The Isomorphism Conjectures for arbitrary groups (Lecture V)

Wolfgang Lück Münster Germany email lueck@math.uni-muenster.de http://www.math.uni-muenster.de/u/lueck/

Hangzhou, July 2007

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

- We have introduced classifying spaces E_𝔅(G) for a family 𝔅 of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

Wolfgang Lück (Münster, Germany)

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

Wolfgang Lück (Münster, Germany)

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

Wolfgang Lück (Münster, Germany)

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We have introduced classifying spaces *E_F(G)* for a family *F* of subgroups.
- We have introduced the notion of an equivariant homology theory.
- We have formulated the Farrell-Jones Conjecture and the Baum-Connes Conjecture.
- We have already discussed application for torsionfree groups such as to the Kaplansky Conjecture and the Borel Conjecture.

Question (Consequences)

What are the consequences of the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

- We give a review of the Farrell-Jones and the Baum-Connes Conjecture.
- We discuss the difference between the families \mathcal{FIN} and \mathcal{VCYC} .
- We discuss consequences of the Farrell-Jones and the Baum-Connes Conjecture.

A (10) > A (10) > A (10)

- We give a review of the Farrell-Jones and the Baum-Connes Conjecture.
- We discuss the difference between the families \mathcal{FIN} and \mathcal{VCYC} .
- We discuss consequences of the Farrell-Jones and the Baum-Connes Conjecture.

< 6 b

- We give a review of the Farrell-Jones and the Baum-Connes Conjecture.
- We discuss the difference between the families \mathcal{FIN} and \mathcal{VCYC} .
- We discuss consequences of the Farrell-Jones and the Baum-Connes Conjecture.

< 47 ▶

→ ∃ →

- We give a review of the Farrell-Jones and the Baum-Connes Conjecture.
- We discuss the difference between the families \mathcal{FIN} and \mathcal{VCYC} .
- We discuss consequences of the Farrell-Jones and the Baum-Connes Conjecture.

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

• For any *G*-*CW*-complex *Y*, whose isotropy groups belong to \mathcal{F} , there is up to *G*-homotopy precisely one *G*-map $Y \rightarrow X$.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{\mathcal{TR}}(G)$.

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

• For any *G*-*CW*-complex *Y*, whose isotropy groups belong to \mathcal{F} , there is up to *G*-homotopy precisely one *G*-map $Y \to X$.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{\mathcal{TR}}(G)$.

• *G* will always be a discrete group.

Definition (Classifying *G-CW*-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

• For any *G*-*CW*-complex *Y*, whose isotropy groups belong to \mathcal{F} , there is up to *G*-homotopy precisely one *G*-map $Y \rightarrow X$.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{\mathcal{TD}}(G)$

• *G* will always be a discrete group.

Definition (Classifying *G-CW*-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

• For any *G*-*CW*-complex *Y*, whose isotropy groups belong to \mathcal{F} , there is up to *G*-homotopy precisely one *G*-map $Y \to X$.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{\mathcal{TD}}(G)$

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

• For any *G*-*CW*-complex *Y*, whose isotropy groups belong to \mathcal{F} , there is up to *G*-homotopy precisely one *G*-map $Y \rightarrow X$.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*.

We also write $EG = E_{TR}(G)$

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

G-CW-complex for proper G-actions.

We also write $EG = E_{TR}(G)$.

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

- All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;
- For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal* G-CW-complex for proper G-actions. We also write $EG = E_{TR}(G)$.

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $EG = E_{TR}(G)$.

• *G* will always be a discrete group.

Definition (Classifying G-CW-complex for a family of subgroups)

Let \mathcal{F} be a family of subgroups of G. A model for the *classifying G-CW-complex for the family* \mathcal{F} is a *G-CW*-complex $E_{\mathcal{F}}(G)$ which has the following properties:

• All isotropy groups of $E_{\mathcal{F}}(G)$ belong to \mathcal{F} ;

For any *G*-*CW*-complex *Y*, whose isotropy groups belong to *F*, there is up to *G*-homotopy precisely one *G*-map *Y* → *X*.

We abbreviate $\underline{E}G := E_{\mathcal{FIN}}(G)$ and call it the *universal G-CW-complex for proper G-actions*. We also write $\underline{E}G = E_{\mathcal{TR}}(G)$.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

 $\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$

satisfying

- Bijectivity
 - If ker(α) acts freely on *X*, then ind_{α} is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group *G* a *G*-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha : H \to G$ and a *H*-*CW*-pair (*X*, *A*), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

- Bijectivity
 - If ker(α) acts freely on *X*, then ind_{α} is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha : H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

 $\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$

satisfying

- Bijectivity
 - If ker(α) acts freely on *X*, then ind_{α} is a bijection;
- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on X, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on *X*, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} : \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on X, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} : \mathcal{H}_{n}^{H}(X, A) \rightarrow \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on *X*, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;

• Compatibility with conjugation.

An *equivariant homology theory* $\mathcal{H}^{?}_{*}$ assigns to every group G a G-homology theory \mathcal{H}^{G}_{*} . These are linked together with the following so called *induction structure*: given a group homomorphism $\alpha \colon H \to G$ and a H-CW-pair (X, A), there are for all $n \in \mathbb{Z}$ natural homomorphisms

$$\operatorname{ind}_{\alpha} \colon \mathcal{H}_{n}^{H}(X, A) \to \mathcal{H}_{n}^{G}(\operatorname{ind}_{\alpha}(X, A))$$

satisfying

Bijectivity

If ker(α) acts freely on *X*, then ind_{α} is a bijection;

- Compatibility with the boundary homomorphisms;
- Functoriality in α ;
- Compatibility with conjugation.

