellular map , then

$$\mathcal{H}_n(X, A) \xrightarrow{\cong} \mathcal{H}_n(X \cup_f B, B).$$

Definition (continued)

Disjoint union axiom

$$\bigoplus_{i\in I} \mathcal{H}_n(X_i) \xrightarrow{\cong} \mathcal{H}_n\left(\coprod_{i\in I} X_i\right)$$

Definition (Smash product)

Let **E** be a spectrum and *X* be a pointed space. Define the smash product $X \land E$ to be the spectrum whose *n*-th space is $X \land E(n)$ and whose *n*-th structure map is

$$X \wedge E(n) \wedge S^1 \xrightarrow{\operatorname{id}_X \wedge \sigma(n)} X \wedge E(n+1).$$

Theorem (Homology theories and spectra)

Let **E** be a spectrum. Then we obtain a homology theory $H_*(-; \mathbf{E})$ by

$$H_n(X, A; \mathbf{E}) := \pi_n\left((X \cup_A \operatorname{cone}(A)) \land \mathbf{E}\right).$$

It satisfies

$$H_n(pt; \mathbf{E}) = \pi_n(\mathbf{E}).$$

Example (Stable homotopy theory)

The homology theory associated to the sphere spectrum **S** is stable homotopy $\pi_*^s(X)$. The groups $\pi_n^s(\text{pt})$ are finite abelian groups for $n \neq 0$ by a result of Serre (1953). Their structure is only known for small *n*.

Example (Singular homology theory with coefficients)

The homology theory associated to the Eilenberg-MacLane spectrum H(A) is singular homology with coefficients in A.

Example (Topological K-homology)

The homology theory associated to the topological *K*-theory spectrum \mathbf{K}^{top} is *K*-homology $K_*(X)$. We have

$$K_n(\mathrm{pt}) \cong \left\{ egin{array}{cc} \mathbb{Z} & n ext{ even;} \\ \{0\} & n ext{ odd.} \end{array}
ight.$$

The Isomorphism Conjectures for torsionfree groups

Conjecture (*K*-theoretic Farrell-Jones Conjecture for torsionfree groups)

The K-theoretic Farrell-Jones Conjecture with coefficients in the regular ring R for the torsionfree group G predicts that the assembly map

$$H_n(BG; \mathbf{K}_R) o K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

- *K_n(RG)* is the algebraic *K*-theory of the group ring *RG*;
- K_R is the (non-connective) algebraic K-theory spectrum of R;
- $H_n(\text{pt}; \mathbf{K}_R) \cong \pi_n(\mathbf{K}_R) \cong K_n(R)$ for $n \in \mathbb{Z}$.
- BG is the classifying space of the group G, i.e., the base space of the universal G-principal G-bundle G → EG → BG. Equivalently, BG = EM(G, 1). The space BG is unique up to homotopy.

Conjecture (*L*-theoretic Farrell-Jones Conjecture for torsionfree groups)

The L-theoretic Farrell-Jones Conjecture with coefficients in the ring with involution R for the torsionfree group G predicts that the assembly map

$$H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) o L_n^{\langle -\infty
angle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

 $\langle -\infty \rangle$;

- L_n^(-∞)(RG) is the algebraic *L*-theory of RG with decoration (-∞);
 L_R^(-∞) is the algebraic *L*-theory spectrum of R with decoration
- $H_n(\mathrm{pt}; \mathbf{L}_R^{\langle -\infty \rangle}) \cong \pi_n(\mathbf{L}_R^{\langle -\infty \rangle}) \cong L_n^{\langle -\infty \rangle}(R) \text{ for } n \in \mathbb{Z}.$

Conjecture (Baum-Connes Conjecture for torsionfree groups)

The Baum-Connes Conjecture for the torsionfree group predicts that the assembly map

 $K_n(BG) \rightarrow K_n(C_r^*(G))$

is bijective for all $n \in \mathbb{Z}$.

- *K_n(BG)* is the topological *K*-homology of *BG*, where
 K_{}(-) = H_{*}(-; K^{top})* for K^{top} the topological *K*-theory spectrum.
- *K_n*(*C*^{*}_r(*G*)) is the topological *K*-theory of the reduced complex group *C**-algebra *C*^{*}_r(*G*) of *G* which is the closure in the norm topology of ℂ*G* considered as subalgebra of *B*(*I*²(*G*)).
- There is also a real version of the Baum-Connes Conjecture

$$KO_n(BG) \to K_n(C_r^*(G; \mathbb{R})).$$

Consequences of the Isomorphism Conjectures for torsionfree groups

- In order to illustrate the depth of the Farrell-Jones Conjecture and the Baum-Connes Conjecture, we present some conclusions which are interesting in their own right.
- Let $\mathcal{FJ}_{K}(R)$ and $\mathcal{FJ}_{L}(R)$ respectively be the class of groups which satisfy the *K*-theoretic and *L*-theoretic respectively Farrell-Jones Conjecture for the coefficient ring *R*.
- Let *BC* be the class of groups which satisfy the Baum-Connes Conjecture.

Lemma

Let R be a regular ring. Suppose that G is torsionfree and $G \in \mathcal{FJ}_{\mathcal{K}}(R)$. Then

- $K_n(RG) = 0$ for $n \le -1$;
- The change of rings map K₀(R) → K₀(RG) is bijective. In particular K̃₀(RG) is trivial if and only if K̃₀(R) is trivial.

Lemma

Suppose that G is torsionfree and $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$. Then the Whitehead group Wh(G) is trivial.

Proof.

The idea of the proof is to study the Atiyah-Hirzebruch spectral sequence converging to $H_n(BG; \mathbf{K}_R)$ whose E^2 -term is given by

$$E_{p,q}^2 = H_p(BG, K_q(R)).$$

Proof (continued).

- Since *R* is regular by assumption, we get $K_q(R) = 0$ for $q \leq -1$.
- Hence the edge homomorphism yields an isomorphism

$$\mathcal{K}_0(R) = \mathcal{H}_0(\mathsf{pt}, \mathcal{K}_0(R)) \xrightarrow{\cong} \mathcal{H}_0(BG; \mathbf{K}_R) \cong \mathcal{K}_0(RG).$$

We have K₀(ℤ) = ℤ and K₁(ℤ) = {±1}. We get an exact sequence

$$0 \to H_0(BG; \mathcal{K}_1(\mathbb{Z})) = \{\pm 1\} \to H_1(BG; \mathbf{K}_{\mathbb{Z}}) \cong \mathcal{K}_1(\mathbb{Z}G)$$
$$\to H_1(BG; \mathcal{K}_0(\mathbb{Z})) = G/[G, G] \to 0.$$

• This implies $\mathrm{Wh}(G):=K_1(\mathbb{Z}G)/\{\pm g\mid g\in G\}\cong 0.$

In particular we get for a torsionfree group $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$:

•
$$K_n(\mathbb{Z}G) = 0$$
 for $n \le -1$;

- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every finitely dominated CW-complex X with G = π₁(X) is homotopy equivalent to a finite CW-complex;
- Every compact *h*-cobordism W of dimension ≥ 6 with π₁(W) ≅ G is trivial;
- If G belongs to FJ_K(ℤ), then it is of type FF if and only if it is of type FP (Serre's problem).

Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture, Bartels-L.-Reich(2007))

Let F be a skew-field and let G be a group with $G \in \mathcal{FJ}_{\mathcal{K}}(F)$. Suppose that one of the following conditions is satisfied:

- F is commutative and has characteristic zero and G is torsionfree;
- *G* is torsionfree and sofic, e.g., residually amenable;
- The characteristic of F is p, all finite subgroups of G are p-groups and G is sofic.

Then 0 and 1 are the only idempotents in FG.

Proof.

- Let p be an idempotent in *FG*. We want to show $p \in \{0, 1\}$.
- Denote by $\epsilon: FG \to F$ the augmentation homomorphism sending $\sum_{g \in G} r_g \cdot g$ to $\sum_{g \in G} r_g$. Obviously $\epsilon(p) \in F$ is 0 or 1. Hence it suffices to show p = 0 under the assumption that $\epsilon(p) = 0$.
- Let (*p*) ⊆ *FG* be the ideal generated by *p* which is a finitely generated projective *FG*-module.
 Since *G* ∈ *FJ_K*(*F*), we can conclude that

$$i_* \colon K_0(F) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is surjective.

Hence we can find a finitely generated projective *F*-module *P* and integers $k, m, n \ge 0$ satisfying

$$(p)^k \oplus FG^m \cong_{FG} i_*(P) \oplus FG^n.$$

Proof (continued).

If we now apply *i*_{*} ◦ *ϵ*_{*} and use *ϵ* ◦ *i* = id, *i*_{*} ◦ *ϵ*_{*}(*FG*^{*i*}) ≅ *FG*^{*i*} and *ϵ*(*p*) = 0 we obtain

$$FG^m \cong i_*(P) \oplus FG^n.$$

• Inserting this in the first equation yields

$$(p)^k \oplus i_*(P) \oplus FG^n \cong i_*(P) \oplus FG^n.$$

Our assumptions on *F* and *G* imply that *FG* is stably finite, i.e., if *A* and *B* are square matrices over *FG* with *AB* = *I*, then *BA* = *I*. This implies (*p*)^k = 0 and hence *p* = 0.

Theorem (The Baum-Connes Conjecture and the Kaplansky Conjecture)

Let G be a torsionfree group with $G \in BC$. Then 0 and 1 are the only idempotents in $\mathbb{C}G$.

Proof.

There is a trace map

$$\mathrm{tr}\colon \mathit{C}^*_r(\mathit{G}) o \mathbb{C}$$

which sends $f \in C^*_r(G) \subseteq \mathcal{B}(l^2(G))$ to $\langle f(e), e \rangle_{l^2(G)}$.

• The *L*²-index theorem due to Atiyah (1976) shows that the composite

$$K_0(BG) o K_0(C^*_r(G)) \xrightarrow{\operatorname{tr}} \mathbb{C}$$

coincides with

$$K_0(BG) \xrightarrow{K_0(pr)} K_0(pt) = \mathbb{Z} \xrightarrow{i} \mathbb{C}.$$

Proof (continued).

- Hence $G \in \mathcal{BC}$ implies $tr(p) \in \mathbb{Z}$.
- Since tr(1) = 1, tr(0) = 0, 0 ≤ p ≤ 1 and p² = p, we get tr(p) ∈ ℝ and 0 ≤ tr(p) ≤ 1.
- We conclude tr(0) = tr(p) or tr(1) = tr(p).
- This implies already p = 0 or p = 1.

Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

- The Borel Conjecture can be viewed as the topological version of Mostow rigidity. A special case of Mostow rigidity says that any homotopy equivalence between closed hyperbolic manifolds of dimension ≥ 3 is homotopic to an isometric diffeomorphism.
- The Borel Conjecture is not true in the smooth category by results of Farrell-Jones(1989).
- There are also non-aspherical manifolds which are topologically rigid in the sense of the Borel Conjecture (see Kreck-L. (2005)).

