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Flashback

We have introduced classifying spaces EF (G) for a family F of
subgroups.
We have introduced the notion of an equivariant homology theory.
We have formulated the Farrell-Jones Conjecture and the
Baum-Connes Conjecture.
We have already discussed application for torsionfree groups such
as to the Kaplansky Conjecture and the Borel Conjecture.
Cliffhanger

Question (Consequences)
What are the consequences of the Farrell-Jones Conjecture and the
Baum-Connes Conjecture?
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Outline

We give a review of the Farrell-Jones and the Baum-Connes
Conjecture.
We discuss the difference between the families FIN and VCYC.
We discuss consequences of the Farrell-Jones and the
Baum-Connes Conjecture.
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Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Review of the Isomorphism Conjectures

G will always be a discrete group.

Definition (Classifying G-CW -complex for a family of subgroups)
Let F be a family of subgroups of G. A model for the classifying
G-CW-complex for the family F is a G-CW -complex EF (G) which has
the following properties:

All isotropy groups of EF (G) belong to F ;
For any G-CW -complex Y , whose isotropy groups belong to F ,
there is up to G-homotopy precisely one G-map Y → X .

We abbreviate EG := EFIN (G) and call it the universal
G-CW-complex for proper G-actions.
We also write EG = ET R(G).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 4 / 33



Definition (Equivariant homology theory)

An equivariant homology theory H?
∗ assigns to every group G a

G-homology theory HG
∗ . These are linked together with the following

so called induction structure: given a group homomorphism α : H → G
and a H-CW -pair (X , A), there are for all n ∈ Z natural
homomorphisms

indα : HH
n (X , A) → HG

n (indα(X , A))

satisfying
Bijectivity
If ker(α) acts freely on X , then indα is a bijection;
Compatibility with the boundary homomorphisms;
Functoriality in α;
Compatibility with conjugation.
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Conjecture (K -theoretic Farrell-Jones-Conjecture)
The K -theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), KR) → HG

n (pt, KR) = Kn(RG)

is bijective for all n ∈ Z.

Conjecture (L-theoretic Farrell-Jones-Conjecture)
The L-theoretic Farrell-Jones Conjecture with coefficients in R for the
group G predicts that the assembly map

HG
n (EVCYC(G), L〈−∞〉

R ) → HG
n (pt, L−∞〉

R ) = L〈−∞〉
n (RG)

is bijective for all n ∈ Z.
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Conjecture (Baum-Connes Conjecture)
The Baum-Connes Conjecture predicts that the assembly map

K G
n (EG) = HG

n (EFIN (G), Ktop) → HG
n (pt, Ktop) = Kn(C∗

r (G))

is bijective for all n ∈ Z.

All assembly maps are the maps induced by the projection
EF (G) → pt.
These Conjecture can be thought of a kind of generalized
induction theorem. They allow to compute the value of a functor
such as Kn(RG) on G in terms of its values for all virtually cyclic
subgroups of G.
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Changing the family

Theorem (Transitivity Principle)
Let F ⊆ G be two families of subgroups of G. Let H?

∗ be an equivariant
homology theory. Assume that for every element H ∈ G and n ∈ Z the
assembly map

HH
n (EF|H (H)) → HH

n (pt)

is bijective, where F|H = {K ∩ H | K ∈ F}.
Then the relative assembly map induced by the up to G-homotopy
unique G-map EF (G) → EG(G)

HG
n (EF (G)) → HG

n (EG(G))

is bijective for all n ∈ Z.
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assembly map

HH
n (EF|H (H)) → HH

n (pt)

is bijective, where F|H = {K ∩ H | K ∈ F}.
Then the relative assembly map induced by the up to G-homotopy
unique G-map EF (G) → EG(G)

HG
n (EF (G)) → HG

n (EG(G))

is bijective for all n ∈ Z.
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Example (Passage from FIN to VCYC for the Baum-Connes
Conjecture)