The K-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

 $H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{K}_R) \to H_n^G(pt, \mathbf{K}_R) = K_n(RG)$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) \to H_n^G(pt, \mathbf{L}_R^{-\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G),\mathbf{K}_R) \to H_n^G(pt,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) \to H_n^G(pt, \mathbf{L}_R^{-\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G),\mathbf{K}_R)
ightarrow H_n^G(
hot,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (L-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G), \mathsf{L}_R^{\langle -\infty \rangle}) \to H_n^G(pt, \mathsf{L}_R^{-\infty}) = L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

The *K*-theoretic Farrell-Jones Conjecture with coefficients in *R* for the group *G* predicts that the assembly map

$$H_n^G(E_{\mathcal{VCYC}}(G),\mathbf{K}_R) \to H_n^G(pt,\mathbf{K}_R) = K_n(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (*L*-theoretic Farrell-Jones-Conjecture)

The L-theoretic Farrell-Jones Conjecture with coefficients in R for the group G predicts that the assembly map

$$H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) \to H_n^G(\rho t, \mathbf{L}_R^{-\infty}) = L_n^{\langle -\infty \rangle}(RG)$$

is bijective for all $n \in \mathbb{Z}$.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

 $K_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) \to H_n^G(pt, \mathbf{K}^{\mathrm{top}}) = K_n(C_r^*(G))$

is bijective for all $n \in \mathbb{Z}$.

- All assembly maps are the maps induced by the projection $E_{\mathcal{F}}(G) \rightarrow \text{pt.}$
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as $K_n(RG)$ on G in terms of its values for all virtually cyclic subgroups of G.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) o \mathcal{H}_n^G(\mathcal{p}t, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

- All assembly maps are the maps induced by the projection $E_{\mathcal{F}}(G) \rightarrow \text{pt.}$
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as $K_n(RG)$ on G in terms of its values for all virtually cyclic subgroups of G.
Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) o \mathcal{H}_n^G(\mathcal{p}t, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

- All assembly maps are the maps induced by the projection $E_{\mathcal{F}}(G) \rightarrow \text{pt.}$
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as $K_n(RG)$ on G in terms of its values for all virtually cyclic subgroups of G.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) o \mathcal{H}_n^G(\rho t, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

- All assembly maps are the maps induced by the projection *E_F*(*G*) → pt.
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as K_n(RG) on G in terms of its values for all virtually cyclic subgroups of G.

Conjecture (Baum-Connes Conjecture)

The Baum-Connes Conjecture predicts that the assembly map

$$\mathcal{K}_n^G(\underline{E}G) = \mathcal{H}_n^G(\mathcal{E}_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) o \mathcal{H}_n^G(\rho t, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G))$$

is bijective for all $n \in \mathbb{Z}$.

- All assembly maps are the maps induced by the projection *E_F*(*G*) → pt.
- These Conjecture can be thought of a kind of generalized induction theorem. They allow to compute the value of a functor such as K_n(RG) on G in terms of its values for all virtually cyclic subgroups of G.

(4) (5) (4) (5)

A D M A A A M M

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

$$\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}^G_n(E_\mathcal{F}(G)) \to \mathcal{H}^G_n(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

 $\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}_n^G(E_\mathcal{F}(G)) \to \mathcal{H}_n^G(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

 $\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}^G_n(E_\mathcal{F}(G)) \to \mathcal{H}^G_n(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

 $\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}_n^G(E_\mathcal{F}(G)) \to \mathcal{H}_n^G(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

$$\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$

Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \rightarrow E_{\mathcal{G}}(G)$

$$\mathcal{H}_n^G(E_\mathcal{F}(G)) \to \mathcal{H}_n^G(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

Let $\mathcal{F} \subseteq \mathcal{G}$ be two families of subgroups of G. Let $\mathcal{H}^{?}_{*}$ be an equivariant homology theory. Assume that for every element $H \in \mathcal{G}$ and $n \in \mathbb{Z}$ the assembly map

$$\mathcal{H}_n^H(E_{\mathcal{F}|_H}(H)) \to \mathcal{H}_n^H(pt)$$

is bijective, where $\mathcal{F}|_{H} = \{K \cap H \mid K \in \mathcal{F}\}.$ Then the relative assembly map induced by the up to G-homotopy unique G-map $E_{\mathcal{F}}(G) \to E_{\mathcal{G}}(G)$

$$\mathcal{H}^G_n(E_\mathcal{F}(G)) \to \mathcal{H}^G_n(E_\mathcal{G}(G))$$

is bijective for all $n \in \mathbb{Z}$.

 The Baum-Connes Conjecture is known to be true for virtually cyclic groups. The Transitivity Principle implies that the relative assembly

$$K_n^G(\underline{E}G) \xrightarrow{\cong} K_n^G(E_{\mathcal{VCYC}}(G))$$

is bijective for all $n \in \mathbb{Z}$.

• Hence it does not matter in the context of the Baum-Connes Conjecture whether we consider the family *FIN* or *VCYC*.

A (10) > A (10) > A (10)

 The Baum-Connes Conjecture is known to be true for virtually cyclic groups. The Transitivity Principle implies that the relative assembly

$$K_n^G(\underline{E}G) \xrightarrow{\cong} K_n^G(E_{\mathcal{VCYC}}(G))$$

is bijective for all $n \in \mathbb{Z}$.

• Hence it does not matter in the context of the Baum-Connes Conjecture whether we consider the family *FIN* or *VCYC*.

A (10) > A (10) > A (10)

 The Baum-Connes Conjecture is known to be true for virtually cyclic groups. The Transitivity Principle implies that the relative assembly

$$K_n^G(\underline{E}G) \xrightarrow{\cong} K_n^G(E_{\mathcal{VCVC}}(G))$$

is bijective for all $n \in \mathbb{Z}$.