Theorem (The Farrell-Jones Conjecture and the Borel Conjecture)

If the K- and L-theoretic Farrell-Jones Conjecture hold for G in the case $R = \mathbb{Z}$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

- Thurston's Geometrization Conjecture implies the Borel Conjecture in dimension 3.
- The Borel Conjecture in dimension 1 and 2 is obviously true.

Definition (Structure set)

The *structure set* $S^{top}(M)$ of a manifold M consists of equivalence classes of orientation preserving homotopy equivalences $N \rightarrow M$ with a manifold N as source.

Two such homotopy equivalences $f_0: N_0 \to M$ and $f_1: N_1 \to M$ are equivalent if there exists a homeomorphism $g: N_0 \to N_1$ with $f_1 \circ g \simeq f_0$.

Theorem

The Borel Conjecture holds for a closed manifold M if and only if $S^{top}(M)$ consists of one element.

Theorem (Ranicki (1992))

There is an exact sequence of abelian groups, called algebraic surgery exact sequence, for an n-dimensional closed manifold M

$$\cdots \xrightarrow{\sigma_{n+1}} H_{n+1}(M; \mathbf{L}\langle 1 \rangle) \xrightarrow{A_{n+1}} L_{n+1}(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_{n+1}} \\ \mathcal{S}^{\mathrm{top}}(M) \xrightarrow{\sigma_n} H_n(M; \mathbf{L}\langle 1 \rangle) \xrightarrow{A_n} L_n(\mathbb{Z}\pi_1(M)) \xrightarrow{\partial_n} \cdots$$

It can be identified with the classical geometric surgery sequence due to Sullivan and Wall in high dimensions.

- S^{top}(M) consist of one element if and only if A_{n+1} is surjective and A_n is injective.
- *H_k(M*; L⟨1⟩) → *H_k(M*; L) is bijective for *k* ≥ *n* + 1 and injective for *k* = *n*.

- The versions of the Farrell-Jones Conjecture and the Baum-Connes Conjecture above become false for finite groups unless the group is trivial.
- For instance the version of the Baum-Connes Conjecture above would predict for a finite group *G*

$$K_0(BG) \cong K_0(C_r^*(G)) \cong R_{\mathbb{C}}(G).$$

However, $K_0(BG) \otimes_{\mathbb{Z}} \mathbb{Q} \cong_{\mathbb{Q}} K_0(\text{pt}) \otimes_{\mathbb{Z}} \mathbb{Q} \cong_{\mathbb{Q}} \mathbb{Q}$ and $R_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Q} \cong_{\mathbb{Q}} \mathbb{Q}$ holds if and only if *G* is trivial.

 If G is torsionfree, then the version of the K-theoretic Farrell-Jones Conjecture predicts

$$H_n(B\mathbb{Z}; \mathbf{K}_R) = H_n(S^1; \mathbf{K}_R) = H_n(\text{pt}; \mathbf{K}_R) \oplus H_{n-1}(\text{pt}; \mathbf{K}_R)$$
$$= K_n(R) \oplus K_{n-1}(R) \cong K_n(R\mathbb{Z}).$$

In view of the Bass-Heller-Swan decomposition this is only possible if $NK_n(R)$ vanishes which is true for regular rings R but not for general rings R.

• We want to figure out what is needed for a general version which may be true for all groups.

Assembly

For a field F of characteristic zero and some groups G one knows that there is an isomorphism

$$\operatorname{colim}_{\substack{H\subseteq G\\|H|<\infty}} K_0(FH) \xrightarrow{\cong} K_0(FG).$$

This indicates that one has at least to take into account the values for all finite subgroups to assemble $K_n(FG)$.

Degree Mixing

The Bass-Heller-Swan decomposition shows that the *K*-theory of finite subgroups in degree $m \le n$ can affect the *K*-theory in degree *n* and that at least in the Farrell-Jones setting finite subgroups are not enough.

 In the Baum-Connes setting Nil-phenomena do not appear. Namely, a special case of a result due to Pimsner-Voiculescu (1982) says

 $K_n(C^*_r(G \times \mathbb{Z})) \cong K_n(C^*_r(G)) \oplus K_{n-1}(C^*_r(G)).$

Homological behaviour

There is still a lot of homological behaviour known for $K_*(C_r^*(G))$. For instance there exists a long exact Mayer-Vietoris sequence associated to amalgamated products $G_1 *_{G_0} G_2$ and a Wang-sequence associated to semi-direct products $G \rtimes \mathbb{Z}$ by Pimsner-Voiculescu (1982).

Similar versions under certain restrictions exist in K-and L-theory due to Cappell (1974) and Waldhausen (1978) if one makes certain assumptions on R or ignores certain Nil-phenomena.

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

Question (Equivariant homology theories)

Can one define appropriate G-homology theories \mathcal{H}^G_* that are in some sense computable and yield when applied to $E_{\mathcal{F}}(G)$ a term which potentially is isomorphic to the groups $K_n(RG)$, $L^{-\langle \infty \rangle}(RG)$ or $K_n(C^*_r(G))$? In the torsionfree case they should reduce to $H_n(BG; \mathbf{K}_R)$, $H_n(BG; \mathbf{L}^{-\langle \infty \rangle})$ and $K_n(BG)$.

To be continued Stay tuned

Classifying spaces for families (Lecture III)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

• We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups:

$$\begin{array}{rcl} H_n(BG; \mathbf{K}_R) & \xrightarrow{\cong} & K_n(RG); \\ H_n(BG; \mathbf{L}_R^{\langle -\infty \rangle}) & \xrightarrow{\cong} & L_n^{\langle -\infty \rangle}(RG); \\ & K_n(BG) & \xrightarrow{\cong} & K_n(C_r^*(G)). \end{array}$$

 We have discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.

• Cliffhanger

Question (Classifying spaces for families)

Is there a version $E_{\mathcal{F}}(G)$ of the classifying space EG which takes the structure of the family of finite subgroups or other families \mathcal{F} of subgroups into account and can be used for a general formulation of the Farrell-Jones Conjecture?

- We introduce the notion of the classifying space of a family *F* of subgroups *E_F(G)* and *J_F(G)*.
- In the case, where *F* is the family *COM* of compact subgroups, we present some nice geometric models for *E_F(G)* and explain *E_F(G)* ≃ *J_F(G)*.
- We discuss finiteness properties of these classifying spaces.

Classifying spaces for families of subgroups

Definition (*G-CW*-complex)

A G-CW-complex X is a G-space together with a G-invariant filtration

$$\emptyset = X_{-1} \subseteq X_0 \subseteq \ldots \subseteq X_n \subseteq \ldots \subseteq \bigcup_{n \ge 0} X_n = X$$

such that *X* carries the colimit topology with respect to this filtration, and X_n is obtained from X_{n-1} for each $n \ge 0$ by attaching equivariant *n*-dimensional cells, i.e., there exists a *G*-pushout

$$\underbrace{\coprod_{i \in I_n} G/H_i \times S^{n-1} \xrightarrow{\coprod_{i \in I_n} q_i^n} X_{n-1} }_{\coprod_{i \in I_n} Q_i^n \xrightarrow{\bigcup} X_n}$$

• Group means locally compact Hausdorff topological group with a countable basis for its topology, unless explicitly stated differently.

Example (Simplicial actions)

Let X be a simplicial complex. Suppose that G acts simplicially on X. Then G acts simplicially also on the barycentric subdivision X', and all isotropy groups are open and closed. The G-space X' inherits the structure of a G-CW-complex.

Example (Smooth actions)

Let G be a Lie group acting properly and smoothly on a smooth manifold M.

Then *M* inherits the structure of *G*-*CW*-complex.

Definition (Proper G-action)

A *G*-space *X* is called *proper* if for each pair of points *x* and *y* in *X* there are open neighborhoods V_x of *x* and W_y of *y* in *X* such that the closure of the subset $\{g \in G \mid gV_x \cap W_y \neq \emptyset\}$ of *G* is compact.

Lemma

- A proper G-space has always compact isotropy groups.
- A G-CW-complex X is proper if and only if all its isotropy groups are compact.

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of (closed) subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

\mathcal{TR}	=	{trivial subgroup};
${\cal FIN}$	=	{finite subgroups};
VCYC	=	{virtually cyclic subgroups};
\mathcal{COM}	=	{compact subgroups};
\mathcal{COMOP}	=	{compact open subgroups};
\mathcal{ALL}	=	{all subgroups}.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *E*_{*F*}(*G*).

We abbreviate $\underline{E}G := E_{COM}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$.

Theorem (Homotopy characterization of $E_{\mathcal{F}}(G)$)

Let \mathcal{F} be a family of subgroups.

- There exists a model for $E_{\mathcal{F}}(G)$ for any family \mathcal{F} ;
- Two model for $E_{\mathcal{F}}(G)$ are G-homotopy equivalent;
- A G-CW-complex X is a model for $E_{\mathcal{F}}(G)$ if and only if all its isotropy groups belong to \mathcal{F} and for each $H \in \mathcal{F}$ the H-fixed point set X^H is weakly contractible.

- A model for $E_{ALL}(G)$ is G/G;
- EG → BG := G\EG is the universal G-principal bundle for G-CW-complexes.

Example (Infinite dihedral group)

- Let $D_{\infty} = \mathbb{Z} \rtimes \mathbb{Z}/2 = \mathbb{Z}/2 * \mathbb{Z}/2$ be the infinite dihedral group.
- A model for ED_{∞} is the universal covering of $\mathbb{RP}^{\infty} \vee \mathbb{RP}^{\infty}$.
- A model for $\underline{E}D_{\infty}$ is \mathbb{R} with the obvious D_{∞} -action.

Lemma

If G is totally disconnected, then $E_{COMOP}(G) = \underline{E}G$.

Definition (\mathcal{F} -numerable G-space)

A *F*-numerable *G*-space is a *G*-space, for which there exists an open covering $\{U_i \mid i \in I\}$ by *G*-subspaces satisfying:

- For each $i \in I$ there exists a *G*-map $U_i \to G/G_i$ for some $G_i \in \mathcal{F}$;
- There is a locally finite partition of unity {*e_i* | *i* ∈ *I*} subordinate to {*U_i* | *i* ∈ *I*} by *G*-invariant functions *e_i*: *X* → [0, 1].
- Notice that we do not demand that the isotropy groups of a \mathcal{F} -numerable *G*-space belong to \mathcal{F} .
- If $f: X \to Y$ is a *G*-map and *Y* is \mathcal{F} -numerable, then *X* is also \mathcal{F} -numerable.
- A *G*-*CW*-complex is *F*-numerable if and only if each isotropy group appears as a subgroup of an element in *F*.