The Baum-Connes Conjecture is known to be true for virtually
cyclic groups. The Transitivity Principle implies that the relative
assembly

K G
n (EG)

∼=−→ K G
n (EVCYC(G))

is bijective for all n ∈ Z.
Hence it does not matter in the context of the Baum-Connes
Conjecture whether we consider the family FIN or VCYC.
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In general the relative assembly maps

HG
n (EG; KR) → HG

n (EVCYC(G); KR);

HG
n (EG; L〈−∞〉

R ) → HG
n (EVCYC(G); L〈−∞〉

R ),

are not bijective.
Hence in the Farrell-Jones setting one has to pass to VCYC and
cannot use the easier to handle family FIN .
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Example (Passage from FIN to VCYC for the Farrell-Jones
Conjecture)
For instance the Bass-Heller Swan decomposition

Kn−1(R)⊕ Kn(R)⊕ NKn(R)⊕ NKn(R))
∼=−→ Kn(R[t , t−1]) ∼= Kn(R[Z])

and the isomorphism

HZ
n (EZ; KR) = HZ

n (EZ; KR) = H{1}
n (S1, KR) = Kn−1(R)⊕ Kn(R)

show that
HZ

n (EZ; KR) → HZ
n (pt; KR) = Kn(RZ)

is bijective if and only if NKn(R) = 0.
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An infinite virtually cyclic group G is called of type I if it admits an
epimorphism onto Z and of type II otherwise. A virtually cyclic
group is of type II if and only if admits an epimorphism onto D∞.
Let VCYCI or VCYCII respectively be the family of subgroups
which are either finite or which are virtually cyclic of type I or II
respectively.

Theorem (L. (2004), Quinn (2007), Reich (2007))
The following maps are bijective for all n ∈ Z

HG
n (EVCYCI (G); KR) → HG

n (EVCYC(G); KR);

HG
n (EG; L〈−∞〉

R ) → HG
n (EVCYCI (G); L〈−∞〉

R ).
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Theorem (Cappell (1973), Grunewald (2005), Waldhausen
(1978))

The following maps are bijective for all n ∈ Z.

HG
n (EG; KZ)⊗Z Q → HG

n (EVCYC(G); KZ)⊗Z Q;

HG
n (EG; L〈−∞〉

R )

[
1
2

]
→ HG

n (EVCYC(G); L〈−∞〉
R )

[
1
2

]
;

If R is regular and Q ⊆ R, then for all n ∈ Z we get a bijection

HG
n (EG; KR) → HG

n (EVCYC(G); KR).
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Theorem (Bartels (2003))
For every n ∈ Z the two maps

HG
n (EG; KR) → HG

n (EVCYC(G); KR);

HG
n (EG; L〈−∞〉

R ) → HG
n (EVCYC(G); L〈−∞〉

R ),

are split injective.
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Hence we get (natural) isomorphisms

HG
n (EVCYC(G); KR)

∼= HG
n (EG; KR)⊕ HG

n (EVCYC(G), EG; KR);

HG
n (EVCYC(G); L〈−∞〉

R )

∼= HG
n (EG; L〈−∞〉

R )⊕ HG
n (EVCYC(G), EG; L〈−∞〉

R ).

The analysis of the terms HG
n (EVCYC(G), EG; KR) and

HG
n (EVCYC(G), EG; L〈−∞〉

R ) boils down to investigating Nil-terms
and UNil-terms in the sense of Waldhausen and Cappell.
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The analysis of the terms HG
n (EG; KR) and HG

n (EG; L〈−∞〉
R ) is

using the methods of the previous lecture (e.g., Chern characters).
The results above imply that the versions of the Farrell-Jones
Conjecture for torsionfree groups which we have presented in the
second lecture follow from the general versions.
The latter is obvious for the Baum-Connes Conjecture since for
torsionfree G we have EG = EG.