• Hence it does not matter in the context of the Baum-Connes Conjecture whether we consider the family *FIN* or *VCYC*.

 The Baum-Connes Conjecture is known to be true for virtually cyclic groups. The Transitivity Principle implies that the relative assembly

$$K_n^G(\underline{E}G) \xrightarrow{\cong} K_n^G(E_{\mathcal{VCYC}}(G))$$

is bijective for all $n \in \mathbb{Z}$.

• Hence it does not matter in the context of the Baum-Connes Conjecture whether we consider the family *FIN* or *VCYC*. In general the relative assembly maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are not bijective.

• Hence in the Farrell-Jones setting one has to pass to VCVC and cannot use the easier to handle family \mathcal{FIN} .

In general the relative assembly maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCVC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are not bijective.

• Hence in the Farrell-Jones setting one has to pass to VCVC and cannot use the easier to handle family \mathcal{FIN} .

For instance the Bass-Heller Swan decomposition

 $K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R)) \xrightarrow{\cong} K_n(R[t, t^{-1}]) \cong K_n(R[\mathbb{Z}])$

and the isomorphism

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) = H_n^{\mathbb{Z}}(E\mathbb{Z};\mathbf{K}_R) = H_n^{\{1\}}(S^1,\mathbf{K}_R) = K_{n-1}(R) \oplus K_n(R)$$

show that

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) \to H_n^{\mathbb{Z}}(\mathrm{pt};\mathbf{K}_R) = K_n(R\mathbb{Z})$$

is bijective if and only if $NK_n(R) = 0$.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 11 / 33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For instance the Bass-Heller Swan decomposition

 $K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R)) \xrightarrow{\cong} K_n(R[t, t^{-1}]) \cong K_n(R[\mathbb{Z}])$

and the isomorphism

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) = H_n^{\mathbb{Z}}(E\mathbb{Z};\mathbf{K}_R) = H_n^{\{1\}}(S^1,\mathbf{K}_R) = K_{n-1}(R) \oplus K_n(R)$$

show that

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) \to H_n^{\mathbb{Z}}(\mathrm{pt};\mathbf{K}_R) = K_n(R\mathbb{Z})$$

is bijective if and only if $NK_n(R) = 0$.

For instance the Bass-Heller Swan decomposition

 $K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R)) \xrightarrow{\cong} K_n(R[t, t^{-1}]) \cong K_n(R[\mathbb{Z}])$

and the isomorphism

 $H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) = H_n^{\mathbb{Z}}(E\mathbb{Z};\mathbf{K}_R) = H_n^{\{1\}}(S^1,\mathbf{K}_R) = K_{n-1}(R) \oplus K_n(R)$

show that

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) \to H_n^{\mathbb{Z}}(\mathrm{pt};\mathbf{K}_R) = K_n(R\mathbb{Z})$$

is bijective if and only if $NK_n(R) = 0$.

For instance the Bass-Heller Swan decomposition

 $K_{n-1}(R) \oplus K_n(R) \oplus \mathsf{NK}_n(R) \oplus \mathsf{NK}_n(R)) \xrightarrow{\cong} K_n(R[t, t^{-1}]) \cong K_n(R[\mathbb{Z}])$

and the isomorphism

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) = H_n^{\mathbb{Z}}(E\mathbb{Z};\mathbf{K}_R) = H_n^{\{1\}}(S^1,\mathbf{K}_R) = K_{n-1}(R) \oplus K_n(R)$$

show that

$$H_n^{\mathbb{Z}}(\underline{E}\mathbb{Z};\mathbf{K}_R) o H_n^{\mathbb{Z}}(\mathrm{pt};\mathbf{K}_R) = K_n(R\mathbb{Z})$$

is bijective if and only if $NK_n(R) = 0$.

- An infinite virtually cyclic group G is called of type I if it admits an epimorphism onto Z and of type II otherwise. A virtually cyclic group is of type II if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

The following maps are bijective for all $n \in \mathbb{Z}$

 $\begin{array}{rcl} H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{K}_R); \\ H_n^G(\underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{L}_R^{\langle -\infty \rangle}). \end{array}$

Wolfgang Lück (Münster, Germany)

- An infinite virtually cyclic group G is called of type I if it admits an epimorphism onto Z and of type II otherwise. A virtually cyclic group is of type II if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

The following maps are bijective for all $n \in \mathbb{Z}$

 $\begin{array}{rcl} H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{K}_R); \\ H_n^G(\underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{L}_R^{\langle -\infty \rangle}). \end{array}$

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 12 / 33

- An infinite virtually cyclic group G is called of type / if it admits an epimorphism onto Z and of type // otherwise. A virtually cyclic group is of type // if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

The following maps are bijective for all $n \in \mathbb{Z}$

 $\begin{array}{rcl} H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{K}_R); \\ H_n^G(\underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}_l}(G); \mathbf{L}_R^{\langle -\infty \rangle}). \end{array}$

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 12 / 33

- An infinite virtually cyclic group G is called of type / if it admits an epimorphism onto Z and of type // otherwise. A virtually cyclic group is of type // if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

The following maps are bijective for all $n\in\mathbb{Z}$

 $\begin{array}{rcl} H_n^G(E_{\mathcal{VC}\mathcal{YC}_I}(G);\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VC}\mathcal{YC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VC}\mathcal{YC}_I}(G);\mathbf{L}_R^{\langle -\infty \rangle}) \end{array}$

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 12 / 33

- An infinite virtually cyclic group G is called of type / if it admits an epimorphism onto Z and of type // otherwise. A virtually cyclic group is of type // if and only if admits an epimorphism onto D_∞.
- Let \mathcal{VCYC}_I or \mathcal{VCYC}_{II} respectively be the family of subgroups which are either finite or which are virtually cyclic of type *I* or *II* respectively.