- There is also a version J_F(G) of a classifying space for F-numerable G-spaces.
- It is characterized by the property that $J_{\mathcal{F}}(G)$ is \mathcal{F} -numerable and for every \mathcal{F} -numerable *G*-space *Y* there is up to *G*-homotopy precisely one *G*-map $Y \to J_{\mathcal{F}}(G)$.
- We abbreviate $\underline{J}G = J_{COM}(G)$ and $JG = J_{TR}(G)$.
- JG → G\JG is the universal G-principal bundle for numerable free proper G-spaces.

Theorem (Comparison of $E_{\mathcal{F}}(G)$ and $J_{\mathcal{F}}(G)$, L. (2005))

• There is up to G-homotopy precisely one G-map

 $\phi \colon E_{\mathcal{F}}(G) \to J_{\mathcal{F}}(G);$

 It is a G-homotopy equivalence if one of the following conditions is satisfied:

- Each element in \mathcal{F} is open and closed;
- G is discrete;
- *F* is *COM*;
- Let G be totally disconnected. Then EG → JG is a G-homotopy equivalence if and only if G is discrete.

Special models for $\underline{E}G$

- We want to illustrate that the space $\underline{E}G = \underline{J}G$ often has very nice geometric models and appear naturally in many interesting situations.
- Let C₀(G) be the Banach space of complex valued functions of G vanishing at infinity with the supremum-norm. The group G acts isometrically on C₀(G) by (g ⋅ f)(x) := f(g⁻¹x) for f ∈ C₀(G) and g, x ∈ G.
 Let PC₀(G) be the subspace of C₀(G) consisting of functions f

such that *f* is not identically zero and has non-negative real numbers as values.

Theorem (Operator theoretic model, Abels (1978))

The G-space $PC_0(G)$ is a model for $\underline{J}G$.

Theorem

Let G be discrete. A model for $\underline{J}G$ is the space

$$X_G = \left\{ f \colon G \to [0,1] \mid f \text{ has finite support, } \sum_{g \in G} f(g) = 1 \right\}$$

with the topology coming from the supremum norm.

Theorem (Simplicial Model)

Let G be discrete. Let $P_{\infty}(G)$ be the geometric realization of the simplicial set whose k-simplices consist of (k + 1)-tupels (g_0, g_1, \ldots, g_k) of elements g_i in G. This is a model for <u>E</u>G.

- The spaces X_G and P_∞(G) have the same underlying sets but in general they have different topologies.
- The identity map induces a *G*-map $P_{\infty}(G) \rightarrow X_G$ which is a *G*-homotopy equivalence, but in general not a *G*-homeomorphism.

Theorem (Almost connected groups, Abels (1978).)

Suppose that G is almost connected, i.e., the group G/G^0 is compact for G^0 the component of the identity element. Then G contains a maximal compact subgroup K which is unique up to conjugation, and the G-space G/K is a model for <u>J</u>G.

• As a special case we get:

Theorem (Discrete subgroups of almost connected Lie groups)

Let L be a Lie group with finitely many path components. Then L contains a maximal compact subgroup K which is unique up to conjugation, and the L-space L/K is a model for <u>E</u>L. If $G \subseteq L$ is a discrete subgroup of L, then L/K with the obvious left G-action is a finite dimensional G-CW-model for <u>E</u>G.

Theorem (Actions on CAT(0)-spaces)

Let G be a (locally compact Hausdorff) topological group. Let X be a proper G-CW-complex. Suppose that X has the structure of a complete simply connected CAT(0)-space for which G acts by isometries.

Then X is a model for $\underline{E}G$.

• The result above contains as special case isometric *G* actions on simply-connected complete Riemannian manifolds with non-positive sectional curvature and *G*-actions on trees.

Theorem (Affine buildings)

Let G be a totally disconnected group. Suppose that G acts on the affine building Σ by simplicial automorphisms such that each isotropy group is compact.

Then Σ is a model for both $J_{COMOP}(G)$ and $\underline{J}G$ and the barycentric subdivision Σ' is a model for both $E_{COMOP}(G)$ and $\underline{E}G$.

- An important example is the case of a reductive *p*-adic algebraic group *G* and its associated affine Bruhat-Tits building β(*G*). Then β(*G*) is a model for <u>J</u>*G* and β(*G*)' is a model for <u>E</u>*G* by the previous result.
- For more information about buildings we refer to the lectures of Abramenko.

- The Rips complex P_d(G, S) of a group G with a symmetric finite set S of generators for a natural number d is the geometric realization of the simplicial set whose set of k-simplices consists of (k + 1)-tuples (g₀, g₁,...g_k) of pairwise distinct elements g_i ∈ G satisfying d_S(g_i, g_j) ≤ d for all i, j ∈ {0, 1,...,k}.
- The obvious *G*-action by simplicial automorphisms on *P*_d(*G*, *S*) induces a *G*-action by simplicial automorphisms on the barycentric subdivision *P*_d(*G*, *S*)'.

Theorem (Rips complex, Meintrup-Schick (2002))

Let G be a discrete group with a finite symmetric set of generators. Suppose that (G, S) is δ -hyperbolic for the real number $\delta \ge 0$. Let d be a natural number with $d \ge 16\delta + 8$. Then the barycentric subdivision of the Rips complex $P_d(G, S)'$ is a finite G-CW-model for EG.

- Arithmetic groups in a semisimple connected linear Q-algebraic group possess finite models for <u>E</u>G.
- Namely, let G(ℝ) be the ℝ-points of a semisimple Q-group G(Q) and let K ⊆ G(ℝ) be a maximal compact subgroup.
- If A ⊆ G(Q) is an arithmetic group, then G(R)/K with the left A-action is a model for <u>E</u>A as already explained above.
- The A-space $G(\mathbb{R})/K$ is not necessarily cocompact.

Theorem (Borel-Serre compactification)

The Borel-Serre compactification of $G(\mathbb{R})/K$ is a finite A-CW-model for <u>E</u>A.

• For more information about arithmetic groups we refer to the lectures of Abramenko.

 Let Γ^s_{g,r} be the mapping class group of an orientable compact surface *F* of genus g with s punctures and r boundary components.

We will always assume that 2g + s + r > 2, or, equivalently, that the Euler characteristic of the punctured surface *F* is negative.

• It is well-known that the associated Teichmüller space $\mathcal{T}_{g,r}^s$ is a contractible space on which $\Gamma_{g,r}^s$ acts properly.

Theorem (Teichmüller space)

The $\Gamma_{g,r}^s$ -space $\mathcal{T}_{g,r}^s$ is a model for $\underline{E}\Gamma_{g,r}^s$.

- Let *F_n* be the free group of rank *n*.
- Denote by $Out(F_n)$ the group of outer automorphisms of F_n , i.e., the quotient of the group of all automorphisms of F_n by the normal subgroup of inner automorphisms.
- Culler-Vogtmann (1996) have constructed a space X_n called outer space on which Out(F_n) acts with finite isotropy groups. It is analogous to the Teichmüller space of a surface with the action of the mapping class group of the surface.
- The space X_n contains a spine K_n which is an $Out(F_n)$ -equivariant deformation retraction. This space K_n is a simplicial complex of dimension (2n 3) on which the $Out(F_n)$ -action is by simplicial automorphisms and cocompact.

Theorem (Spine of outer space)

The barycentric subdivision K'_n is a finite (2n - 3)-dimensional model of \underline{E} Out (F_n) .

Example ($SL_2(\mathbb{R})$ and $SL_2(\mathbb{Z})$)

- In order to illustrate some of the general statements above we consider the special example SL₂(ℝ) and SL₂(ℤ).
- Let \mathbb{H}^2 be the 2-dimensional hyperbolic space. The group $SL_2(\mathbb{R})$ acts by isometric diffeomorphisms on the upper half-plane by Moebius transformations. This action is proper and transitive. The isotropy group of z = i is SO(2). Since \mathbb{H}^2 is a simply-connected Riemannian manifold, whose sectional curvature is constant -1, the $SL_2(\mathbb{R})$ -space \mathbb{H}^2 is a model for $\underline{E}SL_2(\mathbb{R})$.
- The group SL₂(ℝ) is a connected Lie group and SO(2) ⊆ SL₂(ℝ) is a maximal compact subgroup. Hence SL₂(ℝ)/SO(2) is a model for <u>E</u>SL₂(ℝ)
- Since the SL₂(ℝ)-action on H² is transitive and SO(2) is the isotropy group at *i* ∈ H², we see that the SL₂(ℝ)-manifolds SL₂(ℝ)/SO(2) and H² are SL₂(ℝ)-diffeomorphic.

Example (continued)

- Since SL₂(ℤ) is a discrete subgroup of SL₂(ℝ), the space ℍ² with the obvious SL₂(ℤ)-action is a model for <u>E</u>SL₂(ℤ).
- The group $SL_2(\mathbb{Z})$ is isomorphic to the amalgamated product $\mathbb{Z}/4 *_{\mathbb{Z}/2} \mathbb{Z}/6$. This implies that there is a tree on which $SL_2(\mathbb{Z})$ acts with finite stabilizers. The tree has alternately two and three edges emanating from each vertex. This is a 1-dimensional model for $\underline{E}SL_2(\mathbb{Z})$.
- The tree model and the other model given by ℍ² must be SL₂(ℤ)-homotopy equivalent. They can explicitly be related by the following construction.

Example (continued)

 Divide the Poincaré disk into fundamental domains for the $SL_2(\mathbb{Z})$ -action. Each fundamental domain is a geodesic triangle with one vertex at infinity, i.e., a vertex on the boundary sphere, and two vertices in the interior. Then the union of the edges, whose end points lie in the interior of the Poincaré disk, is a tree Twith $SL_2(\mathbb{Z})$ -action which is the tree model above. The tree is a $SL_2(\mathbb{Z})$ -equivariant deformation retraction of the Poincaré disk. A retraction is given by moving a point p in the Poincaré disk along a geodesic starting at the vertex at infinity, which belongs to the triangle containing p, through p to the first intersection point of this geodesic with T.

Example (continued)

The tree *T* above can be identified with the Bruhat-Tits building of SL₂(Q_p) and hence is a model for <u>E</u>SL₂(Q_p). Since SL₂(ℤ) is a discrete subgroup of SL₂(Q_p), we get another reason why this tree is a model for SL₂(ℤ).

- Finiteness properties of the spaces *EG* and *EG* have been intensively studied in the literature. We mention a few examples and results. For more information we refer to the lectures of Brown.
- If *EG* has a finite-dimensional model, the group *G* must be torsionfree. There are often finite models for <u>*EG*</u> for groups *G* with torsion.
- Often geometry provides small model for <u>E</u>G in cases, where the models for <u>EG</u> are huge. These small models can be useful for computations concerning <u>BG</u> itself.

Theorem (Discrete subgroups of Lie groups)

Let L be a Lie group with finitely many path components. Let $K \subseteq L$ be a maximal compact subgroup K. Let $G \subseteq L$ be a discrete subgroup of L. Then L/K with the left G-action is a model for <u>E</u>G. Suppose additionally that G is virtually torsionfree, i.e., contains a torsionfree subgroup $\Delta \subseteq G$ of finite index. Then we have for its virtual cohomological dimension

 $\operatorname{vcd}(G) \leq \dim(L/K).$

Equality holds if and only if $G \setminus L$ is compact.