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 16 / 33



The analysis of the terms HG
n (EG; KR) and HG

n (EG; L〈−∞〉
R ) is

using the methods of the previous lecture (e.g., Chern characters).
The results above imply that the versions of the Farrell-Jones
Conjecture for torsionfree groups which we have presented in the
second lecture follow from the general versions.
The latter is obvious for the Baum-Connes Conjecture since for
torsionfree G we have EG = EG.

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 16 / 33



The analysis of the terms HG
n (EG; KR) and HG

n (EG; L〈−∞〉
R ) is

using the methods of the previous lecture (e.g., Chern characters).
The results above imply that the versions of the Farrell-Jones
Conjecture for torsionfree groups which we have presented in the
second lecture follow from the general versions.
The latter is obvious for the Baum-Connes Conjecture since for
torsionfree G we have EG = EG.

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 16 / 33



Consequence of the Isomorphism Conjectures

Conjecture (Novikov Conjecture)
The Novikov Conjecture for G predicts for a closed oriented manifold
M together with a map f : M → BG that for any x ∈ H∗(BG) the higher
signature

signx(M, f ) := 〈L(M) ∪ f ∗x , [M]〉

is an oriented homotopy invariant of (M, f ), i.e., for every orientation
preserving homotopy equivalence of closed oriented manifolds
g : M0 → M1 and homotopy equivalence fi : M0 → M1 with f1 ◦ g ' f2
we have

signx(M0, f0) = signx(M1, f1).
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Theorem (The Farrell-Jones, the Baum-Connes and the Novikov
Conjecture)
Suppose that one of the following assembly maps

HG
n (EVCYC(G), L〈−∞〉

R ) → HG
n (pt, L〈−∞〉

R ) = L〈−∞〉
n (RG);

K G
n (EG) = HG

n (EFIN (G), Ktop) → HG
n (pt, Ktop) = Kn(C∗

r (G)),

is rationally injective.
Then the Novikov Conjecture holds for the group G.
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Theorem (K0(RG) and induction from finite subgroups,
Bartels-L.-Reich (2007))

Let R be a regular ring with Q ⊆ R. Suppose G ∈ FJ K (R). Then
the map given by induction from finite subgroups of G

colim
OrFIN (G)

K0(RH) → K0(RG)

is bijective;
Let F be a field of characteristic p for a prime number p. Suppose
that G ∈ FJ K (F ). Then the map

colim
OrFIN (G)

K0(FH)[1/p] → K0(FG)[1/p]

is bijective.
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Theorem (Permutation Modules, Bartels-L.-Reich (2007))
Let F be a field of characteristic zero. Suppose that G ∈ FJ K (F ).
Then for every finitely generated projective FG-module P there exists a
positive integer k and finitely many finite subgroups H1, H2, . . ., Hr
such that

Pk ∼=FG F [G/H1]⊕ F [G/H2]⊕ . . .⊕ F [G/Hr ].
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Let R be commutative ring and let G be a group.
Let class(G, R) be the R-module of class functions G → R, i.e.,
functions G → R which are constant on conjugacy classes.
Let trRG : RG → class(G, R) be the obvious R-homomorphism. It
extends to a map

trRG : Mn(RG) → class(G, R)

by taking the sums of the values of the diagonal entries.
Let P be a finitely generated RG-module. Choose a finitely
generated projective RG-module Q and an isomorphism
φ : RGn ∼=−→ P ⊕Q. Let A ∈ Mn(RG) be a matrix such that
φ−1 ◦ (f ⊕ idq) ◦ φ : RGn → RGn is given by A.
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Definition (Hattori-Stallings rank)
Define the Hattori-Stallings rank of P to be the class function

HSRG(P) := trRG(A).