The following maps are bijective for all $n \in \mathbb{Z}$

$$\begin{array}{lll} H^G_n(E_{\mathcal{VCYC}_I}(G);\mathbf{K}_R) & \to & H^G_n(E_{\mathcal{VCYC}}(G);\mathbf{K}_R); \\ H^G_n(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H^G_n(E_{\mathcal{VCYC}_I}(G);\mathbf{L}_R^{\langle -\infty \rangle}). \end{array}$$

Wolfgang Lück (Münster, Germany)

Theorem (Cappell (1973), Grunewald (2005), Waldhausen (1978))

• The following maps are bijective for all $n \in \mathbb{Z}$.

$$H_{n}^{G}(\underline{E}G; \mathbf{K}_{\mathbb{Z}}) \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow H_{n}^{G}(E_{\mathcal{VCYC}}(G); \mathbf{K}_{\mathbb{Z}}) \otimes_{\mathbb{Z}} \mathbb{Q};$$

$$H_{n}^{G}(\underline{E}G; \mathbf{L}_{R}^{\langle -\infty \rangle}) \begin{bmatrix} 1\\ 2 \end{bmatrix} \rightarrow H_{n}^{G}(E_{\mathcal{VCYC}}(G); \mathbf{L}_{R}^{\langle -\infty \rangle}) \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

• If R is regular and $\mathbb{Q} \subseteq R$, then for all $n \in \mathbb{Z}$ we get a bijection

 $H_n^G(\underline{E}G; \mathbf{K}_R) \to H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{K}_R).$

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

< 6 b

Theorem (Cappell (1973), Grunewald (2005), Waldhausen (1978))

• The following maps are bijective for all $n \in \mathbb{Z}$.

$$\begin{array}{rcl} H_n^G(\underline{E}G;\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q} & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q}; \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right] & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right]; \end{array}$$

• If R is regular and $\mathbb{Q} \subseteq R$, then for all $n \in \mathbb{Z}$ we get a bijection

 $H_n^G(\underline{E}G;\mathbf{K}_R) \to H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R).$

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Theorem (Cappell (1973), Grunewald (2005), Waldhausen (1978))

• The following maps are bijective for all $n \in \mathbb{Z}$.

$$\begin{array}{ll} H_n^G(\underline{E}G;\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q} & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_{\mathbb{Z}})\otimes_{\mathbb{Z}}\mathbb{Q}; \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right] & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty\rangle})\left[\frac{1}{2}\right]; \end{array}$$

• If R is regular and $\mathbb{Q} \subseteq R$, then for all $n \in \mathbb{Z}$ we get a bijection

 $H_n^G(\underline{E}G; \mathbf{K}_R) \to H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{K}_R).$

Wolfgang Lück (Münster, Germany)

.

Theorem (Bartels (2003))

For every $n \in \mathbb{Z}$ the two maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are split injective.

Theorem (Bartels (2003))

For every $n \in \mathbb{Z}$ the two maps

$$\begin{array}{lll} H_n^G(\underline{E}G;\mathbf{K}_R) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R); \\ H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty \rangle}), \end{array}$$

are split injective.

Hence we get (natural) isomorphisms

$$\begin{aligned} H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G);\mathbf{K}_R) \\ &\cong H_n^G(\underline{E}G;\mathbf{K}_R) \oplus H_n^G(\mathcal{E}_{\mathcal{VCYC}}(G),\underline{E}G;\mathbf{K}_R); \end{aligned}$$

$$\begin{aligned} H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{L}_R^{\langle -\infty\rangle}) \\ &\cong H_n^G(\underline{E}G;\mathbf{L}_R^{\langle -\infty\rangle}) \oplus H_n^G(E_{\mathcal{VCYC}}(G),\underline{E}G;\mathbf{L}_R^{\langle -\infty\rangle}). \end{aligned}$$

 The analysis of the terms H^G_n(E_{VCVC}(G), <u>E</u>G; K_R) and H^G_n(E_{VCVC}(G), <u>E</u>G; L^(−∞)_R) boils down to investigating Nil-terms and UNil-terms in the sense of Waldhausen and Cappell.

Wolfgang Lück (Münster, Germany)

Hence we get (natural) isomorphisms

$$\begin{aligned} H_n^G(E_{\mathcal{VCYC}}(G);\mathbf{K}_R) \\ &\cong H_n^G(\underline{E}G;\mathbf{K}_R) \oplus H_n^G(E_{\mathcal{VCYC}}(G),\underline{E}G;\mathbf{K}_R); \end{aligned}$$

$$\begin{aligned} H_n^G(E_{\mathcal{VCYC}}(G); \mathbf{L}_R^{\langle -\infty \rangle}) \\ &\cong H_n^G(\underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}) \oplus H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle}). \end{aligned}$$

• The analysis of the terms $H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{K}_R)$ and $H_n^G(E_{\mathcal{VCYC}}(G), \underline{E}G; \mathbf{L}_R^{\langle -\infty \rangle})$ boils down to investigating Nil-terms and UNil-terms in the sense of Waldhausen and Cappell.

- The analysis of the terms H^G_n(<u>E</u>G; K_R) and H^G_n(<u>E</u>G; L^(-∞)_R) is using the methods of the previous lecture (e.g., Chern characters).
- The results above imply that the versions of the Farrell-Jones Conjecture for torsionfree groups which we have presented in the second lecture follow from the general versions.
- The latter is obvious for the Baum-Connes Conjecture since for torsionfree *G* we have $EG = \underline{E}G$.