Theorem (A criterion for 1-dimensional models for *BG*, Stallings (1968), Swan (1969))

Let G be a discrete group. The following statements are equivalent:

- There exists a 1-dimensional model for EG;
- There exists a 1-dimensional model for BG;
- The cohomological dimension of G is less or equal to one;
- G is a free group.

Theorem (A criterion for 1-dimensional models for $\underline{E}G$, Dunwoody (1979))

Let G be a discrete group. Then there exists a 1-dimensional model for <u>E</u>G if and only if the cohomological dimension of G over the rationals \mathbb{Q} is less or equal to one.

Theorem (Virtual cohomological dimension and $\dim(\underline{E}G)$, L. (2000))

Let G be a discrete group which is virtually torsionfree.

Then

$$vcd(G) \leq dim(\underline{E}G)$$

for any model for $\underline{E}G$.

 Let *I* ≥ 0 be an integer such that for any chain of finite subgroups *H*₀ ⊊ *H*₁ ⊊ ... ⊊ *H_r* we have *r* ≤ *I*. Then there exists a model for <u>E</u>G of dimension max{3, vcd(G)} + *I*. • The following problem has been stated by Brown (1979) and has created a lot of activities.

Problem

For which discrete groups G, which are virtually torsionfree, does there exist a G-CW-model for \underline{E} G of dimension vcd(G)?

- The results above do give some evidence for a positive answer.
- However, Leary-Nucinkis (2003) have constructed groups, where the answer is negative.

Theorem (Leary-Nucinkis (2001))

Let X be a CW-complex. Then there exists a group G with $X \simeq G \setminus \underline{E}G$.

Question (Homological Computations based on nice models for \underline{EG})

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all group G and all rings?

To be continued Stay tuned

Equivariant homology theories (Lecture IV)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

- We have introduced the Farrell-Jones Conjecture and the Baum-Connes Conjecture for torsionfree groups and discussed applications of these conjectures such as to the Kaplansky Conjecture and the Borel Conjecture.
- We have explained that the formulations for torsionfree groups cannot extend to arbitrary groups.
 Our goal is to find a formulation which makes sense for all groups and all rings.
- For this purpose we have introduced classifying spaces for families of subgroups of a group *G* which we will recall next.
- In the sequel group will mean discrete group.

Definition (Family of subgroups)

A *family* \mathcal{F} of subgroups of G is a set of subgroups of G which is closed under conjugation and finite intersections.

Examples for \mathcal{F} are:

- $\mathcal{TR} = \{\text{trivial subgroup}\};$
- $\mathcal{FIN} = \{ \text{finite subgroups} \};$
- $\mathcal{FCYC} = \{ \text{finite cyclic subgroups} \};$
- $\mathcal{VCYC} = \{ virtually cyclic subgroups \}; \}$
- $\mathcal{ALL} = \{ all subgroups \}.$

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{TR}(G)$.

• A model for $E_{\mathcal{F}}(G)$ exists and is unique up to *G*-homotopy.

Cliffhanger

Question (Homological computations based on nice models for $\underline{E}G$)

Can nice geometric models for $\underline{E}G$ be used to compute the group homology and more general homology and cohomology theories of a group G?

Question (K-theory of group rings and group homology)

Is there a relation between $K_n(RG)$ and the group homology of G?

Question (Isomorphism Conjectures and classifying spaces of families)

Can classifying spaces of families be used to formulate a version of the Farrell-Jones Conjecture and the Baum-Connes Conjecture which may hold for all groups and all rings?

- We intoduce the notion of an equivariant homology theory.
- We present the general formulation of the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We discuss equivariant Chern characters.
- We present some explicit computations of equivariant topological *K*-groups and of homology groups associated to classifying spaces of groups.

Definition (*G*-homology theory)

A *G-homology theory* \mathcal{H}_* is a covariant functor from the category of *G-CW*-pairs to the category of \mathbb{Z} -graded Λ -modules together with natural transformations

$$\partial_n(X, A) \colon \mathcal{H}_n(X, A) \to \mathcal{H}_{n-1}(A)$$

for $n \in \mathbb{Z}$ satisfying the following axioms:

- G-homotopy invariance;
- Long exact sequence of a pair;
- Excision;
- Disjoint union axiom.

Definition (Equivariant homology theory)

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} : \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on *X*, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

Example (Equivariant homology theories)

• Given a non-equivariant homology theory $\mathcal{K}_{\ast},$ put

$$egin{array}{lll} \mathcal{H}^G_*(X) &:= \mathcal{K}_*(X/G); \ \mathcal{H}^G_*(X) &:= \mathcal{K}_*(\textit{EG} imes_G X) & (ext{Borel homology}) \end{array}$$

- Equivariant bordism $\Omega^{?}_{*}(X)$;
- Equivariant topological *K*-theory $K^{?}_{*}(X)$.

Theorem (L.-Reich (2005))

Given a functor **E**: Groupoids \rightarrow Spectra sending equivalences to weak equivalences, there exists an equivariant homology theory $\mathcal{H}^{?}_{*}(-; \mathbf{E})$ satisfying

$$\mathcal{H}_n^H(pt) \cong \mathcal{H}_n^G(G/H) \cong \pi_n(\mathbf{E}(H)).$$

Theorem (Equivariant homology theories associated to *K* and *L*-theory, Davis-L. (1998))

Let R be a ring (with involution). There exist covariant functors

- K_R : Groupoids \rightarrow Spectra;
- $L_{R}^{\langle \infty \rangle}$: Groupoids \rightarrow Spectra;
- $\mathbf{K}^{\mathsf{top}}$: Groupoids^{inj} \rightarrow Spectra

with the following properties:

- They send equivalences of groupoids to weak equivalences of spectra;
- For every group G and all $n \in \mathbb{Z}$ we have

 $\begin{aligned} \pi_n(\mathbf{K}_R(G)) &\cong & K_n(RG); \\ \pi_n(\mathbf{L}_R^{\langle -\infty \rangle}(G)) &\cong & L_n^{\langle -\infty \rangle}(RG); \\ \pi_n(\mathbf{K}^{\mathrm{top}}(G)) &\cong & K_n(C_r^*(G)). \end{aligned}$

Example (Equivariant homology theories associated to *K* and *L*-theory)

We get equivariant homology theories

 $egin{aligned} & H^?_*(-; \mathbf{K}_R); \ & H^?_*(-; \mathbf{L}_R^{\langle -\infty
angle}); \ & H^?_*(-; \mathbf{K}^{ ext{top}}), \end{aligned}$

satisfying for $H \subseteq G$

Conjecture (*K*-theoretic Farrell-Jones-Conjecture)

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{K}_R) \to H_n^G(pt, \mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

 The assembly map is the map induced by the projection *E*_{VCVC}(*G*) → pt.
 Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H^G_n(E_{\mathcal{VCYC}}(G), \mathsf{L}^{\langle -\infty \rangle}_R) o H^G_n(\mathsf{pt}, \mathsf{L}^{\langle -\infty \rangle}_R) = L^{\langle -\infty \rangle}_n(RG)$$

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

 $\mathcal{K}_{n}^{G}(\underline{E}G) = \mathcal{H}_{n}^{G}(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\text{top}}) \to \mathcal{H}_{n}^{G}(pt, \mathbf{K}^{\text{top}}) = \mathcal{K}_{n}(\mathcal{C}_{r}^{*}(G))$

- We will discuss these conjectures and their applications in the next lecture.
- We will now continue with equivariant homology theories.

Equivariant Chern characters

• Let \mathcal{H}_* be a (non-equivariant) homology theory. There is the Atiyah-Hirzebruch spectral sequence which converges to $\mathcal{H}_{p+q}(X)$ and has as E^2 -term

$$E_{p,q}^2 = H_p(X; \mathcal{H}_q(\mathsf{pt})).$$

Rationally it collapses completely. Namely, one has the following result

Theorem (Non-equivariant Chern character, Dold (1962))

Let \mathcal{H}_* be a homology theory with values in Λ -modules for $\mathbb{Q} \subseteq \Lambda$. Then there exists for every $n \in \mathbb{Z}$ and every CW-complex X a natural isomorphism

$$\bigoplus_{\lambda \in \mathcal{I}} H_p(X; \Lambda) \otimes_{\Lambda} \mathcal{H}_q(pt) \xrightarrow{\cong} \mathcal{H}_n(X).$$

p+q=n

Dold's Chern character for a *CW*-complex *X* is given by the following composite:

$$\begin{array}{c} \mathsf{ch}_{n} \colon \bigoplus_{p+q=n} H_{p}(X; \mathcal{H}_{q}(*)) \xrightarrow{\alpha^{-1}} \bigoplus_{p+q=n} H_{p}(X; \mathbb{Z}) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \\ \\ \xrightarrow{\bigoplus_{p+q=n}(\mathsf{hur}\otimes\mathsf{id})^{-1}} \bigoplus_{p+q=n} \pi_{p}^{s}(X_{+}, *) \otimes_{\mathbb{Z}} \mathcal{H}_{q}(*) \xrightarrow{\bigoplus_{p+q=n} \mathcal{D}_{p,q}} \mathcal{H}_{n}(X), \end{array}$$

where $D_{p,q}$ sends $[f: (S^{p+k}, pt) \rightarrow (S^k \wedge X_+, pt)] \otimes \eta$ to the image of η under the composite

$$\mathcal{H}_q(*)\cong\mathcal{H}_{p+k+q}(\mathcal{S}^{p+k},\mathsf{pt})\xrightarrow{\mathcal{H}_{p+k+q}(f)}\mathcal{H}_{p+k+q}(\mathcal{S}^k\wedge X_+,\mathsf{pt})\cong\mathcal{H}_{p+q}(X).$$

- We want to extend this to the equivariant setting.
- This requires an extra structure on the coefficients of an equivariant homology theory H[?]_{*}.
- We define a covariant functor called induction

ind :
$$\mathcal{FGI} \rightarrow \Lambda$$
- Mod

from the category \mathcal{FGI} of finite groups with injective group homomorphisms as morphisms to the category of Λ -modules as follows. It sends *G* to $\mathcal{H}_n^G(\text{pt})$ and an injection of finite groups $\alpha: H \to G$ to the morphism given by the induction structure

$$\mathcal{H}_{n}^{H}(\mathsf{pt}) \xrightarrow{\mathsf{ind}_{\alpha}} \mathcal{H}_{n}^{G}(\mathsf{ind}_{\alpha}\,\mathsf{pt}) \xrightarrow{\mathcal{H}_{n}^{G}(\mathsf{pr})} \mathcal{H}_{n}^{G}(\mathsf{pt}).$$

Definition (Mackey extension)

We say that $\mathcal{H}^{?}_{*}$ has a Mackey extension if for every $n \in \mathbb{Z}$ there is a contravariant functor called restriction

$$\textbf{res} \colon \mathcal{FGI} \to \Lambda\text{-}\textbf{Mod}$$

such that these two functors ind and res agree on objects and satisfy the double coset formula ,i.e., we have for two subgroups $H, K \subset G$ of the finite group G

$$\operatorname{res}_{G}^{K} \circ \operatorname{ind}_{H}^{G} = \sum_{KgH \in K \setminus G/H} \operatorname{ind}_{c(g):H \cap g^{-1}Kg \to K} \circ \operatorname{res}_{H}^{H \cap g^{-1}Kg}$$

where c(g) is conjugation with g, i.e., $c(g)(h) = ghg^{-1}$.