This definition is independent of the choice of Q and φ.
Let G be a finite group and let F be a field of characteristic zero.
Then a finitely generated RG-module P is the same as a finite
dimensional G-representation over F and the Hattori-Stallings
rank can be identified with the character of the G-representation.
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Conjecture (Bass Conjecture)
Let R be a commutative integral domain and let G be a group. Let
g 6= 1 be an element in G. Suppose that either the order |g| is infinite
or that the order |g| is finite and not invertible in R.
Then the Bass Conjecture predicts that for every finitely generated
projective RG-module P the value of its Hattori-Stallings rank HSRG(P)
at (g) is trivial.

If G is finite, this is just the Theorem of Swan (1960).
Another version of it would predict for the quotient field F of R that

K0(RG) → K0(FG)

factorizes as

K0(RG) → K0(R) → K0(F ) → K0(FG).
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Theorem (Linnell-Farrell (2003))
Let G be a group. Suppose that

colim
OrFIN (G)

K0(FH)⊗Z Q → K0(FG)⊗Z Q

is surjective for all fields F of prime characteristic. (This is true if
G ∈ FJ K (F ) for every field F of prime characteristic).
Then the Bass Conjecture is satisfied for every integral domain R.
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Conjecture (Vanishing of Bass-Nil-groups)
Let R be a regular ring with Q ⊆ R. Then we get for all groups G and
all n ∈ Z that

NKn(RG) = 0.

Theorem (Bartels-L.-Reich (2007))
Let R be a regular ring with Q ⊆ R. If G ∈ FJ K (R), then the
conjecture above is true.
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Conjecture (Homotopy invariance of L2-torsion)

Let X and Y be det-L2-acyclic finite G-CW-complexes, which are
G-homotopy equivalent. Then their L2-torsion agree:

ρ(2)(X ;N (G)) = ρ(2)(Y ;N (G)).

The L2-torsion of closed Riemannian manifold M is defined in
terms of the heat kernel on the universal covering. If M is
hyperbolic and has odd dimension, its L2-torsion is up to a
(non-vanishing) dimension constant its volume.
The conjecture above allows to extend the notion of volume to
hyperbolic groups whose L2-Betti numbers all vanish.

Theorem (L. (2002))
Suppose that G ∈ FJ K (Z). Then G satisfies the Conjecture above.
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Deninger can define a p-adic Fuglede-Kadison determinant for a
group G and relate it to p-adic entropy provided that
WhFp(G)⊗Z Q is trivial.
The surjectivity of the map

colim
OrFIN (G)

K0(CH) → K0(CG)

plays a role (33 %) in a program to prove the Atiyah Conjecture. It
says that for a closed Riemannian manifold with torsionfree
fundamental group the L2-Betti numbers of its universal covering
are all integers. The Atiyah Conjecture is rather surprising in view
of the analytic definition of the L2-Betti numbers by

b(2)
p (M) := lim

t→∞

∫
F

e−t e∆p(x̃ , x̃)dvol eM ,

where F is a fundamental domain for the π1(M)-action on M̃.
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The surjectivity of the map

colim
OrFIN (G)

K0(CH) → K0(CG)

plays a role (33 %) in a program to prove the Atiyah Conjecture. It
says that for a closed Riemannian manifold with torsionfree
fundamental group the L2-Betti numbers of its universal covering
are all integers. The Atiyah Conjecture is rather surprising in view
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Definition (Bott manifold)
A Bott manifold is any simply connected closed Spin-manifold B of
dimension 8 whose Â-genus Â(B) is 8.

We fix such a choice. (The particular choice does not matter.)
Notice that the index defined in terms of the Dirac operator
indC∗r ({1};R)(B) ∈ KO8(R) ∼= Z is a generator and the product with
this element induces the Bott periodicity isomorphisms
KOn(C∗

r (G; R))
∼=−→ KOn+8(C∗

r (G; R)).
In particular

indC∗r (π1(M);R)(M) = indC∗r (π1(M×B);R)(M × B),

if we identify KOn(C∗
r (π1(M); R)) = KOn+8(C∗

r (π1(M); R)) via Bott
periodicity.
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If M carries a Riemannian metric with positive scalar curvature,
then the index

indC∗r (π1(M);R)(M) ∈ KOn(C∗
r (π1(M); R)),

which is defined in terms of the Dirac operator on the universal
covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)
Let M be a closed connected Spin-manifold of dimension n ≥ 5.
Then M × Bk carries for some integer k ≥ 0 a Riemannian metric with
positive scalar curvature if and only if

indC∗r (π1(M);R)(M) = 0 ∈ KOn(C∗
r (π1(M); R)).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 29 / 33