4 3 5 4 3 5

- The analysis of the terms H^G_n(<u>E</u>G; K_R) and H^G_n(<u>E</u>G; L^(-∞)_R) is using the methods of the previous lecture (e.g., Chern characters).
- The results above imply that the versions of the Farrell-Jones Conjecture for torsionfree groups which we have presented in the second lecture follow from the general versions.
- The latter is obvious for the Baum-Connes Conjecture since for torsionfree *G* we have $EG = \underline{E}G$.

4 3 5 4 3 5

- The analysis of the terms H^G_n(<u>E</u>G; K_R) and H^G_n(<u>E</u>G; L^(-∞)_R) is using the methods of the previous lecture (e.g., Chern characters).
- The results above imply that the versions of the Farrell-Jones Conjecture for torsionfree groups which we have presented in the second lecture follow from the general versions.
- The latter is obvious for the Baum-Connes Conjecture since for torsionfree *G* we have $EG = \underline{E}G$.

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

 $\operatorname{sign}_{X}(M, f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

$$\operatorname{sign}_{X}(M_{0}, f_{0}) = \operatorname{sign}_{X}(M_{1}, f_{1}).$$

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

 $\operatorname{sign}_{X}(M,f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

 $\operatorname{sign}_{X}(M_{0}, f_{0}) = \operatorname{sign}_{X}(M_{1}, f_{1}).$
Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

 $\operatorname{sign}_{X}(M, f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

 $\operatorname{sign}_{X}(M_{0}, f_{0}) = \operatorname{sign}_{X}(M_{1}, f_{1}).$

Conjecture (Novikov Conjecture)

The Novikov Conjecture for G predicts for a closed oriented manifold M together with a map $f: M \to BG$ that for any $x \in H^*(BG)$ the higher signature

$$\operatorname{sign}_{X}(M,f) := \langle \mathcal{L}(M) \cup f^{*}X, [M] \rangle$$

is an oriented homotopy invariant of (M, f), i.e., for every orientation preserving homotopy equivalence of closed oriented manifolds $g: M_0 \to M_1$ and homotopy equivalence $f_i: M_0 \to M_1$ with $f_1 \circ g \simeq f_2$ we have

$$\operatorname{sign}_{X}(M_{0},f_{0})=\operatorname{sign}_{X}(M_{1},f_{1}).$$

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

Suppose that one of the following assembly maps

$$\begin{aligned} & H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(pt, \mathbf{L}_R^{\langle -\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG); \\ & \mathcal{K}_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\mathrm{top}}) & \to & H_n^G(pt, \mathbf{K}^{\mathrm{top}}) = \mathcal{K}_n(C_r^*(G)), \end{aligned}$$

is rationally injective. Then the Novikov Conjecture holds for the group G

4 A N

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

Suppose that one of the following assembly maps

$$\begin{aligned} & H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(\textit{pt}, \mathbf{L}_R^{\langle -\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG); \\ & \mathcal{K}_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\text{top}}) & \to & H_n^G(\textit{pt}, \mathbf{K}^{\text{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G)), \end{aligned}$$

is rationally injective. Then the Novikov Conjecture holds for the group

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Theorem (The Farrell-Jones, the Baum-Connes and the Novikov Conjecture)

Suppose that one of the following assembly maps

$$\begin{aligned} & H_n^G(E_{\mathcal{VCYC}}(G), \mathbf{L}_R^{\langle -\infty \rangle}) & \to & H_n^G(\textit{pt}, \mathbf{L}_R^{\langle -\infty \rangle}) = L_n^{\langle -\infty \rangle}(RG); \\ & \mathcal{K}_n^G(\underline{E}G) = H_n^G(E_{\mathcal{FIN}}(G), \mathbf{K}^{\text{top}}) & \to & H_n^G(\textit{pt}, \mathbf{K}^{\text{top}}) = \mathcal{K}_n(\mathcal{C}_r^*(G)), \end{aligned}$$

is rationally injective. Then the Novikov Conjecture holds for the group G.

• Let *R* be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_K(R)$. Then the map given by induction from finite subgroups of *G*

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(RH) \to K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

is bijective.

< ロ > < 同 > < 回 > < 回 >

 Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ_K(R). Then the map given by induction from finite subgroups of G

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(RH) \to K_0(RG)$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_K(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

is bijective.

• Let R be a regular ring with $\mathbb{Q} \subseteq R$. Suppose $G \in \mathcal{FJ}_{\mathcal{K}}(R)$. Then the map given by induction from finite subgroups of G

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(RH) \to K_0(RG)$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

is bijective.

< ロ > < 同 > < 回 > < 回 >

 Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ_K(R). Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(RH) \to K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

is bijective.

< ロ > < 同 > < 回 > < 回 >

 Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ_K(R). Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)}K_0(RH) o K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$

is bijective.

 Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ_K(R). Then the map given by induction from finite subgroups of G

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)}K_0(RH) o K_0(RG)$$

is bijective;

• Let F be a field of characteristic p for a prime number p. Suppose that $G \in \mathcal{FJ}_{K}(F)$. Then the map

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH)[1/p] \to K_0(FG)[1/p]$$

is bijective.

イロト イポト イヨト イヨト

Let F be a field of characteristic zero. Suppose that $G \in \mathcal{FJ}_K(F)$. Then for every finitely generated projective FG-module P there exists a positive integer k and finitely many finite subgroups H_1, H_2, \ldots, H_r such that

$P^k \cong_{FG} F[G/H_1] \oplus F[G/H_2] \oplus \ldots \oplus F[G/H_r].$

.