- In every case we will consider such a Mackey extension does exist and is given by an actual restriction.
- For instance for H[?]₀(−; K^{top}) induction is the functor complex representation ring R_C with respect to induction of representations. The restriction part is given by the restriction of representations.

Theorem (Equivariant Chern character, L. (2002))

Let $\mathcal{H}^{?}_{*}$ be a equivariant homology theory with values in Λ -modules for $\mathbb{Q} \subseteq \Lambda$. Suppose that $\mathcal{H}^{?}_{*}$ has a Mackey extension. Let I be the set of conjugacy classes (H) of finite subgroups H of G. Then there is for every group G, every proper G-CW-complex X and every $n \in \mathbb{Z}$ a natural isomorphism called equivariant Chern character

$$\mathsf{ch}_n^G \colon \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_p(C_G H \setminus X^H; \Lambda) \otimes_{\Lambda[W_G H]} S_H(\mathcal{H}_q^H(*)) \xrightarrow{\cong} \mathcal{H}_n^G(X).$$

- C_GH is the centralizer and N_GH the normalizer of $H \subseteq G$;
- $W_GH := N_GH/H \cdot C_GH$ (This is always a finite group);

•
$$S_H(\mathcal{H}^H_q(*)) := \operatorname{cok}\left(\bigoplus_{\substack{K \subset H \\ K \neq H}} \operatorname{ind}_K^H : \bigoplus_{\substack{K \subset H \\ K \neq H}} \mathcal{H}^K_q(*) \to \mathcal{H}^H_q(*)\right);$$

• ch[?] is an equivalence of equivariant homology theories.

Theorem (Artin's Theorem)

Let G be finite. Then the map

$$igoplus_{\mathcal{C}\subset G}\mathsf{ind}_{\mathcal{C}}^{G}:igoplus_{\mathcal{C}\subset G}\mathcal{R}_{\mathbb{C}}(\mathcal{C})
ightarrow\mathcal{R}_{\mathbb{C}}(\mathcal{G})$$

is surjective after inverting |G|, where $C \subset G$ runs through the cyclic subgroups of G.

Let C be a finite cyclic group. The Artin defect is the cokernel of the map

$$igoplus_{D\subset C,D
eq C} \operatorname{ind}_D^C: igoplus_{D\subset C,D
eq C} R_{\mathbb C}(D) o R_{\mathbb C}(C).$$

For an appropriate idempotent $\theta_C \in R_{\mathbb{Q}}(C) \otimes_{\mathbb{Z}} \mathbb{Z} \begin{bmatrix} 1 \\ |C| \end{bmatrix}$ the Artin defect is after inverting the order of |C| canonically isomorphic to

$$heta_{\mathcal{C}} \cdot \mathcal{R}_{\mathbb{C}}(\mathcal{C}) \otimes_{\mathbb{Z}} \mathbb{Z}\left[rac{1}{|\mathcal{C}|}
ight]$$

Let K^G_{*} = H[?]_{*}(−; K^{top}) be equivariant topological *K*-theory.
We get for a finite subgroup H ⊂ G

$$\mathcal{K}_n^G(G/H) = \mathcal{K}_n^H(\mathrm{pt}) = \left\{ egin{array}{cc} \mathcal{R}_\mathbb{C}(H) & ext{if n is even;} \\ \{0\} & ext{if n is odd.} \end{array}
ight.$$

• $S_H(K_q^H(*)) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ if *H* is not cyclic and *q* is even or if *q* is odd.

S_C (K^C_q(*)) ⊗_Z Q = θ_C · R_C(C) ⊗_Z Q if C is finite cyclic and q is even.

Recall

$$\mathsf{ch}_n^G \colon \bigoplus_{p+q=n} \bigoplus_{(H) \in I} H_p(C_G H \setminus X^H; \Lambda) \otimes_{\Lambda[W_G H]} S_H(\mathcal{H}_q^H(*)) \xrightarrow{\cong} \mathcal{H}_n^G(X).$$

Example (Improvement of Artin's Theorem)

Let *G* be finite, $X = \{*\}$ and $\mathcal{H}^{?}_{*} = K^{?}_{*}$. Then we get an improvement of Artin's theorem. Namely, the equivariant Chern character induces an isomorphism

$$\mathsf{ch}_0^G(\mathsf{pt}) \colon \bigoplus_{(C)} \mathbb{Z} \otimes_{\mathbb{Z}[W_G C]} \theta_C \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Z} \left[\frac{1}{|G|} \right] \xrightarrow{\cong} R_{\mathbb{C}}(G) \otimes_{\mathbb{Z}} \mathbb{Z} \left[\frac{1}{|G|} \right]$$

where (C) runs over the conjugacy classes of finite cyclic subgroups.

Corollary (Rational computation of $K_*^G(\underline{E}G)$)

For every group G and every $n \in \mathbb{Z}$ we obtain an isomorphism

$$\bigoplus_{(C)} \bigoplus_{k} H_{p+2k}(BC_GC) \otimes_{\mathbb{Z}[W_GC]} \theta_C \cdot R_{\mathbb{C}}(C) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} K_n^G(\underline{E}G) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

If the Baum-Connes Conjecture holds for *G*, this gives a computation of K_n(C^{*}_r(G)) ⊗_ℤ Q.

The last corollary follows from the equivariant Chern character

$$\mathsf{ch}_n^G \colon \bigoplus_{p+q=n} \bigoplus_{(H)\in I} H_p(C_G H \setminus X^H; \Lambda) \otimes_{\Lambda[W_G H]} S_H\left(\mathcal{H}_q^H(*)\right) \xrightarrow{\cong} \mathcal{H}_n^G(X)$$

using the following facts.

• $\underline{E}G^C$ is a contractible proper C_GC - space. Hence the canonical map $BC_GC \rightarrow C_GC \setminus \underline{E}G^C$ induces an isomorphism

$$H_{p}(BC_{G}C)\otimes_{\mathbb{Z}}\mathbb{Q}\xrightarrow{\cong} H_{p}(C_{G}C\backslash\underline{E}G^{C})\otimes_{\mathbb{Z}}\mathbb{Q}.$$

- $S_H(K_q^H(*)) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ if *H* is not cyclic and *q* is even or if *q* is odd.
- S_C (K^C_q(*)) ⊗_Z Q = θ_C · R_C(C) ⊗_Z Q if C is finite cyclic and q is even.

Topological K-theory of classifying spaces

- For a prime p denote by r(p) = | con_p(G)| the number of conjugacy classes (g) of elements g ≠ 1 in G of p-power order.
- \mathbb{I}_G is the augmentation ideal of $R_{\mathbb{C}}(G)$.
- Let $\mathbb{I}_{\rho}(G)$ be the image of the restriction homomorphism $\mathbb{I}(G) \to \mathbb{I}(G_{\rho})$.

Theorem (Completion Theorem, Atiyah-Segal (1969))

Let G be a finite group. Then there are isomorphisms of abelian groups

$$\begin{split} \mathcal{K}^0(BG) &\cong \mathcal{R}_{\mathbb{C}}(G)_{\widehat{\mathbb{I}}_G} \\ &\cong \mathbb{Z} \times \prod_{p \text{ prime}} \mathbb{I}_p(G) \otimes_{\mathbb{Z}} \mathbb{Z}_p^{\sim} \cong \mathbb{Z} \times \prod_{p \text{ prime}} (\mathbb{Z}_p^{\sim})^{r(p)}; \\ \mathcal{K}^1(BG) &\cong 0. \end{split}$$

Theorem (L. (2005))

Let G be a discrete group. Denote by $K^*(BG)$ the topological (complex) K-theory of its classifying space BG. Suppose that there is a cocompact G-CW-model for the classifying space <u>E</u>G for proper G-actions.

Then there is a \mathbb{Q} -isomorphism

$$\overline{\operatorname{ch}}_{G}^{n} \colon \mathcal{K}^{n}(BG) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\cong} \left(\prod_{i \in \mathbb{Z}} \mathcal{H}^{2i+n}(BG; \mathbb{Q}) \right) \times \prod_{p \text{ prime } (g) \in \operatorname{con}_{p}(G)} \prod_{i \in \mathbb{Z}} \mathcal{H}^{2i+n}(BC_{G}\langle g \rangle; \mathbb{Q}_{p}^{\sim}) \right).$$

- The multiplicative structure can also be determined.
- There are many groups for which a cocompact *G*-*CW*-model for <u>*E*</u>*G* exists, e.g., hyperbolic groups.

Example $(SL_3(\mathbb{Z}))$

- It is well-known that its rational cohomology satisfies $\widetilde{H}^n(BSL_3(\mathbb{Z}); \mathbb{Q}) = 0$ for all $n \in \mathbb{Z}$.
- Actually, by a result of Soule (1978) the quotient space SL₃(ℤ)\<u>E</u>SL₃(ℤ) is contractible and compact.
- From the classification of finite subgroups of $SL_3(\mathbb{Z})$ we see that $SL_3(\mathbb{Z})$ contains up to conjugacy two elements of order 2, two elements of order 4 and two elements of order 3 and no further conjugacy classes of non-trivial elements of prime power order.
- The rational homology of each of the centralizers of elements in $con_2(G)$ and $con_3(G)$ agrees with the one of the trivial group.
- Hence we get

$$\begin{split} & \mathcal{K}^0(BSL_3(\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} &\cong & \mathbb{Q} \times (\mathbb{Q}_2^2)^4 \times (\mathbb{Q}_3^2)^2; \\ & \mathcal{K}^1(BSL_3(\mathbb{Z})) \otimes_{\mathbb{Z}} \mathbb{Q} &\cong & 0. \end{split}$$

Example (Continued)

- The identification of K⁰(BSL₃(ℤ)) ⊗_ℤ Q above is compatible with the multiplicative structures.
- Actually the computation using Brown-Petersen cohomology and the Conner-Floyd relation by Tezuka-Yagita (1992) gives the integral computation

$$\begin{array}{rcl} \mathcal{K}^{0}(BSL_{3}(\mathbb{Z})) &\cong & \mathbb{Z} \times (\mathbb{Z}_{2})^{4} \times (\mathbb{Z}_{3})^{2}; \\ \mathcal{K}^{1}(BSL_{3}(\mathbb{Z})) &\cong & 0. \end{array}$$

• Soule (1978) has computed the integral cohomology of $SL_3(\mathbb{Z})$.