If M carries a Riemannian metric with positive scalar curvature,
then the index

indC∗r (π1(M);R)(M) ∈ KOn(C∗
r (π1(M); R)),

which is defined in terms of the Dirac operator on the universal
covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)
Let M be a closed connected Spin-manifold of dimension n ≥ 5.
Then M × Bk carries for some integer k ≥ 0 a Riemannian metric with
positive scalar curvature if and only if

indC∗r (π1(M);R)(M) = 0 ∈ KOn(C∗
r (π1(M); R)).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 29 / 33



If M carries a Riemannian metric with positive scalar curvature,
then the index

indC∗r (π1(M);R)(M) ∈ KOn(C∗
r (π1(M); R)),

which is defined in terms of the Dirac operator on the universal
covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)
Let M be a closed connected Spin-manifold of dimension n ≥ 5.
Then M × Bk carries for some integer k ≥ 0 a Riemannian metric with
positive scalar curvature if and only if

indC∗r (π1(M);R)(M) = 0 ∈ KOn(C∗
r (π1(M); R)).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 29 / 33



If M carries a Riemannian metric with positive scalar curvature,
then the index

indC∗r (π1(M);R)(M) ∈ KOn(C∗
r (π1(M); R)),

which is defined in terms of the Dirac operator on the universal
covering, must vanish by the Bochner-Lichnerowicz formula.

Conjecture ((Stable) Gromov-Lawson-Rosenberg Conjecture)
Let M be a closed connected Spin-manifold of dimension n ≥ 5.
Then M × Bk carries for some integer k ≥ 0 a Riemannian metric with
positive scalar curvature if and only if

indC∗r (π1(M);R)(M) = 0 ∈ KOn(C∗
r (π1(M); R)).

Wolfgang Lück (Münster, Germany) The Iso. Conj. for arbitrary groups Hangzhou, July 2007 29 / 33



Theorem (Stolz (2002))
Suppose that the assembly map for the real version of the
Baum-Connes Conjecture

HG
n (EG; KOtop) → KOn(C∗

r (G; R))

is injective for the group G.
Then the Stable Gromov-Lawson-Rosenberg Conjecture true for all
closed Spin-manifolds of dimension ≥ 5 with π1(M) ∼= G.
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The requirement dim(M) ≥ 5 is essential in the Stable
Gromov-Lawson-Rosenberg Conjecture, since in dimension four
new obstructions, the Seiberg-Witten invariants, occur.
The unstable version of the Gromov-Lawson-Rosenberg
Conjecture says that M carries a Riemannian metric with positive
scalar curvature if and only if indC∗r (π1(M);R)(M) = 0.
Schick(1998) has constructed counterexamples to the unstable
version using minimal hypersurface methods due to Schoen and
Yau.
It is not known whether the unstable version is true or false for
finite fundamental groups.
Since the Baum-Connes Conjecture is true for finite groups (for
the trivial reason that EG = pt for finite groups G), the Stable
Gromov-Lawson Conjecture holds for finite fundamental groups.
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Question (Status)
For which groups are the Farrell-Jones Conjecture and the
Baum-Connes Conjecture known to be true? What are open
interesting cases?

Question (Methods of proof)
What are the methods of proof?

Question (Relations)
What are the relations between the Farrell-Jones Conjecture and the
Baum-Connes Conjecture?
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To be continued
Stay tuned
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