Let F be a field of characteristic zero. Suppose that $G \in \mathcal{FJ}_K(F)$. Then for every finitely generated projective FG-module P there exists a positive integer k and finitely many finite subgroups $H_1, H_2, ..., H_r$ such that

 $P^k \cong_{FG} F[G/H_1] \oplus F[G/H_2] \oplus \ldots \oplus F[G/H_r].$

.

Let F be a field of characteristic zero. Suppose that $G \in \mathcal{FJ}_K(F)$.

Then for every finitely generated projective FG-module P there exists a positive integer k and finitely many finite subgroups H_1, H_2, \ldots, H_r such that

 $P^k \cong_{FG} F[G/H_1] \oplus F[G/H_2] \oplus \ldots \oplus F[G/H_r].$

イロト イポト イラト イラ

Let F be a field of characteristic zero. Suppose that $G \in \mathcal{FJ}_K(F)$. Then for every finitely generated projective FG-module P there exists a positive integer k and finitely many finite subgroups H_1, H_2, \ldots, H_r such that

$$P^{k} \cong_{FG} F[G/H_{1}] \oplus F[G/H_{2}] \oplus \ldots \oplus F[G/H_{r}].$$

• Let *R* be commutative ring and let *G* be a group.

- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

$\operatorname{tr}_{RG}: M_n(RG) \to \operatorname{class}(G, R)$

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

< ロ > < 同 > < 回 > < 回 >

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_a) \circ \phi: RG^n \to RG^n$ is given by *A*.

- Let *R* be commutative ring and let *G* be a group.
- Let class(G, R) be the *R*-module of class functions $G \rightarrow R$, i.e., functions $G \rightarrow R$ which are constant on conjugacy classes.
- Let tr_{RG}: RG → class(G, R) be the obvious R-homomorphism. It extends to a map

by taking the sums of the values of the diagonal entries.

• Let *P* be a finitely generated *RG*-module. Choose a finitely generated projective *RG*-module *Q* and an isomorphism $\phi: RG^n \xrightarrow{\cong} P \oplus Q$. Let $A \in M_n(RG)$ be a matrix such that $\phi^{-1} \circ (f \oplus id_q) \circ \phi: RG^n \to RG^n$ is given by *A*.

Define the Hattori-Stallings rank of P to be the class function

 $\mathsf{HS}_{RG}(P) := \mathrm{tr}_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

4 A N

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

(4) (5) (4) (5)

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

• This definition is independent of the choice of Q and ϕ .

• Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

A (10) A (10) A (10)

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

Define the Hattori-Stallings rank of P to be the class function

 $HS_{RG}(P) := tr_{RG}(A).$

- This definition is independent of the choice of Q and ϕ .
- Let *G* be a finite group and let *F* be a field of characteristic zero. Then a finitely generated *RG*-module *P* is the same as a finite dimensional *G*-representation over *F* and the Hattori-Stallings rank can be identified with the character of the *G*-representation.

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the **Bass Conjecture** predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank HS_{RG}(P) at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field *F* of *R* that

 $K_0(RG) \rightarrow K_0(FG)$

factorizes as

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank HS_{RG}(P) at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field *F* of *R* that

$$K_0(RG) \rightarrow K_0(FG)$$

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank HS_{RG}(P) at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field F of R that

$$K_0(RG) \rightarrow K_0(FG)$$

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R.

Then the **Bass Conjecture** predicts that for every finitely generated projective RG-module P the value of its **Hattori-Stallings rank** $HS_{RG}(P)$ at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field *F* of *R* that

$$K_0(RG) \rightarrow K_0(FG)$$

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

• If *G* is finite, this is just the Theorem of Swan (1960).

• Another version of it would predict for the quotient field F of R that

 $K_0(RG) \rightarrow K_0(FG)$

factorizes as

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

< ロ > < 同 > < 回 > < 回 >

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

• If *G* is finite, this is just the Theorem of Swan (1960).

• Another version of it would predict for the quotient field F of R that

 $K_0(RG) \rightarrow K_0(FG)$

factorizes as

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

< ロ > < 同 > < 回 > < 回 >

Let R be a commutative integral domain and let G be a group. Let $g \neq 1$ be an element in G. Suppose that either the order |g| is infinite or that the order |g| is finite and not invertible in R. Then the Bass Conjecture predicts that for every finitely generated projective RG-module P the value of its Hattori-Stallings rank $HS_{RG}(P)$ at (g) is trivial.

- If *G* is finite, this is just the Theorem of Swan (1960).
- Another version of it would predict for the quotient field F of R that

$$K_0(RG) \rightarrow K_0(FG)$$

$$K_0(RG) \rightarrow K_0(R) \rightarrow K_0(F) \rightarrow K_0(FG).$$

Theorem (Linnell-Farrell (2003))

Let G be a group. Suppose that

$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$

is surjective for all fields F of prime characteristic. (This is true if $G \in \mathcal{FJ}_{\mathcal{K}}(F)$ for every field F of prime characteristic). Then the Bass Conjecture is satisfied for every integral domain R.
Theorem (Linnell-Farrell (2003))

Let G be a group. Suppose that

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is surjective for all fields F of prime characteristic. (This is true if $G \in \mathcal{FJ}_{K}(F)$ for every field F of prime characteristic).

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 24 / 33

.

Theorem (Linnell-Farrell (2003))

Let G be a group. Suppose that

$$\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(FH) \otimes_{\mathbb{Z}} \mathbb{Q} \to K_0(FG) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is surjective for all fields F of prime characteristic. (This is true if $G \in \mathcal{FJ}_{K}(F)$ for every field F of prime characteristic). Then the Bass Conjecture is satisfied for every integral domain R.