- Let *G* be a discrete group. Let \mathcal{MFIN} be the subset of \mathcal{FIN} consisting of elements in \mathcal{FIN} which are maximal in \mathcal{FIN} .
- Assume that G satisfies the following assertions:
 - (M) Every non-trivial finite subgroup of G is contained in a unique maximal finite subgroup;
 - (NM) $M \in \mathcal{MFIN}, M \neq \{1\} \Rightarrow N_G M = M.$
- Here are some examples of groups G which satisfy conditions (M) and (NM):
 - Extensions $1 \to \mathbb{Z}^n \to G \to F \to 1$ for finite F such that the conjugation action of F on \mathbb{Z}^n is free outside $0 \in \mathbb{Z}^n$;
 - Fuchsian groups;
 - One-relator groups G.

- For such a group there is a nice model for <u>E</u>G with as few non-free cells as possible. Let {(M_i) | i ∈ I} be the set of conjugacy classes of maximal finite subgroups of M_i ⊆ G. By attaching free G-cells we get an inclusion of G-CW-complexes j₁: ∐_{i∈I} G ×_{M_i} EM_i → EG.
- Define <u>E</u>G as the G-pushout

$$\begin{array}{c} \coprod_{i \in I} G \times_{M_i} EM_i \xrightarrow{j_1} EG \\ \downarrow^{u_1} & \downarrow^{f_1} \\ \coprod_{i \in I} G/M_i \xrightarrow{k_1} EG \end{array}$$

where u_1 is the obvious *G*-map obtained by collapsing each EM_i to a point.

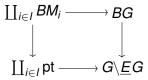
- Next we explain why <u>E</u>G is a model for the classifying space for proper actions of G.
- Its isotropy groups are all finite. We have to show for H ⊆ G finite that <u>E</u>G^H contractible.
- We begin with the case $H \neq \{1\}$. Because of conditions (M) and (NM) there is precisely one index $i_0 \in I$ such that H is subconjugated to M_{i_0} and is not subconjugated to M_i for $i \neq i_0$. We get

$$\left(\prod_{i\in I} G/M_i\right)^H = (G/M_{i_0})^H = \text{pt.}$$

Hence $\underline{E}G^H = \text{pt.}$

It remains to treat H = {1}. Since u₁ is a non-equivariant homotopy equivalence and j₁ is a cofibration, f₁ is a non-equivariant homotopy equivalence. Hence <u>E</u>G is contractible.

 Consider the pushout obtained from the G-pushout above by dividing the G-action



The associated Mayer-Vietoris sequence yields

$$\dots o \widetilde{H}_{p+1}(G \setminus \underline{E}G) o \bigoplus_{i \in I} \widetilde{H}_p(BM_i) o \widetilde{H}_p(BG)$$

 $o \widetilde{H}_p(G \setminus \underline{E}G) o \dots$

• In particular we obtain an isomorphism for $p \ge \dim(\underline{E}G) + 2$

$$\bigoplus_{i\in I} H_p(BM_i) \xrightarrow{\cong} H_p(BG).$$

Theorem

Let G be a discrete group which satisfies the conditions (M) and (NM) above.

Then there is an isomorphism

$$K_1^G(\underline{E}G) \xrightarrow{\cong} K_1(G \setminus \underline{E}G),$$

and a short exact sequence

$$0 \to \bigoplus_{i \in I} \widetilde{R}_{\mathbb{C}}(M_i) \to K_0(\underline{E}G) \to K_0(G \backslash \underline{E}G) \to 0.$$

It splits if we invert the orders of all finite subgroups of G.

• If the Baum-Connes Conjecture is true for G, then

$$K_n(C_r^*(G))\cong K_n^G(\underline{E}G).$$

- We see that for computations of group homology or of *K* and *L*-groups of group rings and group C*-algebras it is important to understand the spaces G\<u>E</u>G.
- Often geometric input ensures that *G*\<u>E</u>*G* is a fairly small *CW*-complex.
- On the other hand recall the result due to Leary-Nucinkis (2001) that for any *CW*-complex *X* there exists a group *G* with $X \simeq G \setminus \underline{E}G$.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued Stay tuned

The Isomorphism Conjectures for arbitrary groups (Lecture V)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

• Cliffhanger

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We give a review of the Farrell-Jones and the Baum-Connes Conjecture.
- We discuss the difference between the families \mathcal{FIN} and \mathcal{VCYC} .
- We discuss consequences of the Farrell-Jones and the Baum-Connes Conjecture.

Review of the Isomorphism Conjectures

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $\underline{E}G = E_{\mathcal{TR}}(G)$.

Definition (Equivariant homology theory)

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on *X*, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

Conjecture (*K*-theoretic Farrell-Jones-Conjecture)

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G),\mathbf{K}_R)
ightarrow H_n^G(pt,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) \to H_n^G(\rho t, \mathbf{L}_R^{-\infty}) = L_n^{\langle -\infty \rangle}(RG)$$

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$K_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) \to H_n^G(pt, \mathbf{K}^{\mathrm{top}}) = K_n(C_r^*(G))$$

- All assembly maps are the maps induced by the projection *E_F*(*G*) → pt.
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as K_n(RG) on G in terms of its values for all virtually cyclic subgroups of G.

Theorem (Transitivity Principle)

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

$$\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}^G_n(E_\mathcal{F}(G)) \to \mathcal{H}^G_n(E_\mathcal{G}(G))$$

Example (Passage from \mathcal{FIN} to \mathcal{VCYC} for the Baum-Connes Conjecture)

 The Baum-Connes Conjecture is known to be true for virtually cyclic groups. The Transitivity Principle implies that the relative assembly

$$K_n^G(\underline{E}G) \xrightarrow{\cong} K_n^G(E_{\mathcal{VCYC}}(G))$$

is bijective for all $n \in \mathbb{Z}$.

• Hence it does not matter in the context of the Baum-Connes Conjecture whether we consider the family *FIN* or *VCYC*. In general the relative assembly maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are not bijective.

• Hence in the Farrell-Jones setting one has to pass to \mathcal{VCYC} and cannot use the easier to handle family \mathcal{FIN} .

Example (Passage from \mathcal{FIN} to \mathcal{VCYC} for the Farrell-Jones Conjecture)

For instance the Bass-Heller Swan decomposition

 $K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R)) \xrightarrow{\cong} K_n(R[t, t^{-1}]) \cong K_n(R[\mathbb{Z}])$

and the isomorphism

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) = H_n^{\mathbb{Z}}(E\mathbb{Z};\mathbf{K}_R) = H_n^{\{1\}}(S^1,\mathbf{K}_R) = K_{n-1}(R) \oplus K_n(R)$$

show that

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R)
ightarrow H_n^{\mathbb{Z}}(\mathrm{pt};\mathbf{K}_R) = K_n(R\mathbb{Z})$$

is bijective if and only if $NK_n(R) = 0$.

- An infinite virtually cyclic group G is called of type / if it admits an epimorphism onto Z and of type // otherwise. A virtually cyclic group is of type // if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

Theorem (L. (2004), Quinn (2007), Reich (2007))

The following maps are bijective for all $n \in \mathbb{Z}$

$$\begin{array}{lll} H^G_n(E_{\mathcal{VCYC}_I}(G);\mathbf{K}_R) & \to & H^G_n(E_{\mathcal{VCYC}}(G);\mathbf{K}_R); \\ H^G_n(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H^G_n(E_{\mathcal{VCYC}_I}(G);\mathbf{L}_R^{\langle -\infty \rangle}). \end{array}$$

Theorem (Cappell (1973), Grunewald (2005), Waldhausen (1978))

• The following maps are bijective for all $n \in \mathbb{Z}$.

$$\begin{array}{ll} H_n^G(\underline{E}G;\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q} & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q}; \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right] & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right]; \end{array}$$

• If R is regular and $\mathbb{Q} \subseteq R$, then for all $n \in \mathbb{Z}$ we get a bijection

 $H_n^G(\underline{E}G; \mathbf{K}_R) \to H_n^G(E_{\mathcal{VCVC}}(G); \mathbf{K}_R).$

Theorem (Bartels (2003))

For every $n \in \mathbb{Z}$ the two maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are split injective.

• Hence we get (natural) isomorphisms

$$\begin{aligned} H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R) \\ &\cong H_n^G(\underline{E}G;\mathbf{K}_R) \oplus H_n^G(E_{\mathcal{VCYC}}(G),\underline{E}G;\mathbf{K}_R); \end{aligned}$$

$$\begin{aligned} H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{L}_R^{\langle -\infty \rangle}) \\ &\cong H_n^G(\underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}) \oplus H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}). \end{aligned}$$

• The analysis of the terms $H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{K}_R)$ and $H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle})$ boils down to investigating Nil-terms and UNil-terms in the sense of Waldhausen and Cappell.

- The analysis of the terms H^G_n(<u>E</u>G; K_R) and H^G_n(<u>E</u>G; L^(-∞)_R) is using the methods of the previous lecture (e.g., Chern characters).
- The results above imply that the versions of the Farrell-Jones Conjecture for torsionfree groups which we have presented in the second lecture follow from the general versions.
- The latter is obvious for the Baum-Connes Conjecture since for torsionfree *G* we have *EG* = *<u>E</u><i>G*.

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

$$\operatorname{sign}_{x}(M, f) := \langle \mathcal{L}(M) \cup f^{*}x, [M] \rangle$$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

$$\operatorname{sign}_{X}(M_{0},f_{0})=\operatorname{sign}_{X}(M_{1},f_{1}).$$

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

Suppose that one of the following assembly maps

$$\begin{aligned} & H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(\textit{pt}, \mathbf{L}_R^{\langle -\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG); \\ & \mathcal{K}_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\text{top}}) & \to & H_n^G(\textit{pt}, \mathbf{K}^{\text{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G)), \end{aligned}$$

is rationally injective. Then the Novikov Conjecture holds for the group G.

Theorem ($K_0(RG)$ and induction from finite subgroups, Bartels-L.-Reich (2007))

 Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ_K(R). Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)}K_0(RH) o K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

$$\underset{\mathrm{Or}_{\mathcal{FIN}}(G)}{\mathsf{colim}} K_0(FH)[1/p] \to K_0(FG)[1/p]$$

is bijective.