Wolfgang Lück (Münster, Germany)

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let *R* be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_K(R)$, then the conjecture above is true.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 25 / 33

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let *R* be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_K(R)$, then the conjecture above is true.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 25 / 33

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let *R* be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_{\mathcal{K}}(R)$, then the conjecture above is true.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 25 / 33

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let R be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_K(R)$, then the conjecture above is true.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 25 / 33

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let *R* be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_{\mathcal{K}}(R)$, then the conjecture above is true.

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 25 / 33

Let R be a regular ring with $\mathbb{Q} \subseteq R$. Then we get for all groups G and all $n \in \mathbb{Z}$ that

 $NK_n(RG) = 0.$

Theorem (Bartels-L.-Reich (2007))

Let R be a regular ring with $\mathbb{Q} \subseteq R$. If $G \in \mathcal{FJ}_{\mathcal{K}}(R)$, then the conjecture above is true.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

 $\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$

- The L^2 -torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L^2 -torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$

- The L^2 -torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L^2 -torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L^2 -torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L^2 -torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G)) = \rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_K(\mathbb{Z})$. Then G satisfies the Conjecture above.

Let X and Y be det- L^2 -acyclic finite G-CW-complexes, which are G-homotopy equivalent. Then their L^2 -torsion agree:

$$\rho^{(2)}(X;\mathcal{N}(G))=\rho^{(2)}(Y;\mathcal{N}(G)).$$

- The L²-torsion of closed Riemannian manifold M is defined in terms of the heat kernel on the universal covering. If M is hyperbolic and has odd dimension, its L²-torsion is up to a (non-vanishing) dimension constant its volume.
- The conjecture above allows to extend the notion of volume to hyperbolic groups whose *L*²-Betti numbers all vanish.

Theorem (L. (2002))

Suppose that $G \in \mathcal{FJ}_{\mathcal{K}}(\mathbb{Z})$. Then G satisfies the Conjecture above.

Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝔽(*G*) ⊗_ℤ ℚ is trivial.

• The surjectivity of the map

 $\operatorname{colim}_{\operatorname{Dr}_{\mathcal{FIN}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It says that for a closed Riemannian manifold with torsionfree fundamental group the L^2 -Betti numbers of its universal covering are all integers. The Atiyah Conjecture is rather surprising in view of the analytic definition of the L^2 -Betti numbers by

$$b^{(2)}_{
ho}(M):=\lim_{t o\infty}\int_{F}e^{-t\widetilde{\Delta}_{
ho}}(\widetilde{x},\widetilde{x})dvol_{\widetilde{M}},$$

where *F* is a fundamental domain for the $\pi_1(M)$ -action on \widetilde{M} .

- Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝔽_{*p*}(*G*) ⊗_ℤ ℚ is trivial.
- The surjectivity of the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It

says that for a closed Riemannian manifold with torsionfree fundamental group the L^2 -Betti numbers of its universal covering are all integers. The Atiyah Conjecture is rather surprising in view of the analytic definition of the L^2 -Betti numbers by

$$b^{(2)}_{
ho}(M):=\lim_{t o\infty}\int_{F}e^{-t\widetilde{\Delta}_{
ho}}(\widetilde{x},\widetilde{x})dvol_{\widetilde{M}},$$

where *F* is a fundamental domain for the $\pi_1(M)$ -action on M.

- Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝔽_{*p*}(*G*) ⊗_ℤ ℚ is trivial.
- The surjectivity of the map

 $\operatorname{colim}_{\operatorname{Or}_{\mathcal{FIN}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It says that for a closed Riemannian manifold with torsionfree fundamental group the L^2 -Betti numbers of its universal covering are all integers. The Atiyah Conjecture is rather surprising in view of the analytic definition of the L^2 -Betti numbers by

$$b^{(2)}_{
ho}(M):=\lim_{t o\infty}\int_{F}e^{-t\widetilde{\Delta}_{
ho}}(\widetilde{x},\widetilde{x})dvol_{\widetilde{M}},$$

where *F* is a fundamental domain for the $\pi_1(M)$ -action on \widetilde{M} .

- Deninger can define a *p*-adic Fuglede-Kadison determinant for a group *G* and relate it to *p*-adic entropy provided that Wh^𝔽(*G*) ⊗_ℤ ℚ is trivial.
- The surjectivity of the map

$$\operatorname{colim}_{\operatorname{Dr}_{\mathcal{FIN}}(G)} K_0(\mathbb{C}H) \to K_0(\mathbb{C}G)$$

plays a role (33 %) in a program to prove the Atiyah Conjecture. It says that for a closed Riemannian manifold with torsionfree fundamental group the L^2 -Betti numbers of its universal covering are all integers. The Atiyah Conjecture is rather surprising in view of the analytic definition of the L^2 -Betti numbers by

$$b^{(2)}_{
ho}(M):=\lim_{t o\infty}\int_{F}e^{-t\widetilde{\Delta}_{
ho}}(\widetilde{x},\widetilde{x})dvol_{\widetilde{M}},$$

where *F* is a fundamental domain for the $\pi_1(M)$ -action on \widetilde{M} .

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≅ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms KO_n(C^{*}_r(G; ℝ)) → KO_{n+8}(C^{*}_r(G; ℝ)).

• In particular

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≅ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms KO_n(C^{*}_r(G; ℝ)) → KO_{n+8}(C^{*}_r(G; ℝ)).

• In particular

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≅ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms KO_n(C^{*}_r(G; ℝ)) → KO_{n+8}(C^{*}_r(G; ℝ)).

• In particular

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≃ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms KO_n(C^{*}_r(G; ℝ)) → KO_{n+8}(C^{*}_r(G; ℝ)).

In particular

 $\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

・ロト ・ 四ト ・ ヨト ・ ヨト

A *Bott manifold* is any simply connected closed Spin-manifold *B* of dimension 8 whose \widehat{A} -genus $\widehat{A}(B)$ is 8.

- We fix such a choice. (The particular choice does not matter.)
- Notice that the index defined in terms of the Dirac operator ind_{C^{*}_r({1};ℝ)}(B) ∈ KO₈(ℝ) ≃ ℤ is a generator and the product with this element induces the Bott periodicity isomorphisms
 KO_n(C^{*}_r(G; ℝ)) ≃ KO_{n+8}(C^{*}_r(G; ℝ)).

In particular

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = \operatorname{ind}_{C^*_r(\pi_1(M \times B);\mathbb{R})}(M \times B),$$

if we identify $KO_n(C_r^*(\pi_1(M); \mathbb{R})) = KO_{n+8}(C_r^*(\pi_1(M); \mathbb{R}))$ via Bott periodicity.

イロト イ団ト イヨト イヨト

$$\operatorname{ind}_{C_r^*(\pi_1(M);\mathbb{R})}(M) \in KO_n(C_r^*(\pi_1(M);\mathbb{R})),$$

which is defined in terms of the Dirac operator on the universal covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let *M* be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

 $\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$

$$\operatorname{ind}_{C_r^*(\pi_1(M);\mathbb{R})}(M) \in KO_n(C_r^*(\pi_1(M);\mathbb{R})),$$

which is defined in terms of the Dirac operator on the universal covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let *M* be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

 $\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$

$$\mathsf{ind}_{\mathcal{C}^*_r(\pi_1(M);\mathbb{R})}(M) \in \mathit{KO}_n(\mathcal{C}^*_r(\pi_1(M);\mathbb{R})),$$

which is defined in terms of the Dirac operator on the universal covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let *M* be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

 $\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$

$$\mathsf{ind}_{\mathcal{C}^*_r(\pi_1(M);\mathbb{R})}(M)\in \mathit{KO}_n(\mathcal{C}^*_r(\pi_1(M);\mathbb{R})),$$

which is defined in terms of the Dirac operator on the universal covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)

Let M be a closed connected Spin-manifold of dimension $n \ge 5$. Then $M \times B^k$ carries for some integer $k \ge 0$ a Riemannian metric with positive scalar curvature if and only if

$$\operatorname{ind}_{C^*_r(\pi_1(M);\mathbb{R})}(M) = 0 \quad \in KO_n(C^*_r(\pi_1(M);\mathbb{R})).$$

(B)

Theorem (Stolz (2002))

Suppose that the assembly map for the real version of the Baum-Connes Conjecture

 $H_n^G(\underline{E}G; \mathbf{KO}^{\mathrm{top}}) \to KO_n(C_r^*(G; \mathbb{R}))$

is injective for the group G. Then the Stable Gromov-Lawson-Rosenberg Conjecture true for all closed Spin-manifolds of dimension ≥ 5 with $\pi_1(M) \cong G$.

Theorem (Stolz (2002))

Suppose that the assembly map for the real version of the Baum-Connes Conjecture

$H_n^G(\underline{E}G;\mathbf{KO}^{\mathrm{top}}) \to KO_n(C_r^*(G;\mathbb{R}))$

is injective for the group G.

Then the Stable Gromov-Lawson-Rosenberg Conjecture true for all closed Spin-manifolds of dimension ≥ 5 with $\pi_1(M) \cong G$.

Theorem (Stolz (2002))

Suppose that the assembly map for the real version of the Baum-Connes Conjecture

 $H_n^G(\underline{E}G;\mathbf{KO}^{\mathrm{top}}) \to \mathit{KO}_n(\mathit{C}^*_r(G;\mathbb{R}))$

is injective for the group G. Then the Stable Gromov-Lawson-Rosenberg Conjecture true for all closed Spin-manifolds of dimension ≥ 5 with $\pi_1(M) \cong G$.

イロト イ押ト イヨト イヨト

- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.

- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.

- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.

- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.
- The requirement dim(M) ≥ 5 is essential in the Stable Gromov-Lawson-Rosenberg Conjecture, since in dimension four new obstructions, the Seiberg-Witten invariants, occur.
- The unstable version of the Gromov-Lawson-Rosenberg Conjecture says that *M* carries a Riemannian metric with positive scalar curvature if and only if ind_{C^{*}_r(π₁(M);ℝ)}(M) = 0.
- Schick(1998) has constructed counterexamples to the unstable version using minimal hypersurface methods due to Schoen and Yau.
- It is not known whether the unstable version is true or false for finite fundamental groups.
- Since the Baum-Connes Conjecture is true for finite groups (for the trivial reason that <u>E</u>G = pt for finite groups G), the Stable Gromov-Lawson Conjecture holds for finite fundamental groups.

A B F A B F

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

イロト イポト イヨト イヨ

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

< ロ > < 同 > < 回 > < 回 >

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

For which groups are the Farrell-Jones Conjecture and the Baum-Connes Conjecture known to be true? What are open interesting cases?

Question (Methods of proof)

What are the methods of proof?

Question (Relations)

What are the relations between the Farrell-Jones Conjecture and the Baum-Connes Conjecture?

(4) (5) (4) (5)

A D M A A A M M

To be continued Stay tuned

Wolfgang Lück (Münster, Germany)

The Iso. Conj. for arbitrary groups

Hangzhou, July 2007 33 / 33

э

A (10) A (10) A (10)

To be continued Stay tuned

э

A (10) A (10) A (10)