Theorem (Permutation Modules, Bartels-L.-Reich (2007))

Let F be a field of characteristic zero. Suppose that $G \in \mathcal{FJ}_K(F)$. Then for every finitely generated projective FG-module P there exists a positive integer k and finitely many finite subgroups H_1, H_2, \ldots, H_r such that

$$P^{k} \cong_{FG} F[G/H_{1}] \oplus F[G/H_{2}] \oplus \ldots \oplus F[G/H_{r}].$$

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

$\operatorname{tr}_{RG}: M_n(RG) \to \operatorname{class}(G, R)$

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

Definition (Hattori-Stallings rank)

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

Conjecture (Bass Conjecture)

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field F of R that

$$K_0(RG) \rightarrow K_0(FG)$$

factorizes as

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Theorem (Linnell-Farrell (2003))

Let G be a group. Suppose that

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is surjective for all fields F of prime characteristic. (This is true if $G \in \mathcal{FJ}_{K}(F)$ for every field F of prime characteristic). Then the Bass Conjecture is satisfied for every integral domain R.

Conjecture (Vanishing of Bass-Nil-groups)

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let R be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_{\mathcal{K}}(R)$, then the conjecture above is true.

Conjecture (Homotopy invariance of L2-torsion)

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G)) = \rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$. Then G satisfies the Conjecture above.

- Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝔽(*G*) ⊗_ℤ ℚ is trivial.
- The surjectivity of the map

$$\operatorname{colim}_{\operatorname{Dr}_{\mathcal{FIN}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It says that for a closed Riemannian manifold with torsionfree fundamental group the L^2 -Betti numbers of its universal covering are all integers. The Atiyah Conjecture is rather surprising in view of the analytic definition of the L^2 -Betti numbers by

$$b^{(2)}_{
ho}(M):=\lim_{t o\infty}\int_{F}e^{-t\widetilde{\Delta}_{
ho}}(\widetilde{x},\widetilde{x})dvol_{\widetilde{M}},$$

where *F* is a fundamental domain for the $\pi_1(M)$ -action on \widetilde{M} .

Definition (Bott manifold)

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≃ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms
 KO_n(C^{*}_r(G; ℝ)) ≃ KO_{n+8}(C^{*}_r(G; ℝ)).

In particular

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

• If *M* carries a Riemannian metric with positive scalar curvature, then the index

$$\mathsf{ind}_{\mathcal{C}^*_r(\pi_1(M);\mathbb{R})}(M)\in \mathit{KO}_n(\mathcal{C}^*_r(\pi_1(M);\mathbb{R})),$$

which is defined in terms of the Dirac operator on the universal covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let M be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$$

Theorem (Stolz (2002))

Suppose that the assembly map for the real version of the Baum-Connes Conjecture

 $H_n^G(\underline{E}G;\mathbf{KO}^{\mathrm{top}}) \to \mathit{KO}_n(\mathit{C}^*_r(G;\mathbb{R}))$

is injective for the group G. Then the Stable Gromov-Lawson-Rosenberg Conjecture true for all closed Spin-manifolds of dimension ≥ 5 with $\pi_1(M) \cong G$.

- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.

Question (Status)

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

To be continued Stay tuned

Summary, status and outlook (Lecture VI)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed applications.
- Cliffhanger

Question (Status)

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We briefly review the Farrell-Jones and the Baum-Connes Conjecture.
- We review applications of the Farrell-Jones and the Baum-Connes Conjecture.
- We mention other versions of the Isomorphism Conjectures.
- We explain relations between the Farrell-Jones and the Baum-Connes Conjecture.
- We give a status report about the Farrell-Jones and the Baum-Connes Conjecture.
- Miscellaneous.

Review of the Isomorphism Conjectures

Conjecture (K-theoretic Farrell-Jones-Conjecture)

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{K}_R) \to H_n^G(pt, \mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) \to H_n^G(\text{pt}, \mathbf{L}_R^{\langle -\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_{n}^{G}(\underline{E}G) = \mathcal{H}_{n}^{G}(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\text{top}}) \to \mathcal{H}_{n}^{G}(\rho t, \mathbf{K}^{\text{top}}) = \mathcal{K}_{n}(\mathcal{C}_{r}^{*}(G))$$

is bijective for all $n \in \mathbb{Z}$.

- The following results or conjectures are consequences of the Farrell-Jones or Baum-Connes Conjecture.
- $\mathcal{FJ}_{\mathcal{K}}(R)$, $\mathcal{FJ}_{\mathcal{L}}(R)$ or \mathcal{BC} respectively are the classes of groups which satisfy the Farrell-Jones Conjecture for *K* or *L*-theory with coefficients in *R* or the Baum-Connes Conjecture respectively.

Theorem ($K_n(\mathbb{Z}G)$ for $n \leq 1$ and torsionfree G)

We get for a torsionfree group $G \in \mathcal{FJ}(\mathbb{Z})$:

- $K_n(\mathbb{Z}G) = 0$ for $n \le -1$;
- $\widetilde{K}_0(\mathbb{Z}G) = 0;$
- Wh(G) = 0;
- Every finitely dominated CW-complex X with G = π₁(X) is homotopy equivalent to a finite CW-complex;
- Every compact h-cobordism W = (W; M₀, M₁) of dimension ≥ 6 with π₁(W) ≃ G is trivial.

Conjecture (Kaplansky Conjecture)

The Kaplansky Conjecture says for a torsionfree group G and an integral domain R that 0 and 1 are the only idempotents in RG.

Theorem (The Farrell-Jones Conjecture and the Kaplansky Conjecture)

If F is a field of characteristic zero and the torsionfree group G belongs to $\mathcal{FJ}_{\mathcal{K}}(F)$, then G and F satisfy the Kaplansky Conjecture.

Conjecture (Borel Conjecture)

The Borel Conjecture for G predicts for two closed aspherical manifolds M and N with $\pi_1(M) \cong \pi_1(N) \cong G$ that any homotopy equivalence $M \to N$ is homotopic to a homeomorphism and in particular that M and N are homeomorphic.

Theorem (The Farrell-Jones Conjecture and the Borel Conjecture)

If G belongs to both $\mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$ and $\mathcal{FJ}_{\mathcal{L}}(\mathbb{Z})$, then the Borel Conjecture is true in dimension ≥ 5 and in dimension 4 if G is good in the sense of Freedman.

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

 $\operatorname{sign}_{X}(M, f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$

is an oriented homotopy invariant of (M, f)

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

If G belongs to $\mathcal{FJ}_L(\mathbb{Z})$ or to \mathcal{BC} , then the Novikov Conjecture holds for the group G.

Theorem ($K_0(RG)$) and induction from finite subgroups)

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}(R)$. Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Dr}_{\mathcal{FIN}}(G)} K_0(RH) \to K_0(RG)$$

is bijective.

Conjecture (Bass Conjecture)

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

Theorem (The Farrell-Jones Conjecture and the Bass Conjecture)

Let G be a group. Suppose that $G \in \mathcal{FJ}(F)$ for every field F of prime characteristic.

Then the Bass Conjecture is satisfied for every integral domain R.

Conjecture (Homotopy invariance of L2-torsion)

If X and Y are det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent, then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G)) = \rho^{(2)}(Y;\mathcal{N}(G)).$$

Theorem

Suppose that $G \in \mathcal{FJ}(\mathbb{Z})$. Then G satisfies the Conjecture above.

Wolfgang Lück (Münster, Germany)

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let *M* be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

 $\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$

Theorem (The Baum-Connes Conjecture and the stable Gromov-Lawson-Rosenberg Conjecture)

If $G \in \mathcal{BC}$, then the Stable Gromov-Lawson-Rosenberg Conjecture true for all closed Spin-manifolds of dimension ≥ 5 with $\pi_1(M) \cong G$.

Conjecture (Isomorphism Conjecture)

Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. It satisfies the Isomorphism Conjecture for the group G and the family \mathcal{F} if the projection $E_{\mathcal{F}}(G) \rightarrow pt$ induces for all $n \in \mathbb{Z}$ a bijection

$$\mathcal{H}_n^G(E_{\mathcal{F}}(G)) \to \mathcal{H}_n^G(pt).$$

Example

- The Farrell-Jones Conjecture for *K*-theory or *L*-theory respectively with coefficients in *R* is the Isomorphism Conjecture for *H*[?]_{*} = *H*_{*}(−; **K**_R) or *H*[?]_{*} = *H*_{*}(−; **L**^{⟨-∞⟩}_R) respectively and *F* = *VCYC*.
- The Baum-Connes Conjecture is the Isomorphism Conjecture for $\mathcal{H}^{?}_{*} = \mathcal{K}^{?}_{*} = \mathcal{H}^{?}_{*}(-; \mathbf{K}^{top})$ and $\mathcal{F} = \mathcal{FIN}$.

- There are functors *P* and *A* which assign to a space *X* the space of pseudo-isotopies and its *A*-theory.
- Composing it with the functor sending a groupoid to its classifying space yields functors **P** and **A** from Groupoids to Spectra.
- Thus we obtain equivariant homology theories $H^{?}_{*}(-; \mathbf{P})$ and $H^{?}_{*}(-; \mathbf{A})$. They satisfy $H^{G}_{n}(G/H; \mathbf{P}) = \pi_{n}(\mathcal{P}(BH))$ and $H^{G}_{n}(G/H; \mathbf{A}) = \pi_{n}(A(BH))$.

Conjecture (The Farrell-Jones Conjecture for pseudo-isotopies and *A*-theory)

The Farrell-Jones Conjecture for pseudo-isotopies and A-theory respectively is the Isomorphism Conjecture for $H^{?}_{*}(-; \mathbf{P})$ and $H^{?}_{*}(-; \mathbf{A})$ respectively for the family \mathcal{VCYC} .

Theorem (Relating pseudo-isotopy and *K*-theory)

The rational version of the K-theoretic Farrell-Jones Conjecture for coefficients in \mathbb{Z} is equivalent Farrell-Jones Conjecture for Pseudoisotopies. In degree $n \leq 1$ this is even true integrally.

• Pseudo-isotopy and A-theory are important theories. In particular they are closely related to the space of selfhomeomorphisms and the space of selfdiffeomorphisms of closed manifolds.

- There are functors **THH** and **TC** which assign to a ring (or more generally to an **S**-algebra) a spectrum describing its topological Hochschild homology and its topological cyclic homology.
- These functors play an important role in *K*-theoretic computations.
- Composing it with the functor sending a groupoid to a kind of group ring yields functors THH_R and TC_R from Groupoids to Spectra.
- Thus we obtain equivariant homology theories $H_*^?(-; \mathbf{THH}_R)$ and $H_*^?(-; \mathbf{TC}_R)$. They satisfy $H_n^G(G/H; \mathbf{THH}_R) = \mathbf{THH}_n(RH)$ and $H_n^G(G/H; \mathbf{TC}_R) = \mathbf{TC}_n(RH)$.

Conjecture (The Farrell-Jones Conjecture for topological Hochschild homology and cyclic homology)

The Farrell-Jones Conjecture for topological Hochschild homology and cyclic homology respectively is the Isomorphism Conjecture for $H_*^?(-; \mathbf{THH})$ and $H_*^?(-; \mathbf{TC})$ respectively for the family $C\mathcal{YC}$ of cyclic subgroups.

- We can apply the functor topological *K*-theory also to Banach algebras such that $I^1(G)$.
- Let K^{top}_{l¹} be the functor from Groupoids to Spectra which assign to a groupoid the topological *K*-theory spectrum of its l¹-algebra.
- We obtain an equivariant homology theory $H^{?}_{*}(-; \mathbf{K}^{top}_{l^{1}})$. It satisfies $H^{G}_{n}(G/H, \mathbf{K}^{top}_{l^{1}}) = K_{n}(l^{1}(H)).$

Conjecture (Bost Conjecture)

The Bost Conjecture is the Isomorphism Conjecture for $H^{?}_{*}(-; \mathbf{K}^{top}_{j^{1}})$ and the family \mathcal{FIN} .

• The assembly map appearing in the Bost Conjecture

$$H_n^G(\underline{E}G; \mathbf{K}_{l^1}^{\mathrm{top}}) \to H_n^G(\mathrm{pt}; \mathbf{K}_{l^1}^{\mathrm{top}}) = K_n(l^1(G))$$

composed with the change of algebras homomorphism

$$K_n(I^1(G)) \rightarrow K_n(C_r^*(G))$$

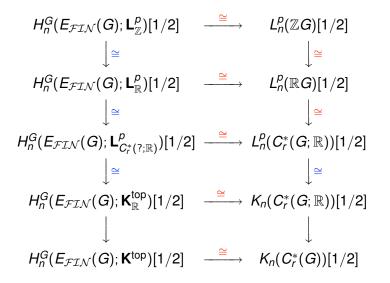
is precisely the assembly map appearing in the Baum-Connes Conjecture

$$H_n^G(\underline{E}G;\mathbf{K}^{\mathrm{top}}) = H_n^G(\underline{E}G;\mathbf{K}_{l^1}^{\mathrm{top}}) \to H_n^G(\mathrm{pt};\mathbf{K}^{\mathrm{top}}) = K_n(C_r^*(G)).$$

- We discuss some relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- Mainly these come from the sequence of inclusions of rings

$$\mathbb{Z}G \to \mathbb{R}G \to C^*_r(G;\mathbb{R}) \to C^*_r(G)$$

and the change of theories from algebraic to topological K-theory and from algebraic L-theory to topological K-theory for C^* -algebras.



Theorem (Rational computations of K-groups, L. (2002))

Let G be a group. Let T be the set of conjugacy classes (g) of elements $g \in G$ of finite order. Then there is a commutative diagram

- The horizontal arrows can be identified with the assembly maps occurring in the Farrell-Jones Conjecture and the Baum-Connes Conjecture by the equivariant Chern character.
- In particular they are isomorphisms if these conjecture hold for *G*.

Splitting principle.

The calculation of the relevant *K*-and *L*-groups often split into a universal group homology part which is independent of the theory, and a second part which essentially depends on the theory in question and the coefficients.

Status of the Farrell-Jones and the Baum-Connes Conjecture

Theorem (Bartels-L.-Reich (2007), Bartels-Echterhoff-Reich (2007))

Let R be a ring. Then:

- Every hyperbolic group and every virtually nilpotent group belongs to *FJ*(*R*);
- If G_1 and G_2 belong to $\mathcal{FJ}(R)$, then $G_1 \times G_2$ belongs to $\mathcal{FJ}(R)$;
- Let {G_i | i ∈ I} be a directed system of groups (with not necessarily injective structure maps) such that G_i ∈ FJ(R) for i ∈ I. Then colim_{i∈I} G_i belongs to FJ(R);
- If H is a subgroup of G and $G \in \mathcal{FJ}(R)$, then $H \in \mathcal{FJ}(R)$.

- We emphasize that this result holds for all rings R. Actually we can even treat crossed product rings R * G. For more information about the last result and its proof we refer to the talks of Bartels.
- The groups above are certainly wild in Bridson's universe of groups.
- Many recent constructions of groups with exotic properties are given by colimits of directed systems of hyperbolic groups. Examples are.
 - groups with expanders;
 - Lacunary hyperbolic groups in the sense of Olshanskii-Osin-Sapir;
 - Tarski monsters, i.e., infinite groups whose proper subgroups are all finite cyclic of *p*-power order for a given prime *p*;
- Gromov's groups with expanders, for which the Baum-Connes Conjecture with coefficients fails by Higson-Lafforgue-Skandalis (2002), belong to $\mathcal{FJ}_{\mathcal{K}}(R)$ for all R.

• If *G* is a torsionfree hyperbolic group and *R* any ring, then we get an isomorphism

$$H_n(BG; \mathbf{K}_R) \oplus \left(\bigoplus_{\substack{(C), C \subseteq G, C \neq 1 \\ C \text{ maximal cyclic}}} \mathsf{NK}_n(R) \right) \xrightarrow{\cong} K_n(RG).$$

- Bartels and L. have a program to prove G ∈ 𝒯𝐾(R) if G acts properly and cocompactly on a simply connected CAT(0)-space.
- This would imply $G \in \mathcal{FJ}_{\mathcal{K}}(R)$ for all subgroups G of cocompact lattices in almost connected Lie groups and for all limit groups G.

Theorem (Farrell-Jones (1993))

Let G be a subgroup of a cocompact lattice in an almost connected Lie group.

Then the Farrell-Jones Conjecture for pseudo-isotopy is true for G.

Theorem (L.-Reich-Rognes-Varisco (2007))

The Farrell-Jones Conjecture for topological Hochschild homology is true for all groups.

• For more information about the theorems above and further results we refer to the talks by Bartels, Rosenthal and Varisco.

Theorem (Farrell-Jones (1991 - 1993))

The Borel Conjecture and the L-theoretic Farrell-Jones Conjecture with coefficients in \mathbb{Z} are true for a group G if one of the following conditions are satisfied:

- G is the fundamental group of a closed Riemannian manifold with non-positive curvature;
- G is the fundamental group of a complete Riemannian manifold with pinched negative curvature;
- *G* is a torsionfree subgroup of $GL(n, \mathbb{R})$.

- Bartels and L. have a program to prove the *L*-theoretic Farrell-Jones Conjecture for all coefficient rings and the same class of groups for which the *K*-theoretic versions have been proved.
- Bartels and L. have a program to prove G ∈ 𝔅𝔅𝔅(R) if G acts properly and cocompactly on a simply connected CAT(0)-space. This would yield the same result for all subgroups of cocompact lattices in almost connected Lie groups.
- Recall that a group G which belongs to both 𝓕𝔅𝑘𝔅(ℤ) and 𝑘𝔅𝑘𝔅(ℤ) satisfies the Borel Conjecture.

Definition (a-T-menable group)

A group *G* is *a*-*T*-*menable*, or, equivalently, has the *Haagerup property* if *G* admits a metrically proper isometric action on some affine Hilbert space.

 The class of a-T-menable groups is closed under taking subgroups, under extensions with finite quotients and under finite products.

It is not closed under semi-direct products.

- Examples of a-T-menable groups are:
 - countable amenable groups;
 - countable free groups;
 - discrete subgroups of SO(n, 1) and SU(n, 1);
 - Coxeter groups;
 - countable groups acting properly on trees, products of trees, or simply connected CAT(0) cubical complexes.

A group *G* has *Kazhdan's property (T)* if, whenever it acts isometrically on some affine Hilbert space, it has a fixed point. An infinite a-T-menable group does not have property (T). Since *SL*(*n*, ℤ) for *n* ≥ 3 has property (T), it cannot be a-T-menable.

Theorem (Higson-Kasparov(2001))

A group G which is a-T-menable satisfies the Baum Connes Conjecture (with coefficients).

Theorem (Lafforgue (1998))

The Baum-Connes Conjecture is true for a certain class of groups which does contain some groups with property (T).

Theorem (Mineyev-Yu (2002))

The Baum-Connes Conjecture is true for subgroups of hyperbolic groups.

Theorem (Bartels-Echterhoff-L. (2007))

The Bost Conjecture is true for a colimit of a directed system of hyperbolic groups.

- The Baum-Connes Conjecture and the Farrell-Jones Conjecture are not known for SL_n(ℤ) for n ≥ 3, mapping class groups and Out(F_n);
- Certain groups with expanders yield counterexamples to the Baum-Connes Conjecture with coefficients by a construction due to Higson-Lafforgue-Skandalis (2002).
- The *K*-theoretic Farrell-Jones conjecture and the Bost Conjecture are true for these groups by recent results of Bartels-L.-Reich (2007) and Bartels-Echterhoff-L. (2007).
- It is not known whether there are counterexamples to the Farrell-Jones Conjecture or the Baum-Connes Conjecture.

- There seems to be no promising candidate of a group *G* which is a potential counterexample to the *K* or *L*-theoretic Farrell-Jones Conjecture or the Bost Conjecture.
- The Baum-Connes Conjecture is the one for which it is most likely that there may exist a counterexample.

One reason is the existence of counterexamples to the version with coefficients.

Another reason is that $K_n(C_r^*(G))$ has certain failures concerning functoriality which do not exists for $K_n^G(\underline{E}G)$.

For instance it is not functorial for arbitrary group homomorphisms since the reduced group C^* -algebra is not functorial for arbitrary group homomorphisms.

These failures are not present for $K_n(RG)$, $L^{\langle -\infty \rangle}(RG)$ and $K_n(I^1(G))$.

- Most of the proofs of the Farrell-Jones Conjecture use methods from controlled topology.
- Roughly speaking, controlled topology means that one considers free modules with a basis and thinks of these basis elements as sitting in a metric space.

Then a map between such modules can be visualized by arrows between these basis elements.

Control means that these arrows are small.

- Our homological approach to the assembly map is good for structural investigations but not for proofs.
 For proofs of these Conjectures it is often helpful to get some geometric input.
- In the Farrell-Jones setting the door to geometry is opened by interpreting the assembly map as a forget control map.

- The task to show for instance surjectivity is to manipulate a representative of the *K*-or *L*-theory class such that its class is unchanged but one has gained control.
- This is done by geometric constructions which yield contracting maps.
- These constructions are possible if some geometry connected to the group is around, such as negative curvature.
- We refer to the lectures of Bartels for such controlled methods.

• The approach using topological cyclic homology goes back to Böckstedt-Hsiang-Madsen.

It is of homotopy theoretic nature.

We refer to the lecture of Varisco for more information about that approach.

• The methods of proof for the Baum-Connes Conjecture are of analytic nature.

The most prominent one is the Dirac-Dual-Dirac method based on *KK*-theory due to Kasparov.

KK-theory is a bivariant theory together with a product.

The assembly map is given by multiplying with a certain element in a certain *KK*-group.

The essential idea is to construct another element in a dual KK-group which implements the inverse of the assembly map.

- The analytic methods for the proof of the Baum-Connes Conjecture do not seem to be applicable to the Farrell-Jones setting.
- One would hope for a transfer of methods from the Farrell-Jones setting to the Baum-Connes Conjecture.
 So far not much has happened in this direction.

The end Thank you for listening